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TOWARDS A METRICS SUITE FOR OBJECT ORIENTED DESIGN

Abstract

This paper presents theoretical woric that builds a suite of metrics for object-oriented design.

In particular, these metrics are based upon measurement theory and are also informed by the

insights of experienced object-oriented software developers. In evaluating these metrics

against a standard set of criteria, they are found to both (a) perform relatively well, and (b)

suggest some ways in which Lhe object oriented approach may differ in terms of desirable or

necessary design features from more traditional approaches.

In order for object-oriented software production to fulfill its promise in moving software

development and maintenance from the current 'craft' environment into something more

closely resembling conventional engineering, it will require metrics of the process to aid the

software management, project planning and project evaluation functions. While software

metrics are a generally desirable feature in any software environment, they are of special

imponance in the object-oriented approach, since it represents a non-trivial technological

change for the organization.

The metrics presented in this paper are the first steps in a project aimed at measuring and

evaluating the use of object oriented design principles in organizations.

Accepted for publication in the sixth annual ACM conference on Object Oriented Programming, Systems,

Languages and Applications (OOPSLA), October 1991.









I. INTRODUCTION

In order for objea-oriented sofrware production to fulfill its promise in moving software

development and maintenance from the current 'craft' environment into something more closely

resembling conventional engineering, it will require measures or metrics of the process. While

software metrics are a generally desirable feanire in the software management functions of project

planning and project evaluation, they are of special importance with a new technology such as the

object-oriented approach.

This is due to the significant need to train current and new software engineers in generally accepted

object-oriented principles. This paper presents theoretical work that builds a suite of metrics for

object-oriented design (OOD). In particular, these metrics are based upon measurement theory and

are informed by the insights of experienced object-oriented software developers. The proposed

metrics are evaluated against a widely-accepted list of seven software metric evaluation criteria, and

the formal results of this evaluation are presented.

Development and validation of software metrics is expected to provide a number of practical

benefits. In general, techniques that provide measures of the size and of the complexity of a

software system can be used to aid management in:

- estimating the cost and schedule of future projects,

- evaluating the productivity impacts of new tools and techniques,

- establishing productivity trends over time,

- improving software quality,

- forecasting future staffing needs, and

- anticipating and reducing future maintenance requirements.

More specifically, given the relative newness of the 00 approach, metrics oriented towards 00 can

aid in evaluating the degree of object orientation of an implementation as a learning tool for staff

members who are new to the approach. In addition, they may also eventually be useful objective

criteria in setting design standards for an organization.

This paper is organized as follows. Section n presents a very brief summary of the need for

research in this area. Section EQ describes the theory underlying the approach taken. Section IV

presents the proposed metrics, and Section V presents Weyuker's list of software metric evaluation

criteria [Weyuker, 1988]. Section VI contains the results of the evaluation of the proposed

metrics, and some concluding remarks are presented in Section VIL





II. RESEARCH PROBLEM

There are two types of criticisms that can be applied to current software metrics. The first category

are those criticisms that are leveled at conventional software metrics as they are applied to

conventional, non-00 software design and development. These metrics are generally criticized as

being without solid theoretical bases ^ and failing to display what might be termed normal

predictable behavior [Weyuker, 1988].

The second category is more specific to 00 design and development. The 00 approach centers

around modeling the real world in terms of its objects, which is in stark contrast to older, more

traditional approaches that emphasize a function-oriented view that separated data and procedures.

Given the fundamentally different notions inherent in these two views, it is not surprising to find

that software metrics developed with traditional methods in inind do not readily lend themselves to

notions such as classes, inheritance, encapsulation and message passing. Therefore, given that

current software metrics are subject to some general criticism and are easily seen as not supporting

key GO concepts, it seems appropriate to develop a set, or suite of new metrics especially designed

to measure unique aspects of the 00 approach.

Some early work has recognized the shortcomings of existing metrics and the need for new metrics

especially designed for 00. Some proposals are set out by Morris, although they are empirically

suggested rather than theoretically driven [1988]. Pfleeger also suggests the need for new

measures, and uses counts of objects and methods to develop and test a cost estimation model for

OO development [Pfleeger, 1989; Pfleeger and Palmer, 1990]. Moreau and Dominick suggest

three metrics for00 graphical information systems, but do not provide formal, testable definitions

[1989]. In contrast, Lieberherr and his colleagues present a well-articiilated, formal approach in

documenting the Law of Demeter™ [1988] The Demeter system represents a formal attempt at

defining the rules of correct object oriented programming style, building on concepts of coupling

and cohesion that are used in traditional programming.

