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Abstract 

 

 For future planetary exploration missions, improvements in autonomous rover 

mobility have the potential to increase scientific data return by providing safe access to 

geologically interesting sites that lie in rugged terrain, far from landing areas. This thesis 

presents an algorithmic framework designed to improve rover-based terrain sensing, a 

critical component of any autonomous mobility system operating in rough terrain. 

Specifically, this thesis addresses the problem of predicting the mechanical properties of 

distant terrain. A self-supervised learning framework is proposed that enables a robotic 

system to learn predictions of mechanical properties of distant terrain, based on 

measurements of mechanical properties of similar terrain that has been previously 

traversed.  

 The proposed framework relies on three distinct algorithms. A mechanical terrain 

characterization algorithm is proposed that computes upper and lower bounds on the net 

traction force available at a patch of terrain, via a constrained optimization framework.  

Both model-based and sensor-based constraints are employed. A terrain classification 

method is proposed that exploits features from proprioceptive sensor data, and employs 

either a supervised support vector machine (SVM) or unsupervised k-means classifier to 

assign class labels to terrain patches that the rover has traversed. A second terrain 

classification method is proposed that exploits features from exteroceptive sensor data 

(e.g. color and texture), and is automatically trained in a self-supervised manner, based 

on the outputs of the proprioceptive terrain classifier. The algorithm includes a method 

for distinguishing novel terrain from previously observed terrain. The outputs of these 

three algorithms are merged to yield a map of the surrounding terrain that is annotated 

with the expected achievable net traction force. Such a map would be useful for path 

planning purposes.  

 The algorithms proposed in this thesis have been experimentally validated in an 

outdoor, Mars-analog environment. The proprioceptive terrain classifier demonstrated 

92% accuracy in labeling three distinct terrain classes. The exteroceptive terrain classifier 

that relies on self-supervised training was shown to be approximately as accurate as a 

similar, human-supervised classifier, with both achieving 94% correct classification rates 

on identical data sets. The algorithm for detection of novel terrain demonstrated 89% 

accuracy in detecting novel terrain in this same environment. In laboratory tests, the 

mechanical terrain characterization algorithm predicted the lower bound of the net 

available traction force with an average margin of 21% of the wheel load. 
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Chapter 

1 
Chapter 1 Introduction 

 

1.1 Problem Statement and Motivation 

The ability for humans to explore the surface of other planets using mobile robots 

(“rovers”) is fundamentally dependent on the autonomous mobility capabilities of these 

robots. Because targets of scientific interest such as craters, ravines, and cliffs present 

dangers to landing, planetary rovers must land at safe locations and travel long distances 

to reach these targets (NASA/JPL, 2007). Close teleoperational supervision of robots is 

not desirable because limited communication with operators on Earth places significant 

restrictions on the distance a rover can travel during a mission lifetime—for each 

downlink/uplink cycle of roughly 24 hours (Mishkin & Laubach, 2006), the rover cannot 

safely travel beyond the distance it can image with its cameras, which has been as little as 

15 meters or less in dune fields observed by the Mars Exploration Rovers (NASA/JPL, 

2005). Thus, advances in robot autonomy will lead to payoffs in terms of scientific data 

return from locations that were previously unreachable, since it will allow rovers to travel 

longer distances with limited human supervision. 

One current limitation to autonomous mobility is the rover’s inability to 

autonomously identify terrain regions that can be safely traversed. Existing path planning 
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algorithms can generate a route to a target that avoids known obstacles only if they are 

given an accurate map of the ease of traversability of the surrounding terrain (Nilsson, 

1982; Stentz, 1994; Goldberg, Maimone, & Matthies, 2002). Unknown hazards have the 

potential to immobilize the rover, delaying or permanently preventing completion of the 

mission. Thus, autonomous navigation is generally restricted to environments which 

operators have previously determined to be relatively benign. The ability to 

autonomously detect possible hazards from a safe distance would enable safe 

autonomous travel in previously unexplored rough terrain. 

While geometric
1
 hazards, such as large rocks or cliffs, can be sensed remotely 

using range sensing techniques (Talukder et al., 2002), little research has addressed 

remote sensing of non-geometric hazards, such as loosely packed soil or sandy slopes. 

The importance of sensing non-geometric hazards was highlighted in April 2005, when 

the Mars Exploration Rover (MER) Opportunity became entrenched in a dune composed 

of loosely packed drift material (Cowen, 2005). Figure 1-1 shows the deep tracks left in 

the dune after Opportunity extricated itself. The terrain geometry was not hazardous, as 

the rover could have easily traversed the dune if it were made of a material with more 

favorable terrain properties, such as rock or packed soil. On the contrary, it was the 

mechanical properties of the terrain surface which made it a hazard—the high 

compactability of the loose drift material caused the wheels to sink deeply into the 

surface, and the combination the drift’s low internal friction and the motion resistance 

due to sinkage prevented the rover from producing sufficient thrust to travel up the slope. 

                                                 
1
 Here, geometric hazards are considered to be obstacles which prevent safe travel of a rover due primarily 

to their shape, and not to loss of traction between a wheel and the terrain. In contrast, non-geometric 

hazards are regions of terrain which are impassible due to their limited traction properties (or a combination 

of the limited traction and terrain geometry) which could lead to rover immobilization. 
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Opportunity’s progress was delayed for more than a month while engineers worked to 

extricate it. 

 

Figure 1-1. Deep tracks in Purgatory Dune left by MER Opportunity 

 (Image courtesy NASA/JPL-Caltech) 

Since non-geometric hazards are highly dependent on wheel-terrain interaction 

properties, methods for characterizing such hazards have focused on measuring aspects of 

that interaction. Examples include wheel sinkage measurement (Brooks, Iagnemma, & 

Dubowsky, 2006; Wilcox, 1994), parametric soil characterization (Iagnemma, Kang, 

Shibly, & Dubowsky, 2004), wheel slip detection (Reina, Ojeda, Milella, & Borenstein, 

2006), and explicit traversability estimation (Kang, 2003). These methods rely on 
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proprioceptive
2
 terrain sensing, which characterizes only the terrain immediately under 

the rover wheel, so it is of limited use for predictive hazard avoidance. 

Where researchers have addressed terrain sensing using exteroceptive sensors, 

such as cameras or LIDAR sensors, it has typically been assumed that the visual 

appearances of terrain classes of interest are known a priori (Angelova, Matthies, 

Helmick, & Perona, 2007a; Wellington, Courville, & Stentz, 2005). Although (Kim, Sun, 

Oh, Rehg, & Bobick, 2006) describes an approach for distinguishing traversable from 

non-traversable terrain where the terrain class appearances are learned, their work focuses 

on the detection of geometric hazards. No research has addressed the detection of non-

geometric hazards using exteroceptive sensors, where the visual appearance of the terrain 

classes is not known a priori. 

In summary, autonomous planetary rover mobility is significantly affected by the 

mechanical properties of terrain, which to date have been identified only for terrain 

physically contacted by the rover or for terrain classes known a priori. In environments 

where the visual appearances of terrain classes are not known a priori, no framework 

exists for autonomously predicting the mechanical properties of distant terrain, such that 

these properties can be used for autonomous navigation and hazard avoidance. Such an 

approach would greatly increase a rover’s ability to autonomously navigate to distant 

sites of scientific interest. 

                                                 
2
 Proprioceptive sensors measure the internal state of the rover, and therefore sense terrain through its 

interaction with the rover. In this work, wheel torque, wheel speed, and wheel sinkage are considered to be 

measured by proprioceptive sensors. 
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1.2 Purpose of this Thesis and Scenario Description 

The purpose of this thesis is to develop a framework and the underlying 

algorithmic components to enable a planetary rover to accurately predict mechanical 

properties of distant terrain, by learning from its experience in traversing similar terrain. 

In particular, this work is concerned with 1) the estimation of mechanical properties 

relevant to robotic mobility prediction, and with 2) associating these mechanical 

properties with visual features, such that the mechanical properties can be reliably 

identified from a distance of several meters. To minimize the time between terrain 

sensing and terrain property prediction, emphasis will be placed on using algorithms that 

are computationally inexpensive, such that they can be executed in seconds or minutes on 

COTS hardware. 

The scenario assumed for this work is one of planetary exploration, loosely 

modeled on the sensing, mobility, and predicted environment of the Mars Science 

Laboratory (MSL) mission, a large, six-wheeled rover scheduled for launch to Mars in 

2011 (J. Johnson, 2008; NASA/JPL, 2008b). (Figure 1-2 shows an artist’s concept of the 

MSL on Mars.) In this scenario, communication delays of 8 to 40 minutes (round-trip) 

and a communication bandwidth of approximately 7.5 MB per day necessitate the use of 

autonomous navigation to reach targets of interest at least 20 km away
3
. (For comparison, 

Opportunity and Spirit, which have been on Mars for nearly 5 years, are only now on the 

verge of having traveled 20 km combined (NASA/JPL, 2008a).) The challenge of terrain 

sensing is eased by the fact that the environment can be considered as static—any 

obstacles will remain stationary—and the robot is slow-moving, traveling at a speed of 5 

                                                 
3
 Twenty kilometers is the predicted length of the landing ellipse for MSL. 
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to 15 cm per second. However computation is limited,
4
 and a very high cost of failure 

requires that any approach tend to minimize risk of failure. 

 

Figure 1-2. Artist concept of Mars Science Laboratory, left, compared to Mars Exploration Rover, 

right (Image courtesy NASA/JPL-Caltech) 

In this thesis it is assumed that the rover will be able to measure wheel torque, 

sinkage of a rigid wheel into deformable terrain, and vibrations in the rover suspension 

arising from wheel-terrain interaction. Wheel torque can either be measured with a 

dedicated torque sensor, or estimated from motor current and wheel speed using a 

Kalman filter. Wheel sinkage can be measured visually based on images containing the 

rover wheels as in (Brooks et al., 2006), or the relative wheel sinkage between two 

positions on the rover path can be calculated as in (Wilcox, 1994). It should be noted that 

wheel torque and sinkage measurement can be implemented with no additional hardware 

beyond that planned for MSL. Rover suspension vibration can be sensed using an 

inexpensive contact microphone or accelerometer. 

                                                 
4
 MSL has a radiation-hardened version of IBM’s PowerPC 750 running at 200 MHz (Bajracharya, 

Maimone, & Helmick, 2008). For reference, the PowerPC G3 line of Macintosh desktop computers based 

around the PowerPC 750 were sold between November, 1997 and July, 2001.  
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It is also assumed that the rover will be equipped with a stereo pair of mast-

mounted cameras to sense the color and geometry of terrains from 1 meter to 20 meters 

away. This sensing is currently planned for inclusion on MSL as a pair of monochrome 

cameras with filter wheels. The last assumption is that the rover will be able to measure 

its speed relative to the terrain. This is currently implemented on the Mars Exploration 

Rovers via a visual odometry algorithm (Maimone, A. Johnson, Cheng, Willson, & 

Matthies, 2006). 

1.3 Background and Literature Review 

This thesis draws on techniques from the machine learning and machine vision 

fields, as well as research in terrain parameter estimation and mobility prediction. While 

most previous works in robotic terrain estimation have addressed only a subset of these 

research areas, some recent works have presented coherent approaches to mobility-

related terrain sensing. These works will be described in the first subsection. Other 

subsections address previous work related to the algorithmic components of this thesis, 

including terrain recognition, machine learning, and mobility prediction. 

1.3.1 Mobility-related Terrain Sensing 

Terrain sensing is a broad field addressing the interpretation of sensor data to 

yield information about a terrain region. Here, mobility-related terrain sensing refers to 

approaches for associating sensor data with vehicle mobility. Some approaches operate 

on data from only proprioceptive sensors (e.g. vibration or wheel sinkage data), and thus 

address the rover’s mobility on the terrain immediately beneath the rover’s wheels. Other 
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approaches operate on data from exteroceptive sensors (e.g. vision or LIDAR data), and 

are used to predict the mobility properties of terrain several rover lengths away.  

1.3.1.1 Binary Hazard Detection 

Historically, mobility-related terrain sensing has focused on binary hazard 

detection (Bellutta, Manduchi, Matthies, Owens, & Rankin, 2000; Henriksen & Krotkov, 

1997). In this paradigm, regions of terrain are deemed either traversable (i.e. non-

hazards) or non-traversable (i.e. hazards), with no quantitative measure of traverse 

difficulty or uncertainty. Most research has assumed that these hazards are physical 

obstacles geometrically distinct from the surrounding terrain, and thus addresses the 

extraction of obstacles from a 2½-D or 3-D representation of the scene. A fully 3-D 

obstacle detection scheme is presented in (Talukder, Manduchi, Rankin, & Matthies, 

2002). It relies on detecting abrupt changes in the terrain height. An extension to this 

work, presented in (Talukder et al., 2002), includes the visual appearance of terrain in the 

obstacle detection process, where the visual appearance is used to determine which of the 

geometrically detected obstacles are likely to be traversable despite their geometry (e.g. 

tall grass). It assigns a traversability metric in the form of a maximum safe driving speed, 

however this is based solely on analysis of 3-D geometry. Thus, the work does not 

address the detection of non-geometric obstacles, which is the primary focus of this 

thesis.  

Other work in binary hazard detection relies on color and LIDAR data to estimate 

the geometry of a load-bearing surface in the presence of thick vegetation (Wellington et 

al., 2005). A hidden semi-Markov model is used as a framework to filter the sensor data 

and distinguish vegetation from solid ground. While this approach includes a component 
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of terrain sensing relevant to mobility, the surface type (i.e. vegetation or solid ground) is 

not used for traversability estimation. It therefore does not attempt to detect non-

geometric hazards. 

More recently, researchers have attempted to learn to distinguish traversable 

terrain from non-traversable terrain using a combination of color, visual texture, and 

geometry (Kim et al., 2006). Their approach is conceptually similar to the one presented 

in this thesis, in that the rover learns from its experiences. The rover initially plans a path 

assuming that all terrain is traversable, then learns to recognize the visual appearance of 

obstacles when it contacts terrain that impedes its motion. Their approach differs from the 

one presented in this thesis in that they assume a strict dichotomy between traversable 

and nontraversable terrain, as opposed to the gradations of traversability considered in 

this thesis. In addition, their approach is designed for an environment in which none of 

the terrain would be treacherous to attempt to traverse, because its only method for 

identifying non-traversable terrain is physical contact with an object impeding its motion. 

In contrast, the approach presented in this thesis could be used to predict robot mobility 

on impassable slopes composed of a given terrain, even if a rover’s only experiences with 

the terrain were on marginally traversable flat ground. Also, as with (Talukder et al., 

2002), the work focuses on identifying terrain which is likely to be traversable despite its 

geometry, such as tall grass. 

1.3.1.2 Proprioceptive Terrain Sensing 

Other work has addressed the issue of distinguishing non-geometric hazards using 

proprioceptive sensors. (Wilcox, 1994) describes a method for wheel sinkage detection 

using suspension configuration sensors. Another method measures wheel sinkage using 
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images from a camera with a view of the wheel, by detecting the intensity difference 

between the wheel and the terrain (Brooks et al., 2006). These approaches are useful for 

identifying when a rover is in danger of becoming entrenched, but they cannot be used to 

predict the traversability of distant terrain, since they can only be used to sense terrain 

immediately under the rover’s wheels. 

