18.415/6.854 Advanced Algorithms November 19, 1992

Lecture 19
Lecturer: Michel X. Goemans Seribe: David B. Wilson!

1 Lattices

Starting with today’s lecture, we will look at problems involving lattices and algo-
rithms for basis reduction of lattices. Applications of this topic include factoring
polynomials, breaking cryptosystems, rounding an interior point to an optimal vertex
in linear programming, and solving integer programs. We start with definitions:

Definition 1 Given a set of vectors by,... b, € Qm, we define the lattice I =
L(by, ... b)) ={X" 3 Nb;i : \i € Z}. Thus, L is the set of integral combinations of

the vectors b;.

Example: by = (1,2),bo = (2,1),n = m = 2.

T

EEH

Figure 1: The lattice L(by,by) = L(b2, b3)

The simplest lattice is defined by unit vectors; L(eq,... ,e,) = Z".

Definition 2 A set of vectors (by,... ,by) is a basis for L if by, ... by, are linearly
independent (with respect to Z) and L = L(by,... ,by).

Every lattice has a basis, and its dimension is fixed. A given lattice can have many
bases. In the above example for instance, Figure 1 shows that L(by,by) = L(by, bs).
This follows from the fact that bs € L(by,by) and by € L(bg, b3). The basic operation
to obtain another basis for a lattice is to subtract from one of the vectors an integral
combination of the others. This idea is presented in our first claim:

Claim 1 L(by,... ,by) = L(by, ... b1, by — S0 i) for a; € Z.

!These notes are based on last year’s class notes, prepared by Atul Shrivastava and by David
Gupta.
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Proof:  Let « € L(by,...,b,). Then,

m m—1 m—1
T =3 Nbi= > (A4 aid)bi+ Ay — D aily))
=1 =1 =1

Since (A; + @i\, ) € Z, we have x € L(by,... ,by_1,b, — 277 aiby).
Now let # € L(by,... ,bym_1,bn — 377" a;b;). Then

m— m—1 m
=1 =1 =1
where \; = (f; — ;) for e =1,... ;m —1 and A, = . O

Definition 3 L is a full lattice in Q™ if it can be generated by n linearly independent
vectors.

Example: L((0,1),(0,3)) is not a full lattice in Q=.

Theorem 2 below implies that any one-dimensional lattice has a basis with at most
one vector. In the problem set we will show that any lattice in Q" has a basis with
at most n vectors.

A given lattice can be reduced to a full lattice in polynomial time by restricting
our attention to the affine space spanned by the vectors defining the lattice. As a
result, without loss of generality, we will look only at lattices that are full.

Also, we will see (as an exercise in the last problem set) that, given a set of vectors
bi,... b, a basis for the lattice L(bq,... ,b,) can be computed in polynomial time.
Therefore, without loss of generality, we shall always assume that we are given a full
lattice and a basis of that lattice.

Let us show how to compute a basis of L in polynomial time in the case n = 1.
The general case can be solved in a recursive manner using the result for n = 1 (see
the problem set). We are thus given m integers bq,... , b, and we would like to find
an integer a such that L(by,... ,b,) = L(a).

Theorem 2 Let by,... b, € N. Then L(by,... ,b,) = L(ged(by,... ,by)).
Proof:  The case m =1 is trivial. Consider the case m = 2. Assume w.l.o.g. that
0 < by < by, We prove that L(by, bg) = L(ged(by, b)) by induction on b;.

If bl = ( then L(bl, bz) = L(bg) = L(ng(bl, bg)) If bl > 0, then

L(by,by) = L(by—b1|bs/b1]|,b1) by Theorem 1 above
= L(ged(by, by — by|b2/b1])) by the induction hypothesis
= L(gcd(by,b2)) by Euclid’s algorithm
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The case m > 2 is shown by induction on m. Assume the theorem is true for m.

Then

L(bl,... ,bm,bm+1) — L bl,... ,bm),bm+1)

ng(blv SIS bM))v bm-l-l)
ng(bl,... ,bm),bm+1)
ng(bl,... ,bm,bm+1))

O

Note that the greatest common divisor of two integers can be calculated in poly-

nomial time by Euclid’s algorithm, since every two steps reduce the bit size of the

maximum by at least 1. By applying Euclid’s algorithm repeatedly, we can calculate
the GCD of several integers in polynomial time.

2 Combinatorial Application

Suppose we are given a graph G = (V, F), and we want to assign colors to the edges
such that no vertex is covered by two edges of the same color, and the number of
colors is minimized. The minimum number of colors is at least dpay, the maximum
degree of any node. Vizing showed that the minimum number of colors is at most
dmax+1. However, deciding whether the minimum number of colors is dpax OF dpax+1
is NP-hard, even for special subclasses of graphs.

Consider the class of cubic graphs, the graphs for which every vertex has degree
3. Deciding whether the mininum number of colors needed is dy.x = 3 or 4 is NP-
hard. But if there is a three-coloring, then the edges of the same color make a perfect
matching. So there is a three-coloring it and only if there is a partition of E into
perfect matchings.

We can identify the perfect matchings M with vectors b in Z!”l. If ¢ € M then
b. = 1, otherwise b, = 0. Let L be the lattice spanned by these vectors. If there
is a three-coloring, then (1,1,...,1) € L. The converse isn’t necessarily true, but
this does give us a way to show that a graph is not 3-colorable if we can show that
(1,...,1) is not in the lattice.

