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PROPERTIES OF GUIDED WAVES

ON INHOMOGENEOUS CYLINDRICAL STRUCTURES*

R. B. Adler

ABSTRACT

An analysis is given of some basic properties of exponential
modes on passive cylindrical structures, in which c, t and r vary
over the cross section and the bounding surface is not completely
opaque. Major, but not exclusive, consideration is directed to
lossless structures. Each mode is generally a TE-TM mixture. Con-
ventional orthogonality conditions do not all remain valid, but
some are retained. Conditions are discussed under which the instan-
taneous-, vector-, or double-frequency power flows along the struc-
ture are additive among the modes. Stored and dissipated energies
generally are not additive. It is shown that the propagation con-
stant for modes on a lossless structure cannot be complex; when
the lossless structure has no confining boundary (like a dielectric
rod), the modes cannot even possess a true cutoff. Consideration
is given to the relation between the direction of real power flow
and that of the phase and group velocities. The frequency depen-
dence of the field distribution is also interpreted. Examples are
included in the Appendices.

* This report is identical with a thesis of the same title sub-
mitted by the author in partial fulfillment of the requirements
for the degree of Doctor of Science in Electrical Engineering
at the Massachusetts Institute of Technology.

1-

__ _



-
AW



TABLE OF CONTENTS

I. Introduction 1

II. Formulation and Preliminary Analysis of Problem 6
2.1 Coordinates and Notation 6
2.2 Reduction of Maxwell Equations to Cylindrical Form 8
2.3 Detailed Formulation of the Problem 13
2.4 Boundary Conditions 15

III. Basic Properties of the Modes 21
3.1 TE-TM Properties of the Modes 22
3.2 Incident and Reflected Waves 25
3.3 Orthogonality Conditions 28
3.4 Power and Energy Consequences of the Orthogonality

Conditions 33
3.5 Characteristics of the Propagation Constant 41

IV. Physical Characteristics of the Modes 47
4.1 Mode Properties at a Single Frequency 48
4.2 Frequency Behavior of the Propagation Constant 55
4.3 Frequency Behavior of the Transverse Field Distri-

bution 64
4.4 Polarization of the Fields 70

V. "Open-Boundary" Structures 77
5.1 Coordinates and Boundary Conditions 7
5.2 Characteristics of the Propagation Constant 78
5.3 Physical Interpretation of the Free Modes 5

VI. Conclusion 90
Appendices 91

A. Circular Guide with Reactive Wall 91
B. Rectanular Guide Partially Filled with Dielectric 104
C. "TE-TM Waves on a Rectangular Waveguide 114
D. Dielectric Rod in Free Space, Driven by Axial Dipole 117

Acknowledgment 136

References 137



a-

44',



PROPERTIES OF GUIDED WAVES ON

INHOMOGENEOUS CYLINDRICAL STRUCTURES

I. INTRODUCTION

Among the simplest of common waveguide structures are those

which consist of an electromagnetically opaque tube, filled

uniformly with a substantially dissipationless dielectric

material. The wall, or tube, is usually fashioned from a metal

of virtually infinite conductivity, and the cross-sectional

shape of the enclosed space may take many forms, of which only

a few are both structurally practical and analytically simple.

In any case, however, the first step often taken, in order

to develop an understanding of the behavior of the electro-

magnetic fields which may be propagated along the tube, is to

consider those waves which can exist in the absence of sources

within the guide. More precisely, attention is directed toward

the case of an infinite tube whose longitudinal axis is desig-

nated as the z-axis; a solution is then found for fields having

harmonic time dependence e jwt, and exponential behavior in the

z-direction (eyz). Although there are no sources within any

finite length of the structure, these solutions or "free modes"

may sometimes most conveniently be thought of in the steady

state as being produced by sources located at z = ±oo.

Under the physical conditions described above, the modes

in question have interesting general properties, with which

the reader is assumed to be familiar (1); such properties

become useful not only from the point of view of understanding

the basic phenomenae involved, but for the calculation of more

complicated problems involving the unction of dissimilar

guides, or the effects of transverse discontinuities in a

given structure.

Within the past few years a considerable number of

practical problems have arisen which require an understanding

of the propagation of electromagnetic waves along cylindrical

structures of more complicated varieties than those previously
p
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mentioned. The extent to which these structures differ from

ordinary waveguides has not been entirely clear. Examples of

the problems in question are: the waveguide phase shifter, com-

prising a section of ordinary guide partially filled with loss-

less dielectric; various delay lines employed for the purpose of

obtaining slow velocities of wave propagation, and comprising a

loaded guide or helical wire; the polyrod antenna, involving a

dielectric rod as waveguide and antenna; velocity-modulated

tubes, which make use of a drift space either partially or com-

pletely filled with an electron beam; and the traveling-wave tube,

employing a loaded-guide or helical-wire delay line, surrounding

an electron beam.

It is common among these physical situations that the "modes"

encountered therein no longer possess some of the usual waveguide

mode properties. In particular, the modes found by Hansen (2)

for the delay line with a "reactive wall" are not orthogonal in
the manner characteristic of standard waveguide modes. A similar

comment applies to the modes obtained by Pincherle (3) in the

waveguide partially filled with dielectric. Hahn (4,5) has em-

ployed a set of modes, applicable to the normal waveguide con-

taining an electron beam, which again fail to be orthogonal in

the conventional sense; he has suggested (5), however, that the
conservation of longitudinal time-average power flow along a

lossless guide may be used to furnish an orthogonality condition

in dissipationless structures. Pierce (6) and Chu (7) have en-

countered modes for the helix type of traveling-wave tube; these

modes also lack the conventional orthogonality property.

In another direction, so-called "open-boundary" problems

have been attacked on the mode basis. Examples of these are

the treatments of the dielectric rod given by many authors

(8,9,10,11,12), as well as various approximate studies of the

helical-wire guide(13). The difficulty in such open-boundary

problems is that at any radian frequency w<oo there may be

only a finite number of the discrete free modes which can exist

on a given structure. Whether or not an orthogonality condition

of some sort exists between these discrete free modes, the fact
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that they are finite in number at any particular frequency

evidently means that they are not a complete set. It is there-

fore indicated that a consideration of only such free modes

leaves much to be desired from the point of view of acquiring

an understanding about the general electromagnetic properties
of open-boundary structures.

In most of the earlier engineering investigations of the
more complicated problems outlined above, it has nevertheless

been implied that the modes encountered therein have essentially

the same important properties as those uncovered in the solution

to the simpler waveguide problems mentioned at the outset of

this discussion. Yet it has already been made clear that there

are some significant differences between the mode properties in

the two categories; for simplicity, the conventional waveguide

problems with an opaque wall may be classed as "homogeneous

problems", and all the rest (broadly) as "inhomogeneous prob-

lems".

It is not practical in this work to cover quite as wide a

range of inhomogeneous problems as has thus far been suggested.
A convenient division can be made, however, into active systems
(with an electron beam present) and passive systems ( with a

dielectric medium present, which is, at most, dissipative). The
discussion will henceforth be limited to passive cylindrical

structures. They will be termed "inhomogeneous" if either the

bounding wall is not perfectly opaque, or the dielectric medium

is not distributed uniformly in the cross section, or both.
Even with this further subdivision of the inhomogeneous

problems, it will be found, upon the more detailed examination

in the sequel, that if any of the mode properties are sub-

stantially the same as those for the homogeneous problems, che
reasons therefor are likely to be misunderstood at first glance.

Moreover, there are also some significant differences; conse-
quently it isdeserving of further consideration to discover the

sources of these similarities and differences, in order to en-
hance and extend the engineer's understanding of these more

complicated problems.
p
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In the ensuing work, therefore, an attempt will be made to

point out and analyze the most important physical properties of

exponential modes on inhomogeneous cylindrical structures, in

which the material constants of the enclosed (passive) medium

may vary in the transverse plane, and in which the bounding sur-

face is not absolutely opaque. The general direction of the

investigation will be to determine which of the most significant

properties of the familiar modes for homogeneous structures can

be carried over into these passive inhomogeneous problems. The

analysis in the main body of the work can be broadly divided into

two major headings, the first of which deals primarily with

"closed-boundary" structures (Parts II-IV inclusive), while the

second (Part IV) considers "open-boundary" structures. Although

the admittance boundary conditions (Section 2.4) are intermediate

between opaque boundaries and open boundaries (Section 5.1), it

seemed advisable to include problems involving an admittance wall

under the "closed" heading. The Appendices are illustrative

problems, of which the first three (Appendices A,B and C) amplify

and verify matters discussed under the closed-boundary heading,

while Appendix D treats a typical open-boundary problem.

After a preliminary reduction of the Maxwell equations to

cylindrical form, and a discussion of the dyadic-admittance

boundary conditions, (Part II), the mode properties on closed

structures are discussed in Parts III and IV. hile Part III

is called "Basic Properties of the Modes" and Part IV "Physical

Characteristics" thereof, the dividing line between them is not

sharp. It was desirable to make the separation primarily for

purposes of logical order.

Part III takes u the need for combined "TE-TM" modes in

the general inhomogeneous structure (Section 3.1), followed by

an indication of the z-symmetry in the entire problem, which

leads to the presence of "incident" and "reflected" waves for

each mode (Section 3.2). These considerations lead to the main

development of the orthogonality conditions (Section 3.3), which

is then followed by a discussion of the various consequences

thereof in terms of power flow and stored energy when two modes
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are present on the structure simultaneously (Section 3.4). The

final section of Part III reviews briefly some pertinent prop-

erties of the propagation constant on homogeneous structures,

pointing out the fact that 2 is entirely real when the structure

is lossless, and giving correlations between the algebraic sign

of a and (=a+jp) and the direction of power flow along the

guide. The main object of this section (Section 3.6) is, however,

the ensuing proof that 2 must also be pure real on a lossless
inhomogeneous structure.

Part IV then proceeds with a study of vector-power flow in

a single mode, emphasizing the point that the correlation between

the algebraic sign of and the direction of power flow down the

guide is no longer so simple for inhomogeneous problems as for

homogeneous ones (Section 4.1). Sections 4.2 and 4.3 deal prim-

arily with the physical interpretation of the fact that the

field distribution in a single TE-TM mode generally changes with

frequency; and Part IV concludes with Section 4.4 on the polar-

ization of the fields in these mixed TE-TM modes. It has been

advisable to restrict most of the discussion in Part IV to loss-

less cases.

Part V on "Open-Boundary" problems draws upon the material

in the preceding work, but develops the additional conclusions

that an open structure cannot support either a free exponential

mode below cutoff, or one which has a phase velocity greater than

that of plane waves in the externally surrounding space. A brief

discussion is then given of the consequent fact that these free

modes may be finite in number at any given frequency, and there-

fore cannot be a complete set. In particular, they cannot

account for radiation from a dielectric-rod antenna, and the
actual mechanism of such radiation is touched upon.

Following a short conclusion, and some suggestions for

further work, the four Appendices are attached. Sufficient idea

of their content can be gained from their titles in the Table

of Contents; they supply a small background of experience to

substantiate the general discussions outlined above.

It requires emphasis at the outset that mathematical rigor
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in the derivations is far less important to a discussion of this
nature than are the fundamental physical ideas behind the analysis.
The purpose of the present work is to improve the engineer's

intuition, rather than his technique.

II. FORMULATION AND PRELIMINARY ANALYSIS OF THE PROBLEM

Preliminary to the main topics under consideration is the in-
troduction of the coordinate system and notation. A brief analysis
will then be required to convert the basic complex Maxwell equa-
tions into a form particularly suitable to cylindrical coordi-
nates. The problems to be considered can then be stated in more
precise form. In particular, it will be desirable to make a few
remarks about the form of the boundary conditions which will be
included in the term closed-boundary structure".

2.1 Coordinates and Notation

With reference to Figure 2.1 (page 7), the following
notation will be clear:

E(t),H(t),B(t),D(t) - Real field vectors; functions of
(x,y, z,t).

E,H,B,D - Complex field vectors; functions of ( y,Z,W).
E,H,B,D - Complex field vectors; functions of (x,y,w) only.

ET(t),ET,ET,etc. - Vector functions as above, but having
space components only in the transverse

(T) plane (x,y).

En,ET,Ez,etc. - Complex scalar components; functions of
(x,y, z,w).

En,E,,Ez,etc. - Complex scalar components; functions of

(x,y,w) only.

E s (t),E s ,E s,etc. - Vector functions as above, but having
space components tangential to some

particularly designated surface (s).
For example, in the particular case of an electric-field

vector which is harmonic in time and exponential in z, the
following relations will hold:
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E(t) - Re(Ee jwt) = Re[(EeTZ)e w t ] (2.1)

= Re(EeJWt-Yz) = ET(t) + izEz(t),
where

E = ET + izE z = Ee' = (ET + izEz)e-~z (2.2)

and therefore

(a) ET(t) = Re(EeJwt) = Re(ETeJWt-z),

(b) E7 (t) = Re(izejwt) = Re(Ezewt-z). (2.3)

Fig. 2.1. Coordinate

system for cylindrical structure.

P - Any point on the bounding wall.

A - Any cross sectional area of guide.

L - Any bounding contour line of the guide wall.

n - A real unit vector normal to the wall and directed

outward; independent of z.

i - A real unit vector in the transverse (x,y) plane,

tangent to the wall and independent of z.

iz - A real unit vector along the +z direction,

independent of x,y and z.

The positive direction of i is such that at any

point P on the wall n, i and iz form a right-handed

system of orthogonal unit base vectors, in that order.
The area A and contour L may lie in any plane

normal to the z-axis.

-7-



If the component of the vector tangent to the bounding wall

in Figure 2.1 (page 7) is desired, the required component would

be a vector given by

Es(t) = Re(E eJwt) = Re(EseJUWt-z), (2.4)

with

E = irE + i Ez =Ese
5 z z (2.5)

- (iTET + izEz )e ~ z.

Additional detailed notation will be introduced as required,

with MKS Rationalized Units employed throughout.

2.2 Reduction of Maxwell Euations to Cylindrical Form

When the time variation of the fields is taken to be

harmonic (eJwt), the appropriate form of the Maxwell equations

applicable to the cylindrical system of Figure 2.1 (page 7), in

the absence of sources, is

(a) Vx E = -H,
A (2.6)(b) Vx = wcE, 

with jwc' = + Jwc. It is to be recalled that ,tL, and a, the

(real) dielectric, permeability and conductivity constants of

the medium within the guide, may be functions of the transverse

coordinates (x,y), but not functions of z. For the sake of

simplicity, these parameters have also been taken independent

of frequency w, although in the majority of the results which

follow an extension can easily be made to include such frequency

dependence.

Since the problem is cylindrically symmetric, it is natural
to search for solutions which have the cylindrical behavior

E = E(z,w) ; H = H(z,w) ; (2.7)
in which cp(z,w) is a complex scalar function of (z,w). The

introduction of Eq. (2.7) into Eq. (2.6) results in the

relations

(a) VpxE + cpVxE = -jL2cpH,
(b) VcpxR + VxH = wc'E.

To select only the transverse part of Eq. (2.8), take the cross
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product of both sides with i as follows:

(a) [izX(izXET)] X + qTEz = -JuXIp(izxHT),

(b) [izx(izxHT)l d + cpVTHz = jw 'cp(iET),(2.9)

in which VT is the gradient operator confined to the transverse

plane. A dot multiplication of Eq. (2.9a) by E, and of Eq.

(2.9b) by H, brings forth the new forms

(a) -(ET.EL) dz + E*. TEz = -Jupiz- (H T x E),

(2.10)
(b) -(HaT.k) ~d + HT VTHz = Jw2CPiz (ET x ).

The star (*) represents the complex conjugate of the function to

which it is applied. Division of Eq. (2.10a) by-the scalar

function 9(ET .E), and similar division of Eq. (2.10b) by

9(HT-H), accomplishes a separation of both equations, as in-

dicated by the results

(a -n i Z(HT x E) E*- VTEz
(a) - d = -J1 ( E T .TcSfL dz .ET) (ETE*)

(2.11)
1b - i -(ET x HV) HT VTHz

(b) d = jWC iz T T - Tc) p dz w (HT.H*) (HT'HT) '

Since the lert sides of both equations in Eq. (2.11) above are

functions only of z, while their right sides are functions only

of (x,y), the conclusion must be that

_ "p = _Y ( W), (2.12)
cp dz

in which y(w) is a complex constant, independent of x,y and z,

but generally a function of w.

Before drawing final conclusions about this separation

property of the Maxwell equations, it is necessary to be certain

that Eq. (2.12) is consistent with the longitudinal parts of

Eqs. (2.8a) and (2.8b), namely the dot product of Eq. (2.8)

with the unit vector i:

(a) i z ( x ET) = -JwHz, (213

(b) iz (v X HT) = Jwe'Ez.

-9-



The resultant cancellation of the function (z,w) means that -x

Eq. (2.13) allows the separation of the fields in the form A

selected, without imposing further restrictions on (p.

It is now possible to conclude from Eq. (2.12) that if a

solution of the form chosen in Eq. (2.7) is at all possible, then

p(z,w) = e - ().

The complex #propagation constant y will presumably be

determined at any frequency w from the boundary conditions. In

fact, it is of primary importance to recognize that X is a

function of frequency, and further consideration will be directed

subsequently toward this frequency dependence.

Equation (2.9) may be rewritten in a new form, appropriate

to the exponential solution found above for p:

(a) YET + VTEz = -J~w (i HT), (2.14)

(b) 'YHT + VTHZ = jwE' (iz x ET).

Solution for HT in terms of VTE z and VTHz may be made from
Eq.(2.14) with a cross multiplication of Eq.(2.14a) by

(jwE'iz/Y), and a subsequent addition of Eqs.(2.14a) and (2.14b).
Similar steps yield a solution for ET, and the results will be

