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ABSTRACT

An analysis is given of some basic properties of exponential
modes on passive cylindrical structures, in which ¢, pand o vary
over the cross section and the bounding surface is not completely
opaque. Major, but not exclusive, consideration is directed to
lossless structures. Each mode 1s generally a TE-TM mixture. Con-
ventional orthogonality conditions do not all remain valid, but
some are retalned. Conditions are discussed under which the instan-
taneous~, vector-, or double-frequency power flows along the struc-
ture are additive among the modes. Stored and dissipated energles
generally are not additive. It is shown that the propagation con-
stant for modes on a lossless structure cannot be complex; when
the lossless structure has no confining boundary (like a dielectric
rod), the modes cannot even possess a true cutoff. Consideration
i1s given to the relation between the direction of real power flow
and that of the phase and group velocities. The frequency depen-
dence of the field distribution is also interpreted. Examples are
included in the Appendices.

* This report 1s identical with a thesis of the same title sub-
mitted by the author in partial fulfillment of the requirements
for the degree of Doctor of Science in Electrical Engineering
at the Massachusetts Institute of Technology.
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PROPERTIES OF GUIDED WAVES ON
INHOMOGENEQOUS CYLINDRICAL STRUCTURES

I. INTRODUCTION

Among the simplest of common wavegulde structures are those
which consist of an electromagnetically opaque tube, filled
uniformly with a substantially dissipationless dielectric
material. The wall, or tube, is usually fashioned from a metal
of virtually infinite conductivity, and the cross-sectional
shape of the enclosed space may take many forms, of which only
a few are both structurally practlcal and analytically simple.

In any case, however, the first step often taken, in order
to develop an understanding of the behavior of the electro-
magnetic filelds which may be propagated along the tube, 1is to
conslder those waves which can exlst in the absence of sources
wlthin the guide. More precisely, attention is directed toward
the case of an infinite tube whose longitudinal axis is desig-
nated as the z-axisj; a solution is then found for fields having
harmonle time dependence ejwt, and exponential behavior in the
z-direction (e—wz). Although there are no sources within any
finite length of the structure, these solutions or "free modes®
may sometimes most convenlently be thought of in the steady
state as being produced by sources located at z = +oo,

Under the physical conditions described above, the modes
in question have interesting general properties, with which
the reader is assumed to be familiar (1); such properties
become useful not only from the point of view of understanding
the basic phenomenae involved, but for the calculation of more
complicated problems involving the Jjunction of dissimllar
guildes, or the effects of transverse discontinulities in a
given structure.

Within the past few years a considerable number of
practical problems have arlsen which require an understanding
of the propagation of electromagnetic waves along oylindrical
structures of more complicated varietles than those previously
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mentioned. The extent to which these structures differ from
ordinary waveguides has not been entirely clear. Examples of
the problems in questlon are: the wavegulde phase shifter, com-
prising a sectlion of ordinary guide partially filled with loss-
less dlelectric; various delay lines employed for the purpose of
obtalning slow velocities of wave propagation, and comprising a
loaded guide or helical wire; the polyrod antenna, involving a
dielectric rod as wavegulide and antenna; veloclty-modulated
tubes, which make use of a drift space either partially or com-
pletely filled with an electron beam; and the traveling-wave tube,
employing a loaded-gulde or helical-wire delay line, surrounding
an electron bean.

It 1s common among these physical situations that the #modes®
encountered therein no longer possess some of the usual wavegulde
mode properties. In particular, the modes found by Hansen (2)
for the delay line with a "reactive wall" are not orthogonal in
the manner characteristic of standard waveguide modes. A similar
comment applies to the modes obtained by Pincherle (3) in the
wavegulde partially filled with dielectric. Hahn (4,5) hasg en-
ployed a set of modes, applicable to the normal waveguide con-
talning an electron beam, which again fall to be orthogonal in
the conventional sense; he has suggested (5), however, that the
conservation of longltudinal time-average power flow along a
lossless gulde may be used to furnish an orthogonality condition
in dissipationless structures. Pierce (6) and Chu (7) have en-
countered modes for the helix type of traveling-wave tube; these
modes also lack the conventional orthogonality property.

In another direction, so-called "open-boundary® problems
have been attacked on the mode basls. Examples of these are
the treatments of the dielectric rod given by many authors
(8,9,10,11,12), as well as various approximate studies of the
helical-wire guide(lz). The difficulty in such open-boundary
problems 1s that at any radian frequency w<oo there may be
only a finite number of the discrete free modes which can exist
on a given structure. Whether or not an orthogonality condition
of some sort exists between these discrete free modes, the fact
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that they are finite in number at any particular frequency
evidently means that they are not a complete set. It ig there-
fore indicated that a consideration of only such free modes
leaves much to be desired from the point of view of acquiring
an understanding about the general electromagnetic properties
of oven-boundary structures.

In most of the earlier engineering investigations of the
more complicated problems outlined above, 1t has nevertheless
been implied that the modes encountered therein have essentially
the same important properties as those uncovered in the solution
to the simpler waveguide problems mentioned at the outset of
this disouséion. Yet 1t has already been made clear that there
are some significant differences between the mode properties in
the two categories; for simplicity, the conventional waveguide
problems with an opaque wall may be classed as "homogeneous
problems®, and all the rest (broadly) as "inhomogeneous prob-
lems*.

It is not practical in this work to cover quite as wide a
range of lnhomogeneous problems as has thus far been suggested.
A convenlént divislon can be made, however, into active systems
(with an electron beam present) and passive systems ( with a
dielectric medium present, which is, at most, dissipative). The
discussion will henceforth be limited to passive cylindrical
structures. They will be termed "inhomogeneous® if either the
bounding wall 1s not perfectly opaque, or the dielectric medium
1s not distributed uniformly in the cross section, or both.

Even with this further subdivision of the inhomogeneous
problems, it will be found, upon the more detailed examination
in the sequel, that 1f any of the mode vroperties are sub-
stantially the same as those for the homogeneous problems, che
reasong therefor are likely to be misunderstood at first glance.
Moreover, there are also some significant differences; conge-
quéntly it is.deserving of further consideration to dlscover the
gsources of these simlilarities and differences, 1n order to en-
hance and extend the engineer's understanding of these more
compllcated problems.



In the ensuing work, therefore, an attempt will be made to
point out and analyze the most important physical properties of
exponentlial modes on inhomogeneous cylindrical structures, in
which the material constants of the enclosed (passive) medium
may vary in the transverse plane, and in which the bounding sur-
face is not absolutely opaque. The general direction of the
investigation will be to determine which of the most significant
properties of the familiar modes for homogeneous structures can
be carried over into these passive inhomogeneous problems. The
analysis in the main body of the work can be broadly divided into
two major headings, the first of which deals primarily with
"cloged-boundary" structures (Parts II-IV inclusive), while the
second (Part IV) considers “open-boundary" structures. Although
the admittanceé boundary conditions (Section 2.4) are intermediate
between opaque boundaries and open boundaries (Section 5.1), it
seemed advisable to include problems involving an admittance wall
under the "closed" heading. The Appendices are 1lllugtrative
problems, of which the first three (Appendices A,B and C) amplify
and verify matters discussed under the closed-boundary heading,
while Appendix D treats a typical open-boundery problem.

After a preliminary reduction of the Maxwell equations to
cylindrical form, and a discussion of the dyadic-admittance
boundary conditions, (Part II), the mode properties on closed
structures are digcussed in Parts III and IV. While Part III
is called "Basic Properties of the Modes" and Part IV "Physical
Characteristics" thereof, the dividing line between them is not
sharp. It was desirable to make the separation primarily for
purvoses of loglcal order.

Part IITI takes up the need for combined "TE-TM" modes in
the general inhomogeneous structure (Section 3.1), followed by
an indication of the fz-symmetry in the entire problem, which
leads to the presence of "incident" and "reflected" waves for
each mode (Section 3.2). These considerations lead to the main
development of the orthogonality conditions (Section 3.3), which
is then followed by a discussion of the varlious consequences
thereof in terms of vpower flow and stored energy when two modes
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are present on the structure simultaneously (Section 3.4). The
final section of Part III reviews briefly some pertinent prop-
erties of the propagation constant ¥y on homogeneous structures,
pointing out the fact that 72 is entirely real when the structure
is lossless, and glving correlations between the algebraic sign
of a and B (y=a+3B) and the direction of power flow along the
guide. The main object of this section (Section 3.5) is, however,
the ensuing proof that 72 must also be vure real on a lossless
inhomogeneous structure,

Part IV then proceeds with a study of vector-power flow in
a single mode, emphasizing the point that the correlation between
the algebralc sign of B and the direction of power flow down the
guide is no longer so simple for inhomogeneous problems as for
homogeneous ones {(Section 4.1). Sections 4.2 and 4.3 deal vrim-
arily with the physical interpretation of the fact that the
field distribution in a single TE-TM mode generally changes with
frequency; and Part IV concludes with Section 4.4 on the polar-
1zation of the fields in these mixed TE-TM modes. It has been
advisable to restrict most of the discussion in Part IV to loss-
less cases.

Part V on "Open-Boundary" problems. draws upon the material
in the »nreceding work, but develops the additional conclusions
that an open structure cannot support either a free exponential
mode below cutoff, or one which has a phase velocity greater than
that of plane waves in the externally surrounding space. A brief
digcussion is then given of the consequent fact that these free
modes may be finite in number at any given frequency, and there-
fore cannot be a complete set. In particular, they cannot
account for radiation from a dielectric-rod antenna, and the
actual mechanism of such radlation is touched ﬁpon.

Following a short conclusion, and some suggestions for
further work, the four Appendices are attached., Suffilcient idea
of their content can be gained from their titles in the Table
of Contents; they supply a small background of experlience %o
substantiate the general dlscussions outlined above,

It requires emphasis at the outset that mathematical rigor
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in the derivations is far less important to a discussion of this
nature than are the fundamental physical ideas behind the analysis.
The purpose of the present work is to improve the engineer's
intuition, rather than his technique.

II. FORMULATION AND PRELIMINARY ANALYSIS OF THE PROBLEM

Preliminary to the main topilcs under consideration is the in-
troduction of the coordinate system and notation. A brief analysis
wlll then be required to convert the basic complex Maxwell equa-~
tions into a form particularly suitable %o cylindrical coordi-
nates. The problems to be considered can then be stated in more
precise form. In particular, it will be desirable to make a few
remarks about the form of the boundary conditions which will be
included in the term %closed-boundary structure”.

2.1 Coordinates and Notation

With reference to Figure 2.1 (page 7), the following
notation will be clear:
E(t),H(t),B(t),D(t) - Real field vectors; functions of
(x,5,2,t).

ﬁ,ﬁ,ﬁ,ﬁ - Complex fleld vectors; functions of (x,y,z,w).

E,H,B,D - Complex field vectors; functions of (x,y,w) only.

ET( ),ﬁ T,etc. Vector functions as above, but having
space components only in the transverse
(T) plane (x,y).

ﬁn,ﬁT,ﬁz,etc. - Complex scalar components; functions of

(x’yt Z,(U) .
E+Eqy,E ,etc, - Complex scalar componentsgs; functions of
(x,y,w) only.
Es(t),ﬁg,Es,etc. - Vector functions as above, but having
space components tangential to some
particularly designated surface (s).
For example, in the particular case of an electric-field
vector which 1s harmonic in time and exponential in z, the
following relations willl hold:

e



- E(t) = Re(Eed®?) = Re[(Ee™Y2)ed¥?]

ot (2.1)
= Re(Ee'W" %) = E (t) + 1_E_(t)
where z z 2t
E=Ey+1,E =Ee = (ET + 1zEz)e , (2.2)
and therefore
(a) Ep(t) = Re(ﬁTejwt) = Re(ETert—vz),
- (2.3)
(0)  E,(t) = Re(£,63%%) = Re(E,ed¥* V7).
X
n
P 'z
i
A y
Fig. 2.1. Coordinate
system for cylindrical structure.
P - Any point on the bounding wall.
A - Any cross sectional area of guide.
L - Any bounding contour line of the guide wall,
n - A real unit vector normal to the wall and directed

outward; independent of z.

1. - A real unit vector in the transverse (x,y) plane,

tangent to the wall and independent of z.

i1_ - A real unit vector along the +z direction,

independent of x,y and z.

The posltive direction of i, is such that at any
point P on the wall n, i and 1z form a right-handed
system of orthogonal unit base vectors, in that order.

The area A and contour L may lie in any plane
normal to the z-axis.



If the component of the vector tangent to the bounding wall
in Figure 2.1 (page 7) 1is desired, the required component would
be a vector given by

E (t) = Re(ﬁsej‘”t) = Re(E_eI"7Y%), (2.4)

with
E, = 1,E¢ + 1ZEZ = Ese (2.5)
- Yz
= (1,E, + 1,E Je 7,
Additional detailed notation will be introduced as required,
with MKS Ratlonalized Units employed throughout.

2.2 Reduction of Maxwell Equationg to Cylindrical Form

When the time variation of the fields is taken to be
harmonic (ejwt), the appropriate form of the Maxwell equations
applicable to the cylindrical system of Figure 2.1 (page 7), in
the absence of sgources, is

(a) V"ﬁ’:".jwuﬁ’

(b) vxH = jwe'E,
with Jwe' = oo+ Jwe. It is to be recalled that ¢,n, and o, the
(real) dielectric, permeability and conductivity constants of
the medium within the guide, may be functions of the transverse
coordinates (x,y), but not functions of z. For the sake of
simplicity, these parameters have also been taken independent
of frequency w, although in the majority of the results which
follow an extension can easily be made to include such frequency

(2.6)

dependence.

Since the problem 1s cylindrically symmetric, 1t is natural
to gsearch for solutions which have the cylindrical behavior

g = Ep(z,w) ; B = Holz,w) ; (2.7)

in which ¢(z,w) 1s a complex scalar function of (z,w). The
introduction of Eq. (2.7) into Eq. (2.6) results in the
relations

(a) VoxE + @VxE = - JjungH,

(b) VoxB + @oVxH = Jjwe'gE.
To select only the transverse part of Eq. (2.8), take the cross

(2.8)
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product of both sides with 1z as follows:

(a)  [1,x(1xEp)] §2 + o%E, = -Juug(i,xHy),

(2.9)
o
(6) [ x(1,xH)] $2 + o%H, = Juwe'o(1,xEq),
in which V& 1s the gradient operator confined to the transverse
plane. A dot multiplication of Eq. (2.9a) by Eg, and of Eq.
(2.9b) by HY, brings forth the new forms
-(g_.p*) 8@ %, = - . *
2.10
—(g_.p*) 42 *, - topd *
(b) (HpHR) &7 + OHR  VpH, = Jwe'el - (Eq x HY).
The star (*) represents the complex conjugate of the function to
which 1t is applied. Division of Eq. (2.10a) by-the scalar
function @(E-ER), and similar divieion of Eq. (2.10b) by
@(HT-HE), accomplishes a separation of both equations, as in-
dicated by the results
L] * *.
1,-(Hp x EX) Ef-WE,

(Ep-E7) (Ep-ER) °

(a) -%@=—Jm

( x) %y (2.11)
i (E, x H Hy+ Vo H
- 149 _ y 2z T T _ T Tz

®F g T W Ay TR
Since the lert sides of both equations in Eq. (2.11) above are
functions only of z, while thelr right sides are functions only

of (x,y), the conclusion must be that

%5%%= —y(w), (2.12)

in which ¥(w) is a complex constant, independent of x,y and z,
but generally a function of w.

Before drawing final conclusions about this separation
property of the Maxwell equations, 1t is necessary to be certailn
that Eq. (2.12) 1s consistent with the longitudinal parts of
Egs. (2.8a) and (2.8b), namely the dot product of Eq. (2.8)
with the unit vector 12:

(a)  1,:(V x Ep) = -JunH,,

' (2.13)
() 12-(v x HT) = Jwe'E,.



The resultant cancellation of the function ¢(z,w) means that
Eq. (2.13) allows the separation ot the fields in the form
gselected, without imposing further restrictions on o.

It is now possible to conclude from Eq. (2.12) that if a
solution of the form chosen in Eq. (2.7) is at all possible, then

olz,w) = e-w(w)z.

The complex "“propagation conetant® ¥ will presumably be
determined at any frequency w from the boundary conditions. In
fact, 1t 1s of primary importance to recognize that ¥ 1is a
function of frequency, and further consideration will be directed
subsequently toward this frequency dependence.

Equation (2.9) may be rewritten in a new form, appropriate
to the exponential solution found above for ¢:

(8.) 'YET + VTEZ = _JW (iz X HT)’

(v) YHp + VpH, = Jwe' (1, x ET).
Solution for HT in terms of VTEZ and VTHZ may be made from
Eq.(2.14) with a cross multiplication of Eq.(2.14a) by

(Jwe'izﬁv), and a subsequent addition of Eqs.(2.14a) and (2.14b).
Simlilar steps ylileld a solution for ET’ and the results wlill be

(2.14)

VA H

Y Jwe!
(a) H'r‘pz VpH, + o2 1, x VpE

©) g, - i’é VE, - Jf% L x v (2.15)
The function p2 introduced in Eq.(2.15) is defined by the re-
lations

(a) p° = -(+% + )
and (2.16)

(b) %k = wlelpn , or

K2 = wze'u = -Jun (o+ jwe).

By reason of the dependence of ¢! and g uvon the transverse
coordinates, k2 (or k) 1s also a function of position in the

gulde crogss section. Then p2 also becomes a function of position

A

in the transverse plane, asg well as a function of frequency.
Equation (2.15) should be looked upon merely as a restate-
ment of the transverse parts of the two Maxwell equations
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[Eq.(2.8)] ; a restatement, however, which makes them specially
applicable to cylindrical systems, and places in evidence the
fact that the longitudinal field components Ez and Hz are in
the nature of a pair of scalar potentials from which the trans-
verse fields may be derived.

It 1s natural to ask next for the equations governing the
behavior of Ez and Hz' Such equations can most expeditiously
be found by returning to Eq.(2.14) and taking the divergence of
both sides:

(8)  YWpEp + VRE, = Juni,-(V x Hy)

- JwVpne (1, x HT),
(2.17)
(b)  yWp-Hp + v%nz

_Jwe'iz'(v X ET)
+ JwVTE'-(iZ X ET)‘

With reference to Egs.(2.13) and (2.16b), this result may be
rewritten in a simpler form, namely

(a) yVp-Ep + v.%EZ

2
T -k“E, - JwVTu.-(izx HT) ,

(2.18)

) _ 12 .
(b)  yVp-Hp + v,_%Hz = -x°H, + JuVpe' (1, x Ep) .

The divergence terms in Eq.(2.18) can be removed most easily by
returning to the Maxwell equations (2.6), and taking the diver-
gence of both sides:
A A A
(a) Ve(puH) = pV.H + H-V,p = 0 ,

T

(b)  V-(e'E) = e'V-B + E-vpet =0 . (2.19)

Now Viplt and VTe' are vectors in the transverse plane, while
according to Eq.(2.2)

A\ —_
H=He " = (Hp + 1,H Je ", (2.20)
=g = (B + 1,8 )e% |
Therefore Eq.(2.19) leads to the conclusion that
Vinlt
(a) VT'HT = YHZ - —E_.HT ,
VTC' (2.21)

(b)  VpEq =YE, - —c7Ep .
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As a result of Eqs.(2.21) and (2.16a), Eq.(2.18) becomes
VTe'
(a) VgE -pE = Y\~ /*Ep - Jw(Vmn)-(1, x Hp) ,

Vil (2.22)
2 - T .
(b) %H -p H 'Y( ) HT + jw(VTe') (izX ET) .
Substitution of (1Z X HT) from Eqg.(2.14a) into Eq. (2.22a), and
of (1, x ET) from Eq.(2.14b) into Eq.(2.22b) yilelds

2
Vak Vit
Br - o2 Vol Vo
(a)  VgE, - D°E, = ¥Ep e = Ve

-l = T iy
(b) ngz P H, = YHy K2 s a G
where 1t should be noticed that
Vok® Y Vel

T »
k2 = = + =T (2.24)

The transverse flelds are given in terms of V&EZ and foz by
Eq.(2.15). Use of the latter equation in Eq.(2.23) results in
the final relations:

| V. et Vp,
(a) E, - p°E, = 15 [yz—f—r-— k2 —-?-—:\-VE

ko)

]
(b) VRH. - p°H = iz 2&[{_kz__r_‘7m‘ . V.H
™y - P =z )\ n €

2
- Jwelyi - .l X VpE
¥ z 2 T *

These last equations between EZ and Hz can be considered as

replacing the longitudinal parts of the Maxwell equations, Just

as Eq.(2.14) (or 2.15) replaces the transverse parts therof.
"Equations (2.14) or (2.15) along with Eq.(2.25)
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or Eq.(2.23) are a complete restatement of the
complex Maxwell equations for a source-free cylin-
drical system in which all field components have
harmonic time dependence

ejwt’
and a sevarated z-devendence

e"'Y(U-‘)Z‘ n

2.3 Detalled Formulation of the Problem

In order to solve any particular oproblem, the solutions of
Eq.(2.25) must be expressed in terms of the transverse coordinates
(x,y) and the unknown value of Y. Equation (2.15) determines
the transverse flelds, and application of the boundary condltions
leads to a functional equation which will select the appropriate
values of v at each frequency. It ig to be expected that in
some cases the relative amplitudes of Ez and HZ on the boundary
will also be fixed by these same boundary conditions.

It should be emphasized again, however, that according to
Eq.(2.16a) p2 1s a function of the transverse coordinates. As
a result, it does not have the significance of an eigenvalue in
these inhomogeneous problems. For any particular frequency, the
set of allowed values of ¥ form the elgenvalues. In general, the
functional equations determining v will ‘be transcendental, and
the various branches of the functions will designate the "modes".
Since pz 1s a function of both the frequency w and the coordinates
(x,¥), 1t is to be anticipated that the field distribution in
the transverse plane, governed by Eq.(2.25), will in general
change with frequency. Thls fact 1s in marked contrast with the
situation in homogeneous guides, where pz is a constant for each
mode, and Eqs.(2.25) do not contain any coefficients dependent
upon w. In homogeneous cases, the field distribution for any
particular mode remains the game over the entire frequency range
O<w<oe, and the modes themselves may in fact be designated by the
various allowed values of pz.

When the problem 1s not homogeneous, the variation of the
field distribution with frequency makes it much harder to identify
the different modes.

-13-



It is not the function of the following vportions of this
paper elther to solve Egs.(2.25), or to prove that allowed values
of v must exlst under the particular boundary conditions to be
prescribed later in Section 2.4. Rather, an investigation will
be conducted to determine some of the general properties which
are to be expected of those modes which do exist, in order that
some insight may be galned to guide the engineer in his search
for solutions to any particular problem. The importance of such
ailds can be appreciated only when the mathematical complications
of even the simplest inhomogeneous problems have been examined
through various specific examples. It is particularly imoor-
tant to know some of the very elementary properties of those
eigenvalues y(w) which do exist, because otherwise much effort
can be expended uselessly in looking for solutlons to any
svecific multi-valued eigenvalue equation on a branch thereof
where, on more general grounds, such solutions could a priori be
ruled out.

Perhavs 1t is pertinent to point out, however, that it would
be strange, indeed, if in some inhomogeneous cylindrical problem
there were no allowed values of ¥(w); for it has been shown al-
ready that if there 1s any cylindrical solution at all, 1t must
have exponential z-dependence. If no values of ¥ were per-
missible, it would follow that some problem with cylindrical
gymmetry would have no golutiong with cylindrical symmetry.

But even granting the existence of gome pronagation con-
stants and assoclated modes, there is still a severe question
about the completeness of the entire set of modes (for the purpose
of representing any given transverse field distribution, for
example). This question of completeness is a difficult one, and
the discussion contained in the present work will not touch upon
it significantly. Yet the results of this analysis of mode
properties, along with the examples in the Appendices, do indi-
cate one interesting point connected therewith; the open boundary
gstructure has modes which never even reach cutoff (y=0). Each
mode simply ceases 1o exigt below a certaln frequency. As a
result, at any given frequency, and for any particular circular
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variation, only a finlite number of modes are available. It is
clear that such a limited set cannot be complete, and this fact
1s 11lustrated in Appendix D. The physical reason for this mode
behavior 1s quite understandable in such oproblems, as outlined in
Part V.

It is in fact hard to avoid the belief that when any modes
among a given set individually cannot exist over the entire fre-
quency range 0<w<e>, then the get of modes at a particular fre-
quency cannot be complete; but this matter is still in the realm
of conjecture.

In this connection, however, some remarks should be made
about the circular guide with a reactive wall, treated in Appen-
dix A. A detalled study of the eigenvalue equation in that prob-
lem hag been made, but 1s not fully presented in Appendix A. It
was assumed, when that study was undertaken, that the wall ad-
mittances were independent of frequency. Such an assumption 1s
not in accordance with the restrictions for physical realiz-
ability given in Eq.(2.40), Sectlon 2.4; and the curious results
to which 1t leads suggest that a less idealliged example ought to
be treated. The pecullarities encountered consisted chiefly in
the fact that, for certain choices of the wall parameters, modes
which were not axially symmetric suddenly "broke off" discontin-
uously. The break did not occur in the understandable way
characteristic of open-boundary structures, but took place either
at or below cutoff. PFor any particular n>0 (circular-variation
index), a finite number of modes possessed this "break off"
property, while the (infinite) remaining set did not.

