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Lecture �� 

Lecturer� Michel X� Goemans Scribe� David B� Wilson� 

Lattices 

Starting with today�s lecture� we will look at problems involving lattices and algo�
rithms for basis reduction of lattices� Applications of this topic include factoring 

polynomials� breaking cryptosystems� rounding an interior point to an optimal vertex 

in linear programming� and solving integer programs� We start with de�nitions� 

De�nition � Given a set of vectors b�� � � � � b m 

� Qn � we de�ne the lattice L 	 P 

L
b�� � � � � b m� 	 f 

m 

i�� 

�ibi 

� �i 

� Zg� Thus� L is the set of integral combinations of 

the vectors bi� 

Example� b� 
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Figure �� The lattice L
b�� b �� 	 L
b�� b �� 

The simplest lattice is de�ned by u n i t v ectors� L
e�� � � � � e n� 	 Zn � 

De�nition � A set of vectors 
b�� � � � � b m� is a basis for L if b�� � � � � b m 

are lin early 

independent �with respect to Z� and L 	 L
b�� � � � � b m�� 

Every lattice has a basis� and its dimension is �xed� A given lattice can have many 

bases� In the above example for instance� Figure � shows that L
b�� b �� 	 L
b�� b ��� 

This follows from the fact that b� 

� L
b�� b �� and b� 

� L
b�� b ��� The basic operation 

to obtain another basis for a lattice is to subtract from one of the vectors an integral 

combination of the others� This idea is presented in our �rst claim� 

P m�� �ibi�Claim � L
b�� � � � � b m� 	 L
b�� � � � � b m��� b m 

� for �i 

� Z�i�� 

� These notes are based on last year�s class notes� prepared by A tul Shrivastava a n d b y D a vid 

Gupta� 
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Proof	 Let x � L
b�� � � � � b m�� Then� 

m m�� m�� X X X 

x 	 �ibi 

	 
�i 

 �i�m�bi 

 �m
bm 

� �ibi�� 

i�� i�� i�� P 

Since 
�i 

 �i�m� � Z� w e have x � L
b�� � � � � b m��� b m 

� 

m�� �ibi��i�� P 

Now let x � L
b�� � � � � b m��� b m 

� 

m�� �ibi�� Then i�� 

m�� m�� m X X X 

x 	 �ibi 

 �m
bm 

� �ibi� 	 �ibi� 

i�� i�� i�� 

where �i 

	 
 �i 

� �i�m� for i 	 � � and �m 

	 �m� �� � � � � �m 

De�nition 
 L is a full lattice i n Qn if it can be generated b y n linearly independent 

vectors� 

Example� L

�� ��� 
�� ��� is not a full lattice in Q� � 

Theorem � below implies that any one�dimensional lattice has a basis with at most 

one vector� In the problem set we will show that any lattice in Qn has a basis with 

at most n vectors� 

A g i v en lattice can be reduced to a full lattice in polynomial time by restricting 

our attention to the a�ne space spanned by t h e v ectors de�ning the lattice� As a 

result� without loss of generality� w e will look only at lattices that are full� 

Also� we will see 
as an exercise in the last problem set� that� given a set of vectors 

b�� � � � � b m� a basis for the lattice L
b�� � � � � b m� can be computed in polynomial time� 

Therefore� without loss of generality� w e shall always assume that we are given a full 

lattice and a basis of that lattice� 

Let us show h o w to compute a basis of L in polynomial time in the case n 	 �� 

The general case can be solved in a recursive manner using the result for n 	 � 
see 

the problem set�� We are thus given m integers b�� � � � � b m� and w e w ould like to �nd 

an integer a such that L
b�� � � � � b m� 	 L
a�� 

Theorem � Let b�� � � � � b m 

� N� Then L
b�� � � � � b m� 	 L
gcd
b�� � � � � b m��� 

Proof	 The case m 	 � is trivial� Consider the case m 	 �� Assume w�l�o�g� that 

� � b� 

� b�� W e p ro ve that L
b�� b �� 	 L
gcd
b�� b ��� by induction on b�� 

If b� 

	 � then L
b�� b �� 	 L
b�� 	 L
gcd
b�� b ���� If b� 

� �� then 

L
b�� b �� 	 L
b� 

� b�bb��b�c� b �� b y Theorem � above 

	 L
gcd
b�� b � 

� b�bb��b�c�� by the induction hypothesis 

	 L
gcd
b�� b ��� by Euclid�s algorithm 
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The case m � � is sh o wn by induction on m� Assume the theorem is true for m� 

Then 

L
b�� � � � � b m� b m��� 	 L
L
b�� � � � � b m�� b m��� 

	 L
L
gcd
b�� � � � � b m��� b m��� 

	 L
gcd
b�� � � � � b m�� b m��� 

	 L
gcd
b�� � � � � b m� b m���� 

�

Note that the greatest common divisor of two i n tegers can be calculated in poly�
nomial time by Euclid�s algorithm� since every two steps reduce the bit size of the 

maximum by at least �� By applying Euclid�s algorithm repeatedly� w e can calculate 

the GCD of several integers in polynomial time� 

� Combinatorial Application 

d

Suppose we are given a graph G 	 
 V � E �� and we w ant to assign colors to the edges 

such that no vertex is covered by two edges of the same color� and the number of 

colors is minimized� The minimum number of colors is at least dmax� the m axim um 

degree of any node� Vizing showed that the minimum number of colors is at most 

max 

 � � H o wever� deciding whether the minimum number of colors is dmax 

or dmax 

� 

is NP�hard� even for special subclasses of graphs� 

Consider the class of cubic graphs� the graphs for which e v ery vertex has degree 

�� Deciding whether the mininum number of colors needed is dmax 

	 � or � is NP�
hard� But if there is a three�coloring� then the edges of the same color make a perfect 

matching� So there is a three�coloring if and only if there is a partition of E into 

perfect matchings� 

jEjWe can identify the perfect matchings M with vectors b in Z � If e � M then 

be 

	 �� otherwise be 

	 �� Let L be the lattice spanned by these vectors� If there 

is a three�coloring� then 
�� �� � � � � �� � L� The converse isn�t necessarily true� but 

us athis does give w ay to show that a graph is not ��colorable if we can show that 


