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Some Distributions Involving; Bessel Functions

by

G. M. Kaufman '

The Lognormal frequency function provides a surprisingly good fit to

a wide variety of frequency histograms of observational data from widely

disparate sources . As is pointed out in [ 1 ] , any process that generates

data according to the Law of Proportionate Effect is a strong potential

candidate for characterization by a Lognormal probability law, and its

ubiquitousness in nature is one reason to expect the Lognormal probability

law to appear often as a stochastic model of observational data. This led

us to consider in [ 6 ] economic decision problems in which the mean of a

Lognormal process plays a central role, but in which the mean is not known

with certainty prior to decision.

There we assume that we are sampling from an independent Lognormal process;

i.e. a process generating value of mutually independent random variables

x^ , . .
. ,x. , . . . with identical densities

(h ^^^-ishdog X- u)2 1 _^y 0,^^
^^^

^2"^ ^ X > 0.

and with mean E(x|y,h) = U. - exp{\j + ^} . In ( 6 ] we restrict attention

to decision problems for which the expected (monetary) value criterion is

appropriate and for which the expected value of each of two (terminal) acts

under consideration is a linear function of y, • Assuming that h is known

' I wish to thank John Bishop for rummaging through the attic of classical

analysis with me and pointing out several interesting artifacts.
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while u is not known with certainty, the natural conjugate density of v^
Li

is then stated, and prior to posterior and preposterior analysis is done.

Finally, [ 6 ] presents necessary and sufficient conditions for a sample

size n to be optimal under the above assumptions about sampling, value,

and acts, when in addition the cost of sampling is a linear fxinction of n.

A natural generalization is to repeat this pattern of analysis when

neither u nor h are known with certainty.

We develop here all the distribution theory necessary to do Bayesian

inference in this more general case: the prior to posterior and preposterior

analysis Just mentioned. In the covirse of the analysis we show that following

the natural path of natural conjugate analysis leads us into a cul-de-sac

insofar as analysis of some standard decision problems is concerned. For

if one assigns a natural conjugate density to (y, h), then the derived

density of iJ. has no finite moments of order q > 0. Thus under these dis-
Li

tributional assiimptions , a complete analysis of the optimal sample size

problem mentioned above is not possible; this is also true for many of the

common (terminal) infinite action problems treated in, for example [ T ],

Chapter 6

The key to the distribution theory is the observation that the density

of z = u + ^::=- when (iJ, h) have a natural conjugate density involves an
2h

integral that is an integral representation of a Bessel function K (a) of purely
imaginary

argument. Section 2 is devoted to a cataloguing of the properties of

this function that we need. In section 3 we derive the density of z when

u given h = h is Normal with mean m and variance (hn) , and h is Gamma,

showing that the natural conjugate density of z is essentieilly a product

of an exponentieil term exp{z}, a Student density with argiiment z, and a

factor involving a Bessel function K (z). We then state two
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propositions about sums of such random variables. After computing the

characteristic function of z, we find its first two moments, and by examining

the characteristic function note that for some values of the parameters of

the density, the density is infinitely divisible . Section k is devoted to

exploring the relation of the density of z to some well known densities.

We examine relative behavior in the extreme right tedl in particular, using

the notion of regular variation as developed in Feller [ 3 ]. This leads to

some useful statements about approximations to the right tail of a sum of

mutually independent random variables z. with coounon density (3.3) below,

and gives us an easy way of seeing that \i = exp{z} has no finite moments

of order q > 0. Section 5 then outlines the facts needed to do Bayesian

inference about \i^ .

Section 6 takes off in a completely different direction. By appropriate

interpretation of the integrand in a pe,rticular integral representation of

the Bessel function K (z) , , we can define the probability law

of a compound random process. Then putting on the probabilists ' spectacles,

we derive almost by inspection three identities (at least one of which is

well known) involving Bessel functions bS i »he t iiiyA toti^ that appear

involved from any other point of view.

