1 The Ellipsoid Algorithm

Definition 1 Let a be a point in \mathbb{R}^n and A be an $n \times n$ positive definite matrix (i.e., A has positive eigenvalues). The ellipsoid $E(a, A)$ with center a is the set of points $\{x : (x - a)^T A^{-1}(x - a) \leq 1\}$. Therefore, the unit sphere is $E(0, I)$, where I is the identity matrix.

An ellipsoid can be seen as the result of applying a linear transformation on a unit sphere. In other words, there is a linear transformation T that maps $E(a, A)$ to the unit sphere $E(0, I)$. It is known that for every positive definite matrix A, there is a $n \times n$ matrix B such that:

$$A = B^T B.$$ \hfill (1)

Therefore,

$$A^{-1} = B^{-1} (B^{-1})^T.$$ \hfill (2)

Using B, the transformation T can be seen as mapping points x to $(B^{-1})^T(x - a)$.

The Ellipsoid Algorithm solves the problem of finding an x subject to $Cx \leq d$ by looking at successively smaller ellipsoids E_k that contain the polyhedron $P := \{x : Cx \leq d\}$. Starting with an initial ellipsoid that contains P, we check to see if its center a is in P. If it is, we are done. If not, we look at the inequalities defining P and choose one that is violated by a. This gives us a hyperplane through a such that P is completely on one side of this hyperplane. Then, we try to find an ellipsoid E_{k+1} that contains the half-ellipsoid defined by E_k and h.

The general step of finding the next ellipsoid E_{k+1} from E_k is given below. First we assume that E_k is a unit sphere centered at the origin, and the hyperplane h defines the half space $-e_1^T x \leq 0$ that contains P. Here, by e_i we mean the vector whose ith component is 1 and whose other components are 0. We will show later that it is easy to translate the general case to this case.

Therefore, we need an ellipsoid that contains

$$E(0, I) \cap \{x : -e_1^T x \leq 0\}$$ \hfill (3)

To find an ellipsoid that contains E_k, we showed last time that:

$$\left\{ x : \left(\frac{n-1}{n} \right)^2 \left(x_1 - \frac{1}{n+1} \right)^2 + \frac{n^2 - 1}{n^2} \sum_{i=2}^{n} x_i^2 \leq 1 \right\} \subseteq E(0, I) \cap \{x : x_1 \geq 0\}$$ \hfill (4)

Therefore, we can define

$$E_{k+1} = E \left(\frac{1}{n+1} e_1, \frac{n^2}{n^2 - 1} (I - \frac{2}{n+1} e_1 e_1^T) \right).$$ \hfill (5)

5-1
(\epsilon_1 e_1^T = \text{matrix with 1 in its top left cell, 0 elsewhere.}) We also showed that

\[
\frac{\text{Vol}(E_{k+1})}{\text{Vol}(E_k)} \leq \frac{n^2}{n^2 - 1} \frac{n}{n + 1} \leq \exp\left(-\frac{1}{2n}\right)
\]

(6)

For the more general case that we want to find an ellipsoid that contains \(E(0, I) \cap \{x : d^T x \leq 0\}\) (we let \(|d| = 1\); this can be done because the other side of the inequality is \(0\)), it is easy to verify that we can take \(E_{k+1} = E(-\frac{1}{n+1}d, F)\), where \(F = \frac{n^2}{n^2 - 1}(I - \frac{2}{n+1}dd^T)\), and the ratio of the volumes is \(\leq \exp\left(-\frac{1}{2n}\right)\).

Now we deal with the case where \(E_k\) is not the unit sphere. We take advantage of the fact that linear transformations preserve ratios of volumes.

\[
\begin{align*}
E_k & \xrightarrow{T} E(0, 1) \\
\downarrow & \\
E_{k+1} & \xrightarrow{T^{-1}} E'
\end{align*}
\]

(7)

Let \(a_k\) be the center of \(E_k\), and \(c^T x \leq c^T a_k\) be the halfspace through \(a_k\) that contains \(P\). Therefore, the half-ellipsoid that we are trying to contain is \(E(a_k, A) \cap \{x : c^T x \leq c^T a_k\}\). Let’s see what happens to this half-ellipsoid after the transformation \(T\) defined by \(T(x) = (B^{-1})^T(x - a)\). This transformation transforms \(E_k = E(a_k, A)\) to \(E(0, I)\). Also,

\[
\{x : c^T x \leq c^T a_k\} \xrightarrow{T} \{x : c^T (a_k + B^Ty) \leq c^T a_k\} = \{x : c^T B^Ty \leq 0\} = \{x : d^T x \leq 0\},
\]