�� � � � � �� is not in the lattice� 

� Shortest Lattice Vector Problem �SLVP� 

Given n linearly independent v ectors b�� � � � � b n 

in Qn 
remember that w e can assume 

w�l�o�g� that we are given a basis of a full lattice�� we w ant to �nd a nonzero vector 

a � L
b�� � � � � b n� su ch that kak 	 

p
a � a is minimized� This problem is called the 

shortest lattice v e ctor problem� Let �
L� 	 mina�L�a��� 

kak� 

���� 



The shortest lattice vector problem 
SLVP� is believed to be NP�hard� If k k is 

replaced by k k � 

� t h e n i t i s k n o wn to be NP�hard 
Van Emde Boas ������ However� 

if n is �xed� the SLVP problem is solvable in polynomial time� We will treat below 

the cases n 	 � or �� 

For n 	 �� the case is trivial since a is a shortest lattice vector in L
a�� 

Let us now treat the case n 	 � � We shall �nd a basis 
b�� b �� � Q� � Q� of 

L in polynomial time in which b� 

is a shortest non�zero lattice vector� We use the 

����algorithm due to Gauss 
������ 

If kb�k � kb�k then swap b�� b � 

Repeat Choose m � Zto minimize kb� 

� mb�k 

b� 

�	 b� 

� mb��


Until m 	 �


Return b�� b �


Claim 
 The ��� �algorithm terminates in polynomial time� 

The proof is analogous to the proof that Euclid�s algorithm terminates in polyno�
mial time 
see problem set�� As in Euclid�s algorithm� the number of iterations is 

logarithmic in the numbers� The reasons are similar� but more complicated� 

Theorem � The ����algorithm returns a shortest non�zero v e ctor in L� 

Proof	 At termination� we h a ve 

� k b�k � k b�k 

� k b�k � k b� 

� �b�k� for all � � Z� 

Since kb�k � k b� 

� �b�k for any i n teger �� the orthogonal projection of b� 

on b� 

is 

be  t  ween b��� and �b��� 
see Figure ��� On the other hand� kb�k � k b�k and so b� 

is 

outside the circle 
�� kb�k�� This implies that j cos �j � ��� and so ��� � � � ���� � 

In fact� because of the hexagonal lattice� this bound is tight� 

Let a 	 ��b� 

 ��b� 

be a shortest non�zero vector in L� Since � � ��� and 

�  �  � 	 ��� 

� � w e have � � � or � � � 
see Figure ��� Therefore we h a ve 

kak � j ��jkb�k or kak � j ��jkb�k� since the length of the sides of a triangle are in the 

same order as the angles they face� Since the �i�s are integers and kb�k � k b�k� this 

implies that kb�k � k ak� � 

Since ��� � � � ���� � b� 

and b� 

are almost orthogonal� One can prove t h a t 
 b�� b �� 

is a couple of independent v ectors in L that 

�� maximizes sin � 

�� minimizes kb�k k b�k


In fact� we will see that these two statements are equivalent�
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Figure �� � � � or � � �� 

� Minimum Basis Problem 

Given a basis 
b�� � � � � b n� of a full lattice L � Qn� consider the non�singular n � n 

matrix B 	 � b� 

� � � b n�� We know that j det
B�j is the volume of the parallelepiped 

de�ned by b�� � � � � b n� 

Theorem � Given a full lattice L� j det
B�j is independent of B� for any basis B of 

L� 

nProof	 Let B and B� be  t  wo bases of L� F or � � i � n� w e have b� 

i 

	 

P 

j�� 

�ij 

bj 

� 

where the �ij 

are integers� In other words� B � 	 BP � where P is an integral n � n 

matrix� Therefore� j det B �j 	 j det Bjj det P j� But j det B�j �	 � since B� is non�
singular� Hence j det P j �	 � and so j det P j � � sin ce P is integral� This implies that 

j det B �j � j det Bj� By symmetry� it fo llo ws that j det B�j 	 j det Bj� �

Since j det
B�j does not depend on the choice of the basis for a given lattice L� 

�� welet det
L� 	 j det
B�j� When n 	 have j det
B�j 	 kb�k k b�k sin �� and so 

minimizing kb�k k b�k is equivalent to maximize sin �� 

From linear algebra� we k n o w that it is easier to deal with bases which are orthog�
onal� However� in the case of lattices� this is not always possible� Nevertheless� we 

are interested in �nding a basis that is �somewhat orthogonal�� The case for n 	 � 

treated above and Theorem � therefore motivates the following problem� called the 

minimum basis problem� 

���� 
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Figure �� The determinant of a basis is constant in absolute value� 

Given a lattice L� w e w ant to �nd a basis 
b�� � � � � b n� that minimizes 

the product kb�k � � � k bnk� 

This problem turns out to be NP�hard 
Lov�asz�� However� there are �� approximation 

algorithms for this problem where � depends only on the dimension of the basis of the 

lattice� Fortunately� there is a general lower bound on the size of a minimum basis 


which is attained by some lattices and is thus tight� and� in any given dimension� 

all lattices have a basis whose size is at most a constant m ultiple of the general lower 

bound� This will allow u s t o d e v elop an approximation algorithm� 

Claim � �Hadamard�s Inequality�� For any basis of L� det L � k b�k � � � kbnk� 

Theorem � �Hermite �	
�� For any dimension n� there i s a c onstant cn 

such that for 

any lattice L � Qn there is a basis b�� � � � � b n 

of L such that kb�k � � � kbnk � cn 

det L� 

We will� in fact� take cn 

to be the smallest such constant� So what is cn� In one 

dimension� a given lattice has only two bases� which are the two m i n i m um nonzero 

vectors� These vectors are both exactly the size of the lattice spacing� which is also 

the determinant of the lattice� Then in one dimension� a minimum basis always has a 

ratio of exactly �� so c� 

	 � � I n t wo dimensions� we know from the analysis of Gauss�s 

algorithm that the angle� �� b e t ween the vectors in a minimum basis is at least ��� � 

But for basis vectors 

kb�kkb�k 

p
� 

b�� b �� w e know that det L 	 kb�kkb�k sin � � k b�kkb�k sin ��� 	 

� So c� 

	 

p
�
� �� 

In ����� Hermite proved that cn 

could be bounded by � 

O�n2 ��


n
In ����� Schnorr proved that cn 

was bounded by n � 

Unfortunately� neither of the above proofs is algorithmic because neither one gives 

us any insight o n h o w to actually go about computing a small basis� 

In ����� however� Lenstra� Lenstra� and Lov�asz provided an algorithm that pro�
duces a reduced basis whose size is at most �O�n

2 � det L� This algorithm can also be 

used to approximate the shortest lattice vector problem� 

���� 



� More on the Shortest Lattice Vector Problem 

De�nition � A b ody� K� is said to be symmetric with respect to the origin if x � 

K 	 � x � K� Note that this statement is its own inverse� so we can think of K 

being symmetric with respect to the origin as meaning x � K 
� x � K� 

We present Minkowski�s Theorem without proof as background for a useful corol�
lary� 