Without a further study of the problém, making more appro-
priate cholces of the boundary admittances, 1% would be unwise
to draw conclusions from such an anomalous result. A little
more discussion on the subject is included in Appendix A, but
the majJor treatment will be postponed pending further work on
the problem.

2.4 Boundary Conditions

In order to deal with a bounding surface which shall not be
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entirely opaque, but which shall at the same time eliminate the
need for any detailed consilderation of the fields outside the
structure, the boundary conditions at each point on the wall of
the gulde will be taken in the form of a dyadic admittance
(1v,14)
A — A
(a) nx H =Y.E ,

2] <]
or (2.26)

(®) nxH = iiEs .
The dyadic Y is independent of z and, in fact, 1s taken for
simplicity to be entirely independent of position on the wall.
It is therefore not a function of (x,y,z). When written out,
the dyadic Y has the general representation

_ Yoy lele + Vo 1qd,

Y = {+ Yyel e + ¥,,000, } ’ (2.27)
in which the various elements y v of the dyadic are, in general,
complex scalars, having the physical dimensions of admittance.
For the purposes of this paper, a somewhat more snecialized form
of the dyadic Y will be assumed:

y.,rTiTiY + 0

Y =
While the restriction of ¥ to this "Normal" form will shortly be
ghown to entail no real loss of generality insofar as the desired
physical pronerties of the wall are concerned, it 1s not pre-
mature to mention that a symmetry property to be discussed later
(Section 3.2) would be considerably modified if the dyadic Y
were left in the more general form (2.27). Besides, the desir-
ability of obtaining a symmetric dyadic boundary condition
(yZT = Mrz) will also become appvarent in the ensuing pages.

An exvansion of the dot product in Eq.(2.26b) can now be

made in the light of Eq.(2.28),

n x (1L,He + L H ) = L,y Ep + 1y, E (2.29)
A further expansion of the cross product on the left ylelds the
two scalar relations
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(b)  H) = - B,

(2.30)

after similar vector components have been equated on each side
of Eq.(2.29). The resulting boundary condition Eg.(2.30) places
in evidence the admittance character of ¥, and y, . It also
shows that the admittances which deséribe the wall properties
can be chosen in such a way that HS may have any desired magnl-
tude, svace angle, or time phase with respect to Es‘ These
admittances could even be chosen to make HS represent an ellip-
tically polarized vector Hs(t) when E_ represents a linearly
polarized vector Es(t), or vice versa. Thgze is actually more
freedom allowed by even the normal form of Y than will be used
in the sequel of this discussion.

It will be assumed here that while s and Yoo are functions
of the frequency w, they are definitely not functions of ¥
(or the guide wavelengths) for the various modes which may exist
at any particular frequency. The fact that the admittances are
assumed to be independent of the modes (or ¥'s) which may exist
at a given frequency is roughly tantamount to the assumption
that the admittance of the wall material to plane waves is in-
dependent of the angle of incidence. Such would be the case,
for example, if the wall were constructed of metal with a large,
but finite, conductivity. Examples of lossless walls with these
game admittance properties are not easy to visualize generally,
although Hangen (2) has approximated an iris-loaded circular
wavegulde operating in the axially symmetric modes by using such
a gusceptance concept. The approximation is based upon the
assumption that the svacing between successive lrises ls very
gmall compared to the guide wavelength of the lowest propagating
mode at the frequency involved. In the limit of differentially
gmall iris spacing the apvroximation becomes better, but further
question may be raised about its vallidity for those higher modes
in which the fields no longer have axial symmetry. More recently,
attention has been given to the electromagnetic behavior of
metals at extremely low temperatures. Since the phenomenon of
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superconductivity takes vnlace at such temperatures, 1t has been
convenient to consider a metal wall as a reactance when resonant
cavaties are constructed therefrom. But even if only for pur-
poses of generality, 1t is both easy and desirable to include
boundary condition (2.30) in these general discussions.

The special cases in which the bounding wall has been re-
ferred to as "opaque' are included in Eq.(2.30) when

y =y =0

o 27 Y , (2.31)
n x Hs =0

and when
Vo7 = Yo o

or n xE, =0 (2.32)

Condition (2.31) refers to a "magnetic wall", while condition
(2.32) refers to the more common "electric wall®, or perfect
conductor.

Equations (2.15) and (2.25) inside the guide, along with
Eq.(2.30) on the wall, completely characterize the boundary-value
problem presented by the structure. Of course, it must be
hastily added that the solutions for E, and H, from Egs.(2.25)
must first be chosen to make physical sense; which requires that
certain finiteness, single-valuedness, and continuity conditions
be imposed upon the functions and thelr space derivatives (of
first and second orders) at each point within the guide. More-
over, for the present purposes, it will be well to consider that
the functions ¢'(x,y) and n(x,y) are continuous, with continuous
first derivatives. Any discontinuities actually present in these
functions can be replaced by regions of rapid but continuous
variation. This assumption will be made throughout, unless other-
wige specifically stated. In the examples (included in the
Appendices), discontinuous distributions have been considered
for reasons of simplicity. It is important to observe, however,
that since a limliting form of the Maxwell equationsg is applied
at each such discontinulty, these situations are simply limiting
cases for more 1idealized functions ¢! and .

Further interpretation of the boundary condition Eq.(2.26b)
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requires a conslderation of that component of the complex Poyn-
ting vector
8 = }(E x H*)
which 18 directed into the wall, to wit:
. o= . ¥ b— 3 %*
2n-s = n-(E_ x Hs) Eg (n x Hs)

= T JTH G
With the stipulation that
¥Y=CG+ B ,
Eq.(2.33) becomes
L] —3 b 0—. * .—0 *
2n-S E,+G-E} + JE -B.E} (2.34)

Now in view of the symmetric form of Y in Eq.(2.28), and the
consequent symmetry of the two real dyadics G and B in Eq.(2.34),
it follows that the first term on the right of Eq.(2.34) is
purely real, while the second term is purely imaginary. In fact,
if

+ Jb

y

Ly = gu.v ny ?

then

GE¥ = * = - .
E -G EX gTTETE$ +g,,EE} 2Re(n-8) , (2.35)

z
from which the expression EB'E?Eg is seen to be a real quadratic
form with coefficients 8y and 8,q° If, then, the wall is to be
truly passive, 1t must not cause real power to flow into the
gulde, regardless of the orientation of Es' In order that this
be true generally, the quadratic form in Eq.(2.35) must remain
negative for all orientationg of ES; which in turn requires that
the elements guv of G shall be the coefficlents of a negative_
definite quadratic form. In the special case at hand, where G
is in Normal form, the requirement for a passive wall may be
gstated in the relatlons
T3

and 2z = ° (2.38)

oy <0
It may seem curlous that the yuv have negative real parts when
they represent the admittance of a passive wall. Equation (2.34)
also ylelds the additional disconcerting result that when bzz

and by, are both > O, the wall abstracts primarily magnetic
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energy from the region which it surrounds. That is, an inductive <
wall hag an admittance with a poglitive imaginary part. But the
two pecullarities together mean simply that the admittances yuv
are defined with a sign opposite to that normally assoclated

with ordinary circuit admittance. The root of the difficulty

lies in using (n x Hs) instead of (Hs>< n) in the defining rela-
tion (2.26) for the boundary conditions. It 1s consequently
necessary to conslider the yuv as the negatives of ordinary circuit
admittances.

It will be required, in the course of this text, to con-
sider the properties of the modes as functlons of the frequency.
Some statement about the properties of the boundary conditions,
qua functions of w, must therefore be included here. 8Since the
ma jor part of the development in this connection will concern
itself with lossless systems, the boundary conditions will become

nx H = J§~Es , (2.37)
with
_ bl 1. + 0
B = { T }, (2.38)
+0 +b,,11

and yuv = Jbuv' If the analogy to circult susceptances 1is to be
preserved (with the previously mentioned change in sign) 1t will
be necessary to specify that

oég-c *
Es ow Es

ls a negative definite quadratic form. In terms of the Normal
form of B, this stipulation becomes simply
b4y
ow

cb ’
awzz <0

(2.39)

or, the slope of the susceptances versus w is always negative.
This restriction is not, however, made sgolely by analogy with
the familiar circuit properties of susceptance. For Schwinger
(1b) has shown that in an entirely closed lossless system, the
only admlittance boundary conditions under which a desirable
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uniqueness theorem may be deduced for the fields inside, are
those for which the considerations leading to Eq.(2.39) apply.

To be sure, this uniqueness theorem for closed systems precludes
the existence of two solutlions to a given lossless boundary-value
problem if the difference between the solutions is required to be
a continuous function of frequency. That the same theorem can-
not be true in cylindrical structures follows from the fact that
in ordinary waveguides, for example, each mode 1s 1tself a con-
tinuous functlon of w; whence the difference between any two of
them is also continuous in w, Nevertheless, it still seems ad-
visable to consider the dyadic suspectance as a property charac-
teristic of the wall material 1tself, and to retain for that
material in a cylindrical structure those same properties which
would be required of it in an entirely closed system.

In addition to Eq.(2.39), another restriction should be men-
tioned which also comes from the network analogy, as well as from
conslderations underlying the uniqueness proof mentioned above.
It may be most easlily stated for present purposes in the form

ob b
Y
(a) BufT = w | ?
(2.40)
ob b
z2 72
(b) ow = w °

Because of Eq.(2.40), it would appear that problems involving
a reactive wall cannot be expected to make sense, over a wide
range of frequencles, 1f the admlttances bZz and b,. are
agssumed lndependent of w.

III. BASIC PROPERTIES OF THE MODES

One of the most outstanding differences between modes in
homogeneous problems and those connected with inhomogeneous
problems lies in the fact that TE and TM modes are independent
in the former, and dependent in the latter. Therefore some dis-
cugssion is necessary with regard to mixture of TE and TM modes
in the cases where the boundary is not opaque, or the internal
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medium is not uniform. Moreover, the consequences of this mix-

ture make 1t necessary to re-examine the orthogonality conditions
between modes, as well as the proof that ¥~ must be real in a
lossless system. Such examination will be the primary concern of

Part III.

3.1 TE-TM Properties of the Modes

The discussion of TE-TM mixture may most conveniently be
pursued by considering the effects of the boundary and the in-
ternal medium separately. When the guide is uniformly filled

with material, Vpe! = Vou = 0. Then Eq.(2.25) reduces to

(>}

(a) VZE, - p°E, =0 ,
o 2. _

(b) 9vgH, - p"H, =0 .

(3.1)

As far as the medium inside is concerned, therefore, one solution
with H =0 (TM) and one with E, =0 (TE) are independently
pogsible. The transverse fields given by Egs.(2.15) can similarly

be eplit into two groups, in which a superscript 1 denotes the

TM fields, and 2 the TE fields:
(a) IM (H =0)

(1) _ v
Ep ' = V.E

p2 ™z ?

(1) _ (1)
ZpyHp 7' =1, x Ep70
L

™ = X

(v) IE (E,=0)

(2) _ x_
HT T2 vTHz ’
D
(2) _ _ (2)
ET = ZTE 1Z X HT ,
JkZo
Zg = Y i

~-22 -

(3.2)

&



where

ZO=J§=J—%=% . (3.3)

Equations (3.1) and (3.2) are the conventional set,as applied

to ordinary wavegulides, and very complete discussions of the
golutions under the conditions of an opaque boundary surface have
been given in many places (1,15). But even in the simplest
cases, where the solutions for Ez and Hz are separable functions
of the transverse coordinates, the boundary conditions (2.30)

do not usually allow separation of TE and TM modes. For, suppose
the bounding contour L (Figure 2.1, page 7) is one of a family

of orthogonal curves (q,T) in the transverse plane; in particular,
the one at n= 0" Let it be supposed that a TE solution is
required (E, = 0), and that H, = N(q)T(v) 18 a separable solution
to Eq.(3.16), where n represents a "radial' coordinate and v

an "angular" coordinate. Then the boundary conditions (2.30)
become

]

Q

H N(n.)
@ 557) @)
°  {ax (3.4)
(b) N(rlo) = przh“ (a—ﬁ)'lo :

in which h, and h,t are the metric coefficients appropriate to
the coordinates v and 4] respectively.

The only non-trivial solution to Eq.(3.4) occurs when
(aT/av) = 0, in which case H, and all the fields derived from
it would be everywhere independent of v. That 1s, the supposi-
tion that a TE solution is posslible in a separable problem, with
the boundary conditions (2.30), 1s equivalent to the requirement
that the solution be axially symmetric. However, in order that
a solution indevendent of x exist, the geometric and electric
proverties of the cross section (including the wall) must be
independent of'v*. Even then, all the solutions to the problem
will not necessarily have to be independent of x, and any others
will involve TE-TM mixtures. In any event, even if such axially
symmetric solutions do exist in any particular case, they cannot
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form a complete set 3 for it is perfectly possible to specify,
by appropriate location of sources, that the transverse field in
an axially symmetric structure shall not itself pogsess axial
symmetry.

Since the TM modes can be treated 1n manner similar to the
preceding, 1t is to be concluded that, even for the separable
cases, the boundary conditions (2.30) do not admit a complete
get of modes which are either TE or TM.

If there 1s a complete set at all, TE-TM mixtures must be
conslidered, and these will be made up of combinations of the
solutions to Eqs.(3.1la) and (3.1b). The boundary conditions
(2.30) will then fix not only ¥ for the combined TE-TM mode, but
also the relative amplitudes of EZ and Hz at any point on the
boundary wall.

In Appendix A will be found the example of a circular wave-
gulde with admittance wall. Because of the geometric and
electric symmetry of the boundary wlth respect to the polar-
coordinate angle ¢, there are some solutions which break down
into TE and TM waves. These occur only when axial symmetry of
the flelds 1s specified by taking %5 = 0. As soon as the filelds
are allowed to vary in the angular direction, the modes become
TE-TM combinations.

Incidentally, if the gulde were elliptic in cross section
there would be no solutions which were independent of the
"angular" coordinate, because the geometry of the cross section
would no longer be axially symmetric.

Not only the boundary conditions, but also the inhomo-
geneities in the internal medium will produce a TE-TM mixture.
It is apparent from Eq.(2.25) that E, and H, are dependent in
the general case, and it is only under very speclal clircumstances
of symmetry that a TE or TM solution is possible alone. For
example, if a TE solution is required (E, = 0),then Eq.(2.23a)
demands that

szoméz) =0 , (3.5)

in which the superscript 2 refers to the TE wave of Eq.(3.2b).
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H,, however, 1s determined from Eq.(2.25b), with E, = O:
'
o2 o2 =L [.2 Vpt o Vp€
VpH, - Hz—pz [7 e il RN 7% S (3.6)

Now if the structure is lossless, sz is a purely real vector.
Then condition (3.5) states that the polarization of the trans-
verse electric field must be linear, and in'a direction perpen-
dlcular to Vk>. Once H, 1s determined from Eq.(3.6), on the other
hand, the transverse electric field is specified by Eq.(3.2b),
and there is no guarantee tnat the two conditions will be com-
patible, Even 1f they should be, however, it is clear that

the polarizatlion of the transverse electric field is entirely
fixed by the internal medium, in virtue of Eq.(3.5); and there
is no assurance that the boundary condition (even if 1t is homo-
geneous) will also be compatible with that restriction. Similar
comments apply to a TM wave.

In Appendix B 1s included an example in which the polari-
zation requirements of Eq.(3.5) can be met, along with the other
requirements mentioned above. But only the lowest modes of the
structure can satisfy all the conditions for TE and TM separation;
higher modes being necessarily TE-TM combinations.

Once again it should be clear that a complete set, if 1t
exlsts at all, cannot be made up of only those modes which possess
TE and TM character alone, because a transverse fleld can easily
be given, the polarization of which simply does not agree with
the demands of Eq.{3.5).

"It is to be concluded from the foregoing that any
complete set of modes for an inhomogeneous problem
must include those of mixed TE-TM character. If
there are any which possess elther TE or TM prop-
erties alone, they are the result of fortultous
symmetries and will not in %eneral constitute the
complete set by themselves.

3.2 Incident and Reflected Waves

Preparatory to the main derivations of the orthogonality
conditions and the properties of ¥ on a lossless structure, 1t
i1s necessary to exhibit a useful symmetry property of the
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boundary value problem posed by the guide structure. This
symmetry amounts merely to the fact that for every mode which
can exlst on the structure there 1s always a second one which
travels in the opposite direction.

The proof can start most conveniently from a slightly
altered form of Eqs.(2.14), (2.13) and (2.30), which together
characterize the guide problem:

(a) VqE, + YEp = -qu(iz>< HT) } Transverse Parts

\ of
Jwe (1Z.x ET)

(v) VTH + VHT Maxwell Equations ,

z

(e) ve(1, x ET) = JunH, Longitudinal Parts
of
(a) V°(1z X HT) = -Jwe'Ez Maxwell Equations ,(3'7)

(e) H = ¥,,E, } Boundary Conditions
on
(f) H, = =y E the wall .

Suppose an appropriate solution to the first four equations
has been found at a particular frequency Wg Suppose also that
the application of the boundary conditions (3.7e,f) ylelds at
least one value of ¥ at the specified frequency We e In other
words, the fleld (EZO,ETO,HZO,HTO,TO) ie a solution to the
boundary value problem as a whole.

Next, consider a new field denoted by (E},Ef,H),Hi,v'), in
which the followling relations hold:

(a) E}=-E ,

z0
() E% = ETo ’
(¢) H!=H_ , (3.8)
(@) Hy =-Hp, ,

(e) ' =-v, .
A substitution of Egqs.(3.8) into Egs.(3.7a,b,c,d) shows that
the latter remain unchanged, except for the addition of primes
on all the apvropriate variables. Hence the solutlions for the
new fields may be taken to be exactly the same functlons of
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(x,y,7') as the old fields were of (x,y,Y,). But it is also
true that the boundary conditions (3.7e,f) remain unchanged
when Eqs.(3.8a,b,c,d) are substituted therein, so that the func-
tional equations which determine y! are exactly the same as those
which determined Yo before. It follows that ¥!'! and Y, are solu-
tions to the game set of equations, or that the boundary condi-
tions give solutions ror-pggg‘yo and Yo The wall conditions,
therefore, cannot distinguish Yo from Yor and may consequently
be sald to determine only 73.

Observe that the field in Eq.(3.8) could have been defined
in a second way, which differs but slightly from the actual
definitions employed there:

(a) Ey =E ,

z0
| =
(b) Ef = -Ep, ,
(G) H; = -HZO ’ (309)

(a) H& = HTo ’

(e) " =-v, .

The discussion showing that y" 1s determined from the same func-
tional equation as Y, 8oes through as before, and no essentially
new information 1s obtained.

The alternate wave (3.8) or (3.9) may be referred to as
the "reflected" wave corresponding to the "incident" wave given
originally. The reflected field (Eé,E%,Hé,H’,Y') moves along the
z-axis in a direction opposite to that of the incident fleld
(Ezo’ETo’Hzo’HTo'7o)’ in view of Eq.(3.8e). Moreover, the com-
plex Poynting vectors for the two flelds are related as follows:

'= '-_—-
Sz sz soz ’ (3.10)

= g

T = 8

s !

T oT ?

go that only the longitudinal components of S reverses upon
"reflection".

The physical significance of the fact that the boundary
conditions can determine only 72 is now made clear, because, as
indicated earlier, it is merely another way of stating that:
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"For every wave which can propagate down the

structure, there is always another similar wave

moving in the oppositie direction."

Such a result is by no means surprising upon consideration
of the fact that the system has cylindrical symmetry. Neverthe-
less, this symmetry property 1s quite important, and will be
used & number of times in the rest of the work.

3.3 Orthogonality Conditions

Enough preliminary work has now been completed to allow the
development of the orthogonality conditions which remain valid
for inhomogeneous structures. It is helpful to review this
matter rapidly in terms of homogeneous problems first, and then
proceed to the more general case.

In the usual homogeneous cylindrical problems, a number of
orthogonallty relations are known tc hold. If the subscripts
1l and 2 refer to any two exponential modes, for which 71172¢0,
then 1t 1s true that (15) at any particular frequency w:

! — [} .
fA E, E, odo’ = f € ') *Eqodo = fA ¢ 'E *E do
= L 2185040 = j“HTl pedo (3.11)
= fu,Hl-szo' =0 .
A

Also
_};iz'ETl X HTz) do=0 . (3.12)

In Egs.(3.11) and (3.12) the integral is taken over the cross-
sectional area A of the guide, with the recollectlion that all the
quantities concerned are functions of only the transverse co-
ordinates.

As long as the wall remains opaque, and therefore lossless,
the validity of Eqs.(3.11) and (3.12) is not impaired by the
presence of losses in the internal medium, provided that such
losses are also uniformly distributed in the cross section.

It is interesting that under the same conditions (including
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possible loss in the medium), the fields in a homogeneous problem
also have the properties:

1% * = 1% SR = 1% S
jAe EzlEzzdo’ Lc ETl ETzdo‘ Le El EZdO‘

* —_ « ¥
'[ALLHlezde' = A"‘HTI Hiodo (3.13)

nH

=

.}t -

as well as

[Aiz'(ETl x ;) do=0 , (3.14)
where, however, v, & 75 # 0 in addition to v, t Yo # 0. The
second restriction on ¥ is not really physically significant be-
cause: for lossless homogeneous problems Y4 and Yo are each
either pure real or pure imaginary (lc); while for dissipative
problems either ¥ or v¥* represents a wave which becomes infinite
in the direction of propagation, and would have been rejected as
a solution at the outset. More will be sald about matters per-
taining to the nature of ¥ in Section 3.5.

With reference to Eqs.(3.11) and (3.13), it is convenient
to refer to the properties described by them as "energy orthogo-
nality® conditions, while the properties expressed in Eqs.(3.12)
and (3.14) may be referred to simply as "power orthogonality"
conditions. The proofs of these varlous orthogonality properties
are usually given from the nature of the differential equations
(3.1) under the homogeneous boundary conditions (2.31) or (2.32).

It is a matter of experience that most of these orthogo-
nality conditions do not hold when the problem is inhomogeneous.
The standard procedures for proving them apparently break down
when applied to Egs.(2.25) and (2.15) under the boundary condi-
tions (2.30). Nevertheless, it is possible to show that Eq.(3.12)
remalinsg true for inhomogeneous problemg of the type being con-
gidered here, even if loss 1s present in both the dielectric
material and the wall. Ecuation (3.14) is applicable along with
Eq. (3.12), however, only when the entire system is dissipa-
tionless.

-29-~



The reciprocity theorem forms the basis of the required
proof, and may be wrltten in two convenlent ways for any region
in which there are no sources. It is supposed that (e,pn,o) are
reasonable functions of the coordinates, and that two linearly
independent fields (ﬁl,ﬁl) and (ﬁz,ﬁz) are solutions to the Max-
well equations at the same frequency w. Then

(a) V-(ﬁlx ﬁz - £

~ " A (3.15)
(v) V-(El'x H¥ + E* x H

) = -20E EX .

Application of Eq.(3.15a) is now made to a pair of exponential
modes on a cylindrical structure of the type in Figure 2.1
(page 7) where

A "le A "'le
E, = El e ; Hy =H e ,
(3.186)

A "'Yzz A -'Yzz

E2 = E2 e 5 Hy = Hz e .
The result is that

-(v+y,)z
172

Ve [(El x Hy - Eg X Hl) e =0 , (3.17)
or

ve (E{ x Hy - Eg X Hl)

= ('Yl + 72) 12' (ETl X HT2 - ETE X HTl) . (3.18)

This last expression is next integrated over the cross section A
of the gulde, and the two-dimensional form of Gauss' theorem is
applied on the left side of the equation,

};n-(El x Hy - Eg x Hy) dl
= (vyq + 72)‘J;12-(ET1 X Hop = Epp X Hpq) do . (3.19)

But since each of the fields satisfies the boundary conditions
(2.26), with the dyadic Y in the symmetric form (2.28), it follows
that on the contour L

ne (El x Hy = Ep X Hl) = Ey'Y'E) - E*T'E,

=0 . (3.20)
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As a result, Eq.(3.19) states that
'yl+72#0—-)-

J‘;iz' (ETlx Hpo = Epg X HTl) do=0 . (3.21)

Now it has been shown in Section 3.2, Eq.(3.9), that corres-
ponding to any given solution, such as field 2 above, there 1is
always another solution (-ETz,HTz,-yz) which gatisfles all the
conditions of the problem. For the latter, Eq.(3.21) reads

Yy~ V2?0

fAi‘,; (ETlx Hpo + Epo X HTl) doc=0 ., (3.22)

Addition of Eqs.(3.21) and (3.22) completes the analysis, with
the concluslon
Yy + Yo # 0 —>

j;iz' (Egy X Hpo) do=0 . (3.23)

"Equation (3.23) 1s the formal statement of an
orthogonality condition between any two differ-
ent exponential modes on an inhomogeneous cylin-
drical structure of the 'closed' varlety. The
only exclusions occur when both waves have the
game Y (and hence are essentially the same in
the transverse plane), or if elther i1s the 're-
flected! counterpart of the other,"

When the entire system is lossless (o= 0), Eq.(3.15b) be-
comes

. (R A T T I
ve (E, x HY + Ef x H;) =0 , (3.24)
and the boundary conditions are
(a) nx H, = JB°E
1 e (3.25)

(b) nxH, = 3§-E2 ,
with B entirely real. By steps similar to those in Egs.(3.16)
through (3.23), the resulting new orthogonallity condition

¥Y=38

= . +* =
c=0 — fAiz (Egyx Hiy) do= 0 (3.26)
71* 72# 0

follows readily.
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"Emphasis must be placed upon the fact that Eq.(3.23)
holds for both dissipative and non-dissipative struc-
tures. When the structure 1s non~dissipative, however,
Eqs.(3.26) and (3.23) become valid together.®

Since condition (3.23) holds more generslly than Eq.(3.26),
1t 1s the one which acts most effectively as an orthogonality
condition. Equation (3.26) is useful primarily for the purpose

of understanding energy relations in a dissipationless cylindrical

guilde on which several modes are present together.

