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Abstract 
Coordinated regulation of gene expression relies on transcription factors (TFs) 
binding to specific DNA sites.  Our large-scale information-theoretic analysis of >950 
TF-binding motifs demonstrates that prokaryotes and eukaryotes use strikingly 
different strategies to target TFs to specific genome locations. Although bacterial TFs 
can recognize a specific DNA site in the genomic background, eukaryotic TFs exhibit 
widespread, nonfunctional binding and require clustering of sites to achieve 
specificity. We find support for this mechanism in a range of experimental studies 
and in our evolutionary analysis of DNA-binding domains.  Our systematic 
characterization of binding motifs provides a quantitative assessment of the 
differences in transcription regulation in prokaryotes and eukaryotes. 

 

DNA binding and gene regulation 
Classical experiments demonstrated that strong binding of a TF to its cognate site in 
a promoter is sufficient to alter gene expression [1]. Significant effort has been put 
into experimentally determining [2-6] and computationally inferring [7-10] motifs 
recognized by TFs and determining the occupancy of promoters by TFs [11]. The 
motifs and binding locations of a TF have in turn been used to predict which genes it 
regulates and their expression levels [12]. Such studies rely on linking the binding of 
TFs to DNA with the regulation of nearby genes. 
 
Although such an association has been strongly established in bacteria, growing 
experimental evidence in eukaryotes challenges this assumption by showing limited 
correlation between gene expression and TF binding [12-14]. For example, Gao et 
al. found no correlation between occupancy patterns and gene expression profiles 
for the majority (67%) of yeast TFs they studied, suggesting that only a subset of 
promoters bound by each TF is controlled by it [12]. A more striking example comes 
from a recent study [13], which demonstrated only 3% overlap between TF 
occupancy and genes response to TF knock-out. Although this discrepancy can be 
explained in part by a redundant binding of homologous TFs [15], it might also be 
evidence of a more fundamental uncoupling between TF binding and gene 
expression in eukaryotes. 
 



2 

 2 

Our analysis of 969 TF-binding motifs provides strong support for the uncoupling 
hypothesis by demonstrating that eukaryotic TFs do not recognize DNA with 
sufficient specificity (i.e. do not possess sufficient information) to bind to cognate 
sites exclusively; instead they occupy tens of thousands of decoy sites throughout a 
genome. Although managing such promiscuous binding requires several costly 
mechanisms, its advantages for eukaryotes are yet to be understood.  

An information-theoretical approach to binding-motif recognition 

To bind its cognate site, a TF has to recognize it among ~106 alternative sites in 
bacteria or ~109 sites in eukaryotes. Using information theory, we ask whether 
individual TFs possess enough information for such remarkably precise recognition. 
The application of information theory to protein–DNA recognition has a rich history 
[16-18] and provides a theoretical basis for current efforts to characterize motifs 
recognized by DNA-binding proteins using a range of in vivo and in vitro techniques 
[6].  The most common use of information theory is to construct ‘sequence logos’ 
that demonstrate the relative contribution of individual base pair positions to binding 
specificity (Figure 1). Information theory, however, also allows us to test whether the 
total information contained in a motif is sufficient to guide a protein to a specific place 
in a large genome. 

Information theory dictates that finding a unique object among N alternatives 
requires Imin = log2 N  bits of information (Figure 1) [19]. Similarly, a minimum of 

Imin = log2 N  bits of information is needed to specify a unique address in a genome 

containing N possible sites for a TF to bind (i.e. N bps). For bacteria, with N =106–
107 bps this yields Imin = 20–23 bits (Imin = 22 bits for Escherichia coli). For eukaryotic 

genomes, N =108–1010 bps leading to Imin ! 27–33 bits (Imin = 24 bits for 

Saccharomyces cerevisiae, Imin = 27 bits for Drosophila melanogaster, and Imin = 31 
bits for Homo sapiens).  