(a) HT 2 vTHz + p2 iz x VTEz ,
~~~~p p ~~~(2.15)

(b) E -- V E I XVT 2 Tz 2 i x VTH. (2.15)

The function p2 introduced in Eq.(2.15) is defined by the re-

lations

(a) p2 = -(72 + k2)

and (2.16)

(b) k = , or

k 2 = w 2C'l = -JuL (a + Jwe).

By reason of the dependence of ¢n and %i upon the transverse

coordinates, k 2 (or k) is also a function of position in the
guide cross section. Then p2 also becomes a function of position

in the transverse plane, as well as a function of frequency.

Equation (2.15) should be looked upon merely as a restate-

ment of the transverse parts of the two Maxwell equations
S
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Z' [Eq. (2.6)1; a restatement, however, which makes them specially
applicable to cylindrical systems, and places in evidence the

fact that the longitudinal field components E and H are in

the nature of a pair of scalar potentials from which the trans-

verse fields may be derived.

It is natural to ask next for the equations governing the

behavior of E z and H. Such equations can most expeditiously

be found by returning to Eq.(2.14) and taking the divergence of
both sides:

(a) yyVT-ET + VEZ = Jwui z . ( x HT)

- jWVT (iZX HS),

(2.17)
(b) YTHT + VTH = -Jwe'i z (v X ET)

+ jWVTE'(i z x ET).

With reference to Eqs.(2.13) and (2.16b), this result may be

rewritten in a simpler form, namely

(a) yVT-ET + Ez = -k2E z - jwVTL(iz HT) ,

(2.18)
(b) 7YVTHT + Hz = -k 2H + JwVTc '(i z x ET) (2.18)

The divergence terms in Eq.(2.18) can be removed most easily by

returning to the Maxwell equations (2.6), and taking the diver-

gence of both sides:

(a) v.(i) = AV.H + H-VT i ,0

(b) V(c'E) = 'VE + E VT = 0(2.19)

Now VTL and VTE' are vectors in the transverse plane, while

according to Eq.(2.2)

H = He Tz = (HT + izHz)e Z ,
(2.20)

E = Ee- z = (ET + iEz)e- .

Therefore Eq.(2.19) leads to the conclusion that

(a) VT'HT = Hz - tL 'HT

(b) VTE 'Y VT (2.21)
(b) VT E T = E z -. E T

-11-



As a result of Eqs.(2.21) and (2.16a), Eq.(2.18) becomes

/V l

z(a) T y -p2w(z = , 1'% -J~~T')(iz ) HT)

(b) 2 Hz p 2Hz = (V )H + Jw(V') (iz X (2.22)

Substitution of (iz x HT) from Eq.(2.14a) into Eq. (2.22a), and

of (iz x ET) from Eq.(2.14b) into Eq.(2.22b) yields

Vk 2 VTIL
(a) ~E - p2Ez = yET + VTEz

2 V, (2.23)

(b) VHZ - p2Hz = '~T 2 + T .VTHz ,

where it should be noticed that

VTk 2 Vti 'I ,
t = T + - (2.24)

k" 1

The transverse fields are given in terms of VTEz and VTHz by

Eq.(2.15). Use of the latter equation in Eq.(2.23) results in

the final relations:

(a) EZ -p2EZ = 1 2 VT -k 2 VTA ]*

+ JIlyiZ · k 2 x THZ

(2.25)

(b ) VTHZ P 2 [ H -2 VT| H 2 .25

- jWC 'yiz * X VTEz

These last equations between E and H can be considered as

replacing the longitudinal parts of the MIaxwell equations, ust

as Eq.(2.14) (or 2.15) replaces the transverse parts therof.

"Equations (2.14) or (2.15) along with Eq.(2.25)
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or Eq.(2.23) are a complete restatement of the
complex Maxwell equations for a source-free cylin-
drical system in which all field components have
harmonic time dependence

e Jwt
and a secarated z-deoendence

e- (w)z. ,

2.3 Detailed Formulation of the Problem

In order to solve any particular problem, the solutions of

Eq,(2.25) must be expressed in terms of the transverse coordinates

(x,y) and the unknown value of y. Equation (2.15) determines

the transverse fields, and application of the boundary conditions
leads to a functional equation which will select the appropriate

values of y at each frequency. It is to be expected that in

some cases the relative amplitudes of E z and H on the boundary

will also be fixed by these same boundary conditions.

It should be emphasized again, however, that according to

Eq.(2.16a) p 2 is a function of the transverse coordinates. As

a result, it does not have the significance of an eigenvalue in

these inhomogeneous problems. For any particular frequency, the
set of allowed values of y form the eigenvalues. In general, the
functional equations determining y will be transcendental, and

the various branches of the functions will designate the "modes".

Since p2 is a function of both the frequency w and the coordinates

(x,y), it is to be anticipated that the field distribution in
the transverse plane,governed by Eq. (2.25), will in general

change with frequency. This fact is in marked contrast with the

situation in homogeneous guides, where p 2 is a constant for each
mode, and Eqs.(2.25) do not contain any coefficients dependent

upon w. In homogeneous cases, the field distribution for any

particular mode remains the ame over the entire frequency range

O<w<oo, and the modes themselves may in fact be designated by the

various allowed values of p 2.

When the problem is not homogeneous, the variation of the
field distribution with frequency makes it much harder to identify

the different modes.
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It is not the function of the following portions of this

paper either to solve Eqs.(2.25), or to prove that allowed values

of y must exist under the particular boundary conditions to be

prescribed later in Section 2.4. Rather, an investigation will

be conducted to determine some of the general properties which

are to be expected of those modes which do exist, in order that

some insight may be gained to guide the engineer in his search

for solutions to any particular problem. The importance of such

aids can be appreciated only when the mathematical complications

of even the simplest inhomogeneous problems have been examined

through various specific examples. It is particularly imnor-

tant to know some of the very elementary properties of those

eigenvalues y(w) which do exist, because otherwise much effort

can be expended uselessly in looking for solutions to any

specific multi-valued eigenvalue equation on a branch thereof

where, on more general grounds, such solutions could a priori be

ruled out.

Perhaps it is pertinent to point out, however, that it would

be strange, indeed, if in some inhomogeneous cylindrical problem

there were no allowed values of (w)! for it has been shown al-

ready that if there is any cylindrical solution at all, it must

have exponential z-dependence. If no values of were per-

missible, it would follow that some problem with cylindrical

symmetry would have no solutions with cylindrical symmetry.

But even granting the existence of some propagation con-

stants and associated modes, there is still a severe question

about the completeness of the entire set of modes (for the purpose

of representing any given transverse field distribution, for

example). This question of completeness is a difficult one, and

the discussion contained in the present work will not touch upon

it significantly. Yet the results of this analysis of mode

properties, along with the examples in the Appendices, do indi-

cate one interesting point connected therewith; the open boundary

structure has modes which never even reach cutoff (=O). Each

mode simply ceases to exist below a certain frequency. As a

result, at any given frequency, and for any particular circular
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variation, only a finite number of modes are available. It is

clear that such a limited set cannot be complete, and this fact

is illustrated in Appendix D. The physical reason for this mode

behavior is quite understandable in such problems, as outlined in
Part V.

It is in fact hard to avoid the belief that when any modes
among a given set individually cannot exist over the entire fre-
quency range O<w<oo, then the set of modes at a particular fre-
quency cannot be complete; but this matter is still in the realm

of conjecture.

In this connection, however, some remarks should be made
about the circular guide with a reactive wall, treated in Appen-

dix A. A detailed study of the eigenvalue equation in that prob-

lem has been made, but is not fully presented in Appendix A. It
was assumed, when that study was undertaken, that the wall ad-

mittances were independent of frequency. Such an assumption is
not in accordance with the restrictions for physical realiz-

ability given in Eq.(2.40), Section 2.4; and the curious results
to which it leads suggest that a less idealized example ought to
be treated. The peculiarities encountered consisted chiefly in
the fact that, for certain choices of the wall parameters, modes
which were not axially symmetric suddenly "broke off" discontin-

uously. The break did not occur in the understandable way

characteristic of open-boundary structures, but took place either
at or below cutoff. For any particular n>O (circular-variation

index), a finite number of modes possessed this "break off"

property, while the (infinite) remaining set did not.
Without a further study of the problem, making more appro-

priate choices of the boundary admittances, it would be unwise
to draw conclusions from such an anomalous result. A little

more discussion on the subject is included in Appendix A, but
the major treatment will be postponed pending further work on

the problem.

2.4 Boundary Conditions

In order to deal with a bounding surface which shall not be
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entirely opaque, but which shall at the same time eliminate the

need for any detailed consideration of the fields outside the

structure, the boundary conditions at each point on the wall of

the guide will be taken in the form of a dyadic admittance

(lb,14)

(a) n x H = Y*E
or (2.26)

(b) n x H = Y-E
B B

The dyadic Y is independent of z and, in fact, is taken for

simplicity to be entirely independent of position on the wall.

It is therefore not a function of (x,y,z). When written out,

the dyadic Y has the general representation

yT iir + Y ziTiz (2.27)

+ Yz izi + Yzziziz (2.27)

in which the various elements Y v of the dyadic are, in general,

complex scalars, having the physical dimensions of admittance.

For the purposes of this paper, a somewhat more specialized form

of the dyadic Y will be assumed:

_ f y T T i T i + 0

Y i·= 3'r + z * (2.28)
+ 0 + yzziziz

While the restriction of Y to this "Normal" form will shortly be

shown to entail no real loss of generality insofar as the desired

physical properties of the wall are concerned, it is not pre-

mature to mention that a symmetry property to be discussed later

(Section 3.2) would be considerably modified if the dyadic T

were left in the more general form (2.27). Besides, the desir-

ability of obtaining a symmetric dyadic boundary condition

(Yz = Y ) will also become apparent in the ensuing pages.
An expansion of the dot product in Eq.(2.26b) can now be

made in the light of Eq.(2.28),

n x (iHr + izHz) = iTyrT E T + i yz zE z . (2.29)

A further expansion of the cross product on the left yields the

two scalar relations
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(a) H- yzzE (2. 

(b) Hz -YTE

after similar vector components have been equated on each side

of Eq.(2.29). The resulting boundary condition Eq.(2.30) places

in evidence the admittance character of yrr and yzz' It also

shows that the admittances which describe the wall properties

can be chosen in such a way that H s may have any desired magni-

tude, space angle, or time phase with respect to E s. These

admittances could even be chosen to make H s represent an ellip-

tically polarized vector Hs(t) when E s represents a linearly

polarized vector E(t), or vice versa. There is actually more

freedom allowed by even the normal form of Y than will be used

in the sequel of this discussion.

It will be assumed here that while yzz and y, are functions

of the frequency w, they are definitely not functions of X

(or the guide wavelengths) for the various modes which may exist

at any particular frequency. The fact that the admittances are

assumed to be independent of the modes (or y's) which may exist

at a given frequency is roughly tantamount to the assumption

that the admittance of the wall material to plane waves is in-

dependent of the angle of incidence. Such would be the case,

for example, if the wall were constructed of metal with a large,

but finite, conductivity. Examples of lossless walls with these

same admittance properties are not easy to visualize generally,

although Hansen (2) has approximated an iris-loaded circular

waveguide operating in the axially symmetric modes by using such

a susceptance concept. The approximation is based upon the

assumption that the spacing between successive irises is very

small compared to the guide wavelength of the lowest propagating

mode at the frequency involved. In the limit of differentially

small iris spacing the approximation becomes better, but further

question may be raised about its validity for those higher modes

in which the fields no longer have axial symmetry. More recently,

attention has been given to the electromagnetic behavior of

metals at extremely low temperatures. Since the phenomenon of

-17-



superconductivity takes place at such temperatures, it has been

convenient to consider a metal wall as a reactance when resonant

cavaties are constructed therefrom. But even if only for pur-

poses of generality, it is both easy and desirable to include

boundary condition (2.30) in these general discussions.

The special cases in which the bounding wall has been re-

ferred to as "opaque" are included in Eq.(2.30) when

yzz = Y = 0)
or Y =0 o t (2.31)or n x Hs = 0

and when

y = Y o_-0

or n x E S = 0 

Condition (2.31) refers to a "magnetic wall", while condition
(2.32) refers to the more common "electric wall", or perfect

conductor.

Equations (2.15) and (2.25) inside the guide, along with

Eq.(2.30) on the wall, completely characterize the boundary-value

problem presented by the structure. Of course, it must be

hastily added that the solutions for E z and H z from Eqs.(2.25)

must first be chosen to make physical sense; which requires that

certain finiteness, single-valuedness, and continuity conditions

be imposed upon the functions and their space derivatives (of

first and second orders) at each point within the guide. More-

over, for the present purposes, it will be well to consider that

the functions c'(x,y) and tL(x,y) are continuous, with continuous

first derivatives. Any discontinuities actually present in these

functions can be replaced by regions of rapid but continuous

variation. This assumption will be made throughout, unless other-

wise specifically stated. In the examples (included in the

Appendices), discontinuous distributions have been considered

for reasons of simplicity. It is important to observe, however,

that since a limiting form of the Maxwell equations is applied

at each such discontinuity, these situations are simply limiting

cases for more idealized functions el and Lt.

Further interpretation of the boundary condition Eq.(2.26b)
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requires a consideration of that component of the complex Poyn-

ting vector

s-- =(E x H*)
which is directed into the wall, to wit:

2n.S = n (E s x H) = -Es (n X H*)

-Es.Y* E , (2.33)

With the stipulation that

Y G + 3B

Eq.(2.33) becomes

2n-S = -Es.G.E + ES.B.E* (2.34)8 5 Es

Now in view of the symmetric form of Y in Eq.(2.28), and the

consequent symmetry of the two real dyadics G and B in Eq.(2.34),
it follows that the first term on the right of Eq.(2.34) is

purely real, while the second term is purely imaginary. In fact.,
if

yJV =il-V + jb JVV
then

Es.G -E = g E E + gzzEzE = -2Re(n*S) (2.35)

from which the expression E'-G-E* is seen to be a real quadratic

form with coefficients get and gzz. If, then, the wall is to be
truly passive, it must not cause real power to flow into the

guide, regardless of the orientation of E . In order that this
be true generally, the quadratic form in Eq.(2.35) must remain

negative for all orientations of E; which in turn requires that
the elements g of G shall be the coefficients of a negative
definite quadratic form. In the special case at hand, where G

is in Normal form, the requirement for a passive wall may be
stated in the relations

and

It may seem curious that the v have negative real parts when
they represent the admittance of a passive wall. Equation (2.34)

also yields the additional disconcerting result that when bzz
and brT are both > 0, the wall abstracts primarily magnetic
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energy from the region which it surrounds. That is, an inductive
wall has an admittance with a positive imaginary part. But the

two peculiarities together mean simply that the admittances Y lv
are defined with a sign opposite to that normally associated
with ordinary circuit admittance. The root of the difficulty

lies in using (n x Ha) instead of (Hs x n) in the defining rela-
tion (2.26) for the boundary conditions. It is consequently

necessary to consider the YLv as the negatives of ordinary circuit

admittances.

It will be required, in the course of this text, to con-
sider the properties of the modes as functions of the frequency.

Some statement about the properties of the boundary conditions,

qua functions of w, must therefore be included here. Since the
major part of the development in this connection will concern

itself with lossless systems, the boundary conditions will become

n x H = JB.E , (2.37)

with

B + bii (2.38)
+ 0 + bzziziz

and Y v = jb v' If the analogy to circuit susceptances is to be

preserved (with the previously mentioned change in sign) it will
be necessary to specify that

is a negative definite quadratic form. In terms of the Normal

form of B, this stipulation becomes simply
abT

aw
,b t ' (2.39)abzz

or, the slope of the susceptances versus w is always negative.

This restriction is not, however, made solely by analogy with
the familiar circuit properties of susceptance. For Schwinger
(lb) has shown that in an entirely closed lossless system, the
only admittance boundary conditions under which a desirable
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uniqueness theorem may be deduced for the fields inside, are

those for which the considerations leading to Eq.(2.39) apply.

To be sure, this uniqueness theorem for closed systems precludes

the existence of two solutions to a given lossless boundary-value

problem if the difference between the solutions is required to be

a continuous function of frequency. That the same theorem can-

not be true in cylindrical structures follows from the fact that

in ordinary waveguides, for example, each mode is itself a con-

tinuous function of w; whence the difference between any two of

them is also continuous in w. Nevertheless, it still seems ad-

visable to consider the dyadic suspectance as a property charac-

teristic of the wall material itself, and to retain for that

material in a cylindrical structure those same properties which

would be required of it in an entirely closed system.

In addition to Eq.(2.39), another restriction should be men-

tioned which also comes from the network analogy, as well as from

considerations underlying the uniqueness proof mentioned above.

It may be most easily stated for present purposes in the form

(a) a I I

(2.40)
'abzz I lb

(b) -

Because of Eq.(2.40), it would appear that problems involving

a reactive wall cannot be expected to make sense, over a wide

range of frequencies, if the admittances bzz and ba are

assumed independent of w.

III. BASIC PROPERTIES OF THE MODES

One of the most outstanding differences between modes in

homogeneous problems and those connected with inhomogeneous

Droblems lies in the fact that TE and TM modes are independent

in the former, and dependent in the latter. Therefore some dis-

cussion is necessary with regard to mixture of TE and TM modes

in the cases where the boundary is not opaque, or the internal
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medium is not uniform. Moreover, the consequences of this mix-

ture make it necessary to re-examine the orthogonality conditions

between modes, as well as the proof that y2 must be real in a
lossless system. Such examination will be the primary concern of

Part III.

3.1 TE-TM Properties of the Modes

The discussion of TE-TM mixture may most conveniently be

pursued by considering the effects of the boundary and the in-

ternal medium separately. When the guide is uniformly filled

with material, VTCe = VT- 0. Then Eq.(2.25) reduces to

(a) VTEz - p 2EZ = O

~~~~~~~2 2 ~(3.1)
(b) VTHz - p Hz = 0 .

As far as the medium inside is concerned, therefore, one solution

with H z = 0 (TM) and one with E z = 0 (TE) are independently

possible. The transverse fields given by Eqs.(2.15) can similarly

be split into two groups, in which a superscript 1 denotes the

TM fields, and 2 the TE fields:

(a) TM (Hz-O)

E(1) y V ET -2 T
P

ZTMHT() izx E

Z'X

ZTM j ;

(b) TE (Ez0) (3.2)

H (2) = VTH
P

E(2) = T i x H(2)T TE z T

JkZ o
ZTE ;
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where

F O6- = (3.3)0 - -' + J ·

Equations (3.1) and (3.2) are the conventional set,as applied

to ordinary waveguides, and very complete discussions of the

solutions under the conditions of an opaque boundary surface have

been given in many places (1,15). But even in the simplest

cases, where the solutions for E z and H z are separable functions

of the transverse coordinates, the boundary conditions (2.30)

do not usually allow separation of TE and TM modes. For, suppose

the bounding contour L (Figure 2.1, page 7) is one of a family

of orthogonal curves (,r) in the transverse plane; in particular,

the one at 9 = . Let it be supposed that a TE solution is

required (Ez - 0), and that H z = N(9)T(t) is a separable solution

to Eq.(3.16), where ? represents a "radial" coordinate and 

an "angular" coordinate. Then the boundary conditions (2.30)

become

(a) 1(ar , N( T), 0

(3.4)
(b) N(jo) = Yt p2NX (d)

in which h and h are the metric coefficients appropriate to
the coordinates r and r[ respectively.

The only non-trivial solution to Eq.(3.4) occurs when

(dT/dr) = 0, in which case Hz and all the fields derived from

it would be everywhere independent of . That is, the supposi-

tion that a TE solution is possible in a separable problem, with

the boundary conditions (2.30), is equivalent to the requirement

that the solution be axially symmetric. However, in order that

a solution independent of t exist, the geometric and electric

properties of the cross section (including the wall) must be

independent of'T. Even then, all the solutions to the problem

will not necessarily have to be independent oft , and any others

will involve TE-TM mixtures. In any event, even if such axially

symmetric solutions do exist in any particular case, they cannot
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form a complete set for it is perfectly possible to specify,

by appropriate location of sources, that the transverse field in

an axially symmetric structure shall not itself possess axial

symmetry.

Since the TM modes can be treated in manner similar to the

preceding, it is to be concluded that, even for the separable

cases, the boundary conditions (2.30) do not admit a complete
set of modes which are either TE or TM.

If there is a complete set at all, TE-TM mixtures must be

considered, and these will be made up of combinations of the

solutions to Eqs.(3.la) and (3.lb). The boundary conditions

(2.30) will then fix not only y for the combined TE-TM mode, but

also the relative amplitudes of E z and H z at any point on the

boundary wall.

In Appendix A will be found the example of a circular wave-

guide with admittance wall. Because of the geometric and

electric symmetry of the boundary with respect to the polar-

coordinate angle , there are some solutions which break down

into TE and TM waves. These occur only when axial symmetry of

the fields is specified by taking a - 0. As soon as the fields

are allowed to vary in the angular direction, the modes become

TE-TM combinations.

Incidentally, if the guide were elliptic in cross section

there would be no solutions which were independent of the

Nangular" coordinate, because the geometry of the cross section

would no longer be axially symmetric.

Not only the boundary conditions, but also the inhomo-

geneities in the internal medium will produce a TE-TM mixture.

It is apparent from Eq.(2.25) that E z and H z are dependent in

the general case, and it is only under very special circumstances
of symmetry that a TE or TM solution is possible alone. For

example, if a TE solution is required (E z - O0),then Eq.(2.23a)
demands that

Vk2 E(2) 0 (3.5)

in which the superscript 2 refers to the TE wave of Eq.(3.2b).
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Hz, however, is determined from Eq.(2.25b), with E = 0:z

vH - p 2 H i k T-] · V H (3.6)

Now if the structure is lossless, Vk2 is a purely real vector.

Then condition (3.5) states that the polarization of the trans-

verse electric field must be linear, and in' a direction perpen-

dicular to Vk2 Once H z is determined from Eq.(3.6), on the other

hand, the transverse electric field is specified by Eq.(3.2b),

and there is no guarantee tnat the two conditions will be com-

patible. Even if they should be, however, it is clear that
the polarization of the transverse electric field is entirely

fixed by the internal medium, in virtue of Eq.(3.5); and there

is no assurance that the boundary condition (even if it is homo-

geneous) will also be compatible with that restriction. Similar

comments apply to a TM wave.

In Appendix B is included an example in which the polari-

zation requirements of Eq.(3.5) can be met, along with the other

requirements mentioned above. But only the lowest modes of the

structure can satisfy all the conditions for TE and TM separation;

higher modes being necessarily TE-TM combinations.

Once again it should be clear that a complete set, if it
exists at all, cannot be made up of only those modes which possess
TE and TM character alone, because a transverse field can easily

be given, the polarization of which simply does not agree with

the demands of Eq.(3.5).

"It is to be concluded from the foregoing that any
complete set of modes for an inhomogeneous problem
must include those of mixed TE-TM character. If
there are any which possess either TE or TM prop-
erties alone, they are the result of fortuitous
symmetries and will not in general constitute the
complete set by themselves.

3.2 Incident and Reflected Waves

Preparatory to the main derivations of the orthogonality
conditions and the properties of y on a lossless structure, it
is necessary to exhibit a useful symmetry property of the
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boundary value problem posed by the guide structure. This

symmetry amounts merely to the fact that for every mode which

can exist on the structure there is always a second one which

travels in the opposite direction.

The proof can start most conveniently from a slightly

altered form of Eqs.(2.14), (2.13) and (2.30), which together

characterize the guide problem:

(a) VTEz + YET = -JwiL(iz x HT) Transverse Parts
of

(b) VTHz + YHT = Jwc (i z x ET) Maxwell Equations ,

(c) V.(iz x ET) = Jw11z 1 Longitudinal Parts
of (3.7)

(d) V'(iz x HT) = -Jwc'E z Maxwell Equations ,

(e) H yZZEz Boundary Conditions
on

(fr) Hz =-yE ) the wall

Suppose an appropriate solution to the first four equations

has been found at a particular frequency w o. Suppose also that

the application of the boundary conditions (3.7e,f) yields at

least one value of at the specified frequency w o . In other

words, the field (Ezo,ETo,Hzo9,HTo,To ) is a solution to the
boundary value problem as a whole.

Next, consider a new field denoted by (EzEHH, '), in

which the following relations hold:

(a) E' -Ezo

(b) ET = ETo

(c) H Hzo , (3.8)

(d) HI = HT

(e) Y' = 0

A substitution of Eqs.(3.8) into Eqs.(3.7a,b,c,d) shows that

the latter remain unchanged, except for the addition of primes

on all the appropriate variables. Hence the solutions for the

new fields may be taken to be exactly the same functions of
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(x,y,y') as the old fields were of (x,Y,o0). But it is also

true that the boundary conditions (3.7e,f) remain unchanged

when Eqs.(3.8a,b,c,d) are substituted therein, so that the func-

tional equations which determine y' are exactly the same as those

which determined 0 before. It follows that y' and 7 o are solu-

tions to the same set of equations, or that the boundary condi-

tions give solutions for both 7 0 and -Y. The wall conditions,

therefore, cannot distinguish o from -o and may consequently

be said to determine only 2a.

Observe that the field in Eq.(3.8) could have been defined

in a second way, which differs but slightly from the actual

definitions employed there:

(a) Ez = Eo 

(b) E = -ETo 

(c) Hz = -H (3.9)

(d) H = HTo '

(e) y = --y 0

The discussion showing that 9 # is determined from the same func-

tional equation as 7 0 goes through as before, and no essentially

new information is obtained.

The alternate wave (3.8) or (3.9) may be referred to as

the "reflected' wave corresponding to the "incident" wave given

originally. The reflected field (EZ,E,HZ,H , ,') moves along the

z-axis in a direction opposite to that of the incident field

(Ezo,EToHzoHTToo), in view of Eq.(3.8e). Moreover, the com-
plex Poynting vectors for the two fields are related as follows:

Si = -S
z Sz -Sz ' (3.10)

S = ST = ST T oT

so that only the longitudinal components of S reverses upon

#reflection".

The physical significance of the fact that the boundary

conditions can determine only 2 is now made clear, because, as

indicated earlier, it is merely another way of stating that:
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"For every wave which can propagate down the
structure, there is always another similar wave
moving in the opposite direction."

Such a result is by no means surprising upon consideration
of the fact that the system has cylindrical symmetry. Neverthe-

less, this symmetry property is quite important, and will be

used a number of times in the rest of the work.

3.3 Orthogonality Conditions

Enough preliminary work has now been completed to allow the
development of the orthogonality conditions which remain valid
for inhomogeneous structures. It is helpful to review this

matter rapidly in terms of homogeneous problems first, and then
proceed to the more general case.

In the usual homogeneous cylindrical problems, a number of
orthogonality relations are known to hold. If the subscripts

1 and 2 refer to any two exponential modes, for which TlY200,
then it is true that (15) at any particular frequency w:

r 'EzlEz2dc = f'ETlETET2d = ¢ 'E1 E 2d'

= AHZ1lH2dCr = AHT1 HT2dc (3.11)

=i AH 2d = 0 .

Also

Aiz.ETl X HT2) d = 0 (3.12)

In Eqs.(3.11) and (3.12) the integral is taken over the cross-
sectional area A of the guide, with the recollection that all the
quantities concerned are functions of only the transverse co-
ordinates.

As long as the wall remains opaque, and therefore lossless,
the validity of Eqs.(3.11) and (3.12) is not impaired by the
presence of losses in the internal medium, provided that such
losses are also uniformly distributed in the cross section.

It is interesting that under the same conditions (including
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possible loss in the medium), the fields in a homogeneous problem

also have the properties:

zlE2 Tl T2 JA 1 2

= LHzlHz 2 d = fAT1 HT 2do (3.13)

= flaH'Hc-i = 0

as well as

iz' (ETl x H*2) d = 0 ,(3.14)

where, however, 1 i T 0° in addition to 1 2 0. The

second restriction on is not really physically significant be-

cause: for lossless homogeneous problems yl and 2 are each
either pure real or pure imaginary (lc); while for dissipative

problems either y or A* represents a wave which becomes infinite
in the direction of propagation, and would have been rejected as

a solution at the outset. More will be said about matters per-

taining to the nature of in Section 3.5.

With reference to Eqs.(3.11) and (3.13), it is convenient

to refer to the properties described by them as "energy orthogo-

nality" conditions, while the properties expressed in Eqs.(3.12)

and (3.14) may be referred to simply as "power orthogonality"

conditions. The proofs of these various orthogonality properties

are usually given from the nature of the differential equations

(3.1) under the homogeneous boundary conditions (2.31) or (2.32).

It is a matter of experience that most of these orthogo-

nality conditions do not hold when the problem is inhomogeneous.

The standard procedures for proving them apparently break down
when applied to Eqs.(2.25) and (2.15) under the boundary condi-

tions (2.30). Nevertheless, it is possible to show that Eq.(3.12)

remains true for inhomogeneous problems of the type being con-

sidered here, even if loss is present in both the dielectric

material and the wall. Equation (3.14) is applicable along with

Eq. (3.12), however, only when the entire system is dissipa-

tionless.
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The reciprocity theorem forms the basis of the required

proof, and may be written in two convenient ways for any region

in which there are no sources. It is supposed that (c,,o) are

reasonable functions of the coordinates, and that two linearly

independent fields (E1,Hl) and (E2,H 2) are solutions to the Max-
well equations at the same frequency w. Then

(a) V (E1 x H 2 E 2 x H ) 0 , (3
^ (3.1,5)

(b) V (E x H2 + H1) = -2dE2 .