3 Shortest Lattice Vector Problem (SLVP)

Given n linearly independent vectors by, ..., b, in Q" (remember that we can assume
w.l.o.g. that we are given a basis of a full lattice), we want to find a nonzero vector

a € L(by,...,b,) such that ||la]| = /a - a is minimized. This problem is called the

shortest lattice vector problem. Let A(L) = minger, 420 ||a|.
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The shortest lattice vector problem (SLVP) is believed to be NP-hard. If || || is
replaced by || ||eo, then it is known to be NP-hard (Van Emde Boas 1981). However,
if n is fixed, the SLVP problem is solvable in polynomial time. We will treat below
the cases n =1 or 2.

For n =1, the case is trivial since @ is a shortest lattice vector in L(a).

Let us now treat the case n = 2. We shall find a basis (by,0,) € Q* x Q* of
L in polynomial time in which by is a shortest non-zero lattice vector. We use the

60°-algorithm due to Gauss (1801).

If ||b1]| > ||b2|| then swap by, by

Repeat Choose m € Z to minimize ||by; — mb ||
by 1= by — mby.

Until m =0

Return by, by

Claim 3 The 60°-algorithm terminates in polynomial time.

The proof is analogous to the proof that Euclid’s algorithm terminates in polyno-
mial time (see problem set). As in Euclid’s algorithm, the number of iterations is
logarithmic in the numbers. The reasons are similar, but more complicated.

Theorem 4 The 60°-algorithm returns a shortest non-zero vector in L.
Proof: At termination, we have

o [[bal[ < 0ol

o 1]l < llbs — b for all i € Z.

Since ||ba|| < ||bg — pby|| for any integer , the orthogonal projection of by on by is
between by /2 and —b;/2 (see Figure 2). On the other hand, ||bs]| > ||b1]] and so by is
outside the circle (0, ||b1]|). This implies that |cosa] < 1/2 and so 60° < o < 120°.
In fact, because of the hexagonal lattice, this bound is tight.

Let @ = Aiby + Azb; be a shortest non-zero vector in L. Since o > 60° and
a+ B+~ = 180° we have f < a or v < « (see Figure 3). Therefore we have
lla]| > [Ad|||b1]| or ||a]| = |A2]||b2]|, since the length of the sides of a triangle are in the
same order as the angles they face. Since the A;’s are integers and ||b1]] < ||b2||, this
implies that |[b1] < ||a]|. O

Since 60° < o < 120°, by and by are almost orthogonal. One can prove that (by, bs)
is a couple of independent vectors in L that

1. maximizes sin «

2. minimizes ||b1]| |[b2]|
In fact, we will see that these two statements are equivalent.
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Figure 2: 60° < o < 120°.

Aby

Figure 3: f < aor vy <a.

4 Minimum Basis Problem

Given a basis (by,...,b,) of a full lattice L C Q", consider the non-singular n x n
matrix B = [by...b,]. We know that |det(B)| is the volume of the parallelepiped
defined by bq,...,0b,.

Theorem 5 Given a full lattice L, | det(B)| is independent of B, for any basis B of
L.

Proof: Let B and B’ be two bases of L. For 1 <1 <n, we have b; = 37_; A;;b;,
where the )\;; are integers. In other words, B’ = BP, where P is an integral n x n
matrix. Therefore, |det B'| = |det B||det P|. But |det B’| # 0 since B’ is non-
singular. Hence | det P| # 0 and so | det P| > 1 since P is integral. This implies that
| det B'| > |det B|. By symmetry, it follows that |det B'| = | det B]. O

Since | det(B)| does not depend on the choice of the basis for a given lattice L,
let det(L) = |det(B)|. When n = 2, we have |det(B)| = |[b1]| ||b2]| sin e, and so
minimizing ||b1]| ||b2]| is equivalent to maximize sin a.

From linear algebra, we know that it is easier to deal with bases which are orthog-
onal. However, in the case of lattices, this is not always possible. Nevertheless, we
are interested in finding a basis that is “somewhat orthogonal”. The case for n = 2
treated above and Theorem 5 therefore motivates the following problem, called the
minimum basis problem.
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Figure 4: The determinant of a basis is constant in absolute value.

Given a lattice L, we want to find a basis (bq,... ,b,) that minimizes
the product |[by] - - ||bx]|-

This problem turns out to be NP-hard (Lovasz). However, there are a- approximation
algorithms for this problem where o depends only on the dimension of the basis of the
lattice. Fortunately, there is a general lower bound on the size of a minimum basis
(which is attained by some lattices and is thus tight) and, in any given dimension,
all lattices have a basis whose size is at most a constant multiple of the general lower
bound. This will allow us to develop an approximation algorithm.

Claim 6 (Hadamard’s Inequality). For any basis of L, det L < ||by|| ... 0]

Theorem 7 (Hermite 1850) For any dimension n, there is a constant ¢, such that for
any lattice L € Q" there is a basis by, ... ,b, of L such that ||by||...]||bs| < ¢, det L.

We will, in fact, take ¢, to be the smallest such constant. So what is ¢,7 In one
dimension, a given lattice has only two bases, which are the two minimum nonzero
vectors. These vectors are both exactly the size of the lattice spacing, which is also
the determinant of the lattice. Then in one dimension, a minimum basis always has a
ratio of exactly 1, so ¢; = 1. In two dimensions, we know from the analysis of Gauss’s
algorithm that the angle, «, between the vectors in a minimum basis is at least 60°.
But for basis vectors by, by, we know that det L = ||b1|[||b2|| sin @ > ||b1]|]|b2|| sin 60° =

lballl16215. So ez = .

In 1850, Hermite proved that ¢, could be bounded by 20(%*),

In 1984, Schnorr proved that ¢, was bounded by n™.

Unfortunately, neither of the above proofs is algorithmic because neither one gives
us any insight on how to actually go about computing a small basis.

