

LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

aASa INST. TECH.

AUG 2 74

Center for Information Systems Research
Massachusetts Institute of Technology

Alfred P. Sloan School of Management
50 Memorial Drive

Cambridge, Massachusetts, 02139

VIRTUAL INFORMATION IN
DATA-BASE SYSTEMS

Jeffrey J. Folinus
Stuart E. Madnick

Howard B. Schutzman

KKI'OKT CISK-)

SLOAN W /2 t-74

July 23, 1974

«ASS. tfiST. ">ICK.

AUG 2 74

RPCFiVED

AUG 26 1974

M. !. T. LltSK/AKlES

ABSTRACT

This paper examines the concept and implications
of virtual information in data base system^. Virtual

information is any fact which does not physically exist
in the data base, but is nonetheless accessible through
combinations of algorithms and other data. Physically
recorded information is only one of a number of ways to

obtain information from a data-base system. Viewing
an information system as a collection of functions
shows that pure data and pure algorithm form the end-
points of a spectrum of ways function being various
types of virtual information. Several classes of

virtual information are identified, and their usefulness
is examined to show the appropriateness of the conct^pt

in a data-base system. Finally, the model is evaluated
in light of the implications of virtual Information Tor

inference and automatic restructuring within a data base.

072238S

- 1 -

CONTENTS

Abstract i

Acknowledgments ill

Introduction 1

A Model of Information 3

Classes and Uses of Virtual Information ' 7

Implications for Data-Base Systems 14

Siommary and Conclusions 20

Bibliography. 21

- 11 -

ACKNOWLEDGMENTS

The research reported in this paper is part of the

continuing work of the Center for Information Systems
Research at M.I.T.'s Sloan School of Management. One

goal of this research effort is to develop information
systems that deal with issues such as optimizing,
performance, automatic restructuring, inference, and

information security.

The specific advances in this paper derive in

part from earlier research in information systems for

building design carried out in M.I.T.'s Department of

Civil Engineering. That department and the facilities

of the Civil Engineering Systems Laboratory provided

the environment within which this paper was written.

- iix -

1. INTRODUCTION

One view of data-base systems is as a method of describing and

mapping data structures into physical storage. An alternative view

is that, given appropriate stored data, the problem is how we use it

to meet requests for information. Requests for "answers", whether

made to processing programs or a stored data base, are essentially

requests for a value of a function, given various argument values.

A model of an information system as a collection of such functions

helps unify many of our notions about data and algorithms, and

provides a convenient construct for resolving several proglems in

data-base systems. Such a model will be presented in this paper.

1.1 Research in Data Relationships

Much recent work in data-base systems has concentrated in two

areas: deriving a suitably powerful logical structure for abstractly

representing information, and formulating ways of declaring the

policies used to map this structure into a stored form. Logical

structures based on the mathematical concept of relations have been

proposed by Codd (4) and Mealy (21) , whereas the Data Base Task

Group (6), Engles (9), and Senko, et al. (24) have used groupings

of objects with similar properties, sometimes referred to as entity

sets. Several others have proposed methods for mapping the resulting

logical data structures to a physical storage mediim: trees and

other hierarchical organizations (as in GIS (12) and IMS (13)),

chained list sructures based on rings (Bachman (1), DBTG (6), and IDMS

(25)), encoded s lings (Senko, et al. (24)), and schemes using symbolic

rather than physical pointers (Davies (8) and Raver (23)).

- 1 -

Data relationships in recent information structuring models, however,

essentially group and categorize data in some static fashion in the

data base. But relationships can also be defined in a procedural fashion.

An example of such an item is age. For example, to maintain a completely

accurate value of someone's age, it would have to be updated continuously.

Therefore, rather than assigning a particular stored value to the data

item age, it might be preferable to define it procedurally as current

date minus data of birth. This leads directly to the idea that a model

of information should allow not only static, grouping relationships,

but procedural relationships as well.

1. 2 Research in Virtual Information

This paper presents a model of information based on functional

requests to an information system. This model includes not only the

classical concepts of pure data and pure algorithm, but also important

classes of virtual information based on procedural relationships.

The usefulness of various types of virtual information are presented

to show its appropriateness as a concept in a data-base system.

Finally, we examine the implications of virtual information for auto-

matic restructuring and inference within a data base.

The idea of virtual information by Itself is not new, having

previously been discussed by the DBTG (6) and Engles (9) . Many

systems, especially inquiry-oriented reporting systems, already

virtualize information, although they often don't consider it as such.