For several additional examples of distributions involving Bessel functions

the reader is referred to Feller [ 3 ], Chapter 2. He shows that the Bessel

function I (z) of purely imaginary argument aa defined in (2.2) below appears

in the analysis of randomized Gamma densities, randomized random walks, and

first passage problems. Bessel functions also appear naturally in distributions

of radial error; see Durand and Greenwood [ 2 ], for example.
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2 . An Integral Representation of a Bessel Function of Purely Imaginary
Argument •}•

The Integral of primary Interest here is

/ e ^ t^-^ dt . (2.1)

2
where k and v are real and a is (possibly) complex. This integral is closely

related to a Bessel function of purely Imaginary argument. Such functions are

real and denoted by I (z), where

when V is not a negative integer. As shown in ( 2.7 ) below, the integral

(2.1) Is 2(a/2k)^ times the modified Bessel function

I ,(ak) - I,(ak)
K (ak) = V ^=^

:

^ (2.3)
V Sm VTT

a function well defined for all values of v. For any integer n,

I (ak) - I (ak)

K (ak) = V lim ^^^
: • (2.U)

n sin VTT
v-m

In particular, riletting y = .5772157... denote Euler's constant and

for 1=1,2, ... tj»(i+l) = l + ^+....+ j-Y.

K.(z) = -log(i5z) • 1^(2) + ,Io )^ p 'i'(j+l)
,-0 (j,)2

2

1

'

i^^^ 4'(J+1) (2.5a)

I- All of the formulae in this subsection may be found in Watson [ 8 ].

H Ibid, p. 80.
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and

,n4-l ? IM"^^^+ (-!)"'" jEq
Iflj;^, {log(Hz) - i6*(J+l)-^'^(n+j+l)} . (2.5b)

For half-integer values of \)^

v_\h -2
K^(z) » (2^p e-^ (2.5c)

2

•^5<^> ^ir)''^"' (l-^I-^"2) <2.5e)

I

VV^^ ^ 2zJ ^
J-0 Jl (n-J)l •

^^'^^^

A relation of primary interest here between the integral (2.1) and K (z) that

we need to compute the density of certain suns of random variables and the

characteristic functions of these sums follows directly from the integral

representation (see Watson [ 8] p. 183) defined for unrestricted values of v

2 \-

and for Re(z ) > 0,

2
2

K (z) - H(Hz)" / e"^' ^ "^^ ^ t-^-^ dt. (2.6)
^

By a simple integrand transform, (2.6) leads to

T 2 2
^ Re(z ) denotes the real part of (possibly complex) z .
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2(^)^ K (ak) = / e ^ t"""^ dt (2.7)
^ "

2 2
defined here for unrestricted values of v, k real, and Re(a ) > 0. Here we

shall be concerned only with real v; . remark that in (2.3), K_ (ak) = K^(ak)

BO that we can write K (ak) in (2.T) as Kj |(ak), where |v| is the absolute value

of V. An asymptotic expansion (Watson [ 8 ] p. 202)

where 0(z~^) denotes a fvinction of order of magnitude of z as z -» +<=», and

shows that K (z) tends exponentially to zero as z -^ +» through positive

values. This property is of critical^importance here, as we shall be

concerned with real values of z = ak > when K (z) forms part of a density

function—one that we wish to be "well-behaved".

An alternate expression for K (z) is (Watson [ 8 ] p. 206)
V

By analysis of remainder terms in the expansion of ( 1 + 2T) » Watson

obtains a more exact result than (2.8a): when p 21 v-H.

K (,) = [-If^ e-^ [^e' ^^ . e, -^^1
V '•2z^ J=0 ,„ xj 2 ,„,^p(2z)J " (2z)J

(2.9)

where <_ Q <_ 1.





3 . The Density of z - {i + rr»'

The representation (2.7) enables us to derive the density of the sum of

a Normal and the reciprocal of a Gamma random variable when their Joint density

is Nomal-gamma.

Lemma 3.1 ; Let p|h and h have densities

/n -^hn()J-m) .h
'

,
' /^ -.x

e h^ , -» < m < +" » (3.1)

and

'2ti -« < VI < +"
,

i^S— e-"^^^ (he)"^-^ a > ; (3.2)
r(ha)

h >

respectively. Then the density of z = y + -zr is, letting v or+l,

C(z) E n(z-m)2 + e and c = n'^^^^)
^^^(v-l)/ 2^-1 ^ r(H(v-l)).