Since excessive wheel slip is the failure mode for non-geometric hazards, terrain 

sensing approaches that estimate wheel slip are also useful in the context of rover 

mobility. For this reason, several researchers have focused on using proprioceptive 

sensors to detect wheel slip (Ojeda & Borenstein, 2002; Ojeda, Cruz, Reina, & 

Borenstein, 2006; Reina et al., 2006; Ward & Iagnemma, 2007). Again, however, the 

reliance on proprioceptive sensor data prevents easy generalization to the prediction of 

properties of distant terrain.  

1.3.1.3 Exteroceptive Traversability Sensing 

To provide a useful prediction of the properties of terrain that lies more than one 

rover-length away, some researchers have used a learning framework similar to the one 

presented in this thesis. Researchers at JPL have attempted to model wheel slip as a 

function of visual and geometric terrain properties, where the wheel slip model is adapted 

on-line (Angelova et al., 2007a, 2007b; Angelova, Matthies, Helmick, Sibley, & Perona, 

2006). They achieve good slip prediction results using an empirically generated slip 

model. However their approach assumes that the visual appearance of terrain classes is 

known a priori. Thus it would be inappropriate for use in an environment where the rover 

might encounter unexpected terrain. 
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Another group has implemented self-supervised learning for terrain sensing on a 

larger scale (Sofman et al., 2006). They attempt to generalize a LIDAR-based 

traversability metric, accurate at a range of tens of meters, to the kilometer-scale field of 

view of an aerial camera. They succeed in improving the look-ahead range for path 

planning, but their traversal cost values have no physical interpretation, so there is no 

obvious method to quantify the accuracy of their traversability map. Also, they assume 

that color from an overhead image directly maps to traversability without regard to 

topography. This is unlikely to hold in the planetary exploration setting, where changes in 

terrain slope may not be accompanied by changes in terrain color. 

1.3.2 Terrain Classification 

Terrain classification has received significant attention for the purposes of both 

robotic autonomy and remote science. Terrain classification based on satellite imagery 

has been commonly used by scientists for land use monitoring, e.g. (Berni, Zarco-Tejada, 

Suarez, & Fereres, 2009; Olsen, Garner, & Van Dyke, 2002). Unfortunately, many of 

these approaches involve classification using a dozen or more wavelength bands, 

requiring sensors which are not typically available on planetary rovers. These approaches 

also ignore the potentially useful texture and geometry data that is available to ground-

based robots, which operate in close proximity to the terrain. 

In the field of robotics, terrain classification at a distance of several meters has 

been achieved using color, texture, geometry (via stereo or LIDAR), and even 

polarization data (Denes, Gottlieb, Kaminsky, & Huber, 1998). A variety of texture 

discrimination metrics have been described, including Gabor filters (Weldon, Higgins, & 

Dunn, 1996), wavelet-based fractal dimensions (Espinal, Huntsberger, Jawerth, & 
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Kubota, 1998), and receptive fields inspired by the human visual system (Balas, 2006; 

Malik & Perona, 1990). Various approaches for combining color, texture, and geometry 

have been proposed including naïve Bayes fusion (Shi & Manduchi, 2003), neural 

networks (Rasmussen, 2002), meta-classifier fusion (Halatci, Brooks, & Iagnemma, 

2008), and semi-supervised fusion (Manduchi, 1999). These approaches are typically 

used in a supervised fashion, where the number and appearance of classes is known a 

priori. While (Rasmussen, 2002) addresses the classification problem in the context of 

road detection, most approaches make no attempt to associate traversability with the 

classification result. It should be noted that the work in this thesis relies on the visual 

classifier developed by Halatci, so Section 1.1 closely follows the approach presented in 

(Halatci, 2006; Halatci et al., 2008). 

A limited amount of work has been performed in the area of classification based 

on proprioceptive terrain sensors such as accelerometers. Such an approach was proposed 

in (Iagnemma & Dubowsky, 2002), and a functional algorithm was presented in (Brooks 

& Iagnemma, 2005). A similar algorithm, intended for high-speed ground vehicles, was 

presented in (DuPont, Roberts, Selekwa, C. Moore, & Collins, 2005; Sadhukhan, 2004). 

These approaches are useful in classifying the terrain in contact with the rover’s wheels, 

and the approach of Brooks & Iagnemma is described in Section 2.1 for this purpose. 

However due to its reliance on proprioceptive sensor data, this algorithm cannot be 

applied directly to classify terrain not in contact with the rover.  

1.3.3 Machine Learning 

The terrain classification and clustering approaches presented in this thesis take 

advantage of work in the field of machine learning. While both classification and 
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clustering have been studied extensively, only a small subset of the previously developed 

approaches are appropriate for use in a learning framework operating in a time-

constrained scenario, and these will be described below. 

For classification, support vector machines (SVM) have received significant 

attention due to the speed at which they can be trained as well as their success in 

classifying data from a wide variety of datasets (Schölkopf, 2000; Vapnik, 2000). Recent 

work has provided strict bounds on the classification error rate, given the error rate over 

the training data (Rakhlin, Mukherjee, & Poggio, 2006). An implementation of an SVM 

has also been developed for online applications, where training data is presented as a 

sequence rather than as a single batch (Kivinen, Smola, & Williamson, 2004). It is not 

appropriate for this thesis, however, because it relies on the conditional independence of 

sequential training examples—a poor assumption in the scenario considered here. SVM 

classifiers can be implemented with linear or polynomial kernels, which can reduce both 

training and classification time in situations when there is a large number of training 

examples. Details related to reducing the SVM classification time are presented in 

Appendix D, and SVMs are used extensively in this thesis. 

Clustering, as opposed to classification, is a machine learning technique 

appropriate for situations when the classes are not known a priori, or when labeled 

training data is not available. It is the task of dividing unlabeled points into “clusters” of 

similar points. Traditional methods of clustering include the well-known k-means method 

as well as linkage-based methods derived from graph theory (Bishop, 1995; Brandes, 

Gaertler, & Wagner, 2003). These methods all rely heavily on the features used to 
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represent the data. They have not previously been applied to traversability-related terrain 

segmentation. 

Another area of machine learning related to this research is that of novelty 

detection. Novelty detection is the task of classifying a point as “same” or “different” as 

compared to the training data, where there are no explicit examples of what is “different.” 

This has occasionally been referred to as “one-class classification,” and a one-class 

variant of the SVM classifier has been proposed (Schölkopf, Platt, Shawe-Taylor, Smola, 

& Williamson, 2001). Another approach is to model the distribution of the training data, 

for example using a mixture of Gaussians (MoG) model, and to label a new point as 

“different” if the modeled density at that point is lower than some threshold. A theoretical 

analysis of single-class classification strategies was presented in (El-Yaniv & Nisenson, 

2007), and this analysis was the inspiration for the approach presented in 1.1. These 

novelty detection approaches have not previously been applied to terrain identification. 

1.3.4 Mobility Prediction 

An important aspect of mobility prediction is modeling the interaction between a 

wheel and the terrain. (Bekker, 1969) is the authoritative work in this field, describing 

measurable mechanical properties of deformable terrain and defining the relationship 

between these properties and the net forces and torques acting between the wheel and 

terrain. Similar work by Wong and Reece differs only in the role of wheel width in the 

force and torque equations (Wong, 2001; Wong & Reece, 1967). Both of these 

approaches require the use of dedicated equipment to measure the terrain properties. 

To enable parametric terrain modeling in scenarios without dedicated equipment, 

Iagnemma proposed an approach for estimating terrain parameters using measurements 
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of the net forces and torques on a wheel (Iagnemma, Shibly, & Dubowsky, 2002; 

Iagnemma et al., 2004). It was demonstrated that a Kalman filter could be used to 

estimate the coefficients of a reduced-order Bekker model during a rover traverse. 

However the estimated terrain properties were not used to predict a measure of 

traversability of terrain. Kang extended that work and proposed a nondimensionalized 

drawbar pull—the drag force that would be required to hold the vehicle stationary—as a 

traversability metric (Kang, 2003; Iagnemma, Kang, Brooks, & Dubowsky, 2003). Kang 

proposed an approximate equation for drawbar pull as a function of wheel sinkage, wheel 

torque and vertical load.  

Other researchers have attempted to quantify traversability in other ways. In 

(Seraji, 1999) a traversability index based on fuzzy logic was calculated as a function of 

terrain slope, rock size, and rock concentration. Another approach, the T-transformation, 

calculated a traversability index based on terrain slope and geometric roughness of the 

terrain (Ye & Borenstein, 2004). Neither of these approaches considered the mechanical 

properties of the terrain, making them incompatible with the notion of non-geometric 

hazards presented in this thesis. 

1.4 Approach Overview 

In order to appreciate the relationship between the algorithmic components 

developed in this thesis, it is useful to understand how they are integrated in an online 

terrain sensing framework. This section presents the concept of learning from experience, 

defines the terrain representation and terminology that will be used throughout the thesis, 

and then describes how each of the algorithmic components fit into the overall self-

supervised learning framework. 
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1.4.1 Learning From Experience 

As described in 1.2, the purpose of this thesis is to allow a rover to learn the 

relationship between mechanical terrain properties and terrain appearance, to enable it to 

predict the mechanical properties of distant terrain. Figure 1-3 illustrates the three stages 

of this learning process.  

 

Figure 1-3. Schematic of proposed self-supervised classification framework 

Initially, the rover has no knowledge of the relationship between the terrain 

appearance and its mechanical properties. From a given position, it is assumed that a 
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rover can sense the appearance of terrain using cameras (Figure 1-3(a)), but cannot yet 

predict its ability to traverse this terrain.  

Figure 1-3(b) shows the rover after it has driven onto a patch of terrain that it 

previously sensed with its cameras. Using proprioceptive sensors (e.g. vibration sensors 

or torque sensors), the rover can sense the interaction between the rover wheels and 

terrain, and thus characterize the mechanical terrain properties which affect the mobility 

of the rover. 

Once the rover has sensed the appearance of a patch of terrain and characterized 

its effect on rover mobility, it associates the features related to appearance with mobility 

properties. From this association, the rover can sense the appearance of terrain it has not 

yet traversed and predict that effect that terrain may have on the rover (Figure 1-3(c)). 

Thus, the rover has learned to predict the mobility properties of distant terrain from its 

experiences traversing terrain with a similar appearance. 

1.4.2 Terrain Representation and Terminology 

To avoid ambiguity in the description of the self-supervised classification 

framework and its algorithmic components, it is necessary to establish terminology to 

describe the terrain and the rover’s sensors. This section introduces terminology for 

terrain patches, mechanical terrain properties, terrain classes, proprioceptive and 

exteroceptive sensors, and the terrain map. 

Terrain Patch 

In this thesis, terrain around a rover is divided into a regular grid of 20 cm by 20 

cm terrain patches, whose locations are fixed in inertial space. Each patch is identified by 
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an x-coordinate indicating distance in front of the rover’s starting position, and a y-

coordinate indicating distance to the right of the rover’s starting position, as illustrated in 

Figure 1-4. Thus, a terrain patch P2.2,0.4 is the region of terrain located between 2.2 meters 

and 2.4 meters forward of the rover starting position, and between 0.4 and 0.6 meters 

right of the rover starting position. This grid is fixed with respect to the ground, so that as 

the rover travels its wheels come into contact with multiple terrain patches. 

 

Figure 1-4. Sample overhead view showing regular grid of terrain patches in front of rover 

Because terrain is generally not flat, each of the terrain patches may have non-

planar topography. That topography is represented by a set of points in 3-D space located 

on the surface of the terrain. Since this grid-based representation has difficulty 

representing overhangs, it is assumed that no two points on the terrain surface are directly 

above one another (i.e. a 2½-D representation is assumed). 
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Mechanical Terrain Properties 

For this thesis, mechanical terrain properties are measurable quantities that can be 

used to describe the forces and torques between a rover wheel and the terrain. For 

example, one mechanical terrain property is the maximum thrust force that a rover wheel 

could exert when in contact with a terrain patch. Here, the primary interest is in 

mechanical terrain properties that are useful in determining whether a terrain patch may 

be traversed safely. 

Terrain Class 

It is assumed that each terrain patch Px,y can be uniquely associated with a terrain 

class (e.g. “sand,” “rock,” and “beach grass”). A terrain class is a categorization for a 

terrain patch based on its mechanical properties: a terrain patch Px1,y1 associated with 

terrain class “sand” will react differently to forces applied by the rover’s wheel than 

would a terrain patch Px2,y2 associated with terrain class “rock.” In this thesis, terrain 

classes are categorizations of the mechanical properties of the terrain without regard to its 

topography. Thus, patches Px1,y1 and Px2,y2 may be associated with the same terrain class 

even if Px1,y1 is nearly flat and Px2,y2 has a steep slope. 

It should be noted that terrain classes may be defined by human supervisors based 

on prior knowledge of the rover’s environment, or they may be discovered by the rover 

through unsupervised learning (i.e. clustering). Human-defined terrain classes typically 

have some clear semantic interpretation: “sand,” “rock,” and “beach grass” are all easily 

understood. Terrain chasses discovered through clustering are not associated with 

semantic labels, so interpretation of the distinctions between classes may be more 

difficult. 
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Proprioceptive and Exteroceptive Sensors 

Various sensors are used by the rover to sense its environment. These sensors are 

either exteroceptive or proprioceptive. Exteroceptive sensors, such as cameras, are able to 

directly sense features related to terrain. Proprioceptive sensors, such as wheel torque 

sensors or vibration sensors, are able to sense features related to the terrain only through 

the physical interaction between the rover wheels and terrain. 

Because proprioceptive sensors function by measuring characteristics of wheel-

terrain interaction, they are restricted to sensing terrain in direct contact with a rover 

wheel. In this thesis, sensor data is denoted S, with indices specifying the sensor and the 

time at which the sensor reading was recorded, for example Storque,t=0. Given the position 

of the rover, it is trivial to identify the terrain patch Px,y with which proprioceptive sensor 

data Storque,t=0 is associated. 

Exteroceptive sensors can sense features related to terrain not in contact with the 

rover, and thus sensor data associated with multiple terrain patches may be sensed 

simultaneously. For example, an image Scamera,t taken at time t can contain pixels 

associated with multiple terrain patches. To identify the terrain patch associated with a 

given pixel Scamera,t,i,j located at row i and column j, the (stereo-derived) range data 

associated with that pixel (Srange,t,i,j) is needed, as well as the rover’s position and 

orientation at time t. 

Terrain Map 

A terrain map is a rover’s internal representation of the surrounding terrain around 

it. For this thesis, that representation includes the topography of each terrain patch that 

has been previously sensed, as well as the associated terrain class and mechanical terrain 
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properties. A sample terrain map is shown in Figure 1-5. Mechanical terrain properties 

calculated from proprioceptive sensor data are associated with terrain patches for which 

this proprioceptive data is available. Prediction of mechanical terrain properties for 

terrain patches which have not been sensed using proprioceptive sensors is the focus of 

this thesis. 

 

Figure 1-5. Sample terrain map showing data associated with terrain patches in front of rover 

(overhead view) 

1.4.3 Self-Supervised Classification Framework and Algorithmic 
Components 

In this framework, the learning process is divided among three distinct 

algorithms. The information flow between these algorithms is shown in Figure 1-6. The 

first algorithm is a proprioceptive terrain classifier, which takes proprioceptive sensor 
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data (e.g. wheel torque, sinkage, or vibration) as an input and returns a terrain class label 

as its output. The second algorithm is an exteroceptive terrain classifier, which is trained 

using labels from the proprioceptive terrain classifier.
5
 Once trained, it takes 

exteroceptive sensor data (here, color stereo images of the terrain) as its input and returns 

terrain class labels for each of the terrain patches in its field of view. The third algorithm 

is a terrain characterization algorithm, which uses proprioceptive sensor data to estimate 

the mechanical terrain properties associated with each terrain class. The output of these 

three components is a terrain map that contains information about the mechanical terrain 

properties and topography of the terrain patches around the rover. 