All of this pi ivious work, however, has treated virtual information

as a special case, and dealt with it in a largely ad hoc fashion.

The ^ jal value of this concept occurs only when considered within a

1?. r structure for information which also includes data and algorithms.

In such a context, work can occur on the relative suitability of

each for solving problems in data-base systems.

- 2

2. A MODEL OF INFORMATION

Resolving issues in data-base systems has become easier in recent

years as the computer community has developed a clearer set of notions

about information. Of particular importance has been the distinction

between the logical structuring of facts, and the physical structuring

of stored data.

2.

1

Data Independence

The essential characteristic of a data-base system is the sharing

of data by multiple applications. This type of environment demands a

clearly defined distinction between system internals and the external

view of the application programs, or what has been called data independence .

A significant degree of data independence means that access methods and

data organization are transparent to application programs, and that

the physical aspects of storage are considered apart from the logical

aspects of information. This implies a logical data structure against

which application programmers can define their files and specify their

requests for information.

2.

2

Functional View of Information

Many data base designs assume each fact is physically recorded in

the data base. Actually, physically recorded data is only one point

within a spectrum of ways to obtain information, such as by algorithm

or even by derivation from physically recorded data. Although these

other altemat 'ves are occasionally desirable, they have been largely

ignored. As a t,^nsequence , most models of information are not adequate

for r')taining dynamic or procedural relationships in the data base.

Viewing an information system as a collection of functions avoids

these inadequacies. All requests for information are in a sense requests

Tor a value of a function, given various argument values. 'I'll Is

- 3 -

functional model retains all of the power to describe infonnatlon of

the models of Codd (4), Engles (9), and Mealy (21). Basically, a

function can establish relations (in the set theoretic sense) between

argument values and function values ; it can thus serve the same purpose

as a data map. Although conventionally a function returns a single

value, our consideration includes functions which can return a set or

series of values (which itself could be considered a value) by calling

more primitive functions repeatedly. We also allow for a function

value of "null".

As Iverson (14) notes: "In classical applied mathematics, most

functions of interest can be approximated by some algorithm which becomes,

for practical purposes, the definition of the function. Tn other areas,

however, many functions of practical, if not general. Interest (such as

the correspondence between employee name and salary) can be specified

only by an exhaustive listing of each argument value and its correspond-

ing function value."

2.2.1 Pure Data

Most functions of interest in a data-base system are of this latter

type. The basic algorithm applied to evaluate these functions is a search

of the list of arguments, i.e., a comparison of the given argument with

the list of arguments to determine the correspondent to be selected.

It thus becomes efficient to physically record the lists of function

values on storage media. Recorded facts which are independent of

other informati n in the data base may be considered as pure data .

These enumerated lacts can be obtained merely by use of retrieval

procedi'res.

2.2.2 Pure Algorithm

Function specification can also be by means of algorithm. Functions

requiring no reference to the stored data base are pure algorithms

- 4 -

(such as SINE). In most conventional systems, whenever function values

can be determined without an exhaustive listing of argument values

and functions values, the algorithm is usually associated with the pro-

cessing program and not with data management.

2.2.3 Virtual Information

Certain functions should be associated with data-base systems in

order to guarantee data independence. The functions of concern pertain

to attribute values, such as summaries, which can be realized either

through a search of a stored representation of a data map or by other

means. Function references to information may require more than simple

retrieval of a stored grouping of bits. Intermediate algorithms in

the data management system will put the stored pure data into the nec-

essary form for processing programs. A model of information, then,

must include more than pure data and pure algorithm -- it requires

combinations of algorithms working against values that are either

stored in the data base or derived by other algorithms. Information

obtained in this way, rather than by retrieval procedures or pure

algorithms, can be termed virtual information . In the most general

sense, virtual information is any fact which is accessible through

combinations of pure algorithm and pure data, but which is not

physically stored in the data base.

2.2.4. Collection of Functions View

Viewing ar information system as a collection of functions shows

that pure data a. ^ pure algorithm are merely two different ways to

furnish function values in response to argument values. Pure data and

pure j-gorithm form the endpoints of a spectrum of ways these vaJues

can be realized, with the middle range being various types of virtual

- 5 -

X-

-f (aj^.a^m . . . a^^)

-SINE(37.2)

Function class

PURE DATA

VIRTUAL INFORMATION

PURE ALGORITHM

Examples

table look-up

interpolation from
a stored taole

Taylor series expansion

FIGURE 1

The Spectrum of Information Functions

- 6 -

information (Figure 1). More generally, function requests are always

satisfied by combining data and algorithms. Pure data is merely the

special case involving no program, just as pure algorithm is the

special case involving no data.