In 1983, however, Lenstra, Lenstra, and Lovasz provided an algorithm that pro-
duces a reduced basis whose size is at most 2°("") det L. This algorithm can also be
used to approximate the shortest lattice vector problem.
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5 More on the Shortest Lattice Vector Problem

Definition 4 A body, K, is said to be symmelric with respect to the origin if x €
K = —x € K. Note that this statement is its own inverse, so we can think of K
being symmetric with respect to the origin as meaning x € K < —x € K.

We present Minkowski’s Theorem without proof as background for a useful corol-
lary.

Theorem 8 (Minkowski’s Theorem-1891) Let K be a conver body symmetric with
respect to the origin and let lattice L € Q™ be such that Vol(K) > 2" det L. Then K
contains a nonzero lattice point.

Corollary 9 Consider the norm || - ||, for any integer p. Then there is a nonzero
a € L such that ||a||, < 2(%)1/” where v, = Vol({x : ||z]|, < 1}).

Example: p = o00; v, = 2". Then there is a nonzero a € L such that ||all. <
2(4LLyt/n Thus (max; |a;])" < det L.
We can give a proof by picture for Corollary 9 when p = co. Let
b= min(max|a;]),
acl

i.e. tis the smallest nonzero || || norm of lattice vectors. We place a cube with
edge length ¢ centered on each lattice point. The cubes may touch, but they don’t
overlap. The volume per lattice element is t*. On the other hand, we can cover the
space with parallelepipeds of volume det L, one per lattice point. Thus we get the
inequality ¢ < det L.

Figure 5: Covering the lattice with cubes and parallelepipeds.

Next time we will discuss L?, the Lenstra-Lenstra-Lovasz theorem. We will give
the algorithm and applications.
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18.415/6.854 Advanced Algorithms November 24, 1992

Lecture 20
Lecturer: Michel X. Goemans Scribe: Ray Sidney'

1 Gram-Schmidt Decomposition
First, recall 3 facts about full lattices L and their bases from last lecture:

1. Hadamard’s Inequality: If by, ... ,b, is a basis for L, then |detL| < ||by]|---||b,]]-

2. Hermite’s Thm: Vn > 0, there is a constant ¢, such that for any lattice L C Q7, there
is a basis by, ..., b, of L such that [|bi]|---]]b,]| < cndetL.

3. Corollary to Minkowski’s Theorem: For any lattice L C Q”, there is a nonzero vector

a € L such that ||a||.. < (detL)Y/™ (and hence, such that ||a||, < /n(detL)™).

We remark that the corollary to Minkowski’s Theorem is as good as one can achieve,
asymptotically, in the sense that for any n > 0, there is a lattice L C Q" such that

A(L) > /2 v/a(det )"

Now remember the Gram-Schmidt Decomposition:

Given the vectors by,...,b,,, the following procedure calculates m orthogonal vectors
by, ..., b, such that b} is the projection of b; onto the space orthogonal to by,...,b;_;:
bT - bl

by = b= S b

J=1(b%5,01) 70
The vectors b are not necessarily in the lattice because the coefficients p;; = (b;,67)/(b5, b
are not necessarily integral. We can write b; = Z;Il,uijb}‘ where u; = 1. Equivalently,
B = B"P where

1 por .- Hn 1
p=| 01 e
o .- - 1

Notice that det(B) = det(B*)det(P) = det(B*), since all lower triangular entries of P

are zZero.

Claim 1 A(L) > min, ||bf]| for any basis (by,...,b,) of L.

!These notes are based largely on notes from Atul Shrivastava, David Gupta, Marcos Kiwi, Andrew

Sutherland, and Ethan Wolf.
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Most of the proofs of this lecture were omitted in class, but are included for completeness.
Proof:  Let ¢ € L be a minimum-length lattice vector: ||a||» = A(L). Since a € L, then
we can write @ as > ;—; A;b;, A; € Z. Let k be the last index for which A, # 0. Then A\; =0
for all 7 > k. By substituting in from Gram-Schmidt orthogonalization, we get

a_Z’\Z“WJ ZZ’\“WJ

Jj=l4i=j
Let us define A7 for 1 < j <n by A\ =370 Aipt ;. Then a = 377, Asb5. Since the b7’s are
orthogonal to each other, we have that

n

lalls = > _(AD0517 = (AL [1B ]l

ji=1
Thus ||lalla > |A;]||05]]. Note that A, = Agprr + Apprftosrn + ... = Ay Thus |ja]ls >
IAl|lbi]]. Since Ay € Z and Ay # 0, then |A,| > 1. So |lal|s > ||bf]] > min, ||bf||. Thus
A(L) > min, ||b]]. a

2 Lovasz-reduced Bases

In Gauss’ algorithm, we were performing swaps to insure that the basis satisfies certain
properties. In general, to insure that the first vector of the basis is reasonably short, we shall
impose that the switching of any b; with b, does not decrease ||b7]| (recall that the Gram-
Schmidt orthogonalization depends upon the ordering of the vectors). This requirement
can be more easily stated by using the following observation.

Claim 2 Let (by,...,b,) be a basis for lattice L. If we switch b; with b;y, to produce the
new basis (¢1,...,¢,), then b5 = ¢; for j £ 4,1+ 1 and ¢; = b, + piy1,:0;.

Proof: From Gram-Schmidt orthogonalization, ¢ is the component of ¢; orthogonal to
the span of {¢1,¢9,...,¢;_1}, but this set is the same as {b1,bs,...,b;_1} for j # i+ 1.
Since ¢; = b; for j # 1,4+ 1, we get that b7 = ¢} for j # i,i—l— 1. We also have that ¢! is the
component of ¢; = b; 41 orthogonal to the span of {by, bz, ooy b;i_1}. From the original Gram-
Schmidt orthogonalization, we know that b, = Zk 1,ul+1 Kb, 80 ¢ = YL 1,ul+1 Kby +
biy1 + pit1,:b;. Removing the component of each side in the span of {b1,bo, ..., b;_1}, we
get ¢ = 07 ) + flig1,:0]. O

This claim says that we can require that switching neighboring basis vectors not help
reduce small ||bf]|’s by requiring that [|b,, + g1 ;07> > ||b7])* for 1 < i < n.