Theorem � �Minkowski�s Theorem��	��� Let K be a c onvex body symmetric with 

respect to the origin and let lattice L � Qn be such that V ol 
K� � �n det L� Then K 

contains a nonzero lattice p oint� 

Corollary � Consider the norm k � k p 

for any integer p� Then there is a nonzero 

a � L such that kakp 

� �
 

det L ���n where vp 

	 V ol 
fx � kxkp 

� �g�� 

vp 

�
 

Example� p 	 �� v� 

	 � 

n � Then there is a nonzero a � L such that kak� 

� 

det L ���n � T h us 
maxj 

jaj 

j�n � det L�
�n 

We can give a p r o o f b y picture for Corollary � when p 	 �� Let 

t 	 min
max jaj 

j�� 

a��� 

j 

a�L 

i�e� t is the smallest nonzero k k � 

norm of lattice vectors� We place a cube with 

edge length t centered on each lattice point� The cubes may touch� but they don�t 

overlap� The volume per lattice element i s tn � On the other hand� we can cover the 

space with parallelepipeds of volume det L� one per lattice point� Thus we get the 

inequality tn � det L� 

t 

Figure �� Covering the lattice with cubes and parallelepipeds� 

Next time we will discuss L�� the Lenstra�Lenstra�Lov�asz theorem� We will give 

the algorithm and applications� 

����




������������ Advanced Algorithms	 November ��� ���� 

Lecture �� 

Lecturer� Michel X� Goemans	 Scribe� Ray Sidney� 

� Gram�Schmidt Decomposition 

First� recall � facts about full lattices L and their bases from last lecture� 

�� Hadamard�s Inequality� If b�� � � � � b n 

is a basis for L� then jdetLj � jj b�jj � � � jjbnjj� 

�� Hermite�s Thm�	 �n � 	� there is a constant cn 

such that for any lattice L � Qn� there 

is a basis b�� � � � � b n 

of L such that jjb�jj � � � jj bnjj � cndetL� 

�� Corollary to Minkowski�s Theorem� For any lattice
jjajj� 

� p
n
detL���n
and hence� such that 

L � Qn� there is a nonzero vector 

a � L such that jjajj1 

� 
detL���n �� 

We remark that the corollary to Minkowski�s Theorem is as good as one can achieve� 

asymptotically�

�
L� � 

q 

� 

p
n
detL���n 

in the sense that for any n � 	� there is a lattice L � Qn such that 

�
e� 

b

Now remember the GramSchmidt Decomposition� 

Given the vectors b�� � � � � b m� the following procedure calculates m orthogonal vectors 

�� � � � � b 

� such that b� is the projection of bi 

onto the space orthogonal to b�� � � � � b i;��� m i 

b� � b�� 

��j 

Pi;� �bi 

�b
b� 

i 

� bi 

� b� 

jj�� �b� 

j 

�b��
j 

� �The vectors b� are not necessarily in the lattice because the coe�cients �ij 

� 
 bi� b j 

��
b�� b j 

�i j 

are not necessarily integral� We can write bi 

� 

Pi
jj�� 

�ij 

b� where �ii 

� � � Equivalently� 

B � B� P where �	 � 

� ��� 

� � � �n�� B	 C �B B	

	 � 

� � �n�� 

C C
P � B	 C B 

� � � � C� � � � �	
� � � � A 

	 � � � � � � � 

Notice that det
B� � det
B� �det
P � � det
B��� since all lower triangular entries of P 

are zero� 

Claim � �
L� � mini 

kb�k for any basis 
b�� � � � � b n� of L�i 

These notes are based largely on notes from Atul Shrivastava� David Gupta� Marcos Kiwi� Andrew 

Sutherland� and Ethan Wolf� 

�	�


1 



Most of the proofs of this lecture were omitted in class� but are included for completeness� 

Proof� Let a � L be a minimumlength lattice vector� kak� 

� �
 L�� Since a � L� then Pnwe can write a as i�� 

�ibi� � i 

� Z� L et k be the last index for which �k 

�� 	� Then �j 

� 	 

for all j � k � By substituting in from GramSchmidt orthogonalization� we g e t 

n i n n X X XX 

a � �i 

�i�j 

b� � �i�i�j 

b��j j 

i�� j�� j�� i�j P Pn n ��b�Let us de�ne �� for � � j � n by �� � i�j 

�i�i�j 

� Then a � j 

� Since the b��s are j j j�� j j 

orthogonal to each other� we h a ve that 

n X 

j 

�� kb�k� � 
��kak� � 
�� 

j k�
�kb� k��� k

j�� 

Thus kak� 

� j �� 

k 

� �k�k�k  

� �k���k���k 

� � � � � �k� Thus kak� 

�kjkb�k� Note that �� 

k

j�kjkb�k� Since �k 

� Z and �k 

�� 	� then j�kj � �� So kak� 

� k b� k � mini 

kb� 

i 

k� Thus k k

�
L� � mini 

kb�k� �i 

� Lovasz�reduced Bases 

In Gauss� algorithm� we w ere performing swaps to insure that the basis satis�es certain 

properties� In general� to insure that the �rst vector of the basis is reasonably short� we shall 

impose that the switching of any bi 

with bi�� 

does not decrease kb�k 
recall that the Grami 

Schmidt orthogonalization depends upon the ordering of the vectors�� This requirement 

can be more easily stated by using the following observation� 

Claim � Let 
b�� � � � � b n� be a b asis for lattice L� If we switch bi 

with bi�� 

to produce the 

�new basis 
c�� � � � � c n�� then b� � cj 

for j �� � i� i � � and ci 

� bi
� 

�� 

� �i���ibi 

� �j 

�Proof� From GramSchmidt orthogonalization� cj 

is the component o f cj 

orthogonal to 

the span of fc�� c � � � � � c j;�g� but this set is the same as fb�� b � � � � � b j;�g for j �� i � ��� �
�Since ci 

� bi 

for j � j 

� � i� i � � � W e also have that ci 

is the � i� i � � � w e get that b� � cj 

for j �
component o f ci 

� bi�� 

orthogonal to the span of fb�� b � � � � � b i;�g� F rom the original Gram
Schmidt orthogonalization� we know that bi�� 