Application of Eq.(3.15a) is now made to a pair of exponential
modes on a cylindrical structure of the type in Figure 2.1

(page 7) where

A^ -1z ^ 1 z

1 =E 1 e ; 1 =H 1 e

(3.16')
^ 'Y2z ^ ' 2 Z
E 2 E2 e ; H 2 = H 2 e

The result is that

- [(E1 x H2 -E 2 x H1 ) e = 0 , (3.17)

or

v- (E H2 E 2 x H1 )

- ('l + 'Y2) iz (ET1 HT2 - ET2 x HT1) . (3.18)

This last expression is next integrated over the cross section A
of the guide, and the two-dimensional form of Gauss' theorem is
applied on the left side of the equation;

Ln (E x H2 - E2 x H1) dt

= (l + 2) fAiZ (ETl x T2 - ET2 X HTl) do . (3.19)

But since each of the fields satisfies the boundary conditions

(2.26), with the dyadic Y in the symmetric form (2.28), it follows
that on the contour L

n. (E1 x H 2 - E 2 X H 1) = E2Y-E1 E 1 - E 2

o . (3.20)
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As a result, Eq.(3.19) states that

iZ (ETlX HT2 - ET2 X HT1) d= 0 . (3.21)

Now it has been shown in Section 3.2, Eq.(3.9), that corres-

ponding to any given solution, such as field 2 above, there is

always another solution (-ET2, HT2,- 2) which satisfies all the

conditions of the problem. For the latter, Eq.(3.21) reads

'1 - 2 0

Jiz* (ET1 X T2 + ET2 X 1) dd 0 . (3.22)

Addition of Eqs.(3.21) and (3.22) completes the analysis, with

the conclusion

71 i 2 0 

ZAiz (ET x EHT 2 ) do = 0 .(3.23)

"Equation (3.23) is the formal statement of an
orthogonality condition between any two differ-
ent exponential modes on an inhomogeneous cylin-
drical structure of the 'closed' variety. The
only exclusions occur when both waves have the
same ' (and hence are essentially the same in
the transverse plane), or if either is the 're-
flected' counterpart of the other."

When the entire system is lossless (r 0O), Eq.(3.15b) be-

comes

V' (E1 x H2 + E2 x ) = 0 , (3.24)

and the boundary conditions are

(a) n X Hi = E 1 (3.25)

(b) n x H2 = J'E 2

with B entirely real. By steps similar to those in Eqs.(3.16)

through (3.23), the resulting new orthogonality condition

Y = B
, o 3- f-Li- (ETlx 2 ) do= 0 (3.26)

follows readily.
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"Emphasis must be placed upon the fact that Eq. (3.23)
holds for both dissipative and non-dissipative struc-
tures. When the structure is non-dissipative, however,
Eqs.(3.26) and (3.23) become valid together."

Since condition (3.23) holds more generally than Eq.(3.26),

it is the one which acts most effectively as an orthogonality

condition. Equation (3.26) is useful primarily for the purpose

of understanding energy relations in a dissipationless cylindrical

guide on which several modes are present together.

It is interesting to mention that the present search for

orthogonality properties was originally instituted with the

thought that they might be of the form (3.26), and would be valid

only for lossless structures. The reasoning was based upon the

fact that in a lossless structure the time-average power flow-

ing across every section of the guide must be the same, i.e.,

independent of z (5). Since, in a rough way, the cross terms

between two different modes propagating simultaneously along the

guide would involve exponentials of (l-Y)z, with coefficients

similar to the expression in Eq.(3.26), it was felt that these

coefficients would have to vanish. Actually, it is possible to

derive Eq.(3.26), as it stands, from a consideration of the

Poynting theorem applied to a lossless structure with two modes

on it; but the derivation misses condition (3.23) completely.

Apparently these power-orthogonality conditions should be looked
upon as restatements of the reciprocity theorem, rather than

consequences of Poynting's theorem.

The usefulness of Eq.(3.23) as an orthogonality condition

arises in the problem of finding the coefficients in a trans-

verse-field expansion. If it is assumed that the set of exponen-

tials modes is complete, then the expression for any possible

transverse field in the guide may be written in the form

(a) ET = AnETnenZ + BnETnen
n n

(3.27)

(b) HT = AnHTnenZ- E BnHTne
n n
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in which (ETn,HTn) are the transverse fields appropriate to the

propagation constant n. If the fields ET and HT are given over

a particular cross section z = 0, then A n and B n must be found

from the equations

(a) ET = (An + Bn) ETn
n

(3.28)

(b) HT = (An - B n) Tn 

n
Equation (3.28a) may be cross-multiplied by HTn, and then dot-

multiplied by the unit vector iz . From Eq.(3.23), a cross-

sectional integration of the resulting equation yields

fiz (ET x HTn) do
An + B. A (3.29)

n n iz (ETn x HTn) dr

By similar steps, Eq.(3.28b) furnishes the expression

Aiz· (ETnX H T) do
A - . . (3.30)
An Bn fA~iz (ETn X Tn) dr

It is a simple matter to solve Eqs.(3.29) and (3.30) for the

coefficients An and B n -

While a determination of these coefficients by no means

proves the completeness of the set of free modes for the expan-

sion of given transverse fields, it is an aid to such expansions

once the completeness of the set is known.

3.4 Power and Energy Consequences of the Orthogonality Conditions

In spite of the fact that Eqs.(3.23) and (3.26) spring from

the reciprocity theorem, it is profitable to examine the conse-

quences of these equations in terms of energy propagation when

two modes exist simultaneously on the given structure.
Let the two modes have transverse fields whose instantaneous

values are given by:
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Jwt-lz -jwt-z 
ETl(t) = ETle + e .e

r jwt-,lz - j-ywt-Z
'HTl(t) [i Hle + Hle l

(3.31)

Jwt- 2z -jwt-Jw z
ET2 (t) = [ET2ewt2 + Ee 2

HT(t) I2e Jwt - Y 2 z -Jwt-2ze]

where the first group represents mode 1, and the second mode 2.

It is assumed that l 2 0 and yly 'y f 0.

The total instantaneous Poynting vector has a longitudinal

component Sz ( t) given by

z (t) = Szll(t) + Sz22 (t) + Szc(t) . (3.32)

The terms Szll (t) and Sz22 (t) are instantaneous longitudinal
power flows for modes 1 and 2, respectively, as though each were
propagating alone. The general form for such self power",

Sz v (t), in terms of the complex fields, is obtained from Eq.

(3.31):
2a z

2e S (t)
Z'VV

= Re [ iz(ETv x Hv)

+ iz(ETv x HTv) e J2(wt- Z) (3.33)

where the notation v= a + jPv has been employed. S zV(t)

therefore contains the familiar time-average part and the usual

double-frequency, or time-dependent part.

The remaining term in Eq.(3.32) represents a "cross term",

and actually comprises two factors, condensed into the combined

form S zc(t). It is in fact the presence of two cross terms

in the total cross power which makes the derivation of the

orthogonality condition (3.26) from Poynting's theorem somewhat

more difficult than might first be anticipated. The combination

of these terms, represented by S(t), is written:zc .
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(a2 l+a2)z
2e Szc(t) =

Re f iZ-(ETI X
2 + ET2 XHT1) e

- ( 1- _ 2 )

i rt IIt- ( R + - ) 7 )

+ iz' (ETl HT 2 + ET2 X HT1 ) e r12 j(3.34
Szc(t) also contains a part which is independent of time, and a

double-frequency part.

The essence of Eq.(3.23), therefore, is that the time-

dependent part of S c(t) integrates to zero over the cross sec-

tion. This orthogonality condition therefore can be interpreted

to state that:

"When two modes are present together, the time-
varying part of the integrated longitudinal power
flow along even a dissipative inhomogeneous guide
can be computed as though each mode were propa-
gating by itself."

On the other hand, Eq.(3.26) does not hold generally in an

inhomogeneous system with loss, so that in such cases the time-

average power can be expected to contain additional terms due

to mutual interaction between the modes.

When the system is lossless, both Eq.(3.23) and Eq.(3.26)

are valid together. As a result, the entire instantaneous cross
power S o( t) integrates to zero over any cross section:

"The total instantaneous longitudinal power flow
down the guide is the simple sum of the corres-
ponding flows for each mode alone, provided that
the structure is without loss."

Insofar as the vector power is concerned, the longitudinal

component of the complex Poynting vector must be examined.

When two modes are present simultaneously, the form thereof
will be

2Sz =
=QIE~I H -2al z -2a2 z

iz (ETlXHTl)e +i z (ET2xH*2 )e 2

+iz (ETlXHT2+E T 2XHTl)e (3.35)
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When the system contains loss, the orthogonality condition (3.23)

gives no information about the vector power. It is to be ex-

pected, therefore, that cross terms will appear in both the
average (or active) power flow and the reactive power flow. But

if the structure is lossless, the validity of Eq. (3.26) under
these special circumstances means that the third term of Eq.(3.35)

integrates to zero over the guide cross section. Then the con-
clusion must be:

"The total vector power flowing down a lossless
inhomogeneous guide can also be calculated as a
simple sum of the corresponding flows for each
mode separately."

As regards the energy orthogonalities in Eqs.(3.11) and

(3.13), it is possible to obtain relations somewhat similar to

these for the inhomogeneous structure. It will be seen, however,
that in general the integrals do not vanish correspondingly.

In order to develop the desired analogy of Eq.(3.11), it
is convenient to consider first a modified form of Poynting's

theorem. For lack of a common name, it may be called the
"double-frequency" Poynting theorem. The derivation of this
theorem follows closely the method pursued in developing the

usual complex Poynting theorem, and the result becomes
V.(, x H) = -Jw(C A.E + ^.AH). (3.36)

When two modes are simultaneously present, E = E + E 2
A A1 A

and H = H1 + H2. It is assumed that each of the fields 1 and
2 is itself a solution to the Maxwell equations, and hence each
satisfies Eq.(3.36) when the other is absent. Therefore Eq.

(3.36) becomes

(E1 x H2+ E2X H1) = -2Jw(c'E1-E 2+ H1*i. 2 ) . (3.37)

But the reciprocity theorem (3.15a) may be used to reduce the

left side of Eq.(3.37) to a single term, so that

V (E1 X H2) = -Jw(C'E1. E2+ 1' H2 ) . (3.38)

When both modes are exponential, an expansion of the divergence
term yields the result

V. (EX H2 ) - (1+ 2) iz.(ETl x HT2 )

= -Jw(Ec'E 1 -E2 + LH'H 2) . (3.39)
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which, integrated over the cross section A, becomes

n (Elx H 2)d - (Y,1+ 2 )JAi ( ET1 HT2 )do'

- -w(c'E1.E 2 + H1 H 2 )do (3.40)

In view of the boundary conditions (2.26) and (2.28), as well as

the restriction (3.23) when yl* 2 0, the above equation be-
comes

yl± 2 1

fEL.Y-E2dt = Jwf ( 'E1E2 + Hl.H2 c (3.41)

or, in the more expanded form,

71Y *2 o --

fLrPElEI2d + fLyzEZlEz 2dt

= Jw( 'e ET*ET2+cIEZlEz2+ ~-H2+H.zlHz2)d . (3.42)

Since, however, Eq.(3.42) is valid for any two fields under the

indicated restrictions on y, the alternate field of Eq.(3.9) can

be substituted for field 2 in the former, with the result that

-(yTYElE 1E 2 + YzzEzEz2)d

- Jw (-c 'ETET'ET2+ EzlEz2+ HT1-HT2 -zlHz2)do ; (3.43)

whence addition and subtraction of Eqs.(3.42) and (3.43) yield

respectively:

(a) A1HT1. HT2do= -fA 'EzEz2d + j zzEzlE 2dt,

(3.44)

(b) fA 'ETlET2da' = -jAIHZ1 + ILYr ErlE 2 d 

Equation (3.44) is the more general analogy of Eq.(3.11), which
was valid only for homogeneous problems. Unfortunately, there is

no guarantee that any of the terms are zero in the more general

case. It is also unfortunate that Eq.(3.41) requires cross terms,

even in the time-dependent or double-frequency part of the total
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stored plus dissipated energy per unit length, when two modes

are present together. This remains true even when the struc-

ture is lossless.

When, however, the wall is oaaue, but the internal medium

not necessarily homogeneous, Eq(3.41) becomes

Y = O

or Y Jo (Jw'E1 E2+JwHl H2 )d c= 0; (3.45)

while Eq. (3.44) yields

(a) fIAJHT1lHT2do = - 'EZ1E 2dY 
(3.46)

(b) jC 'ETlET-ET2d= -jAlHZ1lHz 2 d 

In this case, then, Eq.(3.45) shows that the time-dependent part

of the total stored plus dissipated energy per unit length can
be computed as the sum of those contributions provided by the

individual modes. Note that the time-dependent part of the

stored electric, magnetic, or dissipated energies cannot indi-

vidually be so computed because Eq.(3.46) does not guarantee the

vanishing of the individual cross terms.

It might be assumed, from experience with membrane problems

in accoustics, that corresponding to the orthogonality conditions

(a) EzlE z
2da = 0 ,

(3.47)
(b) AZHzl 2da = 0 ,

which are known to be valid in homogeneous problems, there ought

to follow some analogous pair of "weighted" orthogonality con-

ditions like

(a) jcEzlEz 2 da= 0 

not generally true
(b) fAHzlHz2d = 0 , 

which would be valid at least in lossless structureswith opaque

walls. But it is not generally possible to obtain such a result

from Eqs.(2.25). The reason apparently lies in the fact that the
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TE-TM mixture takes the problem out of the purely scalar class,

and there is no a priori reason to suppose, therefore, that such

analogies with membrane problemsin accoustics can be pushed so
far.

The previous considerations have been directed toward the

time-dependent, or double-frequency, parts of the various

energies, in order to obtain results which would be valid for

both systems with and without loss. The analogies of Eq.(3.11)

were found, insofar as it was possible. There remains the

problem of time-average energies, or the analogies of Eq.(3.13).

Since there are no such analogies for an inhomogeneous problem

with losses, discussion will be limited here to cases without
loss.

From the conventional form of the complex Poynting theorem

for a lossless system

v.(i X A ) = jw(,E.E* - j.fH*) , (3.48)
reasoning similar to that preceding Eq.(3.37) will lead to

v.(E 1X H+ E2 t) Jwc(E1 E E .E 2)

u(o 2 +* H 2) , (3.49)

when two modes are present in the guide at the same time. But

Eq.(3.24) allows the following alteration of Eq.(3.49):

V( x - ) - jwC (.E + E{.E 2 )2. (X 2 l 2 l2 12

-J(H.H 2+ Hi H2) , (3.50)

which is equivalent to

Im[V. (Elx H)] = Im[Jw(e2)] (3.51)

Now the field (E 1 ,H 1 ) is linearly independent of (E 2 , H2), and
may therefore be taken with any complex amplitude desired. In

particular, Eq.(3.51) must remain true when (E2, H 2 ) is present

with a new field (JE1 JH), Just 90° (time phase) in advance of
(E1, ). But then Eq.(3.51)would read

Im[Ji(l V.2) = Im[ w(cE 1
4 - t L H2)] , (3.52)

or

Re .(E 1z )] = Re [w( E 1E E - - FH ] . (3.53)
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It is concluded, therefore, that actually

V.(E1X H2 ) -J(E E2 - (3.54)12 (3.54)

When the modes are exponential, and 7l1 j2 0, it is possible

to use the boundary conditions (2.37) and Eq.(3.26) in order to

proceed from Eq.(3.54) to the result:

JO B-E* t = w (E E - tiHle.H)da * (3.55)

Steps similar to Eq.(3.42) and (3.43) then establish the formulas

(a) jHT.H d = cEzlEz2 d - fb zzEE2d J 1 'T2 Z1 2 - WLzz Z1 Z2

(3.56)

(b) JE -T ET 2dao- = fLHH 2 de + L- b ElE* dt 

which are the desired analogies of Eq.(3.13), but are now re-

stricted to lossless problems only.

Once again, the nature of the inhomogeneous problem prevents

the possibility of finding any of the time-average individual

stored energies by simply summing over those for each mode; for

the cross terms do not vanish in general.

Even when the wall is opaque, and all the terms involving

B go to zero, the best to be said, according to Eq.(3.55), is

that the time-average difference between electric and magnetic

stored energies (per unit length) is summable over the individual

modes. If only the weighted orthogonality properties suggested

on page 38 were actually true, then at least Eq.(3.56) would lead

to "average-energy" orthogonality when the guide is bounded by

opaque walls. But the examples in Appendices A and B will show

that the hoped-for weighted orthogonalities are not true in

general, and the matter must be left as it stands.

In summary then, an extension of the power-orthogonality

conditions,found in Section (3.3),to the various energy orthogo-

nalities mentioned here cannot generally be accomplished. It

appears that the power orthogonalities are properties of the

Maxwell equations and symmetries of the structure; in particular,

they are consequences of the reciprocity theorem. They are there-

fore common to both homogeneous and inhomogeneous problems. The
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energy orthogonalities, however, depend essentially upon the

scalar functions (Ez,Hz), and the particular differential equa-

tions and boundary conditions to which they are solutions. These

equations lead to orthogonal scalar functions (Ez,H.) for homo-

geneous problems, but counter examples show that they do not

always behave similarly in the inhomogeneous cases. In other

words;

"the change from an homogeneous to an inhomogeneous
structure must generally be paid for by giving up
the 'energy summation' properties of the modes, al-
though the 'power-summation' properties are at least
partially retained. 

3.5 Characteristios of the Propagation Constant Y

It has been observed in the previous section that some of

the familiar orthogonality properties of modes on homogeneous

structures are connected very directly with the Maxwell equations

and the symmetries of the system. Other such properties depended

upon the more special nature of the equations for E z and Hz .

The former properties were carried over to inhomogeneous struc-

tures, while the latter could not be so extended.

The purpose of the present section is to carry on a similar

analysis with respect to additional mode properties, namely,

some of the properties of y. The point of departure is once

again a brief statement about these matters with reference to

homogeneous problems.

One of the most important facts about the modes in homo-

geneous problems is that the propagation constant y must be

either pure real or pure imaginary when the structure is non-

dissipative. Normally the proof(lc) depends upon an applica-

tion of Green's theorem to the wave equations (3.1), with conse-
quent demonstration that p2 must be real. Actually, the proof

is also valid for a homogeneous system with loss, so that the

reality of p2 is a consequence of only the opaque boundary

conditions and the fact that the internal medium is uniformly

distributed over the cross section. In the homogeneous problems,

theny 2+ k2 = _p2 is always real, so that when k 2 is real, 2
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is also real. If, however, k2 is complex, then, since = +Jp, 

(2_ 2) + 2a + w2¢e - Jy _p2 357)- 3w = p2 (3.57)
which is entirely real. The imaginary part of Eq.(3.57) must be

zero, therefore, and

CL = yG (3.58)

Hence a and have the same sign, as long as a > 0. It is in-
teresting to observe here that the exclusion of waves which grow
in the direction of propagation (when the system is passive, or

C - o) is not a separately imposed boundary condition for

z -+* *, but follows from the wave equations (3.1) for homo-
geneous problems.

Furthermore, when TE and TM waves are considered separately,
the longitudinal component of the complex Poynting vector is

given by

(a) TM (H z - 0)

2 S(1) = i .(E(l)xH(l)*) = - .lw (TEz V E*)z T T i T T z

(-u)'Y AVTEzlI 2

(3.59)
(b) TE (EZ 0)

28(2) = i (E (2)2) (2)*) -US 11 2
Z T T = PI4 14 Ta

in which I is the time magnitude of the complex scalar p, and

IIVTEzI is the space and time magnitude of the omplex vector 7TEi,
etc. It follows from Eqs.(3.58) and (3.59) that the algebraic
sign of Re S(l)[and Re S (2)]is always the same as that of p,
whether or not the structure contains internal losses. The di-
rection in which longitudinal time-average power flows at each
point of the cross section is the same, and corresponds to the

direction of the phase velocity. Of course, the integrated value
of the time-average longitudinal power flow over the entire cross
section then has the same property. In this connection it should
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be pointed out that when the structure is lossless, and the mode

is "below cutoff" (y = ), neither S(1) nor (2) in Eq.(3.59)

has any real part. There can be no time-average longitudinal

power flow at any point of the guide cross section when a single

TE or TM mode is below cutoff. As a result, there is certainly
no integrated value thereof over any cross section.

In considering inhomogeneous problems, the elementary facts
presented above can no longer be obtained so easily from the

nature of p 2, since it is a function of the coordinates in the
transverse plane. An approach to them through Eqs.(2.25), (2.15),
and (2.26) cannot easily be made in the same manner as is done

for homogeneous problems; yet it must be felt intuitively that

some of these facts are still true, and that more fundamental
reasons than the particular form of the E z - H z equations should
exist to prove them.

The primary concern of this section will be to prove that

y is either pure real or pure imaginary when the inhomogeneous

structure is lossless; discussion of correlations similar to
Eqs.(3.58) and (3.59)(between power flow and y) will be considered

in Part IV.
First of all, a general property of the complex fields

E(u) and (w) must be emphasized (lb). It is, in fact, indepen-
dent of whether or not the structure has loss. In Section 2.1,
page 6, the time-dependent fields E(t) and H(t) were required
to be real vectors in space. Therefore the complex Maxwell equa-

tions in E(w) and RH(w) are nothing but the Fourier transforms

of the time-dependent Maxwell equations in E(t) and H(t), which
means that E(w), for example, must, as a function of w, be the
Fourier transform of a real time function. Therefore

E(t) = f E()ejWt dw (3.60)
The substitution of -w for w in Eq.(3.60) results in the

relation

E(t) = E(-w)e Jwt dw . (3.61)J00
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But, from Eq. (3.60),

E*(t) =_*(W)e-wt (3.62)

and, since E(t) is entirely real,

E*(t) E(t) (3.63)

for all values of t. Thus the integrands(or transforms) in
Eqs.(3.61) and (3.62) must be equal, or

E(-w) = *(w) . (3.64)
With E(w) = ER() + JEi (w), the result (3.64) means that

(a) ER(=U) ER(w) ,
A ^ (3.65)

(b) (-w) = -Ei(w)

or the real part ER(w) of (w) is an even function of w, while
the imaginary part i1(w) is odd in w. Similar conclusions can
be drawn about H(w) and the other complex field vectors; these

conclusions are true for all values of (x,y,z) in the system.

If, then, a cylindrical system is under consideration, so
that, for example,

E(x,y,z,w) = E(x,y,w)ef(w)z , (3.66)
then

(a) E(-w) = E(x,y,-w)e (- w ) z ,

(3.67)
(b) E*(w) E*(x,y,w)e (w)z

But at z = 0, Eqs.(3.64) and (3.67) require that

E(-w) = E*(w) , (3.68)
and since Eq.(3.64) must be true for all values of z, it follows

[using Eqs.(3.67) and (3.68)] that

y(-w) = '*(w) . (3.69)
In the notation y(w) = a(w) + jP(w), Eq.(3.69) shows that a is
an even function of frequency, while is an odd function of

frequency. Similar conclusions, of course, follow from Eq. (3.68)
with respect to the fields E,H,etc., all of which have the
property that their real parts are even functions of w, while
their imaginary parts are odd functions thereof.
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That E(w) and H(w) are Fourier transforms of real time

functions must also be true on the wall of the cylindrical

structure. But the boundary conditions are

n xH(w) - (w).E(w) , (3.70)

whence the conjugate of Eq.(3.70) states that

n x H*(w) = *(w) E*(w) , (3.71)

and the substitution of -w for w in Eq.(3.70) makes

nx H(-w) = Y(-w).E(-w) . (3.72)

If the boundary condition is to hold at all frequencies, and for

all orientations of E, use of Eq.(3.68) for both E and H, along

with Eqs.(3.71) and (3.72), shows that

Y(-w) = Y*(w) . (3.73)

Then

(a) ~(-w) = ~(w) ,
(b) B(-w) = -B(w) (3.7)
Under the assumption that the structure is lossless, the

complex Maxwell equations and the boundary conditions may be

written

(a) V XE(w) - y(w) izx E(w) = -wIH(w) ,

(b) V xH(w) - Y(w) izx H(w) = wcE(w) , (3.75)

(c) n xH(w) = JB(w)'E(w) ,

in which exponential z-dependence has been assumed. A solution

for E and H from Eqs.(3.75a) and (3.75b) is inserted into

Eq.(3.75c) to determine (w). Consider that a solution for

(E,H,y) has been found at a frequency w. These quantities obey

Eq.(3.75), along with finiteness, single-valuedness, and con-

tinuity conditions mentioned previously. Recall also that the

boundary condition (3.75c) determines only y(w), or 2(w), in

accordance with the discussion of Section 3.2. The change of

variable w -O-w is now made in Eq.(3.75). Use of Eq.(3.74b) in

Eq.(3.75c) will then lead to the result:
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(a) V x E(-w) - y(-w) i z Y E(-w) = JwH(-w) ,

(b) V H(-w) - (-w) iXH(-w) = -JwcE(-w) , (3.76)

(c) n x H(-w) = Jff(-w)-E(-w) = -(w).E(-w)

Let a new field be defined as follows:

(a) E' = E(-w)

(b) H' = -H(-w) , (3.77)

(c) Y' = (-w)

Then the equations and boundary conditions satisfied by this new

field can be found from Eq.(3.76), and are given by:

(a) VXE' - y'izX E' = -jwuH' ,

(b) V) H' - y i z , HI = JwcE , (3.78)

(c) nKxH' = +JBE' .