We would also like for our basis vectors to be as close to orthogonal as possible. If they
were strictly orthogonal, then each p,; would be zero. But this is not possible for most
lattices. We would like to require that |y, ;| be as small as possible for each 7, j. We now
present a form of these two requirements sufficiently loose enough to guarantee the existence
of such a basis and to allow for a polynomial-time algorithm.

Definition 1 A Lovasz-reduced basis for L is a basis (by,...,b,) for which

1. |,ui7j|§%f0r1§j<i§n.
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203+ i b7 1P > ZBEN? for L < <o
Proposition 3 Let (by,...,b,) be a Lovasz-reduced basis of a lattice L. Then
1 ||by)] < 277 (det L)~.
2. ||by]] < 277 min, ||b3]] < 27 A(L).
3. 116l - Nlbwll < 2305) det L.

Proof of Proposition 3:

Claim 4 [|b,|]? < 27-1|b5||%, 1 < j < n.

From property (i?) of a Lovasz-reduced basis and the orthogonality of the b;’s,
we have

3. ) .
FIOE7 < BTy + i b7 1 = 7l + pen 10711

Since from property (¢), we know that N22+1,z' < i, we have that

—Hb*W <107all” + —Hb;*H2

or
167117 < 2[1b74, 117

Repeatedly substituting into the above starting with ¢ = 1, we obtain
16311 < 27 7HIB517, 1 < g <

Since b} = by, this becomes [|by[|* < 277Y[br[|*,1 < j < n, which proves the
claim. o

Solving the above for [|b5|]*, we can square both sides of the definition of det L and
perform a substitution to obtain

(det L) Hub*uz>H2”ub 2= 2755 by

Raising both sides to the power i gives

(det L)% > 275 ||by|

|b1]| < 2°F (det L)*.

This proves part 1 of the proposition.

Let k be the index for which min; ||b7|| is attained, so that ||bf|| = min, ||b7|]. Then by
the above claim: ||b,]| < 25=Y|b3]|? < 277H|63])* = 2"~ min, ||b}||*. Taking the square root
of both sides: ||by]| < 2*5 min, ||b7]]. By applying Claim 1, we can extend this result to:
161]] < 2°5 A(L), which is the statement of part 2 of the proposition.
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Recall that we have b; = Zj’:l pi ;07 by Gram-Schmidt orthogonalization. It also follows
from the proof of Claim 4, that [|b5||* < 2°7/||bf||* for j < i. Then making use of the
orthogonality and the fact that the coefficients satisfy property (i) of a Lovasz-reduced
basis, we get that

) i—1 i—1
* * 1 i—7 * * 1 i—7 i— *
bl = >l 1G5 < NO7I* + 3 3277 MIbr 11 = N7l + 3 5277 < 27771
j=1 ji=1 ji=1

Multiplying these inequalities for all values of 7 gives

- i— * - - - * n(n—1) n
1617018l < TT 25011 = (TT 2T 85112 = 2 (det L)? = 2(3)(det L),
=1 1 =1

i=

Taking the square root of both sides gives
o]l - [1ba]] < 25 det L.

This proves part 3 of the proposition. O

We now present an algorithm due to A. K. Lenstra, H. W. Lenstra and L. Lovasz [2]
which computes a reduced basis in polynomial time. We assume throughout that that we
are dealing with integral lattices; i.e., we assume that every basis consists of integral vectors.

3 Lenstra-Lenstra-Lovasz (L*) Basis Reduction Algorithm

The algorithm receives as input a set of linearly independent vectors by, bs,....b, € Z",
and outputs a Lovdsz-Reduced Basis of L(by,...,b,).

Initialization Find the Gram-Schmidt orthogonalization (b3,8%,...,0%) of (by,ba, ..., b,).

Step 1 Make sure that property 1. of a Lovasz-Reduced Basis holds.

Fori=2ton do
For j =7¢—1 down to 1 do
by — b; = [pi; b
For k=1tojdo
P — Hir = [ | 150
{Note that for k > j, b; L b; so that p,;, is unaffected}

Step 2 If there exists a ¢ for which property 2 of a Lovasz-Reduced Basis is not satisfied,
swap b; and b;4,, update the b;’s for £ = 4,24 1, update the uy;’s for k = 4,7+ 1, and
go to step 1.
Else return (by,bs,...,b,).

Note that

1. If the algorithm terminates, it returns a Lovasz-Reduced Basis.
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2. 01,03, ..., b are not affected in step 1, since span{b;,bs,... ,b;}, fori=1...nis not
modified performing this step.

3. After step 1 || < 1.

It is not clear that the algorithm makes any progress at each iteration. The following
result shows that in fact L? terminates.

Theorem 5 The L? algorithm terminates after O(n*log () iterations, where § = max; |b!|
(the superscript 0 denotes input vectors).

Proof: Define a potential

n—1 . n—-1 j n—1
e(b) = [T 10:1°"" = TLIIT15:1°] = I det D;,
ji=1 j=11i=1 ji=1

where D; = [d;(k,1)] = [(bg,br)]

integral matrices.

rFa . e . . )
ki<t Hence, ®(b) is a positive integer, since the D;’s are

In step 1, ®(b) does not change because the b}’s do not change.