^
^^n(z-m) [5(2))-^ K, (In5(2)/A]*^, (3.3)

^ . -00 < Z < -H".

Proof ; Simply multiply (3.1) and (3.2), substitute z - ^r for u in (3.1) and

2
integrate over h > 0. The integrand is that of (2.7) with ^^ in place of v, k =e(z)/2

2
and a = n/2. For notational convenience, we shall henceforth write a generic

member of the family of densities characterized by (3.3) as f .

The density of sums of random variables z. = p. + -rr- with common h is easy

to derive in the same fashion when the u, are mutually independent and Normal:

Corollary 3.1 ; Let z = jj + jr, i=l,2,...,p where the \i. are mutually

independent given h = h and y. is Normal with mean m. and variance (hn.)

Let h have density (3.2). Then s = Iz. has density

^,
^i^p(s-M) (5(8)]-^ K^(^p[NC(s))S (3.4)





where

- 8 -

M - Era , N - a^ )~^
, Ub) - N(8-M)^ + € ,

1

and

c' - N^<^2)
^^(v-1) pV/^v-l ^ j.(^(^.,j) ^

Proof ; Since l\x. given h = h is Normal with mean M and variance (hN)~ ,

8 given h h is Normal with mean M + yr and variance (hN) . Replacing

2 2 2
n with N and m with M in C('), setting k = ^(8)/2 and a = Np /2, and

proceeding as in the proof of (3.3) gives (3,4).

3.2 Characteristic Function of f . Moments, and Infinite Divisibility

The characteristic function of a random variable z with density f is
z

By differentiating (3.5) and then letting Y = 0, we can then compute the mean

E(z) and variance V(z) of a random variable z with density f . Alternately,

we can compute them directly from the intermediate formulae shown below:

(m + -^- if a > 2

— 1 J
""^

E(z) - E(u) + HE(h ) = ) (3-6a)

\^ +« otherwise

and

V(z) - E. V(z|h) + V, E(z|h)- - E(h~-^) + V(i5h"-^)
h n n

2
^ + —= if a > 4

"^°-2^ 2(ot-2)^a-4)
(3.6b)

+« othen-'lHe .





- 9 -

Proof of (3.5) ; Using the fact that if the random variable y is Normal with

mean m and variance (hn) , its characteristic function is

iH'm -

E(e^^) - e
2hn

^3^^)

the characteristic function of z with density f is
z

z
'

h iJ
I
h

2

where a - 2f - - iyl. As fi is Gamma as in (3.2),
*• n '

2 2

-§" /I \Ha " -(^he + TT ) l i

E(e ) - 2, Ti \ / e h dh . (3.8)
Tiho) •'q

2
The integral in (3.8) is that of (2.7) with k » He and -ha = v; substituting

in (3.8) according to (2.7) and multiplying by expCiVm} gives (3.5).

In the special case a « 1, the characteristic function (3.5) is

IH'm ^n
'

e e

Now a characteristic function w, say is infinitely divisible if and only

if for each n-1,2,... there exists a characteristic function w^ such that

w" = w. The nth positive root of (3.9) is of precisely the same form as

(3.9) with m replaced by m/n and /T replaced by /T/n. Thus, when a - 1, f

is infinitely divisible.

Notice that when a - 1, if (iJ.fi) have the Normal-gamma density given

by (3.1) and (3.2), the marginal density of jj is Cauchy, centered at m.

(3.9)

z
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AS is well known, the Cauchy density is infinitely divisible, and this

is suggestively close to what we Just found above.

It is still open as to whether or not f is infinitely divisible

with arbitrary a ^ 1. We conjecture that f is infinitely divisible

only for a = 1

.

We may use (3.9) to generalize Collary 3.1 to certain sums of

independent z.s.

Corollary 3.2 : Let z. , i=l,2,...,m be mutually independent,

and assume z. has density f with parameters a = 1, n, e. , m .

Then W = Ez. has characteristic function
1

2

e

where

M = Em. and *^ = l/zT .

1 1

Consequently W has density f with parameters a^ 1, n, E, and M.