In other words, the new primed field satisfies the same con-

tinuity conditions, and the same equations (3.78a) and (3.78b)

as did the original unprimed field. Moreover, the boundary

condition (3.78c) is exactly the same,too. Therefore, the

functional equation which determines y, is exactly the same as
that which determined 2 originally, and it follows that

Y2 = y2 (3.79)

or, from Eqs.(3.77) and (3.79),

Y(-w) = ±y(w) . (3.80)

But the result (3.80) can be taken with Eq.(3.69) to prove the

desired theorem, because in combination they state that

y(w) = y*(w) . (3.81)

"The propagation constant for a lossless cylindrical
structure of the type considered in this paper must
therefore be either pure real, or pure imaginary.
It cannot be complex."

In any particular case, a study of the eigenvalue equation

would normally be required to establish that there were no

complex y-roots thereof. Such a study is often tedious and
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difficult because of the transcendental functions involved. Once

the theorem of Eq.(3.81) is established, however, studies of the

above variety are not necessary.

There will be found in Appendices A and B two examples in

which the conclusion of Eq.(3.81) is verified. They will suggest

a method by means of which this corroboration can be made in

particular problems without making a detailed study of the eigen-

value equation.

Perhaps it seems curious at first that the proof presented

above depends in no way upon the law of conservation of energy
(Poynting's theorem). It is probably natural to believe at first
that energy conservation ought somehow to lie at the base of a

theorem on the character of attenuation and phase shift. Yet
further examination shows that conservation of energy is not a
distinguishing factor between dissipative and non-dissipative

systems; it is a common factor. More to the point, then, is the
distinction that electric and magnetic energies are irreversibly
transformed into heat when loss is present, and not so trans-
formed when loss is absent. When heat is generated in the process,

the orderliness" of the system decreases with time. The state

of affairs in the system "now" is no longer sufficient to deter-

mine what happened previously, although its future degenerations
can be predicted therefrom. When, however, the structure is dis-

sipationless, it must be possible to extrapolate from the present
to both the past and the future, the criterion for these extra-
polations being a reversal of the time coordinate. In the deri-

vation of Eqs.(3.81) it was, in fact, necessary to consider the

transformation w - -w, which is the same as a time reversal when

the time dependence is harmonic. The invariance of the lossless

Maxwell equations and boundary conditions under a reversal of
the time or frequency coordinates then forms the real basis for

the distinction between structures with and without loss.

IV. PHYSICAL CHARACTERISTICS OF THE MODES

Further important properties of the individual exponential
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modes can now be investigated by means of the Poynting and energy

theorems (lb).

Some correlations between y and the longitudinal power flow
will first be examined (Section 4.1) by applying Poynting's

theorem to the given structure at a single frequency. These

correlations differ somewhat from those discussed in Section 3.5

[Eqs.(3.58) and (3.59)], which were pertinent only to homogeneous

problems.

A brief study of the frequency behavior of y(w) will next

be undertaken (Section 4.2), mainly as a preliminary to the en-

suing discussion of the behavior of the parameter p 2, and the
physical significance of the space and frequency dependence there-

of (Section 4.3).

Finally, some remarks will be made relative to the polariza-

tion of the transverse fields, leading to a short statement of

the resultant difficulties encountered in trying to extend circuit

concepts such as voltage, current, or impedance into the inhomo-

geneous waveguide problems (Section 4.47).

The major portion of these four sections will, however, be

limited to consideration of lossless systems.

4.1 Mode Properties at a Single Frequency

The Poynting theorem, including loss, may be expressed in

the form

) - F.*) * (4.1)

For a single exponential mode, with y = a + JP, the above equa-

tion becomes

V.(ExH*) -2ali (ET X H) = Jw(cg *E'E*-LH-H*) . (4.2)

An integration over the cross section A, and an application of

the boundary conditions, yields

= jwA(e'*E'E* -H-H*)d (4.3)

which can be split into real and imaginary parts, in accordance
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with the definitions Y = G + JB and we' = + wc, as follows:

(a) 2a Re iz-(ETx )da

=JE'E*da E.G-E*d = 0

(4.4)
(b) 2afIm iz' (ETx H)d(4

= w H- H*-cE-E*)dC+E .- E*d *
JA L

The element of area in Eq.(4.4a) has been written as da instead

of do to avoid confusion with the conductivity o appearing ex-

plicity therein. It was previously stated in connection with

Eqs.(2.35) and (2.36) that E.GE* is always negative, whence

Eq.(4.4a) gives the assurance that, when any loss is present, a
and the total time-average longitudinal power flow

kfRe i z (ETX H*)d-

have the same algebraic sign. In fact, 2a is merely the total
real power loss per meter (in both the volume and the wall of the

guide) per unit of total longitudinal real power flow through

the cross section.

Equation (4.4b) shows explicity that a positive value of
E-B.E* on the wall is equivalent to additional magnetic stored
energy within the volume, and further substantiates the statement

to that effect made earlier (page 19).

Attention will now be directed to the case of a dissipation-

less structure, for which cr 0 and G 0. Equation (4.4a)

therefore requires that

2axfRe iz (ET x )d =O . (4.5)

This leaves two possibilities: either

(a) a= (4.6)
or

(b) # 0, but ARe iz (ETx H)d c = 0
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The first choice (4.6a) should correspond to a propagating

wave, with = JB. Under such conditions (4.4b) requires that

a=O ---

wfu(H-H* - E-E*)d +fE-FBE*d = . (4.7)

The total time-average magnetic and electric stored energies per

unit length (including that stored in the wall) must be equal for

a purely propagating wave on a lossless structure. Reference to

Eq.(3.55) will show that if two purely propagating modes (al=CL2=0)

are present simultaneously, the same remains true. It is possible

to say, therefore, that:

"No matter how many urely propagating modes are
present at once, the total time-average electric
and magnetic stored energies per unit length of
lossless guide must be equal, provided that the
wall is included in the calculation."

The second choice in Eq.(4.6) corresponds to a 0, with a corres-

ponding damping of the mode. Observe, however, that Poynting's

theorem supplies no information at all about , although it does

show that there is no total time-average power flow down the

guide.

Under these conditions, the wave is below cutoff, for it has

been shown already in Section 3.5 that = 0 when a & 0. Equa-

tion (4.4b) now gives a convenient interpretation to a, viz: a is
Just the time-average difference between magnetic and electric

stored energies per unit length of guide and wall, per unit

total reactive power flow along the guide.

A word of caution is in order here, lest it be assumed that

Re [iZ* (ET X j)]

must be zero at each point of the cross section, merely because

the wave is below cutoff. It is true that the integrated value

must vanish, according to Eq.(4.6b). It is also true that when

either TE or TM modes exist alone, the longitudinal component

of S z also becomes imaginary at every point of the cross section

for a wave below cutoff (Eq.(3.59) ff.). But when the problem

is inhomogeneous, TE and TM modes are generally mixed, and it
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will be shown below that the extrapolation from the properties

of the total power flow to the power flow at a point may no

longer be possible.

In these more general circumstances, the longitudinal

component of the Poynting vector may be calculated from Eq.(2.15),

to yield

2Sz = iz0 (ET )

=p14 [l 2 i. (TEzxvTH*)+k 2 iZ (VTExVTHz)

+WJ11Y*IIVTHzII2-JwE IIVTEZI ] . (4.8)

The real part becomes

2Re [(l I 2 +k 2 ) Re iz 1+kz(VTEzxT)

+wP (L |VTHz 12+E ||VTEz112)] (4 .9)

which for a wave below cutoff reduces to

MOO ~ Re [ i (VTEz X V )]
p0--O} Re S = z(vTEZ (4.10)

(m 2+k 2 )

It is shown later (Section 4.4) that it is always ossible to
choose E and H 900 out of phase below cutoff; if such a choice

is elected, then the Re Sz will vanish everywhere, along with

its integrated value. But it is also shown that in many sym-

metrical problems such choice is not necessary. Therefore

Eqs.(4.6) and (4.10) show that unless Re S z is identically zero

for frequencies below cutoff, it must necessarily be positive

over some portions of the cross section and negative over others;

otherwise the integrated power could not vanish. In Appendix C

appears a very simple example of a mixed TE-TM -mode illustrating

this behavior below cutoff. A somewhat more satisfactory example

is furnished also by Appendix A. A more thorough understanding
of these matters will be gained only after the completion of

Section 4.4.



With reference to Appendix again, a second peculiarity

becomes evident. It will be observed in the example that when

the TE - TM mode is above cutoff, the Re S z may still be negative

over some portions of the cross section and positive over others.

There is no general restriction on the integrated real power flow

above cutoff, however, since it is expected that then there will

be a total power flow in one direction or the other along the

guide.

A return to Eq.(4.9) will show that the phenomenon in ques-

tion is not too surprising. For a wave above cutoff, the latter

equation becomes

a=O

40 _

2Re Sz = 1 42+k2) Re i.(VTEzxVTHz )

+ WP (}IIVTHZI 2+ eI VTEzI )] . (4.11)

Equation (4.11) shows that when >)O, for example, Re S z will

become negative at any point where

Re iz- (VTEz X VTHz)

becomes negative,and where the first term exceeds the second

term in magnitude. The example in Appendix C shows that this

situation may indeed occur, in spite of the fact that Eq.(4.11)

might appear at first glance to be restricted in sign by a

special form of the Schwartz inequality. Equation (4.11), how-

ever, is not quite in the form of the inequality in question,

because the latter springs from the fact that

(d-qVTHzw izxVTEz) ( -VTH*z izXVTEz) .(4.12)

When expanded, and then multiplied through by >)0, Eq.(4.12)

becomes

2pkRe i. (VTEVTH)+wp( IVTHZ|12 + IVTEz1 2) 0 .(4.13)
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The realization that

(pk)2 = (p 2 + k2) _ 2k O (4.14)

will show that Re S z < 0 in Eq.(4.11) does not in any way con-

tradict the general inequality (4.13).

lIt is a consequence of the essentially vector
character of the TE-TM modes on inhomogeneous
lossless structures that the correlation between
the direction of active power flow at a point
and the algebraic sign of is no longer necess-
arily unique. Moreover, there may be active power
flow in both directions at various points in the
cross section,even when a mode is below cutoff."

Other connections between the character of y and the flow of
vector power down the guide may be obtained from the relation

between any given wave and its corresponding "reflected" wave,

defined in Eq.(3.9). Let the given wave be described by E(+),

H)T, y(+) = y, with ,>0 so that it travels to the right (+z).

For the moment, assume y is complex, even though the structure

is lossless. Under the boundary conditions (2.37), the field

(3.9) with

T T
(-) = (+) ,

(-) _ (+)= -

is also a solution to the guide problem. Hence the sum

ET = E (+ ) (e Z - e Z )

A (+) _- (4.15)
H T = (e Z + e)

is a solution, too. In fact, this particular combination is

appropriate to the solution of a problem involving the cylin-

drical structure with a perfectly conducting metal wall across

the guide at z = O. The field may be considered as existing

only for z < O, so that the wave traveling to the right becomes

the "incident" wave, while that traveling to the left becomes

the "reflected" wave.

An application of the general Poynting theorem to the
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lossless, source-free, volume enclosed by the shorting plane at

z = 0, the guide wall at z O, and any cross section A for z < 0,

will show that

Re iz-(ETxHT)d- , (4.16)

provided the wall is lossless (Y = Jr). Now from Eq.(4.15)

= iz- (E(+ )x H ( )+ ) ) (e Z-eTz) (e' *Z+eY * z)

= -2 iz (ET(+) + ) (sinh 2az + J sin 2z) 7)

Therefore

2½ e iz(ET )dc-

- sin 2z fim iz.(E()X+) +)))d

- sinh 2z jRe iz-(E(+)x i4+)*)d = 0 , (4.18)

and Eq.(4.18) must hold for all values of z 0.

The only new conclusion resulting from Eq.(4.18) is that in

a purely propagating wave (a = 0, $ 0) there is no integrated

reactive power flow in the longitudinal direction, or

P0 - Jm iz- (ETX H)da = 0 . (4.19)

The superscript (+) has been dropped in Eq.(4.19) because the

expression now refers to only a single wave.

Thus Eq.(4.19) essentially completes the information given

previously in Eq.(4.6). Taken together, they show that:

"On a lossless inhomogeneous guide, a mode below
cutoff (a 0 O,P = 0) carries no total active power,
while a mode above cutoff (a = ,B O 0) carries
no total reactive power."

At least in this respect, the lossless homogeneous and in-

homogeneous structure have similar behavior.
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4.2 Freauency Behavior of the Propagation Constant

A study of mode behavior as a function of frequency will

lead to further understanding of their properties. The energy

theorem (lb) forms a convenient basis for such a study, and

when applied to lossless structures, without sources, it may

be written

V.(^*X a aE A AH*)A

V(*x + xH) -J(cEE* + .f*) , (4.20)

and if y - + P, then

E* a aE = (E*x H + xH) e-2 z
C'W aw =(EaX w aw

- (E*x H + ExH*) ze- 2 z . (4.21)

Now

. E*[( aH + aE H*) e-2z]

= [V.(E*x a + -- xH*)

-2iz (ET x + X )1 e 2 z , (4.22)

and

V' [(E*X H + EXH*) ze- 2a z]

= 2V-{Re[(ExH*)] ze-2az}

- 2 Re ze2z [v (E XH*) -2aiz(ETxH) ]

+ e-2ziz-(ET X ) . (4.23)

But from the real part of the complex Poynting theorem, Eq.(4.2),

the first term on the right side of Eq.(4.23) reduces to zero.

Therefore a substitution of Eq.(4.22) and the modified

Eq.(4.23) into Eq.(4.21), makes the energy theorem assume the

new form
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,3E X H*) aHI aET
(E*X w Eaw ' 2al i x

2# Re [iZ-(ETxT)] = -J(cEE* + i-H*) . (4.24)

In anticipation of an integration of Eq.(4.24) over the cross
section of the guide, some additional relations should be derived

from the boundary conditions (2.37). Since

xn = -(B + E) ,(425)

and since B is a symmetric dyadic, therefore

(a) n-(E*x ) = E*.(aHxn)

= -j(E*-B aE + E*- aB E) (4.26)

(b) n (aE x H*) E (H*n) = JE* * ·*() n-aW ) aw aw

On the boundary wall, then, addition of Eqs.(4.26a) and (4.26b)

shows that the relation

n.(E* x H+ E H*) = -E. - (4.27)aW aW aw

is valid, with the consequence that the contemplated cross-

sectional integration of Eq.(4.24) leads to the formula

-B *E*d + 2a i z- (E- + awx)dE

+ 2ARe (ETxHT)do= if(CE.E*+ -H*)da . (4.28)

At any frequency for which the mode propagates, a = and
= JP. In such event, the imaginary part of Eq.(4.28) states

that

2 Re iZ (ETXH )dO

= (ccE.4E*+ H-H*)d- / · a E*d . (4.29)

-56-



With the stipulation from Eq.(2.39) that

E aB E* £0 , (4.30)

it may be concluded from Eq.(4.29) that:

"(ap/aw) and the integrated time-average longitudinal
power flow have the same algebraic sign".

In fact, the equation shows that the group velocity (/auw)- 1

is also the velocity of energy propagation, since it is merely

the real power flow divided by the time-average total energy

stored per unit length of guide.

While this correlation between the sign of (ap/aw) and that

of the integrated power flow holds equally well for both homo-

geneous and inhomogeneous lossless structures, it is to be

observed that in the latter there has not been given any unique

connection between the sign of and that of the integrated

power flow. It is entirely possible for the group velocity

and the integrated power flow to be negative when is positive.

The investigation of the eigenvalue equation in Appendix A,

under the condition that the wall admittances were independent

of frequency, led , in fact, to some slow modes for which 

and (ap/w) had oDposite signs. While this eigenvalue study has

not been included in Appendix A for reasons mentioned previously

(page 15), it might eventually turn out that a proper choice of

reactive wall[according to Eq. (2.40)] would nevertheless lead

to this same integrated-power reversal. Since the problem in

question concerns a guide with a reactive wall, it is possible

that this power-reversal phenomenon i really only a special case

of the previously considered correlation difficulties between p
and the power flow at a point (or small region); in a sense,

the guide cross section inside a reactive wall is only a part of

the entire "system cross section". The wall has, in other words,

merely replaced and obscured the details of what happens Nout-

side", and may very well be imagined to conceal an external"

region in which the total power flow is oppositely directed.

It will be appreciated later in this section, on the other

hand, that and (ap/aw) will always have the same sign if the
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bounding wall is opaaue, even though the internal medium may

not be uniform in the cross section. Then the integrated power

flow and the algebraic sign of will be correlated in the

conventional way.

It is profitable to continue the investigation of mode

properties by examining them

a) at cutoff,

b) at high frequencies.

First let it be supposed that a cutoff exists, where y = 0 and
w = > 0. The interpretation of the resulting picture will

then suggest conditions under which no true cutoff should be

expected.

At such a cutoff, therefore, equations (2.25) become

(a) V E 2 + k2 E - VTa V E
T z z P *VTEz

(4.31)
(b) V2 H + k 2 = T H zT z z r VTZ

The significant fact about Eqs.(4.31) is the absence of E - Hz

cross terms. So far as the internal medium is concerned, the

TE and TM waves which normally form a single mode are now com-

pletely independent.

According to Eqs. (3.2), with y - 0, the transverse fields

are given by

EO H(2)_ O(Ez_=O) T

E(2) 1E(2) C iz VTz (4.32)

Hz #O 

TM E (1 ) 0o
(H0) T

zEThe boundary conditions (2.37) may therefore also be satisfiedf 

The boundary conditions (2.37) may therefore also be satisfied
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now by TE or TM waves alone. The entire problem of the guide

reduces to one in only two dimensions. There is no z-dependence

for any field component, and no total vector power flowing along

the guide. The TE and TM modes in Eqs.(4.32) and (4.33) [now

completely independent solutions to the problem] are really TEM"

waves with respect to some axis in the (x,y) plane, the direction

of this axis depending upon the particular point in question.

The fact is that the TE wave has only transverse E and longitudi-

nal H, while the TM wave has only transverse H and longitudinal

E. The mechanism of cutoff is seen to be somewhat similar to

the familiar picture in simpler cases: namely, that "TEM # waves,

or "fans" of plane waves, are spreading out in the transverse

plane, but now are refracted by the variations in and ,p as well

as being reflected from the enclosing wall. Both polarizations

of the "planea waves are available, but which one is actually

present at cutoff will depend upon the particular mode in ques-

tion.. It should be mentioned that any mode which is mixed

TE-TM at other frequencies degenerates to either the form (4.32)

or (4.33) at cutoff. It is commonly found, in fact, that the

TE-TM modes can be split into two groups, which might be called

"primary TEN and primary TM'. The former assume the character

of Eq.(4.32) at cutoff, while the latter degenerate into form

(4.33). Appendices A and C will illustrate these matters, and

Section 4.4 contains further discussion on the subject.

It is important to note that this cutoff ( = 0) concept

of cylindrical standing waves" in the (x,y) plane is reason-

able only if the boundary is lossless, for, otherwise, power

would leave the bounding surface, and a source in the transverse

plane would be required by Poynting's theorem to supply this

two-dimensional outward power flow.

If either the wall admittance or the internal medium is

dissipative, it is to be expected that 'y will remain complex

over the whole range of frequencies. It will not become zero

(except possibly at w = 0), since the source-free problem evi-

dently cannot become two-dimensional ( = O) when any losses are

present.

-59-



The open boundary structure, (Part V), even though dissipa-

tionless, will be found to suffer from a similar difficulty, be-

cause power can leave the guide system through the walls. It

will not be surprising then to find that the concept of cutoff,

as outlined above, simply breaks down for free modes on even a

lossless open-boundary structure.

So far as the reactive-wall case is concerned, the pheno-

menon of cutoff is certainly understandable. Therefore, as

mentioned in Section 2.3, the apparent dissappearance of some of

the modes on a reactive-wall structure at, or below, cutoff

would present an unusual situation. It is definitely necessary

to determine whether such a phenomenon will take place when

the wall admittances satisfy Eq.(2.40), and it is hoped that

the results can be presented elsewhere shortly.

In any case, whenever a propagating mode approaches cutoff,

there will still be fields in the guide [solutions to Eqs.(4.32),

(4.33) and (4.31)]. The right side of Eq.(4.29) therefore re-

mains finite, while the longitudinal power flow becomes zero.

Hence (/aw) must increase without limit. At cutoff, the phase

velocity becomes oo ( -- 0), while the group velocity (/a S)

becomes zero. The cutoff frequency is therefore a branch point

of y(w), and incidently of the fields (E,H). Further discussion

of the behavior of E and H in the neighborhood of cutoff is con-

tained in Section 4.4.

At higher frequencies, above cutoff, the picture of mode

behavior becomes quite different. It is to be kept clearly in

mind now that at any frequency w, k = wu is a function of

position in the guide cross section. The values of (L) range

from a minimum ()min to a maximum (li)max' In general, there

will be certain areas of the cross section in the vicinity of

which k kmax and others where k kmin . Remaining portions

of the cross section can be considered as transition regions.

This concept becomes most striking when either kmax or kmin,

or both, occur within the boundary; because if k is any reason-

able function of the transverse coordinates, VTk = 0 at the
maxima and minima thereof.
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It will be useful now to consider more precisely the effects

of these inhomogenkities in the dielectric constant and permea-

bility. To this end, a theorem analogous to the energy theorem

(4.20) can be derived (lb), which pertains to the effect of

changing or pi in a small neighborhood (Ao) of a point (xo,Yo)
in the cross section. Of course the fields on the structure

satisfy the Maxwell equations:
A

(a) VxE = -jw ,
^X ̂ (4.34)(b) xt - JwcE .

The form of the boundary conditions and the functions [c(x,y),

p1(X,y)] are regarded as given. Consider that a small change

(8c,) is made in the dielectric constant co in the elementary

neighborhood A o. The fields E and H will change somewhat at all

points of the cross section, but it is advisable to treat the

region A o separately. In the neighborhood Ao, Eq.(4.34) can be

differentiated with respect to Eo as follows:

SE 8Ho
(a) Vx = - I -J 0 '

o o
A A (4.35)
8H6 8E A

(b) VX o wCo + JwE o

By appropriate dot multiplications between Eqs.(4.34) and (4.35)

it is not hard to prove the relation
A

V (Ex + x t*) = -wEO E* (4.36)

A similar expression results for points outside the region A,,

except that the second term of the right-hand side of Eq.(4.35b)

is absent (since at such points is not a function of ). The

result, in place of Eq.(4.36), will therefore be

^A 8E ^
V-(E*x + - E x H*) - 0. (4.37)

By steps similar to those in Eqs.(4.20) through (4.28), but

employing differentiations with respect to o rather than w,
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Eqs.(4.36) and (4.37) can be put in a form analogous to Eq.(4.28),

namely

2a . (ETx + X/Ai. (Tx 8c% 8_.

+2 ¢ fRe iz(ETx )do'= Jw EoE dd . (4.38)

The absence of the boundary term in Eq.(4.38) is explained by

the fact that is not a function of co, whereas in Eq.(4.28) it

is a function of w.

When the mode is above cutoff and ,>O, the imaginary part

of Eq.(4.38) becomes

c,

EoE o do )

iZ (ET x H) dJ (4.39)

An entirely similar result follows for changes in , except

that Ho replaces E o in the numerator of Eq.(4.39).