� 

Pi�� �i���kb
� � so ci 

� 

Pi;� �i���kb
� � 

�

k�� k k�� k 

bi
� 

�� 

� �i���ibi 

� � Removing the component o f e a c h side in the span of fb�� b � � � � � b i;�g� we 

get c� � bi
� 

�� 

� �i���ibi 

� � � 

�

i 

This claim says that we can require that switching neighboring basis vectors not help 

reduce small kb�k�s by requiring that kbi� 

�� 

� �i���ibi 

�k� � k b� 

i 

k� for � � i � n �i 

We w ould also like for our basis vectors to be as close to orthogonal as possible� If they 

were strictly orthogonal� then each �i�j 

would be zero� But this is not possible for most 

lattices� We w ould like to require that j�i�j 

j be as small as possible for each i� j� W e now 

present a form of these two requirements su�ciently loose enough to guarantee the existence 

of such a basis and to allow for a polynomialtime algorithm� 

De	nition � A L ovasz�reduced b asis for L is a basis 
b�� � � � � b n� for which 

�� j�i�j 

j � 

� for � � j � i � n�� 

�	� 



�� kbi� 

�� 

� �i���ibi 

�k� � 

� kb�k� for � � i � n �
� 

i 

Proposition 
 Let 
b�� � � � � b n� be a L ovasz�reduced b asis of a lattice L� Then 

n;1 

4�� kb�k � � 
det L� 

1 

n � 

n;1 n;1


2 2
�� kb�k � � mini 

kb� 

i 

k � � �
L�� 

2 


n1 

�� kb�k � � � kbnk � � 

2 

� det L� 

Proof of Proposition 
� 

Claim � kb�k� � �j;�kb�k�� � � j � n�j 

From property 
 ii� o f a L o vaszreduced basis and the orthogonality o f t h e bi 

��s� 

we have 

� 

b�kb�k� � k i�� 

� �i���ibi 

�k� � kb� k� � �� kb�k��i�� i���i i� 

i


Since from property 
 i�� we know th a t �� � 

�
� 

� w e have that
i���i 

� � 

b� kb�k�kb�k� � k i��k� �
� 

i� 

i


or


kb�k� � �kb� k��i i��

Repeatedly substituting into the above starting with i � � � w e obtain 

kb�k� � �j;�kb�k� � � � j � n�� j 

Since b� � b�� this becomes kb�k� � �j;�kb�k�� � � j � n� which p r o ves the � j 

claim� 	 

Solving the above f o r kb�k� � w e can square both sides of the de�nition of det L andj 

perform a substitution to obtain 

n n Y 

2
det L�� � kb�k� � 

Y 

��;j kb�k� � � 

;n(n;1) kb�k�n�j 

j�� j�� 

Raising both sides to the power 

�
� 

n 

gives 

;(n;1) 

4 kb�k
det L� 

n 

1 � � 

n;1 kb�k � � 

4 
det L� 

1 

n � 

This proves part � of the proposition� 

Let k be the index for which mini 

kb�k is attained� so that kb� k � min i 

kb� 

i 

k� T hen byi k

the above claim � kb�k� � �k;�kb� k� � �n;�kb�k� � � 

n;� mini 

kb� 

i 

k� � T aking the square root k k
n;1


2
of both sides� kb�k � � mini 

kb� 

i 

k� By applying Claim �� we can extend this result to� 

n;1 

2kb�k � � �
L�� which is the statement of part � of the proposition� 

�	� 



i 

PiRecall that we h a ve bi 

� j�� 

�i�j 

b� 

j 

by GramSchmidt orthogonalization� It also follows 

from the proof of Claim �� that kb�k� � �i;j kb�k� for j � i � Then making use of the j i 

orthogonality and the fact that the coe�cients satisfy property 
 i� o f a L o vaszreduced 

basis� we get that 

i;� X X � 

i;� X � 

�i;j � � �i;�kb�k�b�k� �i;j kb�k� � kb�k�
� � kbik� � �� kb�k� � k i 

� i � 

i 

�i�j j � 

i 

j�� j�� j�� 

Multiplying these inequalities for all values of i gives 

n n n Y Y 


n 

2kb�k� � � � kbnk� � �i;�kb�k� � 
 �i;��
 

Y 

kb�k�� � � 

n(n;1) 


det L�� � � 

2 

�
det L���i i 

i�� i�� i�� 

Taking the square root of both sides gives 

1 kb�k � � � kbnk � �2 


n 

2 

� det L� 

This proves part � of the proposition� � 

We n o w present an algorithm due to A� K� Lenstra� H� W� Lenstra and L� Lov�asz ��� 

which computes a reduced basis in polynomial time� We assume throughout that that we 

are dealing with integral lattices� i�e�� we assume that every basis consists of integral vectors� 

� Lenstra�Lenstra�Lov�asz �L 

�� Basis Reduction Algorithm 

nThe algorithm receives as input a set of linearly independent v ectors b�� b � � � � � b n 

� Z � 

and outputs a Lov�
�

aszReduced Basis of L
b�� � � � � b n�� 

�Initialization Find the GramSchmidt orthogonalization 
b�� b 

�� � � � � b n� of 
 b�� b � � � � � b n��� � �

Step � Make sure that property � � o f a L o v�aszReduced Basis holds� 

For i � � to n do 

b
For j � i � � d o wn to � do


i 


 bi 

� d �ij 

cbj


For k � � to j do


�ik 


 �ik 

� d �ij 

c�jk 

fNote that for k � j � b� � bj 

so that �ik 

is una�ectedgk 

Step � If there exists a i for which property � o f a L o v�aszReduced Basis is not satis�ed� 

swap bi 

and bi��� update the b� �s for k � i� i � �� update the �kj  

�s for k � i� i � �� andk

go to step �� 

Else return 
b�� b � � � � � b n���

Note that 

�� If the algorithm terminates� it returns a Lov�aszReduced Basis� 

�	� 



��� b�� b �� � � � � b 

� are not a�ected in step �� since spanfb�� b � � � � � b ig� for i � � � � �n is not� n 

�

modi�ed performing this step� 

�� After step � j�ij 

j � 

� �
� 

It is not clear that the algorithm makes any progress at each iteration� The following 

result shows that in fact L� terminates� 

�Theorem � The L� algorithm terminates after O
n log �� iterations� where � � max i 

jjb�jji 

�the superscript 	 denotes input vectors�� 

Proof� De�ne a potential 

n;� n;� 

j n;� Y Y Y Y
��n;j� 

��
�b� � jjb�jj � jjb�jj� 

� � det Dj 

�j i 

j�� j�� i�� j�� 

where Dj 

� � dj 


k� l  �� � �
bk� b � Hence� �
�b� is a positive integer� since the Dj 

�s arel��k�l  �j 

integral matrices� 

In step �� �
�b� does not change because the bi 

��s do not change� 

c �In step �� let � � 
 c�� � � � � c n� � 
 b�� b � � � � � b i��� b i� � � � � b n� be the new basis cre
�ated after swapping bi 

and bi��� Since cj 

is the projection of cj 

onto the orthogonal 

�of spanfc�� c � � � � � c j;�g� it follows that cj 

� b� for j �� 

j 

� i� i � � � Furthermore� ci 

� 

bi
� 

�� 

� �i���ibi 

� � since c� is the projection of bi�� 

onto the orthogonal of spanfb�� � � � � b i;�g 

�

i 

and b� 

i�� 

is the projection of bi�� 

onto the orthogonal of spanfb�� � � � � b ig� 

�Moreover� since jjb�jj � � � jjb� jj � d et
 L� � jjc�jj � � � jjc� jj we h a ve that jjb�jjjjb� jj � jjc�jjjjc jj�� n � n i i�� i i��

Thus� 

jjc�jj��n;i�jjc� jj��n;i;���
�c� jjc�jj� 

�i�� � 

i� 

i � 

�
�b� jjb�jj��n;i� jj��n;i;�� jjb�jj� �jjb� 

i i�� i 

log 	0 

�
Consequently� the number of iterations of the L� algorithm is at most 

log �;log � 

� where 

� 

is the initial value of �� 

j 

��jj��n;j�� � � 

n;�Now let b� � fb�� b �� � � � � b ng be the basis given as input� Then �� 

� � j�� 

jj
b� ��

But jj
b� 

j 

��jj � jjb�jj� thus �� 

� �n;�jjb�jj��n;j� � �n�n;��� implying that log �� 

� n
n �j j�� j 

�� log �� It follows that the algorithm terminates after executing step � at most 

n�n;�� log � �log �;log � 

O
n� log �� times� � 


Note that in the proof above the numbe  r  �  �� used in condition 
ii� could be replaced 

by � � � for any � � 	 and the theorem would still hold�� 

Corollary � The L� algorithm performs O
n
 log �� arithmetic operations� 

The issue of how large the bi�s can become during the L� algorithm was not covered in 

class� The proof that at any time size
bi� remains polynomially bounded can be seen in last 

�	�




n
year lecture notes� In fact it can be shown that at any time jjbijj � 
� � ���n��

p
n� �

p
n� 

This result completes the proof that the L� algorithm runs in polynomial time� 

Beginning this lecture we shall be studying applications of these results in cryptography 

and simultaneous diophantine approximation� Other applications of the results we h a ve 

seen relate to polynomialtime integer linear programming for programs of �xed dimension 

and polynomialtime factorization of polynomials over the rationals� 

� Diophantine Approximation 

In a general sense� the Diophantine approximation problem is about how to �round� a 

number  	 � R� meaning that we replace it by a rational number which is of a su�ciently 

simple form and at the same time su�ciently close to 	� I f w e prescribe the denominator to 

q of this rational numbe  r  p�q� then the best choice for p is d	qc� The error resulting from 

such a rounding is 

p � j	 � j � � 

q �q 

We shall �nd� however� that often this approximation is not good enough� A classical result 

of Dirichlet says that if we do not prescribe the denominator� but only an upper bound M 

for it� then there always exists a rational numbe  r  p�q such that 

p � j	 � j � � 	 � q � M� 

q Mq 

There also exists a classical method to �nd such a rational numbe  r  p�q� this is the socalled 

continued f r action expansion of 	� F or an irrational numbe  r  	� this expansion is in�nite� 

for a rational numbe  r  	� it is �nite and of polynomial length� 

Khintchine 
����� even showed that continued fractions can be used to solve the follow
ing best approximation problem� 

Given 	 � Q 
or � R� and an integer M � 	� �nd a rational p�q with 	 � q � M 

such that j	 � p�qj is as small as possible� 

This often produces very good approximations� For example� if 	 � 
 and M � ��	 the 

best approximation we can obtain using q � ��	 is ������� � ���������� 

� Simultaneous Diophantine Approximation �SDA� 

Suppose now w e wish to approximate several values at once� i�e� we are given M � �		 and 

we wish to approximate 	� 

� ������ 	 � ������ 	 � 

� ������ Note that 	� 

� 	� 

� 	� 

� �� 

� 

p2 

� 

If we approximate each v alue separately� w e �nd that 

p1 � 

� � ����� � � � � 

� � 

q1 

� q2 

� 

����� � � � � 

p3 � 

� � ����� � � � � Unfortunately� 

p1 � 

p2 � 

p3 �� �� T hus� as a group these 

q3 

�� q1 

q2 

q3 

approximations are not good� since we w ould like our approximations to mantain �simple� 

equalities relating the 	i�s� This is known as the SDA problem and is stated as follows� 

Given 	�� � � � � 	 n 

� Q� i n teger M � 	� and 	 � � � �� �nd p�� � � � � p n� q � Zs�t� 

	 � q � M� jq	 i 

� pij � � for all i� 
Note that jq	 i 

� pij � � is equivalent t o 

�j	i 

� 

pi j � ��
q q 

�	� 



An equivalent statement of the problem is� given 	 � � � �� M � 	� and 	 � 


	�� � � � � 	 n�
T �nd y � 
 

p
q 

1 � � � � � 

pn �T such that k	 � yk1 

� 

� � Now� if � is too small� 

q q 

pi 

and q may not exist� So we can look at this as a decision problem� Unfortunately� this 

decision problem has been shown to be NPcomplete by Lagarias ���� It has been shown� 

however� that for � su�ciently large� a solution always exists� 

Theorem � �Dirichlet� SDA has a solution if M � �;n � 

Proof� De�ne a lattice L � Qn�� by L � L
b�� � � � � b n� w here 

b� 

� 
	�� � � � � 	 n� � �T 

Tb� 

� 
��� 	� � � � � 	�T � �e� 

� � � 

Tbi 

� 
	� � � � � 	� ��� 	� � � � � 	�T � �ei 

� � � 

Tbn 

� 
	� � � � � 	� ��� 	�T � �e �n 

where � � �n�� � Since det
L� � � � �n�� and dim
L� � n � � � b y Minkowski�s Corollary 

1 

there exists a � L� a �� 	 s�t� kak1 

� 
det
L��n+1 � �� Hence� there exist q� p �� � � � � p n 

� Z P
s�t� a � qb � 

� i
n 

�� 

pibi 

with jaij � � for all i� or� equivalently� 

�� jaij � jq	 i 

� pij � �� 

�� an 

� q� � �� or� equivalently� q � �;n � M � 

To complete the proof� we need only check that q � 	� 
w�l�o�g� we can assume that q � 	 

since we can always take �a instead of a�� Now� if q � 	 then by � �� jpij � � for all i� But 

we know that pi 

� Zand that pi 

�� 	 for some i since a �� 	 � H o wever� this contradicts the 

fact that 	 � � � �� � 

Unfortunately� the proof is not constructive� since Minkowski�s Corollary insures the 

existence of a� but doesn�t give a procedure for �nding it� However� if we make a stronger 

restriction on the value of M we can �nd a polynomial time solution to the problem� 