Given the extant software metrics literature, the approach taken here is to develop theoretically-

driven metrics that can be shown to offer desirable properties, and then choose the most promising

candidates for future empirical study. This paper is an initial presentation of six candidate metrics

specifically developed for measuring elements contributing to the size and complexity of object-

oriented design. Since object design is considered to be a unique aspect of OOD, the proposed

metrics directly address this task. The metrics are constructed with a firm basis in theoretical

concepts in measurement, while capturing empirical notions of software complexity.

'For example, see [Vessey and Weber, 1984] and [Kearney, et al., 1986].





III. THEORY BASED METRICS FOR OOD

Booch (1986) defines object oriented design to be the process of identifying objects and their

attributes, identifying operations required on each object and establishing interfaces between

objects. Design of classes involves three steps: 1) definition of objects, 2) attributes of objects and

3) communication between objects. Methods design involves defining procedures which

implement the attributes and operations suffered by objects. Class design is therefore at a higher

level of abstraction than the traditional data/procedures approach (which is closer to methods

design). It is the task of class design that makes OOD different than data/procedure design [Taylor

& Hechi, 1990]. The reader is referred to works by Deutsch, et al. [1983], Meyer [1988], Page,

et al. [1989], Pamas, et al. [1986], Seidewitz and Stark [1986] and others for an introduction to

the fundamental concepts and terminology of object-oriented design.

Figure 1 shows the fundamental elements of object oriented design as outlined by Booch [1986].

(jDmmunication

Among Objects

Rgurcl: Elements ofObject Oriented Design

Measurement theory base

A design can be viewed as a relational system, consisting of object elements, empirical relations

and binary operations that can be performed on the object elements.

Notationally: design P = (A, Rj... Rn,0i...0in)

where

A is a set of object elements

Rl...Rn are empirical relations on object elements A (e.g, bigger than, smaller than, etc)





Oi...Oryi are binary operanons (e.g., concatenation)

A useful way to conceptualize empirical relations on a set of object elements in this context is to

consider the measurement of complexity. A designer has ideas about the complexity of different

objects, as to which object is more complex than another. This idea is defined as a viewpoint. The

notion of a viewT^oint was originally introduced to describe evaluation measures for information

retrieval systems and is applied here to capture designer views [Chemiavsky, 1971]. An empirical

relation is the embodiment of a viewpoint.

A viewpoint is a binary relation .> defined on the set P. For P, P', P" e set P , the following

axioms must hold:

P .> P (reflexivity)

P .> P or P .> P (completeness)

P.> P', P'.> P" => P.> P" (transitivity)

i.e., a viewpoint must be of weak order [Zuse, 1987].

To be able to measure something about a object design, the empirical relational system as defined

above needs to be transformed to di formal relational system [Roberts, 1979]. Therefore, let a

formal relational system Q be defined as follows:

Qh (C, Si... Sn, h\... bm)

C is a set of elements (e.g., real numbers)

S\... Sn ^XQ formal relations on C (e.g., >, <, =)

b\... bjn are binary operations (e.g., +,-,*)

This is accomplished by a metric \i which maps an empirical system P to a formal system Q. For

every element a € P, |i(a) e Q.

Definitions

The ontological basis principles proposed by Bunge in his "Treatise on Basic Philosophy" forms

the basis of the concept of objects [Bunge, 1977]. Consistent with this ontology, objects are

defined independent of implementation considerations and encompass the notions of encapsulation,

independence and inheritance. According to this ontology, the world is viewed as composed of

things, referred to as substantial individuals ,and concepts. The key notion is that substantial





individuals possess properues. A properly is a feature that a substantial individual possesses

inherently. An observer can assign features to an individual, these are attributes and not

properties. All substantial individuals possess a finite set of properties. "There are no bare

individuals except in our imagination" [Bunge, 1979].

Some of the attributes of an individual will reflect its properties. Indeed, properties are recognized

only through attributes. A known property must have at least one attribute representing it.

Propenies do not exist on their own but are "attached" to individuals. On the other hand,

individuals are not bundles of properties. A substantial individual and its properties collectively

constitute an object [Wand, 1987; Wand and Weber, 1990].