 

Figure 1-6. Information flow for self-supervised classification framework 

Each of these algorithmic components is described in a separate chapter of this 

thesis. Proprioceptive terrain classification is presented in Chapter 2, exteroceptive terrain 

classification is presented in Chapter 3, and mechanical terrain characterization is 

presented in Chapter 4. The following subsections describe each of these algorithms in 

more detail. 

                                                 
5
 This approach is referred to as self-supervised classification because one classifier (in this case, the 

exteroceptive terrain classifier) is trained using data labeled by another classifier (in this case, the 

proprioceptive terrain classifier). In contrast, a supervised classifier is trained using data labeled by a 

human supervisor. 
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1.4.3.1 Proprioceptive Terrain Classification 

The purpose of proprioceptive terrain classification is to classify terrain patches 

based on proprioceptive sensor data, such that terrain patches with similar mechanical 

properties are associated with the same terrain class, and terrain patches with 

significantly different mechanical properties are associated with different terrain classes. 

There are a number of potential approaches for accomplishing this task. This thesis 

presents three distinct approaches.  

The first approach, presented in 2.1, relies on training of a supervised classifier to 

identify terrain classes based on proprioceptive sensor data, where these terrain classes 

are defined by a human supervisor during training. This requires a priori knowledge of 

the terrain classes in the rover’s environment, and hand labeling of training data.  

The second approach, investigated in 2.1, relies on unsupervised clustering to 

group terrain patches into classes based on proprioceptive sensor data. This approach 

eliminates the need for hand labeling of data. However, the terrain clusters are not 

associated with meaningful labels, so interpretations of the distinctions between terrain 

classes may be difficult. Also, this approach may require more clustered terrain classes to 

adequately represent the terrain compared to the first approach. 

 In the third approach, briefly addressed in 1.1, terrain patches are classified based 

on the mechanical terrain properties identified by the mechanical terrain characterization 

algorithm. Here, terrain classes are defined a priori to correspond to a range of 

mechanical terrain properties. This requires that the mechanical terrain characterization 

algorithm be executed frequently to accumulate training data for the exteroceptive terrain 

classifier, which may be more computationally expensive than either of the first two 
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approaches due to the nonlinear optimizations involved in computing the mechanical 

terrain properties. 

1.4.3.2 Exteroceptive Terrain Classifier 

The purpose of exteroceptive terrain classification is to classify terrain patches 

based on features derived from exteroceptive sensor data—in this case, color, visual 

texture, and topography. The approach proposed in this thesis is to use a two-stage 

classification process, as shown in Figure 1-7. First, a novel terrain detection stage 

identifies whether the terrain patch belongs to a known class. If the patch belongs to one 

of the known classes, the known terrain classifier is invoked. Otherwise, the patch is 

labeled as “unrecognized” in the terrain class map. The exteroceptive terrain 

classification algorithm is presented in Chapter 3.  

 

Figure 1-7. Information flow for classification using exteroceptive terrain classifier 

1.4.3.3 Mechanical Terrain Characterization 

The purpose of mechanical terrain characterization is to use proprioceptive sensor 

data to identify mechanical properties associated with a terrain patch. The approach 

presented in this thesis establishes bounds on the net traction force available at a given 

terrain patch. This approach is described in Chapter 4. 
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1.5 Contribution of this Thesis 

The contribution of this thesis is the development and analysis of a self-

supervised learning framework and component algorithms. This framework enables a 

planetary rover to accurately predict mechanical properties of terrain at a distance by 

learning from experiences gained during traverses of similar terrain. This work includes 

the development and validation of  

• a self-supervised learning framework, 

• supervised and unsupervised proprioceptive terrain classification algorithms, 

• an exteroceptive novel terrain detection algorithm capable of identifying 

terrain patches not belonging to known terrain classes, and  

• a mechanical terrain characterization algorithm capable of identifying bounds 

on the net traction force available at a given terrain patch. 

1.6 Outline of this Thesis 

This thesis is organized into six chapters, with five appendices. This chapter is the 

introduction, describing the motivation and related work and providing an overview of 

the approach.  

Chapters 2, 3, and 4 present the development and validation of the algorithmic 

components used within the self-supervised learning framework. Chapter 2 addresses 

proprioceptive terrain classification, and presents two distinct approaches for classifying 

terrain patches based on proprioceptive sensor data. Chapter 3 addresses exteroceptive 

terrain classification, and presents methods for terrain classification and for identification 

of novel terrain (i.e. terrain patches that are not associated with any known class). 
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Chapter 4 addresses mechanical terrain characterization, and presents a method for 

identifying bounds on the net traction force available at a terrain patch.  

Chapter 5 presents the development and experimental validation of the self-

supervised framework itself, including a detailed description of how the algorithms from 

Chapters 2, 3, and 4 are employed in a terrain learning system suitable for novel 

environments. Chapter 6 presents conclusions and describes potential avenues for future 

research. 

The five appendices present additional information related to the work presented 

in the thesis body. The first three appendices describe the experiments used to validate 

the algorithms described in this thesis. Appendix A contains details related to the four-

wheeled rover, TORTOISE, that was used as a test platform for each of the algorithms. 

Appendix B contains details and images from the Wingaersheek Beach experimental test 

site. Appendix C contains details related to the wheel-terrain interaction testbed, the 

laboratory platform used to validate the mechanical terrain characterization approach. 

Appendix D presents general information on support vector machines and describes 

numerical optimization techniques that were used to speed up the classification process. 

Appendix E presents Matlab code to extract classification features from raw sensor data. 
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Chapter 

2 
Chapter 2 Proprioceptive Terrain Classification 

 

Proprioceptive terrain classification is the process of assigning class labels to 

terrain patches based on features derived from proprioceptive sensor data. Since the 

terrain classes are associated with mechanical properties, mechanically similar terrain 

patches should be assigned the same class label, while mechanically distinct terrain 

patches should be assigned different class labels.  

This chapter presents two approaches for proprioceptive terrain classification. The 

first approach, presented in 2.1, uses a supervised classifier that has been trained by a 

human operator to classify vibration data. The second approach, presented in 2.1, uses an 

unsupervised clustering algorithm to group terrain patches into classes based on wheel 

torque.  

2.1 Vibration-Based Terrain Classification 

2.1.1 Introduction 

This section (2.1) presents a method for classifying terrain patches based on 

vibrations induced in the rover structure by wheel-terrain interaction. Because 

mechanically distinct terrains induce distinct vibrations, features derived from these 

vibrations can be used to distinguish between them. This presents a means for 
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classification that is independent of the terrain patch’s visual appearance and is thus 

inherently robust to changes in lighting conditions. The approach presented in this section 

relies on measurement of vibrations using an accelerometer mounted on the rover 

structure, representation of those vibrations in terms of the log-scaled power spectral 

density, and classification of the resulting features using a support vector machine (SVM) 

classifier. It uses a supervised classification framework, which relies on labeled vibration 

training data collected for each of the terrain classes during an offline learning phase. 

Vibration-based terrain classification was suggested in 2002 by Iagnemma and 

Dubowsky as a novel sensing mode for classifying terrain for hazard detection 

(Iagnemma & Dubowsky, 2002). Other researchers demonstrated vibration-based terrain 

classification for a high-speed vehicle, but the accuracy deteriorated at low speeds (i.e. 

under 50 cm/s) where vibration amplitudes were reduced (DuPont et al., 2005; 

Sadhukhan, 2004; Weiss, Frohlich, & Zell, 2006). Thus, it would not be applicable to 

planetary rovers, whose speeds are expected to be under 15 cm/s.  

The approach presented here for vibration-based terrain classification was initially 

developed in (Brooks, 2004) and (Brooks & Iagnemma, 2005), using a Fisher linear 

discriminant for classification. This section proposes an improved approach that employs 

an SVM classifier. It also describes experimental results from the Wingaersheek Beach 

environment. This is the same environment on which the complete self-supervised 

classification framework is experimentally validated in Chapter 5.  

2.1.2 Approach 

The vibration-based terrain classification algorithm presented here takes a signal-

recognition approach to classifying terrain patches based on vibration signals. As such, it 
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learns to classify vibrations during an offline training phase in which it is presented with 

hand-labeled vibration signals. This is in contrast to an approach which might use a solid 

mechanics model to analytically predict how the rover structure will vibrate in response 

to interaction with terrain. 

2.1.2.1 Description of Vibration Features 

This algorithm represents each 1-second segment of vibration data as a vector of 

frequency-domain features. These features are calculated as follows. Given a time series 

of vibration signals v=[Svib,t=t0,…,Svib,t=t0+1-1/Fs] sampled at a frequency Fs, the first step is 

to compute the power spectral density (PSD), using Welch’s method (Welch, 1967). 

Welch’s method averages calculations of the power spectral density over eight 

subwindows to yield a 1025-element vector p, where the ith element, pi, is the estimate of 

the power spectral density at a frequency of 2048/)1( −iFs . Thus, p is a time-shift-

invariant representation of the vibration. To reduce the dominating effect of high-

magnitude elements of p, these magnitudes are log-scaled to yield a vector p̂ : 

 ( ) 1025,...,1logˆ == iii pp .
6
 (2-1)

The vibration feature vector f, is the set of elements from p̂  which correspond to a 

frequency range of interest between Fmin and Fmax: 

      ( )1/2048/2048,...,1ˆ
)/2048( +−== + sminsminFFii FFFFi

smin
pf . (2-2)

Sample Matlab code for this feature extraction process is presented in Table E-1 in 

Appendix E. 

                                                 
6
 This logarithmic scaling also has the advantage of representing time-domain convolution with vector 

addition. Thus, the log-scaled PSD of the convolution of two signals is equal to the sum of their log-scaled 

PSDs. 
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For this work, vibrations are sampled at 44.1 kHz, which results in a spacing of 

21.5 Hz between frequencies in the PSD estimate. The frequency range of interest is from 

0 to 12 kHz. This yields a 558 element vibration feature vector (log-scaled PSD 

magnitudes) associated with each vibration segment.  

2.1.2.2 Classifier Description 

An SVM classifier was implemented to classify the vibration features using the 

open-source library LIBSVM (Chang & C. Lin, 2005, 2008). A Gaussian radial basis 

function (RBF) was used as the SVM kernel function, with parameters optimized by 

cross-validation over a set of vibration data not used for testing. (The optimized 

parameters were C=100 and γ=5*10
-5

.) The LIBSVM option to return predicted class 

likelihood was enabled. 

During the offline training phase, the SVM was trained to recognize distinct 

terrain classes using vibration features calculated from traverses of the rover over terrain 

patches corresponding to each of the known terrain classes. In the online terrain 

classification process, vibration features associated with unlabeled terrain patches were 

calculated and these features were fed into the SVM for classification. 

2.1.3 Experiment Details 

The performance of the vibration-based terrain classifier was studied using data 

from experiments with the Field and Space Robotics Laboratory (FSRL) Technology 

Testbed Rover, TORTOISE, in an outdoor beach environment. 
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2.1.3.1 Robot Configuration 

TORTOISE, shown in Figure 2-1, is an 80-cm-long, 50-cm-wide, 90-cm tall robot 

with four 20-cm-diameter rigid aluminum wheels with grousers. The wheels on either 

side are connected to the main body and mast via a differential. A complete description of 

TORTOISE is presented in Appendix A. 

 

Figure 2-1. Photo of TORTOISE, showing location of local sensor suite 

TORTOISE measures vibration signals via a contact microphone mounted to the 

front right suspension strut of the rover, near the joint where the wheel axle passes 

through the strut, as seen in Figure 2-2. The vibration signals are recorded using the audio 

input of a laptop computer. During experiments, 16-bit samples of the vibration signal 

were collected at a frequency of 44.1kHz. 
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Figure 2-2. TORTOISE’s local sensor suite, with vibration sensor and belly-mounted camera 

For these experiments, TORTOISE’s belly-mounted camera, shown in Figure 2-2, 

was used to collect images of the terrain being traversed. These images were used to 

allow a human to identify the terrain classes to serve as ground truth for classifier 

performance evaluation. 

2.1.3.2 Experiment Environment 

Experiments were performed at Wingaersheek Beach in Gloucester, MA. This is a 

sandy beach with a mixture of small and large rock outcrops (relative to the size of the 

rover) as well as loose rocks. This site was chosen due to its similarity in appearance to 

the MER landing sites on Mars. In this environment, sand and rock were considered to be 

two distinct terrain classes. To demonstrate the ability of the classifier to work in a multi-

class setting, matted piles of beach grass were used as a third terrain class. These three 

terrain classes are identified in Figure 2-3. Further details about the experiment 

environment are presented in Appendix B. 
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Figure 2-3. TORTOISE on Wingaersheek Beach, showing terrain classes 

Three experimental data sets were collected, each during a rover traverse of at 

least 15 meters along a straight-line path containing a combination of the three terrains. 

No two paths were identical. During experiments, TORTOISE traveled at a speed of 3 

cm/s. In all, 2283 seconds (38 minutes) of vibration data were collected.  

2.1.3.3 Data Processing 

After the experiments, all vibration data was manually labeled to identify ground 

truth terrain classes, based on the appearance of the terrain in images collected by the 

belly-mounted camera. Among all of the data sets, 1593 one-second vibration segments 

were labeled as sand (1289 segments), beach grass (209 segments), or rock (95 

segments). 

For the results presented here, cross-validation was used. Thus, each data set was 

used for testing the classifier that was generated using the remaining data sets as training 
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data. Due to the reduced amount of training data, cross-validation is expected to under-

predict the performance of a classifier generated using all three labeled data sets (Kohavi, 

1995). 

2.1.4 Results 

The performance of the vibration-based terrain classifier was assessed by 

comparison to the hand-identified class labels (i.e., ground truth) using a receiver 

operating characteristic (ROC) curve, shown in Figure 2-4. Here the horizontal axis 

indicates the percentage of false positives (%FP) (e.g., instances when sand or beach 

grass were falsely identified as rock) and the vertical axis indicates the percentage of true 

positives (%TP) (e.g., instances when rock was correctly identified as rock). Each terrain 

class forms a curve on the plot, as the threshold for leaving terrain patches “unclassified” 

is adjusted. The end point of the curves represents the situation in which none of the 

terrain patches are left unclassified. Any combination of points on these curves can be 

achieved through proper selection of the threshold. 
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Figure 2-4. ROC curve for vibration-based terrain classifier 

In this plot, it can be seen that the classifier exhibits very good discrimination 

between each of the terrain classes. More than 50% of the terrain patches associated with 

rock are correctly identified before more than 1% of the non-rock terrain patches are 

incorrectly identified as rock. Similarly, 50% of the terrain patches associated with beach 

grass are correctly identified before 3% of the rock and sand terrain patches are falsely 

identified as rock. Classification of the sand class is also accurate, when a higher 

classification threshold is used, with 50% of terrain patches associated with sand 

correctly identified before 5% of the non-sand terrain patches are incorrectly identified as 

sand. Thus, combining all three terrains, the vibration-based terrain classifier can classify 

50% of the terrain patches while maintaining 92% confidence in the class label.
7
  

For comparison, note that random assignment of classes to terrains would yield 

equal values for true positive and false positive, resulting in a straight line from (0,0) 

                                                 
7
 92.3% confidence is based on the observed mixture of terrains: 6% rock, 13% beach grass, and 81% sand. 
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towards (100,100). By definition, random assignment into three classes yields only a 33% 

confidence in the class label. 

