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ABSTRACT

The interference characteristics of pulse-time modulation
are analyzed mathematically and experimentally; particular forms
examined are pulse-duration and pulse-position modulation. Both
two-station and two-path interference are considered. The theo-
retical analysis consists, first, of a quantitative formulation
of the defects imparted on the pulses by the interference; second,
of a detailed evaluation of the resulting disturbance in the receiver
output, based on auto-correlation analysis. The experimental in-
vestigation is aimed at close duplication of the various condi-
tions encountered in practice: two-station interference is pro-
duced by use of separate transmitters, while two-path interference
is simulated by means of a mercury delay line. Detailed results
are presented in numerous graphical plots. Two-station inter-
ference is characterized by a virtually complete predominance of
the stronger of the two signals, and by noise of more or less
random character. Under some conditions, the noise is sufficient-
ly weak to permit fair reception when the two signal levels differ
by less than 1 db, while other situations permit acceptable recep-
tion only with level difference larger than 6 db. These general
statements apply to both pulse-duration and pulse-position modu-
lation, simplex and multiplex. Two-path interference in the case
of simplex pulse-duration modulation, is characterized by the
linear superposition of the two identical but time-staggered modu-
lating signals. All interference effects, both in theory and
practice, are found to be directly dependent on the all-important
slicing process. For best results, the "slice" must be very thin
and the slicing level should be adjustable.

* This report is identical with a thesis of the same title sub-
mitted by the author in partial fulfillment of the requirements
for the degree of Doctor of Science in Electrical Engineering
at the Massachusetts Institute of Technology.
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CHAPTER 1

PULSE-TIME MODULATION

Pulse-time modulation, usually abbreviated PTM, ay be defined as modu-

lation in which the time of occurrence of the pulse edges of a pulse train is

varied from exact periodicity by samples of the modulating signal. Pulse-du-

ration modulation and pulse-position modulation, abbreviated PDM and PPM, re-

spectively, are particular forms of pulse-time modulation which differ funda-

mentally only in the relative timing variations of the two edges of each

pulse; these two sets of timing variations are different in the case of pulse-

duration modulation, but are generally identical in the case of pulse-position

modulation. In both cases, however, information.is conveyed only by the time

position of the pulse edges relative to their periodic positions in the un-

modulated pulse train.

Amplitude keying, frequency-shift keying and other methods may be used

to transpose the pulses into a frequency range suitable for radio transmission.

The method considered in this paper is the amplitude-keying method, whereby

the modulated train of d-c pulses is converted into a corresponding train of

r-f pulses with the transmitter idle during the periods between pulses. The

shape and time of build-up and decay of the transmitted pulses determine the

transmission bandwidth, which, for a given shape, is inversely proportional

to the time interval. The pulse repetition frequency, in accordance with the

sampling principle, must exceed twice the width of the modulating-signal band

in order to make the faithful reproduction of the signal possible.

The time between pulses can be utilized for the transmission of other

similar pulse trains modulated by different signals, to form a so-called time-

division multiplex or multi-channel system. Results for both single-channel

and multi-channel systems are obtained in this paper.

The history of pulse-time modulation, as applied to the transmission of

speech and music, dates back to the nineteen-twenties and nineteen-thirties.

In 1924, R. A. Heising applied for a patent which was granted in 1924 under

the title Transmission System", and which described a method similar to

modern pulse-duration modulation.1 Other American patents, as well as a

series of British patents, describing pulse-time modulation and various

methods for producing it, appeared during the period 1934-41.2 '3 During this
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period, PIN found application in a few experimental decimeter-wave links in

Europe, but the actual development and use of PTM in its various forms did

not begin until after the beginning of World War II, when its use was prompted

by the development of radar and by the advantages which PTM appeared to have
for military communication. This work was kept secret during the war; since

1945, however, it has been appearing in the technical literature, along with

the more recent results of research and development work on pulse-time modu-

lation and other types of pulse modulation. Although somewhat overshadowed

by pulse-code modulation at the present time, pulse-time modulation has taken

its place alongside the older types of modulation; it is in commercial use to

a considerable extent, mostly in the form of pulse-position modulation used

in time-division mltiplex radio links.

The early patents, although obscured by the more recent publications,

form an important part of the history of PTM, since they disclose some inter-

esting and useful viewpoints. The duration-modulated pulses used to key the

transmitter in a PDI system, and re-obtained at the receiver after detection,

are shown in ig. 1. While the transmitted-pulse envelopes must be rounded

rather than rectangular because of the transmission-bandwidth limitation, the

pulses eventually obtained in the receiver after detection and limiting can

be considered as perfectly rectangular, as will be shown later.

These pulses are more than a particular kind of sub-carrier modulated by

a signal in a special way: they constitute another method of representing

the signal function by a two-valued (on-off) function. The pulse train is

seen to have an average value which is proportional to the instantaneous value

of the signal, and while it does contain additional undesired components,

these can be largely removed by the simple process of filtering which may be

performed by the ear. The remaining inherent distortion is a function of
4several variables, and has been treated in the literature. On the other

hand, the pulse-train representation of the signal has certain advantages

which stem mostly from the fact that amplitude is not a variable and linearity

is not required in handling the signal. The purpose of the very early patent

of Heising was the design of a transmitter, more efficient than the usual AM

transmitter because it did not have to be linear throughout. Its essential

difference from the ordinary AM system is that a large supersonic voltage is

mixed with the modulating signal voltage, overloading the amplifier stages,

and producing duration-modulated pulses as shown in ig. 2. These contain

the signal without the distortion that would result if the signal alone were

-2-
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passed through a nonlinear amplifier. Before actual transmission, a filter

removes the high-frequency components, leaving the usual AM wave. The same

principle of effectively converting a signal into an equivalent duration-modu-

lated pulse train finds application in other instances where it is desirable

or necessary to convey the signal through a nonlinear device, as is the case

in magnetic recording.

_N ~ l n ni~~J j [ Fig. 1 Duration-modulated pulses.

Fig. 2 Heising' method of forming DM.

v -~~~~~ vl~ tFig. 3 Asymmetrical and "symmetrical P.

The modern method for generating PTM is based on the same principle,

(Fig. 2), refined somewhat by a patent granted to R. D. ell in 1936, and

still further refined in more recent development work. The modulation process,

which consists of slicing a high-frequency saw-tooth voltage at a variable

level determined by the instantaneous signal value, is shown in Fig. 3 for so-

called asymmetrical and "symmetrical" PDM. The latter is enclosed in quota-

tion marks because, although both edges shift, they do not, in general, shift

by exactly equal and opposite amounts.

Pulse-position modulation evolved directly from pulse-duration modulation2

from the realization that it is wasteful to transmit relatively long pulses

when only the timing of their edges conveys information, and that greater power

economy can be obtained by merely marking these edges by pulses of constant

duration. These new pulses may have minimunm duration possible for the avail-

able bandwidth, which means that they consist merely of a rise and decay with-

out any flat portion intervening. At the receiver, the space between the two
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pulses marking the two edges of the original duration-modulated pulse can be 

"filled in" to reproduce the original pulse, so that the overall system dif-

fers essentially only in its transmission characteristics. While some systems

used in England during World War II had PPM which was derived from "symmetri-

call PDM, more recent PPM systems use only one position-modulated pulse per

sampling period for each channel and one unmodulated pulse which may serve as

a time reference or marker pulse to a large number of time-interlaced modu-

lated pulses called channel pulses. The marker pulse and the channel pulse

of any one channel can be regarded as marking the fixed leading edge and the

time-modulated trailing edge, respectively, of an asymmetrically duration-

modulated pulse; but such a duration-modulated pulse need not exist anywhere

in the system. Even the reconversion of the pulses into the original audio

signal can be performed without first converting to PDM, although this has

been the most common practice in the past. It should be pointed out that, in

fact, even PDM does not necessarily have to be considered in the light of the

basic characteristic discussed above - that is, the approximate equivalence

of the duration-modulated pulse train to the modulating signal. The so-

called sampling principle (see page 7) states that a signal having frequency

components up to f can be faithfully reproduced from samples taken periodi-
5,6cally at a minimm rate 2f ; it is entirely possible to convert such sam-

c
ples into pulses of corresponding durations, reconvert these durations into

the original samples except for a constant delay, and reproduce the original

signal without any inherent distortion being introduced in the process. How-

ever such methods are not generally used, and are mentioned only for the sake

of completeness.

The first advantage claimed for pulse-time modulation in the earliest

patents was greater transmitter efficiency, but added claims of improved sig-

nal-to-noise ratio and the general benefits of nonlinearity became the domi-

nating factor as early as the middle nineteen-thirties. Principal reasons

for the wartime use of pulse-time modulation systems were, besides those al-

ready mentioned, the superiority of time-division multiplex over frequency-

division mltiplex, which makes possible lighter equipment with lower cross-

talk between channels, as well as the fact that the use of the microwave spec-

trum was desirable and microwave tubes could be more easily pulse-modulated

than amplitude- or frequency-modulated.

The literature on pulse-time modulation has dealt with descriptions of
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systems and circuit techniques, spectrum analyses, and derivatinsof signal-

to-noise-ratio-formulas. Although so-called pulse techniques are a well-es-

tablished art, their application to PTM, particularly PPM, has not yet re-

sulted in standard circuits for performing various functions. While many of

the same principles have been used in various equipments, the exact methods

and circuits are still being improved. A presentation of those used in the

experimental part of the research reported here will be found in the appendix.

Spectrum analyses for various modulation types have become a standard

textbook ornament, and their significance, especially with sinusoidal modula-

tion, is sometimes overrated. Generally, they give information about the

transmission bandwidth, the distribution of energy over the band, and other

items. In the case of pulse modulation, including PTM, the bandwidth is largely

determined by the shortest rise or decay time occurring in the pulse train,

and modulation may have little effect. A spectrum analysis of the modulated

pulse train is of interest for another reason: it shows exactly what will be

heard if the pulses are fed to the loudspeaker without any nonlinear or de-

modulation process intervening. In some cases where a nonlinear demodulator

is normally used, the spectrum will therefore show how private the system is

when conventional receivers are used. For example, it shows that position-

modulated pulses of the type normally used do contain enough signal component

to be heard directly, and that by a slight modification this component can

be eliminated. More important, in the case of pulse-duration modulation,

where no nonlinear process is ordinarily used, the spectrum analysis gives the

type and amount of distortion to be expected at the output as a function of

the variables involved. Since position-modulated pulses are usually converted

to duration-modulated pulses for demodulation, such results are applicable to

PPM as well as PDM. This subject has received a considerable amount of atten-

tion in the literature; this was stimulated by the fact that some authors

obtained partially wrong results, because they failed to take into account

the exact law of modulation. For the details, the reader is referred to

another paper by the writer.4 Some of the salient points can be mentioned

here: The spectrum of the d-c pulses, in the absence of modulation, consists

of lines at the pulse repetition frequency p end its harmonics np. Modula-

tion by a sinusoid of frequency q produces additional spectral lines, one at

frequency q which represents the useful signal component, and an infinite set

at frequencies np+mq with'm any integer and n any integer except zero. So-



called intermodulation distortion results because some of these components

fall into the audio band and cannot be separated from the useful or desired

components, as shown in Fig. 4. The only components apt to be significant

- ml 11 cI rI=l"TI" fr'" l I "ll v
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Fig.4 Audio spectrum of duration-modulated pulses.

are those of frequencies p-q and p-2q. The former is of the same magnitude

as the useful signal component of frequency q and is in fact an exact inver-

sion of this; it occurs in any periodic sampling process and the necessity

for its exclusion from the audio band is responsible for the basic rule that

the sampling frequency must exceed twice the highest signal frequency in order

to make faithful reproduction possible. The latter component, at frequency

p-2q, ranges from a fraction of one per cent of the desired component in the

case of low-index symmetrical PDM, through several per cent for low-index

asymmetrical PDM such as is obtained in most present-day PPM systems, to about

30 per cent in the case of high-index PDM which is possible only on single-

channel applications. In the latter case, it may be necessary to exclude the

p-2q component, which would call for a pulse-repetition frequency more than

three times the highest modulating frequency. However, the intermodulation

distortion is generally much less severe than indicated by the above figures,
ml



because the spectral components in question fall into the audio band only

when caused by relatively high values of the signal frequency q, where the

signal magnitude is relatively small; this makes the index of modulation

effectively smaller as far as the undesired components are concerned, and

their magnitude decreases rapidly with decreasing index.

The sampling principle, mentioned earlier, can also be clarified by

similar spectrum considerations. True samples of a signal may be regarded

as pulses which are so short in duration that the signal is substantially

constant during the duration of one pulse. The height of each pulse is pro-

portional to the instantaneous value of the signal. The spectrum of the am-

plitude-modulated train of short pulses is readily obtained by multiplying

the Fourier series for the unmodulated pulses by the modulating signal, that

is, the signal which is being sampled. It resembles the PDM spectrum, shown

in ig. 4, but differs from it essentially in that each harmonic of the

pulse-repetition frequency, np, has only a single set of side bands, np q,

instead of the infinite set np + mq. As a consequence, the lowest-frequency

component other than the signal frequency, q, is the first prf side band,

p-q, so that the signal of frequency q or any lower frequency can be com-

pletely separated and reproduced perfectly if p-q exceeds q. This require-

ment is met, of course, if p, the sampling frequency, exceeds 2q, twice the

highest signal frequency. Although obtained on the basis of sinusoidal

steady-state analysis, the result applies also if q is the top-frequency

component of a complex signal wave; this follows from the linear relation-

ship between the modulating signal and the corresponding AM side bands.

Consequently, the first-side-band spectrum, p-q, is an exact mirror image

of the signal spectrum q, even if q now represents a continuous spectrum

ranging from w = 0 to w = q.

Derivations and discussions of signal-noise relations have formed a

large fraction of the published work on PTM, the object being to compare

PTM to other transmission systems with regard to their susceptibility to

random noise. Such derivations have ranged all the way from simple, some-

what superficial, but usually adequate analyses7'8 '9 '10 '11 to more detailed

and sophisticated analyses.12 Most of the articles have treated only the
simpler and more important signal-to-noise ratio behavior above the so-called

threshold, where the pulse amplitude exceeds twice the peak noise amplitude

at the receiver input. Below threshold, the noise-reducing properties of the
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system are no longer utilized, and the relations are more complicated. In

order to clarify the presentation of the principles involved, and to pave

the way for the interference analysis in the next chapter, the all-important

technique of double-limiting or slicing will be described. Since the desired

information is contained solely in the relative timing of the pulse edges,

all amplitude variations of less than one-half pulse amplitude during or be-

tween pulses, can be eliminated at the receiver by accepting only a thin

horizontal slice of each pulse, at about half the pulse height and only a

few per cent of this height in thickness. The importance of performing this

slicing process effectively and correctly is greater than one might infer

from some published accounts of theory and practice; this is especially true

in the various cases of nonrandom interference treated in this paper. The

slicing process does more than merely eliminate amplitude variations. It

also establishes the time of occurrence of a pulse edge - namely as that

time at which the edge crosses the slicing level, the thickness of the slice

being assumed negligible. After the slicer, which usually follows the i-f

stages and detector and precedes, or in part comprises, the video stages,

there is no such strict bandwidth limitation as in the transmission medium.

The slices are therefore amplified to form pulses which may be assumed per-

fectly rectangular for all analysis purposes. The slicing and video amplifi-

cation processes can actually be carried out concurrently, and it is a simple

matter to make the slicing level adjustable over a wide range.* Adjustability

of the slicing level is desirable not only in equipment designed for inter-

ference experiments, in which the slicing level is an important variable, but

also in practical receivers operating under conditions where there is any

chance of interference of any type.

The mechanism which controls signal-noise relations in PTM systems

operating above threshold is based on time shifts of the pulse edges. Noise

can reach the output only by shifting a pulse edge from its correct position.

The noise voltage admitted, for random thermal or tube noise, is directly

proportional to the square root of the bandwidth, but the amount by which a

given disturbance shifts the pulse edge is also directly proportional to the

rise or decay time of the pulse edge and hence inversely proportional to the

* Equipment designs are shown and discussed in Appendix V
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bandwidth. Consequently the noise voltage reaching the output is inversely

proportional to the square root of the bandwidth, so that PTM, like PM, ex-

hibits a wideband gain* In the case of PDM, no additional first-order fac-

tors enter, so that the signal-to-noise ratio improvement or wideband gain

expressed as a voltage ratio is proportional to the square root of the band-

width. On the other hand, in the case of PPM, widening the system bandwidth

brings in another factor, in that it permits a proportionate reduction in the

pulse duration and hence in the duty factor, since the pulses are of constant

duration and therefore need consist essentially only of a rise and decay. As

a result of the lower duty factor, the peak transmitted power can be raised in

direct proportion for the same average power, which effectively increases the

signal voltage in proportion to the square root of the bandwidth, thereby

making the signal-to-noise ratio improvement directly proportional to the

system bandwidth. Furthermore, since this signal increase with increasing

bandwidth ust matches the noise increase at the receiver input, P main-

tains its threshold independent of the bandwidth, unlike systems such as FM

or PDM, in which the input carrier remains constant and is eventually swamped

by the noise if the bandwidth is raised sufficiently. (The latter occurs

despite the fact that the output signal-to-noise ratio improves, if Be input

carrier is above threshold.)

Variables other than system bndwidth will of course, also enter the

signal-noise relations and in addition to the dependence on the different

variables, the constant factors of proportionality can readily be found to

give complete signal-to-noise ratio formulas such as have been derived in

various papers. Of principal interest and importance, however, is the

dependence of signal-noise relations on system bandwidth.

The literature has not contained any material, either theoretical or

experimental, dealing with the susceptibility to interference of pulse-time

modulation systems, where the interference is not random noise but originates

from another transmitter, or even from the same transmitter by so-called

multipath transmission. On the other hand, the interference characteristics

*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Wideband gain is a term generally used to designate the signal-to-noise
ratio improvement possible in certain modulation systems with increasing
bandwidth. It may be interpreted as the ratio of the actual output signal-
to-noise ratio to that which would be obtained in a conventional AM system
operating under identical conditions, except for system bandwidth.
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of AM and M have received a great deal of attention in the past. They are

well known in the case of AM, where mltipath interference causes fading and

distortion often observed in overseas shortwave reception, and interference

between separate transmitters results in the superposition of their modulating

signals as veil as annoying beat notes. In the case of M, interference

characteristics, notably those associated with multipath transmission* are

still being studied, but the so-called capture effect observed when to trans-

missions interfere is a widely-publicized phenomenon.

While the interference characteristics of pulse-time modulation have not

been treated in the literature, suggestions that the subject needs considera-

tion have appeared as well as conjectures as to the severity of the disturbances

resulting from certain interference conditions.13'14'15' 16' 17 A mathematical
18paper , entitled "Pulse Distortion: The Probability Distribution of Distor-

tion Magnitudes due to Interchannel Interference in Multi-Channel Pulse Trans-

mission Systems", treats a related problem but has little bearing on the

interference characteristics of pulse-time modulation.

* Quarterly Progress Reports, 1946-1949, Research Laboratory of Electronics,
Massachusetts Institute of Technology.
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CHAPTER 2

EF7EOTS OF INTERFERENCE IN PULSE-TIME MODULATION SYSTEMS

The term interference" is intended to apply to signals other than the

desired signal which enter the receiver and reach the detector because they

have the same or nearly the same carrier frequency as the desired signal.

Two general types of interference are considered in this paper: two-station

interference and two-path interference. (The desired signal always consists

of time-modulated pulses, either PDM or PPM.) The interfering signal may be

a similar transmission, or possibly one using a different type of modulation,

if any, in the case of two-station interference; on the other hand, it must

be identical to the desired signal in the case of multipath interference,

where only a single source is involved. Multipath interference is a pheno-

menon commonly encountered as a result of reflections from the ionosphere in

the 2 to 30 Mc range and at higher frequencies from buildings.

Interference can reach the output of a pulse-time modulation receiver in

the three ways illustrated in Fig. 5, if the previously described slicing

process is used. The top picture represents one of the desired pulses as it

would appear after detection and before slicing. with three shorter interfering

pulses in different positions. The resulting slicer output is shown at the

bottom; the effect of the interference on this slicer output must be considered

in order to determine how the interference will manifest itself in the final

output. A long desired pulse and shorter interfering pulses are shown merely

for convenience in illustrating the various possibilities. The height of the

desired pulse is taken to be unity, the height of the interfering pulses is

designated by the letter a",aad the slicing level by the letter "s". Since

the desired-pulse height is unity, "a" is also the ratio of the amplitude of

the two signals, or, in short, the interference ratio. This ratio can vary

only between zero and one, inasmuch as the smaller signal will always be con-

sidered as interference* The slicing level "sM is actually that level ex-

pressed as a fraction of the desired-pulse height and is usually between zero

and one.

* It is not, in general, possible to receive the weaker of two interfering
signals, unless some particular difference in their characteristics makes
their partial or total separation possible.
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The first and simplest possibility illustrated in Fig. 5 is that of an

interfering pulse occurring during the interval between two desired pulses.

If a < s, it will not pierce the slicing level and will therefore have no

effect; if a > a, a spurious pulse is produced in the slicer output, which may

be gated out, under certain conditions, by virtue of its relative time of

occurrence. More important, however, it is always possible to prevent the

interfering pulse from piercing the slicing level and having any effect so

long as the interference ratio is below one, by raising s Just above a, that

is, by satisfying the condition s > a.*

The second possibility shown in Fig. 5 is that of an interfering pulse

occurring during a desired pulse. The magnitude of the resultant depends on

the radio-frequency phase difference between the two pulse carriers. If this

is near 180 ° , partial cancellation will occur, and the resultant may, there-

fore, go below the slicing level, causing a portion of the desired pulse to

be missing in the slicer output. In fact, if the interfering pulse is long

enough to overlap the entire desired pulse, it may never reach the slicing

level, and the entire pulse will be missing from the output, ust as though

it had never been transmitted. The possibility of thus having all or part of

a desired pulse fail to reach the output can be eliminated by lowering the

slicing level far enough to satisfy the relation < 1-a.

It is to be noted that the two conditions > a and < 1-a are conflict-

ing requirements when . is between one-half and one, but either one or the

other can always be satisfied, and both can be satisfied simultaneously if

the interference ratio is less than one-half (a < i) by setting the slicing

level at one-half (s = i). This means that the two interference effects

discussed so far can be avoided entirely with interference ratios less than

one-half, and either one or the other can always be avoided. The second

possibility, which may be descriptively called the missing-pulses effect,

turns out to be the more important of the two and will be discussed in

greater detail later in this chapter.

The third possibility illustrated in Fig. 5 is one which must be

reckoned with for any interference ratio. If interference is present during
the build-up or decay of the desired pulse, it will, in general, alter the

time at which the slicing level is pierced. Consequently, the rectangular

* Underlining of symbols such as a and s is merely intended to make them
stand out.



pulse at the slicer output may have one or both of its edges shifted from

their correct positions. Such undesired time shifts naturally constitute

errors, since the desired information is also conveyed by pulse-edge time

shifts.

It is entirely possible for all three of the interference effects dis-

cussed to appear simultaneously, and two will invariably occur when the in-

terference ratio exceeds one-half. These phenomena form the basis for a

large part of the work presented in this paper, and they will therefore be

discussed in detail in the remainder of this chapter. The time-shift effect

is perhaps of somewhat greater fundamental importance than the missing-pulses

effect and will therefore be treated first.

Fig.5 Three ways in which inter-
ference may enter PTM systems.

Fig.6 Pulse-edge time shift
caused by interference.

2.1 The Time-Shift ffect

Because relative timing variations are the basis of pulse-time modula-

tion, the analysis of the time-shift effect in PTM is analogous to an analysis

of the rate of phase shift in FM or the change in the envelope in AM caused

by interference. The ultimate aim of such an analysis is, of course, a

theoretical prediction of the effect of the interference on the audio output.

The purpose of the analysis which follows is to relate the time-shift to the

various parameters involved, in order to set the stage for the subsequent

evaluation of its effect in the next chapter. The following variables have to
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be considered:

The shape of the pulse edges;

The rise and decay times of the pulse edges;

The interference ratio, a;

The slicing level, ;

The radio-frequency phase difference, p.

In order to solve the problem, a definite pulse-edge shape should be assumed,

which then makes it possible to write a relation between the time shift At and

the above-listed parameters. The smplest shape mathematically, and one which

gives sufficiently accurate results under many conditions, is a purely linear

rise and decay. Under certain other conditions, it is necessary to assume

pulses with edges formed by simple exponentials and pulses of Gaussian shape,

rather than the trapezoidal pulses with linear edges.

A pictorial explanation of the time-shift phenomenon is shown in Fig. 6

for the case of linear pulse edges, which will be considered first. The

heavy lines outline the envelope of the desired pulse, and the envelope of an

interfering pulse is shown overlapping the leading edge of the desired pulse.

Normally, in the absence of interference, this leading edge would pierce the

slicing level at the point indicated by the middle one of the three small

circles. The two broken lines indicate the resultant of the two pulses for

two extreme values of the radio-frequency phase difference, , namely 0° and

180°. If 0 = 0, the leading edge is effectively advanced by an amount

tma x = a, that is, the product of interference ratio and rise time, for any

value of slicing level between a and 1-a. For = 180 °, the edge is delayed

by the same amount. For intermediate values of the phase difference, ,

there are time shifts which fall between these two extremes; an expression

relating them to and the other variables will now be derived.

If the time origin is chosen at the starting point of the desired pulse,

the leading edge of the actual r-f pulse may be described by (1).

f l(t) CO (t + ). 0 < t < (1)

The interference, which is constant in amplitude during the time interval of

interest is given by (2).
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f2(t) = a cos (t + ). O< t < (2)

In these two expressions, and X are the phase angles of the two r-f pulses,

and the r-f phase difference is given by = 0 - a. Since detection occurs

before slicing in the receiver, only the envelope of the resultant is of

interest. The magnitude of this envelope is given by the resultant of the

two vectors representing f(t) and f2(t) in the vector diagram of Fig. 7.

Fig.7 Vector diagram for determin-
ing the time shift of linear pulse edges

The present problem is to find the instant of time at which the resultant

passes the value of the slicing level. It is therefore only necessary to

equate the resultant to s and solve the equation thus obtained for t. The

magnitude of the resultant of two vectors of magnitudes b and c, respectively,

with included angle is given by b + c2 + 2bc cos . Applying this to

the parallelogram of Fig. 7, and equating the resultant to , one obtains (3).

2 -

N ~~~~~8
O< t < 8 (a)

This can be written in the standard quadratic equation form as follows:
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2
() + 2a cos () + (a2_ . 2) = (4)

Solving for (t/8) by means of the quadratic formla and retaining only the

solution which gives a positive value for t, denoted by t, one obtains

tI = 8(-acos + 2 - a2 sin20 ). a < < 1l-a (5)

The value of t1 represents the time at which the pulse edge pierces the

slicing level and at which the new edge is therefore formed at the slicer out-

put. In the absence of any interference, this time, denoted by t is given by

t = 8s . (6)

The quantity of interest is the time shift of the pulse edge from its normal

position, nd this is found by subtracting (5) from (6), which gives

At = t - t 1 = 8(s + a os 0 - s 2- a2sin2 ) a < s < 1-a (7)

This can be written in normalized form as follows:

-1 - - ~~2 2--
8 + cos - 1- ( ) sin20 . a< s< 1-a (8)

A plot of this normalized time shift as a function of the phase difference 0

for various values of a/s will be found in Fig. 8. The function approaches a

cosine wave as the value of a/s approaches zero and, as a/s approaches 1, the

function becomes a half-wave rectified sinusoid. Except in the limit

(a/s)-.0, At is seen to have positive values over a larger range of values of

0, and the magnitude of the average of the positive values exceeds that of

the average of the negative values. In short, advances of the leading edge

are favored over delays. In the case of trailing pulse edges, the time shift

relations are exactly the same, except that the algebraic sign of At is re-

versed, so that advances and delays of the leading edges correspond to delays
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and advances, respectively, of the trailing edges. Therefore the trailing

edge of a pulse is delayed over a larger range of values of 0 than the range

over which it is advanced.

Yig.8 Normalized time shift &t/s8 vs. r-f phase difference for several
values of a/s (linear pulse edges); s slicing level, a = interference ratio.

The value of is generally fixed in a given system; 8 is constant or

possibly controlled by a, while a is either constant or varying at a rate

which is low compared to the pulse-repetition frequency. On the other hand,

the value of is generally variable from pulse to pulse, and the variations

are random in the great majority of cases. Consider, for a moment, what

governs the successive values of under various conditions of interference:

a number of factors must enter such considerations, but the crux of the

matter is whether or not either or both of the two r-f signals are coherent

within themselves. A continuous sinusoid which has no frequency variations

is called coherent, inasmuch as its phase at any instant of time can be pre-

dicted relative to the phase at a different time. When the same sinusoid is

frequency-modulated by speech or music, this is no longer true, since the

modulation is random or statistical in nature. The function is then inco-

herent with itself, or, stated in another way, its auto-correlation - a
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concept which will be introduced in the next chapter - approaches zero for

large values of the time difference between the two sets of values being

correlated. A pulsed carrier such as is generally transmitted by a PTM

transmitter is not coherent from pulse to pulse when even the least amount

of time modulation is imposed on the pulses, and not even truly coherent in

the total absence of modulation unless very special relations exist between

the radio frequency and the pulse-repetition frequency. This is true be-

cause the pulses generally used are generated by keying an oscillator, so

that the r-f builds up in the same manner on successive pulses. Consequently,

a small departure from periodicity of the leading pulse edges, such as is

generally effected in most types of PTM, eliminates the coherence that might

exist as a result of the integral relationship between radio frequency and

pulse-repetition frequency. It is possible, however, to generate and trans-

mit r-f pulses which are perfectly coherent with each other regardless of

their time modulation. This can be done, for example, by gating the oscilla-

tor output, allowing the oscillator to operate continuously rather than

keying it. The resulting r-f pulses are portions of a perfect sinusoid, and

tLay are therefore coherent among themselves, no matter what their distribu-

tion in time may be. Needless to say, each individual r-f pulse is generally

coherent within itself.

What is the effect of all this on the values of the r-f phase difference

0? Briefly, the answer is that incoherence on the part of either or both

signals will cause random variations in , while coherence on the part of

both signals will cause systematic changes, if any, in the value of from

pulse to pulse, as will be explained below.

First consider the more important case in which at least the desired

signal consists of r-f pulses which are incoherent with each other. Each

time that interference overlaps a desired pulse, or part of it, has a

different random value, quite independent of previous values. The overlap

may extend over the entire pulse (as it always must if the interference is a

continuous wave), so that the values of governing the respective shifts of

the leading and trailing edges of that pulse are identical or at least simply

related. For example, they will be the same if the radio frequencies are

identical, or 1800 different if the radio frequencies differ by half the re-

ciprocal of the pulse duration. The result is that pulse-edge time shifts

occurring on different pulses are uncorrelated, while shifts experienced by
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the two edges of the same pulse may or may not be correlated depending on the

exact circumstances. The latter is of less importance than the randomness of

the time shifts from pulse to pulse.

Next consider the ase in which both r-f signals are coherent within

themselves. The resulting behavior of successive values of and hence of

the successive time shifts depends chiefly on the radio-frequency difference.

In the case of two-path interference, with the time-delay difference between

the two paths constant, the two r-f waves are synchronous if the radio fre-

quency is sufficiently stable. The same will be true, even if the r-f pulses

are incoherent with each other, if the delay difference is smaller than the

pulse duration, so that the interfering pulse is really the same pulse as the

desired pulse with which it is overlapping. The condition of synchronism

which exists in these cases causes the phase difference to be the same on

successive pulse overlaps, the value of being determined by the delay dif-

ference and the radio frequency. The result is that all the pulse-edge time

shifts will be alike, provided, of course, that 8, a, and remain constant.

If the two interfering coherent signals originate from separate sources, their

radio frequencies are not generally identical, so that successive values of 0

are different but follow a systematic pattern of variation. These values are

merely samples of the phase difference which is continuously changing linearly

(corresponding to a constant frequency difference). As a result, the pulse-

edge time shifts vary from edge to edge in a predictable fashion. When the

desired pulse edges are time-modulated, particularly if the radio-frequency

difference is several times as large as the pulse repetition frequency of the

desired signal, the presence of modulation tends to impart a somewhat random

character on the sequence of and At values. Similarly, the duty factor of

the interference affects the sequence of and At values, a small duty factor

making it appear more random, since pulse overlaps occur less frequently.

As previously indicated, a pulsed carrier generally does not have any

coherence between its successive pulses, so that the case of the totally ran-

dom sequence of values is of greater practical significance than the pos-

sibilities discussed in the receding paragraph. Therefore, unless otherwise

stated, the phase-difference values will be assumed to be random, with each

value having an equal probability of being anywhere between zero and 360°.

This means that the pulse-edge time shifts are also random, as previously

discussed, but their extreme values and their probability distribution between
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these extremes are subject to the relation expressed in (7) on page 16, and

plotted in normalized form in Fig. 8. Physically, this means that the values

of the time shifts At have the same statistical characteristics as the or-

dinates corresponding to a series of arbitrarily chosen abscissas on one of

the curves of At vs. . The distribution of the resulting ordinates is the

same as the amplitude distribution of the curve which was randomly sampled.

The amplitude distribution of a continuous periodic function is simply a

quantity which expresses the relative amounts of time it spends at various

values; it is therefore proportional to the average of the reciprocal slope

magnitudes at any ordinate value. In the case of simple periodic functions

such as A(O), where there is only one slope magnitude at any ordinate value,s8
the amplitude distribution at any ordinate equals the reciprocal of the slope

magnitude at that ordinate. In mathematical language, if the simple periodic

function is x(0), and its amplitude distribution is denoted by A(x), then

A(x) = k()Udx/d~o

The probability distribution of the random samples of x(), that is, the

probability distribution of the time shifts if x(0) At(0), is equal to A(x)

with k so chosen as to make the area under the curve of A(x) s. x equal to

unity. The quantity P(x)dx equals the probability of any one of the values of

x being between x ani x + dx, and if the extreme possible values are -x and

+x, the integral P(x)dx includes all possible values of x and is therefore

equal to unity. "X

For small values of a/u, ( ) as given by (8) can be approximated by
At~ ) a _

(p = a coo , or = cos 0, provided that a < s ( 1-a. The maximum mag-
nitude of the time shift At will be denoted by zx, so that the following ap-

proximate relation gives the time shift for small values of a/s.

At( ) = co 0 . (o10)

In order to find the probability distribution of the pulse-edge time shifts

for small values of a/s, (~ < 0.2), such as will be encountered with inter-

ference ratios in the order of one-tenth or less, (or with reduced accuracy

for higher ratios as well), it is merely necessary to evaluate the amplitude
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distribution A(x) of (10). Application of (9) yields

A(x) = =0i . (- < < ) ()
iO in _2~

The probability function P(x) is obtained by evaluating k as follows:

P(x)dx = P(x)dx f = 1
2 o2'

X0~ ~ -

--XjsxO = k sin~l w0=sk 1;

.1
'Tr

Substitution of this value for k in (11) gives

Fp(W~ 1__ (-xo < x < ,,) . (12)

The plot in Fig. 9 is more descriptive than the algebraic expression, showing

how the values of x crowd at the two extremes, where the cosine wave "spends

most of its time". The probability distribution of the pulse-edge time shifts

will be utilized in the next chapter in the determination of the output noise

resulting from the time shifts.

The calculation of P(x) for the exact expression given by (8) is more

involved and leads to a more complicated result. It is of interest to find

P(xc) for the limiting case, (s) 1, for which At(p) assumes the shape of a

half-wave rectified sinusoid. Substitution of () = 1 in (8) yields

=(0= ) = 1 + Co - oo . (o < a = <i) (13)
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Maintaining the notation a8 = and using x to denote the variable At, one

obtains the function x(O) = xo(l + cos 0 - cos p), the amplitude distribu-

tion of which is to be determined. Physical reasoning provides the simplest

way of obtaining this amplitude distribution of this function,since it has

much in common with (10). Its value during exactly half of the period is

+x, while during the remaining half it traces out the negative half of the

cosine wave exactly as (10), except multiplied by a factor of two and moved

upwards by an amount x. For this half of the function, therefore, the

amplitude distribution curve has the appearance of the left half of the curve

in Fig. 9, but stretched out over the entire range from -x0 to +xe. In order

to obtain the corresponding probability distribution, k must be evaluated so

as to make the area under the curve equal to one-half. The other half prob-

ability is all concentrated at x = x and is representable by a "slot" of

infinite height, infinitesimal width, and area equal to one-half. Because of

this singularity, the resulting probability distribution is most easily ex-

pressed in integral form as follows:

P(x)dx f P(x)dx (¶)dX 2+ at Sa = tx (14)

i.'X tJXe (2x)2 _ (x -x)

The same is shown graphically in Fig. 10.

The probability distribution curves of Fig. 7 and Fig. 8 can be super-

imposed on the picture of a typical pulse at the slicer output and thus show

physically how likely the edges are to be found in any position. This is

shown in Fig. 11, in which it must be remembered that positive values of

time shift At or x correspond to advances (shifts to the left) for the leading

edge and to delays (shifts to the right) for the trailing edge.

Although the quantitative apects of the preceding analysis were based on

the idealized linear pulse edges, they are nevertheless applicable in many

PIh cases (particularly for small interference ratios), since the actual pulse

edges are nearly linear over portions of their total extent. However, for

interference ratios close to one-half, it is desirable, in the case of pulse-

duration modulation, to base all computations on transmitted pulses with sim-

ple exponential edges. The relation between pulse-edge time shifts and the

other parameters will therefore next be derived for exponential pulse edges



which are shown in the pictorial explanation of time shifts in Fig. 12

( similar to that shown in Fig. 6 for linear edges). It can be seen that,

unlike the linear case, the exponential case exhibits aymmetry between the

leading and trailing edges, so that separate expressions have to be obtained

for each of the two edges. Their envelopes for unity amplitude are given by
1 - t/ and t/ with the time origins chosen independently to coincide

with the beginning of the edge, and with the time constant of the exponential.

The normalized time parameter t/k will be denoted by h for the leading edge

and ht for the trailing edge. The development of Eqs. (1) through (8) will

now be repeated for these exponential pulse edges, with the various steps

being carried out concurrently for the leading edge and the trailing edges.

Fig. 9 Amplitude-probability
distribution of sinusoid.

Fie.10 Amnlitude-nrobabilitT
- - - - A - -- - - - - -

distribution of a half-wave-recti-
fied sinusoid.

Fig.ll Pulse-edge time-shift
probability distributions.11 

-X 0 X. -X 0 Xo

-X 0 Xo X 0 Xo

The edges of the desired r-f pulse may be described by (15).

f(t = - )-hcos(t + ,f Wt = ( - 3) coO(t + .),
-h

fzt(t) = ( t)cos(t + ).

h , ht > 0
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The interference, as before, is given, over the time interval of interest, by

f (t) = a cos(wt + ).2 (2)

In order to find the time at which the resultants of f and f 2 as well as

of fit and f 2 pass through the slicing level , exactly the same vector dia-

gram as inhrig. 7 is ~pplied, except with the vector magnitude t/8 replaced

by ( - e £) and ( ) respectively, Forming the expression for the re-

sultant and equating it to for each edge, and squaring both sides, one

obtains

2 -h
(1 - CLf) + a2 + +a(l - £I)Cos 0= s2

( t)¢ +a 2 + 2a(C t) co = 8 

RESULTANT FOR = 0O
/......

a < < 1-

(16)

At, - X n [I-2a]

a

CONSTANT = X

TIME CONSTANT X'

Fig.12 Pulse-edge time shifts caused by interference.

Tai -h n h
These are quadratic equations in (1 - e ) and (e t), respectively, and
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the solutions are given by (17).

-h
(1 - C ) = a cos +s 2 a2sin2 .

-h
(C t) = -a cos + 2 a2s . (17)

Only the positive sign in front of the radical corresponds to a physical

solution. Solving for the values of normalized time, relative to the starting

time of the pulse edge, and, as in (5), adding the subscript 1 to show that

these values represent specific solutions, one obtains

S2 2
h n 5 -1 (1 + a cos- s ?.sin );

a < S < -a

htl =-4a(-a cos + a 2 sin2 ) . (18)

The corresponding solutions in the absence of interference are

-n(l-s), ht = n(s), a < < 1-a (19)

and the time shifts of the pulse edges are found by taking the difference of

(18) and (19) as follows.

Ah~~~ ~ a _ U <1sX nl+a o 02 2in20)-z(18; (x

Aht = h htl = = n(s) n(- a co + (2)t to tl ?.

a < < -a

This result corresponds to (8) for the case of linear pulse edges, and the

entire discussion about random and nonrandom time shifts applies equally

here. The relationship between the normalized time shifts Ah and the phase

difference p is plotted in Fig. 13 and Fig. 14 for two different values of

interference ratio A for a slicing level = . which will be shown to be
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Fig.13 Normalized time
shifts Ah4 and Aht (h = At/k)
mrsus r-f phase difference p
for a = 0.4, = 0.5 (exponent-
ial pulse edge.); = time con-
stant, = slicing level, and
a = interference ratio.

Fig.14 Normalized time
shifts A h and Aht (h = t/k)
versus r-f phase difference 
for a= 0.49, s=- 0.50 (expon-
ential pulse edges); X =time
constant, = slicing level,
a = interference ratio.

0
2

z

4

OJ

Z
a
4J

w_jIJ-I4

a

-j
00

(.
Z
O

4

bJ-I

z_J
4Z
0

Z

Q

Id0

(.D0

z0
2
0
4

.0
Id

4

Id
a

LI

a
4

_j

-26-



optimum in general for a < . Since Ahl is different from Aht, a measure

of their combined effect on the tduration of the pulse is desirable. Inas-

mUch as Ah£ is a measure of the advance of the leading edge and Aht of thet
delay of the trailing edge, a suitable index i given by Aht = Aht + Aht
and this has also been included on the plots. It is readily seen that the

curves Ah t have the same principal characteristics of asymmetry as do the

corresponding curves for large values of a/s with linear pulse edges, so

that the corresponding time-shift probability distributions are not radically

different. Of greater importance is the fact that the increase in peak time

shift with increasing interference ratio is exponential rather than linear.

For a linear pulse edge, the peak-to-peak time shift - that is, the difference

between the time-shift extremes - is given by 26,as can be verified by sub-

stituting = 0 and 180" in (7). This is unchanged for any slicing level

above a and below 1-a. For exponential pulse edges, with the slicing level

at , the corresponding quantity is given by n(* 2I), (a < ),as can1-2a
be verified from (20). This peak-to-peak time shift is the same for both

edges as long as = because of the antisymmetry of the two edges (see

Fig. 12): when = 0, with a not much below one-half, the leading edge is

advanced by a small amount, and the trailing edge delayed by a large amount:

when 0 = 180°, the leading edge is delayed by the same large amount, and the

trailing edge advanced by the same small amount. When the two time shifts

are added, as in Figs. 13 and 14, the asymmetry in the excursions of each

pulse edge cancels out, and the peak deviations in either direction are the

same. This is also shown in Fig. 12.

It has been mentioned that the optimum slicing level for a < is

generally = , and that this is therefore usually used unless the inter-

fering signal is "taller" than one-half the height of the desired pulses.

There are three different reasons for this, which will be discussed in turn.

The first and most important reason is the fact that the effective pulse-

edge slope is usually greatest at A = i. Regardless of the shape of the

pulse edges, the time shift is given by At A cos (in which denotes the

slope of the pulse edge at the slicing level, this slope being based on the

unity pulse amplitude) in the limit as approaches zero. More specifically,

the above is approximately true so long as the desired pulse edge is approxi-

mately linear over the amplitude range -a to s+a. This means that, foZ all

values of and for a given value of a, the pulse-edge time shifts are



inversely proportional to the pulse-edge slopes at the slicing level. Con-

sequently, to minimize the time shifts caused by interference, the slicing

level should be set where the magnitude of the slope of the edge concerned

is a maximum. When the two edges of each pulse do not have mirror-image

symmetry, and the timing of both is of equal importance in the final demodu-

lation process (as is generally the case in PDM with the exponential pulse

edges analyzed above), then the sum of the reciprocal slope magnitude of the

two edges should be minimized. This an be done mthematically as follows:

the two edges are given by y = 1 e andy = t. Their slopes are

equal to their respective derivatives, which can be expressed in terms of the

ordinate y as follows:

leading-ede slope = -ydh ¢ = 1I- y-hleading-edge slope - d/dh = =1-y

trailing-edge slope = dy/dht -c= -y . (21)

The expression to be minimized is the sum of the reciprocal magnitudes
1 +

(1 - y) + () , and the ordinate value y for which it is a minimum will

be the optimum value for the slicing level s. Differentiation with respect

to y leads to the equation

(1 - y)- 2 - (y)-2 0. (22)

The solution of (22) is y s = Jopt = . The same conclusion can also be

reached by minimizing the expression for the actual plse-edge time shift,

but the above method is simpler. In the case of the Gaussian pulse shape,

which will be discussed shortly, the same result can be obtained even more

directly, since each edge individually has its maximun slope at one-half the

peak value. Linear pulse edges are not subject to this particular optimiza-

tion, but the other, second and third,reasons previously mentioned still

maintain the best slicing level at one-half for this case as well. The

second reason is the simple fact that all the relations discussed hold only

for a s -a, and this condition can be satisfied for interference ratios

a up to one-half only if s = , otherwise only up to lower values of A,

namely E or ., whichever is the smaller. The third reason is apparent from

thie plots of -(o) in Fig. 8. Although the peak-to-peak amplitude of At(0)
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does not depend on , the shape of the curve, e.g., for a = 0.1, varies from

the half-wave-rectified sinusoid for s = a, nd tends towards a cosine wave

as s is raised to one-half; the mean deviation of the corresponding probability

distribution consequently becomes smaller, which makes the resulting output

disturbance smaller.