In order to separate the effects of the boundary from those

of the internal medium, assume in connection with Eq.(4.39) that

the initial structure was completely homogeneous (including the

requirement that the wall be opaque). Let k = uf- be called

kmax, for reasons which will appear shortly. Then the general

behavior of (w) is familiar, and is shown in Figure 4.1 below.

Ak

W fiT

0 WC W

Fig. 4.1. P vso w for a

lossless homogeneous structure.
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At frequencies w > we, < kax; but (w) becomes asymptotic

to the line kmax = w max at very high frequencies. The total
real power flow has the same algebraic sign as ,because Figure

4.1 shows that and (/aw) are both positive.

Now let a small decrease in either or p. (or both) take

place in accordance with the assumptions used in deriving Eq.

(4.39). The resulting plot of (w) will look very much like

that in Figure 4.1, except that will be decreased everywhere

by an amount which depends upon frequency. Under these circum-

stances, kmax in the figure becomes simply the largest value of
k in the cross section.

Similarly, suppose that the original guide was filled

uniformly with a medium for which and p. were constants, but

such that wi- kmin < kmax· Then the behavior of p(w) would
again be similar to that shown in Figure 4.1, except that

kmin < kmax would be the asymptote thereof.

If now a slight increase is made in c,p,or both, will

everywhere be increased. The new plot of vs. w will be as

shown in Figure 4.2 below, where kmin now refers to the minimum

value of k in the cross section.

,k

C

Fig. 4.2. B vsy w for a per-
turbed lossless homogeneous system.

Finally,. in the general case, with kmin and kmax respectively
the minimum and maximum values of k in the cross section, it is
to be expected that (w) will take a form similar to the illus-

tration in Figure 4.3:
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%P

Fig. 4.3 (w) for a lossless

inhomogeneous structure with opaque walls.

Justification for this figure stems from the fact that the actual
distribution of k in the cross section may be considered as ob-

tained by either starting from a uniform medium with k = kmax,
and successively decreasing k by small amounts where necessary,
or, alternately, by starting with k = kmin, and successively
increasing k where necessary. Moreover, while this continuous
#warping n process goes on, Eq.(4.39) shows that the sign relation-
ship between and (ap/aw) cannot change. Thus the statement

made previously, relative to the sign relations between and
the integrated power flow, is definitely true, viz.:

"The integrated real power flow down the guide has
the same algebraic sign as , provided the lossless
inhomogeneous structure is specialized by the re-
quirement that it must have opaque walls."

4.3 Frecuency Behavior of the Transverse Field Distribution

The preceding section sets the stage for a more detailed
study of the field distribution. The factor which is primarily
responsible for the frequency dependence of this distribution

is the parameter p. Now p 2 = _- 2-k is surely negative when
w = wc; and it is negative at all points of the cross section
because y is real (or zero). The significant fact illustrated
by Figure 4.3 is that when the frequency is sufficiently far
above cutoff, p2 eventually becomes positive in at least some
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regions of the cross section. At any such high frequency, Fig-

ure 4.3 shows that p2 willloosely, be positive where k is "small"
and negative where k is "large".

A somewhat more satisfactory understanding of the meaning

of these sign changes in p2 will follow from a review of the

Maxwell equations in the limiting instance w - . It is not

difficult to eliminate H from the Maxwell equations (4.34), in

order to obtain the equation

-V2E = k2E + x(VxE) + E (4.40)

valid for the rectangular components of E. At very high fre-

quencies, the sensitive term V2E is most strongly affected by

k2E = cILE, since all the other terms on the right have coeffi-

cients which are independent of frequency. If = (2n/k), the

above reasoning may be restated to point out that when W/hl-
and X IVe/eI everywhere become <1, the percentage changes in di-

electric properties (per wavelength) are small enough that the

governing equations differ only slightly from those in a homo-

geneous medium; except that the average value of k 2 must still

be considered to change from region to region of the cross section.

Therefore, as w -- )oo, Eq. (4.40) becomes

VE + k2 2 = O , (4.41)

in which k 2 is still a function of the transverse coordinates.

As applied to the z-component of an exponential wave, Eq.

(4.41) may be written

2E z - p 2 E = 0 (w- Coo) . (4.42)

By similar reasoning

H z - p 2H = 0 ( -o ) . (4.43)

At very high frequencies, therefore, the TE-TM coupling due to a

smooth distribution of and i becomes negligible. It should be

recalled thatsince the present considerations are still limited

to a guide with opaque walls, the problem has actually split into

a TE and a TM problem. The effect of non-opaque walls will be
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briefly treated at the end of this section.

Now Eqs.(4.42) and (4.43) are in the form
v2 = p 2 p , (4.44)

in which p2 is a real function of position (x,y). Therefore

cp(x,y) may be taken as real also. Interpretation of the meaning

of the algebraic sign of p 2 will be clearer when Eq.(4.44) is
altered somewhat:

V (VT) = p2 p (4.45)
Let Eq.(4.45) be integrated over a very small circular area "Al
centered about a given point (xo,yo), at which point has the
value *0. Reference to Figure 4.4 will explain the notation in

greater detail.

CONTOUR
C

RADIUS 8

Y'

-RADIAL COORDINATE p

(x0 _y0)

(Xo, yo)

Fig. 4.4. Definition of the

area "A" for interpretation of Eq.(4.45).

From Eq.(4.45)

v (Vcp)dcr= 2 P d. (4.46)

By Gauss' theorem then,

(8P )pde 9 ~ (6p)2p2cp0 , (4.47)

in which the subscript e on (/ap) indicates that this is a
directional derivative, and therefore varies with 9.

Let cpc(9) denote the values of on the contour C. Since
Sp is infinitesimal, a Taylor expansion of gives for the
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integrand of Eq. (4.47)

( p)9 8 = Pc(e) - 9 0 · (4.48)

A substitution of Eq.(4.48) into Eq.(4.47) accomplishes the re-

quired transformation:

[ 5| q,9( e) d]2(8 = i p(p) 2 ' (4.49)

Eq.(4.49) makes it clear that the Laplacian of at a certain

point represents the difference between the average values of 

in the neighborhood of the point in question, and the value of p

at that point. As a result, in regions of space where p2 is neg-

ative, or V29 and have opposite signs, the general trend is to

make 191 at neighboring points less than 1jq at a given point.

In other words, a negative value of p in a region of the cross
section causes p to oscillate up and down, assuming alternately

positive and negative values. It has been observed (Figure 4.3)

that p 2 is negative in regions where k is large" (near kmax ).

Hence the function (= Ez or H z ) has oscillatory behavior in

these regions of the cross section at high frequencies.

In other regions of the cross section where k is "smallN

(near kmin), Figure 4.3 shows that p2 becomes large and positive

at sufficiently high frequencies. Then in accordance with Eq.

(4.49) the average of the neighboring values of 191 tends to be

>)11 at a given point, and has monotonic behavior over such re-
gions of the cross section. Finally, where p 2 i% 0 (somewhere in

the transition" regions of the cross section) it is necessary

that V (= E z or VH z) s 0, as well as V2P C0. This restriction

on V comes from Eqs.(2.15), with the stipulation that the trans-

verse fields ET and HT remain finite at all points of the cross

section (and for all finite frequencies). These transition re-

gions, then, must form the parts of the cross section where 

has essentially flatO behavior, connecting those regions where

it is monotonic with those in which it becomes oscillatory.

It is a familiar fact that a plane wave which attempts to

pass through a discontinuity, from a lossless medium of uniformly
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high k into one of uniformly lower k, will suffer total reflec-

tion when the angle of incidence is sufficiently far from the

normal. On the high-k side of the discontinuity, the reflected

and incident waves will set up oscillatory standing waves in

planes normal to the boundary, while on the low-k side there

will be a monotonic decrease of all field components in similar

planes.

The behavior of the waveguide with opaque walls at high

frequencies can now be seen to present a very similar picture.

In the transverse plane, the waves become trapped" in regions of

high k, and fall off monotonically in other parts of the cross

section. To be sure, the trapping is not quite a result of crit-

ical reflection, but rather of an excessive refraction where k

varies rapidly with position. If the transition regions between

those of highest and lowest k are squeezed down to almost lines

of discontinuity, the trapping phenomenae become more pronounced;

but in any case, the fields are always crowded into the regions

of highest k when the frequency becomes sufficiently high. As

a consequence, the curve of (w) in Figure 4.3 actually still

becomes asymptotic to kmax as w -00 , for more and more of the

field becomes crowded into corresponding regions of the guide,

and the propagation constant kmax eventually controls virtually

all of the field.

The foregoing reasoning leads to the surprising result that,

at sufficiently high frequenciesa very small rod of high dielec-

tric constant inserted into an otherwise homogeneous air-filled

guide structure will eventually "suck in" most of the fields in

any particular mode; the phase and group velocities for the whole

structure will first approach those for the rod itself, acting

in a corresponding mode in free space, and eventually will ap-

proach the values for plane waves in the rod medium. Further

discussion of rod behavior will follow in Section V, and is

illustrated in Appendix D.

The overall change in p2 as a function of frequency can

now be summarized in terms of the standing-wave pattern in the

transverse plane. When the frequency is at or below cutoff,
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p2 is negative everywhere in the cross section; the oscillatory

standing waves extend from boundary point to boundary point. As

the frequency is raised above cutoff, the standing waves become

more and more crowded into limited regions of the cross section

where k is largest and where p 2 remains negative. The other por-

tions of the cross section, in which p 2 becomes positive, are

filled with monotonic fields connecting the high-k regions with

the boundary. The regions of negative p2 gradually contract,
from the whole cross section at low frequencies, to only the

high-k regions at high frequencies.

The effect of a reactive wall can now be made a little clear-

er. For simplicity, suppose the internal medium is homogeneous.

Then Eqs.(4.42) and (4.43) are precisely applicable inside the

guide at all frequencies. The influence of the wall is most

strongly apparent for the slow modes, which occur when

p2 = 2_ k 2 > 0.

Since such modes do not exist at all on homogeneous structures,

it is most reasonable to look for special effects of the wall in

these modes. Since p2is, under these circumstances, ositive
everywhere inside the guide, the considerations following Eq.

(4.49) show that the fields are concentrated near the boundary

of the guide rather than inside it. Such a conclusion implies

that the fields are trapped outside the boundary, in a loose
manner of speaking, and further substantiates the suggestion

made on page 57 to explain why a negative group velocity might

conceivably occur in some reactive-wall structures, particularly

for the slow modes.

When the mode propagates more rapidly ( < k), p 2 is nega-

tive inside the structure, and it is again reasonable to suppose

that most of the field is now concentrated there rather than in"

the wall. It would not be anticipated, therefore, that the wall

admittance should exercise a major influence on the propagation

constant when p2 is negative.

Since p 2 is also negative below cutoff, it is hard to under-

stand why the reactive wall should exercise so profound an effect
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on the fields as, for example, to cause the modes to "break off'.

This question must, unfortunately, be left unanswered for the

present.

4.4. Polarization of the Fields

It must be pointed out immediately that the questions of

polarization to be discussed in this section are reasonably clear-

cut only in the lossless problems. Attention should therefore

be focused on Eq.(2.25),(2.15) and (2.37), with the recognition

that e' - c is pure real.

If the mode under consideration is propagating ( = ),

then all the coefficients in Eqs.(2.25) are entirely real. It

will therefore always be possible to choose solutions for E z and

H z which are entirely real functions. Then, if desired, both E z

and H z can be multiplied by the same complex constant K = a + jb;

for,the real and imaginary parts of K E z and K H z will each still

satisfy Eqs.(2.25). For the moment, consider the entirely real

solutions (Ez,Hz), in connection with Eqs.(2.15). It appears

from the latter equations that ET and HT are pure imaginary, since

they each become ust j times a real vector function. As such,

the proper phase relations will exist between (Hr,Ez) and (HzE)

for satisfying the boundary conditions (2.30) in the form (2.37).

These boundary conditions then become merely magnitude restric-

tions on the field components, the phases of which are already

properly fixed by Eqs.(2.25) and (2.15).

If the complex solutions (K Ez, Hz ) are chosen instead,

then ET and HT become multiplied by the same complex constant K.

Each becomes a real function multiplied by a complex constant JK,

and as such is still capable of satisfying the boundary conditions,

with K E z and K H z for the z-components.

Now it must be recalled that a complex vector whose real

and imaginary parts differ only by a multiplicative real constant,

represents a linearly polarized vector in the time domain. Since

ET and HT, under the two conditions outlined above, are ust two

real vectors multiplied by the same complex constants (j or K),

they satisfy the required conditions for the representation of
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linearly polarized vectors in the time domain.

When the mode is below cutoff ( = a), the situation is
slightly different. Reference to Eqs.(2.25) shows that if a

new function H z = -JHz is substituted therein, all the coeffi-

cients again become real. In other words, below cutoff, a poss-

ible solution is that E z shall be real, while H z is pure imagi-
nary. But it is not to be concluded that this is the only

possibility, because the substitution E = -JEz also accomplishes

the reduction of the coefficients in Eqs.(2.25) to pure real

functions.

Therefore, below cutoff, it may occur that either E z is real

and H z imaginary, or Ez is imaginary and H z is real. In either

case, it is not hard to show, by reasoning similar to the above,

that ET and HT are linearly polarized, although now they are out

of time phase by 90°. Similarly also, the boundary conditions

can be met as before, and the multiplication of Ez and Hz by
a complex constant K does not alter the picture materially.

It follows that:

"In a lossless problem, it is always possible to
choose modes in such a way that the transverse
fields will be linearly polarized over the entire
frequency range."

The significance of the two possible choices for the fields

(Ez,Hz) below cutoff can be further elucidated; reference to

Eqs. (4.31) through (4.33), and the discussion included therewith,

will aid materially in the following presentation.

The reasoning upon which the real and/or imaginary char-

acter of (Ez,Hz) was based hinged upon the nature of the cross

terms in Eqs.(2.25). Above cutoff, Ez and Hz could always be
chosen as pure real, regardless of the mode i.e., regardless of

P(w) . Suppose such a choice has been made for a particular

Pv(w), defining a particular mode . As the frequency is de-
creased through cutoff, v(w) passes into av(w); but exactly at
cutoff, qs. (4.31) through (4.33) show that TE or T character

alone is sufficient to describe the fields, and there is appar-

ently no way to decides from those equationswwhich would result.
Now, in addition, it has been shown that below cutoff there are
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two possibilities (if any exponential field exists at all):

a) Ezremains real, H z becomes imaginary,

or

b) E z becomes imaginary, H z remains real.

Surely only one transition is possible for a single (continuous)

mode with a specified yv(w). Since apparently both situations

a) -and b) are compatible with all the conditions of the problem,

it follows that there must be two groups of modes, one corres-

ponding to the transition a), and the other to transition b).

Moreover, if transition a) takes place continuously, then H z

must pass continuously from pure real to pure imaginary, whence

H z 0 at cutoff. The a)-modes might then be called primarily

TM' modes, even though they become TM only at cutoff. Similarly,

the b)-modes will have E z = 0 at cutoff, and may be called prim-

arily TEO modes.

It is perhaps necessary to emphasize somewhat more the def-

inition of a 'mode' as employed in this work. In general, the

solution of the eigenvalue equation will lead to a set of y's,

each of which is a different function of frequency. The specifi-

cation of a mode 'vm picks a particular V(w), and the associated

fields which go with the corresponding pv(w).

The point of view taken above with regard to the definition

of a mode easily leads to the curious circumstance illustrated

in Appendix C. The TEmn and TMm n modes in an ordinary rectan-

gular waveguide (lb) have the same y(w), so long as m and n are

> 0. Not only are the propagation constants identical functions

of the frequency, for a TE and a TM mode with the same indices

m,n(90), but the transverse-field components are also(respectively)

identical functions of (x,y), even though the vectors ET(1 and
(2) T.

ET are neither parallel nor perpendicular. From the dfinition

of a mode adopted here, these TEm,n and TMm n (m,no 0) must be

considered as defining a single TE-TM mode, with the outstanding

property that the relative amplitudes of E z and H z may be chosen

at will.

Such a degeneracy' is not found in those inhomogeneous

problems which demand TE-TM mixture. For a given Xv(w), the
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relative amplitudes of Ev and Hzv are fixed by the boundary

conditions and/or the differential equations. Under normal

circumstances, then, the discussion of polarization given hereto-

fore indicates that below cutoff ET and HT may always be made

linearly polarized, and will then be 90° out of time phase.

"If linearly polarized solutions are chosen to
define a mode then Re S 0 at frequencies
below cutoff.1

It is clear from Eq.(2.15) that if E z is real and H z imagi-

nary (with 'y = a) then ElT is imaginary and ET is real. Corres-

pondingly, imaginary Ez and real Hz lead to imaginary ET and

real HT . Below cutoff, in either case, the transverse and

longitudinal components of E are in phase, which guarantees that

E represents a linearly polarized vector in space. The same is

true of H.

wIf the transverse fields are chosen to be linearly
polarized in the (x,y) plane, then at frequencies
below cutoff, the entire E and H fields represent
linearly polarized E(t) and H(t) vectors in space.'

Also, it should not be overlooked that under these circum-

stances the transverse component of the complex Poynting vector

is pure imaginary, since ET and Hz (as well as HT and E) are

900 out of time phase. Therefore

Y c--, WRe Sz = Re ST O , (4.50)

when the fields are linearly polarized,and the wave is below cut-

off.

At frequencies above cutoff, however, the choice of linearly

polarized transverse fields ET(t), HT(t) leads to total fields

E(t) and H(t) which are elliptically polarized. The plane of

rotation of E(t) is longitudinal, and is defined by the linearly

polarized vector ET(t) along with the unit longitudinal vector

iz . Similarly, H(t) rotates in a longitudinal plane containing

HT(t) and iz. Even though now Re Sz 0 0, the relative phase

relations between ET and H z or HT and E z are such that
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wwc . Re ST = 0 (4.51)

'According to Eqs.(4.50) and (4.51), the choice
of linearly polarized transverse fields leads to
modes for which there is no time-average power
flow in any direction in the transverse plane, at
any frequency. 

Incidentally, the conclusion in Eq.(4.51) is ust one step
more specialized than the following result, obtained by inte-

grating Poynting's theorem [Eq.(4.2)] over any internal region

of the guide cross section:

W - we i --- Re) n -S T dt = 0 , (4.52)

in which L and n refer, respectively, to the contour enclosing
the region and its outward normal. Equation (4.52) is valid

even if the transverse fields are-not linearly polarized, whereas

the validity of Eq.(4.51) is limited to cases in which they are

linearly polarized.

It was stated on page 73 that the choice of linearly polar-

ized transverse fields avoids the appearance of positive and

negative power flows at various points of the cross section,

when a mode is below cutoff. The example in Appendix C shows
that this same choice of linear polarization does not avoid power

reversal when the mode is above cutoff. Therefore:

'Even when a lossless structure has opaque walls,
it is possible for a TE-TM mode with linearly
polarized transverse fields to exist above cutoff
in such a way that Re Sz changes sign at certain
points of the cross section. 

The preceding discussion has emphasized the fact that

linearly polarized transverse fields may always be chosen for
any mode which is characterized by a particular y (w). It is
therefore pertinent to indicate iwhere any other choice is even

possible. The key to the matter arises from the possibility that

there may be two linearly independent solutions for the pair of

real functions (E,H), with the same 7V(w). That is, (EZlHzl)
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and (Ez2 Hz2) may both represent possible (real) fields with
identical propagation constants at all frequencies. For exam-
ple, if the guide cross section has a rotational physical and
electrical symmetry, as shown in Figure 4.5 below, it is to be

y

Fig. 4.5. Guide cross
section with a rotational symmetry.

expected that, corresponding to any particular field solution,
there will always be another one having a transverse field ro-
tated by 900 with respect to that of the original. The first
solution will correspond to the pair of functions (Ezl,Hzl),
and the second to the pair (Ez2,Hz2). In such cases, either a
real or a complex linear combination of both may arbitrarily be
taken as defining the mode" corresponding to y (w). According
to the previous discussion, linearly polarized transverse fields
will result only if some real linear combination of the two pairs
of real functions is chosen, but it is by no means essential to
do so. It is not hard to see that a complex linear combination

(Ezl + K Ez2) ; (Hzl1 + K Hz2) leads to transverse fields which
are no longer linearly polarized. One common method (la) of
handling such situations is to consider each linearly polarized

solution as a subdivision of the mode 7v (w), designating one e"
for even, and the other Noo" for odd. This form of degeneracy

occurs, for instance, in a circular structure, where sin n and
cos n may be used either alternatively or in two combinations.
In Appendix A of this paper it has proved convenient to take the
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angular dependence in the particular combinations

e+jnc = cos np T j sin np

for the representation of a single mode, merely for analytical

simplicity. The result is, accordingly, that the corresponding

transverse fields are not linearly polarized.

Granting that an appropriate definition of the modes may

always be taken to guarantee linear polarization of ET(t) and

HT(t), it is still not possible to assume that the space angle

between them is the same at each point of the cross section. A

glance at Eq.(2.15) will show that, even with linear polarization,

(IIETII)(IIHTII) is not in general the same function or (x,y) as

(ET HT); hence the space angle between ET(t) and HT(t) is gen-

erally a function of position in the transverse plane. It is

this variation of angle which makes a convenient definition of

impedance virtually impossible, even on a lossless structure.

While a dyadic impedance might be defined, it would be a func-

tion of the transverse coordinate, and would therefore lack the

simplicity usually obtained from the reduction of electromag-

netic-field problems to circuit analogies. The failure of the
usual impedance definition carries with it a similar failure of

the familiar definitions of voltage and current, in terms of the

transverse fields. The process of visualizing and utilizing mode

behavior therefore becomes much more difficult for the electrical

engineer than is the case with homogeneous systems.

The failure of circuit concepts in lossless inhomogeneous

problems is unfortunate. It is more unfortunate that whatever

simplicity does remain in the properties of modes on such struc-

tures is generally lost when dissipation is present, either in
the bounding wall or the internal medium. Equations (2.25)

usually develop complex coefficients as a result of the fact that

E' becomes complex. Then p2 is also a complex function of (x,y)
in the general case. The real and imaginary parts of Ez (and/or
Hz ) can no longer be taken as constant multiples of each other,
since the real and imaginary parts thereof no longer satisfy the
same differential equations. There is no guarantee that the
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polarization of the transverse fields can always be made linear,
and it may necessarily be forced to vary from point to point of
the cross section. Either ET(t) or HT(t) may be linearly polar-
ized at one point, and elliptically polarized at another. Any
consideration of phase angles or space angles between ET(t) and
HT(t) is made difficult by this umble of heterogeneous states of
polarization; and the mode structure (if it still exists) becomes
very difficult to visualize, despite the fact that the orthogo-
nality condition (3.23) still remains to help separate one mode
from another. Even if there were no other difficulties with dissi-
pative systems, the foregoing complications would be reason enough
to consider their mode properties beyond the scope of this paper.

V. "OPEN-BOUNDARY" STRUCTURES

In marked contrast to the properties of lossless "closed-
boundary" cylindrical structures, it will be shown that the open-
boundary" lossless systems do not yield free exponential modes
possessing true cutoff properties. In general, there is no crit-

ical frequency c(i 0) at which y = O. It must be observed care-
fully that these comments apply only to "free" exponential modes,
which exist when no sources are pesent within any finite region
of space. But the question of source location "at oo n is a little
more difficult in these open-boundary structures than was the
case in the closed-boundary problems previously discussed. For
example, if a plane wave is obliquely incident upon a thin dielec-
tric slab which lies all along the (y,z-) plane, it would hardly
be proper to consider the total resulting field structure as that
of one or more "free" exponential modes, in spiteof the fact
that there are no sources within any finite region of space. The
only question arising here, then, is the inadequacy of this
definition of a "free" mode on the slab. A little consideration
will show that the important point to be added to the earlier
definition must be the stipulation that the propagation constants

7v are to be determined solely by the geometrical and electrical
constants of the structure. Only under this added condition
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will the modes be "free# modes, and it is only to such modes

that the following demonstrations will apply.