To test whether TF motifs contain enough information to identify unique sites in their 
corresponding genomes, we calculated the information content of 969 experimentally 
determined bacterial and eukaryotic motifs. As a measure of information contained in 
a motif, we applied the commonly used Kullback-Leibler (KL) distance between the 
motif and the overall genome composition [17, 18] 

  I = pi b( ) log2 pi b( ) q b( )( )
b! A,C ,G ,T{ }
"

i=1

L

"   (Eqn 1) 

where L is the length of the motif, pi(b) is the frequency of base b at position i in the 
motif, and q(b) is its background frequency.  The information content of a motif 
quantifies the sensitivity of TF binding affinity to variation in the binding site 
sequence from the consensus sequence and the probability of a site occurring in a 
‘random’ stretch of DNA [16].  

Motifs of bacterial and eukaryotic transcription factors are markedly different 

Using this metric, we find that the motifs of prokaryotic and eukaryotic TFs are 
strikingly different (Figure 2, Tables S5-6 in the online supplementary material).  The 

average information content of a prokaryotic motif, I ! 23 bits, is slightly above the 

required Imin = 22 bits, demonstrating that a single cognate site is generally sufficient 
to address a TF to a specific location in prokaryotes, though there still might be an 
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overlap between the background and weak but functional sites in some cases 
(Figure S1 in the online supplementary material). 

Although longer eukaryotic genomes require a TF to be more specific, we find that 
eukaryotic TFs are much less specific than bacterial TFs and do not contain 
sufficient information to find a cognate site among 109 decoys. The average 

information content of a multicellular eukaryotic motif is only I ! 12.1 bits, falling far 

below the Imin ! 30 bits required to provide a specific address in a eukaryotic genome 

(Figure 2).  Yeast TF motifs have a mean information content of I = 13.8 bits, which 

is below the required Imin ! 24 bits, but represents a smaller information deficiency 

(Imin – I ! 10 bits) than that of the multicellular eukaryotes (Imin – I ! 18 bits).  

To ensure that the results were not influenced by a poor choice of data, we employ 
databases [20, 21] that contain motifs for full biological TF units (i.e. dimers when the 
binding of an individual site is accomplished by a dimer, e.g. LacI, Gal4). We also 
rely on in vitro experiments [22] that used full-length TFs. In addition, the motifs do 
not show a significant correlation between the information content and the number of 

cognate sites used to derive the motif (! = -0.27).  When motifs with <8 cognate sites 

in RegTransBase are eliminated, we see a decrease in the mean information content 
by ~1 bit.  Taken together, we conclude the biases due to the number of sites used 
to construct a TF binding motif do not change our general findings.  Finally, these 
results are consistent for motifs obtained both in vivo and in vitro and for all available 
data sets (Table S6, in the supplementary material).  

Widespread non-functional binding in multicellular eukaryotes 

The significant information deficiency in eukaryotes, which emerges because of their 
large genomes and degeneracy of the motifs, has several biologically important 
consequences.  Primarily, it suggests that numerous sites as strong as the cognate 
ones are expected to be present in eukaryotic genomes by chance. Using 
information theory and simulations, we estimate the lower bound of the number of 

such spurious sites or hits ash ! 2 Imin " I , with an average spacing s ! 2 I  between 
them  (Figure S1c, in the supplementary material).  Therefore, an average 

multicellular eukaryotic TF is expected to have h ! 104–106 spurious sites per 

genome, which is reduced to h ! 103–105 accessible sites assuming 90% 

chromatinization of the genome or h ! 102–104 assuming 98% chromatinization.  For 

yeast, h ! 102–104, assuming 0 to 80% chromatinization. 

 

In multicellular eukaryotes, spurious sites are expected to arise by chance every s " 

4000 bp. An important implication of this is that, in eukaryotes, the presence of a site 
cannot be a distinctive feature of a regulatory region.  By contrast, a typical bacterial 
TF is expected to have few such spurious sites, making the presence of a single 
high-affinity site a unique event and a distinctive feature of a regulatory region.  
Consistent with this picture is the atypically low information content of a few bacterial 
DNA-binding proteins that pack and crosslink DNA: H-NS (histone-like nucleoid 
structuring protein), Fis (factor for inversion stimulation) and IHF (integration host 
factor)  (I = 7.5, 7.3 and 7.8 bits, respectively). Similarly, and in agreement with 
Sengupta el al. [8], CRP (catabolism repressor protein) and other global regulators 
that bind hundreds of sites in the genome have lower information content (CRP: I = 
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11 bits). The low information content of bacterial global regulator motifs makes it 
particularly challenging to find their cognate sites [23]. 