Referring to Fig. 12, which shows the envelope of a desired pulse with

exponential edges, the constant envelope of the interfering signal, as well

as the envelopes of the extreme possible resultants, one finds many of the

mathematically derived time-shift characteristics almost obvious for the

extreme cases of = 0° and 180 °. The region between the broken lines rep-

resenting these extreme resultants will be filled in completely if a large

number of pictures with different values of are superimposed. With the

actual scattered values of , every possible resultant will sooner or later

be covered. An oscillogram taken at the detector output will show just this,

of course, for the positive half of the envelopes only, because of the

detector rectification. If the interference is intermittent, as it will be

when originating from another pulse transmitter with pulse-repetition fre-

quency different from that of the desired signal, then the oscillogram should

show not only all the possible resultants but also the unimpaired desired

pulse and the level of the interference. (The interfering pulse will not

generally appear as such, since the CR0 sweep would be in synchronism with

the desired pulses only.) Such an oscillogram, taken with an interference

ratio of approximately one-third is shown in Fig. 15. Note that the time-

shift distribution shows up in the density of the shaded areas.

Fig.15 Oscillogram
of detector output
showing desired pulse
and effect of inter-
ference.
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Two different pulse-edge shapes have been treated with regard to their

time shifts caused by interference which is substantially constant during

the time of the edge. A third type will be found particularly useful for

PPM, where short pulses without flat tops are used. The mathematical func-

tion used is the Gaussian error function, which describes an entire pulse

from start to finish rather than only a pulse edge. The pulse is bell-shaped,

which approximates very closely the optimum pulse shape when the available

bandwidth is used to the best advantage achievable in practice. The Gaussian

function is useful not only for describing the desired pulses if these come

from a PPM transmitter, but also the interfering pulses if they are short

pulses without flat tops. _k( )

The pulse envelope is given by the general expression y =A . If

one evaluates k such that d denotes the pulse duration at half the pulse

height, then the result is k 2.77, and the pulse envelope of unity height

is given by
2

-2.77(-)
d ( 23)

The time origin is at the center of the pulse, and while neither side ever

actually reaches zero, negligible values are approached very rapidly.

In order to find the pulse-edge time shifts caused by interference which

is substantially constant over the pulse duration, the method of the vctor

diagram in Fig. 7 is again used, except that the magnitude of the variable

vector is equal to X of (23) instead of t/8. The expression equating the

resultant of the desired pulse and the interference to the slicing level .

then becomes, after squaring both sides and letting () = h,

-554h2 a 2 2a-2.77h2 2
_5(542 + a2 +hcos s a < s < -a (24)

-2,77h 2
This equation is quadratic in c 2 77h2 and the solution is

h = tn(-a cos . (25)

The negative and positive solutions for h correspond, respectively, to the

time instants at which the leading and trailing edges pass the slicing level

J. The solutions are equal and opposite because of the perfect symmetry about
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the time origin. However, this symmetry exists only so long as the radio fre-

quencies of the two interfering signals are not too far different to make 

change appreciably from the leading edge to the trailing edge. The solutions

for h in the absence of interference are he = -0.5 and h = +0.5, for s = i,
the pulse duration being unity in terms of the normalized time parameter h.

More generally, in terms of , these solutions are

(26)h = 2.77 

The normalized time shift Ah is given by hT - h, as follows.

(a < s < 1-a)

A plot of this function for one particular set of values of a and .a is shown
in Fig. 16. It is seen to have characteristics similar to those of the
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Pig.16 Normalized time shift
h (=At/d) s. r-f phase differ-
ence for a = 0.40, s = 0.50
(gaussian pulse shape);

o- d = pulse duration measured bet-
ween half-voltage points,
s = slicing level,
a = interference ratio.

previously presented plots of time shifts erMs r-f phase difference.
Positive time shifts (corresponding to increased pulse duration) are favored

over negative shifts for three reasons: (1) the time shifts are positive for

more than half of the 360-degree range; (2) the peak positive time shift, at

= 0 is larger than the peak negative shift, at = 180 ° , and (3) the shape
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is such as to help make the magnitude of the average of the positive values

exceed that of the average of the negative values.

Although it is intended to present in this chapter only the more funda-

mental aspects of interference phenomena such as the time-shift effect, it

will be of interest to widen the scope of the analysis somewhat by removing

the restriction that the interference must be substantially constant in am-

plitude during the time interval of interest. If the interference is a

continuous unmodulated or frequency-modulated carrier, then the results found

are directly applicable; if it is amplitude-modulated by an audio signal, the

interference ratio a varies somewhat from pulse to pulse, which can be easily

taken into account. Interfering pulses such as those used in PDM have, on

the average, flat tops which are no longer in duration than the combined rise

and decay times. Therefore, when it comes to practical computations, as will

be seen in Chapter 4, the interfering pulses can be assumed rectangular, so

that a given desired pulse edge is either shifted as analyzed in the preceding

treatments, or it is not shifted at all.

On the other hand, if the interference consists of minimum-duration

pulses, and particularly if the desired pulses are similar, then it is

preferable to treat the situation somewhat differently. The effective inter-

ference level changes as fast as the edges of the desired pulse rise and fall,

and should therefore be treated on an instantaneous basis rather than on an

averaging basis. This applies particularly to multipath interference in PPM

and to two-station interference between PPM systems. The Gaussian pulse shape

introduced on page 30 will again be used, this time not only to describe the

desired pulse, but also to describe the interfering pulse. The method of

determining the relation between the pulse-edge time shift and the variables

involved is the same as that used before, except that all vectors in the dia-

gram of Fig. 7 now have time-variable magnitudes, and there is an additional

variable, namely the relative phasing or time difference between the two pulses.

The desired pulse will be a Gaussian pulse of half-height duration d,

or normalized duration unity, where the normalized time variable is h = t/d.

It has unity amplitude and is identical with the pulse used in the previous

analysis on pages 30 and 31. The interfering pulse has the same duration,

but different amplitude, denoted by a and, instead of being positioned sym-

metrically about the origin like the other pulse, it is advanced from this

position by an amount in terms of the normalized time parameter; of course,
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£ may be negative as well as positive. The algebraic expressions for the

desired and interfering pulses, respectively, are given by f(h) and f2(h)

in (28).

f (h) = ¢-2.77(h)2 cos(wt + ) 

f 2 (h) a2.77(h + ) cos(wt + ) (28)

in which $- = . The envelopes of the pulses are shown in Fig. 17.

Fig. 17 Envelopes of desired
and interfering pulses of gaussian
shape.

Recalling the vector-diagram addition of the two components (Fig. 7), applying

it to f(h) and f(h) of (28), and equating the resultant to the slicing level,

one obtains, after squaring both sides

-_5.54h2 + a2eC-5.54(h + £)2 2-2.77[h2 + (h + )2]cos 2 (29)+ 2as - 2 cs ~= S . (

(a < s < 1-a)

Except for special values of some of the parameters, this equation can not be

solved analytically. Only point-by-point trial-and-error or graphical solu-

tions are possible, and values obtained by such methods will be found tabulated

and plotted in the section on PPM interference. They are not included at this

point, since they would add little to the present discussion.

In connection with the mathematical results obtained in this chapter, the
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following point should be made clear. The time-shift equations have been

labelled so as to be subject to the restriction a < s < 1-a. Actually, this

indicates that the expression for At exists for all values of only so long

as a is within the specified limits. The lower limit for .j is necessary re-

gardless of , to prevent the interference from piercing the slicing level and

giving completely erroneous results. If the upper limit is exceeded, there

will be a range of values of p, extending symmetrically about 180°, in which

there will be no real solution for At. This means simply that the pulse edge

never reaches or crosses the slicing level, since the resultant is always

smaller than , so that the pulse or part of the pulse will be missing from

the slicer output. Therefore, if this is correctly interpreted, the restric-

tion on s can be relaxed to read s > a.

2.2 The Missing-Pulses ffect

The missing-pulses effect is strictly a below-threshold phenomenon";

since the interference is too large to be"eliminated' by the slicer, it reaches

the output through a different mechanism than the modulating signal. The

effect does not have an exact counterpart in other types of modulation. The

variables on which it is dependent are the same as those listed on page 14,

except that the pulse-edge shape need not be taken into account, for all but

the very short pulses used in PPM.

As a starting point it will be assumed that the interference is of

constant amplitude a, that it completely overlaps every desired pulse, that

the radio-frequency difference between desired and interfering signals is

much less than the reciprocal of the longest desired pulse, and that there

is no coherence between different pulses. Such a situation may arise if a

continuous constant-amplitude wave, such as an PM signal, interferes with

PDM or PPM reception; the interference can also be another pulse signal with

identical pulse-repetition frequency and phase; or, in the absence of modula-

tion, it can be a replica of the desired pulse train delayed through malti-

path transmission by an exact integral multiple of the pulse-repetition period.

The results of these assumptions are that either every desired pulse is en-

tirely present, in which case it is generally subject to the time-shift ef-

fect, or that the whole pulse is completely missing; further, the r-f phase

difference p is random from pulse to pulse with all values equally likely.

Clearly, if the slicing level . is higher than 1-a, then the resultant
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of the desired and interfering signals will fall below _ (namely, at l-a)when

= 180°, and still, though to a lesser degree for a certain range of values

on both sides of 180°. This range of values depends on A and a, as will be

shown. It will be denoted by 20. The probability that 0, for any one pulse,

will fall within the range 180° + is GO/ 180', or 0/I if is expressed in

radians. This will then also be the probability that any pulse is missing.

Before deriving a mathematical expression for this probability in terms of

known quantities, it is desirable to state what the most important combinations

of a and .a are likely to be in practice, so that the emphasis can be placed
correctly in the mathematical work.

When the interference ratio a is below one-half, the slicing level s is

generally set at one-half, ust half-way between A and 1a for reasons stated

previously. In that case no pulses will be missing. A possible exception

to the = rule occurs in certain two-path interference cases, where the

slicing level may be set much lower (as will be seen in Chapter 5). The

possibility of missing pulses is even more remote here, since s << 1-a. As

a is increased in these cases, the missing-pulses effect occurs only when a

is near one, when it exceeds l-s, so that interest is centered on values of

s near zero and a near unity. In the majority of interference situations,

however, as a is increased beyond one-half, must be increased to stay above

a in order to prevent the interference from piercing the slicing level. On

the other hand, raising the slicing level increases the probability of a

resultant pulse not reaching it, and consequently the best compromise is
= +, that is , the slicing level is just above the interference level.

Mathematically, this most important condition will be specified as .! = a,

so that interest is focussed on < a = s < 1.

The borderline condition under which the resultant of the two signals

Just equals the slicing level, with the amplitudes 1 and a and the r-f phase

difference , is given by

a 2 + 1+ 2(a)cos = s2 . (30)

The solution is as follows:

s2 a2

cos0 = 2a =

Co0 = 2 -2+
C 50 0 2a , 0 = cos-l( + a 2 (31)
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The result given by (31) is perfectly general, as far as the values

of a and j are concerned. This is confirmed, (when i and j, are such that no

pulses can be missing), by the fact that there is no real solution in (31) or

(32). The probability that a given pulse is missing is also equal to the

fraction of pulses missing out of a very large number of pulses; it will be

denoted by F and equals Q/M, as explained previously.

2 2
F= = 1 Co s - ( (32)TT 17 2a

This general result can now be applied to the two different sets of

combinations of A and which are of practical importance. First, the less

important case, in which a is close enough to unity ( 0.98) to ustify the

approximation a 0 1, will be considered. The result is

F = Ioo 1( - _) -_ I| (3

The practical application of (33) will be found in the treatment of

incoherent two-path PIN interference.

The more significant case is that for which a. Substitution of this

conditions into (32) gives the simple relation (34).

F _! -1( _)(34Ts p a ra n p d. = cooo (34)s=a -YT 2a

This important relation is plotted in Fig. 18 for interference ratios from

Fig.18 Fraction of missing
pulses, F, versus interference
ratio, a, for slicing level s=a;
7s=a(a) =(l/IT) co-il[/2a].

i~
I ~ ~an ~~~~__ _ I M

0.2 1- 1 1

I 1__ F.,O,11 1- ]

°0 _ I _ _- I I
v1 v.V v.l Ad vg A.%0



0.5 up to 1.0. The fraction of missing pulses reaches a maximum of one-

third for a = 1, which is approached rapidly as a increases above 0.5.

Therefore, under the conditions stated at the beginning of this analysis,

with A close to unity, one out of every three pvlses will be missing at the

slicer output. Since is random, each pulse, regardless of what happened

to its predecessors, has the same probability, namely one-third, of not

reaching the output. The effect of this on the final output will be taken

up in the next chapter. The condition described here is severe in that all

desired pulses are completely overlapped by interference. More generally, if

the interference consists of pulses, this total overlap will be replaced by a

fractional overlap, which means that, on the average, only a certain fraction,

P, of the desired pulse is overlapped by interference. This part of the

pulse, rather than the entire pulse, is then subject to the same probability

of being missing at the slicer output. Some of the desired pulses may still

be overlapped completely, some partially, and some not at all, but the over-

lapped portions of different pulses are still governed by the same probability.

The total fraction of the pulse train missing at the output will then be PP,

or P/3, if a is not far below one. Those pulses or portions of pulses that do

reach the output are subject to the pulse-edge time-shift effect in accordance

with the formulas derived in this chapter, with (a/s) = 1, and with the re-

striction a s ( 1-a removed and replaced by a < s < 1.

In continuing the analysis of the missing-pulses effect, it will be con-

venient to revert to the original assumption that each desired pulse is com-

pletely overlapped by onstant-amplitude interference. In accordance with

the discussion of coherence and incoherence on pages 18 and 19, it is pos-

sible for p to vary systematically, if both the desired and interfering sig-

nals are coherent within themselves. In that case the same fraction of pulses

would still be missing, but not in the same random fashion. Also, as men-

tioned previously, it is possible, in the case of totally coherent two-path

interference with fixed delay difference, that the r-f phase difference 0

will be constant at a value determined only by the delay difference and the

precise value of the radio frequency.* In this case the probability is 1-

that all pulses will reach the output and that none of the pulses will reach

* This can occur only if the radio frequency is sufficiently stable
(see 5.31).
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the output, if there is no control whatever over the radio-frequency or the

delay difference. However, as will be shown in 5.32, this is one of the

situations in which the slicing level may be lowered below a. and even below

1-a to avoid all possibility of missing pulses, if the system is a single-

channel system, and the signal-to-random-noise ratio is sufficiently high.

Unlike the time-shift effect, the missing pulses effect loses its true

form when the radio frequencies are different enough to cause a decisive

variation in during a single pulse. It therefore applies only to actual

common-channel interference. The phenomenon which takes place if the radio-

frequency difference is several times the reciprocal of the pulse-overlap

duration is best illustrated by an oscillogram taken at the detector output,

before slicing (Fig. 19). In this illustration, a desired pulse is almost

Fig.19 Oscillogram of de-
tector output showing inter-
ference beats.

totally overlapped by an interfering pulse; the result is the familiar beat

phenomenon (alternate reinforcement and cancellation as the phase difference

0 changes continuously). Though present also when the interference ratio a

is less than one-half, these beats have no effect for the same reason that

there are no missing pulses: the slicing level s can be set between a and

1-a. In the present case of i < a < 1, each beat means a portion of the

resultant will fall below the slicing level, so that the pulse at the slicer

output will have small pieces missing at regular intervals. The fractional

portion of the pulse missing at the output is still equal to F, given by (32).

However, the effect can no longer be called random, regardless of the inco-

herence of the interfering signals, since it is primarily a systematic effect

within each pulse, rather than an effect taking place from pulse to pulse.

If the r-f pulses are coherent with each other, then the beat is coherent

throughout, as is the case in the oscillogram of Fig. 19, which is a
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superposition of a very large number of successive pulses.

This situation, as presented, is likely to be encountered only with

pulses of rather long duration, such as may be used in PDM, and not with

minimum-duration pulses as commonly used in PPM. In the latter case, the

radio-frequency difference must generally have a larger absolute value to

produce one or more complete phase reversals of within a single pulse,

so that only a very strong adjacent-channel interfering signal could produce

a sufficiently high interference ratio at the detector. In addition, the

limited high-frequency response of the video stages including the slicer may

cause the gaps in the pulses to be filled in when the r-f difference becomes

several megacycles.

The quasi-missing-pulses effect encountered when the interfering signals

differ considerably in radio frequency, as would be true in adjacent-channel

interference, is not nearly so important as the true missing pulses effect

encountered only in common-channel interference or multipath interference.

The principal reason for this is the fact that its manifestation at the out-

put is much less severe. The question of how the various interference effects

manifest themselves in the receiver output will be treated in detail in the

next chapter.
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CHAPTER 3

AUTO-CORRELATION ANALYSIS OF OUTPUT NOISE RESULTING FROM INTERFERENCE

IN PULSE-TIME MODULATION SYSTEMS

In the preceding chapter, the mechanism of the two interference effects,

the time-shift effect and the missing-pulses effect, was examined in detail.

In this chapter, these effects will be pursued further in order to learn how

they affect the output of the receiver.

3.1 Auto-Correlation Analysis

Both the time-shift and the missing pulses effects are generally random

phenomena; in the special cases in which they are not random, the prediction

of the receiver output presents no problem, and need not be considered at this

point. The theory of random or statistical phenomena or processes has not,

until relatively recently, began to take its rightful place in communication

engineering. Transient analysis and steady-state sine-wave analysis are being

supplemented by methods utilizing the statistics of the signal which is actu-

ally to be transmitted; the realization of the fact that the basic problem of

commnication is a statistical one is creating new horizons in the philosophy

of system design. Credit for this is due N. Wiener19 and . E. Shannon. 2 0

Wiener's work has been of extremely wide scope with a large variety of pos-

sible applications, while Shannon's work has been directed specifically at

the problem of transmission of information. That aspect of it which has di-

rect application to communication and related systems is being ably expanded

and presented by Y. W. Lee.* Most of the work in this chapter is based on

material obtained from this presentation.

One of the important tools in the statistical treatment of communication.

problems is the concept of auto-correlation, first used by G. I. Taylor,21
19

and then brought to the foreground on a rigorous basis by N. Wiener.9 It is

a device for transforming a random function, which is infinite in extent along

the time axis and therefore can not be handled by the usual mathematical

methods, into an analytic function or a statistical parameter which characteri-

zes the original time function with respect to its spectrum and time

* lectr. ng. Course 6.563, M.I.T., taught by Prof. Y. W. Lee.
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distribution. The evaluation and use of the auto-correlation function figure

prominently in this chapter.

Before proceeding with the mathematical analyses, it should be stated

that the exact aim of this chapter is to evaluate the ultimate consequences of

time shift and missing pulses. Both of these are random in character and

therefore give rise to a random type of noise in the output which is, in fact,

difficult to distinguish from random thermal or tube noise. Since this noise

is generally either the only or the only significant manifestation of the

interference, it is of primary importance to find its total power in the out-

put, as well as its spectral distribution, with the final goal of predicting

the output signal-to-noise ratio under various interference conditions. The

desired information is furnished by the so-called power-density spectrum or

power spectrum, which is obtained by operating on the auto-correlation func-

tion. For the sake of clarity and completeness, the work will be undertaken

on a somewhat more general basis than might be considered necessary to mlve

only the immediate problem at hand. The two effects will first be analyzed

in their most basic or simple form, and the additions or modifications necessary

to adapt the results to the more complex interference situations will be made

in the following chapters where these situations will be discussed individually.

The relations involving the power spectrum and the auto-correlation

function can be derived as follows. Beginning with two functions of frequency

gl(w) and g2(w) which are the Fourier transforms of the analytic functions

fl(T) and f2(T), one can easily show, by ordinary Fourier transform methods,

that the following relation holds:

S gt ()-7)W) T@ =- J f1 (t)f2(t + T)dt . (35)

Letting

f 2 (T) f 1 (T) 

92(w) - g(w) 

one obtains
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I N F D26_wTb = 1 J f 1 (t)f l (t + T)dt * (36)

If fl(T) is a random function, infinite in extent, then both integrals of (36)

will be infinite, but they can be made finite again, so that the equation is

still valid, by dividing both sides by a very large period as indicated in

(37); (fl(T) is now a random function.)

0~0 T ~T

Lim I. r Lim BE lTI fl(t)fl(t + T)dt . (37)
J+ 2TTa 21T 2Tj 1

In (36), where fl(T) represents an analytic function, such as a single voltage

pulse, gl(w) gives the spectral distribution in volts per radian/sec. In

(37), where f1(T) is a random voltage function, gl(w) does not exist, but the

quantity w 2g-(W) 2
Lim TT
T.-*co

does exist; it has the dimensions volt per radian/sec, or watts per radian/sec

if a one-ohm resistance level is assumed. This quantity therefore gives the

amount of power in a one-radian-per-second bandwidth as a function of radian

frequency and is referred to as the power-density spectrum, or simply power

spectrum, denoted by %1 (W). Substitution of this in (37) results in the

following important equation:

T

. 1(w)J dT-=Li } fl(t)fl(t + T)dt .(38)

The left-hand side of (38) is the inverse Fourier transform of the power

spectrum $11(w); it equals the quantity on the right-hand side, which is known

as the auto-correlation of fl(t), denoted by Cp11(T). The auto-correlation

being the inverse Fourier transform of the power spectrum, it then follows that

the power spectrum is the Fourier transform of the auto-correlation function,
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. as given by (39).

I- (T )6 joT dT ~~~(39)

Regarding the method of derivation, it will be noted that in Eqs. (35), (36)

and (37) the parameter T signifies the independent variable, time, and t

represents a time-shift variable.* In (38) and (39) their rles have been

tacitly interchanged. The auto-correlation function

T

L Lim f F (t)f (t + T)dt, (40)
'Pi i T co 

is a function of T and has the physical significance which will be described

only if T is taken as the time-shift variable and t as the independent variable,

time.

Defined in words, the auto-correlation of a function of time (or any

other variable along the abscissa, e.g., distance) for any given value of

time shift T, is the product of the function over a large enough stretch of

the independent variable to be completely representative of the entire func-

tion and the same function shifted by an amount T over the same large interval

of the abscissa variable, divided by this large interval. More briefly, it

is the average over that long interval, or over all time, of the product of

the function and the function shifted by the amount T. Each averaging process

furnishes only a single point in the curve of qp11(T) vj. T. The process of

obtaining one such value is illustrated in Fig. 20. In reality, the time

shift T is a continuous variable rather than a discrete one.

Inasmuch as the power spectrum is the function to be determined and is

simply related to the auto-correlation, the auto-correlation holds the key

to the analysis. The first and major part of the problem is, therefore, to

find the auto-correlation function of the time functions of interest (the

rectangular pulse train with random-edge-time shifts and the rectangular

*This bears no relation to the time-shift effect.



pulse train with randomly missing pulses). Since a low-pass filter is

usually associated with the audio system, and the spectrum of the original

pulse train is known, attention should be focussed on the random component,

the component which causes the audible noise (as well as inaudible supersonic

noise) at the output. Thus, while the entire auto-correlation function is

first determined, its component corresponding to the nonrandom part of the

pulse train is soon discarded since it has no direct bearing on the problem.

This procedure of separating the two components after the auto-correlation

is obtained is much simpler than a similar separation would be on the original

time function.

3.2 Auto-Correlation of One-dze Time-Shift Noise

The first step in finding the auto-correlation of the pulse train with

randomly shifted edges is naturally to find the auto-correlation without

time shifts, when the time function is perfectly periodic, and then to find

the effect of small time shifts. The most frequently used symbols are de-

fined below.

pulse height (volts at 1 ohm).

d = average pulse duration.

d = duration of a given pulse.

= maximum shift (At x ) of pulse edge from its unshiftedmax
position.

x - actual shift (At) of a given pulse edge from its normal

position (positive if it makes pulse longer, negative if it

makes it shorter).

P(x) = probability distribution of x.

T = time-shift parameter associated with auto-correlation, the

independent variable of the auto-correlation.

t = the independent variable, time.

T = the pulse-repetition period.

p = the pulse-repetition frequency in radian measure.

Certain simplifying assumptions will be made at the outset in order to make

the development easier to follow. (one of these, as will be shown later,

affect the result in any way.) One edge of each pulse, namely the trailing

edge, will be subject to a random shift, limited for the time being to one-
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third of the normal pulse duration (x < 13 do) for reasons which will soon

become apparent. For similar reasons, the maximum pulse duration d+xo will

be limited to one-half of the period T. Also,.(x) will be assumed symmetrical,

so that d is both the unshifted" pulse duration and the average shifted"

pulse duration.

The task of determining the auto-correlation function for rectangular

pulses is actually easier than for most other time functions. The multipli-

cation of the function by its shifted replica merely amounts to noting the

amount of overlap between the shifted and unshifted pulses. Clearly, this

overlap varies linearly with T, and the auto-correlation of the perfectly

periodic pulse train is the periodic sequence of triangles shown at the top

of Fig. 21. Because of the perfect periodicity, the overlap situation for

any one pulse is the same as for all others, so that a single pulse-repetition

period is representative of the behavior over a very long period. Thy average

value of the product of the two overlapping pulses in one period is C do

when the overlap extends over the entire pulse duration, i.e., when T is zero.

This is the value of cp11(0) and also equals the average power of the time

function. When T is not zero, but smaller than do so that there is partial

overlap, then the average value of the product is given by

2
q) )= T (d - OTO) (TDO (41)

If is increased enough to make any and every pulse coincide not with its

own shifted replica but with the replica of the next pulse or any other pulse,

the same pattern2repeats exactly, since all the pulses are identical. There-

fore, cp11(T) = (d. - OT + nTD), where n is aa integer sh that + nTD < do.
If all the trailing edges are subject to random time shifts, then the

various pulses and hence the various overlaps are no longer identical, and

this has the following effects:

1. The value of p11(0) is the same as before, if the average pulse duration

is d, and the same linear decrease given by (41) occurs, but only for

values of T sll enough so that all pulses still partially overlap their

shifted replicas, that is, only so long as the shift T is smaller than the

minimum pulse duration (T < do-x) .

2. As T begins to exceed the minimum pulse duration, [(do-xo) < T < (d+x)],
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Fig.20 Obtaining the auto-correlation for T = to;
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Fig.21 Auto-correlation of rectangular pulses
(a) no time shifts (b) one-edge random time shifts.
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Fig.22 Periodic and aperiodic components of ~11(T).
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more and more pulses cease to have overlap, so that their contribution to

the linear decrease in overlap ceases. The slope in q11(T) decreases,

which accounts for the concave-upward curvature noted at the bottoms of

the triangles in the lower half of Fig. 21. Partial overlap continues

out to T = d+x o, rather than Just to T = d . The "bottom curvature" of

the Pll(T) is therefore associated with the coincidence of the fixed

leading edges and the uncertainty region of the trailing edges. Exactly

the same phenomenon occurs also if the leading and trailing edges con-

cerned do not belong to the same pulse (a pulse and its shifted replica)

but, instead, to two different pulses which coincide for larger values of T.

3. For T = nT, there is less total overlap than for T = 0, since none of the

overlapping pulses are identical in duration, and the overlap for each

pair is determined by the shorter one. As T is changed from nT, the

initial decrease in cpll(T) is small because, for the same reason, the

overlap on most pulses does not change; as more and more overlaps begin

their linear decrease, the total overlap decreases at an increasing rate,

which accounts for the convex-upward curvature or "top curvature" of the

P11(T) triangles in the lower part of Fig. 21. This curvature is associ-

ated with the coincidence of the uncertainty regions of the trailing

edges, and it occurs only if these edges belong to different pulses. When

T differs from nT by more than 2x, the linear decrease in overlap has

set in for all pulses, so that qPll(T) decreases linearly.

4. For 2x < T+nT < d-x e, 11(T) varies linearly as if there were no time

shifts. This linear region exists only if 2xo < d-x, or x < d/3,

which is the reason for that assumption made at the beginning. Similarly,

the reason for choosing d+x < &T was to prevent the bottoms of adjacent

qPll(T) triangles from blending into each other.

The preceding numbered paragraphs explain qualitatively why the auto-

correlation has the appearance indicated in Fig. 21. Before beginning the

quantitative part of the analysis,one can draw some important and useful

conclusions from further consideration of the qualitative picture of Fig. 21.

The auto-correlation of the periodic pulse train is also a perfectly periodic

function, and the corresponding spectrum is obviously a discrete spectrum

having lines at the pulse radian frequency p and its harmonics np. The auto-

correlation of the second pulse train differs from that of the first
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principally in that it is not periodic, the triangle about T = 0 being dif-

ferent from all the triangles about T = nT. As shown in Fig. 22, it can be

split into two components, one of which is purely periodic (though somewhat

different from that encountered previously), and the other a nonperiodic

component extending only from T - -2xO to T - +2x. The periodic component

again corresponds to a periodic time function, namely the periodic part of

the pulse train with shifted trailing edges; associated with this is a line

spectrum which is not of primary interest in the present problem The non-

periodic component is a direct consequence of the random part of the time

function; associated with this nonperiodic component is a continuous spec-

trum-- the spectrum of the time-shift noise which is to be determined. The

seemingly insignificant lone triangle in Fig. 22 is therefore the key to the

solution. Being the difference between the entire auto-correlation and its

periodic component, it will be denoted by pQ,(T), and the corresponding power

spectrum by 4A(w). Both the auto-correlation and the power spectrum are, of

course, on a power basis, and the relations between them therefore apply

equally to components such as (pq(T) and (w). The power spectrum of the

time-shift noise is the Fourier transform of the nonperiodic component of

the auto-correlation, as expressed mathematically in (42).

§W = f p(T)6 TdT . (42)
27-

Except for the following remarks which may be of general interest,

attention will be focussed solely on the above quantities, since they are

the sole representatives of the interference noise. It is of interest to

note the changes in the overall spectral energy distribution of the pulse

train as a result of the random pulse-edge time shifts. Without these time

shifts, the power spectral lines at np have magnitudes which can be deter-

mined by expressing the triangular auto-correlation as a Fourier series.

The same result is obtained by Fourier analysis of the square pulses and

squaring the resulting coefficients. With the time shifts, the periodic

component of the auto-correlation acquires rounded corners and can, in fact,

be shown to be the auto-correlation of a new, totally periodic pulse train,

in which the trailing edges have finite decay times (= 2) instead of

vertical edges. This means that, although the same type of line spectrum

still exists, the magnitudes of the lines at the highest frequencies are
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reduced. Since for a symmetrical time-shift probability distribution the

total power must be uaffected by the time shifts, the power taken from the

higher frequencies of the line spectrum is the same power now found spread

continuously over the spectrum, its audio portion giving rise to the time-

shift noise. The fact that the rectangular pulses with their random-edge

time shifts have the same auto-correlation, in part, as differently shaped

pulses without time shifts provides a valuable short-cut method for determining

the entire auto-correlation function quantitatively.

Attention will now be focussed on the problem of determining quantita-

tively the aperiodic auto-correlation component, q(T). According to Fig. 22,

this requires only that one find the expression for the rounded tops of the

triangles and subtract it from the straight triangle. The rounded bottoms do

not enter the problem because they are identical for all the triangles; how-

ever this is not true in general, as will be seen later when both pulse edges

are given shifts, and therefore the more general procedure will be used. It

consists of finding the entire auto-correlation and taking the difference

between the triangle centered about T = 0 and any other triangle, such as the

one centered about T = T. These two triangles" will be referred to fre-

quently and they should therefore be given appropriate names. The one about

T = 0 differs from all the others because it is the "self-correlation of

all the pulses; all the others are what one might call "cross-correlationsu

between different pulses, but this expression is generally reserved for cor-

relations between different functions rather than those between different

parts of the same function, so that the word inter-correlation" will be used

instead. The immediate problem, then, is to find the self-correlation and

the inter-correlation. The writer has done this by a number of different

methods which ultimately lead to identical results. Only the simplest and

most efficient of these methods will be used in this chapter.*

Prom the comments on the periodic auto-correlation component (page 48),

it follows that equivalent nonrandom, periodic pulses can be used to obtain

the inter-correlation.J* The self-correlation can be found by similar

* The formulas arrived at through other methods, as well as outlines of these
methods, are given in Appendix I.

** The writer is indebted to Mr. T. P. Cheatham, who suggested the application
of this property to the present problem.
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methods, generally even simpler. Although the equivalent pulses no longer

have the advantage of being rectangular, this is more than offset by the

fact that the sloping sides contain all the necessary statistical informa-

tion so that only a single pulse need be considered. A pysical picture of

the equivalence-replacement is shown in Fig. 23, where the shaded region

represents a superposition of many pulse edges in all the possible positions,

with the depth of shading indicating the distribution of the pulse edges.

The latter is given by P(x) discussed in some detail in Chapter 2. The shape

of the equivalent sloping edge must be such that the area of the pulse from

its leading edge to a vertical line erected a (time) distance d+x from the

leading edge is the same as the average area, measured over the same range,

of a very large number of the actual rectangular pulses.* Consequently the

sloping edge is given by the simple expression

y(x)- P(X() 43)

In the particularly simple case of a constant (flat) probability distribution,

for example, the equivalent pulse edge is obviously linear. To find the in-

ter-correlation, it is necessary merely to determine the auto-correlation of

a single one of the equivalent pulses with the period taken as the pulse

repetition period, T, rather than infinity. The resulting function will be

centered about T = 0, rather than about T = nT as in the actual auto-correla-

tion, which is helpful when it comes to subtracting this function from the

self-correlation. Because of the complete symmetry about T = 0 (a property

of all correlation functions), only positive values of T need be considered.

The mathematical development which follows is illustrated in ig. 24, showing

a sketch for the case of small , in which the curves to be multiplied can

be split into three zones corresponding to three mathematical terms which give

the rounded top of the inter-correlation. Also shown is the simpler case of

larger T,(do-x < T < d+x.), which gives the rounded bottoms for both the

inter- and self-correlations.

* Note that the total area of the new pulse equals the actual average pulse
area, 3do, which is also the pulse area in the absence of time shifts if
P(x) is symmetrical.
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Fig.23 quivalent nonrandom pisX

(b)

-xo xo
X-r-d o

Fig.24 Determination of Inter-
correlation (a) for -2x<T<2x,
(b) for [d.-x] < < +x.

0 < T 2xe. Inter-correlation = qp(T). The expression for pi(T) comprises

the following three parts, corresponding to the three zones shown in Fig. 24.

Each part is simply the product of the solid and the broken (shifted) curves,

divided by T.

E2

Pi = P 4d - 0 T)I T

I T T 2 -+ x

y(x)d f -P~)~

rX~ E2
i~ = ¥ (x)y(x-T)dx = E

9-o+ T

(44)

r Xe XO X

[ |P(u)du][ P(u)du]dx
+ T X - T

* In all double integrals involving x under both integral signs, will be
replaced by the symbol u in the inside integral.
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=(Pi + iII + III

-x, + T r0
- T + I P(u)d]dx +

}f P(u)du]dx
- T

(O < T < 2)

2x, < T d-x . In this range, the inter-correlation, as well as the self-

correlation, p(T), is the same as for rectangular pulses of duration d.
This is readily understood when one remembers that the equivalent pulse has

the same area, namely Ede, subject to the assumption of a symmetrical prob-

ability distribution. The correlations are therefore given by

(41)
E2

-T (d - OTO) ,

which is also the value of the self-correlation for T between zero an 2.

do-xe < < do+Xo . In this range, both the inter- and self-correlations are

obtained in accordance with the lower sketch of Fig. 24. A single term takes

care of the product as follows.

i(T) = (T) = f =

X = T -

2 X X °e
7(x)d = y' [

TdiT-do Cd9 x = T - 4 x e

The nonperiodic auto-correlation component is now given by

qp(T) = Cp(T) _ i(T)

< T < 2o

+ f
= - (f t [ P()du]dx -
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P(u) du][f

X - 1

P(u) du] d

(47)-

(45)

P(u) du]dx . (46)

2

= [t(d- T) - (45)]

4

X0 MO
= X!

2 4 - xe



By making use of the relations

Xo
P(u)du - 1 , (a)

-X.

and. S [f P(u)du]dx = (b)

-Xo X

(47) can be reduaced to the relatively simple (50), a follows. First using

the relation (b) on the first two terms, one obtains

2 ZO X0 rO XO rx0

p(T) -x P cr ~ d u P(u) du] d

o + T x + T T
(48)

Next, factoring common terms gives

iT) 3 l- [ Piu)au][. - P(u)du] . (49)
+ T c _ T

Finally, application of relation (a) to the second factor yields

2 3C° Me - T
Tpq(?) | [ P(u)du P(u)du]dx . (50)

o_rO T x .0

The expression for rp(T) as given by (50) is the most important general

result of this chapter. Substitution of a specific function for P(u) results

* This relation is readily derived for any symmetrical probability distri-
bution P(u).
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in a specific function of T, the Fourier transform of which is the desired

power spectrum. However, before more specific results will be obtained,

there are additional points in connection with the above result which call

for further general considerations.

For the sake of simplicity, the above result was obtained on the basis

of certain simplifying assumptions; it is of interest to show that the same

result (50) is obtained even without these assumptions. Up to this point,

xo has been restricted to below one-third of do This restriction assured

that the curved top and bottom zones of the inter-correlation would never

overlap, but would instead be separated by a linear zone, a remnant of the

triangular auto-correlation of a rectangular pulse. The three zones extend

from T = 0 to 2, 2xo to d-x,, and do-xo to d+x o.

Consider now the remaining possible values of xo: 1/3 d up to do. The

two curved zones of the inter-correlation now overlap so as to form a third

curved portion, wiping out the linear portion. There are still three zones

for which qpi(T) is given by different expressions and must be derived sepa-

rately: 0 < T < do-x o, d-X < T < 2xo, 2xo < T < do+xo. If the two pic-

tures of Fig. 24 are redrawn with larger o, it will be found that they are

unchanged except for proportions and yield the same results (45) and (46) in

the two end zones of T. The situation for the middle zone, where T is between

d4-x o and 2 is shown in Fig. 25, and the product of the solid and broken

Fig.25 Determination of
inter-correlation for
Cd,-xoj < T < d,+x,], X.,>,/3.

lines, averaged over one period to give the inter-correlation, is as follows:

T - _ +

pi(T) = T y(x)dx + 1 j y(x)y(x- T)dx
T _+

- doI P(u)du]dx + Ix + P(u)du][
. (51)
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As for the self-correlation, this has changed only in that the curved portion

at the bottom has expanded at the expense of the linear portion (see Fig. 25)

and now extends over two of the T zones, from T = d-x, to do+x o. Since this

includes the middle range do-X < < 2xe, this curved portion of %s(T), given

by (46), now figures in the evaluation of A(T) which also extends over two of

the T zones instead of one. Since CpA(T) also extends over two different T

zones, from T = 0 to 2xo which is made up of 0 to d-xo and d-xo to 2x, it

must be determined separately in each of the two zones, but the result should

check (50) in both regions. Consider the first zone, 0 < d-xo, in which

cpi(T) is given by (45) and qs(T) is still linear and equal to (E /T)(d. - T).

Since both of the correlations are identically the same as in the previous

development, the expression for pA(T), is also the same, namely (47), (48),

(49), or (50). Next consider the second or middle zone, d-x e < T < 2e,

in which cps(T) is given by (46) and pi(T) by the new expression (51). Forming

the difference Cp(T) - pi(T), one obtains

2 X1 3C° rat Xo rt =
Tp() = +3 f P(u) du] dx f P(u)&du][f P(u)duldxj

-xo + T - x + x - T

This is seen to be identical to (48), and this again leads to (50), which

therefore proves that the same result is obtained for any physically possible

value of maximum time shift x.

Another simplifying assumption made at the beginning of the analysis was

the restriction that the mximum pulse duration d+xo be limited to less than

half the period. The purpose of this was merely to prevent the adjacent lobes

of the auto-correlation from overlapping, since their width is twice the maxi-

mum pulse duration but their spacing the same as the pulse-repetition period.

Suppose this condition is no longer met; the pulse-overlap picture is now

much more complex, many pulses overlapping more than one shifted pulse at a

time. If, however, the pulse train is split into two new pulse trains, alter-

nate pulses going to each one, then the result is two new functions each of

which meets the original requirement and which add up to the original fnc-

tion. Now, it can be shown by simple substitution that the auto-correlation

of the sum of two time functions is the sum of the individual auto-correlations
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and twice the cross-correlatioA? between them. The cross-correlation between

the two functions is wholly periodic, as can be appreciated easily when one

remembers that there is no possibility of all the pulses overlapping their

own shifted replicas which is the usual source of any aperiodicity, so that

there is no self-correlation. Since we are concerned only with the aperiodic

correlation components, it is clear that the cross term has no bearing on the

problem and that cp(T) for the complete pulse train is simply the sum of the

qp.(T) functions. This proves that p(T) as given by (50) is totally independ-

ent of the maximum pulse duration, even if the total auto-correlation no

longer has the appearance of separate lobes.

The final assumption to be justified is that of the symmetrical proba-

bility distribution. If the pulse duration is d in the absence of any edge

time shifts, then, in the presence of the time shifts, the average pulse du-

ration is also d only if P(x) is symmetrical. Suppose that it is asymmetri-

cal, as shown in Chapter 2 (Fig. 10). The average pulse duration is now

larger than d and may be denoted by d. This makes both the self- and inter-

correlations larger by equal amounts, leaving the difference or aperiodic

component unchanged. In the original derivation of %(T), d4 would be re-

placed by d in certain instances, but would remain unchanged in others, as

can be ascertained by a study of Figs. 24 and 25. While (45) remains unaf-

fected, d changes to d in (41), steepening the slope of the linear portions

of the correlation lobes and raising cps(O) by a factor of d4/d; qpi(T) is

boosted in a different way, namely as a result of the fact that the relation

(b) on page 53 no longer holds, the integral now being larger than xo by the

same amount by which d exceeds do. It is clear, therefore, that in the sub-

traction and substitution process in (47) and (48), the increase drops out,

so that (48), (49), and (50) are completely unaffected by the nature of P(x).

It should be pointed out, in this connection, that, because of the limits on

the integrals in these expressions, P(x) need be specified correctly only

within the limits - to xo . The function used to represent P(x) need not

be zero outside these limits, as P() actually is, but may have any type of

behavior.

The cross-correlation between f (t) and f (t) is defined as

12 cp2(T) Jim fl(t)f2(t + T)dt
)T
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The general formula for the aperiodic auto-correlation component, re-

peated here for convenience, is

(T) = I P()][ P(u)u][ (u)dul]dx. (50)
+ T to

This will now be applied to finding the power spectra for the more important

probability distributions. In Chapter 2, some of the probability distribu-

tions for time shifts resulting from interference were derived and illustrated.

Before applying these rather complex distributions, it is instructive to con-

sider simpler distributions which are also of more than academic interest Of

particular interest is the "flat" or constant distribution, which gives no

preference to any one pulse-edge position, each pulse edge having an equal

probability of falling anywhere between the limits -x0 and x. As previously

noted, the equivalent nonrandom pulse edge is linear in this case, or the

equivalent pulse trapezoidal in shape. Since P(x) need not be specified

correctly outside the limits of x, the simple expression P(x) = can be

used, with chosen so as to make

ox~f P(W dx= 1
J-X0

which means that the combined probability of all the possibilities in unity.

The constant is 1/2xo, so that

P(x) P(U) = s (52)

Substituting (52) in (50), one obtains after evaluation of the integrals

2 T3) =~~~~~~~~z -. _(_.(v(T) - X (8 2 2 3 =2 1

:T 2 X .(Tx -O'O) .2T <24x, <x,)(24x3

,pA(T) = T U(1 TD)3 . (OTO < 2) (3
T2410 .-t
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The absolute value sign has been placed on T, since the function is known to

be symmetrical about T = 0. The fact that pA(T) is a simple cubic curve,

which is easily handled algebraicly, makes it a good illustrative example.

Some of the important characteristics are easily determined: with the 2/T

factor omitted, the height or value at = 0 is 1/3 x; the area, which will

later be shown to be directly proportional to the audio-noise power, is

1/3 . Plots of the positive-T half of the fnction for this flat proba-

bility distribution, as well as of those obtained for other distributions

will be found in Fig. 26. Before proceeding with the determination of the

power spectrum, it is preferable to derive the aperiodic auto-correlation

components for all of the other probability distributions to be considered.

A fact worth mentioning is that all probability functions between finite

limits, such as -x0 and x in the present case, can be regarded as amplitude

distributions of periodic functions. Thus it was shown in Chapter 2 that

constant-amplitude interference time shifts have a probability distribution

which is the same as the amplitude distribution of a sinusoid, a half-wave

rectified sinusoid or an intermediate waveform. One usually thinks in these

terms only if P(x) is such that the corresponding periodic function is a

simple well-known function. In the case of the flat" probability distribu-

tion considered above, the distribution is that of a triangular waveform, a

sawtooth, and various other possible functions which spend equal amounts of

time at all the amplitude limits of -x0 and x,. The mean-square value of
2

such a function is known to be 1/3 XJ, the same as the area under the cor-

responding correlation curve. It will be seen that this is no coincidence,

inasmuch as the same agreement exists for other probability distributions.