5.1 Coordinates and Boundary Conditions

The structure shown in Figure 5.1 represents the form of

the system to which the analysis will be applied. It comprises

. n\>. I 

/
CIRCULAR CYLINDER -

WITH I
CROSS-SECTIONAL

ARPA A

CONTOUR L _ _

Fig. 5.1. "Open-Boundary" structure.

a rod or cylinder of dielectric material, which material need

not be homogeneously distributed in the cross section; this cylin-

der is Medium 1. Surrounding cylinder 1 is a Medium 2 which is

homogeneous, and which may be taken for convenience as free space.

The boundary line between the two media is a discontinuity D,

across which the continuity conditions

(a) n xH 1 = nx H2 (5.1)

(b) nx E 1 = nXE2

must be applied. It is through these boundary conditions of

continuity that the values of y are determined for the "free"

modes, as defined earlier.

5.2 Characteristics of the Propagation Constant

When the entire system is lossless, the proof that y2 must
be real can be carried out Just as before (Section 3.2 and 3.5).

The boundary conditions (5.1) are employed instead of Eq.(3.75c),

and Eqs.(3.1) and (3.2) are applied in the homogeneous Medium 2.
"The discussion of this Section can therefore
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proceed at once on the basis that either y = 
or = "

It will now be demonstrated that = a is not possible in a

source free lossless structure of the open-boundary type. Gener-

ally, a mixture of TE and T waves will be required to solve the

problem. The radial (ir) component of the complex Poynting vec-

tor in Medium 2 is

28r = EH z- E 

p2r\ Z ! z p\I! H z

E + Ia Z) E, . (5.2)

The subscript 2 will be omitted whenever it is clear that quan-

tities refer to their values in Medium 2. In Medium 2, p 2

=-(72 + k 2 ) is not a function of the transverse coordinates,

because the medium is homogeneous. Of course, y is the same in
both media.

Now the solutions for E and H in the outside medium must
be expressible in terms of the solutions to Eq.(3.1). In partic-

ular, the general linear combinations of those solutions which

remain finite as r --oo may be used to express E z and Hz for

the present problem. In cylindrical coordinates, then,

(a) E z Ann(Pr) ejn
n

(5.4)

(b) H = BmK m(r) emP

m

where Kn is the integral-order modified Bessel function of the

second kind. It is understood that m and n are integers, and

that all summations extend from -oo to + oo, unless otherwise

stated. Therefore
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aE j(n-m)P
(a) H za) H* z as, J n AnBm K Km ej (n-m )pz azp n m n

m,n

(b) l*z (b) Ez ap -j m AnB* KnK ( n m)
z =Pnm nm 1 

m,n

HcaHz J(n-m)P (54)(C) H z-- pE BnB K ez arn m m
m,n

(d) E .z p* B * K e (n-m)z ar m n
m,n

in which the argument of the Bessel functions is understood to

be (pr), and the prime(') indicates differentiation with respect

to that entire argument.

Of most importance for the ensuing analysis will be the

total outward flow of vector power per meter length in the z-

direction, denoted by P and given by

P2T

Po 5 Srro dcp . (5.5)
o

The quantity r is the radius of the circular cylinder shown in

Figure 5.1, page 78. To facilitate the calculation of this power,

the expressions in Eq.(5.4) are integrated in accordance with

Eq.(5.5). Observe in this connection that all terms in the

double sums, except those for which m = n = q, will vanish upon

such an integration, with the result that the expressions are

simplified to the form

5 Hz a dpp rO d= q2nr'*' qi q A Kq* || , (5.6a)
q

2TT aH*

z a r d = -2troJ q AqB* Kql2 , (5.6b)
q
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2 * z .

' H d -p = j2qj KI K (5.6cz ar r 0 dq 2rpr q q (5.6c)
q

Ez wr ro dq = 2p*r O |Aq[ 2 K (K')* (5.6d)0o zq ' '

tive-real,

Po 2a A1B | 
7 2 q. I

q

+ wr I jAq 2KK - IB| 12K K) . (5.7)

q
But since p is pure imaginary, it is possible to set p = p.
Therefore, in accordance with well-known identities among the
Bessel functions, and with the definition Z = pro,

Kq(pro) = K(ZeJT/2)= 2 ()q+l H(l)(zeJ) (5.8)q q 2q

However, if p is taken > O, then Z is real and > O. Therefore

'(1) (Ze jT) (_1)q+l H*(i)(Z) (5.9)
q q

Hence

Kq(Ze J/ 2 ) - (_j)q+l H(1)( Z) (

also

K (pro) =-J dZ [q (ZeJ /2)]

= f( _j)q dZ C-q )(Z)] (5.11)

As a result

Kq(pr o)K(pr = _j4T Hq(1) (z) d q(1)(Z) (5.12a)Kq Pr , 4'q
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and therefore

K'(pr )K*(pr)

,2
= 4 [Jq(Z) + JNq(Z] [J(Z) - JN(Z)] (5.12b)

where Jq and Nq are Bessel functions of the first and second
kinds, respectively.

The main point of interest about Eq.(5.7) will be its real
part. Since p = p, the real part will come from the real parts
of the last two sums and the imaginary part of the first sum.
But

Re[KR(pro)K*(Pro)]= Re [Kq(pro) K*(pro)]

I2
-4 [Jq)I(Z) -J(Z) (Z)Nq(Z)] .(5.13)

The bracketed expression in Eq.(5.13) is the Wronskian W of the
two solutions Jq and Nq. Since

W(Jq;Nq) = 2 , (5.14)

Eq.(5.13) becomes

Re K[K(pr )K(Pr0)] 2prO ' (5.15)

and, therefore, from Eq.(5.7)

2 Re P' 4 12
mR = v Im q ABq Kq 2

q

+ 2 E (CAql2 +Bq 2) (5.16)

q

Observe that only the first term of Eq.(5.16) is a function
of r, because of the presence of Kq(pr 0) therein. That is,
Eq.(5.16) indicates a variation (with radius) of the total out-
ward flow of real power through any circular cylinder which lies
entirely in Medium 2. This variation is caused by the presence
of the first term cited above. But a consideration of Poynting's
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theorem shows that the only possible causes of such a variation

would be either sources (or sinks) located in Medium 2, or a

"bending of part of the longitudinal power into the radial di-
rection in that medium.

The first cause is ruled out at once, because there are no

sources in Medium 2, and it is lossless. The second possibility

might offhand seem reasonable, because there would be attenuation

in the z-direction when = , and it might conceivably be due
to outward radiation.

For this lossless structure, however, the general discussion

in Section 4.4 relative to polarization and phasing still holds:

namely, it must always be possible to choose the modes in such a

way that, for any allowed value of , ET and HT are linearly

polarized and 900 out of time phase. The present boundary condi-

tions (5.1) in no way upset this conclusion. Hence, if = is

possible at all, it must be possible when Re S = 0 at each point
in the transverse plane. Under such conditions, Poynting's

theorem shows again that the radial power (if any)cannot vary with
r o in Medium 2. Therefore the first term in Eq.(5.16) must

vanish.

If there is any radial power at all, it must have the form

of the last two terms in Eq.(5.16),

R7 ( Ji2 2)
Re P =2 2 (|Aq + Bq ) 0 . (5.17)

q
The real power given by Eq.(5.17) is now independent of r in Med-

ium 2. It is not zero unless all the fields are zero. This

radial power flow must terminate somewhere inside Medium 1, since

it has been shown that it cannot arise from Medium 2. Once again,
though, matters can alwars be arranged so that when y = a there
will be no Re Sz in Medium 1, at any point of its cross section.

Moreover, there are no sources in that medium either, and it, too,
is lossless.

There is no way of avoiding the conclusion that the assump-

tion y = a leads to a radial flow of power which contradicts the

Poynting theorem for a source-free, lossless structure.
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The existence of a wave below cutoff is in direct conflict

with the concept of a free exponential mode. If such modes exist,

they can do so only at frequencies where = JB. As a result,

on open-boundary lossless structures:

'There are no free exponential modes below cutoff;
and the radiation properties of a lossless rod
cannot be accounted for by any free exponential
modes which supposedly attenuate in the z-direc-
tion by virtue of power lost through radiation in
the r-direction."

The "leaky water pipe" concept of free-mode radiation is

not valid, because no such mode can attenuate at all in the z-di-

rection (when the system is lossless).

It is instructive to return to Eqs.(5.2), (5.5) and (5.6)

when y = J3. Then p 2 = 2 k2, and two cases arise. First,

suppose , < k, in which event p = Jp again and Eq.(5.7) is re-

placed by

0P =ro (IAqI 2qK* - Bq2KK ) . (5.18)
JW p'q q q P qIKq q

q
By steps similar to Eqs.(5.8) through (5.15) it is found that

ReP= 2 2 (l Aq 2 + Bq12) . (5.19)
2P q

This result is clearly at variance with the Poynting theorem.

When y =- j, the longitudinal power flow is independent of z en-

tirely. The radial power flow now exhibited by Eq.(5.19) ob-

viously cannot be explained by bending of the longitudinal power.

There are still no sources (or sinks) in any finite region of

the cross section to account for this power, and the contradic-

tion is again thrown back upon the assumption that p B k.

Fortunately, the second possibility, = and > k, does

not lead to any contradiction. Under these conditions, p 2 is

positive-real, and p is also real. The modified Bessel functions

Kq (pr) are entirely real for real values of argument, and their

derivatives with respect to the argument are also real. The

expression for Po under these circumstances remains in the form
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of Eq.(5.18), and now becomes a purely imaginary quantity. The

previous difficulties are removed. Consequently,

"Free exponential modes on an open-boundary loss-
less structure must have phase velocities which
are less than that of plane waves in the external
medium. 

5.3 Physical Interpretation of the Free Modes

The results thus far raise two questions: a) What becomes

of a mode which is propagating at a high frequency w when the

frequency is lowered toward the point where a closedO guide

would normally cut off? b) If free" modes alone cannot explain

radiation from a lossless rod antenna, what part do these free

modes play in the behavior of such a structure?

The answers to these questions will be appreciated most

readily after some experience with a few examples has been gained.

To this end, Appendix D is useful, and has been included primarily

to illustrate and clarify the remarks of the present general sec-

tion.

First of all, when = and > k, the form of the radial

power Eq.(5.18) is reduced to

Po : IA IBq2)KqKq (5.20)

q
Now

Kq(pr o) = -p Kq(pro ) (pr o) (5.21)

and Eq. (5.20) becomes

J (IBq clAql )(2 q p qKl)] q (5.22)
q 

For values of pro >> and >> q, the asymptotic form of Kq(pr o ) is
known to be

Kq (Pr 0 eP° . (5.23)
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If the convergence of the series in Eq.(5.22) is rapid enough

(and the assumption will be made here), the substitution of Eq.

(5.23) can be made therein, in spite of the apparent difficulty

that q becomes very large. Hence, for large values of pro,

PO -. JYT e -LpBq J2¢Aq|2)( q + 1 ) ; (5.24)
0 2p2 q1 q Pr o

q

or, since r is arbitrarily large,

p2 eq T l ,lA 2 (5.25)
2p2 q

The important point to notice here is that because p is real

(and positive if the solutions are to remain finite at large r),

P0 dies out exponentially with radius. In other words, for suf-

ficiently large r even the reactive power flowing through a unit

length of large cylinder (Figure 5.1, page 78) approaches zero

exponentially.

Because of this fact, much of the earlier discussion perti-

nent to closed-boundary structures above cutoff can be applied

to the present structure, so long as the modes exist ( = P;

P > k2 ). In making these applications, the area A should be

taken as the infinite cross section, and the exponential depen-

dence given in Eqs.(5.23) and (5.25) effectively reduces the

boundary conditions to homogeneous form at large radial distances

from Medium 1. In particular, if A is considered to be the in-

finite cross section, Eq.(4.29) becomes modified only to the ex-

tent that the term involving B vanishes. The conclusion on page

64 can therefore be shown to remain valid (/ a w > 0 when > 0)

so long as > k 2. Similarly, the interpretation of the fact

that p2 is positive and real (in Medium 2) can be taken from the

discussion of Eq.(4.49), and the exponential dependence of E z

and H z found in Eq.(5.23) bears out this interpretation. Lest

this monotonic behavior of the fields be thought to set in only

at large distances from Medium 1, it should be added here that

the functions K q(pr) are monotonically decreasing functions for

all real non-zero values of the argument (18).
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Since the modes new under consideration exist only when

B > k2, and since (/aw) > 0 when they do exist, it follows
that the modes can always be studied at arbitrarily high frequen-

cies. This being the case, Medium 1 can also be treated accord-

ing to Eqs.(4.44) through (4.49), and if it contains inhomoge-

neities, p2 will be a function of (x,y) in that medium. Now in
order to obtain a "guided mode, there must be some standing

wave in the cross section of Medium 1. That is, p must remain
negative real at least in some regions of that cross section.
Hence there must exist protions of Medium 1 for which < k1 at

high frequencies.

It will be simplest now to restrict the discussion to cases

in which Medium 1 is homogeneous. Let it be characterized by

the intrinsic propagation constant k. Then if the mode is to

be guided by this medium, k 2 < B k. But this implies k > k 2,

or (e)1 ( u)2 Unless the latter condition is satisfied, no
waves can be guided along Medium 1.

It appears that free exponential modes can be guided only by

a material rod having a higher intrinsic propagation constant

than the surrounding medium. When the wave is guided, the fields
fall off monotonically outside the rod and must possess standing-

wave character inside it. The explanation of the free-mode phe-

nomenon becomes clearer. These waves must travel unattenuated
down the rod by means of successive internal critical reflections

from the bounding discontinuity. Of course, such critical re-
flections can take place only when the medium in which they are

'trapped" has a higher ¢. product than does the surrounding space.
Moreover, critical reflection can take place with plane

waves only when the angle of incidence is sufficiently far from

the normal. There should be a corresponding criterion for the
propagation along the rod. The key to the correspondence lies in

the discussion of waves at cutoff in closed-boundary structures
(pages 58-60). It has been shown that at cutoff cylindrical

waves spread out in the transverse plane and strike the bounding
wall normally. Evidently this condition cannot exist on the

open-boundary rod, because the discontinuity will no longer
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totally reflect such waves. As a matter of fact, the discon-

tinuity generally fails to confine the waves by critical reflec-

tion long before the frequency reaches a low enough value to

make = 0. In particular, since (ap/aw) > 0, and cannot be

less than k 2, the mode ceases to exist at a frequency defined by

the relations

or (5.26)
P2 = 0

Occasionally this frequency has been referred to (10,11) as a

'cutoff", but since the free exponential modes cannot exist at

all below this cutoff" the name is misleading. Besides, the

mechanism is sufficiently different to deserve another name, and

"divergence frequency" will be used in the remainder of this text.

The consequences of this lack of true cutoff among the free

modes are interesting. At any particular frequency wo, the only

free modes which can exist at all are those whose divergence

frequencies are less than w o. It is illustrated in Appendix D

that, for any given angular" variation, there are generally

only a finite number of these; perhaps none at all. It is cer-

tainly not possible to construct an arbitrary transverse field

from such a finite set of modes. In other words, the fact that

the individual free modes cannot exist in this problem over the

entire frequency range 0 < w oo means that the set of these

modes cannot be complete for transverse-field expansion at a sin-

gle frequency.

Notwithstanding the lack of completeness for the set of free

modes discussed above, it is noteworthy that the orthogonality

conditions (3.23) and (3.26) are still valid when taken over the

infinite cross section. This illustrates the danger of trying to

infer completeness from the existence of an orthogonality condi-

tion, as was pointed out on page 33.

While the comments relative to the interpretation of free

modes have been restricted to the case where Medium 1 is homo-

geneous, a combination of the material in Section 4.2 and 4.3

with these remarks will make the effect of inhomogeneities
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sufficiently clear for the purposes of this work.

The answer to question a) (page 85) has been indicated.

The nature of that answer makes question b) much easier. It is

now clear that the free modes play only a small part in the solu-

tion of rod problems, because these modes do not form a complete

set. The resultant behavior of such a rod, when sources are

specified, depends much more upon the nature of the sources than

upon the free modes appropriate to the structure itself. A

rather simple problem of this type is briefly considered in Ap-

pendix D, where it appears that the free modes represent natural

modes for the lossless rod. Under any given source excitation,

a few of these natural modes may be excited--the number thereof

depending upon the source distribution, frequency, constants of

the rod, and constants of the surrounding medium. There may

not be any at all, in appropriate circumstances. In a sense,

the field structures corresponding to these modes can be con-

sidered as "space resonances", because they are the only fields

which persist for infinitely large values of z, when the source

is at a finite point in space. The remainder of the field

structure is related to that of the source alone, acting in

free space, except that it is bent" or diffracted by the rod.

The important point to be observed is that the individual free

modes do not contribute to the radiation from the rod as they

travel along it, since the fields due to such modes die out

rapidly in the surrounding space.

With reference again to the example in Appendix D, it can

also be said that the free modes represent source power which

becomes channeled into the z-direction instead of going radially

outward from the dipole. If the rod were chopped off at some

large distances from the dipole source, the free modes would be

reflected at the far end. There would result a standing wave on

the finite section of the rod, and some additional radiation from

the chopped-off end; but no contribution to the radiation would

come from the free-mode standing wave on the bulk of the structure.

The function of these free modes is, therefore, to trap a frac-

tion of the source power, and project it from the far end.
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VI. CON CLUSION

A comparison of the mode concept in homogeneous and inhomo-

geneous cylindrical structures has been given in the preceding

sections of this paper. Primary consideration has been directed

to those mode properties which are substantially independent of

the detailed configuration of the system. There are very few

such properties, but they are fundamental. It is common engineer-

ing practice, in fact, to take most of them for granted. This

procedure has occasionally led, either directly or indirectly, to
unjustified analogies between homogeneous and inhomogeneous wave-

guides. It is to be hoped that the analysis presented here has

clarified the conditions under which such analogies can be made,

and that, thereby, a deeper understanding of the basic properties

of modes on ordinary waveguides has also resulted.

Nevertheless, it is clear that considerable work remains to

be done. Among passive systems, the particular lossless variety

which are bounded by a reactive wall still presents some un-

explained difficulties (Section 2.3 and Appendix A); those with

loss have hardly been considered at all. It does appear, however,

that if the walls of the latter are opaque, it may be possible to

find some additional general properties of the modes which would

greatly clarify the precise effect of dissipation on waveguide

behavior.

A practical problem of much greater importance than those

suggested above concerns active structures. The role of exponen-

tial modes in the solution to field problems arising from such

structures is by no means clearly defined. In particular, the

method of separating one mode from another has apparently not been

satisfactorily analyzed. As an example, the properties of wave-

guides containing one or more electron beamsdeserve more careful

examination from the mode point of view. These waveguide problems

are becoming so important, in fact, that the work contained in
the present paper should be regarded as an introduction to them,

rather than as an end in itself.
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APPENDIX A

Circular Guide with Reactive Wall

= -0

RADIUS"

AREA A

CONTOUF

Fig. A-1. Coordinates for circular guide.

The boundary conditions at r = a are

(a) H z -B 2 E , (

(b) H J B 1 E z

The internal medium is homogeneous, with

(a) Z 

(b) k = -j JwL (o+Jwe) , (2)

(c) p2 = _( 2 + k 2)
For the time being, the walls and internal medium will be

considered as dissipative. Therefore (B 1,B2, Zo,k,y,p) will be

complex.

The modes will be designated by a double subscript "ns", n

being the circular-variation index, and s the radial-variation

index. Although a TE-TM mixture is required, it is helpful at

first to keep the TE and TM parts separated. This is accomplished

by using superscripts 1 (for TM) and 2 (for TE); but each mode"

contains both, therefore the subscripts n are the same for the

two types.

The basic equations are:
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V2 E E E=0T zns Ps zns

(b) E ( )
Tns

Pys

PS
VT Ezn s

;

(3)

(1)(c ) H~rns _ .k
-p 2 Iz X VTEzns

TE:

(a) V2 H 2
T zns a zns

(b) H(2)
Tns

(c) E(2)Tns

VT

- JkZo

= ,2
Ps

;

(4)

Solutions to Eqs.(4a) and 3(a), respectively,

(a) Ezns ansY ns

(b) Hzns = bns\fns

=ans I (p sr) eJ1n 

=bns In (p s r)

bns are complex constants independent of r and
the modified Bessel function of the first kind.

_ (1)E E ns(lpns cpns

E(1)
cpns

E(2)
qpns

H(1)
cpns

+ E(2)
cpns and

Jn s a
2P ans (P)

psr

-jkZ o

-- k
Z 0P aBns (p)

Hn = H(1)
Hsns ~ns

+ H(2)
qpns a with

(6a)

(6b)

(6c)
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(a)

;

and

;

=0

!H zns

iz X VT Hzns

are:

where a n s '
In(p sr) is

Now

J

J

(5)
eJnT

CP-



H(2) _jn bn (P) (6)
cpns P2 nsins

where p = pr, and (') denotes (d/dp).
Application of boundary conditions (1) at r = a, with

Z a, yields

(a) bns [P8a ns(Z)+kB2Zosa(Z(Z)] = B2 nTsansYns(Z)

(b) nbnYssn s (Z) = an B1Pans2 (z)- Pa/(Z )]
0

Thus, solving Eqs.(7a) and (7b) for (ans/bns) = Kns yields

ns 1 ( ans p2anb n (z) + kb2Psa ~n(Z)
Z Z ~b) nb2 rn(Z

2 ne s~ns ( Z ) (8)
blPS atns (Z) - kpsa'n (Z)

where b =(B1)(Zo)= (Bl/YO ) normalized admittance], and similarly

b 2 = (B2/Y o ).
For convenience, momentarily set=~ ns(Z) andt' = pss (Z);

so from (8)

K ns =pa kl s () . (9)
Zo ns b 2nYS n 

From (8), also, the eigenvalue equation is

(aP2 +kab 2 ')(ablP 2 -ka') -n2b 2 Y2 2 = 0 , (10)

which should be rearranged to solve for in the form

With) 1 r 1 2 nwsbo

With the new symbols
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rrka
I-= ka = I;

*~ ~ :Ib t = ( Fb - 1 ), (12)2 Fb 1,1b

Eq.(ll) becomes simply

Ny 2 _ yys8 + (2 _ 82)kt2 = 

The solution is
(13)

(14)
f - [te r

But defining t by the relation

4 1 = blb2 t

gives for (14)

y, 6t~2~2

(15)

(16)

which shows that there are two sets of modes (for each n) corres-

ponding, respectively, to the + and - signs in Eq.(16).

It is convenient to write two conditions in the original

notation of Eq.(8), but with added subscripts 1 and 2, as follows:

Y{ns(Z 1)

Zl/lns(Z1

Yl2ns(Z2)

Z2W2ns(Z21

(b -_ )+ (b + ) +21
- 2ka [(b b2l 2 n

(17)
2 + )

Lb2ka (·- ) - (b1 )
= ~ b2 2

(bl + n =(2n [1 +()2]

From Eqs.(9), (12), (15), and (16)

k n 2 1 + - lt 

and
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k2ns = 2 2 1 - . (20)

In the special case where n = 0, the problem becomes axially

symmetric. Then l = 0, and the modes 2 and 1 become TE and TM,
respectively. From Eqs.(18), (19) and (20):

(a) n = -- klos oo ; Hzlo 0 ;

TM

t 0os(Z1) bl

(21)
(b) n = 0 0 k s 0 ; E zos ;

TE

· 2 0(Z2) -1
Z2 Y 2os ( Z2 ) b 2ka

Even when n 0, the cutoff frequency (defined by By = 0) is

characterized by 4 = 0. Hence modes with subscript 1 fall into

the "primarily TM" category. Similarly, modes with subscript 2

may be called "primarily TE".
When n = 0, (a/a) -0; whence TEo modes aave only three

field components: Hz, Hr, Eg. TMos modes have only Ez, Er, H.