In step 2, let ¢ = (ci,...,¢,) = (b, ba, ..., bit1,b;y...,b,) be the new basis cre-
ated after swapping b; and b;;;. Since ¢} is the projection of ¢; onto the orthogonal
of span{ci,cy,...,¢;_1}, it follows that ¢; = b7 for j # 4,4 + 1. Furthermore, ¢f =
bi i + piy1,:b7, since ¢} is the projection of b4, onto the orthogonal of span{b,,... ,b;_,}
and b7, is the projection of b;;, onto the orthogonal of span{b,,...,b;}.

Moreover, since [6;] ... [b5] = det(L) = |¢3]. . |e; | we have that [b: 1654, ] = I 1lezy. -

Thus,

_ w1 2(n—2 * 2(n—i—1 2
e) _ el eI el 3
IO R T4 Rl 11 e

Consequently, the number of iterations of the L? algorithm is at most %, where
®, is the ini‘Eial value of ®. '

Now let 8° = {8°,85,...,0°} be the basis given as input. Then &, = 1y ||(b?)*||2(n_]).
But |(09)°] < [62], thus @y < I~ < 8*¢=1 implying that log®, < n(n —
1)log 5. It follows that the algorithm terminates after executing step 2 at most % =
O(n?log ) times. a

(Note that in the proof above the number 3/4 used in condition (ii) could be replaced
by 1 — € for any € > 0 and the theorem would still hold).

Corollary 6 The L? algorithm performs O(n®log 3) arithmetic operations.

The issue of how large the b;’s can become during the L? algorithm was not covered in
class. The proof that at any time size(b; ) remains polynomially bounded can be seen in last
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year lecture notes. In fact it can be shown that at any time |b;] < (1 4+ 28***t1/n)" 3/n.
This result completes the proof that the L? algorithm runs in polynomial time.

Beginning this lecture we shall be studying applications of these results in cryptography
and simultaneous diophantine approximation. Other applications of the results we have
seen relate to polynomial-time integer linear programming for programs of fixed dimension
and polynomial-time factorization of polynomials over the rationals.

4 Diophantine Approximation

In a general sense, the Diophantine approximation problem is about how to “round” a
number a € R, meaning that we replace it by a rational number which is of a sufficiently
simple form and at the same time sufficiently close to a. If we prescribe the denominator to
q of this rational number p/q, then the best choice for p is [ag|. The error resulting from

such a rounding is
1
o - 21 <
¢ ~ 2q
We shall find, however, that often this approximation is not good enough. A classical result
of Dirichlet says that if we do not prescribe the denominator, but only an upper bound M

for it, then there always exists a rational number p/q such that

Ia—glgMiq, 0<q<M.
There also exists a classical method to find such a rational number p/q: this is the so-called
continued fraction expansion of a. For an irrational number «, this expansion is infinite;
for a rational number a, it is finite and of polynomial length.

Khintchine (1956) even showed that continued fractions can be used to solve the follow-
ing best approximation problem.

Given a € Q (or € R) and an integer M > 0, find a rational p/q¢ with 0 < ¢ < M
such that |& — p/q| is as small as possible.

This often produces very good approximations. For example, if @« = 7 and M = 150 the
best approximation we can obtain using ¢ < 150 is 355/113 = 3.1415929.

5 Simultaneous Diophantine Approximation (SDA)

Suppose now we wish to approximate several values at once. i.e. we are given M = 100 and
we wish to approximate a; = .1428, a, = .2213, a3z = .6359. Note that a; + as + az = 1.

1 2 _

If we approximate each value separately, we find that % =z = .1428---,’;—2 = : =

2222... B = % = .6363---. Unfortunately, % + p—z + ’;—Z’ # 1. Thus, as a group these

?
g3
approximations are not good, since we would like our approximations to mantain “simple”

equalities relating the «a;’s. This is known as the SDA problem and is stated as follows:

Given ay, -+ ,a, € Q, integer M > 0,and 0 < e < 1, find py,--- ,p.,q € Z s.t.
0 < q< M,|qa; — p;| < eforall i. (Note that |ga; — p;| < € is equivalent to
ai = B[ < 2).
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An equivalent statement of the problem is: given 0 < ¢ < 1, M > 0, and a =
(ap, - ,a,) find y = (B ,pq—")T such that [[a — yllc < £ . Now, if € is too small,
p; and ¢ may not exist. So we can look at this as a decision problem. Unfortunately, this
decision problem has been shown to be NP-complete by Lagarias [1]. It has been shown,

however, that for e sufficiently large, a solution always exists.
Theorem 7 (Dirichlet) SDA has a solution if M > ¢=".
Proof:  Define a lattice L C Q"*' by L = L(bg,...,b,) where

bO = (alv"'vanvé)T

by = (=1,0,---,0)" = —ef
by = (0,---,0,—1,0,---,0)" = —¢f
by = (07"'707_170)T:_657

where ¢ = ¢"*1. Since det(L) = 6 = " and dim(L) = n + 1, by Minkowski’s Corollary
there exists a € L,a # 0 s.t. |Ja]|lo < (det(L))™T = e. Hence, there exist ¢,py, - ,pn € Z
s.b. a = gbo + Yi_, pib; with |a;| < € for all i, or, equivalently,

L a;| = |goi — pi| < e
2. a, = g6 < ¢, or, equivalently, ¢ < e < M.

To complete the proof, we need only check that ¢ > 0, (w.l.o.g. we can assume that ¢ > 0
since we can always take —a instead of a). Now, if ¢ = 0 then by 1., |p;| < € for all ¢. But
we know that p; € Z and that p; # 0 for some ¢ since a # 0. However, this contradicts the
fact that 0 < e < 1. O

Unfortunately, the proof is not constructive, since Minkowski’s Corollary insures the
existence of a, but doesn’t give a procedure for finding it. However, if we make a stronger
restriction on the value of M we can find a polynomial time solution to the problem.