The second distribution to be considered is one which ay be called

"double-spike" probability distribution. It corresponds to the amplitude

distribution of a square wave, having half of its possible values concentrated

at xe and the other half at -x,. While it is impossible to represent P(x)

algebraically, it is clear that the two inside integrals in (50) are each

equal to one-half. Consequently, the aperiodic auto-correlation component

is given by

2 '° E 2

%t~(T) ~dT x =-(2x, - T), f
T 4 :
- xo
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and because of the symmetry about T = 0, this becomes

(T) 1 (2xo - TO). (TO < 2ox) (54)

This is a triangle the height of which is x and the area of which is 2,

2~~~omitting the 1I2/T factor. The mean-square or power value of the square wave
is X, again the same as the area under p,(T). To extend the parallelism
between the probability distribution and the periodic function having the

same amplitude distribution, the function's mean-square value minus its mean

value squared equals the square of the so-called standard deviation of the

probability curve, given by

x= (x)dx+ xP(x)dx] 2 (55)
_xo 

If one regards the periodic function as a voltage, then the square of the

standard deviation corresponds to the total power minus the d-c power (the

d-c component exists only for asymmetrical probability distributions). In

the present case, it will become clear, when the power spectrum is derived,

that, because of the equality between the square of the standard deviation of

P(x) and the area under %p(T), the low-frequency time-shift noise power must

be directly determined by the standard deviation.

The two probability distributions considered so far have the time shifts

distributed uniformly, and concentrated at the two extremes, respectively.

It is logical, now, to consider a third distribution, in which most of the

time shifts are concentrated near zero, the center of the probability curve.

This is represented by a part of the Gaussian error function with constants

so chosen as to make the function negligibly small (about 2 per cent of peak)

at - and +x e, and, of course, to make its area unity. It is given by

2 

p(x) = 2(
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Pig.26 Auto-correlation
functions, q,(T), of pulse-edge
time-shift noise.

1 T?. (Pi)va. Ai for various prob-
a lity distributions of time
shifts; maximum time shift = .
(Multiply all ordinates by E2 /T.)

J

Fig.27 Auto-correlation
functions, (p(T), of pulse-edge
time-shift noise.

4 (~I ) s. for two different
time-shift probability distrib-
ut ions.
(Multiply all ordinates by E 2/T.)

f
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Substitution of (56) in (50) results in a double integral which cannot be

solved analytically. The plot of p( T) in Fig. 26 was obtained by nu-

merical integrations. The area under the curve is approximately 1/9, cor-

responding to 1/9 x2 under the curve of pA(T). By making a power-series

approximation of this curve, one finds that it is fairly accurately given by

(57), plotted in broken lines on the same figure, and again of the simple

form found for the other probability distributions.

%(T) O1 (2xo O TO) 6 . (57)5

A comparison of the three curves in Fig. 26 shows directly that their

shape and the area under each one depends very much on the standard deviation

of the corresponding probability distribution.

Before studying the distributions of the sinusoid and rectified sinusoid,

it should be pointed out that the Gaussian distribution of time shifts is

that actually obtained as a result of random noise, so that the power spectrum

for this case should be of interest. The double-spike distribution of edge

time shifts is actually another way of representing missing pulses or rather

missing parts of pulses, namely the parts between - and xI, which are

present half of the time and absent half of the time. By adjusting the rela-

tive areas of the two spikes and letting do = 2 e, the missing-pulse problem

can be solved in general terms and gives the same result as obtained in the

latter part of this chapter by a different method.

The two most important probability distributions as far as the interference

characteristics of PTM are concerned are those derived and discussed in Chapter

2 and defined by (12) and (14), respectively. Again, the evaluation of (50)

cannot be performed analytically, and the two plots in Fig. 27, on the preced-

ing page, were obtained through point-by-point numerical integration. These

curves have been approximated by power series to better than one per cent

accuracy in order to facilitate the next step, namely the Fourier transforma-

tion leading to the power spectrum. For he "sinusoidal" distribution, the

approximation is given by (58), and for the "half-wave rectified sinusoidal"

distribution by (59).
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qra(T) = 0.0061(2X - T) + o. - TU)2 + o84(2D, _ TO) . (58)
x. X0

Qn(T) = o.0o339(2x - OTO) + 0. 0919(2 OO- DTD)2 ° °°(2 - DT)3 . (59)
Xe

The areas under the normalized curves, that is, the values of

1

-1

are 0.500 and 0.596, respectively. The former is equal to the mean-square

value of the corresponding sine wave of unity amplitude, and the latter

equals the mean-square value minus the square of the mean value of the cor-

responding half-wave rectified sinusoid. As is to be expected because these

distributions favor the larger deviations over small ones, the resulting

curves of q(T) fall between the curves for the "flat" and the "double-spike" dis-

triltions. It is of interest to note that the plots of q)A(T) do not show in

any way whether or not the probability distribution of the pulse-edge time

shifts is symmetrical.

3.3 Power Spectra of One-Edge Time-Shift Noise

It remains now to determine the power spectrum of the time-shift noise

for the various probability distributions by obtaining the Fourier transforms

of the various expressions for qcpa(T). All of these involve terms of the same

form, namely

K
_1(2X - OT0) , (DTO < 2)

Xe

but none of them can be expressed by a single analytic function, since they

end abruptly at -2 Xe and +2xe and since their derivatives are discontinuous at

T = . ach term can, however, be broken up into three functions in accordance
* ,21

with the method of translation and sectioning used by Gardner and Barnes. 

Each of the three functions of t, or T in the present case, are transformed

individually by the Laplace transformation, and the individual transforms are

* Gardner and Barnes, "Transients in Linear Systems", page 238.
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then added to give the desired transform of %pA(T). The details of the deri-

vations will be found in Appendix III, and only the results will be listed

here. Since the same type of terms occurs repeatedly with different coeffi-

cients in (53), (54), (57), (58), and (59), the transforms are given in

Table 1 on the next page with the general coefficient Kn , and the various

values of K for the different cases are listed below the transforms.n
It is to be noted that at zero frequency, the Fourier or Laplace trans-

form integrals reduce to the product of 1/2Y and the simple integral

J t,(T) dT

_Xo

expressing the area under the function being transformed. For this reason,

the power spectrum starts out at = 0 with a magnitude equal to the area

under qCp,(T) divided by 2, from which it drops off in a manner indicated by

the power-series approximations given in Table 1.

Graphical plots of the power spectra and the square-roots of the power

spectra for all of the probability distributions considered will be found in

Pigs. 28, 29, and 30. In all of these plots the ordinate has been normalized

with respect to the peak power density which always occurs at zero frequency,

and the frequency has been normalized with respect to the peak time shift, xO.

The curves are symmetrical about = 0, that is, they are mathematically the

same for negative frequencies as for positive frequencies. Physically, this

means that the actual power density at any actual frequency is twice as much

as plotted. The noise represented by these spectra is referred to as one-edge

time-shift noise, since only one edge of each pulse is subjected to the time

shift, in contrast to two-edge noise to be considered later. Plotting the

magnitude of the square root of the power density, though it does not have a

direct physical meaning, helps spread the curves and accentuate some of their

characteristics, such as the damped oscillations present to some degree in all

of the curves. Table 1 shows that the sin xw/xew term, or its equivalent,

which is responsible for this oscillation, is present in all of the spectra.

This is to be expected of the transforms of all functions with definite limits;

however, in the function (2xc - OTO)n the higher n becomes, the smoother is

the transition to zero at TU = 2xo, more and more derivatives become zero

at this point, and the less noticeable is the oscillation in the transform.

It is of interest to note that, since the frequency appears as the
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normalized variable xw everywhere, the decrease of the spectra with increasing-

frequency as well as the location of the maxima and minima, are determined

solely by the maximum time-shift excursion. Such factors as average pulse du-

ration and pulse-repetition frequency have no bearing whatever on the noise

power spectrum shape, but the magnitude of the spectrum is directly proportional

to the pulse-repetition frequency. It is logical, of course, that the maxima

and minima, being reflections of the time-shift limits, are most pronounced

where the probability distribution favors the extremes, as in the case of the

double-spike and the rectified-sinusoid distributions. As previously mentioned,

time shifts which follow the double-spike probability distribution are equiva-

lent to randomly missing pulses of a duration 2, which explains the nulls

in the spectrum; these nulls are spaced at 1/2xo cycles per second.

In order to evaluate the audible portion of the noise plotted in the

graphs, some values will have to be assumed, such as the top audio frequency

and the maximum edge time shift. In order to arrive at the largest audible

values of xw likely to be encountered, suppose that the top audio frequency

is 15 kc ( 105 se -1), and the peak time shift is one microsecond (x = 10-6

sec). The spectrum is then of direct interest only over the range 0 < rw <

0.1, since only the power in this range is audible and contributes to the total

audio noise power. Inspection of all the noise spectra and their series ap-

proximations in Table 1 shows that the decrease in power density from the

zero-frequency value is negligible at xw = 1; even in the "worst" case, that

of the double-spike distribution, the drop is only about a third of one per

cent, and with the sinusoidal distributions, which occur in practice, it is

still less. The conclusion is that, for all practical purposes, the audio-

noise spectrum is entirely flat before being deformed by the transmission

characteristic of the receiver audio system. After passage through this

system, the power-density spectrum will therefore have the same shape as the

square of the audio transfer characteristic. The total audio-noise power is

the area under the final power-density curve, up to the highest audible fre-

quency. Therefore, so long as the audio system characteristic is known, no

matter what its shape may be, the output noise spectrum and total noise power

can always be computed. They are given by (60) and (61), respectively, in

which H(w) is the audio-system function, and wo the highest audible frequency.

Output-Noise Power-Density Spectrum = E2 (w) () (60)
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W.

Total Audio-Noise Power P = 2f R2 (W)04(W)dW . (61)o

The multiplying factor of two in (61) is required because the integration

extends only over positive values of frequency. As shown above, ~A(i)

changes so little between 0 and wo that it ca be treated as a constant in

the above integral. This constant is A(0), and the remaining integral is

simply the area under the squared adio-frequency characteristic.

In the ideal pulse system the audio frequency characteristic is flat up

to p/2, half the sampling frequency, and is nonexistent above p/2. This is

the characteristic of an ideal low-pass filter with cut-off frequency p2,

which is physically unrealizable, but can be approached as closely as desired.

With such an audio system, of unity gain, the output-noise power-density spec-

trum is, of course, substantially constant at the value 0A(O) up to = p/2.

The exact value of the total output noise power is

2 2(62)
ideal exact 2 0 ()d . 62)

The approximate value, which is within a small fraction of a per cent in most

practical cases, is given by

ideal approx. 2 = pI^(0) . (63)

It has been mentioned on page 65 that *A(0) is equal to

x.
l cA(T)dT

that is, the area under the correlation curve divided by 2rr; also, it was

found earlier that this area equals E 2/T times the square of the standard

deviation of the time-shift probability distribution, which may be denoted by

x or T. Consequently, in this case of the ideal low-pass filter charac-

teristic, the approximate noise power is given by

-67-



X0 X0

- rdT1 Z2C At= () = 2 (T) = 3 (64)ideal approx. = O - _ J TdT T2 Xo

Expression (64), from which it follows that the approximate effective noise

voltage at a one-ohm resistance level is equal to E(At/T), is a very inter-

esting result. The quantity At depends on the probability curve as given by

(55). It is also the root-mean-square value of the alternating component of

the periodic function At(), of which successive At values are random samples.

Clearly, if this function were sampled in orderly fashion to obtain an orderly

variation of successive time shifts with at least two samples per period of

the function, then the output alternating voltage would have a peak value of

Z(Atmax/T) and an effective or r-m-s value (t/T). This is the same voltage

as was obtained for the random noise above; it is the voltage obtained,if, for

example, the pulse edge is time-modulated sinusoidally, at less than half the

pulse-repetition frequency in which case At = 0.707 Atmax t and it is independ-

ent of the audio-frequency characteristic so long as the gain is unity at the

modulating frequency and zero at and above half the pulse-repetition frequency.

The above discussion leads to the following conclusion: random pulse-

edge time modulation with a certain mean-effective value produces random noise

the total power of which is approximately the same as that produced by periodic

modulation with the same mean-effective value, provided that the randomly

modulated pulses are passed through an ideal low-pass filter with cut-off at

half the pulse-repetition frequency. The periodic modulation is, of course,

at a frequency less than half the pulse-repetition frequency, md the audio

system through which the periodically modulated pulses are passed, while not

necessarily an ideal low-pass filter, must have the same gain at the frequency

or frequencies of the periodic modulation as the ideal filter in the random

case.

The fact that this relation between the power produced by random and non-

random time shifts is only approximate (though very close in all practical

cases) is a result of the fact that pulse-time modulation, with the modulation

and demodulation processes generally used, does not involve true periodic

sampling. The relation would of course be exact if (63) and hence (64) were

mathematically exact. This, in turn, would be possible only if (w() were

constant at the value A(0). In the case of true periodic sampling, it is
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easily seen that these conditions are fulfilled. Imagine, for example, that

the sequence of samples obtained by random sampling of some periodic function

is represented by a succession of impulses of infinitesimal duration, infinite

height, and area proportional to the sample value. The aperiodic auto-cor-

relation component is then also necessarily an impulse (in the T-domain),

from which it follows that the noise-power-density spectrum is flat, and the

relations described above as approximate are exact. Stated in another way,

the samples of a signal produce an ideal low-pass filter response whose mean-

square value is dependent only on their amplitude distribution. It is possi-

ble, also, to think of the perfect samples as finitely proportioned pulses of

sin /z shape, since such a pulse is the impulse response of the ideal low-

pass filter. Rectangular pulses of finite though constant duration cannot

represent true samples in the way that impulses or sin z/z pulses can; they

are subject to the so-called aperture effect, which appears in the steady-

state frequency characteristic as a gradual drop in response with increasing
3,24frequency. A good treatment of the theory of sampling may be found in

a recent publication. 5

Pulse-time modulation, with the usual modulation and demodulation processes

does not represent true sampling for reasons similar to but more complicated

than the aperture effect in amplitude-modulated pulses. Not only is the time

used to convey the instantaneous sample of finite duration, but the time inter-

val taken to convey it is of variable magnitude and time position, depending

on the sample values. As mentioned in Chapter 1, this departure from true

sampling shows up as intermodulation distortion in the steady-state sinusoidal

characteristic, and it appears in the peculiar drop-off of the power spectrum

found in this chapter. In the limit as Atm x approaches zero, all these

"symptoms" disappear: the spectrum is stretched in inverse proportion to

Atmax or x. and therefore becomes flat in the limit, showing that perfect

sampling is approached with very small time shifts. This is true in spite

of the fact that the pulse duration is finite and may in fact be nearly as

long as the sampling or pulse-repetition period. That portion of the pulse,

of duration d-x o , which is never affected by the edge time shift has no

effect whatsoever on the alternating component of the output.

The auto-correlation method of analysis thus proves itself a powerful

tool in statistical problems in which the conventional approach would be very

cumbersome and in which results obtained by logic are frequently unsatisfactory
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because of lack of proof and preciseness.

3.4 Auto-Correlation of Two-Ede Time-Shift Noise

It is not difficult to extend the results thus far obtained to the more

complicated cases of pulse-edge time shift, in which both pulse edges are

involved. Results for two-edge time-shift noise will be directly applicable

to various situations in which duration-modulated pulses are the desired sig-

nal, and the interfering signal is continuous or consists of pulses with

fairly high duty factor. ithout further explanation at this point, it suf-

fices to state that three cases of two-edge time-shift noise should be ana-

lyzed, in which the time shifts are subject to the following conditions,

respectively:

1. The individual time shifts of the two edges of each pulse are independent,

as though they were shifts of edges belonging to different pulses. This

case calls for very little additional mathematical work beyond that needed

in the one-edge case.

2. The time shifts of the two edges of each pulse are equal in magnitude and

sense, so that the entire pulse is shifted intact. The noise resulting

from such time shifts may be called PPM noise.

3. The time shifts of the two edges of each pulse are equal in magnitude but

opposite in sense, so that the duration of the pulse is changed. The

noise which results in this case may be called PDM noise. The determina-

tion of its spectrum will be found more complicated than that of PPM noise.

Case 1

The simplest way of obtaining a clear picture of how the auto-correlation

function differs from that obtained for one-edge time shifts if both edges

are shifted independently, is to refer back to Fig. 21 and the four numbered

paragraphs on pages 45 and 47. These explain qualitatively how and why the

rounded tops and bottoms in the auto-correlation triangles occur. The rounded

top of the inter-correlation results from the decreased total overlap when

pulses overlap with the shifted replicas of other pulses, as explained in

Section 3.2 on page 47. If both edges "wigglee with the same maximum excur-

sion previously experienced by only one edge, this decrease in overlap is

simply doubled. Quantitative analysis by the equivalent nonrandom pulse, which

now has two symmetrically sloping edges, instead of only one sloping edge,
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confirms this. Inasmuch as the top of the self-correlation is unaffected,

the aperiodic component of the auto-correlation, CqA(T), is Just twice as

large as that given by (50). The rounded bottoms of the auto-correlation

curves were shown to result when the fixed edges of the shifted* function co-

incide with the time-shift range of the moving edges. This phenomenon was

found not to contribute to the aperiodic auto-correlation component, since it

is common to both the inter- and self-correlations. In the present case of

independent two-edge time shifts, curvatures at the bottoms of the auto-cor-

relation triangles are again common to all of these and hence do not contribute.

It is of importance to note, however, that the shape and extent of the curva-

ture are different from those found before, since they are now caused by over-

lap of the leading-edge time-shift range of the function and the trailing-

edge time-shift range of the shifted function, and vice versa. It is readily

seen that the partial overlap of these two regions or ranges, both of which

have a width of 2xo, extends over 4x, namely from OTO = d-23x to OT = d+2xo .

This is twice as much as the previous extent from d-xo to do+xO. The curve,

previously given by (46), is now the same shape as the top curve, as might

have been expected from the fact that both curvatures are now caused by overlap

of two sets of independently shifted edges. Consequently, the expression for

the curvature at the bottom is such that if it is subtracted from the straight

triangle obtained in the absence of time shifts and translated by an amount

do to the origin, the result is precisely (50). While this has no effect on

the aperiodic component of the auto-correlation in the present case of inde-

pendent time shifts, it is of primary importance when the shifts of leading and

trailing edges are related, as in Cases 2 and 3.

The conclusion, as far as Case 1 is concerned, is that q,(T) is the same

as for one-edge time-shift noise, except doubled in magnitude. Consequently

the power-density spectrum is also doubled in magnitude, but is otherwise un-

changed, and the power in a given frequency band is doubled or the rms voltage

raised by a factor of the square root of two. It is interesting to note that

the effect of subjecting the previously fixed pulse edges to independent time

shifts is identically the same as the effect of doubling the pulse-repetition

frequency, regardless of the relative spacing between leading and trailing

edges, that is, regardless of the average pulse duration.

* The word "shift here refers to the parameter T of the ato-correlation.*The word n shiftml here refers to the parameter ? of the auto-correlation.
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Case 2

Regardless of whether or not the time shifts of the leading and trailing

edges are independent, the inter-correlation is determined entirely by the

correlation between different pulses with independent time shifts, so that in

Case 2, as well as in Case 3 and all other types of two-edge time shifts, the

inter-correlation is exactly the same as in Case 1. The self-correlation, on

the other hand, is very much dependent on the relation between the time shifts

of the two edges of each pulse. The top of the self correlation (at T = O)

is of course never affected by any time shift, since every pulse completely

coincides with its own replica; but the bottom portion (around T = d4) is a

direct measure of the correlation between the leading edge and trailing edge

of the same pulse. In Case 2 the two edges of each pulse shift together,

leaving the pulses intact, so that the entire self-correlation is identically

the same as without any time shifts, namely a triangle. The quantity of

interest is the difference between this triangle and the inter-correlation;

as illustrated in Fig. 31. The three separate little "bumps blend into a

single curve if the maximum time shift x equals or exceeds one-fourth of the

normal pulse duration d. The condition x. 1/4 d takes the place of the

former condition x 1/3 di required in order that there be no overlap be-

tween the curved top and bottom portions of the inter-correlation. As before

(see 3.2 pages 54-57), it can be shown that the aperiodic auto-correlation

component derived under this condition is nevertheless the general result.

From the discussion of Case 1, the expressions for the three bumps" or

lobes in ig. 31 are already known. The center lobe is given by (50) mlti-

plied by a factor of two.

2 ~ 1* 

(T) = J If P(u)du]jf P(u)du] dx . (65)

The two outside lobes, when inverted and transposed to the origin, are also

each given by (50), as will now be shown. Subtraction of the inter-correla-

tion from the straight auto-correlation triangle yields three lobes which are

symmetrical about T = 0 as a group and each of which is symmetrical about its

own center if P(x) is symmetrical. The right-hand lobe, for example, is
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symmetrical about T = d4, extending from d-2xo to d+2xo. Now, since the

triangle (see ig. 31) extends only as far as T = d, the half of the right-

hand lobe between d and d+x e is identical to the inter-correlation with

reversed algebraic sign. This makes a simple one-step derivation possible,

as follows.

E2 < SELF-CORRELATION
T d1f . \ s

TION

Fig. 31 Auto-correlation of
"PPM noisel.

aY ._a V a _nv to Uo-CA¶ l 1 UO-r"AO T A&' 

__~ T-

Fig. 32 Derivation of inter-
correlation of pulses with two-
edge time shifts;

( do) < T < ( do ) + 2o .

Figure 32 illustrates the derivation of the expression for the side lobe
of the aperiodic auto-correlation component by the equivalent nonrandom pulse

method. The diagram is drawn for the condition d < T d+ 2 x, for which a
single multiplication expresses the product of the two curves, and this
product divided by T gives the desired correlation component.

With the origin for x chosen, as usual at the average position of the

trailing edge, the equivalent trailing edge is given by

yt(x) = f P(x)dx .

-73-

�

-' f O - 1'+O r- - 'AOr



The leading edge of the shifted pulse is centered at T - d and is therefore

given by

x - T + de

(x - + 4) = P(x)dx

or by

x- T

yb(x- T) = XI P(x)dx

mx.

if it is desired to transpose the side lobe to the origin so as to make it

symmetrical about T = . While its actual position at T = de must of course

be remembered, it is convenient to delete the d wherever it appears in con-

nection with the shifted leading edge, making that edge centered at T, rather

than - d. The term d, although it is included in parenthesis in Fig. 32

is therefore not included in the mathematical expressions below. Since the

lobe is symmetrical about T = 0 if P(x) is symmetrical, only the right half

need be given.

IO

ide o _(X)V(x - )d x (O < T < xe)
side lobe v

T- (T + d) -O

2 XO Xe x -
= I -[ P(u)dut][ P(u)du]dx . (66)

The expression on the right-hand side of (66) is recognized as being identical

to (50), except for sign, and the above is presumably the simplest possible

derivation of this important function. The notation T-. (T + d4) indicates

that, to get the actual positions, T should be replaced by T + 4.d

Returning to Fig. 31, one finds, therefore, that the two negative side

lobes have the same shape as the center lobe, but are each only half as tall

and hare half the area. The total area, if considered all positive, is

exactly four times that under qA(T) as given for one-edge noise by (50); or,

if the area of the negative lobes is considered as negative, then the net area
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is zero. For a flat probability distribution of time shifts, the three lobes

are composed of cubics, as in (53), with the center lobe given by

cp(T) = . 1 2 [2x - OTD]3 (67)
center lobe 12

Plots of (p(T) for four different relative values of xo and d will be found

on the following page, for the flat probability distribution, to show how the

shape varies when the three lobes overlap; the conditions for which Figs. 35

and 36 are plotted cannot, in general, result from interference, since the

peak time shift, xo , cannot exceed the pulse rise or decay time. For

asymmetrical probability distributions, the expressions for cp,(T) are more

complicated; the side lobes do not have the same shape as the center lobe and

they are not generally symmetrical about their own centers; however their areas

are still the same, each equal to one-half the center-lobe area (see Appendix

II).

The determination of the power spectrum corresponding to the aperiodic

auto-correlation component consisting of three lobes will be postponed until

after the consideration of Case 3, which will be found to give three lobes

also.

Ca-s 3

Case 2, in which the two edges of each pulse shift in unison, was found

to be characterized by a triangular self-correlation. Going to the extreme

opposite, Case 3, in which the two edges of each pulse shift together but in

opposite senses, one finds a certain departure from the triangular shape. The

inter-correlation, as explained under Case 2, does not change. Therefore,

that departure from the triangular shape must be solely responsible for

changing the end result cpq(T) of Case 2 to a new result for Case 3. The

simplest procedure is therefore to determine the difference or departure of

the self-correlation from the triangle, and then to add this to the three

lobes obtained previously in Case 2.

The self-correlation departs from the triangular shape in the same

general way as in the case of one-edge noise, that is, by the curvature

extending to both sides of DT = . In the case of one-edge noise, as ex-
plained in Section 3.2 on page 47, this curvature is associated with the
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coincidence of the "shifty" trailing edges and the fixed leading edges, which

means that some pulses have some partial overlap with their shifted replicas,

and others do not. In the present case, the fixed edges are replaced by

edges which are shifted from their normal positions by amounts equal and

opposite to the shifts of the other set of edges with which they partially

coincide. This is in sharp contrast to the situation associated with the

bottom curvature of the inter-correlation, where the two sets of coinciding

edges have independent shifts. In the present case, since the relative shifts

between the two sets of edges under consideration (e.g., the trailing edges

of the pulses and the leading edges of their shifted replicas) are just double

the absolute shift of either, it is possible to consider one set of edges

fixed and the other shifted twice as far. The equivalent nonrandom pulse

principle cam then be applied, as shown in Fig. 37, where the leading edge of

the right-hand (shifted) equivalent pulse is vertical, and the trailing edge

of the left-bhand pulse extends symmetrically about the origin over twice the

usual range, so that the equivalent maximum time shift is At max = 2x,. It is

clear from Fig. 37 that the product of the two functions will give the entire

curved portion of the self-correlation, extending from T = d-2x, to d+2xe.

If the triangle, which extends only to T = dO, is subtracted out, as shown

in Fig. 38, the resulting lobe (as well as its mirror image for negative T)

is symmetrical about its center at TO = d, in the same way as in the inter-

correlation (see Fig. 31) provided that P(x) is symmetrical. The simplest

procedure, therefore, is that used in determining the side lobe in Case 2:

find the self-correlation in the range d < < d+2x,, within which it is

also the difference between the self-correlation and the triangle, and then

transpose this to the origin. It is only necessary to carry out the multipli-

cation of the overlapping curves in Fig. 37, with d deleted, that is with

the vertical edge located at T rather than T - d. The broken curve, there-

fore, is given by

t (x- T) for x T ,

and the solid curve, representing the equivalent trailing edge, is given by

yt(x) = J P(Z)dx (to be used for 0 < < 2xe).
x

The expression for Yt(x) differs from (43)(see page 50)by the various factors

of two appearing in it; these have the effect of stretching the edge over the
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required ±+2xo time-shift range. The desired correlation component is given

by (68).

cpA(T)
side-lobe comp.

2xo

= X yt(x)yz(x - T)dx

2 2xo

T'

( < > )

la- P(')dudx2

71771J_- E
Fig.37 Determination of

self-correlation for "PDM time
shifts"; do-23o < T < do+2x o .

Fig.38 Determination of
side-lobe component to be added
to auto-correlation of PPM noise"
to give auto-correlation of "M
noise".

SIDE-LOBE COMPONENT

"PPM" AUTO-CORRELATION

Fig. 39 Determination of auto-
correlation of PDM noise".

Figure 39 illustrates how this expression is used to determine the over-

all aperiodic auto-correlation component for Case 3. Expression (68)
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represents the departure of the self-correlation from the triangle; this

departure or difference is a side lobe coinciding completely with the side

lobe of Case 2, transposed to the origin. It is necessary only to add this

side lobe component to the side lobe of Case 2, in order to convert the CPA(T)

for Case 2 to the CP(T) for Case 3.

The aperiodic auto-correlation component p'(T) for Case 3 consists of

three lobes. The center lobe is identical to that obtained also in Case 2,

given by (65), repeated here for convenience.

2 1X X x T

e(T) l X f P(u)du][ J P(u)du]d x. (65)
center lobe T - x. x -x0

It will be remembered that this gives only the right half of the center lobe

the left half (for negative values of T)being identical. The side lobes are

the same as those of Case 2, plus the new additional side-lobe component

given by (68). Since the side-lobe expression (66) and the additional compo-

nent (68) are both referred to the origin, they can be added directly. The

resulting expression (69) gives the right half of the new side lobe for Case

3, the left half being identical; while (69) gives the side lobe as being

centered about T = 0, it must be remembered that there are actually two such

lobes centered at T d4 and -do, as indicated by the notation T- T d.

2 2xO zi, to -X x T

lobe = [U f ('U)4ftdx - fP(u)dulf ?(u)dnldxsi de be) T 2 OJX
T- (T ) v x Tx x - xO

(69)

The side lobes of p(T), given by (69), generally have a different shape

than the center lobe, given by (65). The center lobe is positive and generally

concave upwards over its entire range, while each of the side lobes is now

also positive and generally convex upward over part of its range. An exception

occurs in the limiting case of the double-spike probability distribution which

makes all three lobes triangular. In spite of the generally different shape,

however, it can be shown that the area of each side lobe is exactly half that

of the center lobe. The total area under CpA(T) is therefore four times that
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under the pi(T) lobe for one-edge noise given by (50).

The expressions and plots for the center lobe, which are the same as (50)

for one-edge noise, have been previously given and plotted for the five dif-

ferent probability distributions. It will be of interest to evaluate the side-

lobe expression (69) for some specific probability distributions. Here again,

only the first term need be considered, since the econd is the negative of

(50) for symmetrical P(x). This first term of (69) is given by the following

particular expressions for the double-spike, flat, and sinusoidal probability

distribution, respectively:

2

PWc): double-spike: e [2Xo - GTO]

flat:

P(x): sinusoidal:

T [2x0 - OTO]2

E2 i 1 T ) T]321 1 -(T) + T s in (#)i -IT]T 1.[2x, xx0 2

Fig.40 Side lobe of p~,(T)
for "PDM time shifts"; q)side lobe(T ) s T.
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The second term of (69) to be subtracted from these three expressions is

given by (54), (53), and (58), respectively. In the case of the double-spike

distribution, the resultant expression for the side lobe (both terms of (69))

is given by ( 2/T)[2z - TG], a triangle; for the flat distribution it is a

quadratic curve minus a cubic, while it is still more complicated for the

sinusoidal distribution. Graphical plots of one of the side lobes for the

flat and sinusoidal probability distributions, respectively, are given in

Fig. 40. The overall aperiodic component of the auto-correlation, pA(T), has

the appearance of a center lobe, and two side lobes which generally have shapes

different from that of the center lobe, are less than half as tall, but each

have Just half the area. If d is less than 4, they blend into a single

curve. Plots of Cp(T) for three different relative values of x and dwill

be found in Figs. 41, 42, and 43.

Figs.41-43 Auto-correlation of
"PDM noise" for flat" time-shift
distribution; P(x) = 1/2xo.

Before proceeding to the power-density spectra for two-edge time-shift

noise, the findings of the preceding pages will be recapitulated. In Case 1
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(see page 70), the aperiodic auto-correlation component, mp(T), was found to

consist of a single lobe identical to that found for one-edge time shifts,

except that it is twice as large in magnitude. Consequently, the power spec-

trum is simply multiplied by two. In Case 2, Cp,(T) was found to be composed

of three lobes, a large center lobe identical to that of Case 1, and two

negative side lobes each half as large in area. Finally, in Case 3, cp,(T) is

also composed of three lobes, the center lobe being the same as in Case 2,

the two side lobes being positive and each having half the area of the center

lobe.

3.5 Power Sectra of Two-Edge Time-Shift Noise

Since the power-density spectra have already been determined for one-edge

time shifts with the various probability distributions, it will not be diffi-

cult to determine them for the various cases of two-edge time-shift noise.

For Case 1, in which the edges of each pulse have independent time shifts, it

has already been noted that the spectrum is the same as for one-edge time-

shift noise, except multiplied by two. Certain facts can be seen by inspection

for Cases 2 and 3 also. The zero-frequency power density, ~d(0), is propor-

tional to the algebraic total of the area under Cp6(T). In Case 2 ("PPM noise"),

this total area is zero, since the side lobes ust cancel the central lobe.

In Case 3 ("PER noise"), it is four times as large as for one-edge noise with

the same time-shift distribution and same maximum time shift. The expressions

for the complete spectra in Cases 2 and 3 can be found by using the previously

obtained transforms and by applying the theorem of real translation to account

for the "off-center" location of the side lobes. This theorem states that, if

the Fourier transform of f(t) is F(jw), the transform of f(t + a) isE±JawF(j.),

under certain conditions. In the present case, f(t +± a) will be replaced by

the side lobes of qp(T),±Ja"F(jw) by the component of 0/(w) corresponding

to the side lobes, and the translation distance + a will actually be +d.

Consider Case 2, where, if P(x) is symetrical, the side lobes are iden-

tical in shape to the center lobe, differing only in sign and in magnitude by

a factor of two. The spectrum contribution of the center lobe is the same as

for one-edge time-shift noise (see Table 1, page 6 ), multiplied by two, that

is, 2*(w) . The spectrum contributions of the two side lobes are
one-edge J~

-t(0m) e dw and -(,) e , respectively. The total side-lobe
one-edge one-edge
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jdOW -J4W
contribution is therefore-() [ WE + e ], and this is equal to

one-edge

- (W) cos d. The power-density spectrum of the complete three-lobe
one-edge

combination will therefore be given by (70) as follows.

=-2E ( ) X [C - cos o]. (70)
two-edge, Case 2 one-edge

The spectrum is seen to have nulls at frequencies for which dow equals zero

and 2 (where n is ny integer), that is, it has nulls at zero frequency, at

the frequency (expressed in cps) which is the reciprocal of the average pulse

duration d4, and at all multiples of this frequency. Between these nulls,

the spectrum has maxima which reach four times the corresponding magnitude of

the one-edge time-shift spectrum. This is correct regardless of whether or

not the three lobes have partial overlap and blend into a single curve, since

the law of superposition can be applied in either case. As an example of this

spectrum in a typical case, a plot is shown in Fig. 44 for the flat probabil-

ity distribution and d4 = 4x, the border-line case in which the three lobes

Just touch. The corresponding plot of qrp(T) was given in Fig. 34. The audio-

frequency portion of the spectrum is, of course, of primary interest; the

low-frequency behavior is now governed principally by the average pulse dura-

tion, d4, rather than by the peak-edge time shift, x. It will be of interest

to compare the total audio-noise power with that obtained for one-edge noise

in (64) on page 68, under similar conditions. The same ideal pulse system

will be assumed, in which the audio system has an ideal low-pass filter

characteristic with unity gain up to = p/2, half the sampling frequency.

The very good approximation introduced in (63) and (64) will again be used

here, that is, 4A(w) will be assumed constant at $)(0) between w = 0 and
p~/2. one-edge

The total audio-noise power will then be given, in a manner analogous to

(63), within close approximation, by (71).

p
2

Ptwo-edge S 2( )AeAM 2 (1 - cos d)dw . (71)
Case 2 one-edge
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Then, in the same way in which (64) results from (63), and by carrying out

the integration, the following relation can be derived from (71).

P E~2 rt sin (72)
two-edge T 2 P2 d s 
Case 2

The ratio of two-edge "PPM noise" to one-edge time-shift noise, nder the

conditions assumed, denoted by Rppm, is therefore given by (73).

P pd,
~R aE2 - do sin 2 ]*(73)

This can be approximated by using the first two terms of the series expansion

of sin pdo/2, the first one of which cancels the p/2 term, yielding

w2 D2R 3 (74)

where D denotes the duty factor, d/T or pdo/2.. The approximate expression

for the two-edge Case 2 noise power then becomes

~22
two-edge T2 3
Case 2

The error in this approximate expression, which results from neglecting the

other terms in the expansion is approximately plus twelve per cent in the

worst case (duty factor D = ), and decreases rapidly with decreasing duty

factor. It may be appreciated that such an error, giving a slightly higher

result, is unimportant in view of the limited significance of the noise-power

ratio R pm. This limited significance results from the fact that the twoppm
spectra being compared have radically different shapes. For the same total

power, the "ppm-noise" with its emphasis on high frequencies is more annoying

than the flat one-edge noise; on the other hand, this effect can be offset by

de-emphasis of the high frequencies.
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It is instructive to substitute some particular figaures into (74) so as

to obtain some numerical values of the ratio of "ppm-noises power to one-edge

noise power. Consider the two extremes likely to be encountered in practice

in a PDM system ( or any PTM system if demodulation consists merely of low-

pass filtering).* A low duty-factor value may be 0.02, which makes the noise-

power ratio given by (74) equal to approximately 0.0013, or little more than

one-tenth of one per cent, corresponding to a difference of almost 49 ecibels.

On the other hand, a high duty factor may be D = 1/3, and in this case the

noise-power ratio as given by (74) would be 0.35, which means that the two-

edge noise is still approximately 9 decibels lower than one-edge noise.

The approximate expression (72) for the total audio-noise power can also

be obtained without the use of auto-correlation analysis by heuristic methods,

as will be shown in a later chapter (see Section 4.5)** Such methods, how-

ever, give rather incomplete pictures in general and frequently do not show

whether or not a result is approximate or exact, or how large the error of

approximation is. For this reason, the auto-correlation analysis is, of

course, much to be preferred.

Case 3 is somewhat more complicated than Case 2, as indicated by the fact

that the auto-correlation side lobes generally have different shapes than the

center lobe. If one ignores the difference in shape momentarily, so that

A(T) for ase 3 differs from &(T) for Case 2 only in that the side lobes are
positive rather than negative. In this way, one quickly obtains a good idea

of the appearance of the power spectrum. It is then easy to see that the

resultant spectrum is derived exactly as in Case 2, except for the reversal in

the algebraic sign of the side-lobe contributions to the spectrum. The ap-

proximate result is given by (76).

0(w) W 2¢(w) r + cos Dow] . (76)
two-edge one-edge
Case 3

The results of this chapter will also be applied to PPM systems.

** It is also shown how the above results are extended to cover the asym-
metrical rectified-sinusoid time-shift distribution.
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This spectrum is complementary to that given by (70) in that the zeros and

the approximate locations of the maxima are interchanged. Its zero-frequency

value is four times that of the one-edge time-shift noise spectrum, and the

rate of decrease with increasing frequency depends primarily on the average

pulse duration d. The approximate plot is superimposed on the exact plot

shown on page 87, and the agreement is seen to be good at low frequencies.

The exact expression for the spectrum in Case 3 is obtained by adding

to the spectrum of Case 2 the additional large spectrum contribution due to

the side-lobe components given by (68) or the first term of (69). This ad-

ditional spectrum contribution can be evaluated for any symmetrical prob-

ability distribution by substituting the particular P(x) in (68), taking the

transform of the result by the method of translation and sectioning, and

multiplying the result by cos dow to account for the off-center side-lobe

location. The particular side-lobe component expressions for three of the

probability distributions considered earlier were given on page 80. Addition

of one of these to the corresponding p(T) for Case 2 gives the desired q,(T)

for Case 3. With the double-spiked probability distribution this leads to a

result which is identical to the approximate result of (76); with the flat

distribution, for which various plots of PA,(T) have been given in
two-edge,Oase 3

Figs. 41, 42, and 43 and therefore serve as a good illustration.

If the transform or spectrum contribution of the side-lobe components (68)

is denoted by $t(W) , then a general expression for the composite spectrum

in Case 3 can bewritten as follows.

t(w) = 2&(w) + 2[$4(w) - (w) ]cos dw . (77)
two-edge one-edge s.£.c. one-edge
Case 3

For the flat probability distribution, the corresponding auto-correlation

components are as follows (see page81 ).

_ 2 - i
CPq(T) 21 [2x,, D'rOT]

one-edge 24O

E 2 1cpt'(T)1 [2XO- OO] .(5:3)
Sot.C. x
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- The transforms will be found in Table 1 on page 63; substituting them into

(77) gives the following expression for the complete power spectrum.

D(W)
two-edge
Case 3

xt s in xw 2 2 sin 

- 1 - (- ) coo 4w .x*W
(78)

2 4 61 8 10 12
2R w

NORMALIZED RADIAN FREQUENCY dow NORMALIZED RADIAN FREQUENCY dow

Fig.44 Fig.45
Figs.44-45 Normalized power spectra of two-edge time-shift noise for

flat probability distribution of time sifts) Pig.44: Case 2 ("); Fig.45:
Case 3 (PIH).

A plot of this exact expression for te spectrum is shown in Fig. 45, with the

plot of the appropriate expression (76) superimposed in broken lines, for the

borderline case d = 4xe in which the three lobes just touch, the sme condition
for which the spectrum was plotted in Case 2 (Fig. 44).
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The total audio-noise power will again be computed and compared to the

results previously obtained in other cases. As a first approximation, it may

be stated that this power is four times as great as for one-edge time-shift

noise under similar conditions. This ignores the more rapid decrease with

increasing frequency of the spectrum under consideration, and therefore gives

too high a result, expecially for large duty factors. With a duty factor of

0.50, the error is about twenty-five per cent, while it is less than one per

cent with a duty factor of 0.10, decreasing approximately as the square of the

duty factor. The ideal low-pass filter characteristic with cut-off at half

the plse-repetition frequency is assumed.

A more accurate comparison can be obtained by integrating the approximate

expression (76) over the audio band from = 0 to p/2. since this is rather

accurate within this low-frequency range (see Fig. 45). Assuming 4A(W)
one-edge

constant at '/(0) over this range, one obtains, in a manner analogous to (63)

and (71), the following expression.

Ptwo-edge 2 A(0) ~ 2 I + cos dwdw. (79)
Case 3 one-edge 0

By carrying out the integration and making use of (64), one arrives at the

following two relations, which differ from the corresponding relations (72)

and (73) for Case 2 only by the algebraic sign of the second term. Rpdm de-

notes the ratio of two-edge "PDM-noisew power to one-edge time-shift noise

power.

p ~ ~~~ IT2 4 = i2 +1 gipdo]80
two-edge 2 2 s 2 (0
Case 3

p V t[2 + 1 sin pdo (81)

It is of interest to note that RPPM and Rpdm, as given by (73) and (81),ppm p~n
respectively, add up to a constant, four. This indicates that, in the low-

frequency range, the power spectra for Cases 2 and 3 of two-edge time-shift
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(NPPM and PDM noise" respectively) are complementary; their sum is nearly

constant at four times the one-edge noise-power density value. This fact

has no great practical significance but may be found helpful in connection

with the discussion of two-edge time-shift noise in the next chapter (4.5).

By using the first two terms of the series expansion of sin pdo/2, and

designating the duty factor pdo/2T by the symbol D, the following approximate

formula for Rpdm is obtained. It has a small negative error which reaches

only a few per cent even at the highest duty factors.

2
R. 4- D 2D (82)

To gvea numerical example: with the low duty factor value 0.02, the ratio

is 4.00, and with the rather high value 0.3, the ratio is approximately 3.7.

In the light of the discussion of true and approximate sampling, on

pages 68 and69 , the following is readily seen: samples in the form of

symmetrically duration-modulated pulses are still further from being true

samples than those in the form of asymmetrically duration-modulated pulses.

The limiting factor cannot be the finite pulse-edge time shift, but rather

the finite pulse duration which is bound to be larger. It must be pointed

out, however, that this would refer only to true symmetrical PDM in which

each sample of a periodic sequence of samples advances the leading edge of a

pulse by the same amount by which it retards the trailing edge, or vice versa.

Such modulation is not generally used in practice, but a steady-state spectrum

analysis of it has appeared in the literature.10 The exact type of time modu-

lation, of course, has no bearing at all on the results obtained for the in-

terference noise; only the demodulation process, so far assumed to consist

of ordinary low-pass filtering, is of importance.

In closing the present discussion of two-edge time-shift, one point

should be made clear. As indicated, general formulas derived for the three-

lobe aperiodic auto-correlation component and then for the noise-power density

hold only for symmetrical probability distributions. While they are not radi-

cally different for asymmetrical distributions, such as the rectified-sinusoid

distribution, they are more complicated, inasmuch as the auto-correlation side

lobes are asymmetrical. The expressions for these asymmetrical side lobes

can be derived in the same way as the simpler expressions for the symmetrical
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side lobes, by the equivalent nonrandom pulse method. The Fourier transform

giving the power-spectrum contribution of the asymmetrical side lobes can be

found by the same method of translation and sectioning used previously. The

difference in shape of the side lobes has relatively little effect on the end

result, especially on the spectrum at low frequencies, since the area relations

of the three auto-correlation lobes are preserved. In order to prove this,

the exact solutions for two asymmetrical distributions are given in Appendix

II. The general results for two-edge time-shift noise, although derived on the

basis of symmetrical time-shift distributions, will give close answers also

when asymmetrical distributions are substituted for P(x).

3.6 Auto-Correlation of Missing-Pulses Noise

As previously indicated, the so-called missing pulses effect can be

treated as a special case of one-edge time shift with a double-spiked prob-

ability distribution, by adjusting the relative spike areas in accordance with

the fraction of missing pulses F, and letting d = 2. The spike areas, which,

of course, always add up to unity, will be F and 1 - F, respectively, and

these will therefore be the respective values of the two integrals in (50).