It is interesting to mention that the present search for
orthogonality properties was originslly instituted with the
thought that they might be of the form (3.26), and would be valid
only for lossless structures. The reasoning was based upon the
fact that in a lossless structure the time-average power flow-
ing across every section of the guide must be the same, 1i.e.,
independent of z (5). Since, in a rough way, the cross terms
between two different modes propagating simultaneously along the
guide would involve exponentials of (71-73)2, with coefficilents
similar to the expression in Eq.(3.26), it was felt that these
coefficients would have to vanish. Actually, it is possible to
derive Eq.(3.26), as it stands, from a consideration of the
Poynting theorem applled to a lossless structure with two modes
on it; but the derivation misses condition (3.23) completely.
Apparently these power-orthogonallity conditions should be looked
upon as restatements of the reciprocity theorem, rather than
congequences of Poynting's theorem.

The usefulness of Eq.(3.23) as an orthogonality condition
arises in the problem of finding the coefficlients in a trans-
verse~field expansion. If it is agsumed that the set of exponen-
tials modes is complete, then the expression for any possible
transverse field in the guide may be written in the form

A -’Ynz 'Ynz
(a) Ep = E AnEpn® + § BnETne ’

n n
(3.27)
A -Y_Z Y. Z
SEETD NPT SRR
n n

-
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in which (ETn’HTn) are the transverse fields appropriate to the
propagation constant Yn‘ If the fields E and HT are given over
a particular cross section z = O, then An and Bn must be found
from the equations

(a) ET = Z (An + Bn) ETn ’

n

(v) Hyp = § (4, - Bn) Hpp o
n
Equation (3.28a) may be cross~multiplied by Hp,, and then dot-
multiplied by the unit vector i, . From Eq.(3.23), a cross-

gsectional integration of the resulting equation ylelds
fi'(E X Hp ) aco

/1 * (Ep,x Hp ) do
By similar steps, Eq.(3.28b) furnishes the expression

i fAiz' (B, X Hp) do
Ay - By = .
jgiz' (Ep, X Hp ) do

(3.28)

. (3.29)

Ay * By =

(3.30)

It 18 a simple matter to solve Eqs.(3.29) and (3.30) for the
coefficlents An and Bn.

¥hile a determination of these coefficients by no means
proves the completeness of the set of free modes for the expan-
sion of given transverse flelds, 1t 1s an ald to such expansions
once the completeness of the set is known.

3.4 Power and Energy Congeguences of the Orthogonality Conditions

In spite of the fact that Eqs.(3.23) and (3.26) spring from
the reclprocity theorem, it is profitable to examine the conse-
quences of these equations in terms of energy propagation when
two modes exist simultaneously on the gilven structure.

Let the two modes have transverse fields whose instantaneous

values are given by:
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Jwt-yy2 N -Jwt-w{z

Epp (t) = 3 | Eppe + Ebe |
- ’
F Jwt-y, z - Jwt-y¥*z
Hpp (t) = % | Hpqe 1%, *e 1
(3.31)
B %, ]
Jwt-wzz —Jwt-vzz
— %*
Epo(t) = % -ETze + Efqe
[ Jwtvpz - Jwt-v3z] |’

Hpo(t) = % | Hppe + Bpoe
where the first group represents mode 1, and the second mode 2.
It is assumed that v, % ¥, # O and vq% 75 # 0.
The total instantaneous Poynting vector has a longitudinal
component 8, (t) given by

Sz(t) = 8,11(t) + 8,55(t) + 8, () . (3.32)

The terms Szll(t) and szzz(t) are ilngtantaneous longitudinal
power flows for modes 1 and 2, respectively, as though each were
propagating alone. The general form for such "self power¥,
Szvv(t), in terms of the complex fields, is obtained from Eq.
(3.31):

zavz

2e szvv(t)

= Re [ 1z'(ETv x Hav)

Jz(wt-—ﬁvz) ]

+ 12-(ETv X HTv) e , (3.33)

where the notation Y= %y + Jav has been employed. Szvv(t)
therefore contalns the familiar time-average part and the usual
double-frequency, or time-dependent part.

The remaining term in Eq.(3.32) represents a "cross term",
and actually comprises two factors, condensed into the combined
form Szc(t). It is in fact the presence of two cross terms
in the total cross power which makes the derivation of the
orthogonality condition (3.26) from Poynting's theorem somewhat
more difficult than might first be anticipated. The combination
of these terms, represented by Szc(t); is written:
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(al+a2)z

2e Szc(t) =

'3(51“52)2
h { 1, (Epy X By + Efp X Hpy) o
t- + zZ
+ 1+ (Eqq X Hpot EpoX Hyy ) ejr'zw (By82)7] .(3.34)
Szc(t) also contains a part which is independent of time, and a
double-frequency part.

The essence of Eq.(3.23), therefore, is that the time-
dependent part of Szc(t) integrates to zero over the cross sec-
tion. This orthogonality condition therefore can be interpreted
to state that:

"When two modes are present together, the time-
varying part of the integrated longitudinal power
flow along even a dissipative inhomogeneous guide
can be computed as though each mode were propa-
gating by itself.!

On the other hand, Eq.(3.26) does not hold generally in an
inhomogeneous system with loss, so that in such cases the time-
average power can be expected to contain additional terms due
to mutual interaction between the modes.

When the system is lossless, both Eq.(3.23) and Eq.(3.26)
are valid together. As a result, the entire instantaneous cross
power szo(t) integrates to zero over any cross section:

"The total instantaneous longitudinal power flow
down the guide is the simple sum of the corres-
ponding flows for each mode alone, provided that
the structure is without loss.®

Insofar as the vector power 1s concerned, the longitudinal

component of the complex Poynting vector must be examined.
When two modes are present simultaneously, the form thereof
will be

2Sz =

-2a1z -2a22

. * . »*
1, (EpyxHgq e +1, * (EpoxH, e

-[(a 42, )+3(By-Bs)
1+ (Eqy XHEHE* 1o xHy e ey tag)+3(py-Pp)]2 (3.35)
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When the system contains loss, the orthogonality condition (3.23) -
gives no information about the vector power. It 1s to be ex-
pected, therefore, that cross terms will appear in both the
average (or active) power flow and the reactive power flow. But
if the structure is lossless, the validity of Eq.(3.26) under
these special circumstances means that the third term of Eq.(3.35)
Integrates to zero over the guide cross section. Then the con-
clusion must be:

"The total yvector power flowing down a lossless
inhomogeneous gulde can also be calculated as a
gimple sum of the corresponding flows for each
mode geparately."

As regards the energy orthogonalities in Eqs.(3.11) and
(3.13), 1t 1s possible to obtain relations somewhat similar to
these for the inhomogeneous structure. It will be seen, however,
that in general the integrals do not vanish correspondingly.

In order to develop the desired analogy of Eq.(3.11), 1t
is convenient to consider first a modified form of Poynting's
theorem. For lack of a common name, i1t may be called the
"double-frequency" Poynting theorem. The derivation of this
theorem follows closely the method pursued in developing the
usual complex Poynting theorem, and the result becomes

V(B x B) = -Ju(e BB + uf.8) . (3.36)
AWhefl\ twoAgodes are simultaneously present, ﬁ = ﬁl + ﬁz
and H = Hl + H2. It is assumed that each of the fields 1 and
2 1s 1tself a solution to the Maxwell equations, and hence each
satisfies Eq.(3.36) when the other is absent. Therefore Eq.
(3.36) becomes
A A A A A A A A
Ve (Ey X Ho+ Egx Hy) = -23w(e¢'E -Eo+ pHy°Hy) (3.37)
But the reciprocity theorem (3.15a) may be used to reduce the
left side of Eq.(3.37) to a single term, so that
V°(ﬁlx ﬁz) = -Jw(e'ﬁl-ﬁ2+ uﬁl'ﬁz) . (3.38)
When both modes are exponential, an expansion of the divergence
term ylelds the result
V‘(El"Hz) - ('Yl+ 72) 1Z-(ET]_X HTz)
= -Juw(e'E -Ey + pH,+Hy) . (3.39)
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which, integrated over the cross section A, becomes
= -Jw/‘;(c'El'Ez + uH) -By)do . (3.40)

In view of the boundary conditions (2.26) and (2.28), as well as
the restriction (3.23) when Y1t Yo # 0, the above equation be-
comes

71’-&72#0—')

‘/I:EI-Y-Ezdt = Jw./;(e'El'Ez + pH) *Hy)do- (3.41)

or, in the more expanded form,
‘71172#0——>

jr_:y'r'r Ep Eppdl + fLy 2222185044

= Ju jA' (€'Eqq ‘Eqo*e 'E,1E ol “Hootul B, )do . (3.42)

Since, however, Eq.(3.42) is valid for any two fields under the
indicated restrictions on v, the alternate field of Eq.(3.9) can
be substituted for field 2 in the former, with the result that

;E(xTTE11E12 + yzzEzlEzz)dz

= jw j; (-€'Eqq Eqote 'EzlEzzmHTI-HTz-p.Hzlﬁzz)do- ; (3.43)

whence addition and subtraction of Eqs.(3.42) and (3.43) yield
respectively:

= - L
(a) L"‘H'rl Hppdo = J;f 18230t 3y RETRSIY A

(3.44)
IE . = - -1
(b) fA‘ Epy Eppdo = ,[A”Hzlnzzdc" Jw,/I:y'r'rEnEﬂ‘zd" .

Equation (3.44) is the more general analogy of Eq.(3.11), which
was valld only for homogeneous problems. Unfortunately, there 1is
no guarantee that any of the terms are zero in the more general
case. It is also unfortunate that Eq.(3.41) requires cross terms,
even in the time-dependent or double-frequency part of the total
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stored plus dissipated energy per unlt length, when two modes
are present together. This remalns true even when the struc-
ture 1s lossless.

When, however, the wall 1s opaque, but the internal medium
not necessarily homogeneous, Eq(3.41) becomes

Y =

0
or T =°,§ -»fA(,jwe 'E, ‘Eg+JunH, *Hy)do = 0 ; (3.45)

while Eq.(3.44) ylelds

_— - !
(a) f WHy, *Hpodo = /A €'E E,odo ,

! . -
(b) /A ¢ 'Egy “Enodo /A WH (H odor .

In this case, then, Eq.(3.45) shows that the time-dependent part
of the total stored plus dissipated energy per unit length can
be computed as the sum of those contributions provided by the
individual modes. Note that the time-dependent part of the
stored electric, magnetic, or disslipated energies cannot indi-
vidually be so computed because Eq.(3.46) does not guarantee the
vanishing of the individusal cross terms.

It might be assumed, from experience with membrane problems
in accoustics, that corresponding to the orthogonality conditions

(a) [AEzlEzzdo* =0 ,

f H . H do=0 ,

which are known to be valid in homogeneous problems, there ought
to follow some analogous pair of "weighted" orthogonality con-
ditions like

(a) /eE 1E0do=0

f“‘Hlezzd"' ’
which would be valid at least 1n lossless structureswlith opaque

walls., But 1t 1e not generally possible to obtalin such a result
from Eqs.(2.25). The reason apparently lies in the fact that the

(3.48)

(3.47)

not generally true .
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TE-TM mixture takes the problem out of the purely scalar class,
and there 1s no a priori reason to suppose, therefore, that such
analogies with membrane problemsin accoustics can be pushed so
far.

The previous considerations have been directed toward the
time-dependent, or double-frequency, parts of the various
energies, in order to obtain results which would be valid for
both systems with and without loss. The analogies of Eq.(3.11)
were found, insofar as 1t was possible. There remains the
problem of time-average energles, or the analogles of Eq.(3.13).
Since there are no such analogies for an inhomogeneous problem
with losses, discussion will be limited here to cases without
loss.

From the conventional form of the complex Poynting theorem
for a lossless system

V- (R x B*) = ju(cB-B* - pfi.B*) (3.48)
reasoning similar to that preceding Eq (3. 37) will lead to
ve(E)x B3+ B, xB%) = juwe(E, .8 + £2.8,)

-jou(R B+ BEE) (3.49)

when two modes are present in the gulide at the same time. But
Eq.(3.24) allows the following alteration of Eq (3.49):
Vo (B x B2 - BrxB,) = Jue(E -EY + B2-E,)

-qu(Hl'H"z‘“-"H 2) , (3.50)

which is equivalent to
A A A
Im[V~(E1x H;)] = Im [Jw(eﬁl-Eg - uﬁl-ﬁg)] . (%.51)

Now the field (ﬁl,ﬁl) is linearly independent of (ﬁz,ﬁg), and
may therefore be taken with any complex amplitu&e deslred. 1In
particular, Eq.(3.51) must remain true when (E H ) is present
with a new field (JEl,jﬂl) just 90° (time phase) in advance of
(El’Hl) But theE EqA(S .51)would reid .

In[39-(B; x 82)] = In[sw(esh, B8 - iR -B8)] ,  (3.52)

or
A

Re [v- (E;x B8)] = Re [Ju(<B B} - ufi, -B%)] . (3.53)
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It is concluded, Eherefore, that actually
A A A A A
Ve(E; x Hf) = Juw(eE; E} - pH,-H3) . (3.54)
When the modes are exponential, and ¥ % vg # 0, it is possible

to use the boundary conditions (2.37) and Eq.(3.26) in order to
proceed from Eq.(3.54) to the result:

'-0 * = ] * o L4
fLEl B-E} al w‘g(eEl E} - pH,-H})do . (3.55)
Steps similar to Eq.(3.42) and (3.43) then establish the formulas

ST - * _ 1
| (a) JguHTl HYodo = JgeEzlEzzdc' }£ EEhodl

(3.56)

* % 1
(b) JQeETl EX do jfuﬂzlﬂ do + jgb +EpErdl

which are the desired analogies of Eq.(3.13), but are now re-
stricted to lossless problems only.

Once again, the nature of the inhomogeneous problem prevents
the possibility of finding any of the time-average individual
stored energlies by simply summing over those for each mode; for
the cross terms do not vanish in general.

Even when the wall 1s opaque, and all the terms involving
B go to zero, the best to be said, according to Eq.(3.55),
that the time-average difference between electric and magnetic
stored energies (per unit length) is summable over the individual
modes., If only the weighted orthogonality properties suggested
on page 38 were actually true, then at least Eq.(3.56) would lead
to "average-energy" orthogonality when the gulde 1s bounded by
opaque walls. But the examples in Appendices A and B willl show
that the hoped-for welghted orthogonalities are not true 1in
general, and the matter must be left as 1t stands.

In summary then, an extension of the power-orthogonallty
conditions, found in Section (3.3), to the various energy orthogo-
nalities mentioned here cannot generally be accomplished. 1I%
appears that the power orthogonalitlies are properties of the
Maxwell equations and symmetries of the structure; in particular,
they are consequences of the reciprocity theorem. They are there-
fore common to both homogeneous and inhomogeneous problems. The
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energy orthogonalities, however, depend essentially upon the
scalar functions (Ez’Hz)’ and the particular differential equa-
tions and boundary conditions to which they are solutions. These
equations lead to orthogonal scalar functions (EZ,HZ)‘ror homo-
geneous problems, but counter exampleg show that they do not
always behave similarly in the inhomogeneous cages. In other
words;

"the change from an homogeneous to an inhomogeneous
structure must generally be paid for by giving up
the 'energy summation! properties of the modes, al-
though the ‘'power-summation'! properties are at least
partially retained.®

3.5 Characterigtics of the Propagation Congtant vy

It has been observed in the previous section that some of
the familiar orthogonality properties of modes on homogeneous
structures are connected very directly with the Maxwell equations
and the symmetries of the system. Other such properties depended
upon the more gpeclal nature of the equations for Ez and Hz.

The former properties were carried over to inhomogeneous struc-
tures, while the latter could not be so extended.

The purpose of the present section is to carry on a similar
analysls with respect to additlonal mode properties, namely,
some of the properties of y¥. The point of departure 1s once
again a brief statement about these matters with reference to
homogeneous problems.

One of the most important facts about the modes in homo-
geneous problems 1s that the propagation constant ¥ must be
either pure real or pure imaeginary when the structure is non-
dissipative. Normally the proof(lc) depends upon an applica-
tion of Green's theorem to the wave equations (3.1), with conse-
quent demonstration that p2 must be real. Actually, the proof
is also valid for a homogeneous system with loss, so that the
reality of p2 is a consequence of only the opaque boundary
conditions and the fact that the internal medium is uniformly
distributed over the cross section. In the homogeneous problems,

then,72+ k2 = -pz 18 always real, so that when kz is real, ¥
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is also resl. If, however, kzis complex, then, since ¥y = a+)B, .

(a®-8%) + 2308 + wen - Jupo = -o% (3.57) .,

which 18 entirely real. The imaginary part of Eq.(3.57) must be
zero, therefore, and

= Juuo (3.58)

Hence a and B have the same sign, as long as o> 0. It is in-
teresting to observe here that the exclusion of waves which grow
in the direction of propagation (when the system 1s passive, or
o 2 0) is not a separately imposed boundary condition for

z — o0, but follows from the wave equations (3.1) for homo-
geneous problems.

Furthermore, when TE and TM waves are considered separately,
the longlitudinal component of the complex Poynting vector is
given by

(a) ™ (HZ = 0)

2s£1) = 12-(E,§,1)xH.J(31)*) = IPI (V pE, ¥ pE*)
- .(.cz:&_)x
|p[ " Z"
(3.59)
(b) ZE (E, = 0)
(2) (2), g(2)* 2
28, = 1 +(Ex*'xH~'") = Ji’ilj— “VTHz"

in which |p| 1s the time magnitude of the complex scalar p, and
“VTE " 1s the space and time magnitude of the complex vector VTEZ,
etec. It follows from Eqs. (3 58) and (3.59) that the algebraic
sign of Re S(l [and Re S (2) ]is always the same as that of B,
whether or not the structure contalns internal losses. The di-
rection in which longitudinal time-average power flows at each
point of the crosg gection 1s the same, and corresponds to the
direction of the phase velocity. Of course, the integrated value
of the time-average longltudinal power flow over the entire cross
section then has the same property. In this connection it should
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be pointed out that when the structure is lossless, and the mode
is *below cutoff" (y = a), neither Sél) nor séz) in Eq.(3.59)

has any real part., There can be no time-average longitudinal
power flow at any point of the gulde cross section when a single
TE or TM mode 1s below cutoff. As a result, there is certainly

no integrated value thereof over any cross section.

In considering inhomogeneous problems, the elementary facts
presented above can no longer be obtained so easily from the
nature of pz, since 1t is a functlion of the coordinates in the
transverse plane. An approach to them through Egs.(2.25), (2.15),
and (2.26) cannot easlly be made in the same manner as is done
for homogeneous problems; yet 1t must be felt intuitively that
gsome of these facts are still true, and that more fundamental
reasons than the particular form of the Ez - HZ equations should
exlst to prove them.

The primary concern of this section will be to prove that
¥ 1s elther pure real or pure imaginary when the inhomogeneous
structure is lossless; dlscussion of correlations similar %o
Eqs.(3.58) and (3.59)(between power flow and y) will be considered
in Part IV.

First of all, a general property of the complex fields
E(w) and H(w) must be emphasized (1b). It is, in fact, indepen-
dent of whether or not the structure has loss. In Section 2.1,
page 6, the time-dependent fields E(t) and H(t) were required
to be real vectors in space. Therefore the complex Maxwell equa-
tions in BE(w) and f(w) are nothing but the Fourier transforms
of the time-dependent Maxwell equations in E(%t) and H(t), which
meang that ﬁ(w), for example, must, as a function of w, be the
Fourier transform of a real time function. Therefore

("~
E(t) = [ Blwe®® aw . (3.60)
The substitution of -w for w in Eq.(3.80) results in the
relation

E(t) = jﬁ(—w)e"”"‘ dw . (3.61)
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But, from Eq.(3.60),

E*(t) =f:ﬁ*(uu)e"~"”'c , (3.62)

and, since E(t) is entirely real,

E*(t) = E(t) (3.63)
for all values of t. Thus the integrands(or transforms) in
Eqs.(3.61) and (3.62) must be equal, or

E(-w) = B*(w) . (3.64)
A N A \
With E(w) = Ep(w) + JE;, (w), the result (3.64) means that

A N
(a) ER(—w) = ER(w) ’
A
(6)  E,(~w) = -E,(w) ,
or the real part E (w) of B(w) 1s an even function of w, while
the imaginary part ﬁ (w) 18 0dd in w. Similar conclusions can
be drawn about H(w) and the other complex field vectors; these

conclusions are true for all values of (x,y,z) in the system.
If, then, a cylindrical system is under consideration, so

that, for example,

(3.65)

Blx,y,z,0) = E(x,y,w)e-v(w)z , (3.66)

then

(a) E(-w) E(XpY"W)e—Y(-w)z ’

(3.67)
(b) E*(w) = E*(x,y,w)edy*(w)z .

But at z = 0, Eqs.(3.64) and (3.67) require that

E(~w) = E*(w) , (3.68)
and since Eq.(3.64) must be true for all values of z, it follows
[using Eqse.(3.67) and (3.68)] that

v(-w) = v*(w) . (3.69)
In the notation y(w) = a(w) + jp(w), Eq.(3.69) shows that a is
an even function of frequency, while B 1s an odd function of
frequency. Similar conclusions, of course, follow from Eq.(3.68)
wilth respect to the fields E,H,etc., all of which have the
property that their real parts are even functions of w, while
thelr imaginary parts are odd functions thereof.
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That E(w) and H(w) are Fourier transforms of real time
functions must also be true on the wall of the cylindrical
structure. But the boundary conditions are

n xH(w) = Y(w)-E(w) , (3.70)
whence the conjugate of Eq.(3.70) states that

nx H*(w) = ¥*(w) -E¥(w) , (3.71)
and the substitution of -w for w in Eq.(3.70) makes

nxH(-w) = ¥(-w) -E(-w) . (3.72)

If the boundary condition 1s to hold at all frequencies, and for
all orientations of E, use of Eq.(3.68) for both E and H, along
with Eqs.(3.71) and (3.72), shows that
¥(-w) = ¥T*(w) . (3.73)

Then

(a) G(-w) = Glw) ,

(b)  B(-w) = -B(w) .

Under the assumption that the structure is lossless, the
complex Maxwell equations and the boundary conditions may be
written

(a) VxE(w)

(3.74)

v (w) izx'E(w) =JopH(w) |,

(b)  VxH(w) - v(w) 1 x H(w) = JweE(w) , (3.75)

(¢) nxH(w) = B(w) Elw) ,

in which exponential z-dependence has been assumed. A solution
for E and H from Eqs.(3.75a) and (3.75b) is inserted into
Eq.(3.75¢) to determine y(w). Consider that a solution for
(E,H,v) has been found at a frequency w. These quantities obey
Eq.(3.75), along with finiteness, single-valuedness, and con-
tinulty conditions mentioned previously. Recall also that the
boundary condition (3.75c) determines only +y(w), or Yz(w), in
accordance with the discussion of Section 3.2. The change of
variable w —= -w is now made in Eq.(3.75). Use of Eq.(3.74b) in
Eq.(3.75¢c) will then lead to the result:
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(a) VvxE(-w) - v(-w) 1sz(-w) JonH(-w) ©

(b) Vv xH(-w) - v(-w) 1, xH(-w) = -JweE(-w) , (3.78)

(¢) nxH(-w) = JB(-w)-E(-w) = -3B(w) E(~-w) .

Let a new field be defined as follows:
(a) E' =E(-w) |,
(b) H' = -H(-w) , (3.77)
(¢) ' =9(w) .

i

Then the equations and boundary conditlons satisfied by this new
field can be found from Eq.(3.76), and are given by:

(a) VxE!' - v'i x E' = -JwH' ,
(b)  VxH'-y'L xH'= JweE' |, (3.78)

(¢) nxH'=+3B-E' .

In other words, the new primed field satisfies the same con-
tinuity conditions, and the same equations (3.78a) and (3.78b)
ag d1d the original unprimed field. Moreover, the boundary
condition (3.78c) is exactly the same,too. Therefore, the
functional equation which determines 7’2 is exactly the same as
that which determined v° originally, and it follows that

% =42 (3.79)
or, from Eqs.(3.77) and (3.79),
v(-w) = +y(w) . (3.80)

But the result (3.80) can be taken with Eq.(3.69) to prove the

desired theorem, because in combination they state that
v(w) = tv*(w) . (3.81)

"The propagation constant for a lossless cylindrical
structure of the type considered in this paper must
therefore be either pure real, or pure imaginary.

It cannot be complex."

In any particular case, a study of the eigenvalue equation
would normally be required to establish that there were no
complex 7y-roots thereof. Such a study 1s often tedious and
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difficult because of the transcendental functions involved. Once
the theorem of Eq.(3.81) 1s established, however, studies of the
above variety are not necessary.

There will be found in Appendices A and B two examples in
which the conclusion of Eq.(3.81) is verified. They will suggest
a method by means of which this corroboration can be made in
particular problems without making a detalled study of the eigen-
value equation.