When one asks for SINE(37.2), it is irrelevant whether the appropriate

function value is obtained by table look-up, Taylor series expansion,

or possibly by interpolation between stored table entries. Which method

is used to realize the value is properly a concern of data-base manage-

ment. As Engles (9) notes, the important point in regard to data

independence is that the intermediate algorithms necessary to map stored

data into the logical structure (and vice versa) must be transparent

to the processing programs. (If something is virtual, you can see xt,

but it isn't there; if something is transparent, it is there, but you

can't see it). The opportunity to realize the information in the

logical structure by other tools than merely stored data should make

it easier to achieve data independence.

In summary, a model of an information system as a collection of

functions not only helps unify our view of algorithms and data, but

also is consistent with other trends and needs in the computer field.

Increasingly centralized control of information in data bases nec-

essitates functions in data-base management to preserve data independence.

Finally, the procedural definition of information resolves the

contraints resulting from physical limitations in much the same way as

procedural definition, or virtualization, of other system resources

(e.g., virtua] memory, virtual processors).

3. CLASSES AND USES OF VIRTUAL INFORMATION

Several categories of virtual information are of sufficient generality

to merit their inclusion in data-base systems. In particular, various

classes of virtual information can resolve the fundamental issues of re-

presentation and materialization in data-base systems identified by Engles.

- 7 -

3.1 Representation

Representation , or data type, is the relationship between data

items and values. The same data item can be represented as different

values; different data items can be interpreted as the same value.

Representation is thus primarily a matter of form. The same fact can

be represented in many forms. The form which is appropriate to

application programs is not necessarily the best representation for

storage in the data base. Numbers to be displayed to users are not

in the same form required for computation. The form required for

computation by a particular CPU or programming language is not nec-

essarily the best form for storage.

The key issue, then, becomes how to provide a fact, onee it has

been retrieved by our system of functions, in the foinn desired. In

the DBTG proposal (6) , this is accomplished by the mapping between sub-

schema and schema data definitions. More generally, data-base systems

need to contain a library of conversion procedures that enable any obtained

fact to be translated into any appropriate standard data type. Where

conversion is necessary, the resulting value is virtual information.

Such converted forms enable a data-base system to provide many views of

the same collection of facts.

A special case of conversion occurs when facts are not represented

as standard data types, but are represented as encoded forms , such as

may be required for security or storage compaction considerations.

Compaction techniques can save considerable amounts of storage but require

a transformatic a between the encoded and decoded forms. Many attributes

with a limited number of possible values can be more efficiently stored

as coi^a to save space. Engles (9) offers the example of an application

prrgT xm which stores or retrieves a field which contains the name of a

state. The data item as manipulated by the application program is a

character string such as 'CALIFORNIA'. In the data base, however, the

value is represented by a numeric code and a function maps these state

- 8 -

codes into state names and vice versa. Such mapping functions should

be part of data-base management and their use should be transparent

to application programs.

3.2 Materialization

Materialization is primarily a matter of content. Specifically,

it is the matter of obtaining facts from the information system,

regardless of form. In the real world, facts are mostly derived rather

than pure data. As an example, consider the chart of accounts for a

firm. The only pure data needed are original journal entries; all other

facts are derived by manipulating this data. Derived facts must exist

in data-base systems as well as in the real world.

The key issues related to materialization are diverse. On a

practical level, storing facts procedurally as virtual information will

typically involve tradeoffs of storage and access time, and will obviate

updating. More significantly, there is the matter of obtaining facts

which are implicitly available given a collection of pure data and pure

algorithms. As a corollary, there is the question of which facts

should be represented in this collection to maximize the amount of im-

plicit information. Three major classes of virtual information deal

with these issues of extracting the factual content: factored facts,

inferred facts, and computed facts.

3.2.1 Factored Facts

As Senko, 3<- al. (24) note, recognizing and taking advantage of the

distinction between types (such as sets of entities) and instances (such

as T^ ividual entity occurrences) offers great power in building data-

ba:,e ystems. To improve efficiency, information that is common to all

instances of a particular type can be collected and placed in a catalog.