Because the information-theoretic results depend on a rather simple description of 
the genomic background, we searched real genomic sequences for matches to 
several well-characterized motifs to verify the validity of the theoretical results.  Using 
a standard bioinformatics approach, we find, in agreement with the theory, >104 
spurious sites per genome for degenerate eukaryotic TFs (Table S1). This does not 
constrain in any way the number of cognate, functional sites a TF has in the genome 
but demonstrates that, in eukaryotes, cognate sites can be difficult to recognize 
among 103–105 equally strong spurious sites. This creates a binding landscape with 
a potential for widespread non-functional binding. 

 

Widespread non-functional binding is consistent with diverse experimental 
data 

Evidence of this landscape has been found in several large-scale experiments. Our 
estimate of ~103 spurious hits in the chromatinized D. melanogaster genome is 
consistent with the 103-104 experimentally observed binding events for several TFs 
[14].  Moreover, our results explain the large number of binding events detected by 
ChIP-chip [11] and ChIP-seq experiments [24], suggesting that majority of these 
events reflect the widespread binding to sites that arise by chance and are likely to 
be non-functional. In agreement with this idea, studies in yeast have shown a 
decoupling between binding and apparent regulatory function for a nontrivial fraction 
of TF binding events [12, 13].  

Using the estimated frequency of spurious sites in multicellular eukaryotes of once 
every 4000 bp, and assuming a regulatory (accessible) region of ~1000 bp around 
the transcription start site of each gene, we estimate that a single TF is expected to 
bind spuriously to ~25% of all regulatory regions. Consistent with these estimates, 
ChIP-chip experiments found that NOTCH1 binds to 19%, MYC to 48%, and HES1 
to 18% of all human promoters [25]. Our expectation is that most of these binding 
events have little regulatory effect. The prevalence of widespread, spurious binding 
events in eukaryotes means that we should be cautious in interpreting all 
experimentally identified binding events as regulatory interactions. 

The abundance of accessible high-affinity spurious sites in eukaryotes has two 
effects: (i) it sequesters TF molecules; and (ii) it makes it more difficult for the cellular 
machinery of gene regulation to detect regulatory regions occupied by TFs and 
discriminate them from occupied spurious sites.  

The sequestration of TF molecules by spurious binding sites necessitates a high TF 
copy number. The number of spurious sites h (or the number of cognate sites to be 
bound) imposes a lower limit on the TF copy number per cell [26], which is on the 
order of 1–10  per cell for bacteria, 1000 for yeast, and 103–105 for multicellular 
eukaryotes. These estimates are consistent with available experimental data: 5–10 
copies per cell of LacI repressor in E. coli, an average of approximately 2000 copies 
per cell of TFs in yeast; and 105 copies per cell of the prototypical multicellular 
eukaryotic TF p53 (Table S4).  

 

Clustering of cognate sites can provide specificity of eukaryotic TFs  
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Although high TF copy-numbers are necessary to cope with spurious sites, they are 
not sufficient to provide specificity (i.e. to allow cellular machinery to distinguish 
regulatory binding sites from equally strong decoys).  However, the presence of 
multiple sites in proximity of each other can specify a regulatory region.  Many 
regulatory regions in eukaryotes contain multiple sites of the same or different TFs 
[7, 27-35], a property commonly used in bioinformatics to detect regulatory regions 
[27, 31].  Using the information content of TF motifs, we can calculate the minimal 

number of cognate sites (ncluster) in regions of length w ! 500-1000 bps needed to 

determine a unique location in a genome (supplementary methods online, Tables 
S2, S3).  To obtain ncluster, we first calculate how many clusters of n spurious sites 
are expected to be found in a genome of a given length, E(n). Next we choose ncluster 
as the minimal number of sites in a cluster such that E(n) <1. In other words, a 
cluster of sites is unique (i.e. informative) if spurious sites are expected to form less 
than one such cluster by chance. 

In a region of 1000 bp composed of the sites of 3-10 different TFs, we calculate 
ncluster = 10-20 sites. This lower limit on the number of required binding sites is 
remarkably consistent with the mean of 18-25 sites per 1000 bp observed in fly 
developmental enhancers [28]. These results also demonstrate that, beyond the 
known examples in flies and sea urchins[35], clustering of sites is a common 
phenomenon applicable to many regulatory regions of multicellular eukaryotes. 