Hence TEo8 modes are obviously orthogonal to TMos modes in the
longitudinal-power sense. There remains the question of orthogo-

nality among TEos modes, TMo8 modes, and mixed modes (n 0)

with different values of y. Because of the circular variation

e j n c, modes with different values of n" arp clearly orthogonal,

both in the energy and power senses. Consideration need be

given, therefore, only to modes with the same "n", but different

y's. Since the n becomes a common index, it will henceforth be

omitted.
Let two modes be described as follows:
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Mode 1 Mode 2

Hz= T 1 H 2= f 2 '

Ezl= K1V , E z2 K2N 2 ,

E(1)= Kjyl - E (1) K27o
ET1i- p2 T I ' ET2 T2 (22)

1 p 2

(2) -kZ (2) -jkZ

i XVT E( 2 2iZXVT

icV\ jHl (1)_ JkK2
H Tl 2 1 zXV , T2 -P2 T VzTX2 '

HT1- 2"i HT2 - TY2H(2)- 7T''1 H(2)- p2T'Y2

with boundary conditions expressed from Eq. (9) in the form

(a) (nVTl)a=(r Pf(Z) k (z)

_;;~ -b ~1
( Z

- 4 2(z ) .

Although the subscripts 1 and 2 have heretofore referred to

primarily TM and primarily TE modes, respectively, Eqs. (22) and

(23) may now refer to any two different modes, because their form

is such that modes 1 and 2 merely differ by an interchange of
these subscripts. The question of whether either (or both) has

primarily TE or primarily TM character will be decided only when

a choice of signs is made in relating Kns to s [Eqs.(.19),(20)].
It is advisable to postpone this step until later.

In order to compute the cross terms (c) in the longitudinal

power flow, the functions
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PC = lI (ET1X H 2 ) dcr

- i E() H*() + E(1) *(2)

+ (2) x H*(2) + E(2) H*(1) dr
T+ Ei X T T2

=(11) + p(12) + p(22) + p(21) (24)

will be required. It is necessary to express these p(CV) in
terms of common variables on the boundary, for which certain

integral transformations will be needed. The required transfor-

mations can be obtained from Green's theorems in the following

manner.

Let and \Krepresent any two scalar functions of (r,cp)
which obey appropriate continuity conditions in the (r,c) plane.

Green's second theorem requires that

f(CPV2z 2fVp) da= L( a .cr) dt (25)

Equation (25), applied with the identifications

2 2
p =y ' V2 P= p 1 l j

(a) (b) (26)

and the boundary conditions (23), yields

(p2 2-p) fr do=-
nK *a

0

n"Klc17ka 1 (27)- nKz-l~- (zY)2 (Z)dt 

Green's first theorem states that

(TPV2y+ VTTVTy) d= ar d , (28)
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or, in terms of the previous identifications (26),

ATVTI' V do

p22
[ nK y 1 1
F2 - I YjZ)y2'(Z) dt

Zlap 2
- o 2 -_

*P2/ilV r d -

Employing Eq.(27) to reduce the last integral in Eq.(29) gives,

AvTT VTY' dd

P2 K 1 piK22

a l ZoK Zok J

2 2 (j· k d·
+2p p IL 1(Z)T 2 (Z) d .

The various terms in Eq.(24) can now be computed.

P(l2) = [ 1 x E(1)] H*(2) do

p pA2 O ix VTEZ ) VTHZ*2 do
plp2

- 2V2 f (EizX VTH z2) d 

p122 L [( Ezl)x H1] d)

(30)

= 2 EZ1 a2 d . (31)

But the integral on L implies that r - a and is therefore only
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an integration on p. The integrand does not depend upon 9p,

however, because Ezl varies as e n c, while H behaves like
e n9. Therefore

p(12)
Pc

- i2rnny fyCK
2L23u 1 \r(Z\V* (Z)

= 2 *2
P 1P 2

Similarly

P(2c = i [ET2)1 X( ) doc iz LTl "T2

j2Tnkk*Z K*

: ,+Z*p2 2 2el %(z)\y2(z)
o lP2

(33)

Also

p (11) = i. [E()x H*t1)] do'
c -T1 T2

-jk*K 1 Kl r *

.*p 2 *2 JAVT\l VTt2
-or1~2

do . (34)

From Eq.(30), with the line integral evaluated as in Eq.(32),
the final form of Eq.(34) becomes

(11)
C

(32)

- Jk"K1K* 1 2Ta

By similar steps

p (22) = i*[E,

JkZo 2Ta

(p*2 _p2)

n K~__l{ a p2z k P2ZoJk*

+ 2 Im k(j Z2i(z)(z (35)

(2)x H (2)] do'

p* 2 Z*k *~ft-J~C
. (36)
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It is next necessary to add Eqs.(32),(33),(35) and (36) in

accordance with Eq.(24). A considerable amount of algebraic

manipulation will be required to carry out this operation, during

the course of which the substitutions = (Ys/k) and kns =

(Kns/Zo) are helpful. It is essential to make repeated use of
the relation 2 = _ (p2/k2) + 1], in order to obtain the follow-

ing expression for P:

(P2 -p2) PC

2TJnZo 0 kl2 y(lz(Z) (Z)

= 2(X*-k Im (kI )I+ 2k I( 2)2 1 2 1 n 2 k* 2 /

+ (l+k2) (1+ k) . (37)

It now becomes appropriate to complete the application of
the boundary conditions by using Eqs.(19) and (20), in the form

kn =?e 2 , (38)

where

t' p 2 at
(a) 2kn

(39)

(b) t t'- bl b

But from Eq.(38), regardless of the sign chosen there,

1 + 2 (1+) - 2kns (40)

A substitution of Eq.(40) into the last two terms of Eq.(37)
produces the final relation

(p 2-p 2) Pc

4FTJnZo Ik 2 1 (Z)(Z)

2 12 Ml)Im( an)+k2Im( + klkIm (41)( 1k 22 k*2 n l2 k(
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The only circumstance in which Pc goes to zero (if p2 p2)

is when

k = k* b 2 b* t = t2 2
The structure is lossless under these conditions.

An interesting feature of Eq.(41) is the fact that it re-
mains valid if mode 2 and mode 1 become identical. It then gives

an expression for the total vector power flowing along the guide

(due to a single mode). Since the right side of that equation

still vanishes identically, it must be concluded that no vector

power will exist for any of the modes unless p*2=p2 Hence the

fact that A2 must be real on this lossless structure is observed

to be a necessary condition for the existence of modes. The fact

that p must be either real or imaginary requires that ('/\) in

Eq.( 9) remain real at all frequencies. Hence kns is real below

cutoff (y=a), while it is imaginary above cutoff (=Jp). This

reversal of the usual phase relation between E z and H z (discussed

in Section 4.4) arises from the choice e jn q for the circular

variation, instead of sin n and cos np.
Since E z and H z in a single mode are in phase below cutoff,

Re S is not identically zero everywhere in the cross section.

It must therefore be alternately positive and negative, in order

to assure the vanishing of the integrated real power.

Attention is directed once more to the relationships between

two different modes by observing that Eq.(27) becomes

j 1 2 - d 

which is generally not zero. Hence Hzl and H 2 are not orthogonal

f:q.(22)1. This remains true even if n=O0 Similarly for Ezl and E 2 .

When the structure is lossless, a derivation similar to

Eqs.(24) through (41) shows that



(a) w(p 2 ) eETl*E 2 dc = 2Tm (K2 K )(

(43)

(b) w(P 2 P ) JrJHTl* 2 d' = 2n (K2*,-Kfly*)Y 1(Z)f)* 

The integrals in Eq.(43) are therefore not generally zero, except

in the special case n=O.

Normally, then, the average-energy orthogonality conditions

present in homogeneous structures cannot be expected to hold when

the boundary is not opaque (even when the system is lossless).

The present system does have the special property, however,

that both energy and power are orthogonal in the double-frequency

sense, even if the system contains loss. This unexpected inclu-

sion of the energy orthogonality property again arises from the

circular variation e jn~, which fails to drop out in any product

where neither factor is a conjugate.

Some curious matters come to light from an examination of

the eigenvalue equations (17) and (18). In order to make the

examination, however, a frequency dependence must be assigned to

the wall admittances b and b 2, whereas in the work ust com-

pleted it was not necessary to do so. Unfortunately, the only

cases which have been treated in detail involve the assumption

that b and b 2 are independent of frequency. Various choices

of the relative signs and magnitudes of these admittances have

been considered;but, of course, the assumption above is contrary

to the normal properties of susceptance given by Eq.(2.40) of

the text. Furthermore, the results of the calculations which

have been made are sufficiently bizarre so that it would be un-

wise to present them at length until the effect of violating

Eq.(2.40) is determined first. The curious "breaking off of

fast modes at frequencies below (or at) cutoff has been mentioned

in the main body of the paper. There are also some slow modes

which suddenly break off too. Both varieties of modes may

simply cease to exist (discontinuously) at all frequencies below

certain critical values, which depend upon the choices of b

and b 2. Many of the modes behave quite normally at all fre-
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quencies, but when the break-off phenomenon occurs at all, it

affects a finite number of the lowest modes for each value of

n >O. Moreover, the number of modes which break off discon-

tinuously below some critical frequency in the range O< w< o

is roughly proportional to n, so that the completeness of the

set at any one frequency is highly questionable,

One thing is definite, however: Regardless of the assumed

frequency variation, none of the fast modes break off when

b l (w) b 2(w).
Further work is required to establish the effect of the

frequency variation of the admittances upon the slow modes, and

to investigate its effects upon the fast modes in greater detail.

This work has not been completed.
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APPENDIX B

Rectangular Waveguide Partially Filled with Dielectric

L12 /L22/

E2 > El

Fig. B-1. Coordinates for rectangular guide.

Figure B-1 above shows a conventional metal rectangular

waveguide partially filled with a lossless dielectric ( 2,).

The remainder is filled with a second lossless material (1,ZL),
which may be considered as air.

The modes on the structure will have z-dependence eZ in

both medium 1 and medium 2. Because of the rectangular symmetry,

however, the problem can be considered as cylindrical about the

y-axis. All the fields can therefore be derived from Ey and H

instead of from E and H z. In each of the two media, field com-

ponents of the form

(a) Ey = F(x,z) e* yy ,

(1)
(b) H = G(x,z) eY ,

may be assumed, with the functions F and G further specialized

as follows:

(a) F(x,z) = f(x) eZ (2)

(b) G(x,z) = g(x) eZ .

In a manner analogous to that usually employed for the deter-

mination of the fields from E z and Hz [Eqs.(3.1) and (3.2) of the
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text], the following equations can be derived for each of the

two modes:

(a) VL H 2 + 2+ k) 0

(3)

(b) VL Ey + ( + k) =0

in which VL is an operator restricted to the longitudinal (L)

plane (x,z).

Equations (3), as well as all boundary conditions, can be

satisfied for two kinds of waves; those for which Ey=0 (called

iLE" waves), and those for which Hy=0 (called LMN waves). Field

components in the longitudinal plane can be found by equations

analogous to q.(3.2) of the text; but because there will be a

standing wave in the y-direction, both *it will be required in

the y-variation. A slight alteration of Eq.(3.2) will therefore

be helpful:

(a) LE (Ey 0)

L d 2+k 2 yX L

=, sY+k 2
HL =,.2 VL 8y / ;

(4)
(b) L(Ry 0)

A (J. -o
H L gu2+k2 (iyx LEy

Consider the LE waves first (Ey-0). Equations (3b) and (2b)

yield for gl(x) (in medium l)

d 2g1
(a) 2 + 1 P P)g 

(5)

(b) p2 2 k .
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In view of the boundary condition that E=0O when x=O, Eq.(4a)
demands that (aHy/ax) = = (dgl/dx) at x=O0. Therefore

gl(x) = A cos xX 2_-P l (6)

At x=a, E = 0 = (dgl/dx) also. Hence

sin aR 2-p = 0

or (7)

a 2 ( 2 _ p2) = (nf) 2 n= 0,1,2, .

Because of the boundary condition that EL=O when y=O, the
appropriate choice of exponentials for the y-variation must be
such that Hy--O when y=O Eq.(4a)]. Thus

Hy1 = A cos(nx) sinhly . (8)

In medium 2, Eq.(5) is valid, except for a change in sub-
script, from 1 to 2. Since the boundary conditions at x=O and
x=a also remain the same,

(a) g 2 (x) = Ecos x 2-p2

(9)
(b) a2(X2 - p2) = (n'T)2 , n = 0,1,2, .

On the otherhand, EL (or Hy) O0 at y=b, so the proper combina-
tion of exponentials for the y-variation in this medium is con-
tained in the following final expression for Hy2

Hy2 = E cos( a'x) sinhK2(b-y) (10)

The final boundary conditions at y=d are

(a) ELl(d) = L2 (d)

(b) HLl(d) = HL2(d) (11)

which must hold for all values of x and z. From Eq.(4a), the
above conditions may be written alternatively in the form

( k 2 2 + k 2 ) Hy 2 (d) , (12a)2 2 y 1 1 Y
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(2 +k 2) ( 1 + k)(ay) . (1b)

Substitution of Eqs.(8) and (10) into Eq.(12a) yields

A(2+k 2 ) C08(nr) inhl

= E( 2 +k 2 ) c08(n a) sinhM 2(b-d) , (13)1 1 a

which, according to the statement following Eq.(ll), must hold

for all values of x. Therefore n=n, and Eqs.(7) and (9b) conse-

quently demand that

2 _ p2 2 2 (14)

or, from Eq. (5b),

+k(2I2+k2 (nf 2 , n = 0,1,2, '. (15)

In the light of the above facts, Eq.(13) reduces to

A sinh(Old) = E sinh [X 2 (b-d)] . (16)

The application of Eq.(12b) is now simple, and leads to the

result

XlA cosh(ild) = - 2E cosh[X2(b-d) ] . (17)

A division of Eq.(16) by Eq.(17) results in the eigenvalue

equation

tanh( 1d) b tanh [ 2(b-d)]
(X ld) ( d) (18)

where (b/d) v i. Equations (15) and (18) serve to determine 

at any frequency, while Eq.(16) or (17) determines the relative

amplitudes of Hy in the two media.

The rest of the field components can be found from Eq.(4a),

and are summarized below. For convenience, all the fields have

been multiplied through by

[2 (n ) 2
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n = 0,1,2,'**

El = JwA cos () sinhly

E -

Ezl = -JwA( ) sin( a) sinhRly

Hxl = A l ( n ) sin(nx) coshly ,

H = A[y2- ( ] (_) sinhafly,Hyl a ( 2] os an

Medium 1

LE

(19)

Hz = A 1ly cos(nnx) coshM 1 Y1i 1 a

For medium 2, fields can be found from Eq.(19) with the substi-

tutions

Medium 2
Tw (20)

E 1 - E 2 ; HL1 - -HL2 ; H 1 Hy 2

It should be noticed that the LE wave for n=0 is actually

a TE wave. This value of n also makes (a/ax) 0. Since

Hxl=Hx2=O, the vector HT is parallel to the discontinuity between
the media. In a limiting sense, therefore, it may be said that

HT Vk2 " 0

which is to be interpreted in the light of the statements made

in Section 3.1 of the text.

The derivation of the LM waves is so similar to the previous

work that only the results will be given below.

n = 1,2,', 

Exl = B l(a
n ) cos(nx) slnhgly ,

1 (~) a 1yMedium 1

Eyl - B ( n _ 2 sin( a ) coshR 1ly

Ez = -BO sin( n ) sinhOly ,zi - 1 a 1

(21a)
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Hxl= JwcE1B sin(nX) cosh$ly ,

Medium 1

$yl -- °2 > LM (2lb)

Hzl = JwlB(n) cosa(nx) coshl y

The fields in medium 2 can be found from Eq.(21) with the

substitutions

y y-b; bl 2 ; B -- F ;
Medium 2

H 1 H2 ; EL1 --EL 2 ; Eyl - Ey2 ; (22)

¢1 - 2 '

The boundary conditions at y=d yield

(a) c 1B cosh(Old) = c 2F cosh[fC 2(b-d) 

(23)
(b) (1B sinh( Kld)= -& 2F sinh-2%(b-d ,

and the eigenvalue equations are

(a) Old tanh Old

- 2 (7-d 2 I LW'11 2:2 (b-d-) [ 2 (b-d)1 tanh[ 2 (b-d)] , (24)

2(b) 2 + k2 = + k 2 = (nT) _ 2 2
1 1 2 2 a,, .)

There is no LM mode when n=O.
From Eqs.(19) and (21), it appears that at cutoff (=0) the

LE wave becomes TM (H z-- 0), while the LM wave becomes TE (Ez-~O).

Therefore the LE wave may be called "primarily TM" and the LM
wave primarily TEO.

In this particular example, it is again easy to prove, with-

out investigating the eigenvalue equations, that Y2 must be real.

Toillustrate, the integrated vector power flow in an LE wave

can be computed directly. In medium 1
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iz (ET1 X HT1) = EHyl
(25)

= (D) A 2 cos2(,) sinh ly sinh y

where 2

D = J:la 2_ (n,)

Integrated over the range (x=0O, x=a) and (y=O, y=d), Eq.(25)
becomes

4 iz (ET x H 1) dr

2 sinh( +)d sinh( -)d M1 1 1 1 (26)

When reduced to a common denominator and transformed by means of

trigonometric identities, Eq.(26) may be written

A S z do = D I 2 [lm oh(l d) sinh((ld)] . (27)

The substitutions (20) show that the corresponding power in

medium 2 is given by:

f S do-
A2

-DI 2 Im {0?2 cosh [ 2 (b-d sinh [k2(b-d} (28)( *2 _ 1, M. cos _ L~s ) 2
The total power flowing along the guide is the sum of Eqs.(27)and
(28). But if boundary condition (17) is multiplied by the con-

Jugate of Eq.(16), it will become clear that the numerators in
Eqs.(27) and (28) cancel upon addition. Since the total power

cannot be zero for all the modes, it must be true that
2 = 2 (29)

The same conclusion applies to LM modes, by a similar proof.

Equations (15) and (24b), along with Eq.(29), provide assur-
ance that 12 and 9 2 are always real. Moreover, the former

-110-



equations also guarantee that if c2 > 1'

x _2 -x = k2 - k2 X . (30)
1 2 2 1

In particular, l, cannot be imaginary when (and if) 02 is realS
if both are imaginary, then 921 I 1. Similarly, from
Eqs.(14), (15) and (24b)

(a) p2 P2

(31)
(b) 22 p2 2 p2 (nr) o

1 l 2 2 a

Further simple restrictions on 01 and ~2 can be obtained

from a very brief examination of Eqs.(18) and (24a). The func-

tions (x tanh x) and(tanh x/x) are positive, real, and even

functions of (real) x. Therefore the two sides of Eq.(18) or

Eq. (24a) will always be of opposite algebraic sign if bl and 2
are assumed to be real at the same time. Consequently, such a

solution is not possible.

It follows from Eqs.(29), (30), (15) and (24b) that ~2

must be imaginary under all circumstances. Therefore Eq.(31b)

shows that P 2 must also remain imaginary, which is in accordance

with general matters discussed in Section 4.3 of the text. An

additional conclusion from Eqs.(l5) and (24b) is that no mode

can be above cutoff ( = iS) unless

2 a 22 ak = (-n) + K2 + 2 e- (n), (32)

where 2 = JK2. Thus the cutoff frequencies for all modes must

lie above w o = (nr/a 2 ).

The behavior of 1 is more complicated, and a detailed

study of the eigenvalue equations is required to understand it

precisely. Such studies have been made elsewhere (3). It will

suffice to state here that above cutoff there must be some fre-

quency at which = Jkl or P 1 = 0 (Figure 4.3 of the text).

Hence, according to Eq.(24b), l = (n/a) at that frequency,

and 1l is therefore real. It remains real at all higher fre-

quencies, too, because remains > k1. There exist lower
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frequencies at which b1 becomes imaginary, and in particular

some such frequency where 1 = 0. The relation between the cut-

off frequency ( = 0) and the frequency at which bRl becomes

imaginary is, however, a detailed function of the specific prob-

lem being considered.

From Eqs.(19) and (21) it can now be observed that, for

either LE or LM modes, E z and Hz are in phase when the mode is

above cutoff, and 900 out of phase when the mode is below cutoff.

This checks with the fact that the transverse fields are linearly

polarized.

The poswer orthogonality conditions are easily demonstrated

directly. It is not necessary to consider waves with different

values of n, since such waves are obviously orthogonal as a re-

sult of the x-integration. Moreover, all LE modes are orthogonal

to all 14 modes in the power sense, because of the missing field-
components in each group. Therefore the only problems concern

the power orthogonality among LE modes with a common value of n,

and similarly among LM modes with a common value of n. The proof

for the former will be considered as exemplary.

When no superscript is present, let subscripts 1 and 2 refer

to the two LE modes. Otherwise, the subscript refers to the two
media in the guide, while the superscript distinguishes the modes.
Then, the required integrals are

a d a d
a| * 2 dxdy + E (l)H(2) xydxdy
xl y1 x2 y2

= D{ AA sinh(jl)y) sinh( (2)y) dy

0o~~~~~~~ ~~(33)

Ib+ E1E 1)(by) sinh [1)(by) sinh [ (2)(by dy .
where

D 2 [y2la T)
2 2 a
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The first integral, denoted by Ia, becomes,

(2 12) I a

= iAA tX(1)sinh (Al(2)d) cosh ( (1)d)

- 0*(2)sinh( (l)d) cosh ¼ (2)d) , (34)

while the second (I b) becomes

(X$* 2 _) Ib
2 '1'

E 1E i(l) sinh [ (2)(b-d)] cosh [ l) (b-d)]

- 0(2)sinh [A(l)(b-d)] cosh [02(2)(b-d)]j. (35)

If boundary conditions (16) and (17) and their conjugates are

applied to each mode, it will be observed that the sum of Eqs.

(34) and (35) vanishes. Therefore, if y2 ' Ia + Ib =0.

The LE modes are orthogonal in a power sense. A similar result

follows for the LM modes.

By steps almost identical to those in Eqs.(33) through (35),

it can be shown that for LE waves with the same index n,

(a) fEZlE 2 do = 0

(b) feEE 2 d $ O (36)

(c) IHzlHz2 d 0°

Equation (36) becomes only slightly modified for waves, and

the conclusion is essentially unchanged: in general, neither the

set of E nor the set of Hz ' is orthogonal; nor can a "weight-

ing" factor or ,p be relied upon to render them orthogonal.
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APPENDIX C

"TE-TMN Waves on a Rectangular Waveguide

k 2 2 Cf

Fig. C-1. Coordinates for rectangular guide.

The above figure represents a conventional rectangular wave-

guide with perfectly conducting metal walls. It will be assumed

that the derivation of the fields for the TE and TM modes is

familiar enough to be omitted.

For TEmn waves,

(a) Hzmn co= os() cos(nb) ,

2 2
(b) Pmn = j ' (1)

(c) m,n = 0,1,2, . (but m 2+n 2 0)

For TMmn waves,

(a) Ezmn = B sin( ) sin( ) zmn mn a b

2 2
(b) pmn ) + ) (2)mn b (

(c) m,n = 1,2,3, . .

Since n = -(P2 + 2), the TEmn and TMmn modes are degenerate

when m,n 0.

Consider a mixture of the two waves. If the frequency is
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below cutoff, then

2 Re S z = 1 2 Re[(izx VTEz)VTH ]2 ReS, p1
(3)

which, in the present instance, becomes

2 Re S z

=R( mn) (_ 2 [8 in T( - ) sin n(a + )]. (4)

Equation (4) shows that Re S z reverses sign in certain parts of

the cross section. This can be appreciated more easily by con-

sidering the special case m=n=l, and Re (AlBll) >0. Then Re S z

= 0 along the lines

(a) x = () yb
and

(b)

It is --=

(5)
x=a- ()y .

along the lines yO and y=b. Thus the sign distribution
of Re 8z will be as shown in Figure C-2 below.

x: o-()y.b)Y" .

a

+ 'as I-

, ~s

Fig. -2. Sign distribution of

Re S z for a (TE-TM)1,1 wave below cutoff.