The quantities F and 1 - F are seen to be interchangeable inasmuch as only

their product appears in (50), which means that the aperiodic auto-correlation

component is the same for 30 per cent missing pulses as for 70 per cent missing

pulses. Expression (50) thus adapted to give pA(T) for the missing pulses ef-

fect becomes

2 de
qA(T) =- (F)(1- )dx. (-do < T < d) (83)

do+ T

Evaluating this integral yields the expression for the aperiodic component of

the auto-correlation, a triangle of height ( 2/T)2dO(F - F2) and width 2do.

32
cpA(T) = X-(F - e')(do - T0) . (-do < T < d) (84)

The same result can also be obtained more directly (rather than by way

of (50) ) by considering the missing-pulses effect as a separate phenomenon
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rather than a special case of the time-shift effect. This direct derivation
will now be given. The value of the auto-correlation at T = 0 is equal to
the mean power of the function, since there is complete overlap between f(t)

and f(t + T). This Value is ( 2/T)(d.) for the perfectly periodic sequence

of rectangular pulses, and if a fraction F of these pulses is missing, then
cp(O) is equal to (E2/T)d.(l - F). As TO increases, the overlap decreases
linearly, reaching zero at OT = d, forming a triangle Just as in the case

of the periodic pulse train, except with all ordinates multiplied by (1 - F).

This is the portion of the auto-correlation which has been designated by the

title "self-correlation", since it contains only the correlation of every

pulse with itself. Figure 46 shows the pulse train with randomly missing

(a)
X ~ ~~~~~- @ IMI LM~~~~~~~~~~F--

Fig.46 (a) Pulse train with
randomly missing pulses;

M (b) shifted replica of (a) for
_d < T < d (T = shift);
c) self-correlation of pulse

(~c) ~' () train.

-do 0 do r-

(a)

IM/I K :M J *,9 I , El M ElE ~ A~ tVf-N-- -'r_ __ . .. .

(b) r-~

T--(C) ~ [,_F]2//~o i T(S T~

. -l.'I vai ru.Lse raln wln
randomly missing pulses;
(b) shifted replica of (a) for

< inter-correlation of n]; s(c) inter-correlation of ulse
(c) train.

-do 0 do r 

pulses, as well as its shifted replica, and the resulting self-correlation.
Figure 47 shows how the inter-correlation is obtained (for the auto-correla-

tion values of OTO large enough so that pulses overlap with the shifted repli-
cas of other pulses). It is readily seen that the overlap must still change

linearly with T and form triangles of width 2d4, but the maximum overlap or
height of each triangle is decreased by a larger factor than in the case of the
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self-correlation. The probability that a certain pulse is present is 1 - F,

but the probability with which the partially overlapping pulse is present is

also 1 - F. Since the presence of both is required to produce the overlap,

the probability of this overlap is (1 - F)2 , and this is the factor by which

the height of the inter-correlation triangle is reduced from the maximum

(E2/T)(do). The inter-correlation is therefore given by ( 2/T)do(l - F)

(2do - ODT'). Subtraction of tis from the self-correlation, (2/T)do4(1 - F)

(2d - OD) yields the aperiodic component of the amto-correlation

pi(T) = [(l - FJ- [ - 2F + 2 (d - DTO) = F - 23(d - OTO). (85)

This result is identical to that obtained by the time-shift method, from

(50). It applies, of course, only if pulses are missing from an otherwise

unimpaired pulse train; if time shifts of the edges are also present, the

correlations of the two effects can not be simply superposed, as will be

shown in the next chapter.

3.7 Power Spectrum of Missing-Pulses Noise

The power spectrum of missing-pulses noise can be obtained from Table 1

(page 63), which lists the Fourier transform of 1(2Xo - DTO), [-2xo < T < 2].

In the present application, 2xo is replaced by d , and E1 is equal to

(E2/T)[F - F2], so that the power-density spectrum is given by the following

expression.

322 2 42 4Clw 22

4a() - - F [ F 2]( ) E ] . (86)

2

A plot of this spectrum is shown on the following page in Fig. 48, and, except

far scale factors, this is seen to be identical to the spectrum plotted in

Fig. 28 for the time-shift noise with the double-spike distribution. Nulls

occur at d4w = 2, 4, .... 2nn, corresponding to frequencies f = 1/do,

2/d o , .... n/d o, and the general variation is quite similar to that found in

the approximated spectrum for Case 3 of two-edge time-shift noise (PDM noise),

which has nulls at the same frequencies.
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Fig.48 Normalized power
spectrum of missing-pulses
noise.

NORMALIZED RADIAN FREQUENCY dow

The total audio-noise power can be roughly approximated by assuming %(W)
constant at A(0) for w = 0 to p/2. Remembering the factor of two to account
for the mathematically negative frequencies, one obtains (87), in which the
subscript mp" denotes missing pulses, and D = d/T.

PMP p a(0) 2D2 - F2]. (87)

A more accurate expression can be obtained by approximating the frequency
dependent [(sin z)/z] (see (86)) by the first two terms of its series
expansion 1 - (z 2 /3).

P 2(0 [1 _ 2 = p O)[ - D2 ] = 2D2[F - 2 ][1 - 2]. ( 88)ep ;t()E c~ ]=Z [ tD
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Expression (88) is accurate within one per cent for all values of the duty

factor D, and it differs from (87) appreciably only for large values of D.

The error in (87) is less than eight per cent at D = 0.50, and less than a

third of one per cent at D = 0.10.

Because of the small number of variables involved, the missing-pulse

phenomenon in its basic form, that is, with complete pulses rather than parts

of pulses missing, i seen to be considerably simpler than the time-shift

effect. Certain interference situations in two-station PAh interference

involve the missing-pulses effect in somewhat more complicated form, as will

be seen in the next chapter.
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CHAPTER 4

NOISE FORMLAS FOR SPECIFIC IN1T EJREJCE SITUATIONS

In order that the results of the preceding chapter may be properly ap-

plied to the great variety of possible situations involving interference,

these situations must be examined in sufficient detail to allow the problem

to be stated in terms of the interference effects discussed and analyzed in

the preceding two chapters. In the simplest situations -- simplest, that is,

from the viewpoint of simplicity of analysis -- the time-shift effect can be

applied directly without any further modifications of the basic results ob-

tained in Chapter 4; in others the missing-pulses effect applies directly in

its basic form. These simple situations, although not the most important

from a practical point of view, will be considered first, giving an opportu-

nity to consolidate some of the ideas of the last chapter.

4.1 One-Idle Time-Shift Noise in PIh

It has been stated previously that, with interference ratios less than

one-half, time-shift noise is the only manifestation of the interference.

This presupposes, of course, that the slicing level is above the interference

level a, usually adjusted to one-half the height of the desired pulses. In

certain cases, in which the interference consists of a train of pulses re-

peating synchronously or almost synchronously with the desired pulses, this

interference overlaps only, say, the leading edge of each desired pulse. This

condition may persist for several seconds or minutes, after which it will

shift to the other pulse edge, or it may persist indefinitely. Two-path trans-

mission might result in just such a situation, as is shown in Fig. 49, where

Fig.49 Partial overlap of
synchronous pulse trains caus-
ing one-edge time shifts.

the path-2 pulse train, with a relative delay of several pulse-repetition

periods, coincides partially with the path-l pulse train. Such a situation
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might also be the result of two-station interference, provided the pulse rates 

are identical or similar enough to cause this situation to persist for several

seconds or more.

The power of the random noise which the interference causes in the out-

put at a one-ohm resistance level is given by the approximate expression (64),

which is based on an ideal low-pass filter audio characteristic. In practice,

the audio characteristic, in order to have sufficient attenuation at half the

sampling frequency, begins to roll off at a considerably lower frequency, so

that the area under the squared transfer characteristic from w = 0 to p/2 is

lower than the ideal area p/2 assumed in (64). If the factor by which this

area differs from the ideal value is denoted by kf 2 then the noise power is

given by (89), and the corresponding noise voltage by (90).

P k 2 At (89)
n T2

V = k3 M (90)n f T

In these relations, is the pulse height at the output of the video stages

or input to the audio system multiplied by the low-frequency gain of the audio

system; in other words, it is the peak voltage of the pulses that would appear

at the output if the audio gain did not drop from its low-frequency value with

increasing frequency. At denotes the root-mean-square deviation of the time-

shift values from their mean value, which is equal to the square root of the

mean-square value minus the mean value squared of the periodic function At(0).

This function is given, for linear pulse edges, by (7) in Section 2.1; with

the slicing level at s = i, it is given by (91), below.

At() = 8[ + a cos - )2 (a)2sin2 ] ( < a < ) (91)

The positive sand negative peak values of At(p) are a8, no matter whether &

is close to zero or close to ½. However, the shape of the variation changes

from that of a sinusoid to that of a half-wave rectified sinusoid, as shown

in the graphical plots on page 17, as a increases from zero to . For small
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. values of a, it therefore follows that At = 0.7078a, since the r-m-s value of

a sinusoid is 0.707 times its peak value, and the mean value is zero. By

carrying out the appropriate integrations, it can be found that the mean-

square value of the half-wave rectified sinusoid is (2t-4)/T or 0.727, and

the ean value squared [(T-2)/l]2 or 0.132. The difference between these two

figures is 0.595, which is analogous to the mean-square value of 0.500 of a

sinusoid. From fO.595 = 0.771, it follows that At = 0.7718a for a near

which represents an increase of just ten per cent over the above formula for

E. More generally, At is given by the slowly convergent series given in

Appendix IV; for a considerably smaller than i, say A = 0.30, H exceeds 0.707a8

by less than two per cent, that is, most of the ten per cent total increase is

crowded ust below a = 0.5. This ten-pea-cent increase in the effective time

shift can occur also for small values of a, if the slicing level is decreased

so that a/s approaches unity, which is the third of the three reasons quoted

on page 28 for keeping at one-half when the interference ratio a is below one-

half.

More important than the ten per cent deviation from the linear relation

At - 0.7078a (which results from the increase in the mean-square value of the

time-shifts) is a much larger increase in At resulting from a different cause,

namely from the nonlinearity of the pulse edges. This factor is unimportant

for a less than 0.3, but may cause an increase of more than 30 per cent at a

- 0.4, and more than 100 per cent at a = 0.49. It becomes necessary, then, to

find At for the leading and trailing exponential edges, respectively, from

(20A) and (20B) derived in Section 2.1. The results are considerably different

for the two edges, particularly when a/s is not much less than unity, which

might have been predicted from inspection of the plots of At(0) for exponen-

tial pulse edges, in Figs. 13 and 14. An analytical determination of At is

not possible in this case, but numerical integrations of (20A) and (20B) to

determine the mean-square values and the squares of the mean values give the

desired results. For small values of a, these results are the same as those

obtained from the linear relation At = 0.7078a, provided that the rise time 8

of the linear pulse edge is twice as large as the time constant of the ex-

ponential pulse edge, (8 = 2), so that the slope at s = is the same for the

exponential edges as for the linear edges. As a increases beyond 0.3, the

effective time shifts for the exponential edges depart noticeably from 0.7078a.

At = 0.40, the value of E for the leading edge exceeds 0.7078a by the
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factor 1.32, and for the trailing edge, the corresponding factor is 1.42.

At a = 0.49, the corresponding factors are 1.98 and 2.64, respectively.

These of courseare exact results, obtained by numerical integration, but

rather good approximations giving only one value for both edges are obtain-

able from the following formula.

Et 0.35 r I L-a, (92)

This relation is simply the two-edge peak-to-peak time shift given on page

27 in Section 2.1, divided by two to give an average value for one edge, and

multiplied by 0.7 to give an approximate effective value. The factors by

which this expression exceeds 0.7078a are 1.37 and 2.47 for a = 0.40 and 0.49,

respectively, which compare favorably with the values given above.

Returning to (90), one may therefore state that, for the exponential

pulse generally used in practice, the effective time shift for small values

of A is t = 0.718a or At = 1.42.a. At = 0.2, this is approximately 5 per

cent low. A good approximation, which is within about three per cent for a <

0.4, is given by (92). Above A = 0.4, the effective time shifts of the two

edges become so noticeably different that only the exact solution by numerical

integration of (20A) and (20B) will give accurate values. The computed fac-

tore, given above, by which Et exceeds 1.42Xa, constitute sufficient additional

information to fix At within a few per cent over the entire range from a = 0

to 0.49. Approximate and exact plots of / Pya are shown in Fig. 50. The

output noise voltage, given by (90), is directly proportional to the ordinate

of this curve. With some of the approximations for t substituted into (90),

one obtains, for exponential pulse edges with time constant X, with the

slicing level assumed at s = i,

Vn = k 1.42 a (a < 0.2, 5 per cent low at a = 0.2) (93)n T

0.5 &n[ 1 2aTn kf 0.35 1 n 2l+a] (a < 0.4, 3 per cent error at a = 0.4) (94)

In order to give a practical significance to these expressions for the

output noise, they should be compared to the signal voltage. With sinusoidal
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aodulation effecting a maximm time shift Atm, the r-m-s signal output voltage
is

0.71 At
= .m· T (95)

Using expressions (93) and (95), one obtains the following formula for the

signal-to-noise voltage ratio, which, of course, is subject to the same limi-

tation as (93).

V

V 2akf n f
(a < 0.2) (96)

vs. I
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For larger values of &, the signal-to-noise ratio is somewhat smaller than

(96) indicates, by roughly 6 db when a is 0.48 or 0.49. In a typical situa-

tion, with the interference ratio equal to one-third, the signal-to-noise

ratio approximately equals the ratio of peak modulation time shift to the rise

or decay time constant of the pulses, Atm/k, if kf is assumed to be near unity

*~~~~~~~~~~~~~
* In the case of "symmetrical" PDM, At is twice the time-shift of either

pulse edge. m
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(actually it is usually closer to 0.6, favoring higher S/N). The magnitude of

this ratio depends on the particular system, of course. For example, Atm may

range from 1 microsecond to as much as 50 microseconds, and k may be between

0.05 and 2 microseconds depending only on the available bandwidth. Typical

values in a ten-megacycle-bandmidth multi-channel PPM system are = 0.05

and At = 2,giving a signal-to-noise ratio of forty.* In a single-channel

250 kc-bandwidth PDM system, possible values are = 2 and At = 40, giving a

signal-to-noise ratio of twenty. These are typical signal-noise values;

they decrease, f course, in direct proportion to bandwidth if this is re-

duced from the above values. If it were desired, for example, to design a

PDM system to compete with an FM system having a bandwidth of 150 kc and an

audio-frequency response good up to 15 kc, then the time constant would

exceed 3 microseconds, and the maximum excursion At would be only 15 micro-m
seconds. In this case, still with an input interference ratio of approxi-

mately one-third, the signal-to-noise ratio would be poorer than five. It

must be remembered, of course, that the case of one-edge noise is severe in

that each and every pulse is affected.

The present discussion and results may apply to PPM systems, as well as

PDM systems, under certain conditions, depending principally on the type of

demodulator used in the PPM system. The pulse position may be detected or

measured by utilizing the timing of only the leading or perhaps only the

trailing edge of each pulse, or it may be detected by way of the timing of the

center of the pulse. The former is the usual practice, and therefore, even

if the interference overlaps the entire pulse, only the mean effective time

shift of one edge will be of interest. The time position of that edge is

generally compared to that of the corresponding edge of an nmodulated time-

reference or synchronizing pulse; if this is free of interference, the situa-

tion is completely analogous to one-edge interference in PDM as discussed

above; otherwise the resulting noise would be 3 db higher. The details of PPM

detection schemes will be discussed in Chapter 5, but a few more pertinent

facts will be mentioned here. It is the time difference, of course, between,

say, the leading edge of the position-modulated pulse and the leading edge of

the reference pulse which is converted into a voltage amplitude at the output.

*The exact relationship between time constant and bandwidth depends, of
course, on the definition of bandwidth.
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This can be done in two fundamentally different ways. In the first and oldest

method, the time difference is converted into the duration of a pulse which,

as in PfM, is passed through a low-pass filter to the output; needless to say,

all time shifts are thus directly passed on to the final duration-modulated

pulse and have precisely the same effect as in a PDM system. In the second

method, the time differences are directly converted into amplitude samples

by a nonlinear circuit. No duration-modulated pulses are involved, and the

time-shift noise spectrum is therefore different from the spectra derived in

Chapter 4. However, the low-frequency portion and hence the audio-noise power

relative to the signal power is the same, regardless of the method of demodu-

lation.

4.2 Missing-Pulses Noise in PDM

While the missing-pulses effect usually occurs in combination with the

time-shift effect, there are certain interference situations in which it may

occur in its simplest basic form, the time-shift noise being relatively neg-

ligible or absent altogether. The situations mentioned at the beginning of

this chapter in connection with one-edge time shift noise will also cause

" simple" missing-pulses noise if the interference ratio is more than one-

half. The qualification "simple" is used to convey the fact that the identical

portion of each pulse, if not each complete pulse, is subject to the effect.

In other words, either all pulses are completely overlapped by interference as

would be true with continuous interference, or the same portion of succeeding

pulses would be overlapped by interfering pulses,which would generally happen

in the case of two-path interference. In either event, time-shifts will also

be present, but may have relatively negligible effect if the pulse rise or

decay time is very short, as will be seen later in this chapter. Interfering

pulses shorter than the desired pulses, having the same repetition rate, and

timed so as to coincide completely with a portion of each desired pulse, will

cause missing pulses without any time shifts.

It was shown in the previous chapter that the power of the noise caused

by randomly missing pulses is given approximately by (87). It can be readily

shown that the same formula applies,if, instead of the entire pulse only a

portion is susceptible to cancellation, provided that the duration of the

missing pulses is replaced by the duration of the susceptible portion of the

pulse. This portion is determined by the amount of overlap between the
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desired and interfering pulses. This overlap, divided by the pulse-repeti-

tion period, T, will be denoted by the letter U, the upper limit of which is

the duty factor D1 of the desired pulses. (The subscripts 1 and 2 refer to

the desired and undesired signals, respectively.) With D in (87) replaced

by the more generally applicable U, and with the filter constant kf first in-

troduced in (89) to account for the departure of the audio characteristic

from its ideal shape, the expression for the noise power becomes

PMp = k 2 2 (p - 2 ) .(97)

Since the above is the power normalized to a one-ohm resistance, the cor-

responding rms missing-pulses noise voltage is given by (98).

Y =kM lVJF-i . (98)
MP

It will be recalled that F is the fraction of missing pulses, or more generally

the probability that any one of the susceptible portions will actually be

missing. It is given by (34) and plotted as a function of interference ratio

a in Fig. 18. The rms signal output voltage is given by (95). In order to

obtain an estimate of the output signal-to-noise ratio under certain typical

conditions, it is convenient to write an expression for the approximate maxi-

mum rms signal in a PDM system; the maximum modulation time shift Atm is

limited to an amount somewhat less than the pulse duration; it may be approxi-

mately 0.7 do in a typical case. The approximate expression for the maximum

rms signal is therefore

V = 0.5 ED1 . (99)

The maximum signal-to-noise ratio is given approximately by (100), if it is

assumed that the signal itself is not affected by the missing-pulses effect.

p _ f i (1Vmp D :(F _
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At worst, U is equal to D1, as would be the case if the interference is contin-

uous or if it is a result of two-path transmission with the delay difference

equal to an integral number of pulse-repetition periods. Since the highest

possible value of is one-third, F 2 is 0.47 at most, and assuming 2kf

slightly more than unity, the signal-to-noise ratio in this worst possible

case of missing pulses turns out to be only two. The conditions are severe

in that the interference overlaps each pulse completely, and the interference

ratio is close to unity. The improvement with decreasing interference ratio

is very slow, inasmuch as F decreases very slowly (see ig. 18), andf- 

therefore decreases still more slowly. On the other hand, the noise voltage

decreases linearly with the interference overlap, U, which improves the signal-

to-noise ratio over the minimum value of two in many actual situations. In

order to give a greater significance to the various figures of signal-to-

noise ratio being quoted, the writer has determined experimentally that the

lowest tolerable value is of the order of ten. This relatively high value is

required for fair intelligibility because the crest factor of speech is much

lower than that of a sinusoid. In other words, the definition of signal-to-

noise ratio could be improved or be made more meaningful by using the average

crest factor of speech or music, as the case may be, rather than that of a

fictitious sinusoidal signal.

The missing-pulses interference effect, although manifesting itself pri-

marily in the form of random noise, also has certain other consequences affect-

ing the signal. (Conversely, the signal modulation also affects the missing-

pulses noise to some extent, tending to reduce it.) Consider first the simplest

case of missing pulses, in which entire pulses are susceptible; this happens,

for example, when the interference is a continuous wave. Since the pulses

carry the signal, loss of a fraction F of the total number of pulses means a

loss in signal, aside from the noise which results. This loss in signal ap-

pears as a reduction in output-signal strength, further reducing the signal-

to-noise ratio below the figure given by (100). Elementary considerations

would show the reduced signal voltage to be proportional to 1-F, the fraction

of remaining pulses. Experimentally it is found that the reduction may be

somewhat greater in certain instances; but then the noise is generally so

great that the signal-to-noise ratio is well below the useful limit even with-

out the signal reduction.

In the cases in which only a portion, say the first half, of each pulse
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is susceptible, as a result of partial overlap with an interfering pulse

train, the effect on the signal modulation may be quite different, depending

on the circumstances. With only one edge of each pulse susceptible to being

lost there will be no signal loss if the susceptible edge happens to be the

fixed edge of an asymmetrically modulated pulse train, but if it is the moda-

lated edge, the signal loss will be ust as great as if the entire pulse were

susceptible to being missing"; in the case of "symmetrical PDM, with both

edges modulated, the signal reduction will be only one-half as great.

The signal-reduction effect is generally accompanied by a complementary

effect which transfers some of the time modulation of the interfering pulse

train to the desired pulse train. Obviously, wherever one side of a pulse is

missing, its true edge is replaced by another edge, the timing of which may be

determined in part by the modulation of the interfering pulse train. Such

fragmentary transfer of modulation gives rise to a small amount of cross

talk which is masked sufficiently by the missing-pulses noise to be quite neg-

ligible for most practical purposes. Various special circumstances may arise:

for example, in the case of two-path interference, a pulse edge may be replaced

by another edge carrying the same modulation, though delayed and reversed in

polarity.

4.3 Combination of Time-Shift and Missing-Pulses Effects

With interference ratios between one-half and unity, one usually deals

with both time-shift and missing-pulses noise. While the former may be neg-

ligible compared to the latter in some cases, this is not generally true, so

that it becomes necessary to determine the combined effect of the two pheno-

mena. Although each effect alone produces a random output, the total output

noise power is not simply the sum of the individual values. The cross-cor-

relation between the two effects causes it to be larger by an amount generally

intermediate to the two individual values. This cross-correlation results from

the fact that any one portion of a pulse is generally subject only to one ef-

fect or the other, that is, the two effects are mutually exclusive.

The problem of finding the total noise power can be solved in two radi-

cally different ways which lead to identical results. First, the missing-

pulses effect may be considered as a special type of time shift which, in com-

bination with the ordinary time shift, gives a new time shift with a different

probability distribution. In order to evaluate the approximate audio-noise
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power it is then necessary only to find the standard deviation of the new

probability distribution. This is the simpler of the two ways and will there-

fore be used here. In the second method, the time shifts and the missing

pulses are regarded as two different effects, and their cross-correlation is

found by methods similar to those used to find auto-correlation in Chapter 3.

The Fourier transform of the aperiodic component of this cross-correlation is

the continuous component of the so-called interaction power spectrum, which,

when added to the time-shift and missing-pulses power spectra, gives the total

power spectrum. Only the area of the aperiodic cross-correlation component

need be found in order to evaluate the audio-noise power connected with it.

This method requires a greater number of steps, principally because, with a

larger than one-half, the time-shift distribution is modified even without in-

clusion of the missing-pulses effect.

The following analysis, for the sake of clarity, is based on linear

pulse edges. An analysis based on exponential pulse edges cannot be carried

out completely by analytic methods and would be rather cumbersome. The linear-

pulse-edge analysis shows the principles involved, and with the knowledge of

exponential-edge time shifts given earlier in this chapter, one can modify

the results to apply to pulses with exponential edges.

It is necessary, at this time, to reconsider (7), which gives the rela-

tion between the edge time shift At and the radio-frequency phase difference

angle . It was shown in Section 2.2, in the analysis of the missing-pulses

effect, that, with s = a, there is no solution for At over a certain range of

values of 0, extending an amount on each side of = , being equal to

cos-1 (l/2a). Within this range, the pulse edge does not pierce the slicing

level, and if the entire pulse fails to reach the output, this is equivalent

to a time shift of magnitude equal to the pulse duration, d. Therefore, the

function At(), ordinarily subject to the restriction 0 a < , can be ex-

tended by relaxing this restriction to permit values of -up to one, and noting
-1

that t = d for = r .- OD to 0 = + D0O0, if a > , where DoD = cos (1/2a).

A qualitative plot of this modified function At(0) is shown in Fig. 51 for a

somewhat less than unity, so that is slightly less than 60 degrees. Succes-

sive values of the pulse-edge time shift are random samples of this function;

*Cross-correlation has been defined on page 6.
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their probability distribution curve is shown in the lower part of Fig. 51.

Fig.51 Pulse-edge time shift
for 0.5 < a < 1.0; (a) time shift
_d. r-f phase difference 
(b) time-shift probability distrib-
ution.

x = x.(l - 2 co 0)
A _ -- lf 1
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This distribution is the same half-wave-rectified sinusoid distribution shown

in Fig. 10, with part of its area removed and replaced by the spike at

At x = -d. Finding the standard deviation of the distribution amounts to

determining the mean-square and squared mean values of the new At(0) shown

in Fig. 51, but it can also be found directly from the distribution curve by

applying the following relation.

C ~~2=2 M(?2) _ M2ax M(x2 ) ) = 2 P(x)dx xP(x)dxJ (101)
--

_o -o

In this relation, M(x) and M(x 2 ) denote the mean of x and x, respectively.

To apply this, the probability-distribution curve is broken into three parts,

numbered 1, 2, and 3, respectively, in Fig. 51. Parts 1 and 2 are given by

(14) in Chapter 2, although Part 1 extends only from x to -x'. It can be

shown that -x' = xo(l - 2 cos ), and that the "lost" area between x = -x
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Xand is qual to 0/w or F, the fraction of missing pulses. This area is
instead found in the infinitely high and infinitesimally narrow spike at

At = x = -, part 3 of the distribution curve. Part 2 is the usual spike

corresponding to the flat portion of the half-wave-rectified sinusoid; its

area is one-half, the total area of all three parts being one, of course.

Evaluation of the three individual sets of M(z) and M(x2) involves carrying

out the integrals appearing in (101), which is trivial for parts 2 and 3,

but somewhat involved for part 1. In terms of x ( = a8) and ( =

cosl[1a/2a]), the results appear as follows.

l (x ) = s- [-2 + 2 sin 0 - 0 + ]

S2 
Kl(x2) = A [4(sin 0 - 1) - sin 2 - 30 +

x () = 1 () a 0tL)12 xe

2 = 3 5 i) (102)

In terms of the same parameters, the final answer for the square of the

total effective time shift, At2, is obtained as follows.

1t2= ~ - ( ) + M2 ( 2 ) + M3(2) - M(x) + M2 (x) + M3()2

2 + "14(sin 0 - 1) - sin 20- 30] + - + 2(sin 0 3l)32

+ 2()r - + 2(sin 0 - 1)]

2

+ (d 2
e - (i) ] o(103)

Note: s = a, = 08 (l/a); < a = < 1.
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The total noise power is obtained by substituting (103) in (89). The

three terms in (103) are the time-shift term, the cross term, and the missing-

pulses term, respectively. The latter, on multiplication by f, becomes

identical to the missing-pulses noise power found previously and given by

(87). Since the terms and factors associated with the time-shift effect and

missing-pulses effect can be identified, those associated with the time shifts

can, if desired, be modified to conform more closely to the true shape of the

pulse edges. In this connection, it should be noted that the line of demarca-

tion which exists between the time-shift and missing-pulses effects if the

pulse edges are assumed linear is not nearly so sharp in the case of pulses

which have a gradual transition from edge to flat-top. It follows, therefore,

that the transition from pure time-shift noise to the combination of time-

shift and missing-pulses noise is generally more gradual than is indicated by

the analysis. That portion of the transition which lies below a = ½ has al-

ready been treated in this chapter (see Fig. 50). Above a = , the effect

is essentially one of raising the time-shift contribution by a rather large

factor. If (103) is used without such a correction to check experimental

results, the principal discrepancy will be found in the insufficiently large

time-shift contribution, as will be seen in the next chapter.

4.4 Discontinuous Interference: More Complicated Interference Situations

The general situation which results from interference between two pulse

trains with different pulse-repetition rates involves the same principles

discussed up to this point, but it is complicated by the fact that successive

desired pulses experience different degrees of overlap with the interfering

pulses. As far as the time shift is concerned, this means that some desired

pulses may suffer one-edge time shift, some two-edge time shift with or with-

out some dependence between the two shifts, and others may not be subjected

to time shifts at all. As regards the missing pulses, the process is more

complicated inasmuch as each pulse may have a different portion susceptible

to being missing. This situation obtains in the most general case of two-

station PDM interference, so that one or both sets of pulses are generally

time-modulated. As a result, the variation in overlap from pulse to pulse

is neither perfectly systematic nor perfectly random, and can therefore not

easily be treated precisely, particularly in the case of missing-pulses noise.

Instead, results are obtained by approximate methods which are sufficiently
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accurate for engineering purposes.

As regards the time-shift effect, it is necessary first to find the frac-

tion of pulses that suffer two-edge and one-edge time shifts, as a function of

the average durations and repetition rates of the two sets of pulses. The

problem can be simplified by assuming the repetition rates close enough at

the outset to have approximately the same ratio between the desired-pulse

duty factor D1 and the interfering-pulse duty factor D2, as between the cor-

responding pulse durations d and d2 . D1 and D2 can then be regarded as

normalized pulse durations. Of course, if the interference had a perfectly

random time distribution with duty factor D2, then the most one would be able

to say is that the probability of two edges of the same desired pulse both
2

being overlapped is D2 , that of Just one edge being overlapped D2(1 - D2 ) ,

and that of neither edge being overlapped (1 D2)2 18 In the present case,

however, the available information about the two pulse trains is such that

the problem can be formulated more precisely, as follows. The effect of modu-

lation on both or either of the two pulse trains can be neglected without ap-

preciable error, as is confirmed experimentally, because the symmetry of the

modulation tends to cancel the effect on the average overlap over a period

of time, and also because the modulation crest factor is generally so low as

to make the effective modulation small.

In determining the individual probabilities of a given pulse having zero,

one-edge, and two-edge overlaps, respectively, one has to distinguish between

the two cases D1 D2 and D1 ( D2. Both cases are illustrated in Fig. 52.

It is assumed that both D1 and D2 are less than one-half, so that any one

pulse of either signal can overlap no more than one pulse of the other signal.

By sliding pulse 1 along the entire extent of one repetition period of pulse

train 2, which is unity on the normalized basis, one notes that over a certain

range there is no coincidence with pulse 1; over another range only the lead-

ing edge of pulse 1 is overlapped, and so forth. The extent of each of these

ranges represents the relative frequency with which the corresponding situa-

tion will occur. Considering first the case D > D2, one finds that it is

impossible for both edges of pulse 1 to be overlapped by pulse 2 simultaneously,

but that either the leading or the trailing edge is overlapped with proba-

bility D2. (The word "probability" is being used here in the sense of rela-

tive frequency with which a certain condition is encountered in examining a

large number of pulses, or it may be regarded as the probability of finding
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the condition in uestion on a single pulse chosen at random.) The total

"one-edge probability" is therefore given by 2D2, which leaves 1 - 2D2 for

the probability of finding no time shift at all, the "two-edge probability

being zero. Considering next the case D1 < D2, illustrated in the lower half

of Fig. 52, one finds, in sliding pulse 1 over the complete range of one

(a)
Di

Pig.52 Determination of prob-
abilities of overlaps between tvo
pulse trains with nearly equal
repetition frequencies;
(a) D1 > D2 (b) D1 < D2 -

(b) JoD,-- Note: if the repetition periods,
T1 and are not approximately

IL~~ ~equal, replace D1 by dl/! and
D2 by d2/T 2 .

period, that both its edges coincide with portions of pulse 2 over a range

D2 - D1 , and that each edge individually experiences overlap over a range D 1.

The total "one-edge probability" is therefore 2D1, and the "two-edge proba-

bility" D2 - D1 , leaving 1 - D1 - D2 for the probability of finding no over-

lap. The probability of finding either a one-edge or a two-edge overlap is

accordingly D1 + D2 . The various probabilities are repeated below.

D1 > D2 1 < D2

d 1 d2 *
No-overlap probability 1 - D2 1 - D1 -D22 ~~~~~1 - 2 - 2 T2

22

One-edge probability 2D2 2D1 ( )

Two-edge probability 0 D2 - 1 T (104)

The expressions in parentheses are more general, applying if the pulse-
repetition rates are not approximately equal; see pages 111-112.
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The total time-shift audio-noise power is found by weighting the one-edge

and two-edge contributions in accordance with the above probabilities. One-

edge time-shift noise has been treated in detail in the first part of this

chapter. Expression (89) for the noise power need only be multiplied by 2D1

or 2D2, whichever is the smaller, to yield the one-edge contribution to the

total time-shift noise. If D exceeds D2, this is the only contribution, but

if D2 exceeds D1, there is the additional two-edge noise contribution, ob-

tained by multiplying the proper expression for two-edge noise by the proba-

bility D2 - D1. The form of the expression for two-edge noise depends, of

course, on the relation which may exist between the shifts of the two edges of

a given pulse; for example, the two-edge audio-noise power has been shown (3.4)

to be exactly twice as large as the one-edge audio-noise power if the shifts

are independent, and nearly four times as large if they are equal and opposite.

In the former example, the two-edge contribution would be (2Pone edge)(D - D1 ),

which, when added to the one-edge contribution, (Pone edge)(2D1 ), yields

(P oneedge)(2D2 ). This is the same total noise power which is obtained in the
simpler case in which D1 exceeds D2 , showing again that independent time-

shifts, though on the two edges of the same pulse, can be regarded separately

as one-edge time shifts. In the latter example, letting Ptwo-edge = 4Pone-edge

leads to the result (Pone edge)(4D2 - 2D1). Other results are obtained with

the other possible types of two-edge noise, which will be considered in

Section 4.5 of this chapter. In the simplest case, the total time-3hift audio-

noise power equals the one-edge power multiplied by 2 2, regardless of which

duty-factor is the larger. If this is applied to (89), the basic expression

for one-edge audio-noise power, the result is

PI 2 22L 2 * (105)n r, ~T 2-

Similarly, all the noise-voltage formulas following (89) would be multiplied

by E .

The initial assumption of nearly identical pulse-repetition frequencies

of the two pulse trains may of course be unfounded, and the results given by

(104) will therefore be generalized. The pulse-repetition periods will be

denoted by T1 and T2, respectively. With the aid of Fig. 29, it is easily

verified that, for di > d 2, the probabilities as given by (104) remain
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unchanged. With T1 considerably smaller than T2, it is possible, of course,

for both edges of a single pulse to be overlapped by different interfering

pulses. However, because of the incoherence between pulses, the two result-

ing time-shifts are independent and can therefore be regarded separately as

one-edge time shifts, and they are in fact taken care of as such by the same

probability factor (2D2). For d2 > d1 , the probability factors will be modi-

fied, but the net result in the special case discussed above is again the

same, the multiplying factor being 2D2. More generally, the "two-edge proba-

bility" D2 - D1 is replaced by (d - dQ)/(T2), and the "one-edge probability"

2D1 is replaced by (2d)/(T2), as indicated in parenthesis in (104).

Missing-pulses noise is modified more radically by the intermittent nature

of the interference noise than time-shift noise. Because of the varying over-

lap from pulse to pulse, different portions of successive pulses are susceptible

to being "missing", so that, strictly speaking, a new auto-correlation analysis

is reouired to find the audio-noise power. This is not simple, however, be-

cause of the partly systematic, artly random overlap variations, and is

therefore not carried out here. An acceptable formula for audio-noise power

can be obtained by modifying the result for the simple type of missing-pulses

noise given, for example, by (97), repeated below.

P = k 2U(F - ) . (97)

The most direct approach is to find the average fractional overlap per

desired pulse, and to substitute this for U in (97), Such a procedure ignores

the fact that actual successive overlaps depart from periodicity in both dura-

tion and time position. However, a similar result is obtained by other argu-

ments involving different errors, For example, a limiting case may be consid-

ered, in which the interfering pulses are so much longer in duration than the

desired pulses (d2 >> d) that the missing-pulse phenomenon takes place in

its simplest form, that is, for the most part, whole pulses rather than por-

tions of pulses are susceptible to being "missing". The fraction of missing

pulses is then the variable which is modified; F is replaced by FD2, and U is

equal to D1 as in the original derivation in (87). The error lies in the

fact that the probability FD2 of any pulse not reaching the output is no longer

necessarily totally independent of whether or not the previous pulse was
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missing, inasmuch as the probability corresponding to the factor D2 is not a

true probability, but rather the relative frequency with which a certain situa-

tion is encountered. The same end result can also be obtained by other argu-

ments involving similar errors; this result is given by (106).

p = k %D 2 - (2)2 ] (106)
mp 12 2

In order to find the corresponding result for the other method, mentioned at

the beginning of this paragraph, the average fractional overlap between the

two pulse trains mst be determined. This is the fraction of the total time

during which the two pulse trains overlap, which is in fact eual to the cross-

correlation* obtained for any value of T if both pulse amplitudes are assumed

equal to one. It is a simple matter to show that it is equal to the product

of the two duty factors, D1D2, regardless of their relative magnitudes and of

the time distribution of the pulses. Consequently, the resulting expression

for the missing-pulses audio-noise power becomes

P k 2DD( - F 2) . (107)

The experimental results presented in the next chapter conform more closely

to (106) than to (107), and the former is therefore to be preferred.

Expression (103), which gives the equivalent effective time shift for

a > i and hence the total audio-noise power, can now be modified to apply to

intermittent interference, e.g., two-station P interference, by using the

time-shift and missing-pulses modifications derived above. The change merely

amounts to multiplying the first line of (103) by 2D2(assuming the most

general type of two-edge noise), the second line by 2 2 F2' and replacing 

in the third line by D2 . If these changes are made,and if the new expression
2

for At is substituted in (89), the following expression results. (Here, x.

has been replaced by its value, a, and in some instances, /r has been re-

placed by its equivalent, F.)

* For definition of cross-correlation, see page 56
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2~~~~k a8 2Ptotal = T-l (2Dz2) fl ( ° ) + El2( 0 )]2
audio noise

+ (kfZ) DD 2(1 - D22) . (108)

Note: < a = s < 1

o = TF = cosB- (1/2a)

fl(0 ) = 2 + -14(sin - 1) - sin 2 - 3]

`h(0 - - + 2(sin G - 1)] 

The discussion which follows (103S), dealing with the gradual transition

from time-shift noise to missing-pulses noise, applies also to the situation

corresponding to (108), but in a still more complicated way. Some interference

overlaps around the leading edge of a desired pulse may be of such short du-

ration that the resultant does not reach the slicing level during the overlap,

although it would if the overlap persisted for a longer time. This example

shows that the demarcation line between time shift and missing pulses is

still further blurred if the interference is of the more complicated inter-

mittent type.

The treatment of the noise resulting from this type of interference is

not complete without discussion of the periodic component which may be con-

tained in the noise, as a result of a beat phenomenon between the two different

pulse-repetition frequencies. Clearly, if the duty factors of both pulse

trains are considerably less than one-half, and the repetition rates differ by

a fairly small percentage, then periods of repeated overlaps will alternate

with longer periods of no overlaps at all, and the alternation will take place

at a frequency equal to the difference between the two pulse-repetition fre-

quencies. Unlike the pulse-repetition frequency and its harmonics, this
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frequency and some of its harmonics may be low enough to be passed by the

audio system; generally, however, there is no actual component at this fre-

quency, or it is quite small. Rather, the output noise, instead of being

continuous, consists of bursts of noise repeating at this frequency, or, in

other words, the noise is off-on modulated at this frequency. In the case of

pure time-shift noise (a < ), with > d2 , there are in fact separate

bursts of noise corresponding alternately to groups of leading and trailing-

edge time shifts. The extent to which this noise periodicity is audible

depends essentially on the following two factors: first, the actual beat-

frequency component which may be present in addition to the noise modulation

for reasons given below, and second, the property of the human ear to distin-

guish a pitch in repeated bursts of noise, even though the spectrum has no

intensification at the repetition frequency.26

A principal reason for a small beat-frequency cormponent in the case of

time-shift noise is the somewhat asymmetrical probability distribution of the

time shifts. It was shown in Chapter 2 that, even with linear pulse edges,

the time-shift distribution becomes increasingly asymmetrical as the inter-

ference ratio a approaches one-half. The fact that the leading pulse edge,

for example, is more likely to be advanced than delayed (making the average

pulse duration slightly longer in the presence of time shifts than the original

pulse duration) gives the output noise bursts a tendency to prefer positive

values over negative values. In other words, the noise bursts have an alter-

nating component. In the case of the exponentially shaped pulse edges used in

practice, an additional asymmetry in time-shift distribution appears for

large interference ratios, as was shown in Chapter 2 (Fig. 14). The leading

edge, for example, while still being advanced more often than delayed, suffers

much larger shifts in the delay direction than in the advance direction.

This opposes the other factor, tending to equalize the areas under the two

halves of the time-shift probability distribution, and can in fact cancel it.

The practical details of the subject will be further discussed in the next

chapter in connection with experimental results.

In the case of missing-pulses noise, the beat-frequency component can be

accounted for in a different way, along with the signal-reduction and cross-

talk effects previously discussed for different conditions, on pages 103 and

104. Successive overlaps vary in accordance with the difference between the

repetition frequencies of the two pulse trains and the time modulation on the
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edges bounding the overlaps. Only a fraction F1 of these overlaps prevents

the corresponding portion of the desired pulse from reaching the output.

These portions may be regarded as another pulse train which has been subtracted

from the desired pulse train. Some or all of the pulse edges of this new pulse

train are time-modulated by the difference between the pulse-repetition rates,

and by the modulating signals of the two original pulse trains. Signal 1 may

modulate the leading edge, and signal 2 the trailing edge of a given pulse in

the new pulse train. The fact that these pulses contain three different frag-

mentary time modulations (and, of course, the large random component causing

missing-pulses noise) has the following consequences. The "corrupted" desired

pulse train contains its own modulation but diminished by a certain amount

evaluated below, it contains the modulation of the interfering pulses to a

small degree, and it is modulated to some degree by the pulse-repetition fre-

quency difference and its harmonics. (Also, of course, it contains the random

component which becomes the missing-pulses noise.) The first of the three

effects can be evaluated approximately by a simple method, namely by assuming

thaet the relative signal reduction is proportional to the fraction of modulated

pulse edges lost. This is generally equal to FD 2 , so that one would expect

the signal to be reduced from 1 to 1 - FD2. The actual reduction tends to be

somewhat greater. The second effect, transfer of modulation from the inter-

fering to the desired pulses, is not correctly estimated by assuming it eual

to the original modulation multiplied by the fraction of modulated pulse edges

transferred, which is also generally equal to D2; it is usually much smaller,

and completely masked by the noise, presumably because of the fragmentary

nature of the transfer of modulation. The beat modulation is also a rather

complex phenomenon; it decreases, of course, with decreasing duty factors of

both pulse trains and it may, in fact, be hardly noticeable with duty factors

less than ten or fifteen per cent.

4.5 Two-Edge Time-Shift Noise

Expressions for the noise-power spectra and for the audio-noise power

resulting from so-called two-edge time shifts were derived in the last part

of Chapter 3. Three different cases were considered: (1) "Independent two-

edge noise", in which there is no relation between the shifts of the two edges

of each pulse; (2) "PPM noise", in which these shifts are identical, and (3)

"PDM noise", in which they are equal in magnitude but opposite in sense. The
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first case received some attention in the preceding analysis of the more

complicated interference situations. For P, it occurs only in these situa-

tions, if it is possible for two interfering pulses to have partial overlap

with the two sides of a desired pulse, or if the interference is continuous

but incoherent (for example, a heavily modulated FM wave). For PPM, it can

occur with any type of interference, if demodulation is performed by conver-

sion to PDM, since the marker pulse nd the position-modulated pulse are not

generally coherent with one another and therefore suffer independent time

shifts which are passed on to the two edges of the duration-modulated pulses.