An object can be represented in the following manner

X = <x, p(x)> where x is the substantial individual and p(x) is the finite collection of its properties.

X can be considered to be the token or name by which the individual is represented in a system. In

object oriented terminology, the instance variables together with its methods are the properties of

the object [Baneijee, et al., 1987].

Coupling

Two things are coupled if and only if at least one of them "acts upon" the other [Wand, 1990]. X

is said to act upon Y if the history of Y is affected by X, where history is defined as the

chronologically ordered states that a thing traverses in time.

let X = <x, p(x)> and Y = <y, p(y)> be two objects.

p(x) = { Sx } u { Ix }

P(y) = { Sy ) u { ly )

where { Si ) is the set of methods and { Ij ) is the set of instance variables of object /.

Using the above defmition of coupling, any action by (Sx) on (Sy) or {ly) constitutes

coupling, as does any action by {Sy } on (Sx) or (ly). Therefore, any evidence of a method of

one object using methods or instance variables of another object constitutes coupling. This is

consistent with the law of Demeter™ [Lieberherr, et al., 1988]. In order to promote encapsulation

of objects it is generally considered good practice to reduce coupling between objects.





Cohesion

Bunge [1977] defines similarity o() of two objects to be the intersection of tfie sets of properties of

the two objects:

a(X,Y) = p(x) n p(y)

Following this general principle of defining similarity in terms of sets, the degree of similarity of

the methods within the object can be defined to be the intersection of the sets of instance variables

that are used by the methods. It should be clearly understood that instance variables, are not

properties of methods, but it makes intuitive sense that methods that operate on the same instance

variables have some degree of similarity.

o(Mi,M2...Mn) =
{ Mj ) n ( M2 ) n { M3 ) ... { Mn )

where a() = degree of similarity and { Mj } = set of instance variables used by method Mi.

The degree of similarity of methods relates both to the conventional notion of cohesion in software

engineering, (i.e., keeping related things together) as well as encapsulation of objects, that is, the

bimdling of methods and instance variables in an object. Cohesion of methods can be defmed to

be the degree of similarity of methods. The higher the degree of similarity of methods, the greater

the cohesiveness of the methods and the higher the degree of encapsulation of the object

Complexiry of an object

Bunge defmes complexity of an individual to be the "numerosity of its composition", implying that

a complex individual has a large number of propenies. Using this definition as a base, the

complexity of an object can be defined to be the cardinality of its set of properties.

Complexity of <x, p(x)> = I p(x) I, where I p(x) I is the cardinality of p(x).

Scope ofProperties

The scope of a property P in J ( a set of objects) is the subset G (P; J) of objects possessing the

property.

G(P; J) ={ X I X € J and P e p(x) ) , where p(x) is the set of all properties of all x € J.





Wand defines a class on the basis of the nouon of scope [1987], A class P with respect to a

propeny set p is the set of all objects possessing all properties in p.

C(p; J) = n all p { G(P) I P e p(x)
)

The inheritance hierarchy is a tree structure with classes as nodes, leaves and a root. Two useful

concepts which relate to the inheritance hierarchy can be defined. They are depth of inheritance of

a class and the number of children of a class.

Depth of Inheritance = height of the class in the inheritance tree

The height of a node of a tree refers to the length of the longest path from the node to the root of

the tree.

Number of Children = Number of immediate descendents of the class

Both these concepts relate to the notion of scope of properties, i.e., how far does the influence of

a property extend? The number of children and depth of inheritance collectively indiCc^e the

genealogy of a class. Depth of inheritance indicates the extent to which the class is influenced by

the properties of its ancestors and number of children indicates the potential impact on descendents.

Methods as measures of communication

In the object oriented approach, objects can communicate only through message passing. A

message can cause an object to "behave" in a particular manner by invoking a particular method.

Methods can be viewed as definitions of responses to possible messages [Baneijee, et al., 1987].

It is reasonable therefore to define a response set for an object in the following manner

Response set of an object = { set of all methods that can be invoked in response to a message to the

object}

Note that this set will include methods outside the object as well, since methods within the object

may call methods from other objects. The response set will be fmite, since the properties of an

object are finite and there are a finite number of objects in a design.





IV. THE CANDIDATE METRICS

The candidate metrics outlined in this section were developed over a period of several months.

This was done in conjunction with a team of software engineers in an organization which has used

OOD in a number of different projects over the past four years. Though the primary development

language for all projects at this site was C+4-, the aim was to propose metrics that are not language

specific. The viewpoints presented under each metric reflea the object oriented design experiences

of many of the engineers, and are presented here to convey the intuition behind each of the metrics.