The complete information about a particular instance is thus a combina-

tion of the information common to all instances of this type and information

that is specific to it. Factoring , the process of looking for collections

- 9 -

of instance information common to all instances of a collection and

placing it into a type description, is a powerful method of organizing,

simplifying, and condensing the information about a collection of

instances. Recombining factored values requires procedures to produce

the virtual information about each individtial entity from the type

description.

This task becomes more formidable if multi-level factoring is

employed. For example, in considering information about U.S. cities,

we might factor out information that pertains to all cities in the

same state (e.g., name of governor), as well as information that

pertains to all states (e.g., name of president). (This multilevel

factoring is a major motivation for so-called "tree-structured" data-

base systems). The user should be able to access information independent

of the factoring employed.

3.2.2 Inferred Facts

Data maps between different entity sets lead to the notion of

inferrence. Consider the maps EMPLOYEE POSITION, POSITION SALARY,

and EMPLOYEE DEPARTMENT. Using these basic maps, we can infer

the mapping of EMPLOYEE SALARY. In addition, the mapping DEPARTMENT

EMPLOYEE can be inferred by the inverse of the EMPLOYEE DEPARTMENT

map. Furthermore, the DEPARTMENT NUMBER_OF_EMPLOYEES data map can

be derived from the inferred inverse map DEPARTMENT EMPLOYEE. This

may be preferable to storing a representation of the DEPARTMENT

NUMBER_OF_EMPLOYEES data map, which has to be updated whenever a change

is made to the I ^LOYEE DEPARTMENT data map. The user should be

able to access the data to ascertain the NUMBER_OF_EMPLOYEES in a

DET lMENT, whether the desired fact is actually stored or inferred.

A simple form of an inferred fact is a single data item referenced

in several ways. Consider two entities with the same attribute value.

For example, each MANAGER has a NAME, but also, each EMPLOYEE (which in-

cludes MANAGERS) has a NAME. If we define one attribute as having the

same value as another (similar to the "ACTUAL/VIRTUAL SOURCE" clause in

- 10 -

rfioDucT 1

INDUSTRY SALES
SHAKE Of MARKET
PRICE
SALES
COSTS
PROFIT MARGIN

PRODUCT?
INDUSTRY SALES
SHAKE OF MARKET
PRICE
SALES
COSTS
PROFIT MARGIN

SALES

COSTS

GROSS PROFIT

OTHER INCOME

GCNERAL AND ADMINISTRATIVE

NET PROFIT

TAXES

EARNINGS

FIGURE 2

Transferred data

Cfrom reference 15)

- 11 -

(6)), only one data item needs to be changed during updating. What

has been called "transferred data" (15) is similar. Transferred data

is summarized data based on a supporting subschedule and forwarded to

a given portion of a line item (Figure 2). Thus, a data item in one

summary table can be a virtual "copy" of more elementary data elsewhere

in the data base (e.g., NUMBER_OF_EMPLOYEES in a DEPARTMENT may be

derived from a summary of the EMPLOYEE DEPARTMENT data)

.

More complex forms of inferred facts stem from the observation

that, in a data base of any complexity, there will be several alternative

combinations of related data maps that could be used to access a given

fact. Selecting the best access path structure from a set of possible

candidates becomes a crucial factor in achieving performance. Sen' -, et al.

(24) propose that possible access paths ("strings") be explicitly

specified. The access path catalog would record facts (such as length

of this path and device characteristics) useful in access path selection.

In the most general sense, all inferred facts are instances where

the appropriate fact exists in our collection of functions; the only

problem is obtaining that fact. Explicitly specifying access paths

(6,24) is one solution, but such a solution seems be more for the con-

venience of the system developer than of the end user. If implicit

information is available, why should the user be allowed to get at it

only if he had the foresight and knowledge of the data-base structure

to specify it as an access path? Users may even attempt to specify

unlikely access paths !'just in case," leading to a data base cluttered

with needless relational information. This leads to some of the same

problems encountered in Codd's normalization strategies (4), which require

a user to know which fields will be used as identifiers when the data

b? is defined. Frequently, this will be difficult and the result will

be the designation of an identifier with many fields, some of which

are completely unnecessary. A more appropriate solution is. to let the

information system itself develop the proper access strategy for a fact.

- 12 -

An information system could use the explicit intermediate relationships
necessary to define the data base to discover whether implicit relation-
ships exist.