��� Polynomial Time Algorithm for approximating SDA 

We solve the following problem� 

Given 	 � � � �� 	 �� � � � � 	 n 

� Q �nd p� 

� � � � � p n� q � Z such that 	 � q � 

n(n+1)


4
� �;n and jq	 i 

� pij � � for all i� 

This is a weaker version of the problem� but it can be solved in polynomial time� 

; �n��4To prove this we make use of the L� algorithm� But now w e u s e � � � 

n(n+1) 

in 

the basis L de�ned above� Using L� we can �nd c � L� c �� 	 
the �rst vector of the 

�	�




Lov�aszReduced Basis� s�t� 

�

kck1 

� kck� 

n��
det
L�����n���� 

�n���;n���� 

� � 

P
Hence we can �nd q� p �� � � � � p n 

s�t� c � qb � 

� i
n 

�� 

pibi� jcij � �i 

or� equivalently� 

�� jq	 i 

� pij � � 

n(n+1)

�� q� � � or q � � 

4 �;n 

by solving a simultaneous equation which is done in polynomial time� Note that even though 

the lattice L is not integral the L� algorithm works� Another approach m ay be to transform 

the lattice L into an integer lattice before using the L� algorithm� 

��� Maintaining Simple� Inequalities 

We n o w show that the approximations obtained by this algorithm do in fact maintain 

�simple� inequalities� Suppose we h a ve an input vector x � Qn� x � 
 	�� � � � � 	 n� and we 

run this vector through the SDA algorithm described above� yielding y � 
 

p
q 

1 � � � � � 

pn ��
q 

Then the following theorem holds� P 

nTheorem � If ax � b where b � Z� a � Z and jaij � 

� 

� 

ay � b�� then 

Proof� 

b � ay	 � 
b � ax� � a
x � y� 

� a
x � y� fsince ax � bgX 

� ai
xi 

� yi� 

i X 

� �
 jaij�kx � yk1 

i 

� � 

� � 

� q 

� � 

� 

q 

But b � ay is rational with denominator equal to q� Therefore� b � ay � 	� � 

��
 Repairing Approximate� Inequalities 

We s a w that a �simple� inequality o n x will also hold for its approximation y obtained by 

our algorithm for simultaneous Diophantine approximation� In fact� if a �simple� inequal
ity �almost� holds for x� then the inequality holds for y� once passed through the SDA 

algorithm� 

�	� 



p1Theorem � Let x � Qn � Using the SDA algorithm with � � 

�
� 

� 

yields y � � � � � � 

pn �� If
 

q q P n(n+1) 

4jaij � � for ai� b � Zand if ax � b � 
� ��;n�; ;� then ay � b� 

Proof� The proof is almost identical to the previous proof� 

ay � b � 
ax � b� � a
y � x� 

n 

n(n+1) 

X 

;�� 
���;n�; 4 � jaijjjy � xjj1 

i�� 

� � 

� � � 

�q q 

� � � 

� � since � � 

�q �q �� 

� 

� � 

q 

n(n+1) n(n+1) 

;� �4 4The second inequality follows from the fact that q � �;n� which implies that 
���;n�; 

� � Because ay � b is rational with denominator q� this implies that ay � b � 	� ��q 

��� An Example	 Linear Programming 

We can use the SDA algorithm to �nd the solution to a Linear Program using the interior 

point method described in an earlier lecture� After a number of iterations in this method� we 

will arrive near a vertex which is the optimal solution� We can then use the SDA algorithm 

to reach the vertex itself� 

Consider the following primal and dual linear program� 

min cT x 

s�t 

Ax � b 

x � 	 

and


max bT y


A
s�t 

T y � s � c 

s � 	 

We h a ve seen that the interior point method delivers a primal feasible solution and a 

dual feasible solution for which the duality gap is small 
i�e� �;�L� �� However� remembe  r 

that to keep the number of bits polynomially bounded� we need to truncate some of the 

values� Therefore� the solutions obtained are not exactly feasible� though they are almost 

feasible� At termination� we h a ve t h us x� y� s such that the following conditions hold� 

Ax � 

b 

x � 	 

AT y � s � 

c 

s � 	 

T bT y � c x � 	 

�	� 



Here ��� means approximately equal to� and ��� means greater than or nearly greater 

than� Using Diophantine rounding� if we c hoose � appropriately and round the solution 

0 0then we obtain x0� y � s s�t� 

Ax0 � b 

0 x	 � 	 

0AT y � s 

0 � c 

0 s	 � 	 

0 T 0bT y � c x � 	 

as desired� We will not consider how � is chosen here� but this is a technical detail 
and� in 

fact� the analysis we h a ve performed must be re�ned�� By strong duality� x0 is an optimal 

solution for the primal and 
y0� s 

0� an optimal solution for the dual� 

��� Breaking Public�Key Cryptosystems 

Consider a publickey cryptosystem where the values a�� � � � � a n 

� Zare public key 
i�e�� are 

known to all the users of the cryptosystem�� To send a message 
or cleartext� e�� � � � � e n 

� P
	� �n � w e compute and transmit the cyphertext t � 

n Decoding the received transi�� 

aiei� 

mission� then� requires �nding the original e� 

� � � � � e n� Note that� in its full generality 
The 

Subset Problem� Given a �nite set S � Zand a number T � Z� is there a subset of S such 

that the sum of its members is exactly T  �� this decoding problem is NP complete� 

What we w ant so that we h a ve a useful encryption system here is that� 

P
�� For any cyphertext T � there is at most one e� 

� � � � � e n 

� Zsuch that 

n 

i�� 

aiei 

� T � 

�� There is some kind of trapdoor information associated with the ai�s which makes rapid 

decryption possible� 

Next lecture� we will look at the basic MerkleHellman cryptosystem ��� and see how w e 

can use the L� algorithm on it� 
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� Knapsack Public Key Cryptosystems 

We consider the knapsack public key cryptosystem� The public key consists of n 

numbers a�� � � � � a n 

� Z� G iv en a message e� 

� � � e n 

� f �� �gn of n bits� we encode it 

as t by taking the weighted sum of the bits with respect to the public key� 

n X 

t 	 aiei� 

i�� 

The message e� 

� � � e n 

is called the cleartext and the encoded message t is called the 

cyphertext� The public key satis�es the following properties� 

P n�� Given t� there exists at most one word e� 

� � � e n 

� f �� �gn such that t 	 i�� 

aiei� 

�� There exists a trapdoor 
	some secret information� which allows easy conversion 

to the ei�s given t� 

Example� In the single iteration Merkle�Hellman system ���� we c hoose a superin�
��s� That is icreasing sequence of a