Metric 1: Weighted Methods Per Class (WMC)

Definition:

Consider a Class Ci, with methods Mi,... Mn. Let ci,... Cn be the static complexity of the

methods. Then

n

WMC = X Ci.

i=l

If all static complexities are considered to be unity, WMC = n, the number of methods.

Theoretical basis:

WMC relates directiy to the definition of complexity of an object, since methods are properties of

objects and complexity of an object is determined by the cardinality of its set of properties. The

number of methods is, therefore, a measure of object definition as well as being attributes of an

object, since attributes correspond to properties.

Viewpoints:

The number of methods and the complexity of methods involved is an indicator of how much time

and effon is required to develop and maintain the object

The larger the number of methods in an object, the greater the potential impact on children, since

children will inherit all the methods defined in the object

Objects with large numbers of methods are likely to be more application specific, limiting the

possibility of reuse.





Metric 2: Depth of Inheritance Tree (DIT)

Definition:

Depth of inheritance of the class is the DIT metric for the class.

Theoretical basis:

DIT relates to the notion of scope of properties. DIT is a measure of how many ancestor classes

can potentially affect this class.

Viewpoints:

The deeper a class is in the hierarchy, the greater the number of methods it is likely to inherit,

making it more complex.

Deeper trees constitute greater design complexity, since more methods and classes are involved

It is useful to have a measure of how deep a particular class is in the hierarchy so that the class can

be designed with reuse of inherited methods.

Metric 3: Number of children (NOC)

Definition:

NOC = number of immediate sub-classes subordinated to a class in the class hierarchy.

Theoretical basis:

NOC relates to the notion of scope of properties. It is a measure of how many sub-classes are

going to inherit the methods of the parent class.

Viewpoints:

Generally it is better to have depth than breadth in the class hierarchy, since it promotes reuse of

methods through inheritance.

It is not good practice for all classes to have a standard number of sub-classes. Classes higher up

in the hierarchy should have more sub-classes than classes lower in the hierarchy.

The number of children gives an idea of the potential influence a class has on the design. If a class

has a large number of children, it may require more testing of the methods in that class.





Metric 4: Coupling between objects (CBO)

Definition:

CBO for a class is a count of the number of non-inheritance related couples with other classes.

Theoretical basis:

CBO relates to the notion that an object is coupled to another object if two objects act upon each

other, i.e., methods of one use methods or instance variables of another. This is consistent with

traditional definitions of coupling as "measure of the degree of interdependence between modules"

[Pressman, 1987].

Viewpoints:

Excessive coupling between objects outside of the inheritance hierarchy is detrimental to modular

design and prevents reuse. The more independent an object is, the easier it is to reuse it in another

application.

Coupling is not associative, i.e., if A is coupled to B and B is coupled to C, this does not imply

that C is coupled to A.

In order to improve modularity and promote encapsulation, inter-object couples should be kept to a

minimum. The larger the number of couples, the higher the sensitivity to changes in other parts of

the design and therefore maintenance is more difficult

A measure of coupling is useful to determine how complex the testing of various parts of a design

are likely to be. The higher the inter-object coupling, the more rigorous the testing needs to be.

Metric 5: Response For a Class (RFC)

Definition:

RFC = I RS I where RS is the response set for the class.

Theoretical basis:

The response set for the class can be expressed as:

RS = {Mi} UaiinlRi)
where Mj = all methods in the class

and { Ri ) = set of methods called by Mi

10





The response set is a set of methods available to the object and its cardinality is a measure of the

attributes of an object. Since it specifically includes methods called from outside the object, it is

also a measure of communication between objects.

Viewpoints:

If a large number of methods can be invoked in response to a message, the testing and debugging

of the object becomes more complicated.

The larger the number of methods that can be invoked from an object, the greater the complexity of

the objecL

The larger the number of possible methods that can be invoked from outside the class, greater the

level of understanding required on the part of the tester.

A worst case value for possible responses will assist in appropriate allocation of testing dime.

Metric 6: Lack of Cohesion in Methods (LCOM)

Definition:

Consider a Qass Cj with methods Mj, M2... , M^. Let (li) = set of instance variables used by

method M[. There are n such sets (Ij),... {In).

LCOM = The number of disjoint sets formed by the intersection of the n sets.