This follows from multiplying the characteristic fimctions of the z. and

noting that the product is of the same functional form as (3.9) with m

replaced by M and e replaced by E.





- 11 -

3. 3 Approximation of P(z > z )

For z^ > m probabilities P(z > z_) may be expressed as a weighted sum of

!l fiinctions (»«i-*he -%l«#SMrtrtw

and write, using (3.1) and (3.2),

Bessel fiinctions »«i- the -**•#••*** plus a remainder term: define y- = v^(zQ-m)

OB
, -(Hhe + ~) 1 .

P(z > Zq) = / Gj^,,(h\) e ^ h-^-^ dh, (3.10)

where G ^ is a standardized Normal right tail. For u > 0, G„,j(u) has the

expansion

1 ^ / \ n 1 ^ 1'3 ^ ^ (-1)*^ 1'3 ... (2J-1) , _^ p , V ,_ ., ^- fj^,j(u) [1 - -2 + —f^ + ... +
21

J "^ R,(u), (3.11a)

u u u "^

where

00

R,(u) = (-l)"^""^ I'B ... (2J+1) / ^^^rr^ f^^M dt (3.11b)
J ^ ^2J+2 N*

and the absolute value of R.(u) is less than that of the first neglected term.
J

(See [ h ] 26.2.12). Substituting (3.11"a) and (3.11b) in (3.10) with u = h^Q,

2 (H)*^
0) = y^ -I- e, Cq = jfi^ » and integrating.

n>jiG(a-l)

10''

n^ir;(a-3)

-^(a-3)

(3.12)

Since B (u) for fixed u is le93 in absolute value than the absolute value of the
J

/ h N

first neglected term, the integral of R,(h y^) is less than
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1'3 ... (2.1+1) fn>>i5(a-2J-3)

2J+2 a"°-^^-" --Va-2J-3) ^^^) •
(3-^3)

One w€iy of approximating P( z > z^) when z > m is to use (3.12) but neglect

the remainder term. If J is selected less than ^(a-3), the accuracy of this

approximation increases rapidly with increasing z^ since for large z^ (3.13)

behaves roughly like

r r \^\ 2 ^ vig,,/ 2j+2 , 2 ^ ;5(a-2j-3)
[expl-Hn (y^ + e) )]/Yq (yp + e)

'^
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U.3 Regular Variation of f

In order to relate the behavior of the density (3.3) in the tails to

that of better known densities such as the Normal and the Student densities,

we use the notion of regular variation as exposited in Feller [3 ], Vol.

II. It enables us to state facts about the right tail of the density of

sums of random variables z with common density (3.3) that peem difficult to

prove by other means. In the course of the discussion we recast a Lemma

of Feller's to provide a useful criterion for detennining whether or not

the qth moment of a density defined on (0, ") is finite. This Lemma is

Just a restatement of a well known result in analysis.*

We then go on to show that the density (3.3) is regularly varying

and that it has finite moments of order <_ q < iga . Using a new result

of Feller's, we give an expression for the right tail of the density of

sums of independent random variables" with common density f .

U.3.1 Regular Variation

The idea of regular variation is contained in the following lemma and

definitions from Feller [3 ].
'"''

Lemma : Let U be a positive monotone function on (O, «) such that

TKTT " *^^^ -" ^^'^^

as t - " at a dense set A of points . Then

li»(x) = X^ ,
-00 £ p <_ oo

.
(l4.2)

(Here x°° is interpreted as « if x > 1, and as if x < l).

Definition : For a positive function U satisfying {k.3) and (h.k)

with finite p, set U(x) = x"^ L(x). Then for each x > as t - »,

' See Hobson [ 5 ] p. 505.

rr Chapter VIII, Section 8.
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^.1 (U.3)

and so L satisfies (U.2) with p = 0.

Definition : A positive function L defined on (O, ") varies slowly

at infinity if and only if (U.^) is true. The function U varies

regularly with exponent p if and only if U(x) = x L(x) with

_oo<p < 00 and L varying slowly.

Since the asymptotic behavior at infinity of unimodal densities are not

affected by behavior near the mode or_ near the origin, we can use these notions

to characterize the extreme right tails of such densities.