The two other cases, as well as any number of intermediate cases in which

there is a definite relation between the two time shifts in each pulse, can

occur in a PDM system if the interference is a continuous iunmodulated carrier,

or if relatively long coherent pulses overlap both edges of some or all of

the desired pulses. If they overlap only some of the pulses in this manner,

there will be a component of the corresponding type of two-edge noise, while

the remaining noise may be of the one-edge time-shift variety. However,

attention will first be focussed on the simpler possibility, in which each

pulse is completely overlapped. Case 3, that is, "PDM noise", is the more

important of the two extreme Cases (2 and 3), inasmuch as it is more common

and causes much stronger audio noise (see Section 3.5). The time shifts of the

two edges will be equal in magnitude and opposite in sense if the r-f phase

difference, , is the same at both edges, which it will be if the radio fre-

quencies of the two signals are identical, or if they differ by n integral

multiple of the reciprocal of the pulse duration. The statement that the

time shifts are equal and opposite under these conditions is strictly true

only if each edge has the same time-shift distribution, as in the case of

linear pulse edges. Case 2, PPM noise", is obtained, if the r-f phase dif-

ference, , changes by 180° from the leading to the trailing edge, or if 

changes by any odd multiple of 180° . Such a change in phase angle will take

place if the radio frequencies of the two signals differ by n/2d2 , where n

is any odd integer, and d is the duration of the desired pulses. In the

presence of modulation, d1 is not constant, so that the 180-degree relation-

ship can not be maintained exactly. As Case 3, Case 2 requires that the two

pulse edges have identical probability distributions, but, in addition, these

distributions must be symmetrical; more specifically, the function At(0) must

be symmetrical in such a way that At(0) -At( ± 1Tr). This condition is
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nearly fulfilled for small interference ratios with linear or exponential

pulse edges. Otherwise, the time shifts are not generally equal, and may

even be opposite in sense for certain values of . For example, At(O) for

linear pulse edges with (a/s) = 1 (see Fig. 8 ) is so asymmetrical that

At(f) = At( + ) for = + v/2, and the condition for pure "PPM noise",

namely, At(0) = -At( + T), is fulfilled only for = 0 or . Nevertheless,

the approximate audio-noise power can be computed under these conditions,

by resolving the time shift into a Case 2 (PPM) and a Case 3(PDM) component.

Case 2 and Case 3 represent extreme conditions, resulting in near-mini-

mum and maximum noise, respectively. As will be seen from the experimental

curves in the next chapter, there is a smooth transition from one to the

other as A, the change in r-f phase difference from the leading to the

trailing edge, goes from 0 to 180°, 180° to 360 °, and so on. For all inter-

mediate values of A, the two-edge time shifts can be resolved into pure "PPM"

and PDM" time shifts. Attention will therefore be focussed on the limiting

cases, first on A = 2nT (Case ) and then on A = (2n - l)-r, (Case 2) where

n is any integer including zero. With regard to the first, Case 3, the com-

plete story is already own from Chapter 3, and no new results will there-

fore be obtained here. This, of course, is the type of two-edge noise ob-

tained for true common-channel interference, in which the difference in radio

frequencies, Ar-f, is uite small compared to the reciprocal of the pulse

duration. Case 2, on the other hand, results only when there is a frequency

difference of 1/2d1, 3/2d1 , ... and so on. In a typical PDM system, the

average pulse duration might be 10 microseconds, so that the first noise

minimum would appear at Ar-f = 50 kc, the next one at 150 kc, and so forth.

Case 3 is characterized by the fact that the shifts of the two edges of

each pulse reinforce each other completely, thereby producing almost four

times as much noise power as either would produce alone. More accurately,

the ratio is somewhat smaller than four, especially when the duty factor is

not much smaller than 0.5, and it is given by (82), which was deduced from

the approximated power-density spectrum (76). Heuristic reasoning can lead

to exactly the same result: the same expression for the approximated low-

frequency power spectrum can be obtained by reasoning on a voltage basis,

assuming sinusoidal time modulation. The modulation corresponding to Case 3

is true symmetrical PDM, without the quotation marks around the word sym-

metrical, because the movements of the two edges are really "geared". (This,
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as explained in Chapter 1 and illustrated by Fig. 3, is not true in the case

of the actual signal modulation generally used.) Complete reinforcement be-

tween the movements of the two edges of a pulse, which results in exactly

twice as much output voltage, occurs only if the modulating frequency is so

low that the instantaneous modulating voltage does not change during the time

between leading and trailing edges. If it does change, then the co-operation

between the two edges becomes imperfect, since their movements should actually

differ in phase by the same amount by which the modulating-voltage phase

changes. For example, in the extreme case in which the phase changes by 90

degrees (duty factor D = , modulating frequency q = p/2), the contributions

of the two edges add in quadrature rather than in phase. The output voltage

is then only 0.707 of that obtained at low frequencies. More generally, the

voltage drops off as the resultant of two vectors of equal, say unity,

magnitude, differing in phase angle by doq, the angle by which the phase

changes from leading to trailing edge. (See vector diagram, Fig. 53.) The

square of this resultant, giving the power relative to one-edge modulation

power, is 12 + 12 + 2 cos dq, or 2(1 + cos dq), which is recognized as the

ratio of the approximated power spectrum (76) to the one-edge noise-power

spectrum. The same approximate, but quite adequate, expressions for the

total audio-noise power derived at the end of Chapter 3 can therefore be ob-

tained from the above result. However, the heuristic method which led to

this result does not reveal the presence of an error, much less its nature

and magnitude.

Fig.53 ectorial combination of sin-
usoidal time shifts of leading and trail-
ing plse edges; for "PDM time shift"
(Case 3), r = d; more generally,
Or = dq- ¢.

Case 2 is characterized by the fact that so far as audio noise is con-

cerned, there is almost perfect cancellation between the shifts of the two

edges, especially if the pulse duration is small compared to the period of

the highest audio frequency, - in other words, if the duty factor is small.

The same heuristic reasoning employed in the preceding paragraph again pro-

vides a short-cut method of duplicating a result obtained in Chapter 3.
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With sinusoidal modulation, the motions of the two edges can be represented 

by vectors differing in phase angle by + dq, and the square of the result-

ant is given by 2(1 - cos dq). This is the ratio of the exact power spec-

trum for "PPM noise", given by (70), to the power spectrum of one-edge time-

shift noise. The same reasoning which previously led to approximate results

now gives exact results. This can be explained physically by noting that,

although both PDM and PPM noise" are special limiting cases in which there

is a particularly simple relation between the shifts of the two edges of

each pulse, the latter has the distinction of having constant-duration pulses.

The self-correlation, as determined in Chapter 3, is unaffected by the time

shifts only in this particular case, which causes the auto-correlation side

lobes to have the same shape as the central lobe, thus in turn resulting in

the simple power spectrum (70). Evidently, the same heuristic method which

gives exact results in Case 2, and approximate results in Case 3, can be

applied to the intermediate cases with equal ease. Only the angle between

the two vectors representing the two edges is affected: it is simply

r = dq - O. The square of the magnitude of the resultant is 2(1 + cos r),

and the resultant magnitude itself, which corresponds to the output voltage,

is 2 cos r/2. The latter is more convenient if one desires to think in terms

of a complex two-edge time shift denoted by 2(cos r/2 + j sin r/2); the real

part of this is the noise output voltage (relative to the corresponding one-

edge noise voltage), and the imaginary part corresponds to the noise that is

cancelled because of the particular relation between the time shifts of the

two edges.

The preceding discussion of Case 2 (A = ) and the intermediate cases

applies strictly only so long as the interference ratio is small enough to

make At(0) sinusoidal. Only Case 3 ( = 0, 2n) permits asymmetry, inasmuch

as the requirement At(O) = At( + 2n) is always met. The requirement

characterizing Case 2, At(0) = -t(0 + ), is, as previously explained (page

118, top), not generally met when a/s is near unity. In other words, the

relation At(0) + At(o + Tr) = 0 no longer holds, and the pulses are therefore

no longer of constant duration. While the "PPM noise" component is un-

changed as will be shown, there is now in addition a "PDM noise" component.

The low-frequency power of this component can be evaluated by finding the mean-

square value minus the squared mean value of At(0) + At(O + r). More generally,

f would be replaced by AO. The evaluation of At= (the effective value of
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At())* leading to a power series in a/s, was discussed earlier in this

chapter (see page 97 ), and is given in Appendix IV A (for linear pulse

edges). The effective value of At(0) + At( + ) i found in the same way,

and is given in Appendix IV B. The series resulting in this case converges

so slowly that, for (a/s) = 1, even the first thirteen terms of the series

give a result which is to low by seven per cent. The function "(0) +

Ats + ), by direct substitution of (8), is found to be equal to (109).

( + ) = 2[l - 1 - ()sin 2 ] (109)

This function, like A(0), becomes sinusoidal for small values of a/s, but it

approaches this form in a ifferent manner, and the period of the sinusoid is

half as great, that is, the function is periodic in 2; the latter is true for

all permissible values of a/s. In the limiting case, (a/s) = 1, (109) becomes

(110), which describes a fll-wave-rectified sinusoid, varying between ampli-

tude limits 0 and +2, but inverted, as shown in Fig. 54.

Att(=_~() + ( 0 + ) = 2( - co 0) . (110)

A Am . As

|" 8 + s" 8 +7IS8 8'88 

Fig.54 "PE4 time shift" com-
ponent of two-edge noise for
a = , Ar-f = (2n-l)/2dl.

WoI 
c 'W T _

The expression for r(0) under the same condition, (a/s) 1, was found to

describe a half-wave-rectified sinusoid in Chapter 2, given by (13).

At
L) 1 + co - cosO .0 (13)

* This is intended to mean the effective value of the alternating component
only.
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In the same way in which (13) was found to have an effective value 0.771,

Just ten per cent higher than that of a sinusoid (see top of page 97), the

effective value of (110) is found to be 0.693, ust two per cent lower than

0.707. This means that, in this particular case of two-edge time-shift noise,

the "PIE component" alone gives about as much noise as is caused by one-edge

time shift-noise. However, it decreases rapidly as a/s decreases from unity.

It should be remembered that the above method of combining the time shifts

of the two edges into a single uantity and operating on this quantity is ap-

proximate in that it neglects the time elapsed between the two pulse edges.

The approximation is of the same nature as that in the statement that the two-

edge audio-noise power in Case 3 is four times the corresponding one-edge time-

shift noise power. Of greater importance is the error resulting from the

assumption of linear pulse edges, wrhich becomes considerable when a/s approaches

unity. This is not serious, however, so long as the two-edge noise is expressed

in terms of one-edge noise, which has been determined for nonlinear pulse edges

as well.

In addition to the PDM component", there is of course the "PPM component",

which is characteristic of Case 2. Contrary to what one might expect, this

component is unaffected by the asymmetry of At(0); this can be shown by again

combining the shifts of the two edges, this time by forming half the difference,

W ) - At(; + iT)]. By direct substitution of (8), the following simple

result is obtained.

21 8 (0) .48(0 + )] = a cos0.(1)

The PPM component" of the two-edge noise in Case 2 is therefore the same as

that given in Chapter 3 in the analysis of Case 2. The approximate values of

the total audio-noise power is obtained by adding the two components. Addition

on a power basis is more nearly correct than addition on a voltage basis, be-

cause the two components have completely different spectra.

The preceding discussion of two-edge noise shows a wide variety of pos-

sible effects, with the resulting noise power ranging anywhere between

-(ftDM_/T)2 , obtained from (74) (which may be almost negligible) and four times

the noise power resulting from one-edge time-shift noise. With A = 2n, it

is always close to four times as large, but for A = (2n - 1)1, it may be much
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smaller than the corresponding one-edge noise power if the interference ratio

A and the duty factor D are both small; on the other hand it may be of the

same order of magnitude as the one-edge noise power, for larger values of a

and D1. The change in the r-f phase difference from leading to trailing

edge, A, changes continuously with the radio-frequency difference, Ar-f,

and the pulse duration, d1 , that is, it is equal to Ar-f x d. Consequently,

the noise power exhibits a series of maxima and minima as a function of these

variables. The effect of modulation, which causes to vary, is to blur

these maxima and minima (except the maximam at Ar-f = 0). The blurring effect

is, of course, directly proportional to Ar-f; when it is large enough to

cause the variation of d1 to sweep A0 over 360 degrees or more, the minima

and maxima are lost completely, and the result is similar to "independent

two-edge noise", which has twice the power of one-edge noise.

As mentioned at the beginning of this section dealing with two-edge

time-shift noise, this discussion applies only to PDM. Although duration-

modulated pulses are also usually obtained in PPM systems in the demodulation

processes, the time shifts on the two edges are independent. There are, how-

ever, methods of demodulation, in which the position of a pulse is detected

as the position of the center of the pulse - that is, the point half-way

between the two edges, rather than by the position of either edge alone.

Where such methods are used, the relation between the shifts of two edges of

each position-modulated pulse is of great importance. With Ar-f = 0, for

example, the shifts are equal and opposite, so that the effective position of

the pulse does not change, and no time shift is therefore detected, or

Ar-f = 1/2d,, which may be as large as 1 Mc, with the short pulses used in

PPM, the pulse edges shift more or less together, and the center of the

pulse shifts by the same amount. There may therefore be more time-shift noise

under certain conditions of adjacent-channel interference than with common-

channel time-shift interference; but with the interfering signal differing by

1 M from the frequency to which the receiver is tuned, the interference ratio

(always measured at the detector), is generally much smaller than in the case

of common-channel interference. Also, of course, it must be remembered that

the two-edge type of time-shift noise is only one of the possibilities which

may exist only if entire pulses are overlapped by the interference, as ex-

plained at the beginning of this section.

See Appendix .

*See Appendix V.
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In the general case of two-station PDM interference, discussed in the

preceding section, which deals with the more complicated interference situa-

tions, it was shown that, with the interfering pulses longer than the desired

pulses (d2 > ), there is a probability (d2 - dl)/T 2 of obtaining two-edge

overlaps, in addition to the probability 2/T 2 of obtaining one-edge over-

laps. Theoretically, therefore, the total audio-noise power is obtained by

combining the expressions for one-edge and two-edge time-shift noise power

with their respective weighting factors, as follows.

2d d2 -

Ptotal one-edge T two-edge (d 2 > d) . (112)
~2 2

Depending on the relative difference between d2 and d, the two-edge component

may or may not be a significant portion of the total power. Experimentally,

the two components can be distinguished by virtue of the fact that the two-

edge component varies periodically with Ar-f, while the one-edge component

remains constant. In practice, the simpler relation Ptotal = 2D1one-edge

gives sufficiently close results under many conditions. However, if, for

example, Ptwo-ede is mch smaller than Pone-edge' and d2 is twice as large

as d1, then (112) should be used to avoid a considerable error. These rela-

tions will be discussed further in the next chapter, in connection with

experimental observations and measurements.

Since the effect of radio-frequency difference, Ar-f, on time-shift

noise has been covered in the above discussion, a few remarks about its effect

on missing-pulses noise are in order. It was shown in Chapter 2 (see Fig. 19)

that the missing-pulses effect loses its characteristics if Ar-f departs suf-

ficiently far from zero to make the r-f phase difference change through several

multiples of 360 degrees during the longest desired pulses. This may mean a

radio-frequency difference of a few hundred kilocycles, or less, in systems

using fairly long pulses, and a difference of a megacycle or more if short

pulses are used. A mathematical formulation of the problem is difficult, but

a qualitative analysis of the effect of increasing Ar-f from an initial value

of zero can be given, as previously indicated in Chapter 2, pages38 and39.

The audio-noise power rapidly decreases, because the randomness disappears,

giving way to a periodic variation of frequency Ar-f. Since this difference
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is well above the audio range before the missing-pulses effect degenerates

into the beat phenomenon, most of the noise energy is inaudible. There re-

mains only the effect of the random phase difference at the beginning and

end of a desired pulse, which combines with the time-shift effect, varying

the time at which the edge crosses the slicing level by as much as half a

beat period. This effect decreases, of course, with increasing radio-fre-

quency difference. Experimental measurements are plotted and discussed in

the next chapter.
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CUAPTER 5

EXPERIMENTAL MELS TS AND OBSERVATIONS

5.1 Eerimental Setuls

The interference characteristics of pulse-time modulation cam be deter-

mined experimentally by duplicating or simulating as closely as necessary the

various interference situations likely to be encountered in practice. The

experimental results presented in this chapter were obtained in this manner,

while the theoretical results are found by means of the expressions developed

in the preceding chapter. The presentation is divided into four parts, two

dealing with two-station interference in which the desired signal is pulse-

duration modulated and pulse-position modulated, respectively, and the remain-

ing two dealing with two-path interference in PDM and PPM systems, respectively.

Circuit details are given in Appendix V and need not be discussed here; how-

ever, the over-all system setups will be described with the aid of block dia-

grams. The general setups are identical for the PPM tests and the PDM tests,

except that different transmitters and receivers are used. Consequently,

there are only two different block diagrams; one for two-station interference

and the other for two-path interference.

The essential components needed to investigate two-station interference

are two complete transmitters, operating on similar radio frequencies, and a

receiver. In the present case, at least one of the two transmitters is a PTM

transmitter, and the other one may be a pulse-modulated or continuously modu-

lated transmitter, depending on what type of interfering signal is being con-

sidered. A PM receiver is obviously required, inasmuch as the desired signal

always consists of time-modulated pulses. In addition to this essential equip-

ment, certain auxiliary components are useful. Cables connecting each of the

two transmitters with the receiver are preferable to wireless paths, since

they facilitate control of the relative magnitudes of the two signals at the

receiver. In addition to the loudspeaker and the human ear as a means of

perception, an output meter giving uantitative indications of the r-m-s out-

put voltage is useful, as is also a cathode-ray oscilloscope for observing

waveforms at various points in the receiver.

The block diagram of the setup used to study two-station interference is
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shown in Fig. 55. The large number of variables involved in this study re-

quires that numerous controls be incorporated in the equipment, or that cer-

tain changes can be readily made where controls are impractical. The follow-

ing is a list of these variables, most of which have been encountered in the

theoretical work of the preceding three chapters; the corresponding controls

used in the equipment are also listed below and indicated in Fig. 55.

Variable Eouioment Control

1. Radio-frequency difference Ar-f:

2. Pulse-repetition-freauency
difference ................. Aprf:
(if interference is pulsed)

3. Duration, in a PPM system, or
average duration in a P4 sys-
tem, of the desired pulses....d
and corresponding duty fac-
tor. ......................... D1

4. (Average) duration of inter-
fering pulses ................ d2
and corresponding duty fac-
tor.......................... D2

5. Coherence or incoherence of
the time-modulated pulses with
respect to each other

6. Interference ratio ............ a

7. System bandwidth .......... ...BW
(this determines the pulse
rise and decay times, )

8. Audio bandwidth

9. Slicing level .................._s

Both transmitters adjustable over a
range of 10 M or more

The prf of one or both of the pulsed
transmitters adjustable over a range
of 15 kc

In PDM transmitters, pulse duration ad-
justable from 28 to well over T, cor-
responding to duty factors of 28/T 1 to
more than i.
In PPM transmitters, pulse duration 0.02 T
to 0.05 T.

[T = pulse-repetition period]

PTM transmitters designed to operate as
pulsed oscillators or as pulsed ampli-
fiers

Adjustable attenuators inserted between
the two transmission cables and the
receiver input

Receiver bandwidth variable from 3 Mc
down to 150 kc. (Narrow bandwidths
achieved by positive feed-back)

Audio-filter cut-off frequency (re-
sponse down 17 db from midband value)
either 5 kc or 10 kc, normally 10 kc

Slicing level in receiver continuously
adjustable from zero to well above the
level of the strongest pulse signals,
with additional fine adjustment.

The following additional variables occur in the investigation but do not enter

the results as directly as the above nine variables.

10. The absolute values of the radio frequencies: between 30 Mc and 40 Mc.

-127-



11. The absolute values of the pulse-repetition frequencies: 15 kc to 30 kc..

PULSE RCIE
TRANSMITTER SER

VF VIDEO AUDIO
-VIDEO RF VARIABLEA
,~ ATTENUATORS

AUDIO MOD.

PULSE
T RANSM IT T E R

!VIDEO RF
VIDE RF VARIABLES: RADIO FREQUENCIES

AUDIO MOD. PULSE FREQUENCIES
PULSE DURATIONS
INTERFERENCE RATIO
PULSE SLICING LEVEL
RF RECEIVER BANDWIDTH

Fig.55 Block diagram
of experimental setup for two-station interference.

VARIABLES; RADIO FREQUENCY
PULSE FREQUENCY
TIME DELAY
PULSE DURATION
INTERFERENCE RATIO
PULSE SLICING LEVEL
RF RECEIVER BANDWIDTH

Fig. 56 Block diagram
of experimental setup for two-path interference.

Another variable, which exists only in the case of PPM systems, is the

method of demodulation: the results are dependent, for example, on whether

the pulse position is determined from one edge or from the center of the

pulse. Essentially two different PPM demodulation schemes have been used in

this investigation, with each one adjustable so as to permit various modes of

operation. They will be discussed in this chapter only insofar as they affect

the results, while the circuits are shown and discussed in Appendix V.

It should be mentioned that the system bandwidth, while normally deter-

mined by both transmitter and receiver is determined by the receiver r-f

stages alone in the present study. Since the system is linear from the trans-

mitter output to the receiver detector, it is immaterial at which point the
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filtering is performed.

The equipment for the investigation of two-path interference differs from

that used for two-station interference in two respects: the transmitter pro-

ducing the interfering signal is eliminated and a time delay is introduced in

one of the two transmission paths, both of the transmission paths now leading

from the same PTM transmitter to the receiver. A block diagram of the experi-

mental setup used to study two-path interference is shown in ig. 56. The

delay element is a mercury column capable of transmitting radio-frequency

signals by means of ultrasonic propagation through the mercury.-5 The elec-

tric signal is converted into an ultrasonic beam by a quartz crystal at one

end of the delay line, and is reconverted by the same means at the other end.

The line used has a delay of approximately one-half millisecond, which is

adjustable over a range of several per cent, and its attenuation is in the

order of magnitude of 80 decibels.

Fewer variables are involved in the study of two-path interference than

in the study of two-station interference, since only a single signal source

is involved. Both Ar-f and prf (variables 1 and 2) are fixed at zero, and

the interference duty factor or pulse duration (variable 4) becomes the same

as the duty factor or pulse duration, respectively, of the desired pulses

(variable 3). A new variable is the delay difference between the two trans-

mission paths, but the effects of changing the delay difference can also, with-

in limits, be achieved by varying the pulse-repetition frequency and the radio

frequency. The question of whether the r-f pulses are coherent or incoherent

with each other is more important for two-path interference than for two-

station interference, since coherence within one signal means coherence also

between the two signals. All remaining variables listed on pages 127 and 128

are the same for two-path interference.

The degree of realism attainable is limited principally by the fact that

the laboratory transmission paths do not have the propagation characteristics

which actual paths may have at certain frequencies. However, in most cases,

the actual situation can be simulated with sufficient accuracy. In the case

of two-station interference, only possible variations in the relative attenua-

tions of the two paths would be of importance; however, these generally occur

at sub-audio rates and therefore present no problem. In the case of two-path

interference resulting from reflections from the ionosphere, airplanes, or

other moving objects, the delay difference varies with considerable speed.
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This variation has no important effect if the pulses are incoherent, but if

they are coherent with each other, it may destroy the otherwise fixed r-f

phase relation between the delayed and undelayed signals. The latter is an

important effect, which can be simulated at a limited rate by manual adjust-

ment of the delay line, or by modulating the radio-frequency at the trans-

mitter. A great deal of multi-path interference caused by reflections from

buildings and other fixed objects is encountered at ultra-high frequencies;

in such cases the delay difference is fixed, and the mercury column simulates

the actual situation perfectly. The fact that the simulated delay difference

is always approximately one-half millisecond need not detract from the gener-

ality of the results in spite of the wide range of values which it may have in

practice, and the same is true of the radio frequency which is not varied by

more than a few megacycles from its nominal value of 30 Mc. Of course,

keeping these two parameters nearly fixed in this ranner eliminates extreme

situations which would occur for very much different values: for example,

very small delay differences (smaller than the pulse duration) which cause

the overlapping pulses to be coherent with each other; and very high radio

frequencies which may make coherence unattainable because of insufficient

oscillator stability. However, the results obtained with the present equipment

are readily modified to apply to such cases.

Another point with regard to the realism of this investigation of PTM

interference is the question of its applicability to multi-channel systems.

Although all equipment used in the experimental research is of the single-

channel type, the most important situations likely to be encountered with time-

division multiplex systems can nevertheless be simulated. For example, two-

path transmission may cause the pulses of channel A arriving by way of path 1

to overlap partially with the pulses of channel B arriving by way of path 2;

this differs from the single-channel situation in that the two overlapping

pulses are modulated by different signals. This situation may be simulated by

using two separate transmitters with the same radio frequencies and with pulse-

repetition frequencies synchronized. The problem of synchronization, which is

of paramount importance in time-division multiplex systems, is outside the

scope of this paper, although two different schemes are used in the experi-

mental work. The use of automatic phase and frequency control has already

proved its value in television and is definitely indicated also in pulse-com-

munication systems.26 The conclusions reached for multi-channel PM systemsmunication systems. The conclusions reached for multi-channel PTM systems
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assume that synchronization is maintained; loss of synchronization would, of

course, result in complete failure of the system.

5.2 Two-Station Interference in PDM Systems

The greater part of this section will be devoted to two-station PDM

interference in which the interfering signal is also PDM or at least consists

of pulses similar to those of the desired signal. As a starting point, the

special case in which the two-pulse-repetition frequencies are equal (Aprf = O)

will be considered, with each of the interfering pulses overlapping either

one edge or both edges of each desired pulse. This case is simpler than the

more general case and has possible application also to other interference

situations - notably interference by a continuous signal, and two-path inter-

ference between two channels of the same multi-channel PTM system, as explained

on page 130.

5.21 Two-Station Iterference with SnchronoUs se-Repetition Frequencies

With one or both of the two pulse trains of the usual incoherent type,

the first manifestation of the interference as its magnitude is gradually

increased from zero is random background noise. This is the so-called time-

shift noise; although it is random in character and is not readily distinguished

from ordinary fluctuation noise, some of its characteristics differ from those

of fluctuation noise. The following observations and measurements can be made:

(1) Observation of the pulse waveform ahead of the slicer, at the detector

output, with the slicer inoperative. Such an observation can give a

great deal of information about the pulse rise and decay times, the peak

value of the interference time shifts, the interference ratio, and pos-

sibly even the radio-frequency difference.

(2) Observation of the pulse waveform after slicing. This shows the time

shifts quite clearly and provides a good check on the slicing operation.

(3) Observation of the noise waveform at the receiver output (after filtering),

and measurement of the r-m-s voltage of the noise. It is a simple matter

to measure the r-m-s signal output for full modulation, and the above

measurement therefore gives the signal-to-noise ratio.

* The other possibility is that there is no coincidence between the two
pulse trains, in which case perfect reception is possible.
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x,21(1) Detector Output

Figure 57 is an oscillogram of the detector output in the absence of any

modulation; a long interfering pulse overlaps a somewhat shorter desired

pulse, producing a resultant which depends on the r-f phase difference. The

oscillogram is a superposition of approximately 100,000 such occurrences,

each one with a different resultant. The shaded area is produced by the many

different resultants, and the gradation of the shading is indicative of the

probability distribution of the resultant. The interference ratio can be

scaled directly off the oscillogram, as indicated in Fig. 57, in which it is

approximately one third. Similarly, the peak time-shift values relative to

the pulse durations can be scaled off directly at various slicing levels.

(The pulse durations are 20 and 30 microseconds, respectively.) The lateral

uniformity and smooth gradation of the shaded area indicate complete inco-

herence of at least one of the two pulsed carriers. A good method of en-

suring total incoherence is afforded by slight noise modulation of either

pulse train (preferably the interfering pulse train, since its edges need

not be observed). The degree of time modulation needed to ensure incoherence

is so slight that the modulation is not visible in Fig. 57. The oscillogram

of Fig. 58, on the other hand, exhibits some degree of coherence. Again, this

FIG. 57 FIG. 58

i gs.57-59 Detector output
showing various degrees of
coherence; interfering pulses
of longer duration than

FIG 59 desired (taller) pulses.
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picture is the superposition of nearly 100,000 successive pulses but, in the

great majority of these, the r-f phase difference favors certain values. This

is particularly evident near the leading pulse edge, where favors values

between approximately -90° and +90°. During the time of the desired pulse, 0
changes by approximately 90°, favoring 0° to 180° (or 0° to -180°) at the

trailing edge. This accounts for the greater concentration of resultants at

the leading edge. The change in 0 of approximately 90°, corresponding to a

quarter-cycle of the beat between the two radio frequencies, indicates a radio-

frequency difference equal to approximately one-fourth of the reciprocal of

the desired-pulse duration, about 15 kc in the present case.

Almost complete coherence is illustrated by the oscillogram of Fig. 59,

in which Ar-f is much larger, approximately 14/d or nearly 1 M, since there

are fourteen beat cycles in somewhat more than fourteen microseconds. One

important consequence of the larger radio-frequency difference is to be noted.

The separation between the extreme values of the resultants, which is equal

to b if Ar-f is small (see Fig. 57), decreases rapidly as Ar-f is increased

above a certain value. This is simply a result of the limited high-fre-

quency response of the detector (due to shunt capacity), and the beat ampli-

tude therefore decreases with increasing beat frequency directly as the

detector response. In the case of Fig. 59, the beat amplitude is only 1.2 a

instead of the usual value a. The important consequence is the fact that it

is no longer necessary to slice between A and J-a in order to avoid inter-

ference effects other than edge time shifts (a < s < -a) the limits being

a and 1-0.6 a in the present case. As a result, the maximum value of a

which still permits slicing with no defects, other than edge time shifts, will

be larger than the usual a = ,namely a = 1/1.6. This effect combines with

the two effects already discussed at the end of the previous chapter (Section

4.5) to reduce high-interference- ratio noise still further for fairly large

frequency separations between the desired and interfering signals. The video

bandwidth should therefore not be made any larger than is necessary to pre-

vent the pulse buildup and decay times from being lengthened; these should

be determined by the system bandwidth and not affected appreciably by the

video bandwidth, which must therefore be somewhat larger than one-half the

double-side-band r-f system bandwidth.

In all of the above oscillograms (Figs. 57-59), the interfering pulses

(of smaller amplitude tan the desired pulses) have longer duration than the
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desired pulses and overlap all their edges. If the pulse durations d 1 and d2

are interchanged, without changing the respective amplitudes 1 and a, none of

the desired-pulse edges will be affected by the interference. The oscillo-

gram in Fig. 60 illustrates this for completely incoherent interference; it

gives an expanded view of the "ttail end" of the interference overlap and

shows the completely unimpaired trailing edges of the 100,000 superposed

desired pulses. It is possible to detect the position of these edges with-

out any error resulting from the interference, for all interference ratios

smaller than one, by keeping the slicing level below 1-a ( < s < 1-a). In

fact, reviewing Figs. 57-59, one finds that even when the longer pulses have

smaller amplitude than the shorter pulses, they can be detected without

disturbance by setting the slicing level low enough. This is therefore one

of the unusual situations in which the weaker signal is favored; moreover,

either signal can be chosen at will by merely adjusting the slicing level,

the weaker signal being completely free of noise and the stronger signal

virtually so if the interference ratio is small enough. (Of course, the

weaker signal will be more susceptible to other noise or interference entering

the system.) A second illustration of interference with larger than d2

and none of the desired-pulse edges overlapped by interfering pulses is given

by Fig. 61, in which both r-f carriers are coherent and Ar-f is approximately

600 kc. In spite of the superficial resemblance to Fig. 59, this waveform

is radically different inasmuch as the interference beat does not have a d-c

component as in Fig. 59,

FIG. 60 FIG.61

Figs.60-61 Detector output for incoherent (Fig.60)
and coherent (Fig.61) interference. Interfering pulses are of shorter dur-

ation than desired (taller) pulses.
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The observation of the preceding paragraph, showing that it is possible

to select either of two signals by merely adjusting the slicing level, sug-

gests a simple method of selecting any one out of a number of signals trans-

mitted on a single r-f carrier. A pyramid of duration-modulated pulses, each

one modulated by its own signal, can be transmitted as shown in Fig. 62, and

Fig.62 $PDK pyramid".

the individual "stories" can be separated by using different slicing levels.

In contrast to the so-called frequency-selection and time-selection methods,

this may be called amplitude selection. As is evident from Fig. 62, the

degree of modulation of each "story" of the pyramid is strictly limited, which

means reduced signal-to-noise ratio. The system bandwidth need not be larger

than that reoquired for any one of the "Istories" alone, except insofar as long

rise and decay times reduce the allowable time modulation by greater relative

amounts. The noteworthy feature of the system is the extreme simplicity of

the selection scheme at the receiver, particularly if only one "channel" at

a time is to be selected. Neither variable tuning nor synchronization nor

timing circuits are required. The transmitter, too, can be quite simple.

5.21(2) Slicer Output

Next, the waveform of the slicer output will be considered. Oscillo-

grams of the slicer output are shown in Figs. 63 and 64 for one-edge and

two-edge time shifts, respectively. In the first case, the interference was

so phased as to overlap only the trailing edge; in the second case, it over-

laps both edges of each desired pulse. Since attention is to be focussed on

the edges, the pulses shown are shorter than those in the preceding oscillo-

grams, namely seven to eight microseconds at the half-amplitude level. The

time shifts, obtained with interference ratios between 0.4 and .5, therefore

appear relatively large. Ordinarily, because of the wide-band response of the

slicer and video-amplifier stages, these pulses have shorter rise and decay
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times. These had to be lengthened, however, in order to make the edges

clearly visible without excessive over-exposure on other parts of the pulse.

These oscillograms not only show the peak-to-peak time shift, but also con-

firm the theoretical predictions with regard to the time-shift distribution.

FIG.63 FIG. 64

FIG.66FIG. 65

Figs.63-66 Slicer output showing one-edge random time shift (Fig.63),
two-edge random time shift (igs.64-65), and sinusoidal two-edge time modmatxt

shown for comparison (ig.66).

Since the interference ratio is nearly one-half, the peak advance of the lead-

ing edge and peak delay of the trailing edge are strongly favored over other

shifts, as confirmed by the brightness distribution or gradation of the

shaded areas. Figures 65 and 66 show a comparison between the random time

shifts caused by interference and nonrandom time shifts caused by sinusoidal

time modulation, respectively. The difference in time-shift distribution is

quite apparent, as is the finer texture" of the shaded areas. (Nonuniform-

ities such as the apparently unequal modulation of the two edges are caused by

CR0-sweep nonlinearity.)

5.21(3a) Observation of Audio Outnut

Information about the audio output is, of course, more directly pertinent

to the interference problem, since the ultimate effect is of principal interest.
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Appreciation of such information, however, is greatly facilitated by the

other two observations discussed under 1. and 2. in the preceding pages. The

most important item is the measurement of the audio-noise power or voltage as

a function of variables such as the interference ratio; but first a smell

investigation of some characteristics of the audio noise is in order. Oscil-

lograms of time-shift audio noise are shown in Figs. 67 and 68 with long and

relatively short exposures, respectively. The appearance of the noise in

Fig. 67 is the layman's conception of noise: the voltage variations are too

rapid (relative to the sweep period) to be resolved, and so many incoherent

superpositions of successive sweeps compose the oscillogram that the result-

ing picture gives little suggestion of the fact that the noise is nothing

more than a single-valued function of time. However, Fig. 67 does convey

some information: it shows, in a qualitative way, the amplitude distribution

of the noise. It is apparent that this distribution is uite different from

the distribution of the time shifts, favoring the average rather than the

extremes. The oscillogram of Fig. 68, though still a superposition of several

successive sweeps, shows the point-to-point variations of the noise voltage.

FIG. 67 FIG. 68

Figs.67-68 Oscillograms of random time-
shift noise with 5-second exposure (Fig.67) and with 1/100-second (Fig.68).

It can be seen that there is no relation between the noise occurring during

the successive sweeps. An average frequency can be determined by counting

zero-axis crossings or using a frequency meter, and this turns out to be

approximately at the "center" of the audio characteristic, approximately

5 kc for the 10-kc filter and 2.5 kc for the 5-kc filter.

Although the audio-noise power resulting from any time shift of specified

distribution through an audio system of known characteristics is completely
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defined by (89) (page 96 ), it is nevertheless of interest to consider the

noise power in terms of the instantaneous voltage, at least in a qualitative

manner. The following facts are known: if the audio system had the ideal

low-pass filter characteristic, the audio-noise power would be the same as

the audio power resulting from sinusoidal modulation within the pass band

(on the assumption that the interference time-shift distribution is sinusoid-

al). This means that the output noise voltage would have the same peak ampli-

tude as the sinusoidal output, and also the same amplitude distribution; for

the peak amplitude can obviously not be any larger, nor can the crest factor

(ratio of peak value to r-m-s value) become smaller than the original value

of V'in a linear system. Therefore, in the limiting case of the ideal low-

pass filter, both the peak value and amplitude distribution of the time shifts

are preserved in the output voltage. (Preservation of the peak value is in-

tended to mean that Vma x = (tmax/T), see Section 4.1.) The noise voltage

obtained with the actual nonideal audio characteristic obviously does not

have the sinusoidal amplitude distribution. Inspection of Fig. 67 shows

that the crest factor is considerably larger than that of a sinusoid and also

larger than that of a sawtooth ( ) with its flat amplitude distribution.

Furthermore, measurement of the peak-to-peak time shift and the peak-to-peak

noise voltage shows that the peak time-shift value is not preserved in the

output noise voltage. The mximum time shift is now given by

At
max g 1 E ( 113)

in which g is smaller than unity and may be termed the peak-reduction fac-

tor. It depends on the audio characteristic; for example, its value is ap-

proximately 0.9 for the 10-kc filter and 0.8 for the 5-kc filter. The peak-

reduction effect can be readily explained by physical reasoning: the tran-

sient response of the audio system is too slow to permit the output voltage

to follow the sample values, and for the same reason the amplitude distribu-

tion is altered in favor of the smaller instantaneous voltage values. The

crest factor can be evaluated by peak and r-m-s noise measurements, which has

led to values between 2.0 and 3.0, depending on the audio characteristic.

The approximate value of 2.2 obtained with the 10-kc filter represents an

increase over the original value 1.4 by a factor of somewhat more than 1.5,
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or a reduction in r-m-s value by that factor for a given peak value. The

reciprocal of this factor may be called the r-m-s reduction factor, g2, and

is defined as follows:

crest factor of samles (114)
g2 crest factor of output 

Multiplication of the two reduction factors g and g2 should give the factor

by which the r-m-s noise voltage is smaller than the ideal-filter output

voltage, namely kf defined in Section 4.1. It is the square root of the

ratio of the area under the actual squared filter characteristic to the area

of the ideal squared filter characteristic. With the above figures, one

obtains kf = glg2 = (0.9)(0.64) = 0.58. The value of kf as obtained from

the filter-characteristic area is also approximately 0.6 for the 10-kc

filter. It should be pointed out that this is by far the more reliable and

direct method of obtaining kf; accurate experimental determinations of gl

and g2 are difficult, and a mathematical formulation of these factors is not

attempted; their purpose and the purpose of the preceding discussion is merely

to show as much as can be readily seen about the characteristics of the time-

shift noise by making some simple observations and measurements.

5.21(3b) Measurement of Audio-Noise Power

As mentioned previously, the measurement of greatest importance is that

of the audio-noise power or r-m-s voltage as a function of the variables

involved. Inasmuch as this section is a treatment of the special case

Aprf = 0, there are not so many variables involved, particularly for inter-

ference ratios less than one-half. The pulse-edge time-shift noise can be

either of the one-edge or of the two-edge type, depending on whether the in-

terfering pulses are so phased as to overlap one set of desired-pulse edges

or whether they are long enough and so phased as to overlap both sets of

edges. Missing-pulses noise depends directly on the amount of overlap rela-

tive to the pulse-repetition period. Of principal interest is the variation

of the total noise, or noise-to-signal ratio, as a function of the interference

ratio, a. This is shown in Fig. 69 for the conditions indicated, and theo-

retical curves obtained in part by computation from (103) (see Section 4.3)

are superimposed in broken lines. The quantity plotted is r-m-s volts for

* All plots are for the 10-kc audio filter (kf 0.60); for the 5-kc filter
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100-volt pulses (E = 100); to obtain the noise-to-signal ratio one need only

remember that the peak signal is 00(Atma/T) or approximately 100 D1 , cor-

responding to ideal peak-signal voltages of 10 and 30 volts, respectively,

for the two curves. The actual peak-signal values are several volts lower

because the finite rise and decay times limit Atmax to somewhat less than d .

Fig. 69 Interference
noise voltage versus
interference ratio.

INTERFERENCE RATIO "a'

The outstanding feature of these curves is the knee at a = 0.5, caused by

the rather sudden appearance of the missing-pulses effect. It is particularly

outstanding if the duration of the missing pulses is much larger than the

pulse rise time and hence the peak time shifts, and it becomes almost un-

noticeable when these auantities are of the same order of magnitude, as will

be shown later.

The discrepancy between the experimental and computed curves can largely

be accounted for. Expression (103), based on linear pulse edges, was used

to give the computed results, except for the values for a = 0.40 and 0.49,

which were obtained from computations based on exponential pulse edges (see

Section 4.1). However, as pointed out in Section 4.3, the time-shift noise

component included in (103) and in (104) is too small, and this presumably

accounts for the most serious discrepancy in Fig. 69, namely the excessive

(ke 0.42), all experimental and theoretical values of noise are approxi-
mately 3 db lower. The filter characteristics are given in Appendix V.
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difference between the two computed curves for D1 = 0.1 and 0.3, respectively.

Since the same time-shift noise component is common to both curves, an in-

crease in this component will raise the lower curve while hardly affecting

the upper curve, inasmuch as this component is added to the remaining (larger)

components on an r-m-s basis. Although both curves will be somewhat high,

the ratio of their ordinates will be more nearly that expected.
The ata for Ar-f = 500 k are included in Fig. 69 as typical curves

for adjacent-channel interference. In the case of the smaller duty factor
(D 1 = 0.10), the two-edge time-shift noise is more or less of the PDM type

(Case 3, A = 2n, see Section 4.5), while in the case of the larger duty

factor (D1 = 0.30), it is of a type intermediate to PDM and PPM (Case 2) and

is consequently smaller than the Ar-f = 0 value. In either case, the important

feature is the relatively small noise increase, if any, with increasing a,

for values of a above 0.4 or 0.5. A complication occurs for relatively large

values of Ar-f as the interference ratio a is changed (between 0.5 and 1.0):

the value of At (see Section 4.5) also changes, because the slicing level s

is varied with a and the effective pulse duration, d1 , consequently also

varies somewhat. This accounts for the slight drop in the noise voltage for

D1 = 0.1 and Ar-f = 500 kc.

The variation of the r-m-s noise voltage with the radio-frequency dif-

ference, Ar-f, is shown in Fig. 70, for one particular set of values, = 0.3

and d1 = 2 microseconds. The plot is normalized with respect to the one-edge

Fig.70 Interference noise
voltage . radio-frequency
difference.

RADIO-FREQUENCY DIFFERENCE ARF IN Mc

noise value. Theoretically, the one-edge time-shift noise is independent of

the r-f difference, while the two-edge noise oscillates in accordance with
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the principles discussed in detail in the last section of the preceding chap- -

ter (Section 4.5). The highest value of the two-edge noise voltage is nearly

twice that of the one-edge noise voltage, as predicted, while the lowest

value is somewhat less than one-half the one-edge noise voltage. This mini-

mum value, occurring for A = T, , ..., is composed of a PPM and a P4

component: the former is given by (74) in Section 3.5, and with the duty

factor Just under 0.05 it amounts to less than ten per cent of the one-edge

noise voltage. The PDM component, resulting from the asymmetry of At(0), is

given by (109) and by the series expansion included in Appendix IV B. For a

= 0.3, the interference ratio in Fig. 70 , it equals slightly more than one-

third of the one-edge noise. The two components combined on a power basis

amount to somewhat less than forty per cent of the one-edge noise voltage,

as compared to forty to fifty per cent in Fig. 70. The somewhat higher

experimental values can readily be accounted for by the additional asymmetry

in t(O) due to the exponential shape of the edges which begins to be notice-

able at a = 0.3 and exerts an increasing influence at larger values of a.

Curves of noise voltage for longer pulse durations (d) have a similar

appearance but exhibit proportionately more oscillations in a given range of

r-f difference.

A similar plot of r-m-s noise voltage, with the duty factor (D1) or

pulse duration (dl) larger than in Fig 70, is shown in Fig. 71. The important

difference, however, is the larger interference ratio, a = 0.8 instead of

a = 0.3, For Ar-f = 0, the noise consists mostly of the missing-pulses com-

ponent, which decreases rapidly with increasing r-f difference, leaving es-

sentially only the two-edge time-shift noise.

The cross-talk and signal-reduction effects have been discussed in the

preceding chapter (Section 4.2, ages 103-104). Since they occur only in

the presence of strong missing-pulses noise ( < a 1, Ar-f << ldl), any

cross-talk is generally lost in the noise. In the most extreme cases, with

a almost unity, the signal-voltage reduction amounts to thirty to fifty per

cent when the interference overlaps both sets of edges of the desired pulses,

and fifteen to twenty per cent if one set of edges is overlapped.

5.22 Continuous-Wave Interference in P Systems

Continuous-wave interference in PDM systems is similar to the type of

interference discussed in Section 5.21. The only difference is that the
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interference necessarily overlaps both edges of each desired pulse, and that

there is a greater chance of coherence. Continuous signals, unless frequency-

modulated, are generally coherent. The desired signal, even though it origi-

nates from a pulsed oscillator, has enough coherence in the absence of time

modulation to make the normally random interference noise (resulting from

either time shifts, missing pulses, or both) take on a semi-random character.