Perhaps 1t seems curlous at first that the proof presented
above depends in no way upon the law of conservation of energy
(Poynting's theorem). It is probably natural to believe at first
that energy conservation ought somehow to lie at the base of a
theorem on the character of attenuatlion and phase shift. Yet
further examination shows that consgervation of energy is not a
distingulshing factor between dissipative and non-dissipative
systems; 1t 1s a common factor. More to the point, then, is the
distinction that electric and magnetic energles are irreversibly
transformed into heat when loss 1s present, and not so trans-
formed when loss 1s absent. When heat is generated in the process,
the "orderliness" of the system decreasesg with time. The state
of affairs in the gystem "now" i1s no longer sufficient to deter-
mine what happened previously, although 1ts future degenerations
can be predicted therefrom. When, however, the structure is dis-
sipationless, 1t must be possible to extrapolate from the present
to both the past and the future, the criterion for these extra-
polations being a reversal of the time coordinate. In the deri-
vation of Eqs.(3.81) 1t was, in fact, necessary to consider the
transformation w = -w, which 1g the same as a time reversal when
the time dependence is harmonic. The invarlance of the lossless
Maxwell equatlons and boundary conditions under a reversal of
the time or frequency coordinates then forms the real basis for
the distinction between structures with and without loss.

IV. PHYSICAL CHARACTERISTICS OF THE MODES

Further important properties of the 1ndividual exponential
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modes can now be investigated by means of the Poynting and energy
theorems (1b).

Some correlations between ¥ and the longitudinal vower flow
will first be examined (Section 4.1) by applying Poynting's
theorem to the given structure at a single frequency. These
correlations differ somewhat from those discussed in Section 3.5
(Eqe.(3.58) and (3.59)], which were pertinent only to homogeneous
problems.

A brief study of the frequency behavior of ¥(w) will next
be undertaken (Section 4.2), mainly as a preliminary to the en-
suing discussion of the behavior of the parameter p2, and the
physical significance of the space and frequency dependence there-
of (Section 4.3).

Finally, some remarks will be made relative to the polariza-
tion of the transverse flelds, leading to a short statement of
the resultant difficulties encountered in trying to extend circuit
concepts such as voltage, current, or impedance into the inhomo-
geneous wavegulde problems (Section 4.47).

The major portion of these four sections will, however, be
limited to conslderation of lossless systems.

4,1 Mode Properties at a Single Fregquency

The Poynting theorem, including loss, may be expressed in

the form

Ve(BExf*) = gu(ersf.fr - uftBe) (4.1)
For a single exponential mode, with ¥ = a + JB, the above equa-
tion becomes

Ve (E x H*) -chiz-(ETx H"T“) = Jw(e'™EE*-H-H*) . (4.2)
An integration over the cross section A, and an aprlication of
the boundary conditions, yields

- VK T - . *
fLE T*.E*q2 20.]1;12 (EpxHE)dor

= ij‘;(e'*EoE* -pH-H*)do , (4.3)

which can be split into real and lmaginary parts, in accordance
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with the definitions ¥ = G + JB and jwe'! = o+ Jwe, as follows:
(a) ZafRe 1z-(ETx H;)da

A
= [6E°E*da —/E-E'E*dl =0 ,
A L

(v) ZQAIm 1, (Epx BE)dor

=w (pH'H*-cE°E*)d6+/E-'§'E*d£ .
A L

(4.4)

The element of area in Eq.(4.4a) has been written as da instead
of do to avoid confusion with the conductivity o appearing ex-
plicity therein. It was previously stated in connection with
Eqe.(2.35) and (2.36) that E-G°E* 1s always negative, whence
Eq.(4.4a) gives the assurance that, when any loss is present, «
and the total time-average longitudinal power flow

. %
3 ARe 1, (Epx HY)do

have the same algebraic sign. In fact, 2a is merely the total
real power loss per meter (in both the volume and the wall of the
gulde) per unit of total longitudinal real power flow through

the cross section,

Equation (4.4b) shows explicity that a positive value of
E-B-E* on the wall is equivalent to additional magnetic stored
energy within the volume, and further substantiates the statement
to thet effect made earlier (page 19).

Attention will now be directed to the case of a dissipation-
less structure, for which o= 0 and G = 0. Equation (4.4a)
therefore requires that

. * =
Za/ARe 1, +(EpxHE)do = 0 . (4.5)
This leaves two possibilities: either

(a) a=0 |,
or
(p) a«#0, but fRe i °(ETXH*T")d0'= o .
A z

(4.6)
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The first cholce (4.6a) should correspond to a propagating

wave, with v = JB. Under such conditions (4.4b) requires that
a=0—>
wf(u.H-H* — ¢E*E*)do + [E-B-E*dl =0 . (4.7)
A L

The total time-average magnetic and electric stored energies per
unit length (including that stored in the wall) must be equal for
a purely propagating wave on a lossless structure. Reference to
Eq.(3.55) will show that if two purely propagating modes (a1=a2=0)
are present simultaneously, the same remains true. It 1s possible
to say, therefore, that:

"No matter how many purely propagating modes are

present at once, the total time-average electric

and magnetlc stored energles per unit length of

lossless guide must be equal, provided that the

wall is included in the calculation.®
The second choice in Eq.(4.8) corresponds to a # O, with a corres-
ponding damping of the mode. Observe, however, that Poynting's
show that there 1s no total time-average power flow down the
guide,

Under these conditions, the wave is below cutoff, for it has
been shown already in Section 3.5 that p = O when a # O.  Equa-
tion (4.4b) now gives a convenlent interpretation to @, viz: a is
Just the time-average difference between magnetic and electric
stored energles per unit length of gulde and wall, per unit
total reactive power flow along the guide.

A word of caution igs 1n order here, lest it be assumed that

Re [1z° (Eqp x H?f)]

must be zero at each point of the cross sectlion, merely because
the wave 1s below cutoff. It 1s true that the integrated value
must vanish, according to Eq.(4.6b). It 1s also true that when
elther TE or TM modes exist alone, the longitudinal component

of Sz also becomes imaginary at every point of the cross section
for a wave below cutoff (Eq.(3.59) ff.). But when the problem
is inhomogeneous, TE and TM modes are generally mixed, and it
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will be shown below that the extrapolation from the properties
of the total power flow to the power flow at a polnt may no
longer be possible.

In these more general circumstances, the longitudinal
component of the Poynting vector may be calculated from Eq.(2.15),
to yleld

=1 o i+
2Sz = 1z (ETXHT)

S . P *)43c2
= 4[I*Y| 1, (VpE XVpH¥ )41 ¢ (VoE¥xVpH, )

||
+quY*"vTHz”2—JwCY“VTEZHZ] ’ (4.8)
The real part becomes

2Re 8, = -I-l-,—z[([-y|2+k2) Re 1, (VE,xVpHY)
D

v (o ogtt| el e | )] . (a.0)
which for a wave below cutoff reduces to
a#0 Re [1, * (VpE, X Vpi})]
p=0 (o +k2)

} —> Re Sz = . (4.10)

It 1s shown later (Section 4.4) that it is always poggible to
choose E, and H, 90° out of phase below cutoff; if such a choice
is elected, then the Re Sz will vanish everywhere, along with
its integrated value. But 1t 1s also shown that in many sym-
metrical problems such cholce is not necessary. Therefore
Eqs.(4.6) and (4.10) show that unless Re 8, 1s ldentically zero
for frequencles below cutoff, i1t must necessarlily be positive
over some portions of the cross section and negative over others;
otherwise the integrated power could not vanish. In Appendix C
appears a very simple example of a mixed TE-TM mode i1llustrating
this behavior below cutoff. A somewhat more satisfactory example
is furnished also by Appendix A. A more thorough understanding
of these matters wlll be galned only after the completion of
Section 4.4.
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With reference to Appendix C again, a second peculiarity
becomes evlident. It will be observed in the example that when
the TE - TM mode 1s agbove cutoff, the Re Sz may still be negative
over some portions of the c¢ross sectlon and positive over others.

There 1s no general restriction on the integrated real power flow
above cutoff, however, since it 1s expected that then there will
be a total power flow in one direction or the other along the
guide.

A return to Eq.(4.9) will show that the phenomenon in ques-
tion 1is not too surprising. For a wave above cutoff, the latter
equation becomes

a=0
67‘0} _
2Re S, = -l—;—lz[(sz-i-kz) Re 1, +(VgE, XV, HE)
v (uogh )P <[7g5,|%)] - (ean)

Equation (4.11) shows that when >0, for example, Re S, will
become negative at any point where

. *
Re iz (VTsz VTHZ)

becomes negative, and where the firgt term exceeds the second
term in magnitude. The example in Appendix C shows that this
sltuation may indeed occur, in spite of the fact that Eq.(4.1l1)
might appear at first glance to be restricted in sign by a
special form of the Schwartz inequality. Equation (4.11), how-
ever, 1s not quite in the form of the inequality in questlon,
because the latter springs from the fact that

(Wan Vgl _we 1 xVoE, ) (Vanvgtwoe 1,x7gE%) * 0 .(4.12)

When expanded, and then multiplied through by p>0, Eq.(4.12)
becomes

2pkRe 1+ ( Vg, xVnk* )+ (i [Vgl | Z+e |78, |°) > 0 . (4.13)
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e The realization that

.. (g-k)2 = (g%+ k%) - 28k 2 0 (4.14)

will show that Re S, < O in Eq.(4.11) does not in any way con-
tradiect the general inequality (4.13).

It 1s a consequence of the essentially vector
character of the TE-TM modes on inhomogeneous
losslegs structures that the correlation between
the direction of active power flow at a point

and the algebraic sign of B 1s no longer necess-
arily unilque. Moreover, there may be active power
flow in both directions at various points in the
cross section,even when a mode is below cutofr.®

Other connections between the character of ¥ and the flow of
vector power down the guide may be obtained from the relation
between any given wave and its corresponding "reflected" wave,
defined in Eq.(3.9). Let the given wave be described by Eé+),
Hé+), v{*)= &, with >0 so that 1t travels to the right (+z).

For the moment, assume ¥ 1s complex, even though the structure
1s lossless. Under the boundary conditions (2.37), the field

(3.9) with
IS O
)
LD R 2

is algo a solution to the gulde problem. Hence the sum

ﬁT = Eé,-i-) (e-ﬁ(z - B.Yz) ’

A, = Hé+) (6% 4 &17) (4.15)
is a solution, too. In fact, this particular combination is
appropriate to the solution of a problem involving the cylin-
drical structure with a perfectly conducting metal wall across
the guide at z = O, The fileld may be consgidered as existing
only for z £ 0, so that the wave traveling to the right becomes
the "incident" wave, while that traveling to the left becomes
the "reflected" wave.

An application of the general Poynting theorem to the
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lossless, source-free, volume enclosed by the shorting plane at

z = 0, the guide wall at z«O0, and any cross section A for z< O,

wlll show that
A A*)
/Aae 1, (EpxHzldor=0 , (4.186)
provided the wall is lossless (¥ = JB). Now from Eq.(4.15)
A A
. *
1, (Epx BY)

= 4. (Eé-ﬂx Hr§3+)*) (e™Y2-6¥2) (™Y 246Y"2)

-2 iz°(Eé+)x (+)*) (sinh 20z + J sin 2Bz) . (4.17)

Thersfore

o

lRe i, (ET xH:f)dc'

sin 2pz /AIm 12.(E.](,+)x H,§+)*)dcr

I

- sinh 2az Jéﬁe izo(Eé+)x (+)*)dc’ =0 , (4.18)

and Eq.(4.18) must hold for all values of z < O,

The only new conclusion resulting from Eq.(4. 18) 1s that in
a purely propagating wave (a = O, B # O) there is no integrated
reactive power flow in the longitudinal direction, or

ﬁ#O}—* [AImi (E xH*)do- o . (4.19)

The superscript (+) has been dropped in Eq.(4.19) because the
expression now refers to only a single wave.

Thus Eq.(4.19) essentially completes the information given
previously in Eq.(4.6). Taken together, they show that:

0n a lossless inhomogeneous guide, a mode below
cutoff (o # 0,p = 0) carries no total active power,
while a mode above cutoff (o = 0,p # 0) carries

no total reactive power.*

At least in this respect, the lossless homogeneous and in-
homogeneous structure have sgimilar behavior.
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4.2 Frequency Behavior of the Propagation Constant
A study of mode behavior as a function of frequency will

lead to further understanding of their properties. The energy
theorem (1b) forme a convenient bagis for such a study, and
when applied to lossless structures, without sources, 1t may
be written

af B A A A ~ A
v~(ﬁ*x-é-g- + E i) = -g(cBeBr + pl.8%) (4.20)
and if v = o + JB, then

aH oF d3H , 3E

* A% — *,, S 4 3 20z
Exa awa—(Exaw axH)e

- %}, (E*x H + Ex H*) ze 2%% | (4.21)

Now 3
3H . 3E , . pw) ,-20z
[(E* aw ‘Sw XH*) e ]
. * BH BE %
[V (E*x 55 + 5p XH*)
aHT _
-2a1 - (E} x 3= aw xHT)] o 202 , (4.22)
and
v [(E*x H + EXxH¥*) ze‘z“z]
=2V {Re [(E x B¥*) ] ze-zaz}

i

2 Re {ze‘zaz [V'(E XH*) -2aiz-(ETxH*T*)]

+ e-zaziz°(ET X H¥) } . (4.23)

But from the real part of the complex Poynting theorem, Eq.(4.2),
the first term on the right side of Eq.(4.23) reduces to zero.

Therefore a substitution of Eq.(4.22) and the modified
Eq.(4.23) into Eq.(4.21), makes the energy theorem assume the
new form
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Fe) oE
(ko B, 3E I |
Ve (E*x 55 + 55 XH*) -2a1 - (Efx 5= + 5==x Hy)

-z-gﬂwﬁ Re [1,+(Epx H¥) ] = -J(eE-E* + uH-E*) (4.24)

In anticipation of an integration of Eq.(4.24) over the cross
section of the gulde, some additional relations should be derived
from the boundary conditions (2.37). Since

Lxn=-yE £+ 23;’; ‘E) , (4.25)

and since B is a symmetric dyadic, therefore
oH
o (¥ y B) - p¥,
(a) ne+(E*x aw) E ( xn)

3E

= -y(e*B. &+ g —g-g E) (4.26)

il

() ne(GExm*) = £E -(m*xn) = 5r. F - .

On the boundary wall, then, addition of Eqs.(4.26a) and (4.26b)

shows that the relation

(% OH 4 3E  px . B o
ne(E x50 axH)—~ -JE. 5= B (4.27)

is valid, with the consequence that the contemplated cross-
gsectional integration of Eq.(4.24) leads to the formula

3
j/L -Q-B- -E*3e + 2a[A *(EX % aiT xH*T*)do-

+ 2-% ARe 1z~(ETxH§)do‘= jl(eE-E*+ pH-H*)do . (4.28)

At any frequency for which the mode propagates, @ = O and
4 = . In such event, the imaginary part of Eq.(4.28) states

that
3
2—§a /ARe 1, (Eq x HY)dor

- /(»eE'E*+ s - [5 & mrar (4.29)
A L
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With the stipulation from Eq.(2.39) that

E- %% E* £ 0 (4.30)

2

1t may be concluded from Eq.(4.29) that:

"(3p/3w) and the integrated time-average longitudinal

power flow have the same algebralc sign®.

In fact, the equation shows that the group velocity (8p/dw) T
1s also the velocity of energy propagation, since it is merely
the real power flow divided by the time-average total energy
sfored per unit length of guide,

While this correlation between the sign of (d8/dw) and that
of the integrated power flow holds equally well for both homo-
geneous and inhomogeneous lossless structures, 1t is to be
obgerved that in the latter there has not been given any unique
connection between the sign of B and that of the integrated
power flow., It 1s entirely possible for the group velocity
and the integrated power flow to be negative when B 1s positive.
The investigation of the elgenvalue equation in Appendix A,
under the condition that the wall admlttances were independent
of frequency, led , in fact, to some slow modes for which B
and (3B/dw) had opposite signs. While this elgenvalue study has
not been 1lncluded in Appendix A for reasons mentloned previously
(page 15), it might eventually turn out that a proper cholce of
reactive wall[éccording to Eq.(2.4o)] would nevertheless lead
to thls same integrated-power reversal. Since the problem in
question concerns a guide with a reactlve wall, it 1g possible
that this power-reversal phenomenon 18 really only a speclal case
of the previougly considered correlation difficultiesg between g
and the power flow at a_point (or small reglon); in a sense,
the gulde cross section inside a reactive wall is only a part of
the entire "gystem cross section®. The wall has, in other words,
merely replaced and obscured the details of what happens "out-
side", and may very well be imagined to conceal an *external®
reglon in which the total power flow 1s oppositely directed.

It will be apprecliated later in this section, on the other
hand, that f and (9f/3w) will always have the game sign if the
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bounding wall is opague, even though the internal medium may
not be uniform in the cross section. Then the integrated power
flow and the algebraic sign of B will be correlated in the
conventional way.

It is profitable to continue the investigation of mode
properties by examining them :

a) at cutoff,

b) at high frequencies.
Firgt let 1t be supposed that a cutoff exists, where v = O and
w = w, > 0. The interpretation of the resulting picture will
then suggest conditlons under which no true cutoff should be

expected.
At such a cutoff, therefore, equations (2.25) become
(a) V% Ez + kz Ez = EEE ) VTEz ’
(4.31)
) B H +xH =-L . yx
T 'z Z € Tz °

The significant fact about Eqs.(4.31) is the absence of E,- H
cross terms. So far as the internal medlum 1is concerned, the
TE and TM waves which normally form a single mode are now com-
pletely independent.

According to Eqs.(3.2), with ¥ = O, the transverse fields
are glven by

(E‘i‘g‘o) B = o0
5 = - st xvgE, (4.32)
H #0

(Hf‘MEo) gt = o
Hél) _ 3;@_ 1 x VB, . (4.33)
E, #0

The boundary conditions (2.37) may therefore also be satisfied
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now by TE or TM waves alone. The entire problem of the guilde
reduces to one in only two dimensions. There is no z-dependence
for any field component, and no total vector power flowing along
the guide. The TE and TM modes in Eqs.(4.32) and (4.33) [now
completely independent solutions to the prdblem] are really P#TEM®
waves with respect to some axis in the (x,y) plane, the directlon
of this axls depending upon the particular point in question.
The fact is that the TE wave has only transverse E and longltudl-
nal H, while the TM wave has only transverse H and longitudinal
E. The mechanism of cutoff is seen to be somewhat similar to
the familiar picture in simpler cases: namely, that "TEM" waves,
or "fans" of plane waves, are spreading out in the transversse
plane, but now are refracted by the variations in ¢ and p as well
as belng reflected from the enclosing wall. Both polarizations
of the "plane® waves are available, but which one 1s actually
present at cutoff will depend upon the particular mode in ques-
tion.,. It should be mentioned that any mode which is mixed
TE-TM at other frequencies degenerates to either the form (4.32)
or (4.33) at cutoff. It is commonly found, in fact, that the
TE-TM modes can be split into two groups, which might be called
"primary TE® and "primary TM®. The former assume the character
of Eq.(4.32) at cutoff, while the latter degenerate into form
(4.33). Appendices A and C will illustrate these matters, and
Section 4.4 contains further discussion on the subject.

It is important to note that this cutoff (y = O) concept
of "eylindrical standing waves" in the (x,y) plane 1s reason-
able only if the boundary is lossless, for, otherwlse, power
would leave the bounding surface, and a source 1ln the transgverse
plane would be required by Poynting's theorem to supply this
two-dimensional outward power flow.

If elther the wall admittance or the internal medium 1is
dissipative, it is to be expected that ¥ will remain complex
over the whole range of frequencies. It will not become zero
(except possibly at w = 0), since the gource-free problem evi-
dently cannot become two-dimensional (y = O) when any losses are
present.
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The open boundary structure, (Part V), even though dissipa-
tionless, will be found to suffer from a similar difficulty, be-
cauge power can leave the guide system through the walls. It
will not be surprising then to find that the concept of cutoff,
ags outlined above, gimply breaks down for free modes on even a
lossless open-boundary structure.

So far as the reactive-wall case 1is concerned, the pheno-
menon of cutoff is certalnly understandable, Therefore, as
mentioned in Section 2.3, the apparent dlssappearance of some of
the modes on a reactive-wall structure at, or below, cutoff
would present an unusual situation. It is definitely necessary
to determine whether such a phenomenon will take place when
the wall admittances satisfy Eq.(2.40), and it is hoped that
the results can be presented elsewhere shortly.

In any case, whenever a propagating mode approaches cutoff,
there will still be fields in the guilde [solutions to Eqs.(4.32),
(4.33) and (4.31)]. The right side of Eq.(4.29) therefore re-
mains finite, while the longitudinal power flow becomes zero.
Hence (df/%w) must increase without limit. At cutoff, the phase
velocity becomes oo (B — 0), while the group velocity (dw/38)
becomes zero. The cutoff frequency is therefore a branch point
of y(w), and incidently of the fields (E,H). Further discussion
of the behavior of E and H in the neighborhood of cutoff is con-
tained in Section 4.4.

At higher frequencies, above cutoff, the plcture of mode
behavior becomes qulite different. It is to be kept clearly in
mind now that at any frequency w, k = wwep is a function of
position in the gulde cross section. The values of (eun) range
from a minimum (eu)min to a maximum (eu)max. In general, there
will be certaln areas of the cross section in the viclnity of
which k &~ kma.x’ and others where k =~ kmin’ Remalning portions
of the cross section can be considered as transition regions.
This concept becomes most striking when either kmax or kmin’
or both, occur within the boundary; because if k is any reason-
able function of the transverse coordlnates, VTk = 0 at the
maxima and minima thereof.
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It will be useful now to consider more precisely the effects
of these inhomogeneities in the dielectric constant and permea-
bility. To this end, a theorem analogous to the energy theorem
(4.20) can be derived (1b), which pertains to the effect of
changing ¢ or p in a small neighborhood (Ab) of a point (xo,yo)
in the cross section. Of course the fields on the structure
satisfy the Maxwell equations:

(a) VxE =-jud ,

(b) 9VxH = jweE .

The form of the boundary conditions and the functlons [e(x,y) ’
n(x,y)] are regarded as given. Consider that a small change
(850) is made iIn the dlelectric constant ¢ o in the elementary
nelghborhood A,. The fields E and H wlll change somewhat at all
points of the cross section, but it is advisable to treat the
region Ao separately. In the neighborhood Ao, Eq.(4.34) can be
differentiated with respect to ¢  as follows:

(4.34)

0
58 o8
— = - o]
(a)  Vx Fe, = TIwo Fe, o
A A (4-35)
SHO SE N
(b) ng-e—; = Jwe, 8¢, *OJwE, .

By appropriate dot multiplications between Eqs.(4.34) and (4.35)
it is not hard to prove the relation

sH_ oF A
. 2 —-3 —2 a = - . +*
v (E:x Seo + Se, XH:) JuE, E:o * (¢.38)

A similar éxpression results for points outside the region Ao,
except that the second term of the right-hand side of Eq.(4.35b)
1s absent (since ¢ at such points is not a function of co). The
result, in place of Eq.(4.36), will therefore be

v-(ﬁ*x%%-; + -§—E—° x #*) = 0. (4.37)

By steps similar to those in Eqs.(4.20) through (4.28), but
employing differentiations with respect to €5 rather than w,
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Eqs.(4.36) and (4.37) can be put in a form analogous to Eq.(4.28),
namely

§Hy OE
*» T T
Q“L 2 (Epx 5e, * Te, XHp)do

+2 -—'Y—SC /ARe 1,+(Eqx BY)do = Jw£ EyEp do . (4.38)
"0
(o]

The absence of the boundary term in Eq.(4.38) 1s explained by
the fact that B 1s not a function of €,» whereas in Eq.(4.28) 1t
is a function of w.

When the mode 1s above cutoff and g>»0, the imaginary part
of Eq.(4.38) becomes

L J
58 w/E E¥* 4o
6 R E )d.
€ 2 7 e iz-( TXHT* o

An entirely similar result followe for changes in n, except
that H  replaces E  in the numerator of Eq.(4.39).

In order to separate the effects of the boundary from those
of the internal medium, assume in connection with Eq.(4.39) that
the initial structure was completely homogeneous (including the
requirement that the wall be opaque). Let k = w/ep be called
k , for reasons which will appear shortly. Then the general

max
behavior of B(w) is familiar, and is shown in Figure 4.1 below.

(4.39)

! kuax @ V€1

B,k
Blw)

|
|

0] wc w

Fig. 4.1. B vs, w for a
lossless homogeneous structure.

-82-



At frequencies w > Wos B <:kmax; but B(w) becomes asymptotic

to the line k _ = w (eu.)max at very high frequencies. The total
real power flow has the same algebraic sign as B,because Figure
4.1 shows that B and (3B/dw) are both positive.

Now let a small deorease in either ¢ or p (or both) take
place in accordance with the assumptions used in deriving Eq.
(4.39). The resulting plot of B(w) will look very much like
that in Figure 4.1, except that B will be decreased everywhere
by an amount which depends upon frequency. Under these circum-
stances, kmax in the figure becomes simply the largest value of
k in the cross section.

Similarly, suppose that the original guide was filled
uniformly with a medium for which ¢ and y were constants, but
such that wyep = kpgn< kmax' Then the behavior of B(w) would
again be similar to that shown in Figure 4.1, except that
kmin‘< kmax would be the asymptote thereof.

If now a slight increase 1s made 1in ¢,p,or both, B will
everywhere be increagsed. The new plot of § vs, w will be as
shown in Figure 4.2 below, where kmin now refers to the minimum
value of k in the cross section,

|
B Blw)

KMiN

'
)

(o) wc W

Fig. 4.2. B vg. w for a per-
turbed lossless homogeneous system.