(8)

where \(d\) is given by the following equation.

\[
d = \frac{BC}{\sqrt{c^T B^T Bc}} = \frac{BC}{\sqrt{c^T Ac}}
\]

(9)

Let \(b = B^Td = \frac{Ae}{\sqrt{c^T Ac}}\). This implies:

\[
E_{k+1} = E\left(a_k - \frac{1}{n+1} b, \frac{n^2}{n^2 - 1} B^T \left(I - \frac{2}{n+1}dd^T\right) B\right) \quad (10)
\]

\[
= E\left(a_k - \frac{1}{n+1} b, \frac{n^2}{n^2 - 1} \left(A - \frac{2}{n+1}bb^T\right)\right) \quad (11)
\]

To summarize, here is the Ellipsoid Algorithm:

1. Start with \(k = 0, E_0 = E(a_0, A_0) \supseteq P, P = \{x : Cx \leq d\}\).

2. While \(a_k \notin P\) do:

 • Let \(c^T x \leq d\) be an inequality that is valid for all \(x \in P\) but \(c^T a_k > d\).
 • Let \(b = \frac{Ae}{\sqrt{c^T Ac}}\).
 • Let \(a_{k+1} = a_k - \frac{1}{n+1} b\).
 • Let \(A_{k+1} = \frac{n^2}{n^2 - 1}(A_k - \frac{2}{n+1}bb^T)\).

\textbf{Claim 1} \ \frac{\text{Vol}(E_{k+1})}{\text{Vol}(E_k)} \leq \exp\left(-\frac{1}{2n}\right)

5-2
After k iterations, $Vol(E_k) \leq Vol(E_0) \exp \left(-\frac{k}{2n} \right)$. If P is nonempty then the Ellipsoid Algorithm should find $x \in P$ in at most $2n \ln \frac{Vol(E_0)}{Vol(P)}$ steps.

What if P has volume 0 but is nonempty? In this case, we create an inflated polytope around P such that this new polytope is empty iff P is empty.

Theorem 2 Let $P := \{x : Ax \leq b\}$ and e be the vector of all ones. Assume that A has full column rank (certainly true if $Ax \leq b$ contains the inequalities $-Ix \leq 0$). Then P is nonempty iff $P' = \{x : Ax \leq b + \frac{1}{2\pi}e,-2^L \leq x_j \leq 2^L \text{ for all } j\}$ is nonempty. (L is the size of the LP P, as we defined in the previous lecture, but here we can remove the c_{max} term.)

This theorem allows us to choose E_0 to be a ball centered at the origin containing the cube $[-2^L, 2^L]^n$. In this way, if there exists a \tilde{x} such that $A\tilde{x} \leq b$ then

$$\tilde{x} + \left[-\frac{1}{2^L}, \frac{1}{2^L} \right]^n \in P'$$

(12)

Indeed, for a x in this little cube, we have $(Ax)_j \leq (A\tilde{x})_j + (\max_{i,j} a_{ij}) n \frac{1}{2^L} \leq b_j + \frac{1}{2^L}$.

The time for finding an x in P' is in $O(n \cdot nL)$, because the ratio of the volumes of $[-2^L, 2^L]^n$ to $[-\frac{1}{2^L}, \frac{1}{2^L}]^n$ is $8L^n$, and previously we showed that finding x in P was $O(n \ln \frac{Vol(E_0)}{Vol(P)})$. Thus, this process is polynomial in L.

Proof of Theorem 2: We first prove the forward implication. If $Ax \leq b$ is nonempty then we can consider a vertex x in P (and there exists a vertex since A has full column rank). This implies that x will be defined by $A_Sx = b_S$, where A_S is a submatrix of A (by problem 1 in Problem Set 1). Therefore, by a theorem from the previous lecture,

$$x = \left(\frac{p_1}{q}, \frac{p_2}{q}, \ldots, \frac{p_n}{q} \right)$$

with $|p_i| < 2^L$ and $1 \leq q < 2^L$. Therefore,

$$|x_j| \leq |p_j| < 2^L.$$

(14)

This proves the forward implication.