 
We also use an information-theoretical approach to calculate the information content 
of a cluster of sites and then estimate the minimal number of sites in cluster sufficient 
to reach the required information Imin. We demonstrate (see the online 
supplementary material) that for a cluster of sites spanning a region of w bps, the 

contribution of each site i to the total information content of the cluster (#Ii) is 

approximately 
 ! I

i
" I

i
# log2 w  (Eqn 2) 

where Ii is the information content of motif i.  Choosing w = 500 –1000 bps [31, 36] 
and Ii = 12 bits, we obtain that each site contributes 2 –3 bits of information, 
necessitating 10-15 sites to achieve the ~30 bits of information needed for 
multicellular eukaryotes.  

 

Eukaryotic and bacterial TF using different repertoire of DNA-binding domains 

Our study shows that combinatorial regulation is rooted in the way eukaryotic TFs 
recognize DNA, but how did this difference from prokaryotes arise?  The gradual 
modifications of the DNA-binding residues, the expansion and/or contraction of the 
DNA-binding interface, or the re-invention of DNA-binding domains altogether could 
have contributed to this difference.  To investigate the possible evolutionary 
trajectory, we compared sequences of prokaryotic and eukaryotic DNA-binding 
domains of TFs available in the PFAM database [37] (Figure 3a).  This analysis 
gives a clear result – prokaryotes and eukaryotes use different sets of DNA-binding 
domains. Of the 133 known DNA-binding domains, 69 have only eukaryotic 
members, 49 are totally prokaryotic, and only 15 families have both prokaryotic and 
eukaryotic members, but are usually dominated by one of two kingdoms (Table S7).  
This result is consistent with the previous observation of the differing rates of 
expansion and contraction of DNA binding domain families between prokaryotes and 
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eukaryotes [38].  As a control, we compare this result to domains involved in 
glycolysis and gluconeogenesis and find that a few of those domains are kingdom 
specific (Figure 3b).  The lack of shared prokaryotic and eukaryotic DNA-binding 
domain families suggests that the TF machinery employed by eukaryotes might have 
evolved de novo. 

Energy-based considerations of transcription factor binding  
As was demonstrated in the seminal paper by Berg and von Hippel [16] and later 
papers, for example Ref. [17], this information-theoretical approach is closely related 
to the energy-based analysis of TF binding motifs. The constraints on the information 
content of motifs considered here can be interpreted as constraints on the sequence-
specific protein-DNA binding energy. Gerland et al. [26] and Lassig [39] have 
considered these constraints and demonstrated that the energy contribution of each 
consensus base pair to the sequence-specific binding energy in bacteria should be 

approximately "  ! 2-3 !kBT for a motif of L = 15 bps.  

 
The specificity of transcription factor binding can be assessed using an energy-
based approach: given a set of cognate sites, how many sites in a genome are 
expected to have the energy lower than the energy of the cognate sites?  A direct 
answer is provided by our bioinformatics analysis, where such sites are explicitly 
counted in each genome. We also used the information content of TF motifs to 
estimate the contribution of each consensus base pair to the sequence-specific 

binding energy (supplementary methods online), obtaining a range " !1.5–3.5 !kBT = 

1–2 Kcal/mol for both prokaryotes and eukaryotes, which is consistent with recent 
micro-fluidic measurements [2]. 
 
Another important aspect of TF recognition not considered here is the non-specific 
binding of proteins to DNA, as our focus was on specific (high affinity) binding. As 
was demonstrated previously [26, 39, 40], competition between specific binding to 
cognate sites and non-specific binding to the rest of the DNA determines whether a 
TF is bound to the cognate site or to non-specific DNA. Using available dissociation 
constants for specific and non-specific binding [2, 41, 42], we calculate that a 
bacterial TF binds non-specifically once every 106 bps. Eukaryotic TFs, in contrast, 
bind non-specifically every 103-104 bps. Therefore, non-specific binding sequesters 
almost as many TF molecules as the spurious sites, making it difficult for the cell to 
recognize a regulatory region form the rest of the DNA where TFs are bound 
specifically and non-specifically. 