5.1 Polynomial Time Algorithm for approximating SDA

We solve the following problem:

Given 0 < € < l,ay,---,a, € Q find p1,---,pn,q¢ € Z such that 0 < ¢ <
n(n41) .
271 € " and |qa; — p;| < € for all 4.

This is a weaker version of the problem, but it can be solved in polynomial time.
To prove this we make use of the L? algorithm. But now we use § = 2~ P ety

the basis L defined above. Using L? we can find ¢ € L,c # 0 (the first vector of the
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Lovasz-Reduced Basis) s.t.

lelles [lell2

2n/4(d€t(L))1/(n+1)
— 271/42—71/4€

IN A

= ¢
Hence we can find ¢, pi, -+, p, s.t. ¢ = ¢by + > i, pib;, |¢;| < ¢ or, equivalently,
L |qo; — pil <€

n(ntl)

2. g6 <corqg<27 3 ¢

by solving a simultaneous equation which is done in polynomial time. Note that even though
the lattice L is not integral the L? algorithm works. Another approach may be to transform
the lattice L into an integer lattice before using the L? algorithm.

5.2 Maintaining “Simple” Inequalities

We now show that the approximations obtained by this algorithm do in fact maintain

“simple” inequalities. Suppose we have an input vector ¢ € Q", 2 = (ay,---,a,) and we
run this vector through the SDA algorithm described above, yielding y = (%1,--- ,pq—").

Then the following theorem holds:

Theorem 8 If ax < b where b € Z,a € Z" and 3 |a;| < %, then ay < 'b.

Proof:
b—ay = (b—az)+alz—vy)
> a(z—y) {since az < b}
= Z ai(xi - yz)
> =2 laiDlle - yll
le
> —_
€q
B 1
q
But b — ay is rational with denominator equal to q. Therefore, b — ay > 0. O

5.3 Repairing “Approximate” Inequalities

We saw that a “simple” inequality on z will also hold for its approximation y obtained by
our algorithm for simultaneous Diophantine approximation. In fact, if a “simple” inequal-
ity “almost” holds for z, then the inequality holds for y, once passed through the SDA
algorithm.
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Theorem 9 Let x € Q. Using the SDA algorithm with € = % yields y = (%, e ,pq—"). If
Yolai| < B for a;,b € Z and if ax < b+ (Qﬁ)_”Q_%_l then ay < b.

Proof: The proof is almost identical to the previous proof.

ay—b = (ax—>b)+aly—z)

n

e matD)
< (28)7m27 T T =Y allly — el

i=1

1 €
< -+ B-
29 ¢
1 . 1 . 1
= — 4 — since e = —
29 2q 20
1
q
The second inequality follows from the fact that ¢ < 25 Which implies that (28)~"2~ e
;—q. Because ay — b is rational with denominator g, this implies that ay — b < 0. O

5.4 An Example: Linear Programming

We can use the SDA algorithm to find the solution to a Linear Program using the interior
point method described in an earlier lecture. After a number of iterations in this method, we
will arrive near a vertex which is the optimal solution. We can then use the SDA algorithm
to reach the vertex itself.

Consider the following primal and dual linear program:

min Tz

and

max b’y
s.t
ATy +s=c
s> 0
We have seen that the interior point method delivers a primal feasible solution and a

dual feasible solution for which the duality gap is small (i.e. 2-9(2)). However, remember
that to keep the number of bits polynomially bounded, we need to truncate some of the
values. Therefore, the solutions obtained are not exactly feasible, though they are almost
feasible. At termination, we have thus z,y, s such that the following conditions hold.

Ar =2 b

x = 0
ATy 45 =
s =
Wy—cla =

20-9
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Here “2” means approximately equal to, and “>” means greater than or nearly greater
than. Using Diophantine rounding, if we choose 3 appropriately and round the solution
then we obtain 2/, vy, s’ s.t.

Az’ = b
2 > 0
ATy +5 = ¢
s > 0
by — "2 <

as desired. We will not consider how [ is chosen here, but this is a technical detail (and, in
fact, the analysis we have performed must be refined). By strong duality, 2’ is an optimal
solution for the primal and (y’,s’) an optimal solution for the dual.

5.5 Breaking Public-Key Cryptosystems

Consider a public-key cryptosystem where the values a4, ... ,a, € Z are public key (i.e., are
known to all the users of the cryptosystem). To send a message (or cleartext) e;,... e, €
0,1", we compute and transmit the cyphertext t = >°° | a;e;. Decoding the received trans-
mission, then, requires finding the original e, ..., e,. Note that, in its full generality (The
Subset Problem: Given a finite set S C Z and a number T' € Z, is there a subset of S such
that the sum of its members is exactly 7'?), this decoding problem is N P-complete.

What we want so that we have a useful encryption system here is that:

1. For any cyphertext T, there is at most one ey, ..., e, € Z such that 5., a;e; = T.

2. There is some kind of trapdoor information associated with the a;’s which makes rapid
decryption possible.

Next lecture, we will look at the basic Merkle-Hellman cryptosystem [3] and see how we
can use the L3 algorithm on it.

References

[1] J. C. Lagarias. Computational complexity of simultaneous diophantine approximation
problems. SIAM Journal of Computing, 14:196-209, 1985.

[2] A. K. Lenstra, H. Lenstra, and L. Lovasz. Factoring polynomials with rational coeffi-
cients. Math. Ann., 261:513-534, 1982.

[3] R. Merkle and M. Hellman. Hiding information and signatures in trap-door knapsacks.
IEFFE Trans. Inform. Theory, IT-24:525-530, 1978.

20-10
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Lecture 21
Lecturer: Michel X. Goemans Seribe: David B. Wilson!