Easy calculations show these facts about some well-known densities. We

assume x >> 1 and h, r, X, n, and t greater than 0:

Density ^{x)

,2

Normal: c e ^ ' "^ x
_oa

2
-^(log x-u) /

Lognormal: c^-^ e °
/j'2

—00

X

-x r-1 — '*'

Gajiuna: c_ e x x

—Xx —'"

Exponential: , Ci e x

/ , ^2 .-H(a+1) -,(a+l)
Student: c^ (n(x-M) + e) x

-(a+1) -(a+1)
Strong Pareto: "^6 ^ ^

While the exponent p in x serves to order partially the above densities

according to their rate of approach to as x - ", this is not an

essential fact here. Of more importance is the following Lemma establishing

necessary and sufficient conditions in terms of p for the finiteness of the qth

moment of a density defined on ( 0, «) . It can be proved by a slight

modification of the proof of a Lemma on pa^e 272 of Feller [3 ]:
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Lemma U.l ; Let U(x) be a density defined on (0, ») that varies

regularly with exponent p. Then lim x*'- U(x) = and q + p + 1 <

x-K)

are necessary and sufficient conditions for moments of U of order q

to be finite. If i|;(x) = x"" for U, and lim x*^ U(x) = for
x-K)

all q, then the qth moment of U is finite for all -oo < q < a-
^

Applying the lemma to the densities listed above, it shows that the

exponential density has finite moments of order q for ^ q < », the Gamma

density has finite moments of order q for -r < q < ", and the strong Pareto density

has finite moments of order q for -» < q < a. Remark also, that we can apply

these ideas to densities defined on (-", ") by examining both left and right

tails; e.g. a necessary and sufficient condition that a density defined on

(-°°, °°) have a finite moment of order q>0 is that it varys regularly in the

right tail with exponent p and in the left tail with exponent p and

q + p^ + 1 < and q+p„+l<0. As the Normal and Student densities shown

above are symmetric about w, we see that these conditions imply that the Normal

density has finite moments of order q £ for all q < ", while the Student

density has moments of order q >^ only for q < a

The following theorem and corollary due to Feller* gives us a simple

asymptotic expression for the extreme right (left) tail of the density of

the sum of mutually independent random variables with common density that varies

regularly in the right (left) tail:

Theorem ; Let F^ and F- be two distribution functions such that aa x -» "

1 - F,(x) ; — L(x) (U.6)
^ xP

with L varying slowly. Then the convolution G = F^^F^ of F, and Fp has

^ [3 ]. p. 271
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a regularly varying tail such that

1 - G(x) : -J^ L(x) . (I4.7)

(here : means that as x -> » the ratio of 1 - G(x) and (a + a_) L(x)/x^

approaches l).

As two examples of application, one can show the following:

(i) Let X and y be independent with strong Pareto densities

c^ x-^°*^\ X > Xp > 0, and Cg y-^"*^^ y > yQ > 0.

Then letting s = x + y,

c +c
1 - G(x) : -^^-^

.

a
s

(ii) Let u and v be independent with common Student density

"5 ((x-y) + e)~^^°*^^ , e > 0, a >. 1. Then letting s' = u+v,

s ((x-y) + e) "^

The first proposition is obvious. To show that the sum of two independent

Student random variables with identical densities possess the property stated

in (ii) is only slightly more involved. Examine the right tail P(u > x) of

the density. This suffices since the density is symmetric about \i. The right

tail is regularly varying with exponent p = -a, for by L'HospitsuL's rule, for

fixed X < ">,

,. P(u > tx) ,. x((tx-w)^ >• e)~^^°''^^ -a
lim r-T-e -T— = lim ^ TT—TT"^ = X

P(u > t) .__ ,,. ,2 .-hict+l)
t-*^ t-*<» ( { t-y ) + e)

Applying Feller's theorem gives (ii).

With the above explanatory prelude completed, we now state three facts

about f :

z
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(iii) The density (3.3) is regularly vaj-ying with exponent Pp= -^a

in the right tail and p = -" in the left tail,

(iv) If z has density f then P(z > z-) = 1 - F (z_) varies slowly;

(v) If z ,...,z are mutually independent with common density f

then s = E z. has a density that varies regularly in both

tails with exponent p^-^a, and p^ i -c^^ cif-.ol

P(i. > s) : ac[l - F (s)]

where

F (s) = P(z- < g) .

z 1

(vi) F and F vary slowly.