This means that, in the absence of modulation, the sound resembles that of

frying eggs or sometimes that of a Bunsen burner but reverts to the usual

hiss noise as soon as a slight amount of time modulation is imposed on the

leading pulse edges. The results are then exactly the same as those of Sec-

tion 5.22 (when the synchronized interfering pulses overlap the desired pulses

completely); even when the noise is of the semirandom type, its r-m-s voltage

is generally within ten per cent of that of the perfectly random noise. It is

likely that at radio frequencies higher than 30 to 40 M (used in this study)

the tendency toward nonrandomness becomes increasingly smaller. There is always

some slight time modulation or "Jitter' on the pulse edges (caused by power-

frequency pickup and fluctuation noise) which spoils the possibility of per-

fect coherence. Such time modulation would have to be in the order of magni-

tude of 1/30 microsecond at carrier frequencies of approximately 30 4c, but

only about 10 microsecond at X-band frequencies.

Gating the output f an oscillator, instead of pulsing the oscillator
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itself, theoretically results in r-f pulses which are coherent with each

other regardless of their time modulation. In practice, at 30 Me, this is

found to be true provided that the oscillator frequency is stabilized by

use of a crystal. As a result, the time-shift and missing-pulses noise are

not random; instead they assume the character of beat notes between the in-

terfering carrier on the one hand and the carrier and side bands of the

desired pulses on the other hand. With large interference ratios (close to

unity), the noise is prohibitively strong only if Ar-f is in the audio range,

so that the beat between the two carriers is audible. The actual noise volt-

age is larger than in the random case by the factor H(W)/kf, where H(w) is the

audio gain at the frequency of the beat, Ar-f,and kf the audio-filter constant

defined in Section 4.1. This factor is larger than one over most of the

audio range, except at the extremities where the response decreases well below

its midband value, and the beat note is correspondingly weaker. When Ar-f is

outside the audio range, there is generally a multitude of beat notes; like

the random noise voltage in the incoherent case, the voltage of the beats has

a series of maxima and minima as Ar-f is increased, but the noise is consid-

erably less offensive to the average listener.

The effect of the slightly imperfect coherence which may be attained if

the oscillator is not crystal-controlled is to give rise to "corrupted" beat

notes instead of he clean beat notes. This may occur, for example, as a

result of some sixty-cycle frequency modulation of the oscillator. It is im-

probable, though not impossible, that the practically perfect coherence at-

tainable at 30 M through use of quartz crystals is readily attainable at

very much higher radio frequencies. It must be remembered that the absolute,

not the relative, stability must be the same in order to give the same degree

of coherence; only the short-time stability is involved (a few seconds or less).

Regardless of whether the interference noise is random or nonrandom, the

missing-pulses noise is accompanied by the signal-reduction effect. With

pulse durations less than approximately twenty per cent of the pulse-repeti-

tion period, the signal voltage at any audio frequency is reduced to (1-F)

of its normal value; this means a decrease of 32 decibels for F = 1/3

(interference ratio about 0.9 or higher). For longer pulse durations, however,

the reduction is somewhat larger, especially in the incoherent case, in which

the intense random missing-pulses noise appears to have a masking effect.

Reductions as large as seven decibels have been measured for duty factors of
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fifty per cent.

If the continuous interference is amplitude-modulated, the modulation

does not reach the output so long as the peak interference is less than one-

half the pulse amplitude. However, for larger interference ratios, it does

reach the output and the PDM signal cannot be properly received, unless Ar-f

is large.

5.23 Two-Station Interference with Asynchronous Pulse-Repetition Frequencies

If one or both of the two pulse trains are of the usual incoherent type,

the first manifestation of the interference, as the interference ratio is in-

creased from zero, is random time-shift noise. The uality of this noise may

or may not differ appreciably from that of the time-shift noise discussed in

Section 5.22, depending on the relative pulse durations and repetition fre-

quencies. The noise in the present, more general, case generally consists of

bursts of the continuous noise obtained in the situations treated in Section

5.21. As in that section, the experimental study is broken down into several

distinct types of observations and measurements (see pages 131-132),which

will be discussed in turn.

5.23(1) Detector Output

Oscillograms of the detector output under various conditions are shown in

Figs. 72 through 75. As in similar oscillograms shown in Section 5.21, the

shaded area is produced by the many different resultants of the desired and

interfering pulses. The R0 sweep is synchronized with the repetition fre-

quency of the desired pulses; consequently the interfering pulses are not

stationary and therefore not visible on these oscillograms, which are super-

positions of between 50,000 and 100,000 successive sweeps. However, the

heavy white line of height a (see Fig. 72) represents the tops of the inter-

fering pulses. All the various possible relative phase positions between the

two pulse trains are encountered in at least a few of the many superposed

pictures: the heavy white line (see Fig. 72) starting from the bottom (zero

line) and then passing through the shaded region is the desired pulse; it

appears on these oscillograms because many of the desired pulses (out of the

100,000 composing the oscillogram) are artially or totally undisturbed by the

interfering pulses. On the other hand, every part of the desired pulse is

sooner or later affected by the interference, with every possible value of

the r-f phase difference , and the result is the uniform interference
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envelope. The gradation of the shaded area is indicative of the probability

distributions of the time shifts at the pulse edges and of the pulse ampli-

tudes at the pulse tops. Furthermore, Figs. 72 and 73 show the peak positive

and negative time shifts of both the leading and trailing edges at any slicing

level , between a and 1-a. In spite of the relatively small difference in

interference ratios for these two oscillograms, the peak-to-peak time shifts

differ by a factor of approximately two, which substantiates the logarithmic

relation (92) and the plot of Fig. 50 in Section 4.1. The same oscillogram

FIG. 72 FIG. 73

FIG.75FIG.74

Figs.72-75 Oscillograms of detector
output for interference ratios a = 0.35, 0.42, 0.20, 0.90, respectively.

as that of Fig. 72 was shown in Fig. 13 (Chapter 2) as a comparison against

Fig. 12, the theoretical superposition of the desired and interfering pulses.

Apart from differences in pulse shape, there is only one noticeable discrepancy

between the theoretical and actual resultant envelopes: in the oscillograms,

the two little negative peaks at the leading and trailing edges, respectively,

should actually reach zero. This theoretical zero value occurs at the instant

of time when the desired-pulse edge passes the value a", only on those oc-

casions on which the r-f phase difference is within a few degrees of 180 °.
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Since it lasts oly an infinitesimal time and is near zero for a small fraction

of the pulse rise or decay time, the video transient response is insufficient

to follow the actual envelope at the points in question.

Figure 74, which is also an oscillogram of the detector output, illus-

trates the larger choice in slicing level (a < s l.-a) when a is relatively

small. It is evident, nevertheless, that the optimum slicing level is at about

one-half the height of the desired pulse; at higher levels, the leading edge

is subject to larger time shifts, and at lower levels, the trailing edge has

larger shifts. The other extreme, large interference ratio, is illustrated by

the oscillogram of Fig. 75. The optimun slicing level is just above the

heavy white line of height a, but below the desired-pulse height, unity. The

resultants which comose the lower half of the shaded area are those which

never reach the slicing level and are responsible for the missing pulses in

the output. The great majority of those resultants which do pierce the

slicing level are seen to have large positive time shifts (leading edge ad-

vanced, trailing edge retarded). The brightness distribution of the shaded

area checks with the mathematical fact that two nearly equally large vectors

have a probability of 2/3 of yielding a resultant larger than either vector,

the remaining 1/3 being the probability that the resultant is smaller (there-

fore causing a missing pulse). In fact, the bright rim along the upper border

of the interference envelope indicates a distribution approaching that of the

half-wave-rectified sinusoid, with the rim corresponding to the flat (zero-

slope) portions.

The effect of increased radio-frequency difference on the interference

envelope is the same as in the case of synchronous pulse-repetition frequen-

cies, discussed in some detail on page 133. The separation of the extreme

resultant values decreases from its peak value of 2a in accordance with the

video-response characteristic, making it possible to void the missing-pulses

effect even for interference ratios larger than 0.5.

Unlike the special cases discussed in Section 5.21, the present, more

general, case never permits discrimination in favor of the weaker (interfering)

signal, regardless of whether its pulse duration is longer or horter than that

of the desired-pulse signal. So far as the appearance of the detector output

(Figs. 72-75) is concerned, the duty factor of the interfering pulses has only

one easily noticeable effect: if it is very small, the shaded regions and the

horizontal line of height a (the interference level) are scarcely visible,
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while the desired pulse appears perfectly normal. As the interference duty

factor is increased, the dim regions become brighter, and the zero base line

and the outlines of the desired pulse become dimmer; they disappear completely

when the interference duty factor is unity, as in the case of continuous

interference.

5.23(2) Slicer Output

The oscillograms in Figs. 76 - 79 differ from those of Figs. 64 and 65

in that, of the 50,000 to 100,000 pulses superposed to form each oscillogram,

only a fraction have shifted edges. This fraction is large, well over one-

half in the case of Fig. 76, as a result of a large interference duty factor,

but it is considerably smaller in the other three oscillograms. The rise and

decay times of the pulses had to be lengthened by reducing the high-freouency

response of the video stages, in order to make the shaded regions visible.

FIG.77FIG. 76

FIG.78

Figs.76-79 Oscillograms of slicer output for large
interference duty factor (ig.76) and for small interference duty

factor with various slicing levels.

Figures 77 - 79, obtained under identical conditions except for slicing level

(interference ratio, a = 0.4), illustrate the effect of varying the slicing

level, . Figure 77 represents the optimum condition (s a 0.5) as confirmed
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by the fact that the peak-to-peak time shifts of the two sets of edges are

approximately equal. In the case of Fig. 78, and also Fig. 76, the slicing

level is too high, so that some of the leading edges are delayed excessively;

in the case o Fig. 79, the slicing level is too low, so that some of the

trailing edges are delayed excessively. It will be noticed that the trailing

edges with the largest delays in Fig. 79 are much more clearly visible than

the leading edges with the largest delays in Fig. 78. This is not the result

of different photographic exposures; it is the result of the asymmetrical

time-shift probability distributions which always favor positive time shifts

(leading edges advanced, trailing edges delayed); consequently, the fraction

of the total number of trailing pulse edges which are delayed excessively when

the slicing level is below one-half by a certain amount is larger than the

corresponding fraction of leading pulse edges when the slicing level is above

one-half by the same amount. A high slicing level is therefore less harmful,

in general, than a low slicing level. An additional reason causes a slightly

high slicing level to be preferable; this is the desirability of having

little or no "direct component" in the time shifts, in order to minimize the

Aprf beat note (see Section 4.4, pages 114 and 115). Thus, for example,

comparison of Figs. 78 and 79 shows that, while the total effective time

shift is definitely smaller in the former, the direct component may be smaller

in the latter, particularly for the trailing edge. In other words, it is

desirable to counterbalance the asymmetry of the time-shift distributions by

a different, opposite asymmetry: the preference for ositive time shifts

is offset by making the negative time shifts larger so as to compensate for

their smaller number. This will be further illustrated in the next section,

dealing with the direct observation of the output-noise bursts.

2(a) Obse tion of Audio utut

The audio noise is considerably more complex in the general case of

asynchronous pulse-repetition frequencies than in the special case of syn-

chronous pulse-repetition frequencies. The essential feature is that the

noise is generally discontinuous or at least nonuniform as a function of time.

This can be readily explained and illustrated by oscillograms of the output

noise. Time-shift noise will be considered first. Suppose that neither of

the two pulse trains are modulated, that the interfering pulses are of shorter

duration than the desired pulses (d2 < d), that the pulse-repetition
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frequencies differ by a sub-audio frequency, 1 cps, for example, and that the

interference ratio is less than one-half. A sequence of four events, lasting

a total of one second, will then repeat periodically at the difference fre-

quency, 1 cps (prf). The following events take place during the one-second

period: (1) during a fraction D of this period, the interfering pulses

overlap only the leading edges of successive desired pulses, causing one-edge

time-shift noise; (2) next, if T2 > T, there will be an interval (d - d2)/T2

during which the interfering pulses coincide with the central portions of

successive desired pulses without overlapping either edge. No time-shift

noise results during this second interval. (3) During the third interval,

which lasts a fraction D2 of the one-second period, the interfering pulses

overlap only the trailing edges of successive pulses, causing one-edge time-

shift noise as during the first interval. (4) Finally, during the fourth

interval, which lasts a fraction 1 - (d1 + d2) /T2 ] of the beat period, the

interfering pulses coincide with the spaces between desired pulses, and no

noise results. With T1 > T2, the order of these four events is simply re-

versed. If the two pulse-repetition frequencies differ by more than 1 cps,

the four intervals, while still occupying the above respective fractions of

the total beat period, last for a shorter absolute duration. In terms of the

beat period T12 corresponding to the difference between pulse-repetition fre-

quencies, Aprf, the respective durations of the four intervals are

W1 = DT1W1 =D2 12 (leading edges shifted)

T

W = (d1 - d2 ) 

Ws1 D2T12 (trailing edges shifted)

3Ti21
4 (T1 - Ydl dT 2 T12 = T TNUp dl > (115)

* The following symbols will be recalled:

d = duration, D1 = duty factor, T1 = repetition period, of desired pulses

d2 = 2 T2 " , of interfering
pulses.
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Two complete beat periods, each lasting approximately 33 milliseconds

(Aprf = 30 cps), are shown in the oscillogram of the audio output in Fig. 80.

Because of the long duration of W1 and W2 (4 milliseconds), each noise burst

is composed of a large number (approximately 100) of successive shifted edges.

Consequently, with such low values of Aprf, the voltage variations within the

individual noise bursts are not distinguishable. The oscillogram, which con-

sists of the superposition of several successive sweeps, is intended merely

to show the sequence of events. It is to be noted that the leading-edge

and trailing-edge noise bursts are distributed along the time axis in the

same way as the leading and trailing edges of the desired pulses. By measuring

the relative durations of the various intervals, one can infer that D2 is

approximately 1/8 and D1 about 1/4, or possibly 3/4. It is important to

remember, however, that the absolute time durations are uite different from

the corresponding intervals of the desired pulse train; they differ by the

factor T12/T2, as can be seen by inspection of (115) and the dimensions

given in Fig. 80.

The oscillogram of Fig. 81 was obtained under somewhat different condi-

tions (Aprf = 200 cps), with a faster CR0 sweep. It is not a superposition

of a number of successive sweeps, but shows merely a single beat period. The

interference ratio in both Figs. 80 and 81 is between 0.4 and 0.5, and a trace

of missing-pulses noise resulting from imperfect slicing is visible during

"interval 2", between the leading- andtrailing-edge noise bursts. In these

oscillograms, and also in subsequent ones, T2 is kept larger than T, so that

the interfering pulse train "slides through the desired pulse trains from

left to right (in the positive time sense)". In Fig. 81, the leading-edge

noise burst is considerably larger than the trailing-edge noise burst, mostly

because the slicing level is high. This will be discussed in more detail

later. The individual samples (successive pulses with edge-time shifts)

forming each noise burst can be distinguished.

A somewhat different sequence of events occurs during each beat period

if the interfering pulses are of longer duration than the desired pulses

(d > d ). The four intervals correspond to (1) interfering pulses over-
2 1 0 

lapping leading edges of the desired pulse, (2) interfering pulses overlapping

the leading and trailing edges of each desired pulse,(3) the trailing edges

only, and (4) not coinciding with any part of the desired pulses. This can

also be interpreted as another form of the case discussed above, in which
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intervals (1) and (3) (see page 150) overlap and form interval (2) in the

sequence outlined above. The respective durations of the four intervals

are now

T1 2 12 (1

2 2 )T2Y = ( 1 

eading edges shifted)

(all edges shifted)

Y3 = 12
2

(trailing edges shifted)
T1T _

T12 = 12- O1c2l

4= (T2 -=_ -T 1
T2

FIG. 80

(116)

FIG. 81

FIG. 82 FIG. 83

Figs.80-83 Oscillograms of time-shift noise bursts under various condition.
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For d2 > d there is only a single burst of noise per beat period; it

extends over the intervals Y1 Y2, and Y3, and may or may not be noticeably

different during the interval Y2, depending on Ar-f and the duration Y2

relative to Y1 and Y3. Figures 82 and 83 are oscillograms for D2 = 0.5,

D1 = 0.1, and Aprf = 250 cps. The first shows three successive beat periods

in a single sweep, while the latter also shows three beat periods superim-

posed on successive sweeps. Both figures bring out the fact that successive

noise bursts differ a great deal from each other, which is to be expected

since relatively few random "samples" compose each noise burst. Figure 83

exhibits a tendency towards higher noise peaks in the central portion (during

the interval Y2 ) than at either end (intervals Y1 and Y3 ), resulting from

the fact that the two-edge noise composing the central portion of each noise

burst is larger than the one-edge noise at the beginning and end of each

noise burst.

It will be of interest, at this point, to resume the discussion of the

relation between slicing level and time-shift distribution, illustrated in

the preceding section by Figs.76-79. The audio-noise outputs correspond-

ing to Figs. 77, 78, and 79 are shown in Figs. 84, 85, and 86, respectively.

FIG. 84 FIG. 85

Figs.84-86 Oscillograms
of time-shift noise bursts,
showing effect of slicing

FIG. 86 level (medium, high, and
low, respectively).
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Because of the phase reversal in the odd number of amplifier stages used,

positive time shifts (leading-edge advances or trailing-edge delays) give

negative (downward) noise peaks; this must be kept in mind in the observa-

tions which follow. Figures 84 - 86 are oscillograms showing the two noise

bursts occurring in one beat period for the case d > d2 (D1 = 0.15,

D2 = 0.30, Aprf = 200 cps, a = 0.33). A noticeable difference between these

oscillograms and those shown in the previous figures is the greater average

frequency (number of zero-axis crossings) of the noise within each burst in

Figs. 84 - 86, resulting from the fact that the 10-kc low-pass filter was

used instead of the 5-kc filter. However, the important effect which Figs.

34 - 86 are intended to show is the effect of the slicing level, s, on the

d-c and a-c components of the noise, and hence on the audibility of the beat

frequency, Aprf.

The output noise shown in Fig. 84 corresponds to the slicer output in

Fig. 75, obtained for s = 0.5. The fact that positive time-shift values are

favored over negative values is reflected in Fig. 84 by the definite downward

tendency of both noise bursts, which in turn results in a weak beat note

distinctly audible in addition to the random noise. The total r-m-s noise

voltage is near its minimum for this condition.* The noise in Fig. 85, on

the other hand, is several decibels stronger but contains no audible beat

component and may therefore be less offensive than the weaker noise contain-

ing the beat component (depending on the value of Aprf). Figure 5 was ob-

tained with a slicing level s = 0.65 and corresponds to the slicer output

shown in Fig. 76. The opposite extreme is illustrated by the oscillogram of

Fig. 86, in which the preference in favor of positive time shifts (correspond-

ing to downward" noise") is enhanced by a low slicing level (a = 0.35).

This results in a strong beat note, and in still higher noise ower. The close

correspondence between the trailing pulse edges in Fig. 79 and the second

noise burst in Fig. 86 is noteworthy. Two asymmetry effects are added here to

make the beat component especially strong: the prevalence of trailing-edge

delays is enhanced by making the delays larger than the advances. Just the

opposite is true in the case of the leading edge in Figs. 78 and 85; the two

* The exact theoretical location of the minimum is slightly above s = 0.5,
since, for s = 0.5, the effective time shift of the trailing edge is some-
what larger than that of the leading edge. (See Section 4.1)
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asymmetry effects oppose each other and cancel. The first noise burst is
more crowded" in the downward direction but has larger peaks in the upward

direction.

Although the preceding discussion was illustrated by noise oscillograms

obtained for d1 > d2, it applies equally for d < d2. The oscillogram of
Fig. 83, for example, was obtained for the condition of "beat cancellation"

(s > 0.5). The greater density in the downward direction and higher peaks

in the upward direction are distinctly visible, particularly if the figure
is turned sideways, or if it is inverted.

The bursts of noise resulting from the missing-pulses effect (a > 0.5)

exhibits fewer drastic variations with varying parameters than those caused

by time shifts. Each burst lasts as long as there is any coincidence between

the two sets of pulses, that is, its duration is Ed + d2][(T 12/T2)]. It
consists of three intervals; the first one, during which the noise power is

increasing approximately linearly, is of duration d(T 12/T2) or (T12/T2)
whichever is the smaller; the second interval, during which the noise power

is at its peak, has a duration Old1 - d2 (T12 /T2); and the third interval,
during which the noise decreases to zero, is of the same duration as the

first one.*

Although complete elimination of the beat (Aprf) component is not generally

possible for a > 0.5, it can be approached very nearly in most cases by adjust-

ing the slicing level to a value ust above a. The adjustment is more critical

than for a 0.5, and the remaining beat note is very much weaker for fairly
small duty factors (D1 = D2 0.1) than for large values (D1 = D2 = 0.5).

5.23(3b) Masurement of Audio-Noise Power

The measurement of the output noise voltage and hence the signal-to-

noise ratio as a function of the numerous variables involved is of great
practical significance, inasmuch as it reveals in simple terms the quality of

communication attainable through a given system under certain conditions. The
most important variables are the interference ratio, the pulse duration or

duty factor of each of the two pulse trains, and the system bandwidth; these
are included as parameters in the graphs to be discussed in this section.

Certain other variables are also of importance and will be considered first.

*It can easily be shown that the average fractional overlap between the two
pulse trains is D1D2.
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They are the slicing level, s, the difference between the two pulse-repetition .

rates, Aprf, and the audio bandwidth which, together with the repetition rate

of the desired pulses, determines the filter constant, kf.

The slicing level has already received prominent mention in this chapter

and in preceding chapters. Experimental findings show that, for small inter-

ference ratios (a < 0.1) s is not critical over most of its permissible range.

As a is increased, the noise minimum at approximately a = 0.5 becomes more

and more noticeable; it is quite sharp for a = 0.4. At the same time it is

observed that the beat tone (Aprf), which is distinctly audible for these

larger values of a, can be made inaudible by raising s somewhat above 0.5,

as discussed in Sections 5.23(2) and (3a). If the interference ratio exceeds

one-half (0.5 < a < 1.0), the optimum slicing level is always just above a

(s = a+). This condition is found to be optimum not only from the view point

of minimizing the total noise power, but a critical minimum for the Aprf beat

component also exists; in addition, the cross-talk and signal-reduction

effects are minimized by keeping s close to A. This is simply a result of the

fact that F, the fraction of missing pulses, is minimized under this condition.

An important fact which naturally follows from the principles and observations

being discussed will bear repeating here: as the interference ratio is raised

above unity, the rles played by the desired nd interfering signals, respec-

tively, are interchanged, so that the output signal switches abruptly from

one to the other. This so-called capture effect is particularly striking if

the duty factors of both pulse trains are small, for example 0.1 or less,

since the missing-pulses noise is then too weak to obscure the signal, and

the signal-reduction and cross-talk effects are imperceptibly small. In-

creasing the r-f difference between the two transmissions also reduces these

interference effects and enhances the capture effect. Only the finite thick-

ness of the t"slice" selected by the slicer appears to impose a limit, which

Lmakes the transition tend to be gradual rather than extremely sudden, In the

case of the best slicer used in this study, the transition extended only from

pulse-amplitude ratios of 0.97 to 1.03. The ideal and actual slicer charac-

teristics are shown in Fig. 87. It may also be pointed out in this connection

that the simple slicer use? is self-adjusting within limits, maintaining the

condition s = a+ with sufficient accuracy if a is changed by as much as 0.05,
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or possibly more if certain modifications are made.
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The difference between the two pulse-repetition rates, Aprf, determines,

to some extent, the nature of the interference noise as perceived by the ear.

If the noise contains an appreciable beat component (generally caused by

improper slicing), this is most offensive for Aprf between approximately 200

and 2000 cps. Even if no such component is present, the ear is capable of

differentiating the pulsed or intermittent noise from continuous noise.25 Of

course, if prf is less than 1 cps, the beat periods are long enough to be

resolved individually so that the various noise bursts discussed in Section

5.23(3b) are heard individually as a series of "Issshhh" sounds separated by

silent intervals. As Aprf is increased to low audio-frequency values, the

individual sounds fuse into a continuous sound which is not so smooth or uni-

form as continuous one-edge or two-edge noise and is slightly more offensive

than continuous noise of the same average power. The smaller the "duty factor"

of the noise bursts, the "thinner" the noise sounds. The same is true also if

Aprf is in the mid-audio range, except that one obtains the impression that

the noise spectrum might have a peak at the frequency Aprf, even though this

is not true* and no measurable beat component is present. However, the

impression is generally so vague that one cannot readily learn the value of

Aprf without purposely changing s to introduce an actual beat component. If

this is done, the resulting beat tone consists not only of a component at fre-

quency Aprf, but also of its harmonics which are relatively weak. It might

be supposed that the second harmonic is the major contribution if D1 = 0.5

and D2 < D1 (a < 0.5), inasmuch as there are then two noise bursts per beat

period, and they are spaced half a beat period apart. Actually, the

* It can be shown that if noise having a spectrum which is flat up to a cer-
tain frequency is pulsed on and off periodically, the spectrum of the re-
sulting pulse noise is flat over the same range.
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fundamental predominates decidedly even in this special case; this is a result

of the fact that one of the two sets of noise bursts generally contributes

almost all of the a-c component. If Aprf is several kilocycles or more, the

discontinuous or pulsed nature of the noise becomes much less noticeable.

The noise bursts are no longer well defined, since each one may consist of

only two or three samples" (defective pulses), and the intervals between

the bursts may be so short that the noise at the filter output is more or less

continuous, depending on D1 and D2. If an appreciable Aprf beat note is

present, it weakens and disappears before Aprf reaches the upper cutoff fre-

quency, but other sum and difference components, though much smaller in magni-

tude, appear in its place. For interference ratios larger than 0.5, the

unavoidable beat component diminishes rapidly with decreasing values of D1

and D2.

The audio bandwidth, or more precisely the audio-system frequency charac-

teristic, determines the total audio-noise power, other parameters being con-

stant. Experimental tests confirm the theoretical result which states that

the noise power is proportional to the area under the squared transfer charac-

teristic, supporting the finding that the noise spectrum (previous to filter-

ing) is flat within the audio range. The 5-kc low-pass filter yields less

noise by about three decibels than the 10-kc filter; the areas under the

squared characteristics differ by a factor of two. This means that the signal-

to-noise ratio can be improved by reducing the audio bandwidth, a well-known

fact in all communication systems in which random noise reaches the output

along with the signal. In the case of pulse systems, with a given amount of

noise introduced by a given number of pulses, decreasing the repetition fe-

quency of the desired pulses similarly improves the signal-to-noise ratio.

The controlling factor is the filter constant kf, involving both the filter

characteristic and the pulse-repetition frequency (see Section 4.1, page 96 ).

The ideal value of kf is unity, and while reducing this factor increases

the signal-to-noise ratio, it also decreases the system utilization in that a

narrower signal-frequency band is conveyed. All of the noise plots shown in

this section were obtained with the 10-kc filter* which has an equivalent

noise bandwidth of 4.8 kc. At a pulse-repetition frequency of approximately
224 kc, used in most of the tests, k = = 24 k, used in most of the tests, k = (2)(4.8)/24 = 0.4, and k = 0.64.

f~~~~~~~~
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The relations between the r-m-s voltage on one hand, and the interference

ratio a, the interference duty factor D2, the desired-pulse duty factor D 1

and the system bandwidth BW on the other hand are plotted in various forms in

Figs. 88 - 92. The variation of the noise with the interference ratio is

shown in Figs. 88 and 89 for two different values of system bandwidth and

various values of the two duty factors. The salient features can be summa-

rized as follows: the system bandwidth affects the noise seriously only for

a < 0.5, where the noise voltage is twice as large for BW = 400 kc as for

BW = 800 kc. This is a result of the larger pulse rise and decay times caused

by narrower bandwidth, which has the additional important result of reducing

the peak-signal modulation. This reduction in signal becomes an important

factor for small values of D1 if the average pulse duration is not very much

larger than the rise and decay times. The ideal maximum signal modulation is

tmax = d, while the actual value permissible (without exceeding a certain

amount of distortion) is Atmax = d1 - (k/BW), where k is in the order of

magnitude of unity. The noise for a > 0.5 is not appreciably affected by the

system bandwidth except for small duty factors, that is, if the time-shift

contribution to the total noise is large enough to be of influence. As for

the effect of D1 and D2 , the noise voltage is proportional to D2 but related

to D1 in a more complicated manner.

/1/

NOISE VS. D2
o 0.3

0.2 _0.2 0.1 TO 0.5BW 800 kc

0~~ J

0 0.1 0.2 Q3 0.4 0.5 0.6 0.7
INTERFERENCE DUTY FACTOR D2

Fig.90 Interference noise
voltage vs. interference duty
factor for interference ratio
less than one-half.
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Figures 90 - 92 show the dependence of the noise voltage on the duty

factors. The value a = 0.3 (Fig. 90) is used as a typical example for

a < 0.5, while a = 0.8 (Figs. 91 and 92) serves as a typical value for

a > 0.5. The noise voltage is seen to be approximately proportional to the

square root of D2 and nearly directly proportional to D1 plus a constant

which depends on D2.

Fig*91 Interference noise
voltage ys. interference dty
factor for various desired-pulse
duty factors; large interference
ratio.

INTERFERENCE DUTY FACTOR D2

Theoretical curves computed from the results of the analysis in Section

4.4 are shown in Figs. 93, 94, 95, and 96, which correspond to the experi-

mental curves in Figs. 88, 89, 91, and 92, respectively. For small values of

D1 the computed results check the experimental results perfectly for all

values of the other variables. However, there is one discrepancy for a > 0.5

which is in evidence in each of the four figures and causes errors as large

as 80 per cent when both D1 and D2 are large (0.5 or more), and 30 per cent

for moderately large values of D1 and D2 (0.3). The discrepancy is a result

of the fact that the missing-pulses component of the noise given by (106) and

contained in (108) does not actually vary as rapidly with D1 as these formulas

indicate. Nevertheless, the computed variation of noise voltage vs. D1 (see

Fig. 96) is of the same form as the actual variation (see Fig. 92), namely

"constant plus proportional". The discrepancy is principally in the computed
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values of the constant and the proportionality factor, the former being too

small and the latter too large. The constant component is the time-shift

noise, which is not dependent on D1 (see Fig. 90). Increasing the time-

shift contribution for a < 0.5 is, therefore, a step in the right direction.

However, the root of the discrepancy is in the approximate method of deriva-

tion of (106), which places too much weight on the parameter D. The alter-

nate formula, (107), which is a still cruder approximation, places equal but

excessive weight on both D1 and D2.

Fig.92 Interference noise
voltage yA. desired-signal duty
factor for various values of
interference duty factor;
large interference ratio.

DESIRED-SIGNAL DUTY FACTOR D2

Another discrepancy between experimental observations and theoretical

results is found in Fig. 90, which shows that, for a 0.5 and Ar-f = 0,

D1 has no measurable effect on the noise voltage. Some dependence on D1

should be expected, since there is an increasing component of two-edge time-

shift noise if d1 is made smaller than d2. This effect is unnoticeable,

however, so that the simple expression (105) (derived on page 11) holds

generally with sufficient accuracy for Ar-f = 0, regardless of the relative

magnitudes of D1 and D2, and as though the time shifts of the two edges of

each pulse were independent. For other values of Ar-f, the varying
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contribution of the two-edge noise component does have a decided effect on

the total noise voltage, as the following results will show.
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The variation of the total r-m-s

function of Ar-f is shown in Figs. 97

I . I I I I
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Fig.96 Computed results correspond-
ing to experimental data of Fig.92

normalized audio-noise voltage as a
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Fig. 98

Fig.99

Figs.97-99 Normalized
interference-noise voltage
rs.r-f difference for var-
ious duty-factor values.

RADIO-FREQUENCY DIFFERENCE ARF IN kc
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and many values of D2 ( a < 0.5). Figures 100 - 102 show part of the same

data (only the noise maxima and minima corresponding to Ar-f = 0 and 1/2d1,

respectively) plotted as a function of D2 for the three different values of

D1. These six curves demonstrate the effect of the two-edge noise component

which causes the cyclic variation. As expected from theory (see (112)) this

effect exists only when d2 exceeds d and becomes more pronounced the greater

the difference d2 - becomes. However, as found on several previous

occasions, the difference between the maxima and minima (or the ratio of the

maxima to the minima) is not quite so large as the theory predicts. The

theoretical values are indicated in dashed lines on Figs. 100 - 102. The

actual maximum values are somewhat lower, showing that the two-edge noise

contribution is not so large as computed (though somewhat larger than the

values obtained if the shifts of the two edges of each pulse are assumed

independent). The experimental minimum values are higher than the computed

values, which can be accounted for by the exponential shape of the edges, as

explained in connection with Fig. 68 [Section 5.21(3b)]. The abrupt change

in slope in the computed curves for Ar-f = 1/2d (Figs. 100 and 101) results

from the fact that as soon as d2 exceeds dl, the one-edge noise contribution

becomes constant and only the relatively small two-edge contribution increases

with D2 . Since Aprf is less than seven per cent of either of the two pulse-

repetition frequencies, the abrupt change occurs within seven per cent of

D2 = D1 . Referring to Fig. 97, the departure from periodicity for Ar-f >

500 kc is a result of changes in slicing level which alter the small effective

pulse duration by a large percentage. Thus,the second noise minimum, which

is normally expected to be at Ar-f = 2 /3 = 750 kc, has been displaced in

the opposite direction, and for smaller values of a (permitting a wide range

of slicing level, s) one can generally minimize the noise for Ar-f 0 by

taking advantage of this effect. However, this is true only for pulse dura-

tions not much longer than the combined rise and decay times of the pulse.

The final plot of this section, Fig. 103, shows the r-m-s interference

noise voltage as a function of Ar-f for d2 < and for two typical values of

a below and above 0.5, respectively. The decrease in the noise for a = 0.8

results from the decrease in the missing-pulses component as Ar-f is increased

(see Section 4.5, page 124); the asymptote which the noise approaches for

Ar-f > 1 Mc is the time-shift component of the noise. The maximum signal

amplitude is approximately 26 volts, thirteen times the maximum r-m-s noise
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voltage for a = 0.8, and 150 times the r-m-s noise voltage for a = 0.Z. It

must be remembered, of course, that the effective signal voltage is generally

far below the peak value.

Fig. 103 Interference-noise
voltage a. r-f difference for
d > a < ; d > , a >J.

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 LO
RADIO-FREQUENCY DIFFERENCE RF IN Mc

5.24 Summary and Conclusions for Two-Station PDM Interference

The results presented thus far in this chapter will now be summarized,

with emphasis on the important points previously obscured by the numerous

details. If two single-channel PDM signals simultaneously reach the detector

of a PDM receiver, the receiver output generally consists essentially of the

modulating signal of the "taller" pulses and random noise.

If the interference ratio is less than one-half, the noise voltage is

inversely proportional to system bandwidth, proportional to the square root

of the interference duty factor, and independent of the radio-frequency

difference between the two signals. It is nearly proportional to the

interference ratio, a, for a 0.2, while the relation becomes exponential

for larger values; but the noise is generally not large enough to impair the

signal intelligibility, especially if the duty factor of the desired pulses

is close to 0.5, permitting the largest possible signal.

For interference ratios larger than one-half, the noise depends on a

larger number of variables. If both pulse trains have large duty factors

(0.3 or greater), and the radio-frequency difference is zero, the noise is
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generally so severe as to make the signal unintelligible. This is aggravated

by the so-called signal-reduction effect which may reduce the signal output

by a few decibels, and, in addition, a weak but objectionable beat note may

be present. When both pulse trains have duty factors in the order of magni-

tude of 0.1 or less, the situation is much improved: the latter two effects

are negligible, and the noise is not strong enough to overshadow the signal.

The noise voltage is decreased as the square root of the interference duty

factor and, like the signal, in approximately direct proportion to the desired-

pulse duty factor. Consequently, subject to the assumption that similar PDM

systems interfere with each other, the duty factors should be as small as

possible without unduly curtailing the maximum signal modulation. The latter

is possible only if the combined pulse rise and decay times occupy no more

than two to four per cent of the pulse-repetition period, assuming ten per

cent as a suitable duty-factor value. A certain minimum system bandwidth

(for a 10-kc audio band generally 500 kc or more, double-side-band) is there-

fore required to prevent the capture effect from being obscured by noise;

increasing the bandwidth above this value makes further improvement of the

signal-to-noise ratio possible. If the radio frequencies of the two signals

are not alike but differ by a sizable fraction of the system bandwidth, 200

kc, for example, the noise (0.5 < a < 1) is generally much smaller and the

signal is intelligible, even when both duty factors are large.

Special cases of two-station PDM interference, in which the two-pulse-

repetition frequencies are synchronous (Section 5.21) serve as an introduction

to the more general case summarized above, and they will be found useful in

connection with the studies reported in the next section (two-path inter-

ference). However, if the possibility of synchronism between the desired and

interfering pulse train is real, the conclusion is that the disturbance caused

by the interference may be as bad as in the worst case mentioned above, or it

may be much less severe or completely absent. While the two duty factors have

no effect on the magnitude of the maximum possible disturbance, the probability

of partial coincidence of the two pulse trains and hence the probability of

obtaining any disturbance diminishes rapidly with decreasing duty factors.

An important conclusion from the viewpoint of equipment design is that

the slicer must operate correctly, taking the thinnest possible "slice" out

of the pulse, and that the slicing level should be adjustable in order to make

optimum reception possible under all conditions.
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As for interference between two multichannel PDM systems, the same general

results summarized above are applicable provided that synchronization between

transmitter and receiver is not lost. The fact that each channel is selected

by means of time gating does not cause any improvement, since the interference

is excluded from the spaces between pulses by the slicing process. However,

the fact that many channels of one system interfere with every single channel

of the other system means that the effective interference duty factor is much

larger than the effective desired-pulse duty factor. This means prohibitive

noise for interference ratios higher than one-half (for which synchronism is

likely to be lost anyway), but in view of the large system bandwidth generally

used in such systems, intelligibility will generally be good for interference

ratios smaller than one-half.

5.3 Two-Path Interference in PM Systems

One of the important characteristics of two-path interference is the

fact that, except under certain conditions in time-division multiplex systems,

the interfering signal has the same modulation as the desired signal. The

modulation of one is delayed with respect to that of the other, but this is

not generally of serious consequence in the case of speech or music. It is

therefore not necessary to suppress the modulation of the weaker signal,

unless, for some special reason, the original modulating signal must be re-

produced exactly even at the expense of signal-to-noise ratio, or if a multi-

channel system is involved. Two cases will therefore be considered: the

special case in which it is necessary to suppress the modulation of the

weaker signal (this will be considered first because of its similarity to

two-station interference), and the more important case in which the modulating

signals may be combined.

5.31 Two-Path Interferene with Modulation of Weaker Signal Suppressed

( ime-Division-IMltiple Sstems)

One case which obviously belongs under this classification has been

explained on page 130 (Section 5.1). If the two-path signals from a time-

division multiplex system arrive in such phase relation that there is partial

overlap between pulses belonging to different channels, cross talk will result

if no attempt is made to discriminate against the smaller signal. The

necessary discrimination is effected by keeping the relative slicing level, s,

above the interference ratio, a, as in all cases of two-station interference.
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If the pulses are incoherent with respect to each other the result is there-

fore exactly the same as in the case of two-station interference with syn-

chronous pulse-repetition frequencies. The problem is even simpler than in

that case, inasmuch as the two radio frequencies are exactly alike and the

average durations and duty factors of the two sets of pulses are the same.

If there is no overlap between the two pulse trains, the presence of the in-

terfering signal has no effect whatever other than imposing the restriction

s > a. However, the probability of encountering this favorable condition is

generally low, if not zero, in a multichannel system because of the high

duty factor; for a single-channel system, it is given by 1 - 2D, where D is

the duty factor or the normalized pulse duration*(the maximum modulated pulse

duration if there is to be no partial overlap during modulation peaks).

The situation of principal concern is that in which the relative time

delay between the two pulse trains reaching the receiver is such that there is

partial coincidence between them. Two cases must be considered, incoherent

interference and coherent interference. Two conditions must be fulfilled to

make the interference incoherent: first, there must not be any coherence

between different r-f pulses, which, as explained in Chapter 2, is generally

true; second, the delay difference between the two paths should be larger

than the maximum pulse duration in order to prevent the pulses from overlapping

their own delayed replicas. Either or both of two conditions will make the

interference coherent: (1) coherence between the r-f pulses; (2) a delay

difference small enough so that each pulse can overlap only its own delayed

replica (since each r-f pulse is coherent within itself).

Consider first the incoherent case; the interfering (smaller) pulse over-

laps one edge of the desired (taller) pulse, as well as a portion of the

desired pulse itself. The overlap, expressed as a fraction of the pulse-

repetition period, has been denoted by U and can have any value from 0 to D.

The result is simple (continuous) one-edge time-shift noise for a 0.5, and

for a > 0.5 there is, in addition, missing-pulses noise in its very simplest

form (see Section 4.2). The theoretical results applicable to this situation

are contained in the first three sections of Chapter 4, and the experimental

*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The subscripts 1 and 2 for the durations and duty factors are not used in
this section, since d = d2 = d

D1= D2 =D
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study of 5.21 also covers this situation. Similar observations (oscillo-

grams of detector output, slicer output, and audio output) and measurements

can, of course, be made by means of the two-path setup. Only the most

important measurement, that of the audio-noise voltage, will be discussed

here. The interference simulated by the delay-line setup produces the same

type of random noise as that produced by the two separate transmitters with

synchronized pulse-repetition frequencies; since r-f equals zero exactly,

the missing-pulses noise (a > 0.5) is always very severe and masks the signal

except for very small overlaps. Experimental and computed plots of audio-

noise voltage as a function of the interference ratio, a, for various values

of average overlap, U,and for two widely different values of system bandwidth,

BY, are shown in Figs 104 and 105. The duty factor, of course, has no effect

on the noise for a given degree of overlap, but it determines the maximum

signal. It is evident, from inspection of Figs. 104 and 105, that only the

very smallest overlaps yield usable signal-to-noise ratios for large inter-

ference ratios. In the case of the narrower system bandwidth (150 kc), even

the time-shift noise alone is large enough to lower the signal-to-noise ratio t

a generally unacceptable value (12 db) for a = 0.45. The agreement between

experimental and computed results is better than that obtained in similar

plots shown in earlier parts of this chapter; the precision of the measure-

ments is greater, and the theoretical curves have, in part, been accurately

corrected for the exponential shape of the pulse edges [theoretical curves

computed from (103)].

This brief investigation leads to the conclusion that any attempt to

receive only the modulation of the stronger of two overlapping pulse trains

is generally futile for large interference ratios (a > 0.5), while it is

generally successful for smaller ratios if a random-noise background is

permissible.

The coherent case of two-path PDM interference is radically different

from the incoherent case. The exact result depends on the behavior of the

delay difference as a function of time. In the experimental equipment, the

delay difference is normally constant at approximately 500 microseconds but

can be varied over a sufficiently wide range and with sufficient speed to

simulate conditions under which the delay difference is constantly changing

at a low rate. Greater rates of change can readily be simulated by slight

manual frequency modulation of the transmitter. The simplest possibility,
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Fig.104 Noise due to
two-path PDM interference
va. interference ratio a
for various degrees of
overlap; large bandwidth.

that of constant delay difference will be considered first. In practice this

may be encountered as a result of reflections from fixed objects. The r-f

phase difference , instead of changing randomly from pulse to pulse, remains

fixed at some value which depends critically on the radio frequency and the

delay difference. Any value is equally likely, as in the random case, and

consequently the probability distribution of the resultant of the two pulses

is the same as in the incoherent case.

Fig.105 Noise due to
two-path PDM interference
_s. interference ratio a
for two degrees of over-
lap; small bandwidth.
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For interference ratios less than one-half, there are time shifts, but

they are the same from pulse to pulse and therefore amount to nothing more

than a change in average pulse duration and have no effect on the output. How-

ever, with delay differencesof the order of magnitude of audio periods, it may

happen that, in the presence of audio modulation, not all pulses have overlap,

inasmuch as normally overlapping pulses may be modulated in opposite senses and

miss each other. The result is that not all edges undergo the d-c" time

shift, but this is of no noticeable consequence as far as the audio output is

concerned. Other special conditions which may tend to cause some distortion

and increase the effect of random noise are possible: for example, if = 180°

and a = 0.49, the effective pulse duration may be shortened to such an extent

as to cause overmodulation, and the height of the resultant exceeds the

slicing level by so little that other noise or interference, if present, may

easily reach the output. Both theory and experiment show the probability of

such conditions to be low, so that little or no disturbance generally results

from interference ratios less than one-half.

Interference ratios larger than one-half give rise to the missing-pulses

phenomenon, thoughina form quite different from that encountered before. In-

stead of occasional pulses (or portions of pulses) failing to reach the out-

put with a probability F, there is a probability F that all of them fail to

reach the output. Since the overlap between the two pulse trains is generally

partial rather than complete, only one set of edges is generally lost (with

probability F), but even if the remaining edge is time-modulated, distortion

will result if the larger part of the pulse is lost. Complete loss of intel-

ligibility results only in case of complete coincidence between the two pulse

trains, or if asymmetrical PDM is used and the modulated edge happens to be

overlapped. The remaining probability (always at least two-thirds) is that

of obtaining a resultant which exceeds the height of the smaller signal and

hence the slicing level. Apart from inconsequential effects caused by occa-

sional large changes in overlap resulting from signal modulation, reception

is perfect (with probability -F).