It should be noted that the low true positive detection rates for rock and beach 

grass with all terrain patches labeled—54% and 57%, respectively—reflects the fact that 

there were fewer examples of these terrain classes in the training data than there were for 

sand. This implicitly gives these two terrain classes a lower prior probability in the final 

classification. Thus, while they are correctly identified less often than sand, they have a 

correspondingly lower false positive rate. If a detection rate higher than that shown in 

Figure 2-4 is desired, more training examples can be provided, or a higher weight can be 

placed on the existing examples when training the SVM. 

2.1.5 Conclusions 

In this section an approach has been presented for classifying terrain based on 

proprioceptive sensor data. It uses a supervised classification framework to distinguish 

terrain classes based on frequency-domain vibration features, where a human provides 

class labels during a training process.  

The performance of this classification approach is measured by the relationship 

between the true positive rate and false positive rate for each terrain class. The balance 

between the fraction of terrain patches labeled and the confidence of the labeling can be 

adjusted by a threshold on the classification. 

Experiments were performed with a four-wheeled rover, TORTOISE, in an 

outdoor beach environment, with three distinct terrain classes. Classification results from 

more than 1500 vibration segments demonstrate the ability of this approach to effectively 
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distinguish these three terrain classes. These results should be seen as an extension to the 

results presented in (Brooks, 2004) and (Brooks & Iagnemma, 2005). 

The proposed algorithm is robust to variations in terrain appearance and lighting 

as it classifies terrain based solely on wheel-terrain interaction. As such, it presents a 

method for autonomous assignment of terrain patches to terrain classes, even when 

terrain appearance or lighting are not known a priori. It is in this role that the vibration-

based terrain classification algorithm fits into the self-supervised classification 

framework presented in Chapter 5. 

2.2 Proprioceptive Terrain Clustering 

2.2.1 Introduction 

In situations when terrain classes are not known in advance, supervised 

classification such as the vibration-based approach presented in 2.1 is infeasible. In such 

situations, unsupervised clustering can be used to separate terrain patches into distinct 

classes. This section presents a method for autonomously clustering terrain patches based 

on proprioceptive sensor data, thus establishing a set of classes that can be assigned to 

other terrain patches the rover encounters. Note that while these clusters (i.e. 

autonomously generated classes) do not necessarily correspond to the classes a human 

observer would identify, it will be shown that this approach can be used to successfully 

divide a set of terrain patches into mechanically distinct classes. 

There are many possible approaches to clustering terrain patches into distinct 

classes, and several were investigated over the course of this research. Autonomous 

clustering based on the terrain patches’ visual appearance (using the visual features 

described in 3.1.2) was studied briefly, but it was observed that the human-identified 
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terrain classes were not easily separable in that feature space. Another approach, based on 

clustering vibrations represented by the features described in 2.1.2, also proved to be 

difficult to separate by autonomous clustering, because the terrain classes have significant 

overlap in the feature space. This can be seen in Figure 2-5, which shows the distribution 

of vibrations sensed from each terrain class, as plotted against the first four principal 

components of the vibration features. 
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Figure 2-5. Vibration signals for three terrain classes plotted against first four principal components 

Another observable quantity is the wheel torque. Various features of the wheel 

torque signal observed during normal driving were investigated for terrain clustering, 

from statistics of the raw signal (shown in Figure 2-6) to frequency-spectrum 

representations, but it was generally observed that large overlap between the human-

identified terrain classes suggested that robust clustering would be unlikely to be 

achievable. 
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Figure 2-6. Scatter plot of three terrain classes illustrating overlap of statistics of time-windowed 

torque signal 

The terrain clustering approach presented in this section attempts to extract 

features from the wheel torque signal during periods when the rover is intentionally 

inducing wheel slip. This wheel slip occurs by means of shear failures within the terrain 

or at the wheel-terrain interface, and the characteristics of this failure differ depending on 

the wheel-terrain interaction conditions. For instance, slip on rock occurs by means of 

failure at the wheel-terrain interface, while gross slip on sand occurs by means of shear 

failure below the surface of the sand. This difference in slip mechanism between the 

terrain classes results in significantly distinct torque signals. As a result, torque features 

sensed while a wheel is slipping are more widely separated in a candidate feature space 

than torque features sensed during normal driving, as illustrated by Figure 2-7. This 

separation means that the terrain classes may be more easily grouped into distinct 

clusters. 
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Figure 2-7. Scatter plot of torque signals from three terrain classes with induced wheel slip 

Clustering relies on computational algorithms that take as inputs points in a (often 

high-dimensional) feature space and return a segmentation of those points into distinct 

clusters. Examples of clustering algorithms include basic k-means clustering as well as 

more advanced graph-theoretic methods and spectral clustering (Brandes et al., 2003). 

While there are situations in which one clustering algorithm will perform significantly 

better than others, most clustering algorithms will perform well if the points to be 

clustered are well separated in a given feature space. As this is the case for the torque 

features used here, a basic k-means clustering algorithm was employed. 

2.2.2 Approach 

The proprioceptive terrain clustering algorithm groups terrain patches along the 

rover’s path into mechanically distinct clusters. To accomplish this, terrain patches are 

represented by features extracted from the torque applied to a rover wheel, and those 

features are fed into a k-means clustering algorithm. To increase the separation between 
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mechanically distinct terrain classes, the wheel torques are sensed while the rover 

intentionally induces slip between the wheel and the terrain. 

2.2.2.1 Rover Wheel Slip Behaviors 

To emphasize the difference between mechanically distinct terrains, wheel torque 

is sensed with the wheel slipping relative to the soil. By ensuring that the wheel is 

slipping, the torque is usually dictated by the wheel-terrain interaction conditions rather 

than the feedback control algorithm maintaining the wheel’s speed. Two separate rover 

behaviors for inducing wheel slip were studied. The performance of segmentation using 

these behaviors is presented in 2.2.4. 

The first slip-inducing behavior is termed “Incremental Slip” and is presented as 

Behavior 1 below. Here, after a period of normal driving, the rover drives the right front 

wheel faster than the other wheels. Since the rover body remains moving at 

(approximately) the longitudinal speed of the remaining wheels, wheel slip is induced 

under the faster-rotating wheel. Initially, the slip ratio
8
 commanded is 33%. At 

t=3 seconds, the rover body speed is decreased, increasing the slip ratio to 50%. At 

t=6 seconds, the rover body is slowed down further, increasing the slip ratio to 67%. At 

t=9 seconds, the rover resumes normal driving. The process repeats while the rover 

traverses the terrain, allowing torque data to be collected at three distinct slip ratios.  

                                                 
8
 The slip ratio is defined as 1 – (vx / ω r), where vx is the forward velocity of the wheel, ω is the angular 

velocity, and r is the wheel radius. 
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Behavior 1. Incremental Slip 

1. Normal Driving – 11 seconds 

Drive all wheels at 3 cm/s 

2. 33% Slip – 3 seconds 

Drive right-front wheel at 4.5 cm/s and other wheels at 3 cm/s 

3. 50% Slip – 3 seconds 

Drive right-front wheel at 4.5 cm/s and other wheels at 2.25 cm/s 

4. 67% Slip – 3 seconds 

Drive right-front wheel at 4.5 cm/s and other wheels at 1.5 cm/s 

5. Repeat 

Note that the “Incremental Slip” results presented in 2.2.4 reflect clustering of 

wheel torque signals recorded during the second half of the 67% slip state. The 67% slip 

state was selected because the separation between terrain features was observed to be 

largest in the high-slip state. Additionally it was observed that by the second half of each 

slip state, the torque signals tended to have reached steady state or a limit cycle. 

The second slip-inducing behavior is termed “Stop and Spin” and is presented as 

Behavior 2 below. Here, after a period of normal driving, the rover brakes all four wheels 

to bring the rover to a full stop. It then spins only the right front wheel, thus inducing 

100% slip. The “Stop and Spin” results presented in 2.2.4 reflect clustering of wheel 

torque signals recorded during the second half of the spin state. 

 

Behavior 2. Stop and Spin 

1. Normal Driving – 10 seconds 

Drive all wheels at 3 cm/s 

2. Stop – 1 second 

Brake all wheels 

3. Spin – 4 seconds 

Drive right-front wheel at 3 cm/s and brake other wheels 

4. Repeat 

2.2.2.2 Torque Features 

While the rover’s right-front wheel is slipping, the torque is recorded at a 

sampling frequency Fs of 26.7 Hz, yielding a time series ],...,[
10 ,, ttorquettorque SS=τ . From 



2.2 Proprioceptive Terrain Clustering 55 

the torque signals recorded in each high-slip state—either 67% slip or spin, depending on 

the behavior—a single set of five features is extracted. For the state starting at time t0 and 

ending at time t1, these features are  

1) mean torque, τµ  (N m):  
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2) standard deviation of torque, τσ  (N m): 

 

( )
( )

2/1

1

1
2

2

01

01

011
2

1





















−





















−














 −
= ∑

+−

+














 −
=

ttF

tt
Fi

i

s

s

s

tt
F

ττ τ µσ , 
(2-4)

3) maximum torque, τ  (N m): 
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4) minimum torque, τ  (N m): 
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5) difference between maximum and minimum torque, τr  (N m): 

 ττ −=τr . (2-7)

This set of five features is combined into a vector, ],,,,[ τττf rττσµ= , and passed to the 

clustering algorithm. 

2.2.2.3 Clustering Algorithm 

The torque features associated with all of the high-slip states from a single rover 

traverse of 15 to 20 meters are passed to the clustering algorithm.
9
 Because the terrain 

                                                 
9
 In practice, the clustering algorithm could be run every few meters of a traverse, with the clustering 

results analyzed to see whether the new clusters are significantly better than the previous clusters.  
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classes of interest were observed to be well separated within the feature space, as was 

illustrated in Figure 2-7, a simple k-means clustering algorithm was used. For this work, 

the k-means algorithm is implemented using the kmeans function in Matlab’s Statistics 

Toolbox. Pseudocode for the k-means algorithm is presented in Table 2-1. For the 

proprioceptive terrain clustering, between two and five clusters are used, and five 

replicates (i.e., repetitions of the algorithm using randomly selected initial values) are 

used to reduce the likelihood of the algorithm becoming trapped in a local minimum. 

TABLE 2-1. PSEUDOCODE FOR K-MEANS CLUSTERING ALGORITHM 

Given: N feature vectors 

Initialize k cluster centers as random selections from feature vectors 

for i = 1 to 100 

   Calculate (L2) distance between each feature vector and each cluster center 

   Assign each feature vector to the cluster with the closest cluster center 

   if no feature vectors have switched clusters, then break 

   Calculate new cluster centers as the mean of the feature vectors in each cluster 

   if any clusters have zero assigned feature vectors, exit with an error 

next i 

return cluster assignments for each feature vector 

2.2.3 Experiment Details 

As with the vibration-based terrain classifier presented in 2.1, the proprioceptive 

terrain clustering algorithm was tested using data from TORTOISE experiments on 

Wingaersheek Beach. 

2.2.3.1 Robot Configuration 

TORTOISE, shown in Figure 2-1, is a four-wheeled robot designed to test terrain-

sensing algorithms for planetary rovers. Each of the four rigid aluminum wheels, fitted 

with short grousers, is driven by its own motor, allowing the speed of the wheels to be 
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controlled independently. A complete description of TORTOISE is presented in 

Appendix A. 

For the proprioceptive terrain clustering algorithm, TORTOISE senses wheel 

torque using a torque sensor mounted to the motor driving the right front wheel, as seen 

in Figure 2-8. The torque signals are processed using an A/D converter on the rover’s 

control computer and recorded at 26.7 Hz during experiments.  

 

Figure 2-8. TORTOISE’s local sensor suite, with torque sensor and belly-mounted camera 

As with the vibration-based terrain classification, TORTOISE’s belly-mounted 

camera, shown in Figure 2-8, was used to collect images of the terrain being traversed. 

After the experiments, these images were used to identify terrain classes to serve as 

ground truth. 

2.2.3.2 Experiment Environment 

Wingaersheek Beach was used as the experiment environment for the 

proprioceptive terrain segmentation experiments. The three distinct terrain classes were 
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sand, rock, and beach grass. These terrain classes are identified in Figure 2-3. Full details 

about the experiment environment are presented in Appendix B. 

Sixteen experimental data sets were collected, each set corresponding to a rover 

traverse along a straight-line path containing a combination of the three terrains. No two 

paths were identical. For seven of the data sets, the rover executed Behavior 1 

(“Incremental Slip”) described in 2.2.2, totaling 101 slip cycles. For the other nine data 

sets, the rover executed Behavior 2 (“Stop and Spin”), totaling 237 spin cycles.  

2.2.3.3 Data Processing 

After the data was collected, all of the terrain traversed by the rover was manually 

labeled, using images from the belly-mounted camera to identify the ground truth terrain 

class. Of the “incremental slip” data sets, 55 of the slip cycles had the right front wheel in 

contact with sand, 13 with beach grass, and 5 with rock. Of the “stop and spin” data sets, 

164 of the cycles had the right front wheel in contact with sand, 12 with beach grass, and 

11 with rock. Cycles in which the terrain in contact with the right front wheel is unclear 

were not labeled. 

For each of the data sets, torque feature vectors associated with all cycles (labeled 

and unlabeled) were passed to the clustering algorithm. Thus, the clustering algorithm 

clustered the torque features from each data set without using any information from the 

other data sets, and the performance of the clustering was evaluated separately for each 

data set. The robustness of the algorithm was assessed by comparing the clustering 

performance across all data sets. 
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2.2.4 Results 

The results of experimental torque data clustering are presented in Table 2-2. 

Here, algorithm performance is measured by its ability to separate the three human-

labeled terrain classes (i.e. sand, rock, and beach grass). Specifically, the “maximum 

classification accuracy” metric is the largest fraction of terrain that can be classified 

correctly, subject to the limitation that all terrain within the same cluster must be assigned 

the same class label. This metric has the benefit of being insensitive to arbitrary ordering 

of the clusters, and it does not penalize a clustering algorithm that is able to detect finer 

distinctions than the hand-labeled classes. It should be noted, however, that even the 

worst clustering approach will achieve a maximum classification accuracy equal to the 

fraction of terrain belonging to the most common class. (This means that if 85% of the 

terrain is sand, even randomly assigned clusters will have a maximum classification 

accuracy of at least 85%.) This baseline accuracy is noted in the top row of the table. The 

percentages listed are the mean of the performances observed across all data sets. The 

numbers in brackets indicate 95% confidence intervals for the mean. 
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TABLE 2-2. PERFORMANCE OF PROPRIOCEPTIVE TERRAIN CLUSTERING ALGORITHM 

 Maximum Classification Accuracy 

Number of Clusters 
Incremental Slip Behavior 

(Baseline: 80.0%) 

Stop and Spin Behavior 

(Baseline: 87.4%) 

2 
83.8% 

[78.9% - 88.8%] 

94.1% 

[89.2% - 99.1%] 

3 
86.5% 

[81.5% - 91.4%] 

97.7% 

[94.8% - 100%] 

4 
87.4% 

[80.8% - 94.1%] 

99.3% 

[98.3% - 100%] 

5 
88.2% 

[81.8% - 94.5%] 

98.9% 

[97.7% - 100%] 

The second column of the table shows the performance of the proprioceptive 

terrain clustering algorithm when used to cluster data from the “incremental slip” data 

sets. For these data sets, 80% of the terrain traversed is sand, so this represents the 

minimum performance of a clustering algorithm. Here, algorithm performance improves 

as the number of clusters is increased, but the mean performance does not reach even 

90% when the terrain is divided into five clusters – two more clusters than absolutely 

necessary for 100% correct classification. 