3.2.3 Computed Facts

Whereas factored and inferred facts are developed merely by accessing
facts available in the data-base system, computed facts are derived by
processing algorithms. A major distinction to be noted here is that some
computed facts are in terms of an individual entity occurrence, whereas
others are in terms of an entire entity set, or more complex forms. An
example of the first would be that, given an entity such as a ROOM whose
attributes are LENGTH and WIDTH, its AEEA could be defined in a for... such
as PRODUCT (LENGTH, WIDTH). The DBTG (6) "ACTUAL/VIRTUAL RESULT" clause
is of this type, and allows user-defined procedures to be used. A data-
base system should incorporate common functions, such as SUM and PRODUCT.

More significant facts can be developed by performing operations
over an entire entity set. Classification requests such as "List the
ROOMS whose COLOR is BEIGE" can employ simple comparison operators on
a single fact, such as =. >, <, and combinations thereof. Boolean condi-

tions such as &, 1, and can be used to construct even more complicated
types of requests. Finally, functions such as COUNT, MAX, MIN, and

AVERAGE can be combined with any of these above types of requests. Lists

of suggested operators to use in data-base systems are presented in (5),

(7), and (9).

All three tvpes of facts — factored, inferred, and computed ~ may

be used either sin,,±y or in combination to extract information from our

collection of functions. Any fact may also be subject to any representation

convei jns that may be necessary.

- 13 -

4. IMPLICATIONS FOR DATA-BASE SYSTEMS

Virtual Information completes the spectrum between pure data and

pure algorithm, and allows an information system to be modelled as a

collection of functions. Such a model provides a clearer and more

consistent framework for studying the concept of information and pro-

vides new insights into the design and implementation of data-base

systems. This section explores some of the implications of our infor-

mation model. Two areas are examined: technical issues of system

efficiency and conceptual issues of system effectiveness.

4. 1 Technical Issues

Data-base systems increase the variety and flexibility of way^ to

store a given fact. Data independence implies that the methods used

within a system for representation and materialization are irrelevant

to the user concerned only with logical Issues. In a system with many

users, such internal decisions should be made on a global basis, using

a set of criteria which optimizes system performance as a whole. It

has been suggested that, becuase users and uses of data change over

time, the system could monitor itself and perform data restructuring

dynamically (17). Rules need to be developed to aid the system in

choosing the appropriate materialization method.

The basic goal in formulating such rules is minimization of cost.

Three types of costs need to be considered: space, update, and access.

The space issue is concerned with how many bits a particular materialization

method uses. Update deals with how static a particular data value is;

certain data items, such as population of the United States, change value

quite frequently while others, such as a particular person's social

spci-.ity number, have a constant value. The access problem involves the

costs incurred in satisfying a request for a value. When considering

the form a particular value should take, the tradeoffs between the various

cost types must be weighed before a decision can be made.

- 14 -

For example, consider storing areas of rectangular rooms given a

knovm length and width. The problem is whether to: 1) store each

room's area with the information for that room, or 2) store the algorithm

for computing the area in the logical descriptor for the general

entity "room." An access time/space tradeoff is involved. Storing

each room's area has the advantage of a decreased materialization time

but the disadvantage of utilizing more space (assxaming a large number of

rooms) . The essential characteristics of the tradeoff are illustrated

in Figure 3. For a small number of requests for areas of rooms, alterna-

tive 2 has a smaller cost. However, as the number of such requests

grow, the cost for alternative 2 increases faster than for alternative

1, and alternative 1 becomes attractive.

4.2 Conceptual Issues

Although a functional model for data provides the potential for

improving technical performance and efficiency of the system, of more

importance is the logical consistency provided by looking at information

in this fashion. Rather than examining each type of information as a

special case, the model supplies a uniform view of facts, as well as the

capability of making information systems cleaner and more powerful.

4.2.1 Inferrential Ability

An information system is, in some snese, a model of recorded facts

about the real world. Unfortunately, the modelling process does not

capture all of the knowledge about a real world system; certain

characteristics .^re simplified and omitted. By improving the way in

which an information system is conceived, that is, by making the model

of ii .ormation more accurately reflect the real world, the capabilities

of the information system can be improved. This can be accomplished by

giving the system more "knowledge" about itself. This is known as giving

the system an inferential ability to use this knowledge. The result is

- 15 -

Cost

Alterna' ve 2

Alternative 1

of requests for room area

cost - f (space) + f(# of requests)

FIXED VARIABLE

FIGURE 3

Access cost V. space tradeoff

16

what has been termed "information profit," or the ability to make intelligent

assumptions about the manipulation of information (17). Such a system

could develop answers to questions even though these answers had not been

explicitly defined in the data base.