Concluding remarks 
We asked whether individual TF binding motifs possess enough information to find a 
cognate site in the genome. The promiscuity of eukaryotic TFs leads to widespread, 
likely non-functional, binding to decoy sites. If supported by direct experimental 
evidence, this conclusion will challenge our understanding of gene regulation, which 
was gained largely from experiments in bacterial systems and can be summarized 
as: one site – one TF – one binding event. In multicellular eukaryotes this paradigm 
turns into: multiple sites – thousands of copies of each TF – multiple cooperative 
binding events; making one binding event necessary, but certainly not sufficient to 
regulate gene expression.  
 
Such a mechanism is consistent with the concept of combinatorial gene regulation in 
eukaryotes, but goes further by suggesting that not only are several sites required to 
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form a regulatory region, but binding to individual sites is likely to be widespread and 
possibly non-functional.  Cooperative binding [1] and synergetic activation [43] are 
likely to be some of the mechanisms employed by the cell to differentiate between 
individual sites and clusters. 
 
Although the apparent paradox of information deficiency in eukaryotes can be 
resolved by using regulatory regions containing clusters of sites, each TF must 
nevertheless be present in very high copy-number. Clearly, maintaining the tens of 
thousands of copies of each TF per cell needed to saturate decoy sites comes at a 
metabolic cost that is likely outweighed by the advantages of promiscuous binding 
that are yet to be discovered. 
 
Evolutionary analysis supports our information-theoretical results and shows that the 
observed differences in DNA recognition are not specific to a few cases but are likely 
to span across kingdoms and constitute fundamentally different strategies of 
transcriptional regulation in prokaryotes and eukaryotes.  The promiscuity of 
eukaryotic TFs is likely to constitute one of many eukaryotic evolutionary novelties, 
which might enable more evolvable gene regulation, and thus be essential for 
evolution of a variety of structures [44]. 
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Figure 1.  Information theory as applied to DNA-binding motifs 

(a) The concepts of minimal information required in theory and in DNA recognition 
and the consequences of information deficiency, which results in spurious hits.  (b) 
The sequence logos for low- and high- information motifs, and the likelihood of a 
spurious hit to the motif in a ‘random’ genomic background. 

 

Figure 2.  Properties of binding motifs for bacteria, yeast, and multicellular 
eukaryotes 

(a) The bar chart displays the minimum required information content for bacteria, 
yeast, and multicellular eukaryotes (red), and the mean information content of TF 
binding motifs (blue) for 98 bacterial [21], 124 yeast [22] and 123 multicellular [20] 

eukaryotic motifs. The error bars are ± 1 standard deviation for the information 

content, and for Imin, the error bars represent the variability in that quantity due to the 
range of genome sizes N.  The blue dots in the chart indicate the average 
information content from several other transcription factor binding motif databases 
(Table S6).  Below each series in the bar chart, we display an example of sequence 
logo for a binding motif with close to average information content. The chart 
demonstrates that bacterial transcription factor binding motifs informative enough to 
make spurious hits to the genomic background unlikely, in constant to yeast and 
multicellular eukaryotic motifs. 

(b) The distributions of information content of motifs from the three representative 
databases cited above.  The ranges of required information (Imin) are marked in red. 
Most bacterial motifs have I > Imin, whereas almost all eukaryotic motifs do not. 

(c) Average properties of transcription factor binding motifs, the expected number 
and the spacing between the spurious sites per genome in bacteria, yeast and 
multicellular eukaryotes. 

 

Figure 3.  Membership of PFAM protein domain families, by kingdom 

To explore the evolution of DNA-binding domains, we examined the membership of 
PFAM protein domain families.  Each column of (a-b) represents a single PFAM 
family, and the size of the orange or teal bar indicates the fraction of the family’s 
bacterial and eukaryotic members, respectively.  In (a), we plot the membership of 
DNA-binding domains, demonstrating that they are almost unshared by bacteria and 
eukaryotes, and in (c), we show a Venn diagram, after removing the weakest 10% of 
hits to a PFAM family profile.  As a control (b), we plot the composition of PFAM 
glycolysis/gluconeogensis enzyme families, which are shared between kingdoms. 
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