The third column of the table shows the performance of the terrain clustering 

algorithm when clustering data from the “stop and spin” data sets. For these data sets, 

87.4% of the terrain traversed is sand, so this represents the baseline performance. Here it 

can be seen that the terrain clustering algorithm performs significantly better than the 

baseline even when only two clusters are used. As the number of clusters is increased, 

performance also increases, and when four clusters are used, more than 99% of the terrain 

is correctly classified based on the cluster labels. The small decrease in performance as 

the number of clusters is increased to five does not appear to be statistically significant. 
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2.2.5 Conclusions 

Section 1.1 has presented a second algorithm for separating terrain into classes 

based on proprioceptive sensor data. It uses unsupervised clustering to divide terrain into 

clusters, where the terrain is represented by features of the wheel torque signal. By 

operating on the wheel torque signal recorded while the wheel is slipping relative to the 

terrain, this clustering approach groups terrains based on properties affecting the 

mechanical interaction between the wheel and the terrain. This approach is inherently 

insensitive to the terrain appearance. 

This approach was validated using data collected during experiments with a four-

wheeled rover in a natural beach environment with three distinct terrain classes. By 

comparing the output terrain clusters to human-identified terrain classes, the performance 

of the clustering algorithm can be assessed. Clustering results were compared for two 

behaviors by which the rover can induce wheel slip. The results demonstrate that 

clustering of torque data collected during the “stop and spin” behavior is more robust 

than that of the “incremental slip” behavior. This difference is likely due to the rolling 

contact in the "incremental slip" behavior disengaging the wheel from the terrain at load-

bearing points before the failure threshold was reached, thereby masking the difference in 

material properties within the terrains. This decrease in maximum torque is particularly 

evident when the wheel is spinning on rock. The robustness of the clustering of the “stop 

and spin” data sets was observed to be very good. 

As with the vibration-based terrain classification algorithm, the proprioceptive 

terrain clustering algorithm serves as a method for assigning labels to terrain based on 

features derived from wheel terrain interaction. Whereas vibration-based terrain 
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classification is appropriate for situations when representative terrain vibrations may be 

hand-labeled during a training phase, proprioceptive terrain clustering is appropriate for 

completely autonomous situations, when human supervision is unavailable. By robustly 

separating the terrain patches into mechanically distinct clusters using proprioceptive 

sensor data, this algorithm fits into the self-supervised classification framework (Chapter 

5) as a proprioceptive terrain classifier. 
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Chapter 

3 
Chapter 3 Exteroceptive Terrain Classification 

 

Exteroceptive terrain classification is the process of assigning class labels to 

terrain patches based on vision data collected from a rover’s cameras. This chapter 

presents a two-stage approach to this classification, as shown in Figure 3-1. The visual 

terrain classifier is presented in 3.0. When presented with visual data associated with a 

terrain patch, this classifier identifies which of the known classes (i.e. classes for which 

the classifier has training data) appears most similar to the newly observed patch. In a 

situation in which some of the observed classes have no training data—either because the 

rover is encountering an unexpected terrain class, or because terrain patches to use for 

training have not yet been identified for some of the terrain classes—a separate stage is 

necessary to identify when the newly observed patch lies outside the set of known 

classes. This “novelty terrain detection” stage is presented in 3.1.  

 

Figure 3-1. Information flow for exteroceptive terrain classifier 
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3.1 Visual Terrain Classification 

3.1.1 Introduction 

Classification of terrain using visual features is an area that has received 

significant previous attention, from scientists studying land use (Olsen et al., 2002) to 

engineers designing navigation systems for autonomous robots (Rasmussen, 2002). In 

this thesis, the visual terrain classification approach of Halatci is followed closely 

(Halatci, 2006; Halatci et al., 2008). This approach represents the appearance of a terrain 

patch via color, visual texture, and geometric feature vectors. For each of these three 

sensing modes, a SVM classifier is used to estimate likelihoods of the terrain patch 

belonging to each of the known terrain classes. The three sensing modes are then 

combined using naïve Bayes fusion to estimate the combined class likelihoods. The 

terrain patch is classified as belonging to the terrain class with the highest likelihood. 

Much of the development of the algorithm presented in this section (1.1) was 

performed by Halacti for his Master’s thesis, though both the visual texture and 

geometric features have small modifications from that presented in (Halatci et al., 2008). 

The algorithm description is included here as it is a critical component of the self-

supervised classification system, and the visual features used in this classifier form the 

foundation of the novel terrain detection approach presented in 1.1. This section will also 

present detailed results for visual classification of terrains in the Wingaersheek Beach 

environment, for direct comparison to the self-supervised classification results in Chapter 

5. 
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3.1.2 Approach 

Here, exteroceptive terrain classification operates by extracting visual features 

from terrain observed using a stereo pair of color cameras. Separate SVM classifiers for 

each sensing mode—color, visual texture, and range—are used to predict the likelihood 

that a particular terrain patch belongs to any given terrain class. The resulting class 

likelihoods are combined using naïve Bayes fusion to yield a combined class assignment. 

3.1.2.1 Visual Features 

The appearance of a terrain patch is represented as a set of feature vectors derived 

from the color, visual texture, and geometry of the terrain. These features are all extracted 

from color images collected using a stereo pair. 

3.1.2.1.1 Color 

Color data is directly available from the cameras as red, green, and blue (RGB) 

intensities. However, the illumination intensity affects all three values in a raw RGB 

representation, which can lead to poor classification results. To reduce the effect of the 

overall illumination level, a modified hue, saturation, and value (HSV) representation of 

color is used as in (Sofman et al., 2006). In this approach, hue (an angle) is represented as 

two values—sin(hue) and cos(hue)—to eliminate the artificial discontinuity at 2π. Thus, 

color is represented as a 4-element vector: [sin(hue), cos(hue), saturation, value]. 

3.1.2.1.2 Visual Texture 

Visual texture is a measure of the local spatial variation in the intensity of an 

image. Researchers have proposed many metrics for visual texture, such as Gabor filters 

and local energy methods (Bouman & Liu, 1991; Reed & du Buf, 1993). The work in this 
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thesis uses a wavelet-based approach, similar to the one demonstrated in (Espinal et al., 

1998). Here, a grayscale image is decomposed with the Haar wavelet (Strang, 1993). 

Three scales of wavelets are used, each scale having horizontal, diagonal, and vertical 

wavelets, corresponding to estimating the derivative of the intensity in the horizontal, 

diagonal, and vertical directions at each length scale. The scales used are 2, 4, and 8 

pixels. Because this process is sensitive to local changes in intensity, the magnitudes of 

the wavelet coefficients are then averaged over windows of 11, 9, and 7 wavelets. Thus, 

visual texture is represented by a 9-element vector, composed of the window-averaged 

horizontal, diagonal, and vertical wavelet coefficients at each scale. 

The visual texture features are calculated using the following procedure. First, the 

640 pixel × 480 pixel color image I (with all ]1,0[,, ∈colorjiI ) is converted to a grayscale 

image G using Matlab’s rgb2gray function, such that 

 
,114.0587.02989.0 ,,,,,,, bluejigreenjiredjiji IIIG ++=  (3-1)

for i=1,…,480 and j=1,…,640.
10

 Texture based on the grayscale image is calculated 

using the Haar wavelet. Here, the low-pass wavelet l is [0.25, 0.5, 0.25], and the high-

pass wavelet h is [-0.5, 0, 0.5]. Using these wavelets four images are calculated, each of 

which has half the resolution of G: A1, which has the low-pass wavelet applied in both 

the horizontal and vertical directions, as 
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 The constants in Equation (3-1) were specified within the rgb2gray function. 
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V1, which has the low-pass wavelet applied in the horizontal direction, and the high-pass 

wavelet applied in the vertical direction, as  
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H1, which has the high-pass wavelet applied in the horizontal direction and the low-pass 

wavelet applied in the vertical direction, as 
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and D1, which has the high-pass wavelet applied in both directions, as 
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Here H1, D1, and V1 contain directional derivative information at the 2-pixel scale, and 

A1 contains a low-pass-filtered version of the grayscale image at ½ of the original 

dimensions. 

 To calculate the directional derivatives at the 4-pixel scale, the wavelets are 

applied to A1. A2 has the low-pass wavelet applied in both horizontal and vertical 

directions: 
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V2 has the low-pass wavelet applied in the horizontal direction and the high-pass wavelet 

applied in the vertical direction: 
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H2 has the high-pass wavelet applied in the horizontal direction and the low-pass wavelet 

applied in the vertical direction: 
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D2 has the high-pass wavelet applied in both directions: 
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Thus, H2, D2, and V2 contain the directional derivative information at the 4-pixel scale 

and A2 contains a low-pass-filtered version of the grayscale image at ¼ of the original 

dimensions. 

 To compute the directional derivative information at the 8-pixel scale, the wavelet 

filtering process is applied to A2. V3, H3, and D3 are calculated as 
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Given the directional derivatives on the 2-, 4-, and 8-pixel scales, the texture 

features are the means of the directional derivatives calculated over 11-, 9-, and 7-

wavelet windows. Thus, the first texture feature, fh3, for the pixel located at (i,j), which is 

a measure of the horizontal derivative at the 8-pixel scale, is calculated as the mean of a 

7 × 7 block of pixels in H3: 
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where }480,...,1{∈i  and }640,...,1{∈j . For this calculation, H3 is assumed to be zero 

outside the region in which it was defined. The other texture features associated with this 

pixel—fd3, fv3, fh2, fd2, fv2, fh1, fd1, and fv1—are calculated using the same approach of 

averaging the derivatives over windows: 
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Thus, the texture feature vector for the pixel located at (i,j) is the 9-element vector [fh3, 

fd3, fv3, fh2, fd2, fv2, fh1, fd1, fv1]. 

3.1.2.1.3 Geometry 

Terrain geometry is available through stereo image processing. The raw output of 

a stereo processing algorithm is a cloud of range data points. Here the points are divided 

into a grid of 20-cm by 20-cm terrain patches projected onto a horizontal plane. The 

geometric features are statistics calculated from the elevation of points associated with 

each terrain patch. When calculating the features, the n points associated with a given 

terrain patch are represented as a n × 3 matrix denoting each point’s position in the 

[forward, right, down] coordinate frame with its origin at the rover’s starting position: 

P = {p1,…,pn}
T
. 

The first element of the geometric feature vector is the average slope of the 

terrain, defined as the angle φ between the least-squares-fit plane and the horizontal 

plane, in radians. To calculate φ, the first step is to calculate the 3 × 3 covariance matrix, 

C: 
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The minimum eigenvalue s of C and its corresponding eigenvector u can be calculated 

using singular value decomposition, such that 

 .,1whereminarg},{
13,

sss
s

uuCuuu
u

==⋅=
×ℜ∈ℜ∈

 (3-23)

Since u is a unit vector normal to the least-squares-fit plane, φ can be calculated as  
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 ( ),ˆarccosφ zu ⋅=  (3-24)

where ẑ  is a unit vector pointing down.  

The second element is the mean-squared deviation from that plane along its 

normal, 2σ⊥ . Here, this value is the same as the minimum singular value of the covariance 

matrix, so 

 
s=⊥

2σ . (3-25)

The third element is the variance in the height of the range data points, 2σ z , 

calculated as  
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The fourth element is the height difference between the highest and lowest points 

within the patch, rz: 

 ( ) ( )zpzp ˆminˆmax ⋅−⋅= kkzr . (3-27)

Thus, the geometry of each patch is represented as a 4-element vector: [φ, 2σ⊥ , 

2σ z , rz]. These features were chosen based on the work of Halatci who used a similar 

feature set for classification of terrain in images collected by the Mars Exploration 

Rovers (Halatci et al., 2008). The Matlab code (Mathworks, 2005) for this terrain 

geometry feature extraction process is presented in Table E-2 in Appendix E. 

3.1.2.2 Classifier Description 

The visual terrain classifier uses a support vector machine classifier, implemented 

using the open-source library LIBSVM (Chang & C. Lin, 2005, 2008), as was used for 

the vibration-based terrain classifier presented in 2.1. For visual classification, linear or 
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low-order polynomial kernels are appropriate, because optimizations can allow for very 

fast classification (see Appendix D for details). Here, a linear kernel is used, with the cost 

factor C optimized by cross-validation over a subset of images used for training. (For this 

work the optimized value was C=10. The option to return class likelihoods was enabled.)  

It has been previously demonstrated that a straightforward approach of 

concatenating the color, visual texture, and geometric features into a single feature vector 

can yield poor classification results (Halatci et al., 2008), so a naïve Bayes fusion 

approach is used here. This approach assumes that color, visual texture, and geometric 

features are conditionally independent given the terrain class. Thus, the likelihood of a 

terrain patch belonging to a terrain class is the product of the class likelihoods for each 

sensing mode, e.g. as  
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Note that since there may be many pixels observed in each terrain patch, the 

overall estimate of the class likelihood, based on the pixels’ color data, is taken as the 

geometric mean of the class likelihoods of the individual pixels. Thus, where the SVM 

yields the likelihood of a terrain class for each pixel based on its color—e.g. P(Sand | 

color(pixel1))—the color-based class likelihood is calculated as  

 

( )∏
=

=

=
n

i

n

i

n

pixelcolorSandP

pixelcolorpixelcolorSandPcolorSandP

1

/1

1

.)(|(

))(),...,(|()|(

 (3-29)

The same approach is used to calculate the class likelihood for visual texture: 
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In this supervised classification framework, hand-labeled feature vectors 

associated with each of the classes are used for SVM training. In the naïve Bayes fusion 

approach, separate SVM models are trained to classify color, visual texture, and 

geometry features. For this work 400 color feature vectors associated with each of the 

terrain classes is used to train the color SVM model. Visual texture and geometry SVM 

models are trained in the same manner. 

3.1.3 Experiment Details 

As with the local terrain classifiers, the visual terrain classifier was 

experimentally validated using data collected during experiments with the FSRL 

Technology Testbed Rover, TORTOISE, in an outdoor beach environment. 

3.1.3.1 Robot Configuration 

TORTOISE, shown in Figure 3-2, is an 80-cm-long, 50-cm-wide robot with four 

rigid aluminum wheels with grousers. The wheels on either side are connected to the 

main body with a differential, such that the pitch angle of the main body is the average of 

the pitch angles of the left and right wheel pairs. A complete description of TORTOISE is 

presented in Appendix A. 
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Figure 3-2. TORTOISE, showing location of stereo camera pair 

Visual terrain classification relies primarily on TORTOISE’s forward-looking 

stereo camera pair, which is mounted on a rigid mast 90 cm above the terrain. The stereo 

pair is a Videre Design “dual DCAM” with a 19 cm baseline, capturing color images at 

640×480 resolution (Videre Design, 2001). A sample image from the left camera of the 

stereo pair is shown in Figure 3-3. Range data were extracted from the stereo images 

using SVS (Small Vision System), Videre Design’s commercial stereo processing 

software (Konolige, 2007). 
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Figure 3-3. Sample image from stereo camera 

Mounted to the rover body is a two-axis tilt sensor, Crossbow CXTA02, 

measuring body pitch and roll. Additionally, all four wheel motors are equipped with 

encoders, to measure wheel angular position. Wheel odometry, body pitch, and roll are 

used to align stereo-generated range data with an Earth-fixed reference frame.  