To show the converse, $\{x : Ax \leq b\} = \emptyset$ implies, by Farkas' Lemma, there exists a y such that $y \geq 0$, $A^Ty = 0$, and $b^Ty = -1$. We can choose a vertex of $A^Ty = 0$, $b^Ty = -1$, $y \geq 0$. We can also phrase this as:

$$\begin{pmatrix} A^T \\ b^T \end{pmatrix} y = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, y \geq 0$$

(15)

By using Cramer’s rule (like we did in the last lecture), we can bound the components of a basic feasible solution y in the following way:

$$y^T = \left(\frac{r_1}{s}, \ldots, \frac{r_m}{s} \right),$$

(16)

with $0 \leq s, r_i \leq \det_{\text{max}} \left(\begin{pmatrix} A^T \\ b^T \end{pmatrix} \right)$, where $\det_{\text{max}}(D)$ denotes the maximum subdeterminant in absolute value of any submatrix of D. By expanding the determinant along the last row, we see that $\det_{\text{max}} \left(\begin{pmatrix} A^T \\ b^T \end{pmatrix} \right) \leq mb_{\text{max}} \det_{\text{max}}$ (where this last \det_{max} refers to the matrix A). Using the fact that $2^L > 2^m 2^n \det_{\text{max}} b_{\text{max}}$, we get that $0 \leq s, r_i < \frac{m}{2^m+n} 2^L \leq \frac{m}{2^m+n} 2^L$.

5-3
Therefore,
\[
\left(b + \frac{1}{2} \varepsilon e \right)^T y = b^T y + \frac{1}{2} \varepsilon^T y = -1 + \frac{m^2}{2^{m+1}} < 0,
\]
the last inequality following from the fact that \(m^2 < 2^{m+1} \) for any integer \(m \geq 1 \). Therefore, by Farkas’ Lemma again, this \(y \) shows that there exists no \(x \) where \(Ax \leq b + \frac{1}{2} \varepsilon e \), i.e., \(P^* \) is empty. \(\square \)

There is also the problem of when \(x \) is found within \(P^* \), \(x \) may not necessarily be in \(P \). One solution is to round the coefficients of the inequalities to rational numbers and ”repair” these inequalities to make \(x \) fit in \(P \). This is called simultaneous Diophantine approximations, and will be discussed later on.

Here we solve this problem using another method: We give a general method for finding a feasible solution of a linear program, assuming that we have a procedure that checks whether or not the linear program is feasible.

Assume, we want to find a solution of \(Ax \leq b \). The inequalities in this linear program can be written as \(a_i^T x \leq b_i \) for \(i = 1, \ldots, m \). We use the following algorithm:

1. \(I \leftarrow \emptyset \).
2. For \(i \leftarrow 1 \) to \(m \) do
 a. If the set of solutions of
 \[
 \begin{align*}
 a_i^T x &\leq b_i & \forall j = i + 1, \ldots, m \\
 a_i^T x &= b_i & \forall j \in I \cup \{i\}
 \end{align*}
 \]
 is nonempty, then \(I \leftarrow I \cup \{i\} \).
3. Finally, solve \(x \) in \(a_i^T x = b_i \) for \(i \in I \) with Gaussian elimination.

The correctness follows from the fact that if, in step 2, the system of inequalities has no solution then the inequality \(i \) can be discarded since it is redundant (removing it does not affect the set of solutions).

2 Applying the Ellipsoid Algorithm to Linear Programming

The algorithm we described today checks whether a set of inequalities are feasible, and if they are, finds a feasible solution. However, our initial goal was to find a feasible solution that minimizes a given linear objective function. Here, we give a general method for solving linear program, given a procedure that finds a feasible solution to a set of inequalities.

To solve the LP: \(\min c^T x \) subject to \(Ax = b, \ x \geq 0 \):

Step 1: Check if \(\{ x : Ax = b, x \geq 0 \} \) is nonempty; if it is empty, then the LP is infeasible; stop.

Step 2: Consider the dual LP: \(\max b^T y \) subject to \(A^T y \leq c \).
Check if there exists a \(y \) such that \(A^T y \leq c \). If there does not exist such a \(y \), then the original LP is unbounded by strong duality.

Step 3: If the dual LP is feasible, find a solution \((x, y) \) where \(Ax = b, x \geq 0, A^T y \leq c, c^T x = b^T y \).
By strong duality, \(c^T x = b^T y \) will be the optimal solution.

5-4