


LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY











TWO-STAGE-PROGEIAMMING UNDER RISK WITH
DISCRETE OR DISCRETE APPROXIMATED
CONTINUOUS DISTRIBUTION FUNCTIONS

by

Michael Werner

October 1974 WP 743-74

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139





MASS. INST. TECK.

''
2 3 74'

DEWEY LiBP.ARY

TWO- STAGE-PROGRAMMING UNDER RISK WITH
DISCRETE OR DISCRETE APPROXIMATED
CONTINUOUS DISTRIBUTION FUNCTIONS

by

Michael Werner

October 1974 WP 743-74



no. 14 5-14-

RECFIVED

NOV 27 1974

. I. T. LlSi^-^HIES



To solve the complete problem of two-stage-programming under risk involving

random variables with discrete distribution functions only, this paper presents

an efficient algorithm by using the Dantzig/Wolfe decomposition principle. If

the recourse matrix is a positive or negative identy matrix applying this algo-

rithm an efficient approach is derived for this structure of the problem. By

using this approach, under the assumptions

i) only the second stage matrix is a continuous random variable,

ii) either the expectation of the random matrix is known or there is a good

estimate at least,

iii) every row of the random matrix is a transformation of only one continuous

random variable with known range,

it is shown, that the solution of the two-stage-programming problem under risk

with an identy as a recourse matrix can be approximated arbitrary exait ly by

generating a discrete random matrix with unknown distribution function.
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1. Problem Formulation

The problem of two-stage programming under risk only with random variables

with discrete distribution functions is

Q
c' V + Z (P -z (v.^'^.y'^)) ^ min

q=l "^ "^

A V > b (1)

V >

A is an I'H matrix [a ]. c, v are vectors with H and b is a vector with I

components, v is a decision vector, z (v,^ ,Y^) is the optimal value function

of the second stage (recourse) progrc

Zq(v,c\Y^)

M is a G'L matrix [ra ,] and y=[Y , ] is a stochastic G-H matrix,

with L and C, is a vector with G components, y denotes a decision vector . (yU]

is a G*(H+1) dimensional random variable with discrete distribution function, the

Q realizations [Y^k,*^] with the probabulities P >0 and Zq (P ) = 1.

For the complete problem is M=[e|-E]. E means a G"G identy matrix (L=2G) and the

second stage matrix becomes

Zq(v,^^,Y ) := s^
y^^ + ^2 ^2 ^ ™^''

E y? - E y^ = r^ - y^-v (2)

It
^^ik'' |<^

denotes the different realizations of the random vector (Y%'' ) with

k=l,2,...,K^ (Y' means the row vector g of the stochastic matrix y) 'ir"' t^hc pro-





babilities P >0, Ek (P
, ) = 1, then

gk gk

P ,
= Eq (J\-P ) (3)

gk ^ gk q

with

jq = 'gk'^gk 'g g (^)
gk

else

By using (3)-(4) the complete problem (l)-(2) is equivalent to [El Agizy]

c'v+ZgZk (VV^^'Sk'V^ ^ "'"

A V > b (5)

V >

z , (v,C; ,Y , ) means the optimal value function ot the second stage program
gk gk gk

V^^'Sk'V == ^ig-^igk -^ ^2g-y2gk ^ '"^^

^Igk- y2gk = Sk-V" ^'^

^Igk ' y2gk - °

2. An approach for solving the complete two-stage-programming problem

(5)-(6) is equivalent to [Dantzig/Madansky]

min

b

(7)
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q . P q • P q 'P )••''11 IK^'^^'^IG Gl'^-'^IG ^GKg'^

' •
•

'^2l"^lKi'
• • '^2G*^G1'

•

•

'^2G*^GKg^

•^llKi''^'^lGl'^''^lGKc^

'^21Ki'^"'^2G1"^'^2GKg^
>

) ,
'IKi ^GV 'GKg'

'2K2

'Gl

'GKg

The dual of (7) is

(8)

By using the Dantzig/Wolfe decomposion principle (8) written as the master program





b' w + (c',-^')-R-x + (c',-^')-C-t -^ max

A' w + [y' ,-y^]-R-x + [y'.-Y^l-C-t < c

= 1
W

w , X , t ^

with the subprogram

d' + v'y')*u, - (^' + v"y")"U2 ^ max

E u^ - E u„ 5 s^
- (10)

E u^ - E U2 > -S2

"l ' U2 1 .

The columns of R (C) define optimal basic (homogenous) solutions of the subpro-

gram (10). V means the vector of simplexmultipliers (negative dual variables)

for the first H constraints of (9).

f-th columnvector of y , then (10) defines Eg (K ) isolated problems

(L + v'y.)-u.
'if - ^^f + ^'^f^""2f





(9) can be reduced to [Werner]

b' w + ((;',-c')*R-x ^ max

A' w + [y',-y']"R"x ;< c

(13)
e X = 1

w , , X > .

The optimal basic solution (u^ ,u„) of (10), which defines a column of the matrix
J

R, results immediately from (12) with the vector v of simplexmultipliers in the

j-th basic solution of (13).

Defining v„,, for simplexmultiplier of the constraint H+1 in (13) the optimal

basic solution (u, ,u„) in the j-th iteration is to introduce in the basic solution

j+1 of (13) if [Dantzlg/Wolfe]

(Zf[(C^ + v^yp-l^^ - (l^ + v'Yf)-i2fl "^
^H+1^

^ ° ^^^^

else the j-th basic solution of (13) is optimal. The negative vector v of simplex-

multipliers (-v) defines the solution vector of the primal problem (7).