Oscillograms of the detector output are shown for various interference

ratios and for several r-f phase-difference values, 0, in igs. 106 - 113;

oscillograms are shown also for incoherent interference. The exposures are

several seconds in all cases, but the value or level of the resultant persists

indefinitely in the coherent case, while it is different from pulse to pulse



FIG.106
a= 0.4
0=0

FIG.108
a= 1.0

=180 0

FIG. II0
a =0.65

=1800

FIG. 112
0=0.3

Figs.106-111 Detector outpuit showing
partial overlap of two coherent pulse trains.

Figs.112-113 Detector output showing
partial overlap of two incoherent pulse trains.
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a = 1.0
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FIG. 109
a=0.45

= 130

FIG. III
a =0.5
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FIG. 113
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(each 1/20,000 second) in the incoherent case. In the extreme case, in which

a = 1 and = 0, each pulse is, in effect, split into two separate parts,

consisting of parts of both pulse trains. Such situations (occurring with

probability F, never exceeding 1/3) do not permit reception under the condi-

tions stated at the beginning of this section (5.31), but it will be found in

the next section (5.32), that good reception is generally possible if it is

permissible to mix the modulating signals of the two pulse trains. Under the

present conditions, the conclusion is that there is a probability equal to

two-thirds or more of obtaining perfect reception, while the remaining third

may mean poor or unacceptable reception. For a given delay difference between

the two paths, the precise value of the radio frequency alone determines

whether reception is good or bad. In the case of a point-to-point time-divi-

sion multiplex system, it is conceivable that slight adjustments in the radio

frequency be made to keep any multipath interference "in phase" ( = 0) or at

least within the limits required to make the resultant of the desired and

interfering pulses exceed the slicing level. This can even be done automati-

cally through a narrow-band control link from the receiving station back to the

transmitter. The discussion of the next paragraph will show that the required

changes in frequency may be extremely small.

In order to change the r-f phase difference by 180°, the two-path delay

difference need change by an amount equal to only half the r-f period, gener-

ally a very small fraction of one microsecond. Conversely, the radio fre-

quency need change only the same relative amount in the opposite sense; this

follows from the relation

= 360 °(l-n) x delay difference (117)
radio frequency

in which the integer n may be so chosen as to yield a value of 1 between 0°

and 360°. Therefore the relative change in radio frequency required to

change by 180° is half the r-f period (/2fr f) divided by the delay dif-

ference. In the case of the equipment used in this study (radio frequency =
4

30 M, delay difference = 0.5 s), this change amounts to one part in 3 x 104

and the stability over short periods can readily be kept high enough to pre-

vent even changes amounting to only one part in 106 (corresponding to a 5-

degree change in ). At S-band frequencies, for the same delay difference,
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these relative changes would be one-hundred times smaller, and the oscillator

would not generally be stable enough to keep substantially constant. How-

ever, at these high frequencies, the delay differences, especially those which

are constant, are generally much smaller than 500 microseconds, namely a frac-

tion of a microsecond to ten or twenty microseconds. Therefore a stability

of one part in 106 is still sufficient to prevent from changing enough to

destroy the coherence.

In multipath interference caused by reflections from moving objects, the

delay difference may be changing rapidly over extended periods of time. Condi-

tions of perfect reception and unacceptable reception may then alternate con-

tinuously, and it is of interest to estimate the possible frequencies of these

alternations. A path involving a reflection from aircraft may change at a

rate as high as 1000 feet per second, which means that the delay difference

changes at a rate of one microsecond per second. At a frequency of 100 M, at

which aircraft reflections are common, this means that during every second

the vector describing 0 makes 100 complete revolutions. In other words, the

frequency of alternation is so great that, although the signal may be intelli-

gible at all times, an audio-frequency beat note results; its frequency in cps

is approximately equal to the radio frequency in M in an extreme case of rapid

change in path length. In the case of ionospheric reflections, both the radio

frequency and the rate of change in path length are generally smaller, and the

alternation is expected to be at a sub-audio frequency. It should be pointed

out that an alternation at an audible frequency will produce a beat note even

at low interference ratios (a < 0.5) for which reception would otherwise be

perfect, since the edges will be time-modulated periodically. This is simply

another example of the well-known Doppler effect.

Comparing the results of coherent two-path interference with those of

incoherent two-path interference, subject to the condition of this section

(5.31), one is led to the conclusion that coherent interference is preferable

since it permits good reception under conditions permitting only noisy recep-

tion in the incoherent case, and with a known probability may permit good

reception where incoherent interference does not allow acceptable reception.

The overall conclusion from the study of this section, while somewhat more

optimistic than that given for the incoherent case alone (page 171), must still

emphasize the fact that, while acceptable reception of the stronger signal is

generally possible for interference ratios less than one-half, it cannot be
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guaranteed for larger interference ratios.

5.32 Two-Path Interference in Single-Channel (Audio) PDM Systems

Consideration of the oscillograms of Figs. 106 - 113 shows that, regard-

less of whether the interference is coherent or incoherent, both the time-

shift and missing-pulses effects can be avoided by lowering the slicing level

sufficiently. To avoid these effects under all conditions, it must be lowered

below a or 1-a whichever is the smaller. The condition s < a ensures that the

edge overlapped by interference and therefore subject to the time-shift effect

is bypassed" by the slicer, and the condition s 1-a ensures that all result-

ants exceed the slicing level . The respective conditions cannot be fulfilled

in practice if a is very nearly zero (a < 0.03) or very nearly unity (0.97 a

< 1). In the former case, the slicing level can be set at 0.5, since the

resulting time-shift noise will be small (or generally nonexistent if inter-

ference is coherent). In the latter case a slight amount of missing-pulses

noise results from the disability to bring the slicing level completely below

the smallest resultants; this will be discussed later.

The presence of appreciable input noise may make it impracticable to lower

the slicing level below a certain minimum, since this would cause excessive

noise at the output. In the experimental study of this section, the input

signal-to-noise ratio exceeded 40 db and the slicing level could be lowered

to 0.01 without causing appreciable output noise.

The principal result of lowering the slicing level below the interference

level is that the smaller signal is no longer treated as unwanted interference.

There is no discrimination in favor of either of the two pulse trains, and if

they were time-modulated by different signals, both of these would generally

reach the output. Since both pulse trains are modulated by the same signal,

separated by a small time delay, this signal reaches the output, but not with-

out certain modifications, from its original form. The exact nature of these

modifications depends principally on the degree of overlap between the two

pulse trains. These signal-distortion effects are common to both the coherent

and incoherent cases of interference. (Certain additional disturbing effects

which occur only in the incoherent case will be discussed later.)

For the purpose of this discussion, it is convenient to distinguish between

three different degrees of overlap in the absence of modulation: no overlap,

partial overlap, and precise coincidence. In the presence of modulation, the
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borderline between the first two conditions may not be clearly defined, but

one or the other generally prevails. Precise coincidence means that both sets

of edges of each pair of pulses coincide exactly, or, in the presence of modu-

lation, occur at equal instants on the average.

1. No Overla between the Two Pulse Trains

The probability of obtaining no overlap even on modulation peaks is 1-4D,

subject to the assumption that the peak pulse duration is twice the average

pulse duration d (d = DT). However, experiment shows that occasional partial

overlaps on modulation peaks are unnoticeable, so that a probability of 1-3D

is sufficiently conservative. This probability, of course, is correct only if

the delay difference can have a wide range of values (at least as large as the

pulse-repetition period). If small values are favored, as at microwave fre-

quencies, the "no-overlap probability" increases even more rapidly with de-

creasing duty factor, As previously mentioned, no overlap between the two

pulse trains is, of course, the most favorable situation; there is no reason

for slicing below the interference level unless this is extremely close to the

desired-signal level or the no-overlap condition is only transitoty. Perfect

reception results if the slicing level is above the interference level; if the

slicing level is below the interference level, both pulse trains reach the

output unimpaired and the result is that their modulation signals are added

linearly and both reach the output with full strength. Since the two signals

are identical except for the delay difference, the resultant output is a linear

superposition of the original signal, f(t), and the same signal delayed by an

amount Tdd(delay difference). The output signal is

Output (no overlap) = f(t) + f(t - Tdd) . (118)

Alternately, the signal may be considered in the frequency domain instead of

the time domain. At any given frequency, the sinusoidal components of both

signals must be added vectorially, since they differ in phase. The phase angle,

in radians, is simply wTdd. The two components to be combined are equal in

magnitude which may be assumed unity. The resultant is

wT
Output (no overlap) = 2(1 + cos wTdd) = 02 cos -- * (119)
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This means that the modulation-signal voltage spectrum is multiplied by a

iunction which has maxima at zero frequency and all frequencies which are

integral multiples of the reciprocal of the delay difference. More important,

this function has nulls at all frequencies which are odd integral multiples

of half the reciprocal of the delay difference. The maximum and null frequen-

cies may, for brevity, be referred to as reinforcement frequencies and cancel-

lation frequencies, respectively.

The actual result, so far as perception of speech and music is concerned,

depends on the delay difference. If the delay difference is fifty microseconds

or somewhat less, only the first cancellation frequency will fall within the

audio band (10 kc), and the effect will simply be loss of high-frequency com-

ponents. For smaller delay differences, there will be no noticeable effect.

In the case of the 555-microsecond delay difference used in the experimental

tests, there are nulls at approximately all multiples of 900 cps. With both

speech and music, the listener obtains an impression of a change in quality,

quite noticeable if he switches abruptly from one-path to two-path reception,

but not so obvious after prolonged listening. Although a definite defect in

the signal, this condition, which may be called spectrum distortion, is not

offensive in any way for ordinary communication purposes. As regards high-

fidelity reproduction of music, the maxima and minima in the frequency charac-

teristic are obviously intolerable if the original energy-versus-frequency

distribution is to be maintained.

The overall PDM-system frequency characteristic with and without two-path

interference is shown in Fig. 114. Theoretical and experimental results coin-

cide exactly and are therefore not shown separately. If plotted with a linear

abscissa and ordinate scale, these curves are full-wave-rectitied cosine

functions.

2. Partial Overla between the Two Pulse Trains

If there is partial overlap between the two pulse trains, and the slicing

level is below the smallest possible resultant, each overlapping pair of pulses

emerges at the output of the slicer as a single longer pulse. The leading

edge of this new pulse carries the time modulation of the leading edge of one

of the pair, while the trailing edge carries the time modulation of the trail-

ing edge of the other pulse. Therefore, the presence of the second pulse train

has no effect on the signal output if asymmetrical PDM is used; the signal of
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one or the other of the two paths will be recovered, and the only change is

the lengthening of the average pulse duration. In the case of symmetrical

PDM, however, the result is similar to that described for the condition of no

overlap. The leading edge of the new, longer pulse carries half of the modu-

lation of one path, and the trailing edge carries half the modulation of the

other path. The resulting signal output is one-half the sum of the signal and

the same signal delayed by the delay difference. This differs from the result

described for "no overlap" only by a factor of two, and hence the second curve

with minims and maxima (Fig. 114) is exactly six decibels lower than the first

one.

Fig.114 Overall PDM-sys-
tem frequency characteristics
with and without two-path
interference (measured and
computed).

MODULATING FREQUENCY IN kc

A condition intermediate between no overlap and partial overlap is

possible, of course, and may result in rapid back-and-forth switching of the

output level. For example, the output may be six decibels higher on negative

modulation peaks than on positive peaks. Consequently, distortion results,

but this is not sufficiently severe to impair the intelligibility of speech,

and it is noticeable only if there is almost exact coincidence between the

leading edges of one pulse train and the trailing edges of the other. More

serious distortion results in the case of slight partial overlap or no over-

lap if the duty factor is not much less than 05 and reaches peaks not much

less than unity. The two pulse trains then momentarily (on positive modula-

tion peaks) blend into a continuous signal, so that no edges are detected and

no output is obtained. This difficulty is never encountered for duty factors
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I less than thirty per cent.

3. Precise Coincidence

If the edges of the two pulse trains occur at the same instants (in the

absence of modulation), or if their separation in time is small compared to

the effective modulation time shift, severe distortion results unless the delay

difference is very small.

In the absence of modulation, the two sets of pulses overlap each other

completely and emerge as a single pulse train from the slicer; they do not

differ from the pulse train obtained from one-path reception. In the presence

of modulation, this is still true only if the modulation of the two sets of

overlapping pulses is the same; it is the same or nearly the same if the delay

difference is small compared to the period of the highest modulating frequency.

Consequently, for delay differences of the order of one microsecond or less,

the effect of the two-ath interference is virtually unnoticeable. The next

lowest delay difference which results in precise coincidence is one pulse-

repetition period, which is generally not much less than half the period of the

highest-frequency-signal component. The effects of the two-path interference

analyzed below are then present only at the high end of the audio-frequency

band and are therefore not serious.

For delay differences comparable to periods corresponding to midband audio

frequencies, the modulation on the coinciding pulses is generally different.

Unlike "no overlap" and "partial overlap", "precise coincidence" does not result

in a linear superposition of the two modulation signals. Consider, for

example, the detection of the leading pulse edge. In the absence of modulation,

the leading edge of pulse A (arriving by path 1) coincides with that of pulse

B (arriving by path 2). In the presence of modulation, the edge of pulse A

may precede or follow that of pulse B; these two conditions alternate on 

successive pulses, depending on the instantaneous values of the modulating

signal. However, regardless of the order of arrival of the two edges, only

that arriving first is detected by the slicer. Similarly, the trailing edge

arriving last, regardless of whether it belongs to pulse A or pulse B, is the

only one detected. The distortion resulting from this phenomenon is illustra-

ted for a random signal in Fig. 115 under two different conditions: precise

coincidence and partial overlap. It is seen that the distortion rapidly

diminishes as the coincidence becomes less precise, inasmuch as the "damage"
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is more and more confined to the signal peaks.

\/'

(a) (b
OUTPUT SIGNAL

OUTPUT SIGNAL

Fig.115 Distortion for (a) precise coincidence (b) partial overlap.

SIGNAL I -- 7Z//~~

SIGNAL/t\I~\/~\ OUTPUTSIGNAL

Fig.116 Precise-coincidence distortion for sinusoidal modulation.

While Fig. 115 completely shows and defines the type of distortion re-

sulting from the condition being discussed, this can be readily formulated

mathematically only on the basis of sinusoidal signal components. At "rein-

forcement" frequencies (see page 179), there is no distortion, since the

modulation time shifts of the coinciding pulse edges are identical. On the

other hand, at "cancellation" frequencies (see page 179), there is a maximum

of distortion: it amounts to simple full-wave rectification of the signal.

This, as well as the distortion obtained in an intermediate case (frequency

between cancellation and reinforcement frequencies), is shown in Fig. 116.

!xperimental verification of the theoretically predicted waveforms of

Fig. 116 is found in the oscillograms of Fig. 117. These oscillograms show

the PDM receiver output for four different modulation frequencies at the trans-

mitter obtained under the conditions being discussed; superimposed on the same

photographs are the outputs obtained from normal one-path reception. The
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distortion ranges from complete rectification at cancellation frequencies

(eliminating the fundamental and substituting mostly second harmonic) to zero

distortion at reinforcement frequencies. Over a twenty-per-cent range on

either side of a reinforcement frequency the distortion is not serious.

(a) (b)

(d)(c)

Fig.117a-d Precise-coincidence distortion for sinusoidal modulation;
distorted output superimposed on undistorted output.

Modulation frequency (a) 1800 cps (b) 1500 cps (c) 1200 cps (d) 900 cps.

Harmonic-analyzer measurements of the output as a function of modulation

frequency describe the nature and extent of the distortion exactly. Such

measurements are plotted in Fig. 118; computed magnitudes of the fundamental

and its harmonics, obtained by Fourier-series analysis of the complex wave-

form, are also shown. Since the delay difference is 555 microseconds, the

first cancellation frequency with its attendant heavy second-harmonic distort-

ion occurs at 900 cps. This is not far from the most severe condition possible,

inasmuch as the ear is most sensitive to distortion in this frequency range.

The precise-coincidence distortion for this large delay difference is such as

to make music unacceptable and speech very unpleasant though still intellig-

ible. A departure from precise coincidence amounting to a few tenths of the

peak-modulation time shift is sufficient to all but remove the distortion.

The discussion up to this point in Section 5.32 will be briefly summarized.
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So-called spectrum distortion results if there is no coincidence or partial

coincidence between the two pulse trains. This is generally harmless so far

as speech or music are concerned; however, if there is no overlap between the

two pulse trains, this effect can be avoided completely by raising the slicing

level s above the interference level (s > a > 1). Some linear distortion, in

addition to the spectrum distortion, occurs in the borderline case between no

overlap and partial overlap, but this is not serious. Severe distortion re-

sults from precise coincidence, but the probability of precise coincidence is

small. Neither this severe distortion nor the spectrum distortion mentioned

above are encountered if the two-path delay difference is small compared to

the periods of the highest frequency audio component.

The distortion effects described above are the most common manifestation

of two-path interference if the slicing level is set below the interference

level. In the coherent case (pulsed amplifier), these effects are the only

manifestation of the interference; in the incoherent case (pulsed oscillator),

additional effects are noticeable under certain conditions. These additional

effects will now be discussed.

If the two pulse trains overlap each other partially or completely and

the interference ratio is extremely close to unity, the missing-pulses effect

cannot be entirely avoided since practical reasons make it impossible to satisfy

the condition s < 1-a. A certain amount of missing-pulses noise therefore re-

sults, given by (97), (page 102), where F is, in turn, found from (32) (page

36). Expression (32) gives F as a function of both s and a. The noise power
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-varies approximately linearly with slicing level if the interference level is

unity or within a few per cent of unity; this follows from (33) (page S36) and

is shown in the computed plot of Fig. 119. On the other hand, Fig. 120 shows

the noise to be nearly constant as a function of a over most of the range

(1-s a (< 1) within which any missing-pulses noise is produced; this is seen

to be true regardless of the value of s. The relation between noise voltage

and overlap of the two pulse trains is linear.
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Fig. 119 Two-path inter-
ference noise versus slic-
ing level i for interfer-
ence ratio a equal to unity.

SLICING LEVEL "s"

If the two pulse trains coincide precisely, the missing-pulses noise

discussed above has a maxifmn. It should be ernmhasized that this noise need.

exist only for interference ratios so close to unity that the slicing level _

cannot be set below 1-a. Under the condition of precise coincidence a special

type of time-shift noise also appears, which is not confined to large inter-

ference ratios, although it does increase rapidly with increasing interference

ratio and is generally unnoticeable for small values. The noise is of a

special type in that it is produced only under the condition of precise coin-

cidence and disappears when time modulation of the pulse edges wines out the

precise coincidence. The coinciding pulse edges produce resultants with vari-

able rise and decay times depending on the r-f phase difference, 0. Conse-

quently there is a random departure from periodicity in the pulse-edge posi-

tions (the instants at which the slicing level is crossed). This is smaller

than that associated with the ordinary edge-time-shift effect discussed earlier
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in this paper; it decreases with decreasing slicing level and, theoretically,

it goes to zero when the infinitesimally thin slicing level approaches zero.

Experimentally obtained plots of the total noise as a function of overlap are

shown in Fig. 121 for unity interference ratio and two different duty-factor

values. In the case of the large value (D 0.4), the missing-pulses noise al-

most completely masks the time-shift noise, but in the case of the smaller

value (D 0.1) the time shift noise is quite definitely in evidence.

Fig.120 Two-path interfer-
ence noise ersus interference
ratio a for various low slic-
ing levels .

' 0.95 0.90 0.85 0.80 0. 0.70 0.65 0.60 0.55 0.50
0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 091 0.90
0.999 0.998 0.997 0.996 0.995 0.994 0.993 0.992 0.991 0.990
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Knowing the missing-pulses noise power obtained for a = 1, one can cal-

culate from (33) (page36) and (97) (page 102) the exact value of the slicing

level which, theoretically, must have been used to produce this noise power.

For data like those of Fig. 121, such calculations lead to values in the order

of magnitude of 0.01.

The coherent type of two-path interference is completely free of the noise

effects discussed above and is therefore noticeably "llsuperior" to the inco-

herent type. In addition, the coherent case permits perfect reception, free

even of the distortion effects discussed above, for interference ratios less

than one-half (s = ). For larger interference ratios, there is a certain

amount of freedom in the choice of slicing level. The two essential possi-

bilities, namely high slicing level and low slicing level, have been covered

in Sections 5.31 and 5.32. There are also some intermediate possibilities not

previously discussed, and a summary of all the possibilities and associated
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- effects is therefore in order. This can readily be done with the aid of Fig.

122 which shows two partially overlapping pulses and indicates the possible

values of the resultant.

A ~~~~~~~~~I I I~~IA - 1 ~~~~~~NOISE VOLTAGE vs. DEPARTURE

FROM PRECISE COINCIDENCE
12 /Z 0.l

S 0.01

-_ 1.0 

0,o
/ , /1; ~~~~D.QIO/ 

-0.40 -Q32 -Q0.24 -0.16 -0.08 0 0.08 O 6 024 032 040
DEPARTURE FROM PRECISE COINCIDENCE (FRACTION OF PULSE- REPITITION PERIOD)

FigS21 Two-path interference-
noise voltage rs. departure from
precise coincidence expressed as
a fraction of the pulse-repetiti-
on frequency (experimental plots).

First, setting the slicing level below the smallest possible resultant

(s < -a) gives reliable reception which is marred only by the spectrum dis-

tortion (for "symmetrical" PDM).

Fig.122 Partially
overlapping pulses and
the possible values of
their resultant.

The second possibility, already discussed in Section 5.31, is that of

setting the slicing level just above the interference level (s = a+). This

means perfect reception with a probability 1-F (which is never less than two-

thirds). This is the probability that the resultant of the overlapping pulses

exceeds a and hence s, so that both edges of the desired pulse cross the

slicing level. Some degree of intelligibility may still be obtained even if

the resultant is less than a (probability = F) so long as the overlap is only

partial. The pulse at the slicer output is a new pulse whose leading edge is

that of the pulse arriving through path 1 and whose trailing edge is actually
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the leading edge of the pulse arriving by way of path 2. Consequently, the

output signal is proportional to the difference between the signals modula-

ting these two edges; the result is spectrum distortion complementary to that

found previously, with a null instead of a maximum at zero frequency. This

will be discussed in somewhat greater detail in connection with PPM two-path

interference, Section 5.43. If asymmetrical PDM is involved, the signal may

be lost completely since there is an even chance that the two edges comprising

the slicer-output pulse are the unmodulated edges of the original pulses.

A third possibility of interest is that of setting the slicing level at

some intermediate value. Evidently, the condition = + does not guarantee

reliable reception, nor is it always possible or practicable to satisfy the

condition s < 1-a. Consider, therefore, the possibility of s = , which is

optimum so far as the suppression of low-level interference is concerned. If

the resultant of the overlapping portions of the two pulse trains exceeds one-

half, the output consists of the superposition of the two signals as though

the condition < 1-a were fulfilled. The probability of this happening is

1-G (see Fig. 123), which never drops below five-sixths. If the resultant of

the overlapping portions is less than one-half, reference to Fig. 122 shows

that two separate pulses appear at the slicer output. Both physical reasoning

and experiment show that these pulses contain no usable signal components,

inasmuch as almost complete cancellation takes place. The probability of this

happening is G, which has been plotted together with F in Fig. 123. It never

exceeds the relatively low value of one-sixth.

F= PROEB9
0.3 F PROABILITY THAT R~

AMPLITUDE OF DESIRED PULSES I

AMPMTUDE OF INTERFERING PULSES e o

AMPLITUDE OF RESULTANTS -R
0.2

/ _ ___BILTY T__T R < _i

0.5INTERFERENCE RATIO o0.7 0.8
INTERFERENCE RATIO ""

Fig. 123 Probability that
resultant of overlapping pulses
exceeds and i, respectively,
s. interference ratio a.

.0
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Based on the most important condition, s < -a, the conclusion for the

present section is that relatively good reception is generally obtainable in

the presence of severe two-path interference, particularly if the transmitted

pulses are coherent with each other. The spectrum distortion, unavoidable if

the interference ratio exceeds one-half, is not generally serious for communi-

cation purposes, and the probability of obtaining the severe precise-coinci-

dence distortion is sufficiently small to be fairly unimportant. Further con-

clusions can be reached only with knowledge of the actual conditions causing

the two-path interference, or by means of actual field tests.

5.4 Two-Path Interference in PPM Systems

5.41 Outline of PPM Systems

The investigation of the interference characteristics of PPM is neces-

sarily less complete and less precise than the corresponding investigation

for PDM. The reason for this is the somewhat less fundamental nature of PPM,

the more complex methods of demodulation needed, and the greater number of

such methods. In order to facilitate the presentation of the experimental

measurements and observations, general descriptions (without circuit details

which can be found in Appendix V) of the PPM systems tested will be given.

The basic interference effects are the same for PPM as for PDM; they are

the time-shift effect and the missing-pulses effect. However, the manner in

which they manifest themselves depends to a large extent on the manner in

which the PPM system operates. Two radically different systems are considered

here. They differ in the following three respects: (1) the method of con-

veying the synchronizing information from transmitter to receiver; (2) the

maximum permissible modulation time shift; () the method of demodulation.

The method of demodulation is perhaps the most important of these differences,

inasmuch as it is partially responsible for determining some of the parameters,

for example, the maximum modulation. It is therefore convenient to distinguish

the two systems by their method of demodulation or detection and to call them

coincidence-detection and flip-flop-detection systems, respectively. The

systems described below are not the only possible ones belonging under the

two respective classifications; they are the particular systems used for the

purpose of this study.
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Coincidence-Detection System

In the coincidence-detection system, the maximum peak-to-peak time shift

of the pulses is limited to the pulse duration measured at the slicing level

actually used. (It is possible to modify the system so as to remove this

limitation, but this is not always desirable; for example, in a time-division

multiplex system having many closely-spaced channels, the need for prevention

of cross-talk imposes a similar requirement.) At the receiver, the time-

modulated pulse train is compared to two unmodulated (periodic) pulse trains;

as shown in Fig. 124, one of these is phased so as to lead the modulated

pulse train by d/2 (d = pulse duration) on the average, while the other one

lags by the same amount. The result is that, on the average or in the absence

of modulation, there is an equal amount of overlap or coincidence between the

modulated pulse train and either of the two reference pulse trains. However,

modulation alters the individual overlaps and causes the short-time average

overlap to vary in accordance with the signal. The varying overlap between

the modulated pulse train and either of the reference pulse trains is suffi-

cient for recovering the original signal, but by utilizing both sets of over-

laps (taking their difference) certain advantages are realized. The overlaps

are converted into the output signal by means of coincidence detectors. The

method of using two staggered reference pulse trains instead of one, whereby

the positions of both sets of pulse edges have equal parts in determining the

output, may be referred to as either balanced-coincidence, double-coincidence,

or two-edge-coincidence detection.

H H Hn Fig.124 Double-coincid-H REFEENCE m PULSETRAINS m ence detection of position-
REFERNCE__PULSTRANS __ modulated pulses (pulse dur-

ation exaggerated).
TIME-MODULATED X PULSE TRAIN

[1n In /1 nFig.125 Flip-flop detect-
ion of position-modulated

-SYNCHRONIZING PULSE -'MODULATED PULSE pulses.
DURATION-MODULATED PULSES PRODUCED BY DETECTOR
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Synchronizing information must, b some means, be available at the receiver

in order to establish the frequency and phasing of the reference pulses. The

most common method is to transmit so-called synchronizing pulses together with

the modulated pulses, but this is wasteful of time and energy unless the syn-

chronizing pulse train takes care of a number of channels simultaneously. The

two methods used here in conjunction with the coincidence-detection system do

not involve the use of synchronizing pulses. In one system, the synchronizing

information is transmitted separately by means of a continuous sinusoid (which

requires zero bandwidth in theory); in the other system, advantage is taken of

the fact that all the synchronizing information needed is actually contained

in the modulated pulse train. The long-time average of the modulation time

shifts is zero, so that the time-modulated pulses need only be passed through

a narrow bandpass filter to yield an unmodulated sinusoid from which a periodic

pulse train can be formed. This method of synchronization may be referred to

as self-synchronization, and the former method may be called external synchro-

nization.

Flio-FloD Detection System

The flip-flop scheme, although not described by this name, was the

earliest PPM system described in the literature.2 For each sampling period,

a fixed" and a time-modulated pulse are transmitted. At the receiver, the

sequence of alternating fixed and modulated pulses triggers a so-called flip-

flop circuit, producing a duration-modulated pulse train, as shown in Fig. 125.

In a time-division multiplex system, where several time-modulated pulses are

transmitted per synchronizing pulse, it is obviously necessary to distinguish

the latter from the modulated pulses; this is not the case in the single-

channel system tested in this study, since it is immaterial whether the dura-

tion-modulated pulses are formed from the spaces between fixed and modulated

pulses or the spaces between modulated and fixed pulses.

Either the leading or trailing edges can be used to trigger the flip-

flop, and it is even possible to utilize both sets of edges simultaneously.

Unlike the coincidence-demodulation method described above, the flip-flop

method does not impose a limit on the maximum modulation time shift. The maxi-

mum peak-to-peak time shift may approach a value equal to the pulse-repetition

*See Appendix V
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period. In the case of this system and also the coincidence system, the all-

important slicer precedes the demodulator. Its function is fully as essential

in PPM systems as it was shown to be in PDM systems.

5.42 Two-Path nterference in oincidence-Detction PPM Sstms

As in the case of PDM two-path interference, there may or may not be

overlap between the two PDM pulse trains. Since the pulses used in PPM systems

are generally of considerably shorter duration, the probability of obtaining

overlap is correspondingly smaller. The coincidence-detection scheme is self-

gating" in that it inherently ignores any undesired pulses which do not coin-

cide with the desired pulse or fall in its immediate vicinity, regardless of

whether or not they pierce the slicing level. With external synchronization

(which is assumed to be undisturbed), the two-path interference therefore has

no effect under the no-overlap condition. Self-synchronization without gatiln

is disturbed if the interfering pulses reach the slicer output, inasmuch as

the a-c component of the combined pulse trains is phased differently than that

of one pulse train alone. (If the delay difference and the interference ratio

are constant, a simple adjustment compensates for the synchronization phase

shift.) If the received pulses are time-gated before being used as a time

base, perfect synchronization can be obtained from one pulse train without

any disturbance from the other, so long as there is no overlap or "near over-

lap" between the two pulse trains. Under this condition, therefore, two-path

interference does not impair reception. The probability of obtaining no over-

lap is slightly less than 1-4D, which was approximately ninety per cent in the

system tested.

The condition of partial or total overlap, though much less probable than

no overlap, is of greater interest, since the results obtained under this

condition show the limitations of the system in the presence of two-path inter-

ference. The results are considerably different, depending on whether the r-f

pulses are coherent or incoherent with each other. Noise and distortion occur

in the incoherent case, while only distortion is encountered in the coherent

case. In either case, these effects are noticeable only if the two pulse

trains are within one to two pulse durations of exact coincidence. The pulse

duration used in most of the tests was 1 sec at the half-amplitude level,

and the system bandwidth such as to make the pulses "minimum-duration pulses"

(approximately 1 M). As a result, the pulse shape is between a gaussian and
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- triangular shape (see Fig. 126), and the separation between leading and trail-

ing edge is strongly dependent on the level at which it is measured. Inspec-

tion of Fig. 124 will make it clear that the double coincidence detection

system operates satisfactorily only if the slicer-output pulse duration does

not depart materially (more than 20 per cent) from the value for which the

system was designed - 1 sec in the present case. Therefore, for technical

reasons, a substantial departure from a slicing level of one-half is gener-

ally not desirable.

FIG. 126 FIG. 127

FIG. 128 FIG. 129

Pigs.126-129 Detector output showing PPM-system pulses (two-path inter-
ference, a = 1); Fig.126 one pulse, no interference; Fig.127 two pulses
spaced 1.5 sec apart; Fig.128 two pulses spaced 0.5 sec apart; ig.129

two pulses coinciding.

Consider first the noise encountered in the incoherent case in the

absence of modulation. The most severe condition, interference ratio close

to unity, is illustrated for various degrees of overlap by oscillograms taken

at the detector output, ahead of the slicer (see Figs. 126 - 129). As in

similar oscillograms for PDM, the shaded white area represents successive ran-

dom resultants of the overlapping voltages.

Noise measurements. are conveniently referred to the mximum signal level,

corresponding to the peak-to-peak time shift of one microsecond. The condition
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shown in Fig. 127 does not give rise to any disturbance, since there is in-
sufficient overlap to produce resultants exceeding the slicing level (one-
half the pulse height). Strong, though not prohibitive, noise results from
considerable overlap (Fig. 128), but the noise becomes weaker again as exact
overlap is approached. The r-m-s noise voltage relative to the highest peak
signal voltage is plotted as a function of overlap in Fig. 130. This experi-
mentally obtained plot holds approximately for all values of interference
ratio . between one-half and unity, provided the slicing level is held constant
at one-half. Figure 131 shows the same noise as a function of interference
ratio for partial overlap deviating from exact coincidence by approximately
half the pulse duration ( psec). omputed results are superimposed on this

plot.

Fig.130 Two-path interference
noise rs. pulse overlap (experiment-
al); pulse duration at half-ampli-
tude d = 1 sec; double-coincidence
PPM detection.
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The following two points may seem somewhat surprising at first sight:
(1) the fact that the noise has a minimum for exact coincidence; (2) the fact
that the noise tends to decrease when . is increased above one-half. The

explanation for (1) is that symmetry between the time shifts of the two edges
of each pulse causes the time-shift noise to cancel; while, on the other hand,

psec off exact coincidence, the peak of the interfering pulse coincides with
the half-amplitude point of one of the edges of the desired pulse, which
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consequently undergoes a large time shift while the other edge is hardly

affected. The explanation for (2) is in a feature of the particular circuit

used which prevents missing pulses from affecting the output.* When the

interference ratio exceeds one-half and occasional pulses fail to reach the

slicer level and hence the slicer output, the demodulator output is the same

as though a pulse (identical in timing to the preceding pulse) were actually

present. Only time-shift noise therefore reaches the output.

In Chapter 2 the time-shift expressions for interference between two

gaussian pulses were derived. Equation (29) (page 33) does not have explicit

solutions, but trial-and-error solutions have been obtained for numerous

values of r-f phase difference, 0, normalized shift from exact coincidence, i,

and interference ratio, a. By carrying out the appropriate averaging processes

over the entire range of , the effective time shift, and hence the r-m-s

noise voltage, has been found. In this way, the theoretical curve of Fig. 131

as well as the curves in Figs. 132 and 133 were obtained. The curves of Fig.

132 give the noise obtained when two-edge detection is used; the curves in

Fig. 133 give the noise obtained with one-edge detection, e.g., if one side

of the balanced detector is made inoperative. These curves are shown for

comparison; they prove that there is a considerable advantage under some condi-

tions in using the balanced (two-edge) detector.

Additional experimental data pertaining to the subject under discussion

have been obtained in connection with two-station PPM interference (prf = 0).

The bandwidth of 1 M is somewhat larger than that theoretically required of

a gaussian filter to form a gaussian pulse of 1-psec duration at the half

amplitude level. Measurements for other bandwidths indicate that the noise

voltage changes approximately in inverse proportion to the bandwidth if the

interference ratio is below one-half, and that the change is progressively

smaller for larger interference ratios. The noise minimum at exact coincidence

is found to be a perfect null for a bandwidth of 3 iMc and interference ratios

smaller than one-half. This relatively wide bandwidth permits a perfectly

symmetrical trapezoidal pulse shape instead of the slightly asymmetrical gaus-

sian shape (see Fig. 126). Experimental values obtained with BW = 1 M for

a = 0.9 agree closely with computed values plotted in Fig. 132; for smaller

interference ratios, the noise measured with the 1-Mc bandwidth is several

* See Appendix V.
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decibels higher than the computed values, while measurements for BW = 2 Mc

check closely with computed values (a = 0.2 and 0.4). Measurements made with

only one half of the detector operative (leading edge detected only) agree

within experimental accuracy with the computed plots of Fig. 133.
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Fig.132 Computed two-path interference noise s. pulse
overlap for various values of interference ratio; is the de-
parture from precise overlap in psec if the pulse duration d = 1 sec.

The above data show that, in the worst cases, the noise is approximately

10 db below the peak signal. Nevertheless, intelligibility is maintained,

inasmuch as modulation generally decreases the noise by varying the degree of

overlap between the two pulse trains. For both two-station and two-path inter-

ference this decrease may be as large as 10 db. As a result, speech and music

remain intelligible even under the most severe conditions of overlap and inter-

ference ratio, but reception cannot generally be considered acceptable under

these conditions because of the distortion which will be discussed below. It

should be mentioned that all of the above observations were made with external

synchronization. Ideally, the same performance can be attained with self-

synchronization, but the self-synchronization scheme used is not sufficiently

perfect to prevent additional noise from being introduced by the timing pulses.
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Fig.133 Computed two-path interference noise _s. pulse
overlap for various values of a; = departure from precise
overlap in sec if pulse duration = 1 sec; single-edge detection.

For interference ratios less than one-half, the increase in noise from this

cause does not exceed 3 db, but for larger interference ratios the noise

increases, especially for exact coincidence due to the missing-pulses effect.

Unlike the demodulation circuit, the self-synchronization scheme has no

protection (other than the narrow-band filter*)against missing pulses, which

are most common for exact coincidence. Consequently, with exact coincidence,

for interference ratios close to unity, the r-m-s noise is approximately

equal to the peak signal. This represents an increase in the lowest noise-

to-signal ratio by 10 decibels and makes the modulation unintelligible. As in

two-path PDM interference, lowering the slicing level reduces the noise, but,

unless the pulses are trapezoidally shaped (large bandwidth), excessive dis-

tortion may result.

In addition to the noise discussed above (produced only in the incoherent

case) partial or total coincidence interference (two-path) produces distortion
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which will now be briefly considered. With the slicing level at one-half,

no distortion is produced for interference ratios less than one-half. How-

ever, for exact coincidence and interference ratios larger than one-half,

there is some distortion which is not serious under most conditions. If one

side of the double-coincidence detector (see Fig. 124) is made inoperative so

that the position of only one edge is detected, then the distortion is of

exactly the same type as the precise-coincidence" distortion (mostly second

harmonic) encountered in two-path PDM interference.(see Figs. 115 - 118). If

both pulse edges are detected,then, if the detector is perfectly balanced,

this distortion cancels out (since it is equal and opposite for the two edges),

leaving only the relatively harmless "spectrum distortion" encountered in

two-path PDM interferecne (partial coincidence, see Fig. 114). This can be

shown by simply adding the signals corresponding to the leading and trailing

edges, respectively. Since the actual detector is never perfectly balanced,

the output generally has a small remnant of second-harmonic distortion. This

may be large enough to measure with sinusoidal modulation (at "cancellation"

frequencies: 900 cps, 2700 cps, etc.), but it is hardly noticeable with speech

or music, provided that the detector is well adjusted.

The distortion discussed in the preceding paragraph is encountered in the

incoherent case, where it may be largely overshadowed by noise, ad also in

the coherent case for most values of the r-f phase difference, . The possi-

bility of various values of makes the coherent case somewhat more complex

than the incoherent case, in which all values of occur in rapid succession.

Readjustment of the slicing level is necessary for optimum reception if 0

changes from near 0 to near 180°, as is to be expected since the size of the

resultant pulse depends drastically on whether the two overlapping pulses add

in phase or out of phase. Distortion is small for all values of except

those within approximately 30° of 180°. For these values, a complex type of

distortion (harmonics and combination tones) results from the fact that at

"cancellationN frequencies the overlapping pulses shift in opposite directions

and the exact-coincidence condition is passed twice during each modulation

cycle. Consequently the resultant falls below the slicing level momentarily

during each audio cycle. All distortion (like the noise discussed above) dis-

appears approximately 1 sec (one pulse duration) off exact coincidence.
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5.43 Two-Path Intererfernce in F iFl-DDetection PPM System

The most important conclusions of this section may be stated as follows:

The effects of interference are generally negligible in the presence of full

modulation for interference ratios smaller than one-half; for larger inter-

ference ratios, on the other hand, acceptable reception is not always possible.

As in the detection system discussed in the previous section, time-shift

noise occurs in the incoherent case if the two pulse trains overlap each other.

The only important differences are that overlap between modulated pulses can

be only a transitory condition (since the modulation time shift is larger than

the pulse duration), and that detection normally occurs through the timing of

only one edge of each pulse. In addition, the synchronizing pulses are

capable of introducing noise if they are overlapped by interference. aximum

noise occurs in the absence of modulation with partial overlap such that the

peaks of the interfering pulses coincide with the leading edges of the desired

pulses (if the leading edges are used to trigger the flip-flop). Equal amounts

of noise are then contributed by the channel pulses and the synchronizing

pulses. Experimental plots of the noise as a function of interference ratio

are shown in Fig. 134 for exact coincidence, and for partial overlap giving

maximum noise. The maximum r-m-s noise is nearly 40 db below maximum peak

signal; the maximum signal is that which corresponds to the largest possible

time shift in a single-channel system - that is, slightly less than half the

repetition period or approximately 20 psec. This is roughly 30 db higher than

the maximum time shift usable in the coincidence system. Knowing the noise

relative to the 20-psec deviation, one can readily compute the signal-to-

noise ratio for smaller peak time shifts by subtracting the appropriate number

of decibels. In order to compare these results with the computed plots of

Fig. 133, approximately 30 db must be added, since the noise in the computed

plots is referred to a peak-to-peak time shift of one pulse duration (1 Psec).

If this is done, it is found that in most cases the experimental signal-to-

noise ratios are approximately 4 db lower than the computed values. This

agrees with the observation of Section 5.42 to the effect that noise measured

for BW = 1 Mc and a = 0.2, 0.4 was several decibels higher than computed

values, while measurements for BW = 2 Mc agreed more closely.

It should be mentioned that any audible noise in the absence of modula-

tion or in the presence of a small amount of modulation is not perfectly ran-

dom, particularly if there is overlap between the synchronizing pulses of both
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signals. Since the synchronizing pulses are perfectly periodic and not sub-

Ject to appreciable jitter in a well-designed system, there is a considerable

degree of coherence, and the noise is of the "frying-egg" type. If the two

pulse trains are so phased that the synchronizing pulses of one overlap the

modulated pulses of the other, and vice versa, a small amount of modulation

(e.g., i sec peak-to-peak time shift) causes the noise to become perfectly

random. There is, of course, no noise of any kind in the coherent case of

two-path interference.

INTERFERENCE RATIO "a"
s Fig. 134 Two-path interflwnce

noise versus interference ratio for
exact coincidence and partial
overlap; flip-flop detection.

0.25
INTERFERENCE RATIO a

For interference ratios close to one-half, a small amount of distortion

is detectable for very low-level modulation (time shift smaller than pulse

duration) may be noted under partial-overlap conditions. This distortion is

negligible at normal modulation levels.

No disturbance of any type results for interference ratios smaller than
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one-half, if there is no overlap. If there is no overlap in the absence of

modulation but the overlap condition is frequently passed during modulation,

no disturbance generally results in the case of speech or music. The reason

for this is the fact that the amplitude distribution of speech or music

favors no values other than xero, so that overlap occurs only during a small

fraction of the total time. In the case of sinusoidal modulation this is not

true (the distribution favors the peaks), and it is consequently possible to

observe noise which, for a given phasing of the two pulse trains, is audible

only at a certain modulation level. This is the level for which the modula-

tion time shifts are such that, at one of the two modulation peaks, the over-

lap condition is ust reached. It is of interest to note the behavior of the

system under this condition for sinusoidal modulation as compared to its

behavior for speech or music modulation.

Interference ratios larger than one-half will be discussed only briefly,

since the flip-flop system or any triggered demodulation system does not per-

form adequately in the presence of large interference. Acceptable performance

is possible only if the two pulse trains never overlap, even in the presence

of modulation. The exact results depend, of course, on the setting of the

slicing level. If this is set above the interference level (s = a+), even

a very small percentage of missing pulses is sufficient to produce intolerable

noise. In a triggered system, even a single missing pulse causes a loud click.

If no overlap occurs - a situation which is likely to occur only if full modu-

lation is not used- then the interference has no effect, and reception is

perfectly normal.

The possibility of missing pulses may be avoided by lowering the slicing

level sufficiently (s < 1l-a). However, since both desired and interfering

pulses then pierce the slicing level, there are four pulses instead of two

per sampling period. If any two pulses are very close to coincidence during

part of the modulation cycle, intolerable noise again results since the flip-

flop is uncertain whether the two pulses should be resolved into separate

triggers or whether they should act as a single trigger. This condition need

exist for only a small part of the time to make the noise intolerable. Two

noteworthy situations may arise if the two pulse trains are so phased and

modulation sufficiently low that near-coincidence does not occur with suffi-

cient frequency to be of consequence.

First, it is possible that the two pulse trains overlap sufficiently
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closely to be treated as a normal pulse train by the flip-flop. However,

the modulated pulses will "stay together" only if the delay difference is

small compared to the highest important modulating frequencies -- that is,

no larger than one or two pulse-repetition periods. If this condition is

fulfilled, reception is perfectly normal, as verified experimentally by

modulating at frequencies for which the pulses "stay together" (reinforce-

ment frequencies).