During experiments, the rover traveled at a speed of 3 cm/sec. Stereo images were 

captured every 1.5 seconds. Images and sensor outputs were stored during experiments 

and processed offline. 

3.1.3.2 Experiment Environment 

Experiments were performed at Wingaersheek Beach, in Gloucester, MA. The 

beach, which is largely composed of sand, has both small, loose rocks and large outcrops. 

This site was chosen due to its similarity in appearance to the MER landing sites on 

Mars. As with the local terrain classification, three distinct terrain classes were 

considered for visual terrain classification: sand, beach grass, and rock. These terrain 

classes are identified in Figure 3-4. To the rover, sand appears as a uniform gray flat 
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surface, rock appears tan and orange with some steep slopes and fine uniform texture, and 

beach grass appears highly textured with mixed browns and dark shadows. 

 

Figure 3-4. TORTOISE on Wingaersheek Beach, showing terrain classes 

Six experimental data sets were collected over the course of three days. Each data 

set consisted of a time series of stereo images and other sensor data recorded during a 

straight-line traverse of at least 10 meters over a combination of two or three terrains. No 

two paths were identical. During the experiments lighting conditions ranged from diffuse 

lighting from an overcast sky to harsh point lighting from low, direct sunlight. In all, 

1646 image pairs were collected along with corresponding internal sensor data. 

3.1.3.3 Data Processing 

The stored data collected during the experiments was post-processed offline. 

Every 20
th

 image pair was hand-labeled to identify the ground-truth terrain class 

corresponding to each pixel. For each of these labeled image pairs, range data was also 
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calculated. By combining the labels with the range data, ground-truth terrain classes were 

identified for each 20-cm by 20-cm terrain cell. For each of the six data sets, between 10 

and 27 image pairs were hand labeled. The first two or three image pairs from each data 

set were used for training the classifiers, with the remaining images used for testing. Note 

that separate classifiers were trained and tested for each data set.  

3.1.4 Results 

The accuracy of the visual terrain classifier was assessed for each of the data sets 

described in 3.1.3. Figure 3-5 shows the receiver operating characteristic (ROC) curves 

for a representative data set. Here the horizontal axis indicates the false positive 

percentage (%FP) and the vertical axis indicates the true positive percentage (%TP). Each 

terrain forms a curve on the plot as the threshold for leaving terrain “unclassified” is 

adjusted. The end point of the curves represents the case in which none of the terrain is 

left unclassified. Any combination of points on these curves can be achieved through 

proper selection of the threshold. Note that the scale of the x-axis is magnified to allow 

the curves to be easily seen. 
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Figure 3-5. Representative ROC curves for visual terrain classifier 

In this plot it can be seen that the manually trained classifier performed very well 

at identifying both sand and beach grass. More than 95% of the sand was correctly 

identified before any of the other terrains was falsely identified as sand. For beach grass, 

nearly 50% was correctly identified with less than 0.1% of the other terrains falsely 

identified. Results for rock were also very good, with 96% of the rock correctly identified 

and less than 3% of the other terrains falsely identified as rock. 

Numerical results also indicate robust performance of the visual classifier across 

all six data sets, as shown in Table 3-1. The top two rows show statistics of the true 

positive percentage of the classifiers when no data is left unlabeled, corresponding to the 

vertical coordinate of the ROC curve endpoints. The third and fourth rows show statistics 

of the false positive percentage, corresponding to the horizontal coordinate of the ROC 

curve endpoints. The bottom two rows show statistics related to the ratio between the true 
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positive percentage and the false positive percentage. The metric, %TP/(%TP + %FP), is 

closely related to the fraction of labeled patches which are labeled correctly. The values 

in brackets indicate a 95% confidence interval for the statistic. 

TABLE 3-1. PERFORMANCE OF VISUAL TERRAIN CLASSIFIER 

Mean % True Positive 
95.1% 

[93.1% - 97.1%] 

St. Dev. of  

% True Positive 

1.9% 

[1.2% - 4.7%] 

Mean % False Positive 
4.9% 

[2.9% - 6.9%] 

St. Dev. of  

% False Positive 

1.9% 

[1.2% - 4.7%] 

Mean %TP/(%TP + %FP) 
0.95 

[0.93 - 0.97] 

St. Dev. of  

 %TP/(%TP + %FP) 

0.02 

[0.01 - 0.05] 

In this table, it can be seen that on average more than 95% of each terrain class 

was correctly identified, with only 5% being falsely identified when all of the terrain 

patches were assigned a class. It should be noted, however, that the true positive rate and 

false positive rate tend to increase and decrease together, as more or less of the terrain is 

assigned a given class label. The metric presented in the bottom two rows is intended to 

measure the accuracy while being insensitive to that variation. Here it can be seen that on 

average, 95% of terrain classified as a given terrain class actually belongs to that class, 

even when no terrain is left unclassified. This result shows that accurate visual 

classification can be accomplished using an SVM classifier with the proposed features in 

a natural outdoor environment. These visual classification results will be used for 

comparison in 5.1.4 to assess the performance of the self-supervised classification 

framework. 
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3.1.5 Conclusions 

Section 1.1 has presented a method for classifying terrain based on visual 

features. In this approach, a supervised framework is used to classify terrain based on 

color, visual texture, and geometry, with the multiple sensory modes combined using 

naïve Bayes fusion. 

This approach was applied to experimental data collected with a four-wheeled 

rover in an outdoor beach environment. Classification accuracy was assessed by 

comparing the classifier results to hand-labeled ground truth data. These results 

demonstrate that this visual classification approach can be used to accurately classify 

natural outdoor terrain in real-world conditions. 

This visual terrain classifier is appropriate for use in scenarios in which labeled 

examples of all terrain classes are available for training. As described in the introduction 

to this chapter, it can also be used as a component of a more general vision system, 

capable of classifying terrain in the presence of unexpected terrain classes. The results 

presented in this section are also useful as a baseline for comparison to the self-

supervised classification results presented in Chapter 5. 

3.2 Visual Detection of Novel Terrain 

3.2.1 Introduction 

In the planetary exploration scenario, situations often occur when a robot 

encounters a terrain patch belonging to a class it wasn’t trained to recognize. A traditional 

supervised visual classifier like the one described in 1.1 would assume that the terrain 

patch belonged to one of the known classes, then make an incorrect class prediction. For 

instance, if a classifier has only learned to recognize safely traversable terrain classes, it 
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would predict that all terrain patches are traversable, potentially jeopardizing the safety of 

the robot. If the novel terrain represented something of scientific interest, failure to 

identify it could result in a missed scientific opportunity. The purpose of the novel terrain 

detection algorithm is to identify terrain patches that lie outside the set of known classes 

and thus represent a previously unobserved class. This would allow appropriate caution 

or interest to be taken by the rover. 

The goal of a novel terrain detection algorithm is to distinguish between terrain 

patches belonging to a set of a priori known terrain classes and terrain patches belonging 

to an unknown “novel” class. This section presents an approach for detection of novel 

terrain using color stereo imagery. It employs the same color, visual texture, and range-

derived geometric data features described in 1.1 as features for classification.  

The innovation of this approach is the use of a two-class classifier for novelty 

detection. While novelty detection algorithms have been developed for scenarios in 

which the only available training data is associated with the known classes, this approach 

is intended for scenarios in which an additional set of unlabeled data is also available for 

training. In the planetary exploration scenario, terrain patches associated with the known 

terrain classes may be identified autonomously using the proprioceptive terrain 

classification techniques described in Chapter 2. This approach takes advantage of the 

availability of unlabeled visual data
11

 to improve the accuracy of novel terrain detection. 

The use of unlabeled data was inspired by the work of (El-Yaniv & Nisenson, 2007) on 

optimal single-class classification strategies. Because no hand-labeling of visual data is 

                                                 
11

 Here, unlabeled visual data can be visual data associated with any terrain patch that hasn’t been 

autonomously classified using other sensors. If proprioceptive sensors are used for this autonomous 

classification, then visual data of terrain patches not sensed proprioceptively are unlabeled. 
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required, this approach is appropriate for detection of novel terrain without a human in 

the loop. 

Section 3.1.2 describes the two-class classification approach to novelty detection, 

as well as two baseline approaches which will be used for performance comparison. 

Section 3.2.3 gives details about the experiments conducted to analyze the performance 

of the proposed approach, and section 3.2.4 presents the results of those experiments. 

Section 3.2.5 presents conclusions and suggests directions for future research. 

3.2.2 Approach 

As described in the introduction, the goal of novel terrain detection is to 

distinguish between terrain patches belonging to a set of a priori known terrain classes 

and terrain patches belonging to an unknown “novel” class. This problem is distinct from 

traditional two-class classification problems because labeled examples of the novel class 

do not exist. Previously proposed approaches to novelty detection, such as those based on 

a one-class SVM (Schölkopf, 2000) or distribution modeling (Bishop, 1995), are trained 

using only labeled examples of known terrain classes. In the scenario considered here, 

however, it is assumed that information is available about both the a priori known classes 

and a “world” class, which is a mixture of both known and unknown classes. This 

situation arises when only a subset of the terrain patches observed by the robot are 

associated with known terrain classes.  

For example, this occurs when terrain is labeled as “known” only after the robot 

has come into physical contact with it, or when it is labeled based on exteroceptive sensor 
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data
12

 available for only a small fraction of the observed terrain. The two-class 

classification approach presented here uses a SVM classifier trained to distinguish known 

classes from the world class, thereby implicitly identifying the novel class. For 

comparison, baseline approaches based on a one-class SVM and a distribution model are 

also presented in section 3.2.2.3. 

3.2.2.1 Theoretical Justification 

Justification for the proposed approach to novelty detection is based on a 

comparison of an optimal novelty detector and an optimal two-class classifier in the 

scenario when the probability density functions of all classes are known. This analysis 

shows that the novelty detector and a two-class classifier can identify the same regions 

associated with the novel and known classes. 

In the following analysis, it is assumed that the world class, W, represents a 

mixture of all of the terrains in the environment. W is composed of two disjoint classes: A 

(known terrain), and B (novel terrain). Any patch of terrain will belong to A or B, but not 

both. In this hypothetical scenario, it is assumed that the probability density functions 

associated with A and B are known. Here p(x|A) and p(x|B) represent the probability 

density of a feature vector x occurring given that it is associated with terrain class A or B, 

respectively.  

In this scenario, the goal of novelty detection is to identify the region of the 

feature space containing the largest fraction of B, while containing only a specified 

fraction (r) of A, ideally zero. Thus, the novelty detection problem is posed as  

                                                 
12

 The thermal emission spectrometer carried by the Mars Exploration Rovers represents one such 

exteroceptive sensor, since each observation represents only a 20 mrad field of view (20 cm at a range of 

10 m).  
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where S is a region of the feature space, and SND
*
 is the region of the feature space 

identified as novel. Note that r is the rate of false positives—instances when known 

terrain is incorrectly identified as novel. In principle r can be set to zero, but if there 

exists some x where both p(x|A)>0 and p(x|B)>0, increasing r will have the benefit of 

increasing the detection rate of novel terrain, which may be desirable. The solution to the 

novelty detection problem is 

 ( ) ( ){ }BtAND xxxS pp:
* ≤= , (3-32)

where t is found such that  
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Here t is a monotonic function of r. This solution can be understood intuitively by 

contradiction. If there is some region outside SND
*
 where )|p()|p( BtA xx < , then the 

fraction of B in SND
*
 could be increased by changing SND

*
. SND

*
 is unique as long as there 

is no region of measure greater than zero where )|p()|p( BtA xx = . 

In practice, there is no way to explicitly estimate the distribution of the novel 

class, so p(x|B) cannot be used directly. Instead, we assume that it is possible to estimate 

p(x|W), the probability density of the world class, which is given as  

 ( ) ( ) ( )BAW xxx p)1(pp αα −+= . (3-34)

Here α is unknown, representing the fraction of A in W (i.e., the fraction of the rover’s 

environment made up of known terrain). Using p(x|W), the A vs. W two-class 

classification problem can be written as  
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where the region SW
*
 is the region of the feature space classified as the world class. Here 

cA is the cost of misclassifying A as W, and cW is the cost of misclassifying W as A. 

Equation (3-35) is the problem that traditional two class classifiers attempt to solve 

without explicit definitions of p(x|A) and p(x|W). The solution to this two-class 

classification problem in terms of p(x|A) and p(x|W) is  
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Written in terms of p(x|A) and p(x|B), this becomes  
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Thus it can be seen that SND
*
 and SW

*
 are both defined as regions where p(x|A) is less than 

some factor multiplied by p(x|B). Without knowledge of α or p(x|B), cA and cW can be 

found from (3-36) such that  

 ( )   p
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rdA

W
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xx . 
(3-38)

With these values of cA and cW, SND
*
 and SW

*
 are identical. Thus, it follows that a two-

class classifier distinguishing the known class, A, from the world class, W, can be used 

for detection of the novel class, B.  

3.2.2.2 Detailed Approach 

The proposed two-class classification approach employs a support vector machine 

to classify terrain based on visual features. This section describes the visual features, the 

classification algorithm, and the training process. 
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3.2.2.2.1 Visual Features 

The representation of the terrain color, visual texture, and geometric features is 

identical to that described for the visual classifier in 3.1.2.1, and their description is 

repeated here for completeness. These features are all extracted from color images 

collected using a stereo pair. 

Color data is directly available from the cameras as red, green, and blue (RGB) 

intensities. However, the illumination intensity affects all three values in a raw RGB 

representation, which can lead to poor classification results. To reduce the effect of the 

overall illumination level, a modified hue, saturation, and value (HSV) representation of 

color is used as in (Sofman et al., 2006). In this approach, hue (an angle) is represented as 

two values—sin(hue) and cos(hue)—to eliminate the artificial discontinuity at 2π. Thus, 

color is represented as a 4-element vector: [sin(hue), cos(hue), saturation, value]. 

Visual texture is a measure of the local spatial variation in the intensity of an 

image. Researchers have proposed many metrics for visual texture, such as Gabor filters 

and local energy methods (Bouman & Liu, 1991; Reed & du Buf, 1993). The work in this 

thesis uses a wavelet-based approach, similar to the one demonstrated in (Espinal et al., 

1998). Here, a grayscale image is decomposed with the Haar wavelet (Strang, 1993). 

Three scales of wavelets are used, each scale having horizontal, diagonal, and vertical 

wavelets, corresponding to estimating the derivative of the intensity in the horizontal, 

diagonal, and vertical directions at each length scale. The scales used are 2, 4, and 8 

pixels. Because this process is sensitive to local changes in intensity, the magnitudes of 

the wavelet coefficients are then averaged over windows of 11, 9, and 7 wavelets. Thus, 

visual texture is represented by a 9-element vector, composed of the window-averaged 
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horizontal, diagonal, and vertical wavelet coefficients at each scale. The process of 

calculating these visual texture coefficients from an image is presented in 3.1.2.1.2. 

Terrain geometry is available through stereo image processing. The raw output of 

a stereo processing algorithm is a cloud of range data points. Here, the points are divided 

into a grid of 20-cm by 20-cm terrain patches projected onto a horizontal plane. The 

geometric features are statistics calculated from the elevation of points associated with 

each terrain patch. Here, the n points associated with a given terrain patch are represented 

as a n × 3 matrix denoting each point’s position in the [forward, right, down] coordinate 

frame with its origin at the rover’s starting position: {p1,…,pn}
T
. The first element of the 

geometric feature vector is the average slope of the terrain, defined as the angle φ 

between the least-squares-fit plane and the horizontal plane, in radians. The second 

element is the mean-squared deviation from that plane along its normal, 2σ⊥ . The third 

element is the variance in the height of the range data points, 2σ z . The fourth element is 

the height difference between the highest and lowest points within the patch, rz. Thus, the 

geometry of each patch is represented as a 4-element vector: [φ, 2σ⊥ , 2σ z , rz]. These 

features were chosen based on the work of Halatci who used a similar feature set for 

classification of terrain in images collected by the Mars Exploration Rovers (Halatci et 

al., 2008). Equations showing how these features can be calculated from the matrix of 

points is presented in 3.1.2.1.3. 