Finally,. in the general case, with kmin and kmax regpectively
the minimum and maximum values of k in the cross section, it 1s
to be expected that B(w) will take a form similar to the i1llus-
tratlon in Figure 4.3:
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Fig. 4.3 B(w) for a lossless
inhomogeneous structure with opaque walls.

Justification for this figure stems from the fact that the actual
distribution of k in the cross section may be considered as ob-
tained by either starting from a uniform medium with k = kmax’

and successively decreaging k by small amounts where necessary,
or, alternately, by starting with k = kmin’ and succesgslvely
increasing k where necessary. Moreover, while this continuous
"warping® process goes on, Eq.(4.39) shows that the slgn relation-
ship between B and (38/dw) cannot change. Thus the statement
made previously, relative to the sign relations between B and

the integrated power flow, is definitely true, viz.:

"The integrated real power flow down the guide has
the same algebralc sign as $, provided the lossless
inhomogeneous structure is specialized by the re-
quirement that it must have opaque walls."

4,3 Freguency Behavior of the Trangverge Field Digtribution

The preceding section sets the stage for a more detailed
study of the field distribution. The factor which is primarily
responsible for the frequency dependence of this distribution
is the parameter p. Now p2 = —Tz-kz 1s surely negative when
W= w,3 and 1t is negative at all points of the cross section
because ¥ is real (or zero). The significant fact illustrated
by Figure 4.2 ig that when the frequency is sufficiently far
above cutoff, p2 eventually becomes positive in at least some
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regions of the cross section. At any such high frequency, Fig-
ure 4.3 shows that p° will, loogely, be pogitive where k is "small®
and negative where k is "large".

A somewhat more satisfactory understanding of the meaning
of these sign changes in pz will follow from a review of the
Maxwell equations in the limiting instance w —»o0, It is not
difficult to eliminate ﬁ from the Maxwell equations (4.34), in
order to obtaln the equation

-E = ¥°F + %x(\?xﬁ) + v(-Z—f- - ) , (4.40)

valid for the rectangular components of ﬁ. At very high fre-
quencies, the senslitive term Vzﬁ is most strongly affected by
kzﬁ =.w2€uﬁ, since all the other terms on the right have coeffi-
ciente which are independent of frequency. If A = (2m/k), the
above reasoning may be restated to point out that when A |Wu/u|
and A|Ve/e| everywhere become <<1, the percentage changes in 4i-
electric properties (per wavelength) are small enough that the
governing equations differ only slightly from those in a homo-
geneous medium; except that the average value of k2 must still
be considered to change from region to region of the cross section.
Therefore, as w —»o0, Eq.(4.40) becomes

PR+ 8 =0 , (4.41)

in whioch k2 18 atill a function of the transverse coordinates.

As applied to the z-component of an exponentlal wave, Eq.
(4.41) may be written

vgmz - p‘?‘EZ =0 (w =00 ) . (4.42)
By similar reasoning
VZHZ - szZ =0 (w —=00) . (4.43)

At very high frequencies, therefore, the TE-TM coupling due to a

gmooth distribution of € and p becomes negligible. It should be

recalled that,since the present considerations are still limlted

to a guide with opaque walls, the problem has actually split into
a TE and a TM problem. The effect of non-opaque walls willl be
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briefly treated at the end of this section.
Now Eqe.(4.42) and (4.43) are in the form

%o = p% (4.44)
in which pz is a real function of position (x,y). Therefore
9(x,y) may be taken as real also. Interpretation of the meaning
of the algebraic sign of p2 will be clearer when Eq.(4.44) is
altered somewhat:

v-(vp) = pp . (4.45)
Let Eq.(4.45) be integrated over a very small circular area "A"
centered about a given point (xb,yo), at which point ¢ has the
value Pye Reference to Figure 4.4 will explain the notation in
greater detall.

yl
COI\CI:TOUR *-RADIAL COORDINATE p
] .
RADIUS 8,
P(Xo 1] yc)

Fig. 4.4. Definition of the
area "A" for interpretation of Eq.(4.45).

From Eq.(4.45)
[V'(ch)dc'=/p2cp o . (4.46)
A A

By Gauss'! theorem then,
an s 2.2
S‘ [(‘a%)eﬁp:lds = n(8p)"poo, (4.47)
0

in which the subseript 6 on (d¢/3p) indicates that this is a
directional derivative, and therefore varies with o.

Let @c(e) denote the values of ¢ on the contour C. Since
8p 1s infinitesimal, a Taylor expansion of ¢ gives for the
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integrand of Eq.(4.47)

=L} = -

(350089 = ®(8) - @ . (4.48)
A substitution of Eq.(4.48) into Eq.(4.47) accomplishes the re-
quired transformation:

2n
[%?r' So cpc(e) de]- 9, = % epopi(Sp)z . (4.49)

Eq.(4.49) makes it clear that the Laplacian of ¢ at a certain
point represents the difference between the average values of @
in the neighborhood of the point in question, and the value of ¢
at that point. As a result, in regions of space where p2 is neg-
ative, or v2¢ and ¢ have opposite signs, the general trend 1s to
meke || at neighboring points less than || at a given point.
In other words, a negative value of p~ in a regien of the eross
section aauses ¢ to oscillate up and down, assuming alternately
positive and negative values. It has been observed (Figure 4.3)
that p2 is negative in regions where k is "large® (near kmax)‘
Hence the function ¢ (= E, or Hz) has oscillatory behavior in
these regions of the cross section at high frequencles.

In other regions of the cross section where k is "small®
(near kmin)’ Figure 4.3 shows that pz becomes large and positive
at sufficlently high frequencies. Then in accordance wlth Eq.
(4,49) the average of the neighboring values of |¢| tends to be
)|¢| at a given point, and @ has monotonlec behavior over such re-
gions of the cross section., Finally, where p2== O (somewhere in
the "transition" regions of the cross gsection) it is necessary
that Vo (= VE, or VH ) &0, as well as vPp ~ 0. This restriction
on V¢ comes from Eqs.(2.15), with the stipulation that the trans-
vergse flelds ET and HT remain finite at gll points of the cross
gection (and for all finite frequencies). These transition re-
glons, then, must form the parts of the cross sectlon where ¢
has essentially %"flat® behavior, connecting those reglons where
1t is monotonic with those in which it becomes oscillatory.

It is a familiar fact that a plane wave which attempts to
pass through a discontinuity, from a lossless medium of uniformly

...67-.



high k into one of uniformly lower k, willl suffer total reflec-
tion when the angle of incldence is suffilclently far from the
normal. On the high-k silde of the discontinulty, the reflected
and incident waves will set up osclllatory standing waves in
planes normal to the boundary, while on the low-k side there
will be a monotonic decrease of all field components in similar
planes.

The behavior of the waveguide with opaque walls at high
frequencies can now be seen to present a very similar plcture.

In the transverse plane, the waves become "trapped® in regions of
high k, and fall off monotonically in other parts of the cross
section. To be sure, the trapping is not quite a result of crit-
ical reflection, but rather of an excessive refraction where k
varies rapidly with position. If the transition reglons between
. those of highest and lowest k are squeezed down to almost lines
of discontinuity, the trapping phenomenae become more pronounced;
but in any case, the flelds are always crowded into the reglons
of highest k when the frequency becomes sufflclently high. As

a consequence, the curve of B(w) in Figure 4.3 actually still
becomes asymptotic to kmax as w —»o0 , for more and more of the
field becomes crowded into corresponding regions of the guide,
and the propagation constant km eventually controls virtually
all of the field.

The foregoing reasoning leads to the surprising result that,
at sufficiently high frequencles,a very small rod of high dielec~
tric constant inserted into an otherwise homogeneous air-filled
guide structure will eventually "suck in®" most of the filelds in
any particular mode; the phase and group velocities for the whole
gstructure will first approach those for the rod itself, acting
in a corresponding mode in free space, and eventually will ap-
proach the values for plane waves in the rod medium. Further
discussion of rod behavior will follow in Section V, and is
illustrated in Appendix D.

The overall change in p2 as a function of frequency can
now be summarized in terms of the standing-wave pattern in the
transverse plane. When the frequency 1s at or below cutoff,

axX
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p2 is negative everywhere in the cross section; the osclllatory
standing waves extend from boundary point to boundary point. As
the frequency 1s ralsed above cutoff, the standing waves become
more and more crowded into limited regions of the cross section
where k 1g largest and where p2 remaing negative. The other por-
tiong of the eross gection, in which p2 becomes positive, are
filled with monotonic fields connecting the high-k regions with
the boundary. The reglons of negative pz gradually contract,
from the whole cross section at low frequencies, to only the
high-k regions at high frequencies.

The effect of a reactive wall can now be made a little clear-
er. For simplicity, suppose the internal medium is homogeneous.
Then Eqs.{4.42) and (4.43) are precisely applicable inside the
guide at all frequencies. The influence of the wall is mos?t
gtrongly apparent for the slow modes, which occur when

p® = g%- x> o.

Since such modes do not exist at all on homogeneous structures,
1t is most reasonable to look for special effects of the wall in
these modes. Since pzis, under these circumstances, pogitive
everywhere inside the gulde, the considerations following Eq.
(4.49) show that the fields are concentrated near the boundary
of the guide rather than inside 1t. 8Such a conclusion lmplies
that the fields are trapped "outgide" the boundary, in a loose
manner of speaking, and further substantlates the suggestion
made on page 57 to explain why a negative group veloclty might
concelvably occur in some reactive-wall structures, particularly
for the slow modes.

When the mode propagates more rapidly (p <k), p2 is nega-
tive inside the structure, and 1t 1s agaln reasonable to suppose
that most of the field is now concentrated there rather than %in"
the wall., It would not be anticipated, therefore, that the wall
admittance should exercise a major influence on the propagation
congtant when p2 is negative.

Since p2 is also negative below cutoff, 1t is hard to under—-
stand why the reactive wall should exercise so profound an effect
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on the fields as, for example, to cause the modes to "break off¥.
This question must, unfortunately, be left unanswered for the

present.

4.4, Polarization of the Fields

It must be pointed out immediately that the questions of
polarization to be dlscussed in this sectlon are reasonably clear-
cut only in the lossless problemg. Attention should therefore
be focused on Eq.(2.25),(2.15) and (2.37), with the recognition
that ¢! = ¢ is pure real.

If the mode under consideration is propagating (y = jB),
then all the coefficients in Egs.(2.25) are entirely real. It
will therefore always be possible to choose solutions for Ez and
HZ which are entirely real functlons. Then, if desired, both Ez
and HZ can be multiplied by the same complex constant K = a + jb;
for,the real and imaginary parts of K Ez and K Hz will each still
satisfy Eqs.(2.25). For the moment, consider the entirely real
golutions (Ez’Hz)’ in connection with Eqs.(2.15). It appears
from the latter equations that ET and HT are pure imgginary, since
they each become Just J times a real vector function. As such,
the proper phase relations will exist between (H?'Ez) and (Hz’E7)
for satisfying the boundary conditions (2.30) in the form (2.37).
These boundary conditions then become merely magnitude restric-
tions on the fleld components, the phases of which are already
properly fixed by Eqs.(2.25) and (2.15).

If the complex solutions (K EZ,K Hz) are chosen instead,
then ET and HT become multipllied by the same complex constant K.
Each becomes a real function multiplled by a complex constant JK,
and as such 1s stlll capable of satisfying the boundary conditions,
with K Ez and K Hz for the z-components.

Now it must be recalled that a complex vector whose real
and imaginary parts differ only by a multiplicative real constant,
represents a linearly polarized vector in the time domain. Since
Em and HT’ under the two conditions outlined above, are Just two
real vectors multiplied by the same complex constants (J or JK),
they satisfy the required conditions for the representation of
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linearly polarized vectors in the time domain.

When the mode is below cutoff (y = &), the situation is
slightly different. Reference to Eqs.(2.25) shows that if a
new function H; = -JHZ 1s substituted therein, all the coeffi-
clents agaln become real. In other words, below cutoff, a poss-
ible solutlion is that Ez shall be real, while Hz is pure imagi-
nary. But it is not to be concluded that this is the only
possibllity, because the substitution Eé = -JEZ also accomplishes
the reduction of the coefficients in Eqgs.(2.25) to pure real
functions.

Therefore, below cutoff, 1t may occur that either E, 1s real
and Hz imaginary, or Ez is imaginary and Hz 1s real. In either
cagse, 1t 1s not hard to show, by reasoning similar to the above,
that ET and HT are linearly polarized, although now they are out
of time phase by 90°, Similarly also, the boundary conditions
can be met as before, and the multiplication of E, and H, by
a complex constant K does not alter the picture materially.

It follows that:

"In a lossless problem, 1t is always possible to
choose modes in such a way that the transverse
fields willl be linearly polarized over the entire
frequency range."

The significance of the two possible cholces for the flelds
(Ez’Hz) below cutoff can be further elucidated; reference to
Eqs.(4.31) through (4.33), and the discussion included therewith,
will aid materially in the following presentation.

The reasoning upon which the real and/or imaginary char-
acter of (E,,H,) Was based hinged upon the naturs of the cross
terms in Eqs.(2.25). Above cutoff, E, and H, could always be
chosen as pure real, regardless of the mode i,e., regardless of
B(w) . Suppose such a choice has been made for a particular
ﬁv(w), defining a particular mede v. As the frequency is de-
creased through cutoff, Bv(w) passes into av(w); but exactly at
cutoff, Eqs. (4.31) through (4.33) show that TE or TM character
alone 1s sufficlent to describe the fields, and there 1s appar-
ently no way to decide, from those equatlons, which would result.
Now, in addition, it has been shown that below cutoff there are
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two possibilities (if any exponential field exists at all):

a) E,remains real, H, becomes imaginary;
or

b) E, becomes lmaginary, H, remains real.

Surely only one transitlon 1s possible for a single (continuous)
mode with a specified 7v(w). Since apparently both situations

a) and b) are compatible with all the conditions of the problem,
it follows that there must be iwo groups of modes, one corres-
ponding to the transition a), and the other to transition b).
Moreover, 1f transition a) takes place continuously, then H,
must pass continuously from pure real to pure imaginary, whence
H, = 0 at cutoff. The a)-modes might then be called "primarily
TM*® modes, even though they become TM only at cutoff. Similarly,
the b)-modes will have Ez = 0 at cutoff, and may be called "prim-
arily TE® modes.

It 1s perhaps necessary to emphaslize somewhat more the def-
inition of a *mode® as employed in this work. In general, the
gsolution of the eigenvalue equation will lead to a set of v's,
each of which is a different function of frequency. The sgpecifi-
cation of a mode "v* picks a particular vv(w), and the assoclated
fields which go with the corresponding pv(w).

The point of view taken above with regard to the definitlion
of a mode easily leads to the curlous circumstance 1llustrated
in Appendix C. The TE ,n and TM ,n modes in an ordinary rectan-
gular waveguide (1b) have the same ¥(w), so long as m gnd n are
>0, Not only are the propagation constants identical functions
of the frequency, for a TE and a TM mode wlth the same lndlces
m n(#O) but the transverse-fleld components are also(resgectively)
identical functions of (x,y), even though the vectors E
EéZ) are neither parallel nor perpendicular. From the a1£4nt tion
of a mode adopted here, these TE ,n and TM (m,nf 0) must be
congldered as defining a gingle TE-TM mode, with the outstanding
property that the relative amplitudes of Ez and Hz may be chosen
at will.

Such a "degeneracy" 1s not found in those inhomogeneous
problems which demand TE-TM mixture. For a given vv(w),the




relative amplitudes of Ezv and sz are fixed by the boundary
conditions and/or the differential equations. Under normsal
circumgtances, then, the discussion of polarization given hereto-
fore indicates that below cutoff ET and HT may always be made
linearly polarized, and will then be 90° out of time phase.

#If linearly polarized solutions are chosen %o
define a modei then Re Sz 2 0 at frequencles
below cutoff,

It is clear from Eq.(2.15) that if E, 1s real and H, imagl-
nary {with ¥ = a) then Hﬁ is lmaginary and ET is real, Corres-
pondingly, imaginary Ez and real Hz lead to imaginary ET and
real HT' Below cutoff, in elther case, the transverse and
longitudinal components of E are in phase, which guarantees that
E represents a linearly polarized vector in space. The game 1s
true of H.

"If the transverse fields are chosen to be linearly
polarized in the (x,y) plane, then at frequencies
below cutoff, the entire E and H fields represent
linearly polarized E(t) and H(t) vectors in space.®

Also, it should not be overlooked that under these circum-
stances the transverse component of the complex Poynting vector
1s pure imaginary, since Ep and H, (as well as Hp and Ez) are
90° out of time phase. Therefore

w=Euw

°} —> Re 8, = Re 5, =0 , (4.50)

Y =a

when the fields are linearly polarized,and the wave 1s below cut-
off.

At frequencies above cutoff, however, the cholce of linearly
polarized transverse fields ET(t), Hp(t) leads to total fields
E(t) and H(t) which are elliptically polarized. The plane of
rotation of E(t) is longitudinal, and is defined by the linearly
polarized vector ET(t) along with the unit longitudinal vector
1,. Similarly, H(t) rotates in a longitudinal plane containing
HT(t) and 1, . Even though now Re S, # 0, the relative phase
relations between ET and Hz or HT and Ez are such that
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w > wc
} —= Re ST =0 . (4.51)

v = 38

"According to Eqs.(4.50) and (4.51), the choice
of linearly polarized transverse flelds leads to
modes for which there 1is no time-average power
flow in any direction in the transverse plane,at
any frequency.®

Incidentally, the conclusion in Eq.(4.51) is just one step
more speclialized than the following result, obtained by inte-
grating Poynting's theorem [Eq.(4.2)] over any internal region
of the gulde cross section:

w > Wy
} — Ref n'-ST d¢t =0 , (4.52)
Y = B L!

in which L' and n! refer, respectively, to the contour enclosing
the region and its outward normal. Equation (4.52) is valid
even 1f the transverse fields are not linearly polarized, whereas
the validity of Eq.(4.51) is limited to cases in which they are
linearly polarized.

It was stated on page 73 that the choice of linearly polar-
ized transverse flelds avolds the appearance of positive and
negative power flows at various points of the cross section,
when a mode 1s below cutoff. The example in Appendix C shows
that this same choice of linear polarlzation does not avoid power
reversal when the mode 1is above cutoff. Therefore:

"Even when a lossless structure has opaque walls,

it is possible for a TE-TM mode with linearly

polarized transverse fields to exist above cutoff

in such a way that Re S, changes sign at certain

points of the cross section,”

The preceding dlscussion has emphasized the fact that
linearly polarized transverse flelds may always be chosen for
any mode which 1s characterized by a particular vv(w). It is
therefore pertinent to indicate where any other choice 1s even
‘possible. The key to the matter arises from the possibility that
there may be two llnearly independent solutions for the pair of

real functions (EZ,HZ), with the same yv(w). That is, (Ezl,Hzl)
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and (E_o,H o) may both represent possible (real) fields with

ldentical propagation constants at all frequencies. For exam-
ple, 1f the guide cross section has a rotational physical and
electrical symmetry, as shown in Figure 4.5 below, 1t 1s to be

X
j///:;j N
y

Fig. 4.5. Gulde cross
section with a rotational symmetry.

expected that, corresponding to any particular field solution,
there will always be another one having a transverse field ro-
tated by 90° with respect to that of the original. The first
solution will correspond to the pair of functions (Ezl,Hzl),
and the second to the pair (E,,,H 5). In such cases, either a
real or a complex linear combination of both may arbitrarily be
taken as defining the "mode" corresponding to Yv(w). According
to the previous discussion, linearly polarized transverse fields
will result only if some real linear combination of the two pairs
of real functions 1is chosen, but 1t 1s by no means essential to
do so. It is not hard to see that a complex linear combination
(E,y + XK E,5) ; (H +XH,) leads to transverse fielde which
are no longer linearly polarized. One common method (la) of
handling such situations 1g to conslder each linearly polarized
solution as a subdivision of the mode v (w), designating one "e"
for even, and the other "o" for odd. This form of degeneracy
occurs, for instance, in a circular structure, where sin ng and
cos ng may be used either alternatively or in two combinations.
In Appendix A of this paper 1t has proved convenient to take the
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angular dependence in the particular combinations

e*'anp =cos np * J gin no

for the representation of a single mode, merely for analytical
simplicity. The result 1s, accordingly, that the corresponding
transverse flelds are not linearly polarized.

Granting that an appropriate definition of the modes may
always be taken to guarantee linear polarization of ET(t) and
HT(t), it 1s still not possible to assume that the space angle
between them 1s the same at each point of the cross section. A
glance at Eq.(2.15) will show that, even with linear polarization,
("ET")("HT“) is not in general the same function of (x,y) as
(Ep + Hp); hence the space angle between Eq(t) and Hp(t) 1s gen-
erally a function of position in the transverse plane. It is
this variation of angle which makes a convenlent definition of
impedance virtually impossible, even on a lossless structure.
While a dyadic impedance might be defined, it would be a func-
tion of the transverse coordinate, and would therefore lack the
simplicity usually obtained from the reduction of electromag-
netic-fleld problems to circuit analogies. The fallure of the
usual impedance definition carries with 1t a similar failure of
the famillar definitions of voltage and current, in terms of the
transversgse fields. The process of visualizing and utilizing mode
behavior therefore becomes much more difficult for the electrical
engineer than ls the case with homogeneous systems.

The fallure of circult concepts in lossless inhomogeneous
problems 1s unfortunate. It 1s more unfortunate that whatever
simplicity does remain in the propertlies of modes on such struc-
tures 1s generally lost when dissipation is present, elther in
the bounding wall or the internal medium. Equations (2.25)
usually develop complex coefficients as a result of the fact that
¢! becomes complex. Then p2 is also a complex function of (x,y)
in the general case. The real and imaginary parts of Ez (and/or
H,) can no longer be taken as constant multiples of each other,
gince the real and imaginary parts thereof no longer satisfy the
same differential equations. There 1s no guarantee that the
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polarization of the transverse filelds can always be made linear,
and 1t may necessarily be forced to vary from point to point of
the cross section. Either ET(t) or HT(t) may be linearly polar-
ized at one point, and elliptically polarized at another. Any
conglderation of phase angles or space angles between ET(t) and
Hp(t) 1s made difficult by this Jjumble of heterogeneous states of
polarization; and the mode structure (if 1t still existe) becomes
very difficult to visualize, despite the fact that the orthogo-
nality condition (3.23) still remains to help szeparate one mode
from another. Even if there were no other difficulties with digsi-
pative systems, the foregoing complications would be reason enough
to consider their mode properties beyond the scope of this paper.

V. MOPEN-BOUNDARY" STRUCTURES

In marked contrest to the properties of lossless "closed-
boundary" cylindrical structures, it will be shown that the "open-
boundary® lossless systems do not yield free exponential modes
possessling true cutoff properties. In general, there is no crit-
lcal frequency w,(# 0) at which v = 0. It must be observed care- .
fully that these comments apply only to "free" exponential modes,
which exist when no sources are present within any finite region
of space. But the question of source location "at oo is a little
more difficult in these open-boundary structures than was the
case in the closed-boundary problems previously discussed. For
example, 1f a plane wave is obliquely incident upon a thin dielec-
tric slab which lies all along the (y,z) plane, it would hardly
be proper to consider the total resulting fileld structure as that
of one or more "free® exponential modes, in spite of the fact
that there are no sources within any finlte region of space. The
only questlon arising here, then, 1s the inadequacy of this
definition of a "free" mode on the slab. A little consideration
will show that the important point to be added to the earlier
definition must be the stipulation that the propagation constants
Y, are to be determined solely by the geometrical and electrical
constants of the structure. Only under this added condition
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willl the modes be #free" modes, and it is only to such modes
that the following demonstrations will apply.

5.1 Coordinates and Boundary Condition

The structure shown in Figure 5.1 represents the form of
the system to which the analysis will be applied. It comprises

N\ -~ | ~
;7 :f*qb )}r\\ MEDIUM 2

CIRCULAR CYLINDER — /™ S¢n | MEDIUM |
WITH | o7 —+" Lz
CROSS-SECTIONAL | /
AREA A /
N /
CONTOUR L~ "N -

7/
~——

Fig. 5.1. "Open-Boundary" structure.

a rod or cylinder of dielectric material, which material need

not be homogeneously distributed in the cross section; this cylin-
der 1s Medium 1., Surrounding cylinder 1 1s a Medium 2 which is
homogeneous, and which may be taken for convenience as free space.
The boundary line between the two medla is a discontinuity D,
across which the continulty conditions

(a) nxH) =nxH, , (5.1)
(b) nxE; = nxE,

must be applied. It is through these boundary conditions of
continuity that the values of ¥ are determined for the "freel
modes, as defined earlier,

5.2 Characterigtics of the Propagation Constant

When the entire system 1s lossless, the proof that 72 must
be real can be carried out just as before (Section 3.2 and 3.5).
The boundary conditions (5.1) are employed instead of Eq.(3.75c),
and Eqs.(3.1) and (3.2) are applied in the homogeneous Medium 2.
®The discussion of this Section can therefore
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proceed at once on the basis that either v = a

or v = JB."