3. An approach for the two-stage problem with M=E or M=-E

With M=E we obtain for (7)

c'v+s'y ^ min

A V > b

(15)
" ^1 " ''

with the dual





(16)

w , u , "2 —

and the subprogram for (9) is

^1
-

^1
-

Analogous to (10) problem (17) defines Eg (K ) isolated problems

(17)

(~f^-'y,)--u - ^^f ^^'^f)-"2f

"If

"if '

(IH)

According to the fundamental theorem of linear programming, (18) has an optimal

basic solution only then, if the corresponding dual has a feasible solution,

that is

(?f
+ v'Yf) > . (19)

The optimal basic solution of (18) therefore is given by

(20)

If for at least one of the problems (18)

il^ + v'y^ <

is valid, then there exists no optimal basic solution for (17). The homogenous

solution of (17) results from





•l

^1

'

'If
V f ,

'2f

The matric C in (9) is

with a [Eg(K )]-[Eg(K )] zero- and identymatrix.

Moreover there exist one and only one optimal basic solution for (17) if (19) is

valid V f. R is a column vector with the components defined by (20).

(9) can be reduced to

b w-C t + Dl -> mc

a' w - y' t £ c

w , t >

D2 (21)

with the constant terms

Dl = (r/,-^')-R = r/

D2 = [y'|-y'].R = y-

Solving (21) with the revised siraplexmethod (because of the large number of i-olumnf

of the matrix y) the vector of simplexmultipliers defines the negative soLuLion





vector -V of the primal problem (15)

With M=-E we obtain for (21)

b'w+^'t + Dl -> max

Aw+y't <c-D2
w , t >

with the components

u := max(-S2^,0) , u^ := max(s„^,0)

of the columnvector R and

I E
I

4. Discrete approximation of continuous random variables for the two-stage

problem with M=E or M=-E

We consider the two-stage-programming problem under risk

c' V + / z(v,y) dF(Y) ^ min

A V > b (22)

v >

with

z(v,y) := s' y -> min

E y = d - Y V (23)

y >

\ = fv , ] is a (G'H)-dimensional, continuous random variable with the distri-
gh

bution function F(y).





By approximating the continuous by a discrett random variable we obtain

analogous to (15)

G Kg

c' V + Z s •( Z P y ) -> min
g=l ^ k=l ^ ^

A V >_ b (24)

^ ^
^ ^^

f
g-l,2,...,G; k=l,2,...,K

with its dual

b'w+ E d-(Z u.) ->- max
g=l S k=l S^

G K

A' w + Z E^Y . u ) < c (25)

g=l k=l S" ^^

u , < s -P
, ; g=l,2,...,G; k=l,2,...,K

gk - g gk ^ '
'

' g

For simplifying the transformation of (25) an ilogous to (15)/ (21) we define

gk ^g gk "gk

and (25) becomes [see (21)]

G Kg
b' w - Z d •( Z t

, ) + Dl ^ max
g=l S k=l g'^

G Kg
A' w - Z Z (y , t

, ) < c - D2 (26)

- > ; g-l,2,...,G; k=l,2,...,K

with the constant terms

G

Dl = Z d -s

8=1 ^ ^

G Kg G

D2= Z s-(Z Y,P,)= ^ s-e(Y)
g=l ^ k=l ^'^ S^ g=l 8 ^
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e(Y ) means the transposed known expectation of the row vector y' [see assumption ii)]-

There are no random variables in the objective function of (26). Only the number of

variables t , and the related vectors of outcomes y i^ depends on the quality of approxi-
gk gK

mation of the continuous by a discrete variable. The larger Q and then K V g the

better the approximation of (22) by (24) and its related dual (26). The best approxi-

mation would be Q -» + 00
, but the number of variables t , and related vectors y

would become too large to handle the problem. To avoid the explicit enumeration of Q

columns y , with Q -> + °°
, we start with some columns Y .

" for example K =1 V g -

and solve (26). The solution r=l of (26)supplies the vector of simplexmultipliers a .

Then we have to check up whether it is possible to generate any y „
,

, with
g,Kg+i

-d -a'Y ,,.1 > (27)
g r g,Kg+l

which is not yet considered in the solution r=l of (26)

:

By assumption iii)the random vector y is a transformation y (C ) of only one random
g V g g

variable (for example ^ ) with known range K ,.? J-
So we have to solve the G problems

c := d + a'-y (^ )
-> min

g g r 'g'^g'

(28)

Si ^ S ^ Su

which means the minimizing of a linear or nonlinear function defined over a given

range.

d + a^-y (°
)

and determine

1
g=l,2,...,G } = ?H .

(29)





11

If c- < 0, then
g

and the vector Y-,,, has to be considered in (26). We obtain the solution r:=r+l
'g K-

with the vector of simplexmultipliers a and start again to solve (28) V g.

If c- > there is no vector Y „ ,, which is able to improve the last solution
g
- g'^g"^^

of (26). The last solution of (26)is optimal and feasible for any outcome of the

continuous random variable Y-

By using the dual variables of (26) we can generate the solution v of (24) and

(22) which is also feasible for any outcome of the continuous random variable Y-

If Y (C ) means a linear function of r , then only the two points C , , C with the
'g g g gl gu

related outcomes of Y have to be considered. However, if Y (C ) means a nonlinear
g g g

function the number of iterations and then the number of columns that are to be in-

troduced in (26)may become very large. But applying the above described algorithm

only those columns are generated which improve the value of the objective function.

If r becomes too large, the procedure may be stopped by an approximation criterion

which has to be defined. However, in this case the solution of (26) [(24)] is not

optimal [feasible] for any not yet considered outcome of the random variable Y-

If there is only an estimate of the lower and upper bound of the expectation t (y )

the variation of the optimal solution of (26) and then (24) can be deLerminecl by

using a sensitivity analysis or the parametric linear programming.
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