By expanding Eq.(4) trigonometrically, it can be verified

that

(6)

a b

O IoRe Szmndx dy = 

If the mode is above cutoff,
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2 Re Sz

(p2+k2 )Re [(iZxvTEZ) VTHZ]+J (E ITHZII 1PT ZI .(2)
Ip14

Equations (1) and (2) show that Ezmn and Hzmn are independent of

frequency, provided that n and Bmn are not functions of fre-
quency. Therefore, if >0, it must be possible to find a fre-

quency sufficiently near cutoff ( 0) such that the second term

in the numerator of Eq.(7) becomes arbitrarily small. If
Re (nBmn) >0 however, Figure C-2 shows that the first term of

the numerator in Eq.(7) is always negative over certain portions

of the cross section. In view of the fact that k 2 0, even

when becomes zero, it follows that in these regions of the

cross section, the Re Sz will necessarily become negative at

frequencies sufficiently near (but, nevertheless, above) cutoff.

It should be recognized that the Poynting vector reversals

indicated in the foregoing can take place above cutoff when Amn

and Bmn are entirely real, under which conditions the transverse

fields would be linearly polarized.

In any event, Eq.(6) shows that the first term on the right
side of Eq.(7) integrates to zero over the cross section. Hence

the integrated real power flow along the guide has the same alge-
braic sign as , in accordance with the general discussions given
in Sections 4.2 and 4.3.
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APPENDIX D

Dielectric Rod in Free Space.

Driven by Axial Dipole

DIPOLE WITH "CURRENT MOMENT" (I h) iz

Fig. D-1. Coordinates

and notation for dielectric rod.

The above figure represents a solid dielectric rod having

a circular cross section and constants ( 1 ,). It is surrounded

by an infinite region with constants (i). An infinitesimal

dipole, polarized along the z-axis, is located at the origin of

the circular-cylindrical coordinates p,cP,z. The general method

of solution will be to expand this dipole source into an infinite

set of line sources, by direct Fourier transformation. The

boundary-value problem can then be solved for each line source,

and the results finally combined by the inverse Fourier trans-

formation.

From the principles of Fourier analysis, any current-density

distribution I(z) (amperes per meter) may be represented by the

integral

I(z) = fg(P) e- jz d , (1)

where
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rOO

g(P) = 2 I(z) eZ dz . (2)

For the particular problem at hand,

I(z) = (Ih) uO(z) , (3)

in which u(z) is a "unit impulse" at z 0, while I and h are,

respectively, the "effective" current density and effective m

length of the dipole. Equation (2) therefore yields

g(P) = Ih (4)

If the boundary-value problem corresponding to a line source

can be solved, the solution to the problem with a dipole source

can be obtained by integration as follows. Suppose that

G(p,p;) e-JZ is any field component arising from the solution

to the boundary-value problem when a line source having unit

current density e-jAZ is impressed upon the axis of the rod.
Then the linearity of the system requires that the field compo-

nent in question be multiplied by g(P) if the current density

is multiplied by the same factor. The superposition theorem de-

mands, in turn, that the total field component R(p,qP,z), due to
the actual current-density distribution I(z), be given by the

integral

R(p,p,z) =- Jg() G(p,;p) ePZ dS . (5)

Therefore it will be necessary to obtain a solution to the rod

problem in the presence of a line source having unit current

density i e- j z.

The required solution can be broken downom into several parts.

In medium 1, a source is present. Thus the Maxwell equations
have a corresponding source term in them. The total solution

in that medium can consequently be taken as the sum of a "parti-
cular solution" to the differential equations with the source

term present, plus a collection of appropriate source-free solu-

tions. Furthermore, the particular solution in medium 1 need
only be a solution to the differential equations; in finding it,
the boundary can therefore be entirely disregarded. Hence the
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desired result may be obtained by solving for the field due to
the given line source acting in medium 1, as if that medium were
infinite in extent. The free solutions must then be chosen to
combine with this particular solution in such a way that the
total field will satisfy the boundary conditions.

In medium 2, however, there are no sources. Therefore the
required solutions to the Maxwell equations in that medium will
be an appropriate collection of source-free modes, which are
specifically required to remain finite at large distances from
the rod.

The boundary conditions are the continuity requirements on
the tangential E and H fields at the surface of the rod. These
conditions will fix the amplitude of each free solution in rela-
tion to the strength of the source.

The aforementioned particular solution in medium 1 can now
be determined. First of all, it will certainly be axially sym-
metric. Furthermore, the line source produces no z-component of
magnetic field. The z-component of the electric field at all
points in space except p = 0 must be a solution to Eq.(3.1a) of
the text. At p - 0, it must have a singularity to account for
the presence of the line source. The linearity of the system
requires that the z-dependence of E z correspond with that of the
line source. Therefore in Eq.(3.la)

p2 _2 _ k 2 (6)

Consequently, the solution for the longitudinal component of the
electric field caused by the line source acting in an infinite

region with constants ( 1,p), may be written

E z = C Ko(Plp) e-jZ . (7)

The constant C will be determined by the source from condi-
tions on the magnetic field H . The latter, according to Eq.
(3.2a) of the text and Eq.(7) above, is given by the expression

H JWl CKe-J(ppp) e- jz j (8)
cp-P l CKl(Plp) e-J z (8)
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Now for any value of z (z = 0 for example), the line integral
of Hp around an infinitesimal circle of radius po must equal
the enclosed current. Since the latter is equal to 1 in the

present problem, this condition, along with Eq.( 8) and the ser-

ies expansion for the modified Bessel function K1, requires that

jp2
C = l (9)

2rwc 1

The rest of the field components may be evaluated from Eq.

(3.2a) of the text. With a subscript "t" to denote the fact

that the solutions refer to the field of a line source, they may

be written

(a) Ez -= k Ko(PlP) e ,

(b) Ep= 2rkl2 K1 ( pl p) ejZ (10)

(c) H =2 K l (plp) e-jpz

The remainder of the solution is made up of appropriate

modes both inside and outside the rod. These must have the prop-

agation constant P3, and be axially symmetric TM modes. Therefore

(a) Ezi = A' I(plp) e- j

(b) Epi = p Il(Plp ) e- j (11)

(c) Hqi = l (p 1 p) e-p 

represents the internal (i) free-mode field, while
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Ezo = B' K o( p 2p) e-jPZ

Eo = P2 K1 (p 2 p) e-JiZ

o P2 1.(P2P,

p2 = 2 _ k2

represents the outside (o) free-mode field. It will be shown
immediately that no other modes will be required, because the
boundary conditions suffice to determine the unknown constants
A' and B in terms of the strength of the source.

The boundary conditions at p = b are

(a) Ez Ezo -Ezi

( o) = H- Hi H (13A)

which become

(a) B' Ko(Z2) - A' I(Z l) = a' Z12 KE(Z 1)

K 1(z2 ) I(Z1 ) (13B)
(b) B' X - Z2 + Al a' Z1 Kl(Zl )

22 Z2

where

Z 1 = plb , Z 2 = p 2b ,

(14)
_ 22 a =

1 2e1b£1 2ruw b2

Solution of the pair of equations (13B) for A' and B' can be
carried out by determinants. The system determinant, A, is given
by

I(Z) K(Z
A = I(Zl) K o(Zl) ZL1 ' + X ZKo z] , (15)

while the constants A' and B are determined by
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(a) A '[Z1K(Z)K(Z) - Z2K0(Z 1 )K1(Z 2 )](a) A' _ . . . .......A 

a'ZB[I(Zl)KO([l) + Io(Z1 )K1(Zl)l = (16)
A - A

The Wronskian relation has been used to reduce the numerator of

Eq.(16b).

The solutions to the unit line-source problem, which corres-

pond to G(p,p,p) ejPz (page 118), may now be written:

Medium 1 Medium 2

E'l = Ee + E Ezo 'i z Ezi ,2 zo

Epl~ = Ep4 + E El = E (17)
pi p2 po

HI = H Hi ; H2 = H 

In order to form the integrand corresponding to that in Eq.(5),

the field components in Eq.(17) need only be multiplied by the

value of g(p) given in Eq.(4). They must then be integrated with

respect to from - o to +oo . The resulting contribution of the

integrals containing Ezt, Ept and Ht to the field inside the rod

can be evaluated at once. It must be precisely the free-space

field of a dirole in a medium with constants (uj 1), because it

represents the superposition of the free-space fields caused by

line-sources whose integral (or superposition) is the dipole

source. The integral involving H, for example, can indeed be

shown to be the magnetic field (Hpd) of a dipole. Thus, from

Eqs.(10c), (6), (5) and (4)

H d = Ih K 1( p e-pZ d . (18)

The integral in Eq.(18) is evaluated in the Campbell and Foster

tables (16), pair 867.5. Use of the result contained there gives

for Eq.(18)

H _ BIhcpd 4Tr e] , (19)
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- which in standard spherical coordinates R = 2+2 p = R sin ,

z = z becomes

Ih sin 1 I +jk J
H cpdI -sn + J e 1 .(20)

Equation (20) is the well-known form of the dipole field, and

confirms the fact that none of the integrals involving the "par-

ticular" solution need actually be evaluated. They will be

written simply as the dipole field Ezd, Epd and Hpd-

The rest of the integrals involve the i" and o" fields.

The multiplication by g(B) merely multiplies A' and B' in Eq.(16)

by (h/2Tr), or effectively changes a' to a, where

a Iha' (21a)
2 4rr2wlb2

With the notation

A = Z1Ko(Z 2)K 1(Z 1 ) - Z2Ko(Z1)K 1 (Z2 ) , (21b)

the total field solution to the problem therefore becomes:

Medium 1

oo

EZ1= Ezd + 10T(p 1p) ePz dp

E PEpd+i I 1(p 1p) ejpZ ad (22a)

Hpl Epd + J l I(Pl) e-j d~
00

and= H~ + jwLc - I1(p1p) e - jZ de ;
and
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Medium 2

Hp2 = - Ja

H9~2 = -Jw¢~

E 2= a Ko(P 2 P) e JPZ dp

00

K l(p 2p) e-jPZ d (22b)

L(P2 ) -j Z 
P2A

The additional relations required to connect Pl, P 2 and are

rewritten from Eqs.(6) and (12):

2 2 2

(23)
2 2 2

P2 = 1C2

and therefore

2 2 = k 2 (24)
P2 Pi 1 _ k2

The integrals in Eqs.(22a) and (22b) are extremely difficult

to evaluate completely. Fortunately it is not necessary to do so

in order to discover the part played by the free modes in the

solution to this problem. Since it is to the interpretation of

these modes that this paper is primarily devoted, much useful

information can be obtained from the aforementioned integrals.

In particular, it is clear that the nature of the integrands in

Eqs. (22a) and (22b) depends greatly upon the determinant A. A

substantial digression will therefore be made in order to discuss

its properties, and their relationship to the free modes.

According to Eqs.(14), (15), (23) and (24), the values of

y for which A vanishes are given by the set of equations

Il (Zl ) K1 (Z2 )
_b-c , (25a)

z2 12 = w2ub(¢ - ¢2 ) (25b)
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Y_2 Z2 + k2 z2 + k2 (25c)

These equations are precisely the ones which determine the free

TM modes on the structure, when the fields are axially symmetric.

The standard method of searching for free modes leads not only

to Eq.(25), but also to a similar equation for TE modes (when the

circular-variation index (n) is zero). For n> 0, the free modes

are mixed TE-TM, and the eigenvalue equation is more complicated

(8,9,10,11,12). The results in the latter circumstance are not

sufficiently different, however, to warrant detailed considera-

tion here.

Equation (25a) cannot be satisfied when Z1 and Z2 are both

pure real, because the two sides have opposite algebraic signs

(18). Moreover, the left side of that equation remains real

whether Z1 is pure real or pure imaginary. Now, it is easy to

show that if Z2 is pure imaginary (=J 82), the right side can-
not be pure real; for by Eq.(5.8) of the text

- 2 Ko,(j2 82H ), (26)

In order for the above term to be real, however,

Im v =0 , (27)

or

Iml( r) (82 [° (82)3}

= Im {[Jl(82) + JN1 (8 2 )] [Jo( 2) JN(62)0 )

= Jo(82) N 1(8 2 ) - J 1(8 2) N0 (8 2 ) = . (28)

Since J1(2) = '(82 ) and N 1(2) = -N( 2) Eq.(28 )requires
that the Wronskian of the two independent solutions (Jo and Jo )
must vanish. This is impossible

In view of the fact that y cannot be complex (as outlined
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in Section 5.2 of the text), the only remaining possibility is

for Z 2 to be real and Z1 pure imaginary (= j81 ). Under these
conditions, however, Eq.(25b) requires that c1> 2 while Eq.
(25c) demands that = JB. Therefore Eq.(25) may be rewritten

Jl(8_) K 1 (Z 2 )
(a) SJo(8) = - Z 2Ko(Z

(b) 8 2 + Z2 w 2 b 12 (e-) - , (29)

(C) b22 z2 + b2k2 b2k2 

Clearly Eq.(29c) states that

kl - B - k2

The general form of the left side F 1(8 1)

shown in Figure D-2.

FI

2

o ol 

of Eq. (29a)

The values a and b are given by the

I
I

T
031

I
I
I
I
I

3 aT
41

is

roots

J X8I

I

Fig. D-2. Left side of Eq.(29a).

of the Bessel functions (excluding the origin) as follows:

(a) Jo(a) = 0 , v 1,2,3,- ;

(b) Jl(bV) = v = 1,=,,''

The right side F 2(Z 2) of Eq.(29a), on the other hand, has

the behavior illustrated in Figure D-3 below.
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F2

0 Z 2

Fig. D-3. Right side of Eq. (29a).

From FiguresD-2 and D-3, it may be seen that the equality

of F 1 and F2 , required by Eq.(29a), can take place only when

av - 81 by , v = 1,2,3,' (32)

For each value of v, the values of Z2 range from zero (at

81 = a) to oo (at 81 = b). The values of v, in fact, designate

the modes, and the resulting loci of Z2 versus 81 are shown in

Figure D-4. The dotted circle in Figure D-4 represents the rela-

Z2

RADIUSs
OF CIRCLE

W 2 b2 (e - 2 )

MODE I MODE2 MODE 3 MODE 4

ElJo /////~I

I ,..

0 a b, a2 b2 03 b 3 04 b4

Fig. D-4. Solution of Eqs.(29a) and (29b).

tion (29b), which must be satisfied along with Eq.(29a). The

intersection of this circle with each mode curve" (solid lines)
gives the corresponding values of Z2 and 81 in that mode at each
frequency. According to Eq.(29c), = k 2 when Z2 = O. From
Figure D-4, the frequency at which Z2U = 0 (in the vth mode) is

-127-

81



that for which the circle ust touches the corresponding "mode

curve" Hence

k= 2when dv 2 ) , =1,2,3' . (33)

The wdv in Eq.(33) are the "divergence frequencies" for each mode
"v". Mode " ceases to exist when w <Wdv. At very high fre-
quencies, Figure D-4 also shows that 81 - b (a constant, in-

dependent of frequency). Therefore Eq.(29c) leads to the conclu-

sion that V -0- k as w - Since this same equation shows

that

2 2 82 82 (34)
v V+l l,v+l l,v (34)

and since it is clear from Figure D-4 that

81,+l> 81,v (35)

therefore

> v+l * (36)

It is not difficult to see from the foregoing considerations

that the frequency dependence of the various will be given by

the curves of Figure D-5, in which the lines showing k and k 2
are also included.

2 =W A

-I- al --a 3 -- a4

Fig. D-5. PV versus w

for TMov modes on a dielectric rod.
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It is a consequence of Figure D-5 that if the frequency

is below wdl (for a given rod), there will be no free TMoD

modes. Even if the frequency is above this value, there will

only be a finite number of these free modes having divergence

frequencies below the given frequency. Since the TEoD modes

are similar, and in fact can be shown to have the same diver-

gence frequencies as the TMov modes, it is therefore clear that

these modes cannot be a complete set.

The modes which are not axially symmetric (n >0), differ

from the present ones in that there is always one TE-TM mode,

for each value of n >0, which persists down to w = O. Never-

theless, since it is possible to construct sources whose free-

space field requires only a finite number of angular variations

n, the TE-TM modes are evidently still not complete. Such a

source would be, for example, a dipole at z = 0 which is polar-

ized in the transverse plane; for this source excites only modes

with n = 1.

In any case, there will be no free modes at all if l< 2

even though the solution to the dipole problem can always be

expressed in an integral form similar to Eqs.(22a) and (22b).

It follows that there must be some portions of the integrals

which are not representable by free modes. That is, the inte-

grals cannot be entirely represented by a series expansion in

the free modes, and therefore the fields due to the dipole

source cannot be thus represented. It is interesting to observe

that the Fourier integrals in question can furnish a basis for

the proof of the completeness of a set of modes, and this tech-

nique has been applied (17) to develop the theory of eigenfunc-

tion expansions in general.

The foregoing discussion of the significance of (and the

connection between its zeros and the free modes) sheds consider-

able light upon the interpretation of the integrals in Eqs.(22a)

and (22b). The simplest integral is that for Ez2, which will be

taken as an example. With the new notation
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r k2P , B = k2 b r ,

(37)
k

k2z , = 12k 2 -7 k-

the field Ez2 can be written

Ez2 _
2

2k2a

00

(B 2-)(B W2)X2 K0 (rrW 2 -l)eJWZdW

1 - ''2 X- 00 *(38)

The integrand (excluding the exponential) in Eq.(38) has branch

points at oo and at W = 1, because of the functions o and K1.

It may also have a finite number of simple poles corresponding

to the free modes, as previously discussed. If there are any of

these, E. (30) shows that they lie symmetrically about the origin

in two regions restricted by

1 - Iw lI · (39)
Suppose, for example, that W- f Wo are the only such simple

poles. They lie directly upon the path of integration, since the

free modes are undamped.

In this situation, the Fourier integral must be interpreted

properly. In order to do so, it is simplest to consider the pres-

ent lossless rod as the limiting case of a dissipative one, in

which kI is complex. The propagation constant (y ) of the free

mode would then be complex, and the particular branches of the

Bessel functions which determine 0o would have been so chosen

(on physical grounds) that o and p 0 would have the same algebraic

sign. The free mode would propagate with z-dependence

e° -e(a0+:°)z
e = e

the "incident wave" would have o, P, > 0, while the correspond-

ing "reflected wave" would have o, 0O < 0. Since the propagation
factor in the integral (38) is written instead as e jW , the
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corresponding value of W o would be W o = Bo - Jao. The two poles

of the integrand in Eq.(38) would thus lie in the second and

fourth quandrants of the complex W-plane. The actual lossless

problem is now to be interpreted as a limiting form of the dis-

sipative one, when o -*0. It is more convenient, however, to
displace the contour of integration where it passes the poles,

rather than to move the poles themselves. Therefore the integral

(38) is to be interpreted as taken over the path shown in Figure

D-6, with the understanding that the radii of the small detours

BRANCH POINTS

POLE /
-Wo

- 00 X-oo x -I

W-PLANE

C
I W- 00

I --wo A
POLE

Fig. D-6. Path of integration for Eq.(38)

C and C will be allowed to approach zero. It is not possible

to close the contour on the conventional large semi-circle, be-

cause of the branch point at oo. This is far from unexpected,

however, in view of the fact that the possibility of such a

closure would mean that the poles furnished the only contribu-

tion to the integral. Then the free modes would be the entire

solution, and there would be no radiation. It is clear from

the physics of the problem, however, that there will be radia-

tion,and the mathematics shows up this fact by requiring con-

tributions to the integral from regions outside the immediate

vicinity of the poles.

These statements may be clarified by rewriting the integral

in Eq.(38) in the condensed form

I(Z,r) F(W,r) cos WZ dW (40)
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By reason of the symmetry of the problem, it is sufficient to

consider Z - 0. The function F(W,r) is described, ua function

of W, by Figure D-6, while its dependence on r is governed prim-

arily by the Bessel function Ko(rW-l). The branch points

W = + 1 are zeros of F(W,r), as can be seen from Eq.(38) by

using the series expansion of the -functions near this value of

W. The square roots are to be taken in such a way that their

angles lie between 0 and + , because of the physical requirements

that the integrand must either represent outgoing waves or remain

finite as r -*o0. Thus F(W,r) is complex when W <1 and real

when W> 1.

It is therefore convenient to write Eq.(40) in the form

I(Z,r) = Ia(Z,r) + Ib(Z,r)

1 °00 (41)

= F(W,r) cos WZ dW + F(W,r) cos WZ dW.
O 1

According to Figure D-6, the interpretation given to Ib(Z,r) is

Ib(Z,r)

lim ( 0- 

= , )0 F(W,r) cos WZ dW + F(W,r) cos WZ dW
o-W 00 

+ F(W r) co z awS (42)

where W - W = 8oeJ on the contour C. The first two integrals

in Eq.(42) define, together, a Cauchy principal value on the real

axis of W. The remaining integral about C can be obtained in

terms of residues from standard methods of complex-variable theory.

Thus

Ib(Z,r)

= P F(W,r) cos WZ dW -TJ R(Wo,r) cos WZ , (43)

where R(Wo,r) is the residue of F(W,r) in the simple pole at Wo,
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and P denotes the Cauchy principal value of the first integral.

According to the integrand in Eq.(38), the form of R(Wor) will be

R(Wo,r) = g(WoB,9 ) K o(r/W2-) , (44)

where g(Wo,B, ) would be obtained explicitly in the process of

finding the residue at W =Wo.

In order to evaluate the first integral in Eq.(43), it is

convenient to define

Q(W,r) = (W-Wo) F(W,r) , (45)

whence, in particular,

Q(Wo,r) = R(Wo,r) (46)

Therefore

P JF(W,r) cosWZ dW

0oo

P Q W-Wo cosWZ dW

00

(Q(r) - Q(Wo,r )
+ JWWcosWZ dW . (47)

Since the integrand in the second integral on the right side of

Eq.(47) remains finite at W=Wo, no principal value is required.

The first integral can be evaluated directly;

tJ Q(W r)osZ 

W-W 0 OtZd

= P cosZ( + W0 ) d }

/00

= Q(Wo,r) cosWoZ Cos - sinWoZ sin c)d} (48a)
0 ) '_(Wo-l)z 
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which can be integrated to yield

00oo

P o) coswz d} 3

= -R(Wor){Ci( c osWZ oZ

+ ( + si[(W-)1Z]) sinWoZ} * (48b)

The i and si functions are defined in the standard manner (18).

It is now possible to interpret the integral in Eq.(40) quite

effectively. With reference to Eq.(41), Ia(Z,r) is the ortion

which accounts for the radiation. The function Ko(r(W 2-1 ) be-

comes a Hankel function when Wl, and, for any finite value of

Z, this has outgoing-wave character as r becomes large. The in-

tegral is thus seen to be a superposition of radiating cylindrical

waves, each produced by the Fourier components of the induced

charges on the surface of the rod. It is to be observed, how-

ever, that when r has any given value (> B), the contribution of

Ia(Z,r) vanishes at large Z. This circumstance arises from the

well-known limit theorem that, if f(x) is sectionally continuous

in (a,b), then

lirm b

k- oo f(x) cos kx dx =O . (49)

The second term in Eq.(41), Ib(Z r), vanishes exponentially at

large radial distances from the rod. on account of the corres-

ponding exponential decay of KO(rIW2-1) when W > 1. This integral

then represents a combination of the free-mode field and the non-

radiating (or "local") field of the charges induced on the rod

surface. The separation between the latter portions can be made

from Eqs.(43) through (48). From Eqs.(43), (44) and (48), in

fact, the free-mode part is seen to be composed of the following

terms,
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Free mode = -JR(Wo,r) [cosW oZ - sinWoZI

= -fJg(Wo,B,) o (r 1) e (50)

while the "local" field comprises the terms
oo

Local" field =0 cosWZ dW

-R(Wor) {Ci[(Wo 1)z] cosWoZ

+ si[(W o-l)ZsinOZ} . (51)

The ustification for the separation made in Eqs.(50) and (51)

lies in the fact that all the terms in the latter vanish as Z

-- oo [Eq.(49) and reference (18)], while those in the former per-

sist indefinitely along the rod.

Further numerical work could be given here, in order to ex-

amine the field outside the rod in greater detail, but the gen-
eral picture outlined above appears sufficiently clear for the

purposes of this paper.
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