It will now be demonstrated that v = ¢ is not possible in a
source free losgless structure of the open-boundary type. Gener-
ally, a mixture of TE and TM waves wlll be required to solve the
problem. The radial (1r) component of the complex Poynting vec-
tor in Medium 2 is

28 = E H* - EZH*

r ¢z ?
3 (e - ()
plr 199 /72 o r z
* *
. Al EE.Z_ E +M€_(EE_Z.)E (5.2)
p.zr o9 Z p*2 or z ° ¢

The subscript 2 will be omitted whenever it is clear that quan-
tities refer to thelr values in Medium 2. In Medium 2, p2

= -(v* + ¥®) 18 not a function of the transverse coordinates,
because the medium is homogeneous. Of course, ¥ 1s the same in
both medis.

Now the solutions for Ez and Hz in the outside medium must
be expressible in terms of the solutions to Eg.(3.1). In partic-
ular, the general linear combinatlons of those solutions which
remaln finite as r —>»o00 may be used to express Ez and Hz for
the present problem. In cylindrical coordinates, then,

(a) E, = Z AnKn(pr) e 09 ,
i (5.4)

(p) H, = 2{: Bme(pr) o IO ,

m
where Kn 1s the integral-order modified Bessel function of the
second kind. It 1s understood that m and n are integers, and
that gll summationsg extend from -00 to + 0O, unless otherwise
stated. Therefore
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3E

* 2 E * % J(n-m)o

(a) Hz 50 3 n Aan KnKm e
m,n

(b) E EEZ = -} m A_B* K k* ¢J(nmlo
z 09 nm nmn ’
m,n
3H _ (5.4)
(c) H‘z‘ 'a'Fz' =p _;_ BnBr*:1 Kx; K; eJ(n m)9 ’
m,n
OE*
oz _ *§ * gt px oJ(n-m)o
(a) Ez ar P Ban Kn Km © ’
m,n

in which the argument of the Bessel functions 1s understood to
be (pr), and the prime(') indicates differentiation with respect
to that entire argument.

Of most importance for the engulng analysis will be the
total outward flow of vector power per meter length in the z-
direction, denoted by Po and given by

2m
P, = So s.r,dp . (5.5)
The quantity r, 1s the radius of the circular cylinder shown in
Figure 5.1, page 78. To facilitate the calculation of this power,
the expressions in Eq.(5.4) are integrated in accordance with
Eq.(5.5). Observe in this connection that all terms in the
double sums, except those for which m = n = q, will vanish upon
such an integration, with the result that the expressions are
simplified to the form

2

3E, 5

. HY 55 T d9 = 2mr E aQ AqB; |Kq| , (5.6a)
q

2m *

)z . 5

. E, 55 To 49 = -2mr } E a ABY Iqu , (5.6b)
q
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U
S H; 555 r, 4 = 2mpr E IB ' K' K* , (5.6¢c)

i

L o
— * DL
S E, 57~ T, 49 = 2mp*r E lAql Kq(Kq) . (5.6d)

The assumption that ¥ = a will now be made, and Po computed
from Egs.(5.2), (5.5) and (5.6). Thus, since p2 is surely nega-
tive-real,

P
Q2 _ <& * 2
i ;ZquBq |

+ wr, ZE:(p |A | K K'* %13 IQK& K;) . (5.7)

But since p 1ls pure 1maginary, 1t 1s possible to set p = Jp.
Therefore, in accordance with well-known identities among the
Begsel functions, and with the definition Z = (2

- Im/2y_ @ o 4ya+l (1), Jm

Kq(jpro) = Kq(Ze )= 3 (J) Hy (zed") . (5.8)
However, 1f p 1s taken > O, then Z 1s real and > O. Therefore

B (zedm) = (-1yt wrlllz) . (5.9)
Hence

/2y _ me_4ya+l pa(1)

K (2e9™2) = Z-n* Mgy (5.20)

also

Ké(pro) = -J dZ[K (Zejﬂ/z]

=~gvn¢%@§”wﬂ. (5.11)
As a result

K&(pro)Kg(pro) -j—— H(l)(Z) [Ha(l)(Z)] (5.12a)
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and therefore
1 *
Kq(pro)Kq(pro)

= —J%E[JQ(Z) + JNq(Z)] [Jé(Z) - JN(i(Z)] ’ (5.12p)

where J_ and Nq are Bessel functions of the first and second
kinds, respectively.

The main point of interest about Eq.(5.7) will be its real
part. 8ince p = Jp, the real part will come from the real parts
of the last two sums and the imaginary part of the first sum.
But

Re[?&(pro)xz(pro)]= Re [Kq(pro) K&*(pro)]

2
= - z—[Jq(z)Ngl(z) —J(;(Z)Nq(Z)] .(5.13)

The bracketed expression in Eq.(5.13) is the Wronskian W of the
two solutions J_ and N_ . Since

q 2q
W(Jq;Nq) =%, (5.14)
Eq.(5.13) becomes
* = -
Re [Ké(pro)Kq(pro)] = EE;; , (5.15)

and, therefore, from Eq.(5.7)

2 Re P
(o] 4q * 2
= B
—z —7“9 Im Eq q A,BY |Kq|

+8> Ce[ag® +up®) . (5.16)
P q

Observe that only the first term of Eq.(5.16) 1s a function
of r_, because of the presence of K (pro) therein. That is,
Eq.(5.16) indilcates a variation (with radius) of the total out-
ward flow of real power through any circular cylinder which lies
entirely in Medium 2, This variation 1is caused by the presence
of the first term cited above. But a consideration of Poynting's
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theorem shows that the only posslble causes of such a varlation
would be either sources (or sinks) located in Medium 2, or a
"bending* of part of the longitudinal power into the radial di-
rection in that medium.

The first cause is ruled out at once, because there are no
sources in Medium 2, and it is lossless. The second possibility
might offhand seem reasonable, because there would be attenuation
in the z-direction when ¥ = a, and 1t might conceivably be due
to outward radiation.

For this lossless structure, however, the general discussion
in Section 4.4 relative to polarization and phasing still holds:
namely, 1t must always be possilble to chooge the modes in such a
way that, for any allowed value of a, ET and HT are linearly
polarized and 90° out of time phase. The present boundary condi-
tions (5.1) in no way upset this conclusion. Hence, if v = a is
possible at all, it must be possible when Re Sz = 0 at each point
in the transverse plane. Under such conditions, Poynting's
theorem shows again that the radial power (Af any) cannot vary with
rs in Medium 2. Therefore the first term in Eq.(5.16) must
vanish.

If there 1s any radial power at all, it must have the form

of the last two terms in Eq.(5.16),
2
Re P =~‘l-‘-”-_5_ (ela|? +ulB |%)#0 . (5.17)
o 292 q q
q

The real power given by Eq.(5.17) is now independent of r in Med-
ium 2, It is not zero unless all the fields are zero. This
- radial power flow must terminate somewhere ingide Medium 1, since
it has been shown that it cannot arise from Medium 2. Once again,
though, matters can always be arranged so that when y = a there
will be no Re Sz in Medium 1, at any point of its cross section.
Moreover, there are no sources in that medium elther, and it, too,
is lossless.

There 1s no way of avoiding the conclusion that the assump-
tion ¥ = o leads to a radial flow of power which contradicts the
Poynting theorem for a source-free, lossless structure.
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The existence of a wave below cubtoff 1ls in direct conflict
with the concept of a free exponential mode. If such modes exist,
they can do so only at frequencles where v = JB. As a result,
on open-boundary lossless structures:

"There are no free exponential modes below cutoff;
and the radiation properties of a lossless rod
cannot be accounted for by any free exponential
modes which supposedly attenuate in the z-direc-
tion by virtue of power lost through radiation in
the r-direction.’

The "leaky water pipe® concept of free-mode radiation is
not valid, because no such mode can attenuate at all in the z-di-
rection (when the system 1is lossless).

It is instructive to return to Egs.(5.2), (5.5) and (5.6)
when ¥ = JB. Then p2 = 82 - kz, and two cases arise., First,
suppose P < k, in which event p = Jp again and Eq.(5.7) 1is re-
placed by

9 _ € 2 2
Jw mr, E (5% [4y] "R K* - B | “KKE) . (5.18)
By steps similar to Eqs.(5.8) through (5.15) it is found that
2
- Tw 2 2 :
Re P_ = . E (elAq| + uqu‘ ) #0 . (5.19)

This result 1s clearly at variance with the Poynting theorem.
When v = )B, the longitudinal power flow is independent of z en-
tirely. The radial power flow now exhibited by Eq.(5.19) ob-
viously cannot be explained by bending of the longitudinal power.
There are still no sources {or sinks) in any finite region of
the cross section to account for this power, and the contradic-
tion is agaln thrown back upon the assumption that B < k.
Fortunately, the second possibllity, v = J§ and B > k, does
not lead to any contradiction. Under these conditions, p2 is
positive-real, and p is also real. The modified Bessel functlons
Kq(pr) are entirely real for real valuss of argument, and their
derivatives with respect to the argument are also real. The
expression for Po under these circumstances remains in the form
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of Eq.(5.18), and now becomes a purely imaginary quantity. The
previous difficulties are removed. Consequently,

"Free exponential modes on an open-boundary loss-
less structure must have phase velocities which
are less than that of plane waves in the external
medium, ¥

5.3 Physical Interpretation of the Free HModes

The results thus far ralse two questions: a) What becomes
of a mode which is propagating at a high frequency w when the
frequency is lowered toward the point where a %closed" guide
would normally cut off? b) If “free" modes alone cannot explain
radiation from a lossless rod antenna, what part do these free
modes play in the behavior of such a structure?

The answers to these questions will be appreciated most
readily after some experience with a few examples has been gained.
To this end, Appendix D is useful, and has been included primarily
to 1llustrate and clarify the remarks of the present general sec-
tion.

First of all, when v = ) and f > k, the form of the radial
vower Eq.(5.18) 1s reduced to

Jw"ro 2 2
Py = =3 E (e|ag|® = u|By|“IK KL . (5.20)
a
Now
1 = - G -
Ky(pr,) = - 5= Kylpry) - Koy (ory) (5.21)

and Eq.(5.20) becomes

P r
2. = 2_ 2y 2 4 Zo
q

For values of pr > 1 and >>q, the asymptotic form of Kq(pro) is
known to be

-pr
Kq(pro) —= ngr' e ©° . (5.23)

(o]
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If the convergence of the series in Eq.(5.22) 1s rapid enough
(and the assumption will be made here), the substitution of Eq.
(5.23) can be made therein, in spite of the apparent difficulty
that q becomes very large. Hence, for large values of pr,,

2 -2pr 2 2
Po—v-ng-ge °§q:[(p|13q|-e|p.q| )(5—§*,-;+1)] ; (5.24)

or, since r, 1s arbitrarily large,

P, —-wzi‘&"; e o Z (u[Bq|2-e|Aq|2) . (5.25)
P q

The important point to notice here is that because p is real
(and pogitive if the solutions are to remain finite at large r),
PO dies out exponentially with radius. In other words, for suf-
ficliently large r, even the reactive power flowing through a unit
length of large cylinder (Figure 5.1, page 78) approaches zero
exponentially.

Because of this fact, much of the earlier discussion perti-
nent to closed-boundary structures above cutoff can be applied
to the present structure, so long as the modes exist (v = JB;

B >ky). In making these applications, the area A should be
taken as the infinite cross section, and the exponential depen-
dence given in Egs.(5.23) and (5.25) effectively reduces the
boundary conditions to homogeneous form at large radial distances
from Medium 1. In particular, 1f A is considered to be the in-
finite cross section, Eq.(4.29) becomes modified only to the ex-
tent that the term involving B vanishes. The conclusion on page
64 can therefore be shown to remain valid (9p/3w > O when B > O)
8o long as B > k2. Similarly, the interpretation of the fact
that pg ig positive and real (in Medium 2) can be taken from the
discussion of Eq.(4.49), and the exponential dependence of Ez
and H, found in Eq.(5.23) bears out this interpretation. Lest
this monotonic behavior of the fields be thought to set in only
at large distances from Medium 1, it should be added here that
the functions Kq(pr) are monotonically decreasing functlions for
all real non-zero values of the argument (18).
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Since the modes new under consideration exist only when
B > k5, and since (3B/3w) > O when they do exlst, 1t follows
that the modes can always be studied at arbitrarily high frequen-
cles. This being the case, Medlum 1 can also be treated accord-
ing to Eqs.(4.44) through (4.49), and if it contains inhomoge-
neities, pi will be a function of (x,y) in that medium. Now in
order to obtain a "guided" mode, there must be some standing
wave in the cross section of Medium 1, That ig, p% must remain
negative real at least in some regions of that cross section.
Hence there must exist protions of Medium 1 for which B < kl at
high frequencies.

It will be simplest now to restrict the discussion to cases
in which Medium 1 is homogeneous. Let it be characterized by
the intrinsic propagation constant kl. Then 1f the mode 1s to
be guided by this medium, ko < B <Xk,. But this implies ky> kz,
or (en)y > (ep)s. Unless the latter condition is satisfled, no
waves can be gulded along Medium 1.

It appears that free exponential modes can be gulded only by
a material rod having a higher intrinsic propagation constant
than the surrounding medium. When the wave 1s guided, the fields
fall off monotonically outside the rod and must possess standing-
wave character ingide i1t. The explanation of the free~mode phe-
nomenon becomes clearer. These waves must travel unattenuated
down the rod by means of successive internal critical reflections
from the bounding discontinuity. Of course, such critical re-
flections can take place only when the medium in which they are
"trapped" has a higher ep product than does the surrounding space.

Moreover, critical reflection can take place with plane
waves only when the angle of incldence 1s sufficlently far from
the normal. There should be a corresponding criterion for the
propagation along the rod. The key to the correspondence lies in
the discussion of waves gt cutoff in closed-boundary structures
(pages 58-60). It has been shown that at cutoff cylindrical
waves spread out in the transverse plane and strike the bounding
wall normally. Evidently this condition cannot exist on the
open-boundary rod, because the discontinulty will no longer
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totally reflect such waves. As a matter of fact, the discon-
tinulty generally fails to confine the waves by critical reflec-
tion long before the frequency reaches a low enough value %o
meke B = O. In particular, since (98/3w) > O, and B cannot be
legs than k2, the mode ceagsesg to exist at a frequency defined by
the relations
5=k2
or (5.28)
P2=0 .

Occaslonally this frequency has been referred to (10,11) as a
"sutoff", but since the free exponential modes cannot exist at
all below this "cutoff®, the name 1is misleading. Besldes, the
mechanism is sufficiently different to deserve another name, and
"divergence frequency" will be used in the remainder of this text.

The consequences of this lack of true cutoff among the free
modes are interesting. At any particular frequency Wqs the only
free modes which can exist at all are those whose divergence
frequencles are lesgs than Wqe It is illustrated in Appendix D
that, for any given "angular! variation, there are generally
only a finite number of these; perhaps none at all. It is cer-
tainly not possgible to construct an arbitrary transverse fleld
from such a finite set of modes. In other words, the fact that
the individual free modes cannot exist in this problem over the
entire frequency range O < w < oo means that the get of these
modes cannot be complete for transverse-field expansion at a sin-

gle frequency. .

Notwithstanding the lack of completeness for the set of free
modes discussed above, it is noteworthy that the orthogonality
conditions (3.23) and (3.26) are still valid when taken over the
infinite cross section. This illustrates the danger of trying to
infer completeness from the exlstence of an orthogonality condi-
tion, as was pointed out on page 33.

While the comments relative to the lnterpretation of free
modes have been restricted to the case where Medium 1 1s homo-
geneous, a combination of the material in Section 4.2 and 4.3
with these remarks will make the effect of inhomogeneitles
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gsufficiently clear for the purposes of this work.

The answer to question a) (page 85) has been indicated.

The nature of that answer makes question b) much easier. It is
now clear that the free modes play only a small part in the solu-
tion of rod problems, because these modes do not form a complete
set. The resultant behavior of such a rod, when sources are
specified, depends much more upon the nature of the sources than
upon the free modes appropriate to the structure itself. A
rather simple problem of this type is briefly considered in Ap-
pendix D, where 1t appears that the free modes represent natural
modes for the lossless rod. Under any given source excitation,
a few of these natural modes may be excited--the number thereof
depending upon the source distribution, frequency, constants of
the rod, and constants of the surrounding medium. There may

not be any at all, in appropriate circumstances. In a sense,
the fleld structures corresponding to these modes can be con-
gsidered as "space resonances", because they are the only fields
which persist for infinitely large values of z, when the source
is at a finite point in space. The remalnder of the field
structure is related to that of the source alone, acting in

free space, except that it is "bent" or diffracted by the rod.
The important point to be observed is that the individual free
modes do not contribute to the radiation from the rod as they
travel along 1%, since the fields due to such modes die out
rapidly in the surrounding space.

With reference again to the example in Appendix D, 1t can
also be said that the free modes represent source power which
becomes channeled into the z-directlion instead of going radially
outward from the dipole. If the rod were chopped off at some
large distances from the dipole source, the free modes would be
reflected at the far end. There would result a standing wave on
the finite section of the rod, and some additional radiation from
the chopped-off end; but no contribution to the radiation would
come from the free-mode standing wave on the bulk of the structure.
The function of these free modes 1is, therefore, to trap a frac-
tion of the source power, and project it from the far end.
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VI. CONCLUSION

A comparison of the mode concept in homogeneous and inhomo-
geneous cylindrical structures has been given in the preceding
sections of this paper. Primary consideration has been directed
to those mode properties which are substantlally independent of
the detalled configuration of the system. There are very'few
such properties, but they are fundamental. It 1s common engineer-
ing practice, in fact, to teke most of them for granted. This
procedure has occasionally led, either directly or indirectly, to
unjustified analogles between homogeneous and inhomogeneous wave-
guidegs. It is to be hoped that the analysls presented here has
clarified the conditlons under which such analogles can be made,
and that, thereby, a deeper understanding of the basic properties
of modes on ordinary waveguides has also resulted.

Nevertheless, 1t is clear that conslderable work remains to
be done. Among pasgive systems, the particular lossless variety
which are bounded by a reactive wall still presents some un-
explained difficulties (Section 2.3 and Appendix A); those with
loss have hardly been considered at all. It does appear, however,
that 1f the walls of the latter are opaque, 1t may be possible to
find some additional general properties of the modes which would
greatly clarify the precise effect of dissipation on wavegulde
behavior.

A practical problem of much greater importance than those
suggested above concerns agctive structures. The role of exponen-
tlal modes in the solution to fleld problems arising from such
structures 1s by no means clearly defined. In particular, the
method of separating one mode from another has apparently not been
gsatisfactorlly analyzed. As an example, the properties of wave-
guldes containing one or more electron beams deserve more careful
examination from the mode point of view. These waveguide problems
are becoming so important, in fact, that the work contained in
the present paper should be regarded as an introduction to them,
rather than as an end in 1itgelf,.
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APPENDIX A

Circular Guide with Reactive Wall

RADIUS @ "
AREA A
CONTOUR L

Fig. A-1l. Coordinates for circular gulde.

The boundary conditions at r = a are

(a) H ,
3 2 ¢ (1)

(b) an=3131}'«.:Z .

The internal medium is homogeneous, with

(2) zo'= Jaé%%? ’

(b) k = -3 Jjwn (o+jwe) , (2)

-1 B, E

(c) p°=-(v +x%) .

For the time being, the walls and internal medium will be
considered as dissipative. Therefore (Bl,Bz,Zo,k,y,p) will be
complex.

The modes will be designated by a double subscript "ns", n
being the circular-variation index, and s the radial-variation
index. Although a TE~TM mixture 1s required, it is helpful at
first to keep the TE and TM parts separated. This 1s accomplished
by using superscripts 1 (for TM) and 2 (for TE); but each "mode"
contains both, therefore the subscripts ns are the same for the
two types.

The basic equations are:
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IM:

(a) V% E
(b) Eﬁ;g
(c) (ig
and
TE:
(a) vaH
() w2
(c) éﬁg
Solutions
(a) Ezns
(b) Hzns
where 8gs bnS
In(psr) 1s the
Now
E@ns
g(1)
¢ns
(2)
Emns
(1)
¢ns

= =8 Y E : (3)
;é T

|

Yo
—§'VT Hzns $ (4)
Pg

-JkZo
= p2 1zx VT Hzns *

8
to Eqs.(4a) and 3(a), respectively, are:

_ - Jne
= 815V ns = ®ng In(psr) e

(5)

- Jng
- bns\rns bns In(psr) € ’

are complex constants independent of r and ¢.
modified Bessel function of the first kind.
- g(1) (2) - g(1) (2)
= E¢ns Emns and Hcp na Hcpns I-Icpns s With
37
= 8 sV¥nslp) (6a)
ps
—sz
= !
névfns(p) * (6b)
=75 a (o) (6c)

ZopS 8ng ns
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éﬁg nsV/na ; (6a)

where p = p_r, and (') denotes (d/dp).
Application of boundary conditions (1) at r = a, with
2 = P2, yields

(a) ba [pgayns(Z)+k3220psayr1;8(2)] = Byny &

(z) ,
(7)

nsyhs

(b) nbnSYSYhS(Z) = ans[?lp avﬁs(z) aYhS(Z)l *

Thus, solving Egs.(7a) and (7b) for (a ) = K,g Yields

ns/bns

nbz'ys\rns(z
_ nyY ¥y (2)
- 2
bipiay, (Z) - kpoay) (Z)
where b, =(8,)( 2 o)= (B1/Y.) [normalized admittance] , and similarly

Ras _ 1 (ans)_ p ayh (z) + kbzp ay! (2)

) (8)

(B o/¥,).
For convenience, momentarily set = \{/ns(z) andy' = pg 1,'!S(Z)
so from (8)
2
.K_tls.'_-_-k =-£§f—+.15§_(lﬁ_) . (9)
Zo ns b2n'vS n'YB | 4

From (8), also, the eigenvalue equation is

2 2 2.2
- (epgyHRabgy!) (abyp Y kay') wbgrgy® =0, (10)
which should be rearranged to solve for Y" in the form

'2*3")4 FHE @]

vl - 6 )]

With the new symbols
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p2 b

1
E=kas ’ 8=k815 ’ §=(blb2— = )’(12)
Eq.(11) becomes simply

Ve - pyel+ @2 - sy a0 . (13)
The solution is
¥ o_$ 2 o 4E%
o )
But defining t! by the relation
$%+4 = (fBr0, + —=— )= t! (15)
( 172 {BIB—Z) ’

gives for (14)

¥t ree - (28) ], 16)

which shows that there are two gets of modes (for each n) corres-
ponding, respectively, to the + and - signs in Eq.(16).

It 1s convenlent to write two conditions 1in the original
notation of Eq.(8), but with added gubscripts 1 and 2, as follows:

Ving(Z) 1 [ 1 1, a2 ]
(a) §§¢§ﬁ;1317 = Sim _(bl - EE) + (b + EE) l+171nqj,
(17)
Vine (25! 1 [ 1 1 7
() Zz‘}’gis(zz) = Zka _(bl - T)E) = (b + Fz') 1+Q2ns_ ’
where
\ L 2 2
1 2 2 k
(bl * 55)9 ns =(’Zﬂ) [1 +('Z_&) ] . (18)
From Eqs.(9), (12), (15), and (16)
5,1 o, |2
1 1
klns = EEI— [l + /1— (3‘]-:61‘) J R (19)
and

_94_




2

8t 2,
=2 | 1o i
kons =28, | T T y? (3;;7) . (20)

In the speclal case where n = O, the problem becomes axially
symmetric. Then § = O, and the modes 2 and 1 become TE and TM,
respectively. From Eqs.(18), (19) and (20):

(8) n=0 —= k=0 ; H,, =0 ;
\V]'.os(zl) = B_J_.,
Zlylos(zlj ka
(21)
(b)) n=0 —» k, =0 ; E, =0 ;

TE
. \f’z’os(z2) .
" Z¥aoe(lp) T Boka

Even when n # 0, the cutoff frequency (defined by ¥ = 0) is
characterlized by E = 0. Hence modes with subscript 1 fall into
the "primarily TM" category. Similarly, modes with subscript 2
may be called *primarily TE",

When n = 0, (3/3p) = O; whence TE,, modes aave only three
field components: H_, H,, Ecp‘ TMos modes have only E_, Er’ Hq).
Hence TE o8 modeg are obviougly orthogonal to 'I‘M‘:,8 modes 1n the
longitudinal-power sense. There remaing the question of orthogo-
nality among TE__ modes, TM _ modes, and mixed modes (n # 0)
with different values of y¥. Because of the circular variation
e,‘jncp’ modes with different values of "n" are clearly orthogonal,
both in the energy and power senses. Consideration need be
given, therefore, only to modes with the same "n", but different
vY's. Since the n becomes a common index, it will henceforth be
omitted.

Let two modes be described as follows:
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Mode 1 Mode 2

H=Y1 s Hyo=¥p
E,1= K1, E,o= kY2 »
K.v K5y
(1)_ ™M1 (1)_ 22 2
Epy’=—"3vo¥1 » Epz'= "3 Vn¥2 »
P{ Ps (22)
- 1kZ -3kZ
(2)_ TIkZ, (2)_ 0
Epl'= =3 1XVofi Epa'= —3 17z »
Py P2
K
(1) JKy (1)_ &Ko
Ari'= 5 txVrfe o Hpp'= 21X
piZ, P22
(2)_Y (2)_ Y
Hpg = —5o¥A » Hig'= BNs
D1 p2
with boundary conditions expressed from Eq.(9) in the form
o T
VY, P, | nkK
(a)  (novgy) () = pi(2)- =55 - @
a Zoapl 2
5| n
(b) (n‘-VT"ﬁz);('a'E-‘a) = papd(2)= 5 —5 - £ Ya(2) .
a Zoap2 2
L .