Theoretical basis:

This uses the notion of degree of similarity of methods. The degree of similarity for the methods

in class C^ is given by:

o() = {Ii}n{l2}...n{In)

If there are no common instance variables, the degree of similarity is zero. However, this does not

distinguish between the case where each of the methods operates on unique sets of instance

variables and the case where only one method operates on a unique set of variables. The number

of disjoint sets provides a measure for the disparate nature of methods in the class. Fewer disjoint

sets implies greater similarity of methods. LCOM is intimately tied to the instance variables and

methods of an object, and therefore is a measure of the attributes of an object

11





Viewpoints:

Cohesiveness of methods within a class is desirable, since it promotes encapsulation of objects.

Lack of cohesion implies classes should probably be split into two or more sub-classes.

Any measure of disparateness of methods helps identify flaws in the design of classes.

Low cohesion increases complexity, thereby increasing the likelihood of errors during the

development process.

Summary

The table below summarizes the six metrics in relation to the elements of OOD shown in figure L

Metric





This implies that every object cannot have the same value for a metric, otherwise it has lost its

value as a measurement.

Property 2: Non-umqueness (notion of equivalence)

There can exist distinct objects P and Q such that )i (P) = ^(Q). This implies that two objects can

have the same metric value, i.e. the two objects are equally complex.

Property 3: Permutation is significant

There exist objects P and Q such that if P is a permutation of Q (i.e., elements in P are simply a

different ordering of the elements of Q) then \x(P) ^ (i(Q).

Property 4: Implementation not function is important

Suppose there are two object designs P and Q which perform the same function, this does not

imply that (i(P) = ^(Q). The intuition behind Property 4 is that even though two object designs

perform the same function, the details of the implementation matter in determining the object

design's metric.

Prcoerty 5: Monotoniciry

For all objects P and Q, the following must hold:

^(P) < \xi?+Q)

[i(Q) < [i(P+Q)

where P + Q implies concatenation of P and Q. This implies that objects are minimally zero, and

therefore that the combination of two objects can never be less than either of the component

objects.

Property 6: Non-equivalence ofinieracdon

Given 3 P, 3 Q, 3 R,

ji(P) = n(Q) does not imply that ^t(P+R) = ^(Q+R).

This implies that interaction between P and R can be different than interaction between Q and R.

Property 7: Interaction increases complexity

3 P and Q such that:

^i( P) + n(Q) < ^i( P+Q)

The idea is that interaction between objeas will tend to increase complexity.

V. RESULTS: PROPERTIES OF THE CANDIDATE METRICS

13





A design goal for all six metrics is their use in analysis of object oriented designs independent of

the programming language. in which the application is written. However, there are some basic

assumptions made regarding the distribution of objects, methods and instance variables in the

discussions for each of the metric properties.

Assumprion 1:

Let Xi = The number of methods in a given class i.

Yi = The number of methods called from a given method /.

Z[ = The number of instance variables used by a method /.

Ci = The number of couplings between a given object i and all other objects.

Xj, Yi, Zi, Ci are discrete random variables each characterized by some general distribution

function. Further, all the Xis are independent and identically distributed. The same is true for all

the Yis, Zjs and Qs.

Assumprion 2 : Xi > 1 i.e., each class contains one or more methods.

Assumption 3 : Two classes can have identical methods, in the sense that combination of the two

classes into one class would result in one of the methods being redundant.

Assumprion 4 : The inheritance tree is "full" i.e., there is a root, several intermediate nodes which

have siblings, and leaves. The tree is not balanced, i.e., each node does not necessarily have the

same number of children.

These assimiptions while believed to be reasonable, are of course subject to future empirical test.

Metric 1: Weighted Methods Per Class (WMC)

Let Xp = number of methods in class P and Xn = number of methods in class Q.

Let y = probability Xp ?t Xq , and (1 - y) = probability Xp = Xq

As < P < 1 from assumption 1, there is a fmite probability that 3 a Q such that |i(P) ^ M-(Q),

therefore property 1 is satisfied. Similarly, < 1 - y < 1, there is a finite probability tiiat 3 a Q
such that |i(P) = |i(Q). Therefore property 2 is satisfied. Permutation of elements inside the object

does not alter the number of methods of the object. Therefore Propeny 3 is not satisfied. The

function of the object does not define the number of methods in a class. The choice of methods is

an implementation decision, therefore Property 4 is satisfied.