For the two-class classification approach, the visual features associated with 

color, visual texture, and geometry are concatenated into a single feature vector for each 

pixel. This combined feature vector has 17 elements. The first four elements of the 

combined feature vector are the color features associated with the pixel. The next nine 
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elements of the combined feature vector are the texture features associated with the pixel. 

The last four elements of the combined feature vector are the geometry features 

associated with the terrain patch to which the pixel corresponds. Note that while the color 

and visual texture features are distinct for each pixel, the geometric feature vectors are 

identical for all pixels in the same terrain patch. 

3.2.2.2.2 Classification Algorithm 

As with the previously presented classifiers, the support vector machine was 

implemented using the open-source library LIBSVM (Chang & C. Lin, 2005, 2008). For 

novelty detection, a Gaussian radial basis function (RBF) kernel
13

 was used, with 

parameters optimized by cross-validation over a subset of the images used for training. 

(The optimized parameters were C=1, γ=1, and cW/ cA =0.05.) 

Terrain classification was performed on the same grid of 20-cm by 20-cm terrain 

patches used for the geometric feature extraction. Multiple pixels in an image can 

correspond to the same terrain patch, and the concatenated color-texture-geometry feature 

vector associated with each pixel is classified separately by the support vector machine. 

The classification result for a patch is calculated by a majority vote of the individual pixel 

classification results. Thus, for each pixel (i, j) associated with a patch P, the support 

vector machine yields a predicted terrain class Ci,j, and the terrain class CP associated 

with terrain patch P, is calculated as  

 ( )∑=
Pji

ji
C

P CCisequalC
in  ),(

,,maxarg . 
(3-39)
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 The radial basis function kernel and other kernels are described in detail in Appendix D. 
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3.2.2.2.3 Classifier Training 

Training of the two-class classifier requires two sets of data: one set which 

represents terrain of known classes, and one set of unlabeled data which represents terrain 

of all (known and unknown) classes. Four hundred pixels are used to represent the known 

class for training, and two thousand pixels are used to represent the world class for 

training. The feature vectors associated with these pixels are used to train the two-class 

SVM. These values (400 known pixels and 2000 world pixels) were selected to balance 

the competing requirements of computation cost and classification accuracy.
14

 

3.2.2.3 Baseline Approaches 

To assess the performance of the proposed two-class classification approach to 

detection of novel terrain, it was compared to two existing approaches: one-class SVM 

and mixture-of-Gaussians distribution modeling.  

3.2.2.3.1 One-Class SVM Approach 

The one-class SVM, described in (Schölkopf et al., 2001), is a classification 

framework designed to segment a feature space into “same” and “different” classes. 

While a traditional two-class SVM operates by finding the hyperplane with the largest 

margin separating two classes in a Hilbert space, the one-class SVM operates by finding 

the hyperplane with the largest margin separating the “same” class from the origin in that 

Hilbert space.  

As with the proposed two-class SVM novelty detector, the one-class SVM was 

implemented using LIBSVM. Again, a Gaussian RBF kernel was used. Parameters of the 

                                                 
14

 Analysis of the performance of the proposed novelty detection approach with more or fewer training 

points suggested that further increasing the number of training points might increase the accuracy of 

novelty detection, though this would increase the computational cost. 
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SVM and its kernel were optimized by cross-validation over a subset of the training 

images. The optimized parameters were ν=0.2 and γ=1.  

The one-class SVM used the same concatenated feature vector as the two-class 

SVM. As above, 400 pixels belonging to the known class were used to represent the 

known class for training purposes. The one-class SVM used no training data from the 

world class. Classification of terrain patches was implemented using a majority vote of 

the pixel classification results. 

3.2.2.3.2 Distribution Modeling 

Another approach to novelty detection is based on distribution modeling, which is 

implemented here using a mixture of Gaussians (MoG) model. This approach attempts to 

model the underlying probability density function of the known class. To classify a new 

feature vector as known or novel, the probability density function is evaluated and 

compared to a constant threshold value. If the probability density is above the threshold, 

the feature vector is classified as known. Otherwise the feature vector is classified as 

novel. It should be noted that this is equivalent to assuming that the world class is 

uniformly distributed in the feature space. (Following the notation of 3.2.2.1, p(x|W) is 

assumed to be independent of x.) 

Here, a mixture of Gaussians model was implemented and the number of 

Gaussian modes was optimized by cross-validation over a subset of the training images. 

Training was done using the expectation maximization (EM) procedure (Bilmes, 1998; 

Bishop, 1995). 

The approach to combine color, texture, and geometric features within the MoG 

model differs somewhat from the other models because the MoG model has the potential 
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to over-fit Gaussian modes in a high-dimensional feature space.
15

 To avoid overfitting, 

separate MoG models were created—one for color, one for visual texture, and one for 

terrain geometry—and these three models were combined using the naïve Bayes 

assumption that feature vectors from the three sensing modes were conditionally 

independent given the terrain class. Four hundred feature vectors from the known class 

were used for training each of the MoG models.  

Terrain classification was performed by combining the probability density 

estimates from each of the MoG models. The color-derived probability density for a 

patch was calculated as the geometric mean of the color MoG probability densities for the 

image pixels associated with the terrain patch. Thus, the color MoG model yielded a 

probability density for each pixel, e.g. P(Known | color(pixel1)), and the combined color 

probability density estimate P(Known | color(pixel1), …, color(pixeln)) was calculated as  
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The texture-derived probability density was calculated the same way, e.g. 
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Each patch had only a single geometry feature vector. The overall probability density of a 

patch was calculated as the product of the three sensing mode probability densities—

color, visual texture, and geometry—as  

                                                 
15

 Because the number of covariance coefficients increases with the square of the dimension of the feature 

space, the amount of training data required also increases as the square of the dimension of the feature 

space. Thus, training one 9-dimensional MoG model requires three times the training data as three 

3-dimensional MoG models. 



92 Chapter 3. Exteroceptive Terrain Classification 

 

).|()|()|(

),,|(

geometryKnownPtextureKnownPcolorKnownP

geometrytexturecolorKnownP

⋅⋅=
 (3-42)

The novelty of a patch was then determined by comparing the overall probability density 

to a threshold. 

3.2.3 Experiment Details 

The three approaches for detection of novel terrain were compared using 

experimental data collected with the TORTOISE rover on Wingaersheek Beach. This 

section will describe only the details of those experiments that were used to assess the 

novelty detection algorithms. Full specifications for TORTOISE are presented in 

Appendix A. Details about the experimental environment are presented in Appendix B. 

3.2.3.1 Robot Configuration 

The novel terrain detection experiments rely primarily on TORTOISE’s forward-

looking mast-mounted stereo camera pair, and its body-mounted two-axis tilt sensor. The 

stereo pair has a 19-cm stereo baseline, and captures color images at a resolution of 

640×480. Range data is extracted from the stereo images using the SVS (Small Vision 

System) commercial stereo processing software. Range data are corrected for camera 

pitch and roll based on tilt sensor readings. 

During experiments, the rover traveled at a speed of 3 cm/sec. Stereo images were 

captured every 1.5 seconds. Images and other sensor outputs were stored during 

experiments and processed offline. 



3.2 Visual Detection of Novel Terrain 93 

3.2.3.2 Experimental Environment 

Experiments were performed at Wingaersheek Beach in Gloucester, MA. In this 

environment, the three terrain classes are sand, rock, and beach grass. Visually, the sand 

appears as a uniform gray flat surface, rock appears tan and orange with some steep 

slopes and fine uniform texture, and beach grass appears highly textured with mixed 

brown and dark shadows. 

Six experimental data sets were collected, each during a rover traverse of at least 

10 meters along a straight-line path containing a combination of two or three terrains. No 

two paths were identical. In all, 1646 image pairs were collected. During the experiments 

lighting conditions ranged from overcast conditions with diffuse light to cloudless 

conditions with low, direct sunlight. 

3.2.3.3 Data Processing 

Data sets collected during the experiments were post-processed offline. In each of 

the data sets, every fifth image pair was passed to the stereo processing software for 

range data extraction. Every fourth image pair with range data was hand-labeled to 

identify a ground-truth terrain class for each pixel. This spacing was chosen to reduce the 

effect of repeated training and testing on similar images of the same terrain patch. 

Labeled examples of data corresponding to the known (e.g. sand and beach grass, or sand 

and rock) classes were drawn from the first three hand-labeled images in a data set. 

Unlabeled examples, corresponding to the “world” class, were drawn from the first 10 

(labeled and unlabeled) images in a data set for which the range data had been calculated. 

Performance of the novel terrain detectors was assessed based on the remaining hand-

labeled images in a data set. In total, 75 hand-labeled images were used for testing. 
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3.2.4 Results 

The performance of the two-class classification approach was compared to that of 

the baseline approaches for each test set. Figure 3-6 shows the ROC curve of the results 

for each approach across all of the data sets. For this figure, the rock class was used as the 

novel class.
16

 Thus, the labeled training data was drawn only from the sand and beach 

grass classes. Here the vertical axis indicates the percentage of true novel detection 

(%TN) (i.e., the fraction of rock terrain patches which were correctly identified as novel), 

and the horizontal axis indicates the percentage of false novel detection (%FN) (i.e., the 

fraction of sand or beach grass terrain patches which were incorrectly identified as 

novel). Each detection approach forms a curve on the plot, since both %TN and %FN are 

functions of the novelty detection threshold. Note that random assignment of terrain as 

novel would tend to yield a diagonal line from (0,0) to (100,100). Better performance is 

indicated by proximity of a curve to the upper-left corner of the plot. 

                                                 
16

 In the Wingaersheek Beach data sets all three terrain classes were known a priori. To simulate the 

presence of novel terrain, terrain patches corresponding to one of the classes—in this case, the rock class—

were intentionally removed from the set of labeled training examples.  
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Figure 3-6. ROC curves for baseline approaches and two-class classification approach for all data 

sets with rock as novel class 

It can be seen that the two-class classification approach demonstrated higher 

accuracy than the baseline approaches, particularly when a low false novel rate is 

required. Of the baseline approaches, higher accuracy was demonstrated by the MoG 

distribution modeling approach. This difference is particularly significant in the detection 

of novel terrain with less than 10% false novel detection, where the two-class classifier 

detected 94% of the novel terrain, and the one-class SVM detected less than 50%. 

To summarize the performance of the novelty detectors, several performance 

metrics can be used. Here, each of the curves is represented by a single point displaying 

the best classifier performance, and %TN and %FN values are compared at that point. 

For this work, each curve is summarized by the point that maximizes the difference 

between %TN and %FN. At this point, the baseline one-class SVM detected 56% of 

novel terrain while misidentifying 15%, and the baseline MoG distribution modeling 
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approach detected 87% while misidentifying 22%. The two-class classification approach 

performed significantly better, detecting 95% of the novel terrain while misidentifying 

only 11%. 

Another metric for comparison of the ROC curves is the area under the curve, 

referred to as P(A) (Simpson & Fitter, 1973). The one-class SVM performed significantly 

better than random chance, with a P(A) of 78.3%. (Random assignment to classes will 

yield a P(A) of 50%.) The other novelty detectors performed better still. The MoG 

approach demonstrated a P(A) of 91.2%, while the two-class classification approach 

performed slightly better, with a P(A) of 96.6%.  

Similar results were observed using beach grass as the novel class, as shown in 

Figure 3-7. Use of sand as the novel class yielded significantly deteriorated performance, 

because very little training data was available from the known class. 
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Figure 3-7. ROC curves for baseline approaches and two-class classification approach for all data 

sets with beach grass as novel class 
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A numerical summary of the performance of the three algorithms for detection of 

novel terrain over all data sets is shown in Table 3-2. Mean and standard deviation are 

compared for each of the three metrics: % True Novel and % False Novel at the point 

representing the best classifier performance, and P(A). Note that these statistics were 

compiled across all six data sets using rock and beach grass, separately, as the novel 

terrain class. The numbers in brackets indicate the 95% confidence interval of the 

statistic. 

TABLE 3-2. COMPARISON OF NOVEL TERRAIN DETECTION APPROACHES 

 One-Class SVM 
MoG Distribution 

Modeling 
Two-Class SVM 

Mean % True Novel 
91.0% 

[83.1% - 98.9%] 

85.1% 

[72.9% - 97.4%] 

88.7% 

[80.0% - 97.4%] 

St. Dev. of % True 

Novel 

11.0% 

[7.6% - 20.2%] 

17.1% 

[11.8% – 31.3%] 

12.2% 

[8.4% – 22.3%] 

Mean % False Novel 
35.1% 

[11.5% - 58.7%] 

20.2% 

[9.8% - 30.5%] 

15.2% 

[6.8% - 23.6%] 

St. Dev. of % False 

Novel 

33.0% 

[22.7% - 60.2%] 

14.5% 

[10.0% – 26.4%] 

11.7% 

[8.0% – 21.3%] 

Mean P(A) 
73.9% 

[55.9% – 92.0%] 

83.6% 

[71.5% - 95.7%] 

87.1% 

[77.5% – 96.8%] 

St. Dev. P(A) 
25.3% 

[17.4% – 46.1%] 

16.9% 

[11.6% – 30.9%] 

13.5% 

[9.3% – 24.7%] 

For each of these metrics, the two-class classification approach outperformed the 

baseline mixture of Gaussians approach, though not by a significant margin for any 

metric individually. The two-class classification approach outperformed the one-class 

SVM in both the false novel detection rate and the area under the ROC curve, both by 

significant margins, while the difference in the true novel detection rate was not 

significant. These results suggest that the two-class approach demonstrates more accurate 

and robust novel terrain detection than either of the baseline approaches.  
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Computation time for classification using the two-class approach on a desktop 

computer ranged from 12-70 seconds for a 640×480 image. Computation time varied 

based on the complexity of the boundary between the known and novel classes (as 

measured by the number of support vectors), and the fraction of the image with valid 

range data. 

3.2.5 Conclusions 

This section has presented a two-class classification approach to novel terrain 

detection. This approach uses samples of visual data from unlabeled images to represent 

the world class for use in training a novel terrain detection algorithm. A theoretical 

analysis showed the fundamental similarities between two-class classification and 

novelty detection. Using experimental data from the TORTOISE rover on Wingaersheek 

Beach, the two-class classification approach was compared to two baseline approaches 

for novelty detection which use only data from known terrain classes during training. The 

results suggests that the two-class classification approach achieves a higher accuracy than 

the baseline approaches while reducing variability between data sets. 

3.2.5.1 Future work 

For a robot in rough terrain, the computational cost of novel terrain detection can 

be significant, with the current approach taking 12-70 seconds per image on a modern 

desktop computer. Computation time could likely be reduced by an order of magnitude or 

more by replacing the Gaussian kernel of the SVM with a polynomial kernel. 