� �i 

i�� X 

a 

j�� 

� �ja 

In this case it is extremely easy to solve for the cleartext� The inversion algorithm 

is� 

For i 	 n down to � 


Determine ei� 

� then eii 

	 �� t 	 t � a� 

iIf t � a
else ei 

	 � �


In order to hide the superincreasing sequence� we p i c k a n i n teger multiplier U and
P 

a relatively prime modulus M � such that M � 

n � 

i
� 

i 


mod M �W e de�ne ai 

	 Ui�� 

a a� 

to be the public key� The trapdoor for this system is U and M � 

� These notes are based in part on last year�s notes by Ethan Wolf� 

���� 



P nIf we w ant to �nd the cleartext from an encoded t 	 i�� 

aiei 

and we know 

the trapdoor� we �rst compute the inverse U 

�� of U mod M � T hen w e derive the 

decodable cyphertext t� from t and U 

�� in the following way� 

n X �t� 	 tU 

�� 
mod M � 	 aiei 


mod M �� 

i�� 

The algorithm described above can then be used to invert t� � 

For example� let �� �� ��� �� be the superincreasing sequence of ai
� �s� For U 	 �� 

and M 	 �� the sequence of ai�s is ��� ��� ��� ��� The cyphertext constructed from 

�the cleartext ���� with respect to the superincreasing sequence of a �s is t� 	 ��� T hei

t

cyphertext with respect to the ai�s is t 	 ���� If we w ant to �nd the cleartext from t 

and we k n o w the trapdoor� we �rst use Euclid�s algorithm to compute the inverse U 

�� 

of U mod M � w hich gives U 

�� 	 ��� Then� we derive the easily decodable cyphertext 

� from t and U 

�� in the following way� 

t� 	 tU 

�� 
mod M � 	 ��� � �� 
mod M � 	 �� � 

Shamir ��� showed that if the ai 

are choosen uniformly from an interval that is 

too big� this system can be broken in polynomial time using the L� basis reduction 

algorithm for most public keys� 

� Breaking the Knapsack Cryptosystem 

Consider the case where the coe�cients ai 

of the cryptographic system are randomly 

generated� We show that in this case we can break the cryptosystem with high 

probability provided that the so�called density 
ratio of n to the logarithm of the 

maximum ai� is lo w 
less than ��n�� 

2 

Let ai 

be independently and uniformly distributed in ��� �n � fo r i 	 � � � � n � P nGiven t 	 i�� 

aiei 

for ei 

� f �� �g� w e will �nd in polynomial time e 	 


e�� � � � � e n� with probability approaching � as n approaches in�nity� 

This problem was studied by Lagarias and Odlyzko � ��� We present a v ersion due to 

Frieze �citeFrieze��� The code breaking algorithm will involve constructing a lattice 

in which the �rst basis vector output by t h e L� algorithm will give e�� � � � � e n 

with 

high probability� The algorithm described in class must be slightly modi�ed� If 

� 

X 


�� t � ai
� i 

then it is exactly as described� Otherwise� we replace t by 

� 

P 

i 

ai 

� t� apply the � 

algorithm for the previous case and then replace every ei 

output by its complement 

� � ei� F rom now o n � w e assume that 
��� holds� 

���� 



n� � Qn��Consider the lattice L 	 L
b�� � � � � b where� � � 

Ma i � � B C �Mt	

B 

� C B C B C B � 

C	

B � 

C B C B C B C B C B 

� Cb� 

	 B 

� C � and bi 

	 B 

�
� C B C�	 B C B � 

C	 B 

� C � 

� A B C B C�� �	 �
� A 

� 

for i 	 � � � � n and where bi 

has i � � ��s before the �� We take M � 

p
n�n � sayjp k 

M 	 �  n�n � The idea is to run the L� algorithm on the lattice L and look 

at the �rst vector x in the resulting reduced basis� The algorithm for breaking the 

knapsack public key cryptosystem is a simple two�step procedure� 

�� Use L� to �nd a short vector x� w h i c h will be the �rst output vector of L� � 

�� Return x� 

Before analyzing this algorithm� we m a k e a few observations� 

Lemma � � � 

� B C B 

e� 

C B C � L�e 	 B 

� C� � � 
A 

en P 

Proof	 This lemma follows from the fact that e 	 b� 

 

n
i�� 

eibi� �

Also observe that� since kek � 

p
n� w e know that �
L� � p

n� Therefore� 

n kxk � � 

2 �
L� from the L� algorithm 

n 

2 

p� � n 

	 M � 

Notice that� i� L� returns a basis 
c�� c �� � � � � c n�� then if x 	 c� 

	 �e for some 

integer �� then � 	 �� This justi�es the second step of the procedure and follows 

from the properties of bases as shown in the following lemma� 

Lemma � If 
c�� c �� � �	 � � c n� i s a b asis of a lattice L� and c� 

	 �e� then � 	 �� P	 P 

� So 

nProof	 Since e � L� w e have e 	 ��x  i
n 

�� 

�ici 
� ���� 

�e 	 i�� 

�ici� This 

implies that � 	 ��� 

� since otherwise e� and consequently c�� w ould be in the span 

of c�� � � � � c n� w hich contradicts the fact that 
c�� c �� � � � � c n� is a basis� Now� since � 

and �� 

are integers� it follows that � 	 �� �

The following theorem demonstrates the e�ectiveness of this simple procedure for 

breaking the knapsack public key cryptosystem� 

���� 



Theorem 
 If d � L and kdk 	 M � then with probability approaching � as n tends 

to in�nity� we have d 	 �e for some � � Z� In other words� we show that 

Pr��d � L� kdk 	 M�d �	 �e for any �� 	 o
��� � �z
Event A 

� 

Since our algorithm returns x with kxk 	 M this means that with high probability 

x 	 �e� Moreover� by the above lemma� x must be either e or �e� 

Proof	 Consider a vector d with kdk 	 M � If d � L then it can be expressed as P nd 	 i�� 