Although the subscripts 1 and 2 have heretofore referred to
prdmarily TM and pPimarily TE modes, respectively, Eqs.(22) and
(23) may now refer to any two different modes, because their form
is such that modes 1 and 2 merely differ by an interchange of
these subscripts. The question of whether either (or both) has
primarily TE or primarily TM character wlll be decided only when
a choice of signs 1s made in relating K _ to v, [Eqs.(193,(20)].
It 1s advisable to postpone this step until later.

In order to compute the cross terms (c) in the longitudinal
power flow, the functions
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- 3%
1 (ETIXHT2) do

-
Q
0
B
[

1 #(1 1 2
=£1z £ mpll) + 50 ¢ mp?)

+ Eéi)xH*T*éz) + Eﬁ)xﬂ*(l)] do

- Péll) + Pélz) + Pézz) + Pézl) (24)

will be required. It 1s necessary to express these Péuv) in
terms of common variables on the boundary, for which certain
integral transformations will be needed. The required transfor-
mations can be obtained from Green's theorems in the following
manner,

Let ¢ and Y represent any two scalar functions of (r,o)
which obey appropriate continuity conditions in the (r,9) plane,
Green's second theorem requires that

3
é(mvgy—y v2p) do = /L(cp -y ar . (25)
Equation (25), applied with the identificatlons
2
?=Y1 > V@=P§Y1,
(a) (b) (26)
=\ 2
v=v: = o5Ys
and the boundary conditions (23), ylelds
#2_ 2 " Pik*b*‘pgzkb nk3vz
(p"-p7) A‘{’l‘}’z do= b EbY | ZFkTa
'Vl (27)
1
[\yl(z)\yg(z)dz.
Green's first theorem states that
f (cva\y+ Vp@*Vpy) do = ch 5e 4 (28)
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or, in terms of the previous identifications (26),

/AVT‘Q’:L'VT‘VE do
2 o~
pg~ |nK3Y3 4
= o - &= (ZV%(z) a?
/L X [z;apgz b¥ V1 (2)¥3

[»)
- p"z"“‘g\}&\{%" dor . (29)
Employing Eq.{27) to reduce the last integral in Eq.(29) gives,

2_.2 .
(pz"™-p7) J;VTVE Yz do”

2

*2 »
_Jn [P2 ! _ 91K§72
Na Zok ngu

+ 2p§2p]2- In (E%'Eg)} fL\Yl(Z)Y’é(Z) ar . (30)

The various terms in Eq.(24) can now be computed.

2012 = (1«5 12l ao

1
B
~
* [
Y

1Yo .
) /A(iz" VpE,q ) Vple Ao

. %
VT (Ezlizx VTHZB) do
P1P3 A

1 -— TS - *
- 2. %2 [I‘Jir [(izEzl)x VTHZZ] do
2

* 9%
- Nave /Ez.;asz T (31)
L T R

But the integral on L implies that r = a, and 1ls therefore only
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an integration on ¢. The integrand does not depend upon ¢,
however, because E_; varles as e3n¢, while H:2 behaves like
e 9%, Dhererore

- J2my. vXK
P§12) = - 122 2~-\}'1(z)\yg(z) . (32)
PIP3

Similarly
)« [ e ) o

SRz G ¥, (2)Y35(2) (33)
=.__...._._.._.._. yA VA . 33
Z*pipgz 1

Also

1

11 1 * 1

- Jk¥*K K§71
= ...._.._.._..._...._... . d
= Z*pzp*z L oYy Vpts 4o . (34)
1P2

From Eq.(30), with the line integral evaluated as in Eq.(32),
the final form of Eq.(34) becomes

11)
P!

3 -jk*Klnglzna n K.Y ) K§7§
z%(p87-p5) | ®|pfzk  pATat
1 \
+ 2 Im (Eggg) Yi(ZNKE(Z) . (35)

By similar steps
(22)
Pc

)f [E( X HTéz)] ao

* *
) 1kZ 'vzzna a[fY K&l
(pz _pl) a *

2 *2 *
plzok P35 YA k

+2 In (E%gg)}\yl(z)\yg(z) . (36)
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It 1s next necessary to add Eqs.(32),(33},(35) and (36) in
accordance with Eq.(24). A considerable amount of algebraic
manipulation will be required to carry out this operation, during
the course of which the substitutions A, = (v /k) and k =
(xns/zo) are helpful. It is essential to make repeated use of
the relation A~ = - [(p2/k°) + 1], in order to obtain the follow-

s~
ing expression for Pc:

(p32-p) P,

e ——

2minz x| % i (2)y5(2)

\ a 1
= 2(\3-k k8 ) In (pales)* 2% In (;;5)

2
k1A A3 2y _ K3 g 2
¥ D
2 1

It now becomes appropriate to complete the application of
the boundary conditions by using Eqs.(19) and (20), in the form

k=2 HpE-1l (38)

ns
where
2
St _ psat
(@) 2=2% = Zxmv, -
: (39)
1 1
(b) t=/?--t' =(b +-—) .
b2 1 b2
But from Eq.(38), regardless of the sign chosen there,
1+ k5, = 21 1 P-1) = g, (40)

A substitution of Eq.(40) into the last two terms of Eq.(37)
produces the final relation

(pgg—pi) P,
amnz (x| 2y, (2)y5(2)

_ - a wr (L N, & * (t*)
= (A} klkgxl)lm(ﬁgﬁ-)+k21m(k*2)+ 2 xyieptn(l) . (41)
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The only circumstance in which P goes to zero (if p #pl)
is when ‘

k = k¥* , bz = b§ , t* =1t .
The structure is lossless under these condlitions.

An interesting feature of Eq.(41) is the fact that it re-
mains valid 1f mode 2 and mode 1 become identical. It then gilves
an expresslon for the total vector power flowlng along the guide
(due to a gingle mode). Since the right side of that equation
8till vanishes identically, it must be concluded that no vector
power will exlst for any of the modes unless p*2~p2. Hence the
fact that 72 must be real on this lossless structure is observed
to be a necesgsary condition for the exlstence of modes. The fact
that p must be either real or lmaginary requires that (wﬂfv)~in
Eq.( 9) remain real at all frequencies. Hence k . 1s real below
cutoff (y=a), while it 1s imaginary above cutoff (y=3j8). This
reversal of the usual phase relation between Ez and H (discussed
1n Section 4.4) arises from the choice e3™® for the circular
variation, instead of sin n¢g and cos no.

Since EZ and H, in a single mode are in phase below cutoff,
Re Sz is not identilcally zero everywhere in the cross section.

It must therefore be alternately positive and negative, in order
to assure the wvanishing of the integrated'real power.,

Attention is directed once more to the relationships between
two different modes by observing that Eq.(27) becomes

*a

ﬁ(@yz o

- —zma [kbz . —?—1—-—21%} (2 (42)
1”72

which 1s generally not zero. Hence Hzl and H* are not orthogonal

[Eq.(22)). This remains true even if n=0, 81milarly for E , and EX,.
When the structure is lossless, a derivation gimilar to

Eqs. (24) through (41) shows that
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(8)  wlpgPr}) [ By Bptor = omm (KEv3-Kyv, )Y (2)Y5(2)
(43)
() wlpg®p]) f wHpy *Hppda = 2m(K3y;-Kyv2)Y, (2)¥3(2) .

The integrals in Eq.(43) are therefore not generally zero, except
in the special case n=0,.

Normally, then, the average-energy orthogonality conditions
present in homogeneous structures cannot be expected to hold when
the boundary is not opaque (even when the system is lossless).

The present system does have the speclial property, however,
that both energy and power are orthogonal in the double-frequency
sense, even if the gystem contains loss. This unexpected inclu-
slon of the energy orthogonallty property again arises from the
circular variation ejnw, which falls to drop out in any product
where neither factor i1s a conjugate.

Some curious matters come to light from an examination of
the eigenvalue equations (17) and (18). In order to make the
examination, however, a frequency dependence must be assligned to
the wall admittances by and b,, whereas in the work Just com-
pleted 1t was not necessary to do so. Unfortunately, the only
cagses which have been treated in detall involve the assumption
that b1 and b2 are independent of frequency. Various cholces
of the relative signs and magnitudes of these admittances have
been considered;but, of course, the assumption above is contrary
to the normal properties of susceptance given by Eq.(2.40) of
the text. Furthermore, the results of the calculations which
have been made are sufficiently bizarre so that it would be un-
wise to present them at length until the effect of violating
Eq.(2.40) 1s determined first. The curious "breaking off® of
fast modes at frequencies below (or at) cutoff has been mentioned
in the main body of the paper. There are also some slow modes
which suddenly break off too. Both varletles of modes may
gimply cease to exlist (discontinuously) at all frequencies below
certain critical values, which depend upon the cholces of b,y
and b2. Many of the modes behave qulte normally at all fre-
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quencies, but when the break-off phenomenon occurs at all, 1t
affects a finlte number of the lowest modes for egch value of
n >0. Moreover, the number of modes which break off discon-

tinuously below some critical frequency in the range O<w<oo
is roughly proportional to n, so that the completeness of the
set at any one frequency is highly questionable.

One thing 1s definite, however: Regardless of the assumed
frequency variation, none of the fast modes break off when
by (w) = by(w). '

Further work is required to establish the effect of the
frequency variation of the admittances upon the slow modes, and
to investigate its effects upon the fast modes in greater detall,
This work has not been completed.
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APPENDIX B

Rectangular Wavegulide Partislly Filled with Dielectric

X
d— ‘ 7 po
”
€,)}L egé%f?/ l € > €

| ///z )

Fig. B-1l, Coordinates for rectangular guide.

Figure B-1 above shows a conventional metal rectangular
wavegulde partially filled with a lossless dielectric (ez,u).
The remainder is filled with a second lossless material (el,u),
which may be consldered as air.

The modes on the structure will have z-dependence e-"YZ in
both medium 1 and medium 2. Because of the rectangular symmetry,
however, the problem can be considered as cylindrical about the
y-axis., All the fields can therefore be derived from Ey and H&
instead of from Ez and Hz. In each of the two medla, field com-
ponents of the form

(a) E_ = F(x,z) et ®Y ,
y
(1)

(®)  H, = 6(x,z) %7,

may be assumed, with the functions F and G further speclallzed
as follows:

(a) PF(x,z)
(p) G&(x,z)

£(x) e Y% ,
g(x) e Y2 ,

In a manner analogous to that usually employed for the deter-
mination of the fields from E, and H, [Eqs.(3.1) and (3.2) of the

(2)
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text] , the following equations can be derived for each of the
two modes:

2 a 2 2v6  _
(a) vLHy+(<K +k)Hy—O ,

. . . (3)
(b) vLy+(aQ +k)Ey=O ,

in which VL is an operator restrléted to the longitudinal (L)
plane (x,z).

Equations (3), as well as all boundary conditions, can be
satiaefied for two kinds of waves; those for which E_=0 (called
"LE' waves), and those for which H =0 (called "LM* waves). Fileld
components in the longitudinal plane can be found by equations
analogous to £q.(3.2) of the text; but because there will be a
standing wave in the y-direction, both +3¥ will be required in
the y-varlation. A slight alteration of Eq.(3.2) will therefore

be helpful:
(a) LE (Ey = 0)
EL =&{2+k2 (iyx VLHy) ’
4 1. (aHy) ,
L )(2+k2 L\ 3y
X (4)
(b) LM (H,K = 0)
y
A (1.x VB )
L 1){2"'1(2 Yy ’
5 .1 V(ﬁ)
L }QZ 2 oy / °

Consider the LE waves first (E =0). Equations (3b) and (2b)
yield for g,(x) ( in medium 1)

d2g1

(a) -

+(rf-phg, =0,
(5)

(b) p5 =% -k5 .
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In view of the boundary condition that E, =0 when x=0, Eq.(4a)
demands that (aHy/ax) = 0 = (dg,/dx) at x=0. Therefore

gl(x) = A cos xf&(%—p? . (6)
At x=a, E, = 0 = (dg,/dx) also. Hence

sin a{)(%-p% =0 ,
or (7)
az(}(g - p?) (nn)2 , n=0,1,2,°"".
Because of the boundary condition that ﬁL=O when y=0, the

approprlate choilce of exponentials for the y-variation must be
such that H =0 when y=0 [Eq. (4a ):I . Thus

Hyl

In medium 2, Eq.(5) is valid, except for a change in sub-
geript, from 1 to 2. Since the boundary conditions at x=0 and
x=a also remain the same,

(a) gz(x) = E cos XV}(g-pg ,

(b)  a®(XE - p2) = (a'm? n' =0,1,2,°"",

On the otherhand, ﬁL (or Hy) = 0 at y=b, so the proper combina-
tion of exponentisls for the y-variation in this medium is con-
talned in the following final expression for Hyz:

= A cos(ggz) sinh}ﬁly . (8)

(9)

Hy2 = E cos(n;"x) sinhb(z(b-y) (10)

The final boundary conditions at y=d are

(a) E (@) =§ (@) ,
(11)

D>

(b)  H,(a) = B (a) ,

which must hold for all values of x and z. From Eq.(4a), the
above conditions may be written alternatively in the form

(02 +x3) Hoy(a) = (2F + D) B (@) (12a)

-106-




oH oH
2, .2 Y1) _ (0 2 4 12 ( Y2
(R2+k2)(ayd-(x1+kl) cry S (12b)
Substitution of Eqs.(8) and (10) into Eq.(1l2a) yields

A(k( ) cos(n ) sinh&k,d

= E(bf ) cos (& Ttx) sinh &, (b-d) , (13)

which, according to the statement following Eq.(11l), must hold
for all values of x. Therefore n'=n, and Eqs.(7) and (9b) conse-
quently demand that

M%-p§=xg-p§ ’ (14)
or, from Eq.(5b),

2
REa2 = p05u% = (@) - 42 n=0,1,2,°"". (15)

In the light of the above facts, Eq.(13) reduces to
A sinh(3,d) = E sinh[¥,(b-d)] . (16)

The application of Eq.(12b) is now simple, and leads to the
result

A cosh(¥,d) = - E cosh [R,(b-a)] . (17)

A division of Eq.(16) by Eq.(17) results in the eigenvalue
equation
tanh(¥,d) b tanh [3%, (b-a)]

a— - @ 1) EPEEE (18)

where (b/d) > 1. Equations (15) and (18) serve to determine ¥
at any rrequendy, while Eq.(16) or (17) determines the relative
amplitudes of Hy in the two media.

The rest of the field components can be found from Eq.(4a),
end are summarized below. For convenience, all the fields have
been multiplied through by

[ - ]
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n=0,1,2,""",

Egq = Junhy cos (Egz) sinhdt iy ,

_ Medium 1
Eyl =0 , LE
E,; = -JouA(2E) e1n(BIX) sinndeyy (19)
Hoy = 1(nn) sin(nﬂx) cosh¥t,y ,

By = A[&Z (nn) ] s( 4nx) sinh,y ,

_ nmx
HZl = Abfiy cos(-;—) coshb(ly .

For medium 2, fields can be found from Eq.(19) with the substi-
tutions

y —>y-b; 3{1——)€2; A—E; Medium 2
. e (20)
By =By, Hyy ~>-Hpj3 Hy—~H, . =

I% should be noticed that the LE wave for n=0 ig actually
a TE wave. This value of n also makes (3/3x) = 0. Since
Hxl =H 2—0, the vector Hp 1s parallel to the discontinuity between
the media. In a limiting sense, therefore, it may be sald that

Hy*"VES" = 0,

which 1s to be interpreted in the light of the statements made
in Section 3.1 of the text.

The derivation of the LM waves is so similar to the previous
work that only the results will be given below.

n=1,2,°"",
E.q = B&Ql(gﬂ) cos(ggz) sinh®.y Hedium 1 ( )

21
Eq = B[}Eﬂ)z- 72] Sin(ﬁ%&) cosh®,y, o )
E,q = “BRY sino-——) sinha®y ,
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_ nnx
H p = Jwe By sin(—z—) cosh¥ y
Medium 1
Hq =0, I (21p)
H, = JwelB(gﬂ) cos(ﬂgz) cosh¥yy .

The fields in medium 2 can be found from Eq.(21) with the
subgtitutions
y—=>yb; ¥ —>R,; B—F;

Medium 2 (22)
, . _ . . 22)
Hy = Hy 3 By == -Bpp i By B 5 L
The boundary conditions at y=d yleld
(a)  €;B cosh(d,d) = e F cosh[}fz(b-di) ,
(23)
(b) 3B sinh(¥€1d) = -RF sinh[R,(b-a)] ,
and the elgenvalue equations are
(a)  #d tanht,d
= -2 L) [3¢,(b-a)] tann [, (b-d)] (24)
= p-a/ '2 a 2 ’

€2
() #2+ k2 = o2 + k2 = (@7 42
1 1 2 2 a

There 1s no LM mode when n=0,

From Egs.(19) and (21), it appears that at cutoff (y=0) the
LE wave becomes TM (Hz—v 0), while the LM wave becomes TE (Ez—vo).
Therefore the LE wave may be called "primarily TM" and the LM
wave "primarily TE".

In this particular example, it 1s again easy to prove, with-
out investigating the elgenvalue equations, that 72 must be real.

(n =1,2,3,°"".)

we

To 1llustrate, the integrated vector power flow in an LE wave
can be computed directly. In medium 1
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. 3 — %
1, (ETlx Hm) = Eleyl
(25)

D 2
(;)IA[ 0082(11_1;_2:_) sinh ¥,y sinh R}y ,

where o
D = quav[v*z- (21) ] .

Integrated over the range (x=0, x=a) and (y=0, y=d), Eq.(25)
becomes

. 9%
4& 1, (ETlx HTl) do
1

5 sinh( ael+ b—?‘]"_')d ginh( Rl— &Q*l*)d
R +aky - Ry

= D|A|

s (26)

When reduced to a common denominator and transformed by means of
trigonometric identities, Eq.(26) may be written

2 (v*2=y®)
The substitutions (20) show that the corresponding power in
medium 2 1s given by:

jf S do
Z
Ag

= -(-791—1‘2:—-'%-)— Im {aezcosh [, (b-a)] sinh [b’(g(b-dﬂ} . (28)
The total power flowing along the guide 1s the sum of Eqs.(27)and
(28). But if boundary condition (17) is multiplied by the con-
Jugate of Eq.(16), 1t will become clear that the numerators in
Eqs.(27) and (28) cancel upon addition. Since the total power
cannot be zero for all the modes, it must be true that

¥° = y*% (29)

2
[Als do = DIAl® Im [}elcosh(a-eld) sinh(&e*lfd)] . (27)

The same conclusion aprlies to LM modes, by a simllar proof.
Equations (15) and (24b), along with Eq.(29), provide assur-
ance that &Q% and Mfg are always real. Moreover, the former
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equations also guarantee that 1if €5 > €q,
2 _ y2 _ 2 _ .2
R - R =k -k 20 . (30)
In particular,)?i, cannot be imaginary when (and it) ){2 is realyg
Af both are imaginary, then |X,| > [¥ |. Similarly, from
Eqs.(14), (15) and (24b)

(a) p?épg,

(31)

() RZ-p2= ®E-p2- (@7 a0
1 - PL T %o 7 Py T\ = .

Further simple restrictions on )Ql and bﬁz can be obtailned
from a very brief examination of Eqs.(18) and (24a). The func-
tions (x tanh x) and(tanh x/x) are positive, real, and even
functions of (real) x. Therefore the two sides of Eq.(18) or
Eq.(24a) will always be of opposite algebraic sign if bel and R,
are assumed to be real at the same time. Consequently, such a
solution 1s not possible.

It follows from Eqs.(29), (30), (15) and (24b) that ¥,
must be imaginary under all circumstances. Therefore Eq.(31b)
showg that Py must also remain imaginary, which is in accordance
with general matters discussed in Section 4.3 of the text. An
additional conclusion from Egs.(15) and (24b) is that no mode
can be above cutoff (y = 3B) unless

2 2
k5 = (BT) + x5+ g% > @) (32)

where aez = JK,. Thus the cutoff frequencles for all modes must
lie above w = (nm/ajfen).

The behavior of }Ql is more complicated, and a detailed
study of the eigenvalue equations 1is required to understand it
precisely. Such studies have been made elsewhere (3). It will
suffice to state here that above cutoff there must be some fre-
quency at which ¥ = Jk; or p; = O (Figure 4.3 of the text).
Hence, according to Eq.(24b), ¥, = (m/a) at that frequency,
and éfl is therefore real. It remains real at all higher fre-
quencles, too, because P remains >'k1. There exist lower
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frequencies at which a?l becomes imaglnary, and in particular
some such frequency where é{l = 0. The relation between the cut-
off frequency (y = 0) and the frequency at which 3@1 becomes
imaginary 1is, however, a detalled function of the specific prob-
lem being considered.

From Eqs.(19) and (21) it can now be observed that, for
elther LE or LM modes, E, and H  are 1n phase when the mode 1s
above cutoff, and 90° out of phagse when the mode 1s below cutoff.
This checks wlth the fact that the transverse fields are linearly
polarized.

The power orthogonality conditions are easily demonstrated
directly. It is not necessary to consider waves with different
values of n, since such waves are obviously orthogonal as a re-
sult of the x-integration. Moreover, all LE modes are orthogonal
to all LM modes in the power sense, because of the missing field-
components in each group. Therefore the only problems concern
the power orthogonality among LE modes with a common value of n,
and similarly among LM modes with a common value of n. The proof
for the former will be considered as exemplary.

When no superscript is present, let subscripts 1 and 2 refer
to the two LE modes. Otherwlse, the subscript refers to the two
media in the gulde, while the superscript distinguishes the modes.
Then, the required integrals are

a 0d a ,d
S S EJ((}_)H;{Z) dxdy + S g Exél)H;,"éz) dxdy
o 0

o} (o}

d
= D{S A A3 sinh()eil)y) sinh(&ef(z)y) dy
o (33)

b
+g E,E¥ sinh Rél)(b-y)] sinh [Rg(z)(b—yﬂ dy} .
a

where

[»)

> - 252 [ - ]
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The first integral, denoted by Ia’ becomes,

*2

o2
(v3% - v7) I,

= AA3 {a?{l)sinh (wl*('g)d) cosh (R{l)d)

- R{(z)sinh(x:f_l)d) cosh (ae*l*(z)d)} , (34)
while the second (Ib) becomes

(v8% - ¥2) 1,
- ElEgié-?él)sinh [ex2) (0-a)] cosn [#{1) (v-a)]

- Kg(z)sinh [}Qél)(b-d)] cosh [&eg(z)(b-d)]}. (35)

If boundary conditions (16) and (17) and their conjugates are
applied to each mode, it will be observed that the sum of Egs.
(34) and (35) vanishes. Therefore, if v3° # 5, I_ + I, = oO.
The LE modes are orthogonal in a power sense. A similar result
follows for the LM modes.

By steps almost identical to those in Egs.(33) through (35),
it can be shown that for LE waves with the same index n,

5% -
(a) ];EzlEzz do =0
(b) & ¢E_1E%, a0 # O (36)

' %*
(c) fAHzlnz2 do # O

Equation (36) becomes only slightly modified for LM waves, and
the conclusion is essentially unchanged: in general, nelther the
get of Ez's nor the set of Hz's is orthogonal; nor can a ‘weight-
ing" factor € or p be relied upon to render them orthogonal.
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APPENDIX C

"TE-TM® Waves on a Rectangular Waveguide

k%= w €Ep

= b =1
Fig. C-1. Coordinates for rectangular guide.

The above figure represents a conventional rectangular wave-
gulde with perfectly conducting metal walls. It will be assumed
that the derivation of the fields for the TE and TM modes 1s
familliar enough to be omitted.

For TEmn waves,

(a) Hyon = A COS(EEE) cos(ggz) ,

2 2
(o) 1y = 3y ED° @ (1)

(¢) myn=0,1,2,*"*. (but m2+n® #£0) .
For Tan waves,

(a) E,on = Bun sin(ggz) sin(g%x) ,
2 2
(®) p = JJ(%—’I) + @0, (2)

(¢) m,n=1,2,3,""". .
Since Win = -(pﬁn + kz), the TE = and TM = modes are degenerate
when m,n # O,

Consider a mixture of the two waves. If the frequency is
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below cutoff, then

=1 .
2 Re 8, = e Re[(izx VoE,) vTH;] , (3)
which, in the present instance, becomes

2 Re SZ

*
= %T—%I—‘-)(%?-) [sin 1'1'(;E - %y_) sin ﬂ(gz‘ + %Y')] . (4)

Equation (4) shows that Re Sz reverses sign in certaln parts of
the cross section. This can be appreciated more easily by con-
sidering the special case m=n=1, and Re (A{lBll):>O. Then Re 8,
= 0 along the lines

(a) x=(3)y
and (5)
(b) x=a - (%0 Y o

It 18 =0 along the lines y=0 and y=b. Thus the sign distribution

of Re S8, will be as shown in Figure C-2 below.