Notice that once we show (iii), (v) follows directly from Feller's theorem

and its corollary; (iv) and (vi) follow from consideration of the 0th moment

of z and of s using Iiemma U.l.

Regular variation of (3.3) with exponent p =-^50 implies that densities

f are "Student-like" in the extreme tails in the sense that if f has
z z

parameter set (m,n,e,a), the ratio of f to a Student density Ci,(n(z-m) +e

)

z ?

with ^a degrees of freedom approaches 1 as z -^ i"".

Proof nP (iii) : The ratio of (3.3) with argument tx to (3.3) with argument

t may he expressed using (2.9) as

gJsn(tx-t) - h[n(,{l-A)r + H[n5(t)]^^ f (,{t) ^V,(v^l)

2 . V -i!;a+^

f 3-U .^".(V-I)
^, ,

U _ jM.-l) ,^

^.[nC(tx)]^ .
(I1.8)

u

*s[nC(t)]'
/ e-'^ u'^(^-l) [1 . ^-^ K^^-l^ du

The limit of the logarithm of (H.8) as t-^+"» is -^-^{v+l) log x, so since vHa+1,

Po ~ -*5(a+2). Repeating the argument for t-^-"" shows that p = -" .

R L





- 18 -

By the seune method used to establish (iii), we can show that when z

hafl density f ,

(vi) The right tail of the density of y. = exp{z} varies regularly

with exponent p = -1.

The density of w. is that of a Lognormal mean exp{vi + ^) when jj and fi

are Jointly distributed as in (3.1) and (3.2). Together with Lemma U.l,

(vi) implies that \i^ has no finite moments of order q > 0. We will show

in detail in the next section that the density of jj^ has finite moments
L

of order q only for -n £ q <^ .
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5

.

An Application to Lognormal Distribution Theory

5.1 The Density of exp(z}

As mentioned at the outset. If we wish to derive the density of the

mean iJ H exp(vJ + "^^iT") of ^ Lognormal process when neither jj nor h are

known with certainty, but are regarded as random variables to which we

have assigned a natural-conjugate (Normal-gamma) prior, then Lemma 3.1

is clearly applicable. For letting z e log u. - ^ "*

2h ' ^^ gives the

density of y^ as

c e"''^'" [Cdog x.^)]~'^ K^^([nC(log x^^) /i^]S . w'^'\ (5.1)

The density (5.1) Is of course proper, but it nevertheless has a

property that Is distressing In the applications: moments of order q >

do not exist. This Is Implied by the fact that the density (5.1) Is regularly

varying with exponent p =-1 together wj.th Lemma A.l. The exact statement

about moments Is In

2

Lemma 5.1 : If u^ has density (5.1), then letting * « ^(q + ^ ).

V(u'i^ - iffc) [Hcfr°lVJ[2#e]^)
E(p?) J r(.*5a; ^a /c 2V^ \ If -n < q 1

^^-^^

+« If q > .

Proof : We first prove (5.2) by appeal to (2.7). Starting with the densities

(3.1) and (3.2) of y|h and h, It Is easy to show that

^ 2

2h . .
, aw, . :^1^^< >

Mh^^l> - ^^"
Mh<^^^>

e
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2

Consequently, letting ^(q + -^
) ,n

By a limit test, (5.3) diverges for > 0. When <. 0, that is -n ^ q £ 0,

the integral (5.2) is by (2.7) as shown in (5.2).

Alternate Proof ; A way of proving (5.2) that reveals more about the behavior

of the density (5.1) of jj. is to examine the expectation of y^ = e^ when z

has the density (3.3).