Let ^i(P) = np and |i(Q) = nq, then ^i(P+Q) = np + nq. Clearly, ^(P+Q) > |i(P) and ^(P+Q) ^

|i(Q), thereby satisfying property 5. Now, let ji(P) = n, \i(Q) = n, 3 an object R such that it has a

number of methods 9 in common with Q but no methods in common with P. Let p.(R) = r.

14





(I(P+R) = n + r

|i(Q+R) = n + T-d

therefore ^(P+Q) * p.(Q+R) and property 6 is satisfied. For any two objects P and Q, |J.(P+Q) =

"p + nq - d, where np is the number of methods in P, nq is number of methods in Q and P and Q
have B methods in common.

Clearly, np + nq - 9 < np + nq for all P and Q.

i.e., |i(P+Q) < \i(P) + [i{Q) for all P and Q.

Therefore Property 7 is not satisfied.

Metric 2: Depth of Inheritance Tree (DIT)

Per assumption 4, every tree has a root and leaves. The depth of inheritance of a leaf is always

greater than the root. Therefore, property 1 is satisfied. Also, since every tree has at least some

nodes with siblings, there will always exist at least two objects with the same depth of inheritance,

i.e., property 2 is satisfied. Permutation of the elements within an object does not alter the position

of the object in the inheritance tree, and therefore property 3 is not satisfied. Implementation of an

object involves choosing what properties the object must inherit in order to perform its function.

In other words, depth of inheritance is implementation dependent, and property 4 is satisfied

When any two objects P & Q are combined, there are three possible cases:

i) when one is a child of the other

In this case, ^(P) = n, |i(Q) = n + 1, but ^(P+Q) = n, i.e. ^(P+Q) < \i (Q). Property 5 is not

satisfied.

15





Case ii) P & Q are siblings

In this case, p.(P) = |i(Q) = n and |i(P+Q) = n, i.e. Property 5 is satisfied.

Case iii) P & Q are not directly connected.

If P+Q moves to P's location in the tree, Q does cannot inherit methods from C, however if P+Q

moves to Q's location, P maintains its inheritance. Therefore, P+Q will be in Q's old location. In

this case, p.(P) = x, p.(y) and y > x. |i(P+Q) = y, i.e., M.(P+Q) > ^(P) and p.(P+Q) = p. (Q) and

property 5 is satisfied. Since ^i(P+Q) > |i(P) is not satisfied for all possible cases, Property 5 is

not satisfied. Let P and Q be siblings, i.e. n(P) = |i(Q)= n, and let R be a child of P. Then

)i(P+R) = n and |i(Q+R) = n + 1. i.e. |i(P+R) is not equal to ^(Q+R). Property 6 is satisfied.

For any two objects P & Q, p. ( P+ Q) = ^(P) or = n(Q). Therefore, ^i(P+Q) < ^i(P) + [i{Q) i.e.

Property 7 is not satisfied.

16





Metric 3: Number Of Children (NOC)

Let P and R be leaves, ^(P) = ^(R) = 0, let Q be the root |i(Q) > 0. |i(P) ^ p.(Q) therefore

property 1 is satisfied. Since |i(R) = |J.(P), Property 2 is also satisfied. Permutation of elements

within an object does not change the number of children of that object, therefore Property 3 is not

satisfied. Implementation of an object involves decisions on the scope of the methods declared

within the object, i.e, the sub-classing for the object. The number of sub-classes is therefore

dependent upon implementation of the object. Therefore, property 4 is satisfied. Let P and Q be

two objects with np and nq sub-classes respectively (i.e., |J.(P) = np and |i(Q) = nq). Combining

P and Q, will yield a single object with np -i- nq - 8 sub-classes, where d is the number of children

P and Q have in common. Clearly, 3 is if either np or nq is 0. Now, np -i- nq - 9 > np and np +

nq -3 > nq. This can be written as:

^i(P-K^ > ^i(P) and \i(?+Q) > ^(Q) for all P and all Q.

Therefore, Property 5 is satisfied. Let P and Q each have n children and R be a child of P which

has r children. }i(P) = n = |J.(Q). The object obtained by combining P and R will have (n-1) + r

children, whereas an object obtained by combining Q and R will have n + r children, which means

that ^(P-i-R) ^ li(Q-i-R). Therefore property 6 is satisfied.