’f
a
X= 0-(%)y\\ e x=(F)y
\\ P

a N e

\\ - //
\\ //

+ ///K\\\+
- - ™~

F ~

0 b Y

FPig. C-2. Sign distribution of
Re Sz for a (TE-TM)l 1 wave below cutoff.
3

By expanding Eq.(4) trigonometrically, 1t can be verified
that

a b
Re 8,__dx dy =0 . (6)
SO jo zmn

If the mode 1s above cutoff,
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2 Re Sz

_ (8P4 [(j.JZXVTEé)'VTH;‘]MB(P-"V&"2+5"V?Ezuz) o)
= ) .
Equations (1) and (2) show that Ezzn and H  are independent of
frequency, provided that An and an are not functions of fre-
quency. Therefore, if >0, it must be possible to find a fre-
quency sufficiently near cutoff (B=~0) such that the second term
in the numerator of Eq.(7) becomes arbitrarily small. If
Re (A* B ) >0 however, Figure C-2 shows that the first term of
the numerator in Eq.(7) is always negative over certaln portions
of the cross section. In view of the fact that k2 # 0, even
when B becomes zero, it follows that 1in these regions of the
cross section, the Re Sz will necessarlily become negative at
frequencies sufficiently near (but, nevertheless, above) cutoff,
It should be recognized that the Poynting vector reversals
indicated in the foregoing can take place above cutoff when Amn
and an are entirely real, under which conditions the transverse
fields would be linearly polarized.
In any event, Eq.(6) shows that the first term on the right
side of Eq.(7) integrates to zero over the cross section. Hence

the integrated real power flow along the guide has the game alge-
bralc sign as B, in accordance with the general discussions given
In Sections 4.2 and 4.3.
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APPENDIX D

Dielectrlic Rod in Free Space
Driven b ial Dipole

] - wle
Y 7 2~ oK

ROD RADIUS ‘b\
I/ | K=o e p
o —
\\ Ny

/ 1} [1)
DIPOLE WITH “"CURRENT MOMENT" (Ih) i,

Fig. D-1. Coordinates
and notation for dielectric rod.

The above figure represents a solid dlelectric rod having
a clrcular cross section and constants (el,u). It is surrounded
by an infinite reglon with constants (e5,n). An infinitesimal
dipole, polarized along the z-axis, is located at the origin of
the circular-cylindrical coordinates p,9,z. The general method
of solution wlll be to expand thls dipole source into an infinite
gset of line sources, by direct Fouriler transformation. The
boundary-value problem can then be solved for each line source,
and the results finally combined by the inverse Fourier trans-
formation,

From the principles of Fourler analysis, any current-density
distribution I(z) (amperes per meter) may be represented by the
integral

1(z) /g(B) L T (1)

- 00
where
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©0
g(p) = &= /I(z) eP% az (2)
-0
For the particular problem at hand,

I(z) = (Ih) uo(z) , (3)

in which u (z) is a "unit impulse* at z = 0, while I and h are,
respectively, the "effective' current density and %"effective®
length of the dipole. Equation (2) therefore yields

Ih
g(p) =355 . (4)

If the boundary-value problem corresponding to a line source
can be solved, the solutlion to the problem with a dipole source
can be obtained by integration as follows. Suppose that
&(p,9;8) e P2 15 any rield component arising from the solution
to the boundary-value problem when a line source having unit
current denslty e~33z is impressed upon the axls of the rod.
Then the linearlity of the system requires that the field compo-
nent in question be multiplied by g(B) if the current density
is multipllied by the same factor. The superposition theorem de-
mands, in turn, that the total field component R(p,9,z), due %o
the getual current-density distribution I(z), be given by the
integral

R(p,¢,z) = /;(ﬁ) G(P:@;B) e-JBZ ag . (5)

oQ
Therefore it will be necessary to obtain a solution to the rod

problem in the presence of a line source having unit current
density 1 e IPZ,

The required solution can be broken down into several parts.
In medium 1, a source 1is present. Thus the Maxwell equations
have a corresponding source term in them. The total solutlion
in that medium can consequently be taken as the sum of a "“parti-
cular solution® to the differential equations with the source
term present, plus a collection of appropriate source-free solu-
tions. Furthermore, the particular solution in medium 1 need
only be a solution to the differential equations; in finding 1it,
the boundary can therefore be entirely disregarded. Hence the
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desired result may be obtained by solving for the field due to
the given line source acting in medium 1, as if that medium were
Infinlte in extent. The free gsolutions must then be chosen to
conmbine with this particular solution in such a way that the
total fileld will satisfy the boundary conditions.

In medium 2, however, there are no sources. Therefore the
required solutions to the Maxwell equatlions in that medium will
be an appropriate collection of source-free modes, which are
specifically required to remain finite at large distances from
the rod.

The boundary conditions are the continuity requirements on
the tangentlial E and H fields at the surface of the rod. These
conditions will fix the amplitude of each free solution in rela-
tion to the strength of the source.

The aforementioned particular solution in medium 1 can now
be determined. First of all, it will certainly be axially sym-
metric. Furthermore, %he line source produces no z-component of
magnetic field. The z-component of the electric field at all
points in space except p = O must be a solution to Eq.(3.la) of
the text. At p = 0, it must have a singularity to account for
the presence of the line source. The linearity of the system
requires that the ;—dependence of Ez correspond with that of the
line source. Therefore in Eq.(3.la)

2 = 9% - 2

Consequently, the solution for the longitudinal component of the
electric field caused by the line source acting in an infinite
region with constants (el,u), may be written

E, = C K_(p,p) e 32 | (7)

The constant C will be determined by the source from condi-
tlions on the magnetic field H . The latter, according to Eq.
(3.2a) of the text and Eq.(7) above, 1s given by the expression

- Jwe
P

Jwel -
I — ! JBz =
H@ o CKO(plp) e
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Now for any value of z (z = O for example), the line integral

of H, around an infiniteslmal circle of radius p, must equal

the enclosed current. Since the latter is equal to 1 in the
present problem, this condition, along with Eq.( 8) and the ser-
les expansion for the modified Bessel function Kl, requires that

105

znwel

¢ = . (9)

The rest of the fleld components may be evaluated from Eq.
(3.2a) of the text. With a subscript "2" to denote the fact
that the solutions refer to the field of a line source, they may
be written

2
Junpy
(a) EZ! = —2— X (Plp) e Bz ’
_ wnbpy ) e~ JPZ
(b) Epz = 2nk§ Ki(pqp) e , (10)

Dy Bz
() Hyy =35 Kylpyp) o
The remalnder of the solution 1s made up of appropriate
modes both inside and outside the rod. These must have the prop-
agation constant B, and be axlally symmetric TM modes. Therefore

(a) E,y = A' I (pyp) e P2

() E, = Jg-ia'- I, (pp) e P2 (11)
Jwe A _

(¢) Hy = —-,i-— I, (pyp) e dP%

represents the internal (i) free-mode field, while
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- -JBz
Ero = B! Ko(pZP) ©
-~ —JgB! -JBz
Epo = pz Kl(Pzp) = ’
‘JwezB' 18 (12)
- 2" -3z
Hpo = 5 K, (pop) e ,
2 2
pz = g~ - kg ’

represents the outside (o) free-mode field, It will be shown
Immediately that no other modes will be required, because the
boundary conditiong suffice to determine the unknown consgtants
A' and B! in terms of the strength of the source.

The boundary conditions at p = D are

(a) Ez£ = Ezo - Ezi ?
(p) H

- _ (134)
2 H@O Bor o
which become

(a) B! K (%) - A' I_(2)) = a' 25 K (2,) ,
K- (Z,) I.(2,) 13B
(b) BY A _%_2&_ + At _:.L_z_:.L.l-__ =g! Zl K]_(Zl) , ( )

where

(14)
€1 o2myue.b
1

Solution of the pair of equations (13B) for A! and B! can be
carried out by determinants. The system determinant, A, is given
by

I,(2Z,) K. (2,)
1(24 1(2Z5 ] , (15)

A =1,(2) Ko(zl)[:zllo(215 N TR Tz

while the constants A' and B! are determined by
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a'[2,K (250K (2)) - NZK (2K, (Z,)] -

(2) A' = n e
16 )
() B = OL‘Zl[il(zl)xo(zl} Z Io(zlzKl(Zlil. 3 %l . (16)

The Wronskian relation has been used to reduce the numerator of
Eq.(16b).

The solutiong to the unit line-source problem, which corres-
pond to G(p,o,B) e~ B2 (page 118), may now be written:

Medium 1 Medium 2

Ezl = Ez2 M Ezi ’ Eéz = Ezo ’

Eél = Epz + Epi , Egz = Epo , (17)
H$l = H@Z + Hcpi ; Héz = H@o .

In order to form the integrand corresponding to that in Eq.(5),
the field components in Eq.(17) need only be multiplied by the
value of g(B) given in Eq.(4). They must then be integrated with
respect to B from - o0 to +o0 , The resulting contribution of the
integrals containing Ezz, Ept and sz to the field inside the rod
can be evaluated at once. It must be precisely the free-space
field of a dipole in a medium with constants (u,e;), because 1t
represents the superposition of the free-space fields caused by
line-gources whose integral (or superposition) is the dipole
source, The integral involving H 0L? for example, can indeed be

~ shown to be the magnetic field (H¢d) of a dipole, Thus, from
Eqs.(10c), (8), (5) and (4)

j(yﬁ 2 k(622 ) o % ap . (18)

The integral in Eq.(18) is evaluated in the Campbell and Foster
tables (16), palr 867.5. Use of the result contained there gives

for Eq.(18)
I l+jlip2+zz —Jlipz+z2
H@d T 4w ( 5 2)3 © ’
ptz

Hcpd ( ")2

(19)
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which in standard spherical coordinates R = p2+22

z = z becomes

, p = R 8in 6,

Hmd 4m

=+ 3 5=
R2 R

_Ihgin @ [1 kl.] o R (20)
Equation (20) is the well-known form of the dipole fleld, and
confirms the fact that none of the integrals involving the "par-
ticular" gsolution need actually be evaluated. They will be
written simply as the dipole field Ezd’ Epd and H ..

The rest of the integrals involve the "i% and %o" fields.
The multiplication by g(f) merely multiplies A' and B! in Eq.(16)
by (Th/2m), or effectively changes a' to a, where

1

q@ = e’ _ _lh . (21a)

2 4 2 2
™ welb

With the notation

by = zlxo(zz)xl(zl) - xzzxo(zl)xl(zz) , (21v)
the total field solution to the problem therefore becomes:

Medium 1

o
E.=E . +a (fé) I (pip) e 3B2 gp
z1 = “zd A o‘P1P
-00
BA
- A -JBz
Epl = Epd + o j/(plA) Il(plp) e apg , (222)
-00 ) .
o0
A
= _iLq -JBz .
Hcpl Hcpd + jwela /(plb Il(plp) e ag
- 00

and
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X_(p,0)
K _(
Er):af—g——}g-g—e—e—jﬁzds ,

-00

o0
P /(zﬁz) Koy ¥ ap (220)
| Pt

K, (pop) _
H¢2 = =Jwesa j/r—%Eg%-— e~ Bz ag
- 00

The additional relations required to connect P1s Po and B are
rewritten from Egs.(6) and (12):

2

2
pl=62~k1 ’
o . o (23)
P2=ﬁ -kz 3
and therefore
2 _ 2 _ 2 _ .2

The integrals in Eqgs.(22a) and (22b) are extremely difficult
to evaluate completely. Fortunately it is not necessary to do so
in order to discover the part played by the free modeg in the
gsolution to this problem. Since it 1s to the interpretation of
these modes that this paper 1s primarily devoted, much useful
information can be obtalned from the aforementioned integrals.

In particular, 1t is clear that the nature of the integrands in
Egs.(22a) and (22b) depends greatly upon the determinant A. A
substantial digression will therefore be made in order to discuss
1ts properties, and their relationship to the free modes.

According to Egs.(14), (15), (23) and (24), the values of
¥ for which A vanighes are given by the set of equations

I, (Z,) K- (2,)

77%_1%—7 = =)\ z—%—T%—7 , (25a)
17071 27072

22 - 72 = ofuble; - &) (25b)
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~F =2+ x5 =125 +E . (25¢)
These equations are precigely the ones which determine the free
TM modeg on the structure, when the flelds are axially symmetric.
The standard method of searching for free modes leads not only
to Eq.(25), but also to a similar equation for TE modes (when the
circular-variation index (n) is zero). For n> 0, the free modes
are mixed TE-TM, and the eigenvalue equatlion is more complicated
(8,9,10,11,12). The results in the latter circumstance are not
sufficlently different, however, to warrant detalled considera-
tion here.

Equation (25a) cannot be satisfied when Z; and 2, are both
pure real, because the two sides have opposite algebraic signs
(18). Moreover, the left side of that equation remains real
whether Zl is pure real or pure imaginary. Ilow, it is easy to
show that if Z, 1s pure imaginary (=} 85), the right side can-
not be pure real; for by Eq.(5.8) of the text

N2l B0, (26)
- (38,7 = " s gwlllos ) °
50K, 307 81 1 (5,)
In order for the above term to be real, however,
1 E%iéiigl 0 (27)
1 =
71 (5,) ’

or

Im{@él)(agﬂﬁg(l)(agﬂ}
In{ [71(85) + My (85)] [To(85) - 3“0(52)_”

I (85) Ny(85) - J,(85) N (85) =0 . (28)

Since Jl(sz) = -J;(Sz) and Nl(ﬁz) = -Né(&z), Eq.(28) requires
that the Wronskian of the two independent solutions (JO and NO)
must vanish. This is impossible

In view of the fact that v cannot be complex (as outlined

-125-




in Section 5.2 of the text), the only remaining possibility is
for Z, to be real and Z; pure imaginary (= 381). Under these
conditions, however, Eq.(25b) requires that €, > €5, while Eq.
(25¢c) demands that ¥ = JB. Therefore Eq.(25) may be rewritten
(a) J'l(61) N Kl(Zz) ’
61Jo(517 ZgKOZZBJ
2 2 2.2
(b) 87 + Z5 = wud (el—ez) =0 , (29)

() bop% =25 + %5 =%l - 6220 .

Clearly Eq.(29c) states that

The general form of the left side Fl(sl) of Eq.(29a) 1is
shown in Figure D-2. The values a, and bv are glven by the roots
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Fig. D-2. Left side of Eq.(29a).

of the Begsel functions (excluding the origin) as follows:

(a) Jo(av) = 0 R D = 1’2’5’0'. ;
and (31)
() (b)) =0 , v=1,253""".

The right side F,(Z,) of Eq.(29a), on the other hand, has
the behavior 1llustrated in Figure D-3 below.
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Fig. D-3. Right side of Eq.(29a).

From FiguresD-2 and D-3, 1t may be seen that the equality
of F; and F2, required by Eq.(29a), can take place only when

ay = 81 = bv ’ v =1,2,3,°°°. (32)
For each value of v, the values of Z, range from zero (at
8, = av) to oo (at 8, = bv)’ The values of v, in fact, designate

the modes, and the resulting loci of Zg versus 81 are shown in
Filgure D-4. The dotted clrcle in Figure D-4 represents the rela-

MODE | MODE?2 MODE 3 MODE 4

2 R ’%4 v
e
OF GIRCLE //

/
= w? b (¢)-€)) ///A //A //1

O a b @ by a3 by as by

RADIUS
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l
!
\
!
|
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Fig. D-4. Solution of Egs.(29a) and (29b).

tion (29b), which must be satisfied along with Eq.(29a). The
intersection of this circle with each "mode curve" (solid lines)
gives the corresponding values of Z2 and 81 in that mode at each
frequency. According to Eq.(290), B = k2 when 22 = 0, From
Figure D-4, the frequency at which Z, =0 (in the vth mode) is
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Bk

that for which the circle just touches the corresponding "mode
curve', Hence
a

B, =k, when uf =—5—L ,  v=l,2,3°°°.  (33)
pb (el—ez)

The Wy in Eq.(33) are the "divergence frequencies" for each mode
ip#, Mode "v" ceages to exist when w<wy . At very high fre-
quencies, Figure D-4 also shows that &, —>Db_ (a constant, in-
dependent of frequency). Therefore Eq.(29c) leads to the conclu-
sion that Bv —> kl ags w—» ., Since thls same equation shows
that

B% B B§+l = 532.,v+1 - si,v ) (34)
and since it 1g clear from Figure D-4 that
61,v+1 > al,v ’ (35)
therefore
(36)

Bv > Bv+1 *
It is not difficult to see from the foregoing considerations
that the frequency dependence of the various Bv willl be given by
the curves of Figure D-5, in which the lines showing kl and kz
are also included.

——kp= W € 1

Wy Wy W43 Wyq

Fig. D-5. Bv versus w
for TMov modes on a dielectric rod.
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It 1s a consequence of Figure D-5 that if the frequency
1s below wyy (for a given rod), there will be no free TM
modes. Even if the frequency 1s above this value, there will
only be a finite number of these free modes having divergence
frequencies below the glven frequency. Since the TEov modes
are similar, and in fact can be shown to have the same diver-
gence frequencies as the TMov modes, 1t 1s therefore c¢lear that
these modes cannot be a complete set.

The modes which are not axially symmetric (n>0), differ
from the present ones in that there is always one TE-TM mode,
for each value of n >0, which persists down to w = O, Never-
theless, since 1t 1s possible to construct sources whose free-
gspace fileld requires only a finite number of angular variations
n, the TE-TM modes are evidently still not complete. Such a
gource would be, for example, a dipole at z = O which is polar-
1zed in the transverse plane; for this source excites only modes
with n = 1,

In any case, there will be no free modes at all if €1< €5,
even though the solutlion to the dipole problem can always be
expressed in an integral form similar to Egs.(222) and (22b).

It follows that there must be some portions of the integrals
which are not representable by free modes. That is, the inte-
grals cannot be entirely represented by a serles expansion in
the free modeg, and therefore the fields due to the dipole
source cannot be thus represented. It is lnteresting to observe
that the Fouriler integrals in question can furnish a basis for
the proof of the completeness of a set of modes, and this tech-
nique has been applied (17) to develop the theory of eigenfunc-
tlon expansions in general,

The foregoing discussion of the significance of A (and the
connection between its zeros and the free modes) sheds consider-
able light upon the interpretation of the integrals in Eqs.(22a)
and (22b). The simplest integral is that for E_,, which will be
taken as an example. With the new notation
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(37)
Z = k.2 R === ar .
2 ’ k €5
the field E22 can be written
_Bap _
Rx 0

oo

(Bw2-1)(ByWo%Z) k_ (rf3-1)e™I"2au

/ ngl(BN'E'_XE) K, (B W‘-l) + II(BJW) Kl(B{-;—g--_—ly . ‘(38)

The integrand (excluding the exponential) in Eq.(38) has branch
roints at 00 and at W = + 1, because of the functlions Ko and Kl’
It may also have a finite number of simple poles corresponding
to the free modes, as previously discussed. If there are any of
these, Eg.(30) shows that they lie symmetrically about the origin
in two reglions restricted by

1 =|w]|2|R] . (39)
Suppose, for example, that W = ¢ WO are the only such simple
noles. They lie directly upon the path of integration, since the
free modes are undamped.

In thils situation, the Fourler integral must be interpreted
properly. In order to do so, 1t 1s simplegt to consider the pres-
ent lossless rod as the limiting case of a dissipative one, in
which kl i1g complex. The propagation constant (Yo) of the free
mode would then be complex, and the particular branches of the
Bessel functions which determine Yo would have been so chosen
(on physical grounds) that oy and Bo would have the same algebralc
sign. The free mode would propagate with z-dependence

-y 2z -(a_+38 )z
e 9 - ¢ o ‘Yo :
the "incident wave" would have %y Bo > 0, while the correspond-

ing "reflected wave" would have a,, B, < 0. Since the propagation

factor in the integral (38) is written instead as e-JWZ, the
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corresponding value of Wo would be,wo = 50 - Jao. The two poles
of the integrand in Eq.{38) would thus lie in the second and
fourth quandrants of the complex W-plane. The actual lossless
problem is now to be interpreted as a limiting form of the dis-
slpative one, when a, - 0, It is more convenient, however, to
displace the contour of integration where 1t passes the poles,
rather than to move the poles themselves. Therefore the integral
(38) 1s to be interpreted as taken over the path shown in PFigure
D-6, with the understanding that the radil of the small detours

BRANCH POINTS W-PLANE
POLE //\\\\k\\\\\ c
- m - I " w‘o - P 1 &:\ 1 o w
-¥ 23( -l 0 I +Wo H
POLE

Fig. D-6. Path of integration for Eq.(38)

C and C! will be allowed to approach zero. It 1s not possible
to close the contour on the conventional large semi-circle, be-
cause of the branch point at co. This is far from unexpected,
however, in vlew of the fact that the possiblility of such a
closure would mean that the poles furnished the only contribu-
tion to the integral. Then the free modes would be the entire
solution, and there would be no radiation. It is clear from
the physics of the problem, however, that there will be radia-
tion,and the mathematics shows up this fact by requiring con-
tributions to the integral from reglons outside the immediate
vicinity of the poles,

These statements may be clarified by rewriting the integral
in Eq.(38) in the condensed form

o0
I(z,r) j[;(w,r) cos WZ aw . (40)

-0
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By reason of the symmetry of the problem, 1t is sufficient to
conglder Z > 0, The function F(W,r) is described, gua function
of W, by Figure D-6, while its dependence on r 1s governed prim-
arily by the Bessel function Ko(rJQE:i). The branch points
W=+ 1 are zeros of F(W,r), as can be seen from Eq.(38) by
using the series expansion of the K-functlons near this value of
W. The square roots are to be taken in such a way that thelr
angles lie between O and + %, because of the physical requlrements
that the integrand must elther represent outgoing waves or remain
finite ag r —> oo, Thus F(W,r) 1s complex when W<1 and real
when W> 1,

It 1s therefore convenlent to write Eq.(40) in the form

I(Z,r) = Ia(z,r) + I,.(2,r)

o0 (41)

1
S F(W,r) cos WZ aW + S F(W,r) cos WZ aw .
0 1

According to Figure D-6, the interpretation glven to Ib(Z,r) is
Ib(Z,r)

F(W,r) cos WZ aw

1im Swo-so goo
Wots,

F(W,r) cos WZ aw +
1

.+Jr F(W,r) cos WZ aw {, (42)
C(-m,o

where W - Wo = 50939 on the contour C, The first two integrals

in Eq.(42) define, together, a Cauchy principal value on the real
axis of W. The remaining integral about C can be obtalned in
terms of residues from standard methods of complex-variable theory.
Thus

Ib(Z,r)

oo
=P {g'F(W,r) cos WZ dW }~nJ R(W_,7) cos W Z |, (43)
1

where R(Wo,r) is the residue of F(W,r) in the simple pole at Wos
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and P denotes the Cauchy principal value of the first integral.
According to the integrand in Eq.(38), the form of R(Wor) will be

R(W,,r) = g(W_,B,3) X_(rf¥2-1) (44)

where g(W_,B,3) would be obtained explicitly in the process of
finding the reslidue at W =Wo.

In order to evaluate the first integral in Eq.(43), it is
convenlent to define

Qw,r) = (w-w ) F(W,r) (45)

whence, 1in particular,

QwW,,r) = R(W_,r) . (46)
Therefore
%)
P{ YF%w,r) cosWZ aw }
1

cosWZ aw . (47)

s

Since the integrand in the second integral on the right side of
Eq.(47) remains finite at W=W_, no principal value is required.
The first integral can be evaluated directly;

[ 2552 oo )
P ——— cosWZ 4W

00
. f[@(w,r) - oW, )]
1 W=

1 W,
©0
Qw_,r)
= P ——-—E—-cosZ(E-i- Wo) dE}
-(Wo—l)
oo
= Q(Wo,r) P{ gcoswc;z -9-97-5-5 - sinwoz %ﬂz)d)c}, (48a)
-(W -1)Z
)
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which can be integrated to yileld
00
w,,r)
P e cosWZ dW}
1 0

= -R(W_,) { c1 [(w,-1)2] cosW z

+ (n+ si[(wo—l)z]) sinWoZ} . (48b)

The 01 and si functions are defined in the standard manner (18).
It is now possible to interpret the integral in Eq.(40) quite
effectively. With reference to Eq.(41), I_(Z,r) is the portion
which accounts for the radiation. The functlon K (r Wo-1 ) be-
comes a Hankel function when W<1l, and, for any finlte value of
Z, this has outgoing-wave character as r becomes large. The in-
tegral is thus seen to be a superposition of radlating cylindrical
waves, each produced by the Fourier components of the induced
charges on the surface of the rod. It is %o be observed, how-
ever, that when r has any given value (>-B), the contribution of
Ia(Z,r) vanlshes at large Z. This circumstance arises from the
well-known 1limit theorem that, 1f f(x) is sectionally continuous
in (a,b), then

1lim

b
k_,oog f(x) cos kx dx =0 . (49)
a

The second term in Eq.(41), Ib(Z’r), vanishes exponentially at
large radlal distances from the rod, on account of the corres-
ponding exponential decay of K _(r W-1) when W>1. This integral
then represents a combination of the free-mode field and the non-
radiating (or "locall) field of the charges induced on the rod
surface. The separation between the latter portions can be made
from Egs.(43) through (48). From Eqs.(43), (44) and (48), in
fact, the free-mode part is seen to be composed of the following

terms,

-1%4~




Freg mode = -mJR(W _,r) [cosWOZ -3 sinwOZ]

-W .z
-mig(W_,B,®) K _(rfWe-1) e ~ ° (50)
while the "local" field comprises the terms

OEJ,(W,I')—Q,(WO,I')]

T cosWZ dw
W Wo

"Local' field = f.
1

-R(W_,r) {01 [(W,-1)Z] cosW 2
+ s1[(w_-1)Z] sinWOZ} . (51)

The Justification for the separation made in Egs.(50) and (51)
lies in the fact that all the terms in the latter vanish as Z
—>00 [Eq.(49) and reference (18)], while those in the former per-
slst indefinitely along the rod.

Further numerical work could be given here, in order to ex-
amine the field outside the rod in greater detall, but the gen-
eral plcture outlined above appears sufficiently clear for the
purposesg of thls paper.
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