Use the asymptotic expansion (2.10) for large values of z to write

K, ([nC(z)/4] ) as proportional to

\,

[C(z)]"^e"^'"^^^^^' C([naz)M]*'^ (5. A)

where ?(•) denotes the summand in C(z) of (2.10). From (3.3) the density

of z times e^ may be written using (2.10) as proportional to

e<'»'^'ME<^)r«^"e"'^"""'''^'\([n5(z)MlS . (5.5)

Since ^(0 times [C(z)]~ is a function of order of magnitude [1/z ]

'

as z >
±00 J the convergence of (5.5) depends on the exponent

(isn + q)z - i5n[(z-m)^ +^ . (5.6)

For any q > 0, (5.6) approaches +« as z -* +". And so the fxmction (5.2^ is

divergent to -H» if q > 0. When q < -n, (5.2) diverges to +"> as z -> -«>.

The proof just given yields useful information about partial moments of

iJ. : if q 2. ~"» (5*6) is bounded for all z < z < -H» and so the partial moment

of exp{q z) from -<» to z exists if q > -n. Consequently, in two action decision
o —





problems with acts whose expected values are linear in u. exp{z}, if
Li

<^ b < +<» then although E(u,) +~ and E tnax{0, {i. - b} - +«, the expectation

of the terminal loss function max{0, b - y. } is bounded.





- 22 -

5.2 Prior to Posterior Analysis of the Lognormal Process

Suppose we observe a process generating mutusLLly independent random

variables x^ , . .
.
,x, , . . . identically distributed according to

1.U /i ^2 1, h, n > ,
- -ighndog x.-p) ,*6— e ^ -f^ , -" < y < +" , (5.T)

^
x^ > 0, all 1.

If we observe a sample x, ,...,x generated according to (5.2) and neither

u nor h are known with certainty but are regarded as random variables and

are assigned a Normal-gamma prior consisting of the product of (3.1) and

(3.2) with parameter set (m' , n' , e', v'), then we may carry out prior to

posterior analysis of y and h exactly as in Raiffa and Schledfer [ 7 ] once

we have defined the sufficient statistics n, v = n-1,

g = - Z log X. and e = l(log x. ) -ng . (5.8)

Since the Normal-gamma prior (3.1) x (3.2) is a natural conjugate density,

the posterior is of the same form with m' , n' , e', and v' replaced by

n" = n' + n , m" = ^„ (n'm' + nm) , e" = c' + e + ^^ (g-m")^ (5.9)

and

v"=v' +v+l=v* +n .

As stated earlier, however, in most economic decision problems, not y and

h but the mean y,. = exp(y + -rr) of the density of the x.s is of central
Jj 2h 1

concem.

Posterior to a sample yielding the set of sufficient statistics (n, g, e),

the density of y. is Just (5.1) with the set (m' , n' , e', v') replaced by

(m", n", e", v"), consequently the posterior density of u^ is of the form

(5.1) with this new parameter set.

/
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5 .3 Limiting Behavior of z and p ..

Suppose the values of the parameters of the Lognormal seLmpling density

(5.7) are u and h. Since p. = exp{z} has no finite positive moments when

£ is assigned a prior density of the functional form of f it is natural

to inquire whether or not the density of \ir posterior to a sample of size

n "squeezes down" about exp{vi + ot").

To this end suppose a prior f of form (3.3) is assigned to z. Consider
z

the sequence (z } of random variables, where z denotes the randan variable^ n n

z posterior to a sample of size n. Let z" and z" denote the mean and variance
n n

of z respectively. We show below that prior to observing a sample of size n,

I The sequence (z ) converges in mean square to w + ^r- in the sense that
2h

and

lim E(z^Iy, h) = y +
2j^

n-H-oo

lim Var(z^|u, h) = 0."

n-H-oo

II It follows from I that the sequence {exp{z }} converges in probability

to expCu + 2^}'

To show I remark that if we define u = e/n-1, then prior to observing the

outcome of a sample of size n,

T,/-iii T.\ i^'m'
.
n _/'-| .X n'm'

.
ny

E(m"|u, h) = -^ + -„ E(g|y, h) = -j^ + -^

and

E(i"|p, h) = e' + (n-1) E(u|u, h) + ^ E( (i-m' )^ I U , h)

P ~ p 2 1 2
or since E((g-m') |y, h) = E((g-M) |u, h) + (y-m') =^+ (y-m') ,

E(e"lu. h) = e' + 2^1 ^ g^+ (y-m')^ .
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Thus