Current models of information lack this quality of providing the

system with some intelligence. The relational model of Codd (A), for

example, views information relationships in terms of the mathematical

concept of relations. Returning to the example of the area of a rectangular

room, this information can be expressed as the following relation:

Room Id.

type of primitives are defined, so expressing a relation like area is

not possible.

By taking the view that all facts are obtained through applying a

function, the problem of giving a system increased inferential ability

is reduced to defining the implicit concepts behind the funcitons which

are applied (coming up with a good model for the functions, if you will).

With some information, this is difficult to do. As an example, describing

exactly what is meant by the concept of "color" is a non-trivial problem

in artificial intelligence. With many functions, however, especially

those near the pure algorithm end of the information spectrum, a good

model is reasonably easy to do. Defining rectangular area as

PRODUCT (LENGTH, WIDTH), for example, is a reasonably complete conceptual

description.

4.2.2 Benefits of Inferrential Ability

One benefit from a system with inferential ability is ease of use.

Because the system can infer things about its information structure, the

user is saved from doing some work. Returning to the rectangular area

example, the user only needs to input the length and width of a particular

room, but he can query the system about the room's area even though that

information was not explicitly given to the system.

Another benefit is a reduction in inconsistency of information in

the data base. As the amount and complexity of information grows, the

probability increases that contradictory facts exist in the data base.

Mealy (21) use. the example data of a person whose date of death precedes

her date of birth. If the information relationships are more explicitly

defir id, it is easier to build in consistency checks to help eliminate

thib problem.

- 18 -

4.2.3 Example of Inferrential Level

An example of how a functional view of data can improve a system's

inferential capability is in the area of handling units of measure (22).

The association of a unit of measure with an attribute can either be

done with each occurrence of a data item or factored into a catalog

describing common characteristics of all instances. In many systems,

this distinction is important; viewing all facts as function values,

it becomes irrelevant. Conversion between various units of measure is

analagous to converting between data types except the conversion is

based on the content of the information rather than the form of its

representation. Representation of complex units of measure, such as

pounds per square inch, is easily accomplished since procedural derinitions

are allowed. A more complicated units of measure problem is typified by

the request for the cost in cents of five bolts if bolt cost is stored

in units such as dollars per ton. The system must change the unit

of cost so that it reflects cost per bolt rather than cost per unit

weight. This can be accomplished by defining an "each" function which,

given the weight of a bolt, performs the transformation.

The bolt problem illustrates another level to information systems

besides the physical and the logical. This is the inferential level.

Many inferential problems require that the system be given additional

information. For example, solution of the bolts problem required

the system to be able to ask for the weight of bolts. This implies the

need for in inferential model of information as well. Virtual information,

through procediral ways of relating data maps, provides a good starting

point for such a model.

- 19 -

5. SUMMARY AM) CONCLUSIONS

This paper presents a model of an information system as a collection

of functions which produce values in response to arguments. Virtual

information unifies data, algorithms, and their combinations into a range

of alternative methods for meeting requests for information. Various

classes of virtual information prove useful in resolving the issues of

representation and materialization. Together, the functional model and

virtual information have important implications in data-base systems in

terms of improving system performance and by allowing a conceptually

simple, yet consistent view of many formerly disparate issues. In

particular, these concepts are useful in dealing with significant issues

such as automatic restructuring and inference. Such issues will br

critical in the "intelligent" data-base systems needed for the future.

- 20 -

BIBLIOGRAPHY

1. Bachman, C. w. "Data Structure Diagrams," Data Base (Quarterly
Newsletter of ACM-SIGBDP) , Vol. 1, No. 2, 1969, pp. 4-10.

2. . "The Evolution of Storage Structures," Communications of
the ACM . Vol. 15, No. 7, July 1972, pp. 628-636.

3. CODASYL Systems Committee. Feature Analysis of Generalized Data
Base Management Systems , New York: ACM, 1971.

4. Codd, E. F. "A Relational Model of Data for a Large Shared Data
Bank," Communications of the ACM . Vol. 13, No. 6, June 1970,
pp. 377-387.