Given any two objects P and Q with np and nq children respectively, the following relationship

holds:

^(P) = np and ^i(Q) = nq.

^i(P+Q) = np + nq - 3

where d is the number of common children.

Therefore, |i(P-M5) < |i(P) -f- |i(Q) for all P and Q. Property 7 is not satisfied.

Metric 4: Response for a Class (RFC)

Let Xp = RFC for class P

Xq = RFC for class Q.

Let y = probability Xp ?t Xq , (1 - y) = probability Xp = Xq

Xp = F(Yi) and Xq = F(Yj) i.e., Xp is some function of the number of methods called by a

method in class P. Now, FQ is monotonic in Y, since the response set can only increase as the

number of methods called increases. Yj and Yj are independent identically distributed discrete

random variables, as per assumption 1. Therefore, F(Yi) and F(Yj) are also discrete random

variables that are i.i.d. Therefore, there is a fmite probability that 3 a Q such that p.(P) # |i(Q)

resulting in property 1 being satisfied. Also as < 1 - y < 1 there is a finite probability that 3 a Q
such that ^(P) = ^1(0), therefore property 2 is satisfied. Permutation of elements within an object

does not change the number of methods called by that object, and therefore property 3 is not

satisfied. Implementation of an object involves decision about the methods that need to be called
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and therefore Propeny 4 is satisfied. Let P and Q be two classes with RFC of P = nn and RFC of

Q = nq. If these rwo classes are combined to form one class, the response for that class will be the

larger of the two RFC values for P and Q =* |i (P+Q) = Max(np, nq). Clearly, Max(np,nq) > nn

and Max(np,nq) > nq for all possible P and Q. |i(P+Q) > ^(P) and > |i(Q) for all P and Q.

Therefore, property 5 is satisfied. Let P, Q and R be three classes such that, |i(P) = [i(Q) = n and

|i(R) = r. Then |i(P+Q) = Max(n,r) and |i(Q+R) + MaxCn^"). i.e., [i(P+Q) = ^i(R+Q). Therefore

property 6 is not satisfied. For any two classes P and Q, |i(P+Q) = Max(p.(P), |i(Q)). Qearly,

Max(|i(P), |i(Q)) < fi(P) + |i(Q) which means that Property 7 is not satisfied.

Metric 5: Lack Of Cohesion Of Methods (LCOM)

Let Xp = LCOM for class P

Xq = LCOM for class Q.

Let y = probability Xp ?i Xq
, (1 - y) = probability Xp = Xq

Xp = F(Yi) and Xq = F(Yj) i.e., Xp is some function of the number of instance variables used by

a method in class P. Now, F() is monotonic in Y, since the LCOM can only decrease as the

number of instance variables used increases. Yj and Yj are independent identically distributed

discrete random variables, as per assumption 1. Therefore, F(Yi) and F(Yj) arc also discrete

random variables that are i.i.d. therefore property 1 is satisfied. Also asO<l-y<l. then there

is a finite probability that 3 a Q such that |i(P) = |i(Q), therefore property 2 is satisfied.

Permutation of the elements of an object does not alter the set of methods called from that object,

consequently not changing the value of LCOM. Therefore, property 3 is not satisfied. The LCOM
value depends on the construction of methods, which is implementation dependent, making LCOM
also implementation dependent and satisfying property 4. Let P and Q be any two objects with

p.(P) = Hp and p,(Q) = nq. Combining these two objects can potentially reduce the number of

disjoint sets, i.e., |i(P+Q) = np + nq - 9 where 9 is the number of disjoint sets reduced due to the

combination of P and Q. The reduction 9 is some function of the particular sets of instance

variables of the two objects P and Q. Now, np > 9 and nq > 9 since the reduction in sets

obviously cannot be greater than the number of original sets. Therefore, the following result

holds:

np + nq -9 > np for all P and Q and

np + nq - 9 > nq for all P and Q.

Property 5 is satisfied.

Let P and Q be two objects such that p.(P) = |J.(Q) = n , and let R be another object with )i(R) = r.

|i(P+Q) = n + r - 9, similarly

[iCQ+R) = n + r - B
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Given thai d and B are not functions ot" n, they need not be equal, i.e., ti(P+R) ^ |i(Q+R),

satisfying propeny 6. For any two objects P and Q, |i(P+Q) = np + nq - 8. i.e.,

}I(P+Q) = |i(P) + |i(Q) - 3 which implies that

^i(P+Q) < ^l(P) + |I(Q) for all P and Q.