•ot" \ u^ n'm '

. nu . e' . 1 rn-l \ . 1 ( n' -v

E(z^|y, h) = -pr *:^ + 2(v*'-2) * 2h ^7^2^ ""
2h ^n"(v"-2)^

.
(u-m')^

" 2(v"-2)

and so lim E(z iu, h) = u + t^t-* It can be shown in a similar fashion that
n

'

2h
n-H-oo

lim V(z |y, h) = 0.
n-M-oo

To see that I also implies that the sequence {exp{E }} converges in

probability to exp{y + :^) , first apply the Chebyshev inequality to the

sequence {z }. This shows that (z } converges in probability to z^ h y + — ;

i.e. for every 6 > 0, lim P( I z - z^l < 6) = 1. Now consider for small ^ >
n u

and fixed z^

p(leV e^°| < *) = Pde^'^'^^-ll < *e~^°) = P(l-4.e"^°< e'''^~^°<l+*e"^°)

.

-Z- -z^ -z^

For very small ((i > 0, log(l±(t)e ) = ijjie +o( <(>e ) so that if we define

6 = (|(e > 0,

P(log(l - ((le ^) < z - Zq < logd + <tie
"")) < P(-6 < z-Zq < +6 ) ,

^0. - . ,. . "'o,

whereupon the convergence in probability of {z } to z implies that of

{exp{z }} to exp{z-} .

n .
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6 . A Compound Process

Let f be a Poisson random variable with probability mass function

—^j e'^'^^'^Nt/h)'' , r - 0,1,2 (6.1)

-t, h >

Then we may informally interpret the exponential density

ril „-(t/h) t >

IrJ e , , (6.2)
h >

as the probability density of waiting time t between "events"; i.e. we let

t. , . . . ,t .
, . . . be a set of mutually independent random variables with com-

mon density (6.2), and define P(f «= r|t, h) as the probability of the event:

the number r such that t, + t« + ... + t < t and t, + t- + . . . + t-
,

, > t12 r — 1 2 r+1

equals r. Then P(r = r|t, h) is (6.1). Call the process generating r

"Process I", and remark that given r «* r, the density of t, the waiting time

to the rth event is

t : iiMi ,-l^ (,/h)-l

In a similar fashion, consider another Poisson process in which the

waiting time to the sth event is h, and h has density

I, 1 8 > ,

e -he , , \8-l

^^^'
h > ,

call this "Process II".

Now suppose the mechanism generating values of t and r acts in two steps:

first, a value of the mean waiting time 1/h between events for process I is

generated according to (6.3); then a value of r|h and a value of t|h are

generated according to (6.1) and (6.2) respectively.
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Formula (2.7) itranediately yields the probability that r •• r uncondi-

tional as regards h and the probability density of t unconditional as

regards h:

^ r(r^l)r(s) ^|s-r| <^-^> r- 0.1.2.... (6.4)

and

„ ^^(s+r) , , .

' '
' r(r) r(,) '

'
"^Is-ri "'^>

• ' > •
<«-5>

(Notice that in (6.4) t, e, and s are fixed and r is the argument of the

function, while in (6.5) e, s, and r are fixed and t is the argument.)

Switching our point of view, we have as immediate consequences of

the fact that (6.4) and (6.5) are probability mass and density functions

respectively, the interesting identities:

I

r»0
h-7T\ Ki

I

(2/te) = ^^^-^i (6.6)
r(r+l) |s-r|

2(te)^

and

/-» ig(rfs)-l „ .„ /—^v , r(r)r(s) ., ,.fx K|^_^| (2^^) dx = -^^(^) . (6.7)
^^

The latter identity is essentially formula 11.4.22 of the Handbook of

Mathematical Functions [ W ] (p. 486). By comparing right hand sides we

obtain a further identity between the integral (6.7) and the infinite sum

(6.6). Setting t = 1 in (6.6),

^ ^

While (6.6) and (6.8) do not appear in the explicit form shown here in

Watson [ ] or in ( ], they are undoubtedly classical relations (?) The

ease of their proof via probabilistic interpretation is worth explicit statement.
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