1 Knapsack Public Key Cryptosystems

We consider the knapsack public key cryptosystem. The public key consists of n
numbers ay, ... ,a, € Z. Given a message €;...¢, € {0,1}" of n bits, we encode it
as t by taking the weighted sum of the bits with respect to the public key:

n
t= E a;e;.
=1

The message €; ...e€, is called the cleartext and the encoded message ¢ is called the
cyphertext. The public key satisfies the following properties:

1. Given t, there exists at most one word e; ... e, € {0,1}" such that t = 37 ase;.

2. There exists a trapdoor (=some secret information) which allows easy conversion
to the e;’s given t.

FExample: In the single iteration Merkle-Hellman system [?], we choose a superin-
creasing sequence of a’’s. That is

1—1
/ /
a; > E a.
j=1

In this case it is extremely easy to solve for the cleartext. The inversion algorithm
is:
For ¢ = n down to 1
(Determine ¢;)
Ift>althene,=1,t=t—d
else ¢; = 0.
In order to hide the superincreasing sequence, we pick an integer multiplier U and

a relatively prime modulus M, such that M > >, a’. We define a; = Uda! (mod M)
to be the public key. The trapdoor for this system is U and M.

!These notes are based in part on last year’s notes by Ethan Wolf.
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If we want to find the cleartext from an encoded ¢t = "7, a;e; and we know
the trapdoor, we first compute the inverse U™! of U mod M. Then we derive the
decodable cyphertext ¢ from ¢ and U~! in the following way:

t'=tU"" (mod M)="> ale; (mod M).
i=1

The algorithm described above can then be used to invert t'.

For example, let 3,9,21,43 be the superincreasing sequence of a}’s. For U = 33
and M = T9 the sequence of a;’s is 20,60,61,76. The cyphertext constructed from
the cleartext 0110 with respect to the superincreasing sequence of a/’s is #' = 30. The
cyphertext with respect to the a;’s is t = 121. If we want to find the cleartext from ¢
and we know the trapdoor, we first use Euclid’s algorithm to compute the inverse U/}
of U mod M, which gives U™ = 12. Then, we derive the easily decodable cyphertext
' from ¢ and U~" in the following way:

t'=tU"" (mod M) =121 x12 (mod M) = 30.

Shamir [?] showed that if the a; are choosen uniformly from an interval that is
too big, this system can be broken in polynomial time using the L? basis reduction
algorithm for most public keys.

2 Breaking the Knapsack Cryptosystem

Consider the case where the coefficients a; of the cryptographic system are randomly
generated. We show that in this case we can break the cryptosystem with high
probability provided that the so-called density (ratio of n to the logarithm of the
maximum a;) is low (less than 1/n).

Let a; be independently and uniformly distributed in [1, 2”2] forte=1...n.
Given t = 3.° | ase; for e; € {0,1}, we will find in polynomial time e =
(e1,...,e,) with probability approaching 1 as n approaches infinity.

This problem was studied by Lagarias and Odlyzko [?]. We present a version due to
Frieze /citeFrieze86. The code breaking algorithm will involve constructing a lattice
in which the first basis vector output by the L?® algorithm will give eq,... e, with
high probability. The algorithm described in class must be slightly modified. If

1
(1) tz§zi:ai

then it is exactly as described. Otherwise, we replace ¢ by %ZZ a; — t, apply the
algorithm for the previous case and then replace every e; output by its complement
1 — €;. From now on, we assume that (??) holds.

21-2



Consider the lattice L = L(bg, ... ,b,) € Q""" where:

MCLZ'

— Mt 0

0 0

bo = 0 , and b = :
: 1

0 :

0

for i = 1...n and where b; has i — 1 0’s before the 1. We take M > /n27, say
M=1+ {\/WJ The idea is to Tun the L? algorithm on the lattice L and look
at the first vector x in the resulting reduced basis. The algorithm for breaking the
knapsack public key cryptosystem is a simple two-step procedure:

1. Use L? to find a short vector a, which will be the first output vector of L.

2. Return +z.

Before analyzing this algorithm, we make a few observations.

Lemma 1
0
e= 6:1 eL
en
Proof: This lemma follows from the fact that e = by + 3> €;b;. O

Also observe that, since |[¢|| < v/n, we know that A(L) < \/n. Therefore,
lz]| < 2%A(L) from the L® algorithm

< 23n
< M.

Notice that, iff L? returns a basis (cg,c1,... ,¢,), then if 2 = ¢g = Xe for some
integer A, then A = £1. This justifies the second step of the procedure and follows
from the properties of bases as shown in the following lemma.

Lemma 2 [f (co,c1,... ,¢,) is a basis of a lattice L, and co = Xe, then A = +1.
Proof: Since e € L, we have e = Az + .11 Aici. So (1 —AXg)e = 2274 Aie;. This

implies that 1 = A)g, since otherwise e, and consequently ¢g, would be in the span
of ¢1,...,¢,, which contradicts the fact that (co,c1,...,¢,) is a basis. Now, since A
and A are integers, it follows that A = +1. 4

The following theorem demonstrates the effectiveness of this simple procedure for
breaking the knapsack public key cryptosystem.
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Theorem 3 Ifd € L and ||d|| < M, then with probability approaching 1 as n tends
to infinity, we have d = Xe for some A € Z. In other words, we show that

Priad e L,||d|| < M,d # Xe for any A\] = o(1).
FEvent A

Since our algorithm returns « with ||«|| < M this means that with high probability
x = Xe. Moreover, by the above lemma, & must be either e¢ or —e.
Proof: Consider a vector d with ||d|| < M. If d € L then it can be expressed as
d =737, b;. So by the definition of the b;’s we have that

don(Zai)\i—)\ot), and d; = \; forz=1,... ,n.
=1

This equality implies that, if d is in L, dy is an integer multiple of M. But since
||d|| < M, we have |dy| < M. Hence, |dy| = 0 and consequently

(2) )\ot = Zaz)\z = Z aZdZ
=1 =1

Conversely, if dy = 0 and >, a;d; is a multiple of ¢ then d must be in L.