�ibi� S o b y the de�nition of the bi�s we h a ve that � � 

n X 

d� 

	 M ai�i 

� ��t � and di 

	 �i 

for i 	 � � � � � � n � 

i�� 

This equality implies that� if d is in L� d� 

is an integer multiple of M � But since 

kdk 	 M � w e have jd�j 	 M � Hence� jd�j 	 � and consequently 

n n X X 


��	 ��t 	 ai�i 

	 aidi� 

i�� i�� P 

Conversely� i f d� 

	 � and 

n is a multiple of t then d must be in L�i�� 

aidi 

For the sake of the analysis� we de�ne some events� Let event A be de�ned as in 

the statement of the theorem� For d � Zn�� such that d� 

	 �� kdk 	 M and d 	� �e 

for� any � � Z� d e� n e Ad 

to be the event that d belongs to L� Also� let 

S 	 fd � Zn�� � d� 

	 � � kdk 	 M and d �	 �e for any � � Zg� 

Then 

Ad�A 	 

d

�
�S 

Therefore� 

X 

Pr �A� � Pr �d � L� 

d�S 		 
 

n X	 X 

	 Pr ��� 

� Z� �� 

t 	 aidi 

� 

d�S i�� 

the equality following from the fact that� given that kdk 	 M and d� 

	 �� we have 

that d � L is equivalent t o 
 ���� 

� Remember that e is considered �xed so this statement m a k es perfect sense� 

���� 



Now consider a �xed d � S� W e � rst sh o w th a t w e can restrict our attention to a P
n�small� set of possible values for ��� Indeed� assuming that ��t 	 i�� 

aidi� then �����


aidi 

�����


n X
� j��j 	 

t i�� 

n X
� � aijdij
t i�� 

� 

n X


	 M ai 

t i�� 

� �M� 

The strict inequality comes from the fact that kdk 	 M and the last inequality f o l l o ws 

from our assumption that t is at least half the sum of the ai�s� Hence� for d � S� we 

can rewrite 
	
	 

n n XXX 

Pr �Ad� 	 Pr ��� 

� Z� ��t 	 aidi 

	 Pr ��t 	 aidi 

� 

i�� j�0 

j��M i�� 

Fix now �� 

� Since d � S implies that d is not a m ultiple of e� there exists an index j 

such that dj 

�	 ��ej 

� Hence� 


	
	 

n n n XXX 

Pr ��t 	 aidi 

	 Pr �� 

aiei 

	 aidi 

i�� i�� i�� 
	 

n X


	 Pr 
di 

� ��ei�ai 

	 � 

i�� 
P 

	 

�j 


di 

� ��ei�aii�	 Pr aj 

	 

� 

dj 

� ��ej 

� � 

�n2 

2 

since the ai 

are independently and uniformly distributed over ��� �n �� As a result� we 

obtain that 

� 

Pr �Ad� 	 �M 

�n2 

� 

now 2Summarizing� we h a ve Pr �A� � j Sj 

�M � I t t h us remains to get an upper bound 

�n 

on jSj� Clearly� 

S � f d � Zn�� � d� 

	 � and jdj 

j 	 M for all jg� 

����




This implies that jSj � 
�M �n� Finally� w e h a ve� 


�M �n�M 

Pr �A� � 

�n2 � 

�
p
n�n 

�� n�� B C
	 O � 

�n2 

A 

	 o
��� 

And this is what we w anted to prove� 

� 

� Approximation Algorithms 

For the rest of this class we w i l l b e c o vering approximation algorithms� Many op�
timization problems are NP�complete� so we are willing to settle for a suboptimal 

solution which isn�t too far from the optimum� We w i l l l o o k a t w orst�case perfor�
mance� 

De�nition � The performance guarantee of a heuristic algorithm for a minimization 

�maximization� problem is � if the algorithm is guaranteed to deliver a solution whose 

value is at most �at least� � times the optimal value� 

De�nition � An ��approximation algorithm is a polynomial time algorithm with a 

performance g u a r antee o f �� 

Even though NP�complete problems have equivalent complexity when exact so�
lutions are desired� the reductions don�t necessarily preserve approximability� T h e 

class of NP�complete problems can be subdivided according to how w ell a problem 

c a n b e a p p r o ximated� Papadimitriou and Yannakakis de�ned the subclass MAX�SNP 


MAXimization� Strict NP� which w e will describe below� 

Consider for example the problem �SAT� We are given a set of clauses� where each 

clause is the disjunction of three literals� 
A literal is a variable or its negation�� We 

want t o k n o w if there is a way to set the variables true or false� such t h a t e v ery clause 

is true� we w ant to know if 

�T �c�x
P 
x� c� � x � T � � 
N 
x� c� � x �� T � 


Read �Does there exist a truth assignment T such that for all clauses c there is a 

variable x such that either x appears positively in the clause and is set true� or x 

appears negatively in the clause and is not set true��� In general� any NP�predicate 

can be represented as 

�s�c�x

s� c� x�� 

���� 



Now since in �SAT each clause has a bounded numbe  r o f v ariables� we can write 

it as 

�T �
x� y� z� �
x� y� z� � C� 

	 x � T � y � T � z � T � � 

�
x� y� z� � C� 

	 x � T � y � T � z �� T � � � � � � 

� T � y � � T ���
x� y� z� � C	 

	 x � � T � z �

where we h a ve partitioned the clauses C into C�� � � � � C 	 

according to which literals 

are negated variables� In general� if an NP predicate can be written as 

�s�c

s� c�� 

then it is called an SNP� or strict NP predicate� 

Instead of asking that for each c we get 

s� c�� we can ask that the number of c�s 

for which 

s� c� is true be m axim ized� 


��	 max �fc � 

s� c�g
s 

In this way� w e can derive an optimization problem from an SNP predicate� These 

maximization problems comprise the class MAX�SNP� 

Example� In MAX ��SAT w e are given clauses each h a ving two literals and a 

weight� and we w ant to maximize the sum of the weights of the clauses that are true� 

If the weights are integral and bounded by a constant� then we can formulate this 

problem as 
��� b y letting there be w separate c�s for each clause of weight w For 

this problem there is a ����approximation algorithm� 

If for two MAX�SNP problems � and ��� there is some � such that the existence 

of an ��approximation algorithm for �� implies the existence of an ���approximation 

algorithm for �� then we sa y that � has been L�reduced to �� � A MAX�SNP complete 

problem is a MAX�SNP problem to which a n y MAX�SNP problem can be L�reduced� 

Example� The travelling salesman problem with edge weights chosen from f�� �g
is a MAX�SNP complete problem� There is a ��� approximation algorithm for it� 

Consequently� f o r a n y MAX�SNP problem� there is an � such that there is an 

��approximation algorithm for the problem� This year Arora et al ��� showed that 

for any MAX�SNP complete problem �� there is some � such that there is no �  ��
approximation algorithm for �� unless P	NP� 
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