Therefore property 7 is not satisfied.

Metric 6: Coupling Between Objects (CBO)

As per assumption 1, there exist objects P, Q and R such that |J.(P) ^ |i(Q) and |l(P) = ^(R)

satisfying properties 1 and 2. Permutation of the elements inside an object does not change the

number of inter-object couples, therefore property 3 is not satisfied. Inter-object coupling occurs

when methods of one object use methods or instance variables of another object, i.e., coupling

depends on the construction of methods. Therefore property 4 is satisfied. Let P and Q be any

two objects with }i(P) = np and |i(Q) = nn. If P and Q are combined, the resulting object will have

np + nq - 3 couples, where 3 is the number of couples reduced due to the combination. That is

M-(P+Q) = np -t- nq - 3, where 3 is some function of the methods of P and Q. Clearly, np - 3 >

and nq - 3 > since ±e reduction in couples cannot be greater than the original number of couples.

Therefore,

np + nq - 3 > np for all P and Q and

np + nq-3^nqforallP and Q
i.e., }i(P+Q) > li(P) and |i(P+Q) > ^i(Q) for all P and Q. Thus, property 5 is satisfied. Let P and

Q be two objects such that ^(P) = |i(Q) = n , and let R be another object with p,(R) = r.

p,(P-HQ) = n -I- r - 3, similarly

^(Q-i-R) = n + r - 6

Given that 3 and B are not functions of n, they need not be equal, i.e., |i(P+R) is not equal to

}i(Q+R), satisfying property 6. For any two objects P and Q, li(P+Q) = np + nq - 3.

^i(P+Q) = |i(P) + ^1(0) - 3 which implies that

^(P+Q) < ^i(P) + ^t(Q) for all P and Q.

Therefore property 7 is not satisfied.

Summary of results

All six metrics fail to meet property 3, suggesting that perhaps permutation of elements within an

object is not significant. The intuition behind this is that measurements on class design should not

depend on ordering of elements within it, unlike program bodies where permutation of elements

should yield different measurements reflecting the nesting of if-then-else blocks.
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The rarionaJe behind propeny 7 according to Weyuker is to "aJlow for the possibility of increased

complexity due to potential interaction" [Weyiiker, 1988]. All six metrics fail to meet this,

suggesting that perhaps this is not applicable to object oriented designs. This also raises the issue

that complexity could increase, not reduce as a design is broken into more objects. Further

research in this area is needed to clarify this issue.

The RFC metric fails to satisfy property 6 and the DIT metric fails to satisfy property 5. These

deficiencies are a result of the definition of the two metrics and further refinements will be required

to satisfy these properties. It is worth pointing out that Harrison [1988] and Zuse [1991] have

criticized the non-equivalence of interaction property (property 6) and note that this property may

not be widely applicable. Also, the DIT metric, as shown earlier does not satisfy the monotonicity

property (property 5) only in the case of combining two objects in different parts of the tree, which

empirical research may demonstrate to be a rare occurrence. Table 2 presents a summary of the

metrics properties.

Summary of Results

METRIC





research designed both to extend the current proposed memc set and to further investigate these

apparent differences seems warranted.

In particular, this set of six proposed metrics is presented as a frrst attempt at development of

formal metrics for OOD. They are unlikely to be comprehensive, and further work could result in

additions, changes and possible deletions from this suite. However, at a minimum, this proposal

should lay the groundwork for a formal language with which to describe metrics for OOD. In

addition, these metrics may also serve as a generalized solution for other researchers to rely on

when seeking to develop specialized metrics for particular purposes or customized environments.

Currently planned empirical research will aaempt to validate these candidate metrics by measuring

them on actual systems. In particular, a three-phased approach is planned In Phase I, the metrics

will be measured on a single pilot system. After this pilot test. Phase n will consist of calculating

the metrics for multiple systems and simultaneously collecting some previously established metrics

for purposes of comparison. These previously existing metrics could include such well-known

measures as source hnes of code, function points, cyclomatic complexity, software science

metrics, and fan-in/fan-out. Finally, Phase HI of the research will involve collecting performance

data on multiple projects in order to determine the relative efficacy of these metrics in predicting

managerially relevant performance indicators.

It is often noted that 00 may hold some of the solutions to the software crisis. Further research in

moving 00 development management towards a strong theoretical base should provide a basis for

significant future progress.
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