For the sake of the analysis, we define some events. Let event A be defined as in
the statement of the theorem. For d € Z"*! such that dy = 0, ||d|| < M and d # Xe
for? any A € Z, define A4 to be the event that d belongs to L. Also, let

S=1{deZ":dy=0,|d| < M and d # Xe for any \ € Z}.
Then
A= ] Aa
des

Therefore,

PrlA] < > Prlde L]

des
= Y Pr|3NEZ: At =) aidi,
des =1

the equality following from the fact that, given that ||d|| < M and dy = 0, we have
that d € L is equivalent to (?77?).

?Remember that e is considered fixed so this statement makes perfect sense.
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Now consider a fixed d € S. We first show that we can restrict our attention to a
“small” set of possible values for Ag. Indeed, assuming that Aot = >"" | a;d;, then

1
Mol = 5

Z aidi
=1
1 i3
< =3 aild]
l =1

< l]\4 Z a;
l =1

< 2M.

The strict inequality comes from the fact that ||d|| < M and the last inequality follows
from our assumption that ¢ is at least half the sum of the a;’s. Hence, for d € S, we
can rewrite

PrlAy] = Pr [EI)\O €Z: At = Zaidil = Z Pr l)\ot = Zaidil )
=1

i=1 [Xo|<2M

Fix now Ag. Since d € S implies that d is not a multiple of e, there exists an index j

such that d; # Age;. Hence,

Pr [Aot = Z a2d2‘| = Pr )\0 Z a;e;, = Z a2d2‘|
L =1 =1

=1

= PT Z(dZ - )\oei)ai = d|

Li=1
— Prla = - Zi;ﬁj(di - )\Oei)ai
N L I d]‘ — )\06]‘

< o7
since the a; are independently and uniformly distributed over |1, 2”2]. As a result, we

obtain that |

Summarizing, we now have Pr[A] < |9] ;‘TA{. It thus remains to get an upper bound

on |S]. Clearly,

SC{deZ" :dy=0and |d;| < M for all 5}.
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This implies that |S| < (2M)". Finally, we have:

(2M)"4M
—_— 27%2
(2v/n27) o

2n

Pr[A]

= o).

And this is what we wanted to prove.

3 Approximation Algorithms

For the rest of this class we will be covering approximation algorithms. Many op-
timization problems are NP-complete, so we are willing to settle for a suboptimal
solution which isn’t too far from the optimum. We will look at worst-case perfor-
mance.

Definition 1 The performance guarantee of a heuristic algorithm for a minimization
(maximization) problem is o if the algorithm is guaranteed to deliver a solution whose
value is at most (at least) « times the optimal value.

Definition 2 An a-approximation algorithm is a polynomial time algorithm with a
performance guarantee of a.

Even though NP-complete problems have equivalent complexity when exact so-
lutions are desired, the reductions don’t necessarily preserve approximability. The
class of NP-complete problems can be subdivided according to how well a problem
can be approximated. Papadimitriou and Yannakakis defined the subclass MAX-SNP
(MAXimization, Strict NP) which we will describe below.

Consider for example the problem 35SAT. We are given a set of clauses, where each
clause is the disjunction of three literals. (A literal is a variable or its negation.) We
want to know if there is a way to set the variables true or false, such that every clause
is true: we want to know if

ATVeda(Plx,e)Nae € T)V (N(z,e) Nx & T)

(Read “Does there exist a truth assignment T such that for all clauses ¢ there is a
variable x such that either x appears positively in the clause and is set true, or x
appears negatively in the clause and is not set true.”) In general, any NP-predicate
can be represented as

dsVedag(s, ¢, x).
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Now since in 3SAT each clause has a bounded number of variables, we can write
it as

ATY(z,y.2)  [(z,y.2)€Co=aeTVyeTVzeT|A
[(z,y,2)€Ci=>ae€TVyeTVzgTIA - A
[(z,y.2)€Cr=agTVygTVvzgT),

where we have partitioned the clauses € into Cl, ..., (7 according to which literals
are negated variables. In general, if an NP predicate can be written as

dsVed(s, ¢),

then it is called an SNP, or strict NP predicate.
Instead of asking that for each ¢ we get ¢(s, ¢), we can ask that the number of ¢’s
for which ¢(s, ¢) is true be maximized:

(3) max #{c : 6(s,c))

In this way, we can derive an optimization problem from an SNP predicate. These
maximization problems comprise the class MAX-SNP.

Example: In MAX 2-SAT we are given clauses each having two literals and a
weight, and we want to maximize the sum of the weights of the clauses that are true.
It the weights are integral and bounded by a constant, then we can formulate this
problem as (??) by letting there be w separate ¢’s for each clause of weight w For
this problem there is a 3/4-approximation algorithm.

If for two MAX-SNP problems # and #’, there is some 3 such that the existence
of an a-approximation algorithm for #’ implies the existence of an a3-approximation
algorithm for 7, then we say that = has been L-reduced to #/. A MAX-SNP complete
problem is a MAX-SNP problem to which any MAX-SNP problem can be L-reduced.

Example: The travelling salesman problem with edge weights chosen from {1, 2}
is a MAX-SNP complete problem. There is a 7/6 approximation algorithm for it.

Consequently, for any MAX-SNP problem, there is an « such that there is an
a-approximation algorithm for the problem. This year Arora et al [?] showed that
for any MAX-SNP complete problem 7, there is some ¢ such that there is no 1 + &-
approximation algorithm for =, unless P=NP.
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