(a) ~ SLICER OUTPUT

SI S2 Ml M2 SI S2 Ml M2

DETECTOR OUTPUT

Fig.135 Two-path interfer-
ence in PPM flip-flop system
(a>s): two ways in which the
desired and interfering pulse

(b) SLICER OUTPUT trains may become interleaved.
SI Ml s2 M2 SI Ml s2 M2

DETECTOR OUTPUT

The second possibility is that the two pulse trains become interleaved

in the manner shown in Fig. 135 (a) and the third possibility is that they

are interleaved in the manner shown in Fig. 135 (b). In (a) two synchronizing

pulses are followed by two modulated pulses which are, in turn, followed by

two synchronizing pulses, and so on. Two pulses per sampling period are

formed by the flip-flop, one of constant duration and the other of duration

proportional to the difference of the modulation of the two pulses. The out-

put is therefore the difference between the delayed* and undelayed* modulation

* The words "delayed" and "undelayed" are used for simplicity to identify the
signals arriving by the longer and shorter routes, respectively.
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signals. In (b), which is possible only if the synchronizing and modulated

pulses are not spaced evenly, synchronizing and modulated pulses alternate.

The flip-flop forms two duration-modulated pulses per sampling period, one

carrying the delayed signal and the other carrying the undelayed signal. The

result is the same as in two-path PDMI interference: the output consists of the

sum of the two signals.

The effect of obtaining the sum of the delayed and undelayed signals has

been discussed in some detail in Section 5.32. The second effect, yielding

the difference between the two signals, is more serious, since the difference

approaches zero if the delay difference is sufficiently sall. Considering

the phenomenon in terms of "frequency-spectrum distortions one finds that

this distortion is complementary to that plotted in Fig. 114. The positions

of the maxima and zeros are interchanged, the most important interchange being

the replacement of the maximum at zero frequency by a zero. With the delay

of approximately one-half millisecond used in the tests, the only noticeable

effect with speech or music is a considerable reduction in bass response.

Figure 136 shows the overall-system frequency characteristic (obtained both

experimentally and by computation) together with the "sum" frequency charac-

teristic and the normal characteristic. If plotted with linear scales, the

"difference curve" is a full-wave rectified sine wave, while the "sum curve"

is a full-wave rectified cosine wave.

It is clear that the conclusions which can be drawn for two-path inter-

ference in single-channel PPM systems cannot be so definite as in the case

of PDMI systems. This is a result of the greater complexity and variety of

PPM systems. The smaller duty factor used in PPM makes overlap between the

two pulse trains less probable, but this is the only factor tending to make

the performance of PPM systems superior to that of PDM systems; however, it is

more than offset by the poorer PPM performance when overlap does occur. On

the whole, therefore, PPM performance is poorer than PDM performance for both

of the systems tested. It is possible to devise more complicated PPM systems

without the principal disadvantages of each of the two PPM systems tested --

that is, the limited modulation swing in the double-coincidence system and

the trigger action i the flip-flop system. Such systems do not serve well for

the determination of basic interference characteristics which tend to be

obscured by the nonideal performance of the numerous circuit components. More-

over, they involve all the features required for time-division multiplex



systems and should be used only in such systems. The performance of multi-

channel PPM systems is not inferior to that of mlti-channel PDM systems

(with regard to two-path interference); on the contrary, PPM performance is

expected to be better than PDM performance, if the number of channels is ten

or more. Both systems have the same synchronization problem, and modulation

time shifts are limited equally. Neither system will give acceptable perform-

ance for interference ratios larger than one-half, and both will generally

perform adequately for interference ratios less than one-half; the PPM system

is, on the average, less affected by the interference because of the smaller

duty factor.

.0

z_
U,9
fnz
C0~a.

I

a.a-

4it
ii

Fig.136 PPM system (flip-flop detection) overall fre-
quency characteristics, one-path and two-path (measuredandomqted).

The main conclusion is that the multi-path-interference characteristics

of PPM as a single-channel system are inferior to those of PDM as a single-

channel system. This is i agreement with the general belief that there is

generally no advantage in using PPM in other than time-division multiplex

applications.
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. 5.5 Two-Station Interference in PPM Sstems

The final part of this chapter comprises a summary of the characteristics

of the two previously discussed PPM systems with regard to interference from

other similar services -- PPM, PDM, and CW. As in the preceding section, the

results for the two PPM systems are sufficiently different from each other to

justify separate discussions for each.

S.51 Two-Station Interference in oincidence-Detection PPM System

Interference caused by a second PPM system will be considered first. The

essential difference between this case and two-path interference is the fact

that the repetition rates of the two pulse trains are not generally identical.

The special case in which they are identical need not be considered here, since

the results are the same as for two-path interference; there is, of course, the

additional variable Ar-f, but this has little effect so long as the interfering

pulses are not of longer duration than the desired pulses.

In the general case (Aprf 0), interference reaches the output only

during a small fraction of the total time; one may picture the interfering

pulse train "sliding' through the desired pulse train and causing a burst of

noise at the output each time the two sets of pulses overlap. The fr&ction

of the total time during which this occurs is slightly larger than the sum of

the duty factors of the two pulse trains. In the present case (pulse-repeti-

tion frequencies approximately 20 kc and pulse durations 1 sec), it is

roughly five-hundredths. The repetition rate of the noise bursts is Aprf, the

difference between the two pulse-repetition frequencies.

If at least one of the r-f pulse trains is incoherent from pulse to pulse

(as is generally the case), the noise caused by the presence of the inter-

fering pulse train has a random character, though not to the extent of resem-

bling fluctuation noise. Because of the very short duration (relative to the

repetition period) of the noise bursts, the ear perceives them as a buzzing

sound unless their repetition frequency is below the audio range (in which

case a succession of smooth swishes can be distinguished). The buzzing sound

contains a small Aprf component which is hardly audible if the slicing level

and other variables in the detector are correctly adjusted: (a small misadjust-

ment or misdesign, such as insufficient video bandwidth at the slicer input,

may increase the loudness of this beat note to such an extent that reception

is impossible.) With external synchronization, for interference ratios not
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exceeding 0.8, the noise is not sufficiently strong to affect seriously the

entertainment value of music or to lower the intelligibility of speech; good

reception is generally possible up to a = 0.9. Results obtained with self-

synchronization" are poorer; good reception is possible only for a < 0.5 and

tolerable reception for a < 0.6. However, there is theoretical and experi-

mental evidence that the performance of the self-synchronization system can

be improved considerably.

The audio-noise power produced by the interference has been measured for

various values of Ar-f, Aprf, d2 and a. The effect of Ar-f is negligible.

The value of Aprf affects only the quality but not the power of the noise.

The duration of the interfering pulses affects the noise power to a relatively

small extent: changing it from 1 sec (the duration of the desired pulses)

to 2 sec increases the noise 1 to 2 db. The only important remaining vari-

ables are the system bandwidth and the interference ratio. xperimental plots

of the ratio of r-m-s noise to peak signal expressed in db are shown in

Fig. 137. The peak signal to which the noise values are referred corresponds

to maxi=m pulse time shift permitted by the coincidence detector, that is,

a peak-to-peak time shift equal to d1 -- 1 sec. However, for interference

ratios larger than one-half, the effective pulse duration (at the slicer

output ) is smaller, since the condition s = a+ must be maintained. The

higher the interference ratio and hence the slicing level, the greater the

reduction in pulse duration; also, the wider the bandwidth and hence the

"squarer e the pulse shape, the smaller the reduction in effective duration.

This reduction necessitates a proportionate decrease in peak modulation. For

a = 0.9 and BW = 3 Mc this decrease is less than 1 db, but for a = 0.9 and

BY = 1 M it is slightly more than 3 db. This is a correction to be sub-

tracted from the signal-to-noise ratio obtained from Fig. 137.

The theoretical ratio of r-m-s noise voltage to peak signal voltage is

equal to the effective value of the normalized time shift Ah12; A 12 is the

average of the shifts of the two edges of a pulse (hence the shift of the pulse

center), equal to ~(A 1 + Ah2), and Ah1 and Ah2 are found from (29) (page 33).

As mentioned in Section 5.42, trial and error solutions of this equation have

been obtained for numerous values of , , and a. Carrying out the appropriate

averaging process over the r-f phase difference yields the effective nor-

malized time shift Ah for any combination of values of and a (see Fig. 132).

In the present case of interference, changes from pulse to pulse (Aprf 0),
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ig. 137 Ixperimental plot of
ratio of noise to signal ros
interference ratio for two differ-
eant system bandwidths. Noise caused
by two-station PPM interference
(double-coincidence detection).

INTERFERENCE RATIO "a"

and another averaging process, this time over , is therefore required to

find the normlized effective time shift . The results of these lengthy

computations are plotted in Fig. 138* together with corresponding experimental

results obtained for a system bandwidth of 3 Mc. The results for this band-

width check very closely with the computed results, particularly in view of

the complex nature of the noise and the numerous operations involved in its

computation. However, the computed results should actually check experimental

results for a considerably smaller bandwidth; the shape of the 3-Mc pulses is

more nearly "square" than the gaussian pulses on which the computations are

based. The measured noise, in other words, tends to be larger than the compu-

ted noise. In addition to the plot of the effective value of Ah12 (applicable

to double-edge detection), Fig. J38 contains a plot of Ah1 (one-edge detection)

and corresponding experimental results. It is of interest to note that for

* The evaluation of a single point may involve several hundred operations.
Values were computed for a = 0.1, 0.2, 0.4, 0.6, and 0.9.
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interference ratios up to approximately 0.6 (a < 0.6), the noise is about

4 db lower for double-edge detection. This figure, of course, will vary

with the relative durations of the desired and interfering pulses; it tends

to be larger if the interfering pulses have longer durations (for Ar-f = 0)

and smaller for shorter durations, the theoretical lower limit being 3 db.

Fig.138 Two-station PPM
interference; computed and
measured values of normalized
effective noise time shift
versus interference ratio;
one-edge detection: Ah1 ,
two-edge dtection: Ah1 2 .

Interference by OW transmissions or pulse transmissions (e.g., PDM)

having larger duty factors than PPM systems causes considerably more severe

noise. As the theory predicts, the noise power increases approximately in

direct proportion to the interference duty factor. Consequently, W inter-

ference may make intelligibility poor for interference ratios as low as 0.3

and yield a signal-to-noise ratio less than unity for a = 0.9. The radio-

frequency difference, r-f, which was found to have no appreciable effect for

short interfering pulses is an important variable in the present case. Varia-

tion of Ar-f reveals a succession of minima and maxima in the noise power;

there are, in fact, two independent cyclic variations, one with its maxima

spaced at 20-kc intervals (corresponding to the pulse-repetition frequency)

and the other with its maxima spaced at -Mc intervals (corresponding to the

reciprocal of the pulse duration). The 20-kc variation has a maximum at

Ar-f = 0, while the -Mc variation has a minimum there; the former is a result

of cancellation or reinforcement of the time shifts of successive pulses, and

the latter results from cancellation and reinforcement of the time shifts of

the two edges of each pulse. Plots of noise-to-maximum-signnl ratios are
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given in Fig. 139 for two values of Ar-f.

UI I
NOISE Vs. "a' BW;IMc

CW INTERFERENCE ArfO.5Mc-IC/ IN PPM SYSTEM _
-5 - di I sec-/_

Prfl 20 kc /

/ BW 2.5 Mc/ 04 0A rt 0.S Mc

-5 / BW' I Mc /

~/1
o -_COMPUTED VALUE

., -'/ ~Arf =0.5 Mc
-20 GAUSSIAN PULSE SHAPE

O 0.2 0.4 0.6 0.8 .
INTERFERENCE RATIO a"

-5
NOISE VS. DI

LONG-PULSE INTERFERENCE
IN PPM SYSTEM

-lo a 0.4 c-I0 c__
dl =

Ilsec Arf-O.5Mc
prflIprf 2 -20 kc

5 /

BW- I Mc

-20~~~~~, Arf- 0
-20 /

-//

-25 _ .
0 0.2 0.4 0.6

INTERFERENCE DUTY FACTOR D2

Pig.139 OW and long-pulse inter-
ference in double-coincidence PPM
system: ratio of rms noise to peak
signal versus (a) interference
ratio for OW interference (b) inter-
ference duty factor for long-pulse
interference.

0.8 1.0

The nature of the interference noise is by no means random for CW inter-
ference (which is always coherent). If the PPM transmitter is a pulsed ampli-
fier, the noise consists principally of one clean beat note which varies in
pitch with Ar-f (passing through zero beat at 20-kc intervals). Even if the
PPM transmitter is a pulsed oscillator, there is a sufficient degree of co-
herence to make the noise appear as beats, though not so clean, in the com-
plete absence of position modulation. Continuous modulation, such as music,
causes the beats to change to random noise; speech modulation with its fre-
quent gaps results in repeated changes from random noise to beat noise which
is very distracting. With pulsed-amplifier operation, of course, coherence is
maintained regardless of modulation, and the noise never becomes random. If
the interference consists of pulses, coherence is much less likely, since both
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the interfering and desired pulse trains must originate from pulsed amplifiers

in order that coherence be maintained in the presence of modulation of either

or both of the pulse trains. evertheless, some degree of coherence is observ-

able even if both pulse trains originate from pulsed oscillators, provided that

neither pulse train has tme modulation (including "jitter") appreciably larger

than the reciprocal of the radio frequency. An audible beat note (Aprf) is

generally present, particularly for large values of the interference duty

factor and the interference ratio. Time modulation of the interfering pulses

does not reach the output under any condition; amplitude modulation of OW in-

terference, on the other hand, does appear at the output with more or less

distortion! The extent to which it comes through depends on the interference

ratio and the PPM system bandwidth. For example, for a = 0.9 and BW = 3 Mc
(100 per cent modulation), cross talk is 10 to 12 db below the desired signal

modulation and decreases rapidly with decreasing values of a. For BW = 1 Mc,

the level difference is only 6 to 8 db, other conditions being the same.

Figure 139 shows the quantitative results in the form of noise-to-signal

ratio plotted against interference ratio, for OW interference, and against

interference duty factor for the case of pulsed interference. (The variation

of noise rs. interference ratio is the same for pulsed interference as for

continuous interference, so that the two plots of Fig. 139 give all the infor-

mation required.) It is clear that CW interference or large-duty-factor

pulsed interference is apt to make reception unacceptable even for interference

ratios as low as 0.3. The most severe noise results for Ar-f = 0.5, since both
edges of each pulse are shifted in the same sense. For Ar-f = 0, 1, ..... Mc,

the two edges are shifted in opposite senses and their noise contributions

theoretically cancel. In practice, virtually complete cancellation was found

possible with careful detector-balancing adjustment, but only for BW > 2 Mc

which makes it possible to keep the pulse shape sufficiently symmetrical.

For BW 1 Mc, the noise is never appreciably more than 10 db below the maxi-

mum figure obtained at Ar-f = 0.5 M. Nevertheless, this gain (which is solely

a result of the two-edge detection feature ) is very helpful, since it may

make common-channel interference tolerable in many cases where one-edge de-

tection would yield unacceptable signal-to-noise ratios. It should be pointed

out that all the plots in Fig. 139 represent the maximum possible noise with

reference to the 20-kc variations; all measurements are made on "20-kc maxima".
The minima are much sharper than the maxima and are substantially "washed out"
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by normal modulation (PPM) which lowers the noise by approximately 3 db from

the plotted values. The effect of system bandwidth, while large for Ar-f ,

is seen to be quite small for a > 0.5 but approaches its theoretical propor-

tions for smaller interference ratios (6 db per factor of two in bandwidth).

As in previous comparisons between computed and measured signal-to-noise

ratios in PPM systems, the computed value based on a gaussian pulse of l-Psec

duration at the half-amplitude level checks the value measured for BW = 2 Mc

instead of that measured for BW = 1 Mc.

On the whole, in spite of the advantageous cancellation feature of the

detector, the PPM system under discussion does not suppress OW or high-duty-

factor interference with much effectiveness. This is a result, primarily, of

the limited position-modulation time shift permissible in this system.

Although discussion of equipment performance is being avoided as far as

possible, the following observations are of interest here because of their

direct bearing on the way in which long-pulse interference affects the double-

coincidence PPM system. As previously mentioned, the detector has, in addition

to the two-edge feature, a device which is intended to reduce the possible

severe effects of "missing pulses". When an occasional pulse fails to reach

the detector and can therefore not convey its sample value, the sample of the

previous pulse is "held" until a pulse does reach the detector. This feature

can readily be removed; a missing pulse then means zero signal (equivalent to

a sample of value zero) regardless of the value of the preceding sample. In

the absence of modulation, the values of the samples are always zero if the

detector is properly balanced, since exactly one-half of each incoming pulse

overlaps a pulse of the first reference pulse train and the other half a pulse

of the second reference pulse train (see Fig. 124). Therefore, if there is

no modulation and the detector is balanced, missing pulses should not produce

any disturbance even without the above-mentioned device. In practice this, is

borne out to the same extent as the cancellation of the time shifts of the

two pulse edges for r-f = 0; with a wide system bandwidth (BW = 3 Me, a = 0.8,

Arf=O),the r-m-s noise can be kept 16 db below the peak signal without the

use of the special device, 18 db if it is used. This two-decibel improvement

is unimportant, but if the detector is accidentally unbalanced or only one

half (single-edge coincidence) is used, then there is an improvement of approxi-

mately 10 db: the signal-to-noise ratio may be as low as 4 db without use of

the special device, while it is 15 db with its use. Furthermore, it must be
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remembered that even the balanced double-coincidence detector is not balanced

instantaneously (only on the average) in the presence of modulation. The

following interesting observation bears out the usefulness of the "anti-missing-

pulses device": so long as it is used (for the above values of BW, a, and

Ar-f), the noise obtained with careful detector balancing in the absence of

modulation does not increase noticeably when normal modulation (speech, music,

or sinusoidal) is applied, ad reception is acceptable. Without the device,

the noise increases when modulation is applied; this is particularly notice-

able if the modulation is speech, which causes the noise to be modulated at a

syllabic rate.

5.52 Two-Station Interference in F li-_lo-Dtectio PM Sstems

Consider first interference which is caused by a second PPM system using

pulses similar to those of the desired signal. For interference ratios up to

one-half, such interference gives rise to the same type of buzzing random

noise obtained with the other PPM system. However, for the same bandwidth and

interference ratio, the noise is approximately 8 db higher. Of this difference,

6 db is accounted for b the synchronizing pulses - 3 db as a result of the

additional noise picked up by the synchronizing pulses of the desired signal,

and 3 db as a result of the fact that the presence of synchronizing pulses in

the interfering signal doubles the interference duty factor* The remaining

2 db (4 db theoretically, see Fig. 138) is attributable to the difference

between one-edge and two-edge detection. This 8 db increase is much more than

offset by the larger peak signal possible as a result of the larger pulse time

shift, which may now be at least 20 sec instead of i sec; the signal is in-

creased by more than 30 db. (The theoretical maximum modulation swing for

prf = 20 kc is approximately 24 sec or 33.5 db higher than the maximum swing

in the other system.) Consequently, the signal-to-noise ratio in the flip-

flop system is somewhat more than 20 db higher than in the coincidence system

for the same bandwidth and interference ratio. The theoretical and experi-

mental plots of the effective value of h1 (Fig. 138) represent the r-m-s-

noise-to-peak-signal ratio, based on a peak signal corresponding to a peak-

to-peak time shift of 1 sec (one pulse duration) and ignoring the presence

* It is assumed that the interfering signal has the same structure as the
desired signal. If the interfering signal is of the same type used in the
coincidence system (no synchronizing pulses), the second 3-db boost is
nonexistent.
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of synchronizing pulses. In order to determine the actual signal-to-noise

ratios, 1/i must be increased by a factor of at least 40 (32 db) to account

for the larger modulation time shift and decreased by a factor of 2 (6 db) to

account for synchronizing pulses in both the desired and interfering pulse

trains; this amounts to multiplication by a factor of at least 20 (26 db). A

plot of measured and computed noise-to-signal values expressed in db are shown

in Fig. 140; the usual tendency of computed results to check with the experi-

mental results measured for bandwidths larger than 1 M is again seen to be

present, but to a smaller degree, inasmuch as the computed curve averages mid-

way between the curves for BW = 2.3 M and 0.9 Mc. It is evident that the

effect of the interference is negligible for ordinary communication purposes;

it is of the same proportions as light phonograph-needle scratch and is there-

fore not annoying even with music, except during low passages.

For interference ratios greater than one-half, good reception is possible

only if the radio-frequency difference, Ar-f, is 1 M or larger. Increasing

the interference ratio then simply results in increasing noise as shown in

Fig. 140. Interference ratios close to a = 0.9 can be approached with

Ar-f > 1 Mc. For larger interference ratios, the trigger action becomes er-

ratic as a result of missing pulses, and reception becomes unacceptable. For

smaller values of Ar-f, the transition from good reception to unacceptable

reception occurs at interference-ratio values less than 0.9; the borderline

value rapidly approaches a = 0.5 as Ar-f decreases below 1 M and approaches

zero. Common-channel interference with interference ratio larger than one-

half is therefore detrimental in the present case, while adjacent-channel in-

terference is relatively inconsequential. There is little doubt that replace-

ment of the active flip-flop (trigger circuit) by a passive circuit (involving

diodes and storage capacitors) would improve the performance for large inter-

ference ratios. Unlike a flip-flop, such a circuit would not be limited to

two choices, that is, to be triggered or not to be triggered by a defective

pulse.

Interference from continuous transmissions or pulse transmissions using

longer pulses is, of course, more disturbing than the interference from the

short position-modulated pulses. It manifests itself in the same way as in

the coincidence PPM system, except that the noise averages 3 db higher because

of the additional noise introduced by the synchronizing pulses of the desired

signal; since the peak signal is approximately 30 db higher than in the
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coincidence system, the signal-to-noise ratio is always good so long as the

flip-flop does not fail (due to missing pulses). Noise-to-signal ratios

measured for CW interference are plotted against a in Fig. 141. They are

comparable with those obtained from moderate phonograph-needle scratch. One

important respect in which the noise differs from that obtained in the other

system is its dependence on Ar-f. Since only one pulse edge of each pulse is

involved in the detection process, the cyclic -Mc variation is completely

absent, and the benefit of cancellation obtained for Ar-f = 0 with the other
system is not obtained here. (The 20-kc variation is obscured by the syn-

chronizing pulses and becomes a 40-kc variation under certain conditions; but

these variations with Ar-f disappear completely when modulation is applied

and are therefore ignored.) Consequently, there is little variation in noise

when Ar-f is changed (a being kept constant), except for the usual gradual

decrease in the noise for large values of Ar-f; this is a function of the

video response of the receiver and amounts to no more than 3 db for Ar-f =

1.5 M in the equipment used in this study. The value of Ar-f does have an
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important effect in that it determines the largest interference ratio which

permits reception without failure (due to missing pulses) of the flip-flop.

Unlike pulsed interference, W interference permits satisfactory operation

for interference ratios considerably larger than 05, even for Ar-f = 0.

This must be attributed to the fact that the CW signal has no discontinuities

so that differentiating circuits can readily discriminate against it, as borne

out by the observation that the degree of differentiation (following the

slicer and preceding the flip-flop) has a considerable part in determining

the highest permissible interference ratio for Ar-f = 0. Typical values of

this highest interference ratio permitting satisfactory reception (signal-

to-noise ratio as plotted in Fig. 141) are a 0.75 for Ar-f- 0, a = 1 for

Ar-f = 0.5 M, and a = 1.2 for Ar-f 0.7 Mc. If the interference is fully

amplitude-modulated (the interference ratio being taken as the voltage at

the modulation peak relative to the pulse height), the highest permissible

values of a tend to be slightly lower. So long as these interference-ratio

values are not exceeded, the amplitude modulation does not affect the output

in any way whatever. If they are exceeded, the resulting noise is too severe

to permit acceptable reception.

The noise obtained as a result of interference from relatively long pulses

(duty factor 0.1 or larger) differs from that obtained with the position-

modulated pulses chiefly in that its power is larger in direct proportion to

the duty factor. A distinct beat note (prf) is audible in addition to the

random noise. The total noise power is slightly more than that which one

obtains by multiplying the duty factor by the noise power produced by OW in-

terference; the discrepancy is generally less than 2 db. As in the case of

short-pulse interference, satisfactory reception is limited to interference

ratios less than 0.5 for Ar-f 0 and to larger values if Ar-f is increased,

e.g., 0.8 to 0.9 for Ar-f = 1 Mc.

The conclusions for two-station PPM interference are somewhat more

definite than for two-path PPM interference; but they cannot be so definite

as in the case of PDM systems because of their dependence on the choice of

circuitry. Much better signal-to-noise ratios than in PDM were obtained,

principally because of the smaller interference duty factor and wider system

bandwidths used. The relatively good results obtained with the coincidence

system, in spite of the limited modulation time shift, show that adaption of

this method to larger time shifts would yield a system which is disturbed
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very little by interference from short pulses originating from another similar

system. For interference ratios less than 0.5, it is almost solely the small

duty factor of the interfering pulse train (not the small duty factor of the

desired pulses) which is responsible for the good signal-to-noise ratio.

Another feature instrumental in improving the performance is the fact that,

for Ar-f = 0 (common-channel interference), the time-shift contributions of

the two edges of each pulse can be made to cancel, whereas they add in the

case of PDM. (This applies only when the interfering pulses are long compared

to the desired pulses.) It must be pointed out, however, that neither of the

two systems tested incorporates all these possible advantages which can be

realized only in a more complex system capable of high modulation and, at the

same time, having the characteristics of the coincidence system.

The conclusion, for single-channel systems, may be summarized by stating

that, while the two-station interference characteristics of PPM systems are

fundamentally superior to those of PDM systems, it is much more difficult to

realize this superiority under all conditions. The consequence is that inferior

results are obtained under some conditions unless more nearly t"ideal" detection

systems are used.

More definite conclusions can be stated in the case of multi-channel

(time-division multiplex) systems having a large number of channels. Since

the modulation time shift in such systems is limited by the channel spacing,

the coincidence system is very well suited for this application. For the

parameters used in this study (prf = 20 kc, d = 1 psec) ten channels could

readily be incorporated in a system, and the characteristics of each would be

completely identical to the single-channel system. If the interference origi-

nates from a similar system, its duty factor would be approximately 0.2. The

resulting signal-to-noise ratio in any of the channels is tolerable for inter-

ference ratios as large as 0.8 for a system bandwidth of only 1 M (between

3-db points). A similar PDM system would give acceptable performance only

for interference ratio below 0.5. Multi-channel PPM systems are therefore

expected to be distinctly superior to multi-channel PDM systems so far as

interference characteristics are concerned.
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APPENDIX I

ALTETATE METHODS F DERIVING TH SELF- AND ITER-CORMLATION FUNCTIONS

The various methods of deriving the correlation functions differ only in

the thinking processes used to set up the product of the two functions to be

averaged over all time. In the case of the eivalent nonrandon-pulse method

used in the text, the first and most difficult step in the procedure is

carried out mechanically. This is not so in the case of the following analysis.

The auto-correlation for any value T is proportional to the overlap be-

tween the pulse train and its replica shifted by an amount T. Instea.d of

considering all pulses and dividing by an infinite period, one may consider

one pulse (with all its possible edge time shifts) and divide by one pulse-

repetition period. The method can be demonstrated by deriving an expression

for the curved portion at one side (right-hand side) of the self- or inter-

correlation (for one-edge time shift).

Figure 142 shows a typical pulse, belonging to f(t), which is to be

multiplied by another pulse belonging to f(t + T). The shaded portions

represent the possible positions of the trailing edges. Bach pulse has a

duration do + x, where -xO < x < xO. The overlap between the two pulses is

do + x - T, provided that x exceeds T - d; otherwise the overlap is zero.

Fig.142 Evaluation of
overlap between two typical
pulses; the shaded areas
represent the possible posit-
ions of the trailing edges.

-RLAP

Taking into account all possible values of x between -x, and x., one can

define an average value of x as follows:
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Xo

P ~(x) d

KO .(120)

T - do0

The average overlap (omitting all instances in which there is no overlap) is

d - T + x; this must be multiplied by the probability of obtaining overlap

in order to give the actual average overlap.

10

Average Overlap = [do - T + x] T P(x)dx . (121)

-d

Ex is given by (120).] To obtain the auto-correlation, the overlap must be

multiplied by E2/T.

In order to derive the expression for the curved portion at the center of

the inter-correlation, one may follow the same procedure outlined above.

Figure 142 is redrawn with the two shaded areas partially overlapping. Since

the two movable edges overlap, the procedure is more complicated than above;

the product must be split into several parts to include the contributions

from various components of overlap between the functions to be multiplied.

The following result is obtained:

E2

2x < T + nT < 2x = (Average Overlap)

J ?l-2x~o< + -T r o x+T

= d. + P(x) P(u)du - T P(u)du + uP(u) du]x +
~xo ~ x + T X-

+ xP(x):x - T P(xx) . (122)

-xo - T
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It can be shown that this leads to the same expression for Cp,(T), (50),

as the method used in the text (Section 3.2).

A
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APPENDIX II

ASTMMETRICAL P(x) AND WO-DG TIME-SHIFTS

The purpose of this appendix is to show briefly that the two-to-one

relationship between the areas of the center lobe and each side lobe is main-

tained even if P(x) is asymmetrical. (See page 99).

Consider the "inter-correlation" and more particularly the three depar-

tures from triangular shape at the center and each side (see Fig. 31), which

determine the center lobe and side lobes, respectively. In the simple case

of the double-spike distribution, these lobes are triangular in shape. The

center lobeq is given by (65); each side lobe is identical except that its

height and hence its area is half as great. Now consider the effect of un-

balancing the double-spike distribution: instead of letting the probability

represented by each spike be one-half, let the probability of x = xa be P

and let that of x = -x, be 1 - P. The center lobe is still a symmetrical

triangle given by (65); its area is directly proportional to the product

P(1 - P) which has a maximum for P = i.

The right-hand side lobe, either for Case 2 or for Case 3, can be ob-

tained from the graphical construction of Fig. 143(a). The right-hand ides

of the inter-correlation as well as the self-correlation for Case 2 and Case 3

are indicated by b, c, and e, respectively, for P = 2 (symmetrical distribu-

tion). The corresponding broken lines (prime letters) are for P = 1/4

(asymmetrical distribution). By computing the areas of the appropriate tri-

angles, one can show that the side-lobe area (Case 2 or Case 3) equals

P(1 - P)4x, which is exactly half the center-lobe area (determined from (65)).

In order to ascertain that the above conclusions are not restricted to

the simple case of the double-spike distribution, computations have been

carried out for the important case of the half-wave-rectified sinusoid. The

self- and inter-correlation functions are plotted in Fig. 143(b). The side-

lobe area (0.595 2) is again found to be half the center-lobe area; it is

also recognized as the mean-sauare value of the a-c component of a half-wave-

rectified sinusoid (peak-to-peak amplitude = 2xo).

The expressions from which the curves in Fig. 143(b) were plotted are

as follows:
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(a)

& (self-correlation, Case 3)

qpr(T) = 1 x

Fig. 143 Right-hand ex-
tremities of elf-and inter-
correlations for two-edge
time shifts with asymmetric-
al probability distributions;
(a) double-spike distribution
(b) distribution of half-wave

rectified sinusoid.

(123)
o1 x - 2xo

b (inter-correlation)

·r 2xo x.
2~~~~~~~~~xq(T) = L L~ [cos 2x ]tcos 2 dT -o

for T 0

cp(T) 1
Iff

T + 

2 

s - Xro osT - -
[608 a4 [Cos -1 l d

[¢°o-1 ( )

x1

for < 0
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j (self-correlation, Case 2)

Intersection with zero axis located at 2x - 4x,(0.318), the average

value of the half-wave-rectified sinusoid.

The actual side lobes for Cases 2 and 3 are obtained by taking the

differences of the ordinates of curves c and b, and curves e and b, respec-

tively. These have been plotted in Fig. 144.

---- CASE 2
CASE 3

AREA=.95 X2AREA =0.595 X0

I I
- RIGHT-HAND AUTO-CORRELATION
- SIDE LOBES FOR

ASYMMETRICAL P(x) f

i\
I'

I
/
,1

I I I I

A-

\

\\
\

\

i [ ,

/

/
/

/
,/
iII
/ 

-Xo 0
T -----4.

Fig.14 Right-hand auto-correl-
ation side lobes for two-edge time
shifts with probability distribut-
ion of half-wave-rectified sinusoid.
Note: for Case 2 the ordinates are
actually negative.

a.

xo 2x0
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APPENDIX III

POWER SPECTRUM DERIVATIO1NS

The power spectrum, ~(w), is obtained by taking the Laplace transform

of the auto-correlation, p&(T). For the sake of simplicity, the function to

be transformed is denoted by f(t), which is the same as CpA(T) except for the

multiplying constants. (See Table 1, page 63.) The Laplace transform of
1f(t) is denoted by g(s). The Fourier transform is given by 2g(JW).

A. Trianzlar Pulse

The pulse can be split into three linear functions (see Fig. 145(a)) and

the law of real translation can be applied, as follows:

£ (-2t) = -22

8

O: (t + 2 o ) =+ 1 2 e
8

S

e_2*'C(t - ) + 2 
8

+2Xos
g(s) = 2 [e

S

-2o s
-2+e ];

substitute s = jw and divide by 2:

_ g(w) = - Le j2 x o

21W ~ ~12

-,J2xw 2x2 2
-2+e ]= ( )

IT low
(126)
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B. Quadratic Pulse

f l (t) = (t + 2)2

f 2 (t) = (2x o -t) 2 _ (2x + t) 2 = 8o t

f3t) = - (t - 2)2 (see Fig. 145(b))

fl(t)] = 23
S

2xo s
e , [f2(t)]

2xo s
g(s) = 2 [e

s

-2x o s 8x,
- e - 2 '

Substitute s = jw and divide by 2n:

4 xOe
- --

2
nii

2jxr.w -2jxow
- e

2J 2xow

C. Cubic Pulse

fl(t)

f2( t)

f3( t)

= (t+ 2x)3

= - (24 t + 2t3)

= (t - 2x) 3 (see Fig. 145(c))

Proceeding as in (A) and (B), one obtains

+2x, s
g(s) = 4 e

B

-2xo s 24 2xO
-2+e ] 2

s
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-2xo s
e

21 g(w)!_f
] 4x

2
4 X0
-T 2tv

sin 2xow
2;, (127)



1 g(t.) = 1 [e2jxw

w)

2
12 O

T 2
W

2

-U)21

- 2+ e

-jx2ow

2,

-jXo(U
- e

jxow

2
-2jxow 12 X

TT 2

2
2

_] + 12 _
Tr 2

all

2
sin xow 2

( O ) ]
xow

2xo

(a)

-2xo 6

t-2xo

2t

4xo

(b)

-2x o 6 2xo

(C)

-2xo 2xo

64X

(d) 0 

-2xo 2o

fI (t)

f2(t) f3 (t)
Fig. 145 Construction of

functions with discontinu-
ous derivatives by the method
of translation and sectioning.

f If (t)

f3 (t)
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D. Sixth-Order Pulse

fl ( t ) = (t + 2xo)6

f2( 2x-t) (2o -t) - (2x + t)

f3(t) = -(2x - t) 6

5
1 g(w) = x E

I 2
~9

_ 5 _+
(x0w)2

(see Fig. 145(d))

15 sin 2xow

2(xw) ( - 2xw )

a
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APPENDIX IV

EFFCOTIVE VALUE OF At

A. One-Edge Time Shift

The effective value of At is given by

=A2 _ -2
At= t-t

At (0) = 1 + aos 0 -s8 S

2
a 2 2

[see Section 2.1, (8)]

2w
At 1
s8 an J [ + a cos -

S

2

1 - ( ) s in 0 ] d

2 4
= .50(a) + .o94(a)

B S

6
+ O. 040(')

l a cos -
- O

2
1 _ (a) ... 0 ]dI 0s 

2 4 6
= o.25(a) + 0.o047(a) + . 020()

6 a ~~~~~S

E2= 0.0625(a) + 0.024(a:* At =o 0;o+ 1 S)

==2 o. O + o. 31(42 ~ ~~ 2 4At = O.5O(-) + 3o1(a)S S

6 8
+~~~

6
+ 0.016(a)

t 0.71() + 0.06(
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B. Two-Ed.e ime Shift for = 1800

s8
-= 2[1 - 1- ( ) sin 2 ]S

[see Section 4.5 (109)]

The effective value of this expression is found in the same way as for A.

2
At() + t( + rr)

86

2n

= a X4[1 - 1i -

2()sn2 ]d _
a

- () sin20 ]do]

s0ff
- lo 2[ -i

4
= . 13( )

6 8
+ 0.038(s)

10
+ 0. 026( )

s

12 14 16
+ o.o18(a) + 0.013(8) + 0.011(a)

B o o S(~ +
+ ... (131)

a
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APPNDIX V

EPERI!.NTAL APPARATUS

A. ircuit Dianrans

Circuit diagrams of the principal equipment used in this research are

shown in Figs. 146 - 19. The PDM transmitter shown in Fig. 146 is that used

in the PDM two-path interference tests. A variable resistor and a potentio-

meter control the pulse-repetition frequency and the average pulse duration,

respectively. Two switches make it possible to select either pulsed-oscilla-

tor or pulsed-amplifier operation, and a third switch permits operation with

or without crystal control. Pulsed-oscillator operation is obtained by

effectively shunting a tube (AG7) across the tuned circuit of the oscillator

and cutting this tube off only during pulses. Between pulses the tube conducts,

and its low impedance prevents the oscillator from operating; in addition,

the suppressor grid of the oscillator is held below cut-off during these

periods. Pulsed-amplifier operation is accomplished simply by suppressor-

grid keying of the output tube. The tube across the tuned circuit of the

oscillator is made inoperative so as to allow continuous oscillation.

The PPMI transmitter shown in Fig. 147 differs from the PDM transmitter

(Fig. 146) only in the video-frequency sections. Asymmetrically duration-

modulated pulses are first formed, and their modulated edges are subsequently

used to form position-modulated one-microsecond pulses. A simple circuit

modification allows the unmodulated edges of the duration-modulated pulses to

be converted into one-microsecond synchronizing pulses (as required in the

flip-flop system). The average spacing between synchronizing and modulated

pulses is adjustable over the entire physically realizable range by means of

the potentiometer in the "duration modulator". The potentiometer control in

the sawtooth generator makes it possible to change the sawtooth slope by a

factor of ten or more.

Figure 148 shows the circuit of the receiver used for PDI and PPII with

flip-flop detection. (Pentode suppressor and screen-grid connections are

omitted for simplicity.) The first and most important tube of the slicer

eliminates the lower part of the positive pulse supplied to it; the setting of

the cathode potential determines the level below which the pulses are discarded.
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'S

Fig. 147 PPM transmitter.

Almost all of the remainder, except for a thin slice above this level, is lost

in the second tube of the slicer. Both tubes clip by virtue of control-grid

cut-off: the first one forms the "bottom" of the slice, inverts aud amplifies

the pulse so that the second one cuts the "top" of the slice and again ampli-

fies the slice into a large pulse. The "thickness" of the slice depends on

the gain of the first tube, the cut-off voltage of the second tube, and any
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subsequent limiting that may take place. The resistors R1, R2, and provide

the means for adjusting the r-f (system) bandwidth. The flip-flop, used to

convert each set of synchronizing and position-modulated pulses into a dura-

tion-modulated pulse is bypassed for PDM reception; otherwise the receiver is

the same for PPM flip-flop operation as for PDM operation.

The receiver used for PPM reception with double-coincidence detection is

shown in Fig. 149. This receiver incorporates "tself-synchronization" and a

special feature to minimize the effect of "missing pulses". The r-f stages,

detector, and slicer are the same as in the receiver of Fig. 148 (same equip-

ment). Instead of one video-pulse output, three such outputs (A., Al, and A2),

spaced one microsecond (pulse duration) apart are provided. The circuit

shown in the middle portion of Fig. 149 generates synchronizing pulses from

the modulated pulses (A.). These synchronizing or reference pulses are com-

pared to two of the modulated pulse trains (A1 and A2) in the double-coinci-

dence detector (bottom of Fig. 149); each comparison produces a pulse whose

amplitude is proportional to the time shift of either the leading or the

trailing edge of the position-modulated pulse - the leading edge in the first

and the trailing edge in the second of the two identical channels comprising

the double-coincidence detector. Each amplitude-modulated pulse is "held"

by trapping it on a storage capacitor until the arrival of the next pulse.

One microsecond before a pulse (A1 or A2) arrives at either coincidence tube

(6AS6), the same pulse (A. or A, respectively) removes the charge (stored one

pulse-repetition period earlier) and akes room for the next sample. Should

the next sample fail to arrive, then the discharge pulse will also fail to

arrive and the previously stored sample is retained until a pulse does reach

the detector. In addition, stretching each amplitude-modulated pulse over al-

most the entire repetition period greatly reduces the magnitude (relative to

the audio signal) of the prf component and makes the usual low-pass filtering

unnecessary. Furthermore, the push-pull audio connection produces at least

partial cancellation of the remaining prf components in the two coincidence

channels, with the result that filtering is unnecessary even if the pulse-

repetition frequency is in the audible range. Unlike the prf components in

the two coincidence channels, the signal components are in phase opposition,

and their sum is therefore obtained in the push-pull audio output. It should
A

be noted that the roles of the modulated pulses and the reference pulses can

be interchanged as was done for simplicity in the explanation of the system in
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Section 5.41 (Fig. 124).

CIRCUIT CIRCUIT

Fig.149 PPM receiver with double-coincidence detection.
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B Oscillocrams Showino Circuit 0peration

Complete and illustrated descriptions of the manner in which the various

circuits function cannot be included here for lack of space, but four rep-

resentative oscillograms are shown in Figs 150 - 153.

FIG. 150 FIG. 151

FIG.152 FIG. 153

Fig.150 Duration-modulation process: clipping a saw-tooth voltage.

Fig.151 Output of special type of flip-flop acting as PPM detector.

Fig.152 Coincidence-detector output; each sample is stored until
1 sec before arrival of the next.

Fig.153 Coincidence detector output; each sample is allowed to leak
off before arrival of the next.

Figure 150 illustrates the time-modulation process, that is, the clipping

of a sawtooth by a sinusoidal modulating signal. Pulse edges are formed at

the intersections of the sawtooth and the sinusoidal signal. The oscillogram

was taken at the cathode of the "duration modulator" (Fig. 147); at the plate

(point "A"), the actual duration-modulated pulses appear.

Figure 151 shows the output of the flip-flop (Fig. 148) modified so as

to provide two-edge detection. Ordinarily, the flip-flop is triggered by the

leading edges of the short pulses supplied to it. In Fig. 151, it is triggered
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only half-way by the leading edge, remains at the half-way or neutral position

for the duration of the triggering pulse, and is triggered the remaining dis-

tance by the trailing edge. Actual triggering is performed by the trailing

edge only, but the triggering pulses, having just half the amplitude of the

flip-flop output, are superimposed on this output in such a way as to pro-

duce the desired effect.

Figure 152 is the output of one of the two coincidence-detector channels

(Fig. 149), observed at the input of one-half of the 6J6 audio amplifier.

Each "stair step" represents a sample value extracted from one position-modu-

lated pulse. This value is discharged by the next pulse (approximately 50

psec later) which, after a small delay, stores its own sample value. The modu-

lating signal is a 2-kc sinusoid, but some noise modulation is also present

which causes the stair-step heights to be somewhat different on successive

sweeps.

Figure 153 shows the output at the same point as Fig. 152. The circuit

has been modified by connecting a leakage resistor (56K) across the 300 Elif

storage capacitor and disconnecting the discharge tube normally across this

capacitor. Consequently, as soon as the sample-value charge is placed on the

capacitor, it begins to leak off and has discharged almost completely when the

next sample arrives. Both computations and direct measurements show that the

ratio of signal to prf component is approximately 25 db greater in the case of

Fig. 153 than in the case of Fig. 152.

C. Performance of Self-Synchronization System

The self-synchronization system (Fig. 149) consists of a pass-band filter

used in a regenerative circuit, followed by a phase shifter and a pulse-forming

circuit. The filter extracts the fundamental from the position-modulated

pulses, as well as some of the low-frequency-modulation side bands (since its

pass band has finite width). The sinusoid thus obtained is therefore sub-

stantially free of modulation, and the same is true of the pulses which are sub-

seouently formed from the sinusoid. Only some low-frequency position modula-

tion appears on the pulses. This results merely in a modification of the

overall frequency characteristic of the PPM system; the overall frequency

characteristic is shown in Fig. 154 under three different conditions. If the

filter operates as a passive circuit, the result is some loss in low-frequency

response, whereas there is a gain in low-frequency response if the filter cir-
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cuit is made sufficiently regenerative to operate as an active filter. The

explanation lies in the fact that the locally generated pulse (to which the

modulated pulse is compared) has some of the same low-freQuency modulation as

the modulated pulse, but generally shifted in phase by the filter.

Fig.154 Frequency char-
acteristics of overall PPM
system (coincidence detect-
ion) with external and
self-synchronization.

MODULATING FEQUENCY IN kc

Figure 155 shows the freouency characteristics of the two low-pass

filters used in the experimental part of this study.

Fig.155 Frequency char-
acteristics of the 5-kc and
10-kc low-pass filters used
in the PDM and PPM (flip-
flop) receiver.
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