5. . "A Data Base Sublanguage Founded on the Relational Calculus,"
1971 SIGFIDET Workshop Proceedings , New York: ACM, 1971, pp. 35-68.

6. Data Base Task Group, CODASYL Data Base Task Group Report . New York:
ACM, 1971.

7. Date, C. J., and P. Hopewell, "File Definition and Logical Data
Independence," 1971 SIGFIDET Workshop Proceedings , New York: ACM,
1971, pp. 117-138.

8. Davies, C. T. , A Logical Concept for the Control and Management of
Data , Report AR-0803-00, International Business Machines Corp.
System Development Division, Poughkeepsie, New York, 1967.

9. Engles, R. W. , A Tutorial on Data-Base Organization , Report TR-00.2004,
International Business Machines Corp., System Development Division,
Poughkeepsie, New York, 1970.

10. Folinus , J. J., Design of a Data-Base Information System for Building
Design , F search Report R73-52, Cambridge, Mass. : MIT Department of

Civil Engii .ering, 1973.

11. "Isaio, D.K. , and F. Harary, "A Formal System for Information Retrieval
rom Files," Communications of the ACM , Vol. 13, No. 2, February 1970,

pp. 67-73.

- 21 -

12. International Business Machines Corp. , Generalized Information System
GIS/360: Application Description Manual (Version 2) . Form GH20-0892-0,
Data Processing Division, White Plains, New York 10604, 1970.

13. , Information Management System IMS/360; Application Description
Manual , Form GH20-7765-1, Data Processing Division, White Plains,
New York 10604, 1971.

14. Iverson, K. E. , A Programming Language , New York: John Wiley and
Sons, 1962.

15. Kingston, P. L. , "Concepts of Financial Models," IBM Systems Journal ,

Vol. 12, No. 2, 1967, pp. 113-125.

16. Madnick, S. E. , Design Strategies for File Systems , Project MAC
Report TR-78, Cambridge, Mass.: MIT, 1970.

17. , "Automated Information Systems Generation Project," Internal
Memo, Sloan School Information Systems Group, MIT, October 1973.

18. Madnick, S. E. , and J. W. Alsop , "A Modular Approach to File System
Design," AFIPS Conference Proceedings , Vol. 34, 1969, SJCC.

19. Martin, W. A. , and R. Krumland, "MAPL — A Language for Describing
Models of the World," Internal Memo No. 6, Automatic Programming
Group, Project MAC, MIT.

20. Martin, W. A., R. B. Krumland, and A. Sunguroff, "More MAPL Specifications
and Basic Structures," Internal Memo No. 8, Automatic Programming Group,

Project MAC, MIT.

21. Mealy, G. H. , "Another Look at Data," AFIPS Conference Proceedings ,

Vol. 31, 1967, FJCC, pp. 525-534.

22. Oshrin, A. and H. B. Schutzman, "The Units of Measure Problem,"

Internal Merr , '^loan School Information Systems Group, MIT, October 1973.

23. Raver, N. , "File Organization in Management Information and Control
Items," File Organization - Selected Papers from FILE-68 , IFIP

.. 'ministrative Data Processing Group (lAG) , Publication No. 3, 1969.

22

24. Senko, M. E. , E. B. Altman, M. M. Astrahan, and P. L. Fehder, "Data
Structures and Accessing in Data Base Systems," IBM Systems Journal ,

Vol. 12, No. 1, pp. 30-93.

25. Schubert, R. F., "Basic Concepts in Data-Base Management," Datamation ,

July 1972, pp. 42-47.

23 -

MAiL_L-2-/7g

m 3 1 19/9

Date Due

•fc«e^

HBR2^^81

NOV iM

^/liVli I^'9G

MIT LIBRARIES

3 TDfiO 0D3 7Tb fib

^2^ .7V

HD28.M414 no.724-74
.

, , „
Lorange, Peter/M_anagement^conUol_ syst

7281 D*BKS . ,.,Q,QP2,I],

3 TDflD ODD 7M7 TMb
MIT LIBRARIES

3 TDfiO DD3 fi27 fiD2

MIT LIBRARIES

71
3 TDfiD DD3 7Tb 775

MIT LIBRARIES

3 TOflD DD3 b71 bS5
'^'^'^'^"1

MIT LIBRARIES

DfiD DD3 b71 b^fl

3 TOAD D03 b71 b3
MIT LIBRARIES

3 TDflD

-7Z^''''i

-rio-i'i

,71 b71