Mathematical details of optimizing a SVM for use with a polynomial kernel are presented 

in Appendix D. 
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Additionally, this two-class classification approach to novelty detection is not 

restricted to the use of a SVM classification algorithm. Other two-class classification 

algorithms, including those based on regularized least squares regression or Bayesian 

logistic regression, may be used in the place of the SVM. Further experimental studies 

would be necessary to determine whether one classification algorithm performs 

significantly better than any other when used for novelty detection. 
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Chapter 

4 
Chapter 4 Mechanical Terrain Characterization 

 

The purpose of mechanical terrain characterization is to identify mechanical 

properties associated with a particular terrain class from proprioceptive sensor data. In 

this thesis, the mechanical properties of interest are measurable quantities that describe 

the forces and torques acting between a rover wheel and the terrain. The mechanical 

terrain characterization approach presented in this chapter establishes minimum and 

maximum bounds on the net traction force available at a given terrain patch based on 

observed rover wheel torque and sinkage when wheel slip is induced. 

4.1 Introduction 

Understanding the physical interaction between a planetary rover and the terrain it 

is traversing is critical to predicting whether that terrain can be traversed safely. Some 

types of terrain (e.g. loosely packed sand) are treacherous to traverse on even shallow 

slopes, as significant wheel sinkage may occur, leading to high motion resistance and 

rover entrapment. Other terrain types (e.g., textured rock) present a solid footing on 

which a rover might safely climb steep slopes. The purpose of mechanical terrain 

characterization is to measure mechanical terrain properties that can be used to determine 

whether a terrain patch may be safely traversed. This chapter is focused on the 
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characterization of deformable terrain under a rigid wheel, a scenario in which excessive 

wheel slip could result in the wheel becoming trapped. 

Previous researchers have taken various approaches to characterizing deformable 

terrain. Bekker, Wong, and Reece developed parametric models for normal and shear 

stress on wheels in deformable terrain that can be used to calculate the net forces and 

torques on wheels (Bekker, 1969; Wong, 2001; Wong & Reece, 1967). In their models, 

terrain is characterized by eight parameters. Measuring these parameters requires 

dedicated equipment to apply normal and shear forces and measure the corresponding 

displacements. Iagnemma developed an approach to measure the parameters of a 

reduced-order Bekker model without dedicated terrain sensing equipment, by measuring 

wheel torque and sinkage during a rover traverse (Iagnemma et al., 2002; Iagnemma et 

al., 2004). Kang extended that work and proposed a nondimensionalized metric based on 

drawbar pull—the drag force that would be required to hold the vehicle stationary—as a 

traversability metric (Iagnemma et al., 2003; Kang, 2003). This metric, the drawbar pull 

divided by the vertical load, represents the available net traction force as a fraction of the 

weight on a wheel. Analyzing simulations over a variety of terrains Kang found an 

approximate equation for drawbar pull as a function of wheel sinkage, wheel torque and 

vertical load. However, while Kang’s predictions of drawbar pull accurately approximate 

the predictions of the Bekker model when averaged over many terrains, he provided no 

guarantees about the error of any single drawbar pull prediction. 

In the field of planetary exploration, overly optimistic predictions related to the 

traversability of terrain can lead to catastrophic failure. This chapter presents a novel, 

optimization-based method for predicting strict upper and lower bounds on Kang’s 
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traversability metric for a terrain patch, such that if the terrain model assumptions are 

correct, the traversability metric is guaranteed to fall between the bounds. By providing 

bounds on the traversability metric, this approach serves as a method for characterizing 

terrain traversability in potentially high-risk scenarios. 

4.2 Approach 

The terrain characterization approach proposed here attempts to find upper and 

lower bounds on Kang’s nondimensionalized drawbar pull traversability metric for a 

given patch of terrain, without requiring that drawbar pull be measured directly. This is 

accomplished by using constrained optimization to combine a terrain model with 

observed wheel-terrain interaction measurements, specifically wheel torque and sinkage. 

Section 4.2.1 describes the nondimensionalized drawbar pull measure which is used as 

the traversability metric, section 4.2.2 describes the specific attributes of terrain 

interaction being sensed, section 4.2.3 describes the wheel-terrain interaction models, and 

section 4.2.4 describes the optimization method as it applies to each model. 

4.2.1 Traversability Metric 

The traversability metric used here for terrain characterization is the 

nondimensionalized drawbar pull, DP/W, which is a measure of the net available traction 

force between the wheel and the terrain. The net traction force can be modeled via 

lumped forces acting on a single, rigid wheel, as shown in Figure 4-1. In this figure, the 

wheel is traveling from left to right and rotating clockwise. Forces and torques on the 

axle are shown, assuming the wheel to be in equilibrium. Here, W is the vertical load on 

the wheel (including its own weight), T is the torque exerted on the wheel by a drive 
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motor, DP is the drawbar pull, and z is the wheel sinkage. Clearly, if the drawbar pull is 

positive, the wheel can exert a force to move the rover in the desired direction of travel. 

Conversely, if the drawbar pull is negative, resistance on the wheel will slow the rover, 

possibly causing the rover to become immobilized. 

 

Figure 4-1. Wheel forces, torque, and sinkage 

The nondimensionalized drawbar pull is calculated by dividing the drawbar pull 

by the vertical load on the wheel. This value, DP/W, is related to the load a rover can tow 

relative to its own weight, as illustrated in Figure 4-2(a), or the maximum slope up which 

a rover can move, as illustrated in Figure 4-2(b). Neglecting redistribution of vertical 

loads on the wheels, the effect of slope on stresses within the terrain
17

, and changes in 

DP/W with the normal force (i.e. nonlinear wheel-terrain interaction effects), the wheel 

can travel up a slope of angle α = atan(DP/W).  

                                                 
17

 On steep slopes large internal stresses may exist to support the weight of the terrain higher up the slope. 

This will reduce the net traction force available to move the rover. 



104 Chapter 4. Mechanical Terrain Characterization 

 

Figure 4-2. Wheel forces on flat terrain (a) and slopes (b) 

It is important to note that the drawbar pull is a function of both the mechanical 

properties of terrain being traversed and the wheel slip ratio, i, which is defined as 

 r

v
i x

ω
−= 1 , 

(4-1)

where vx is the forward velocity of the wheel, ω is the angular velocity, and r is the wheel 

radius. The relationship between drawbar pull and the wheel slip ratio is illustrated in 

Figure 4-3, which shows the experimentally observed relationships for four of the terrains 

studied later in this chapter. Since the traversability metric is a function of drawbar pull, 

the value of wheel slip must be specified for the traversability metric to be measured on a 

given terrain. Here, the drawbar pull is measured with a wheel slip ratio between 0.4 and 

0.7, conditions under which the drawbar pull is relatively insensitive to changes in slip 

for most terrains.  
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Figure 4-3. Nondimensionalized drawbar pull (DP/W) as a function of slip for four terrains 

(experimental data points and best fit curves) 

By specifying the wheel slip to be a moderate value—neither very low where 

some easily traversable terrains exhibit small drawbar pull, nor very high where material 

transport around the wheel can affect drawbar pull—this approach ensures that the 

traversability metric provides a conservative estimate of the force that a wheel could 

apply to stop itself from sliding down a slope, or to drive up a slope.
18

 

4.2.2 Terrain Sensing 

While drawbar pull could potentially be directly measured using a dedicated force 

sensor mounted on a rover suspension element or wheel mount, such a sensor has not 

been included on previous Mars rovers. In this work, it is assumed that the rover is 

                                                 
18

 If a rover is driving up a slope at a slip ratio less than 0.4, and the drawbar pull it can exert is not 

sufficient to maintain its forward progress, the slip ratio will tend to increase. Thus, at some point in the 

future the rover will be able to exert the drawbar pull calculated for higher-slip conditions. 
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equipped with a torque sensor on (at least) one driven wheel. The ability to measure 

wheel sinkage is also assumed. 

Here two different sinkage measurement capabilities are considered: absolute and 

relative sinkage measurement, illustrated in Figure 4-4. Absolute sinkage measurement 

refers to the ability to measure the distance between the undisturbed soil surface and the 

lowest point on the wheel, at a single (specified) wheel slip ratio, as illustrated in Figure 

4-4(a). This measurement could be attained using a camera with a view of the side of the 

wheel, or by a dedicated sinkage sensor (Brooks et al., 2006; Reina et al., 2006).  

 

Figure 4-4. Absolute sinkage (a) vs. relative sinkage (b) 

The alternative to absolute sinkage measurement is relative sinkage measurement, 

which is the ability to measure the difference in the vertical position of the wheel at two 

different slip ratios, as illustrated in Figure 4-4(b). On flat terrain, this could be 

accomplished using only proprioceptive sensors that measure the suspension 

configuration, as in (Wilcox, 1994). 

Since the drawbar pull is evaluated under slip conditions, wheel torque and 

sinkage must be measured while the wheel is slipping. Here, wheel slip is induced by 

driving one wheel faster than the others, as in the behaviors presented in 2.2.2.  
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4.2.3 Terrain Models 

A terrain model is used to relate observed wheel sinkage and torque to a predicted 

drawbar pull. Here two different terrain models are presented: a contact region model, 

which can describe most plausible interaction states with rigid or deformable terrain; and 

a Bekker model, which closely approximates the behavior of many real-world deformable 

terrains. Results for both these models will be shown in 4.4. 

4.2.3.1 Contact Region Model 

The contact region model described here is a highly nonrestrictive model for 

wheel terrain interaction. This model is depicted in Figure 4-5. Given an angle θ from the 

vertical, wheel terrain interaction forces are modeled as a normal stress distribution σ(θ) 

and a tangential stress distribution τ(θ) that act within a contact region between θ1 and θ2. 

The only constraint on the stresses is that they must be non-negative—that is, the soil 

cannot apply tension, and the tangential stress must always oppose the net applied wheel 

torque. 

 

Figure 4-5. Contact Region model 

To compute the net forces applied to the wheel by the terrain, these stresses are 

integrated over the contact region: 
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Here, r is the wheel radius and b is the wheel width. Since the wheel is assumed to be in 

equilibrium, W is the vertical load on the terrain, DP is the drawbar pull, and T is the 

torque applied by the motor. Using (4-2) and (4-3), the nondimensionalized drawbar pull 

DP/W can be calculated from the normal and tangential stresses. 

It can be observed that this model is descriptive, rather than predictive. While a 

wide variety of terrain interaction phenomena can be represented as a pair of normal and 

tangential stress distributions within this model, knowledge of those forces and torques 

provides no insight as to the wheel-terrain interaction conditions at a different slip ratio or 

vertical load.  

4.2.3.2 Bekker Model 

The Bekker terrain model described here is a parameterized form of the contact 

region model, which sacrifices generality for predictive ability (Bekker, 1969). 

Developed by Bekker in the 1950s and 1960s, the Bekker model defines parametric 

functions for the normal stress σ(θ) and tangential stress τ(θ), as shown in Figure 4-6. 
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Figure 4-6. Bekker terrain model 

The equation describing the normal stress function is as follows: 
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and the equation describing the shear stress equation is as follows: 
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where i is the slip ratio from Equation (4-1). In this representation, a terrain is 

characterized by the following Bekker parameters: kc, kφ, n, c1, c2, c, φ, and K, defined in 

Table 4-1.
19

  

TABLE 4-1. BEKKER MODEL PARAMETERS 

Symbol Name Role 

kc, kφ sinkage moduli 
kc and kφ determine the magnitude of normal 

stress as a function of vertical soil deflection 

n sinkage exponent 
n determines the rate of change of normal stress 

as a function of vertical soil deflection 

c1, c2 
wheel slip 

coefficients 

c1 and c2 determine the location of the maximum 

normal stress as a function of wheel slip 

c soil cohesion 
c determines the maximum shear stress which can 

be supported at zero normal stress 

φ 
angle of internal 

friction 

φ determines the ratio between shear stress and 

normal stress for large normal stresses 

K 
shear deformation 

modulus 

K determines the rate of change of shear stress as 

a function of vertical soil deflection 

These parameters have been measured for a wide range of terrains. Parameters for 

sand, loam, and clay are found in (Wong, 2001). Estimates of the cohesion and internal 

friction angle of Martian soils have been measured by the Viking lander (H. J. Moore, 

Hutton, Scott, Spitzer, & Shorthill, 1977), Sojourner rover (Rover Team, 1997), and the 

Spirit rover (Arvidson et al., 2004). By using the minimum and maximum values for each 

parameter observed in published data, plausible ranges for each of these parameters can 

be defined. Table 4-2 lists the parameter ranges assumed for this Bekker model. 

                                                 
19

 It should be noted that while the foundations of this model were introduced by Bekker, Equation (4-7) for 

θm is due to Wong and Reece (1967). An alternative parameterization of (4-5) by Wong and Reece includes 

an additional factor of b
(1-n)

, and replaces kc and kφ with c kc’ and γs kφ’.  
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TABLE 4-2. RANGES FOR BEKKER PARAMETERS
 20

 

Parameter Minimum Value Maximum Value Units 

kc/b + kφ  1000 3000 kPa/m
n
 

n 0.578 1.2  

c1 0.18 0.43  

c2 0.32 0.41  

c 0 42 kPa 

φ 15 43 deg 

K 0.01 0.04 m 

As with the contact region model, the stresses computed from the Bekker model 

can be integrated using Equations (4-2), (4-3), and (4-4) to find the net forces acting on 

the rover wheel. Thus, given a known vertical load W, wheel slip ratio i, and the Bekker 

soil parameters, the nondimensionalized drawbar pull DP/W can be calculated. 

4.2.4 Optimization Framework Description 

An optimization framework is used to find bounds on the value of the 

traversability metric, DP/W, across the range of terrains described by each terrain model, 

given a set of experimental observations. Specifically, to find a lower bound on the 

traversability metric, DP/W is minimized subject to the constraints of the terrain model, 

experimentally observed torque T, sinkage z, slip i, and vertical load W.  

Three different combinations of terrain models and wheel sinkage measurements 

were considered for the traversability metric bounding problem. The first approach used 

the contact region model and assumed knowledge of absolute wheel sinkage. This is the 

most general model for terrain and the optimization has a closed-form solution, but it 

                                                 
20

 The value for kc/b + kφ is given as a single parameter, since kc and kφ cannot be independently identified 

with a single wheel width. This range assumes a wheel width of 0.051 meters, the width of the TORTOISE 

rover’s wheels. 
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requires measurement of absolute wheel sinkage, which might not be possible in practical 

scenarios.
21

  

The second approach uses a Bekker terrain model and assumes knowledge of 

relative wheel sinkage. This is a more restrictive model of the terrain compared to the 

contact region model, but it is capable of predicting behavior at different slip conditions 

and requires measurement of only the relative sinkage.  

The third approach uses a Bekker terrain model and assumes knowledge of 

absolute wheel sinkage. This again uses a relatively restrictive model and requires 

measurement of absolute sinkage, but has the potential for prediction of tighter bounds on 

the traversability metric compared to the other two approaches. 

The following sections describe the optimization of each of the three approaches. 

4.2.4.1 Contact Region Model with Absolute Sinkage  

Due to the simplicity of the contact region model, upper and lower bounds on 

DP/W can be written explicitly, assuming the absolute sinkage is known. Here the 

optimization problems for the lower and upper bounds are posed as 

                                                 
21

 Measurement of absolute sinkage can be accomplished as in (Brooks et al., 2006), but this approach 

requires the presence of a camera with a view of the side of the wheel, sufficient illumination, and visual 

contrast between the wheel rim and the terrain. Guaranteeing sufficient illumination would require the 

addition of a light source to the rover. Other methods of measuring absolute wheel sinkage may require 

additional hardware, such as laser or sonar range sensors. 
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The explicit solutions for the lower and upper bounds are 
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These bounds correspond to situations in which the stresses are concentrated at 

the front and rear contact region boundaries, as shown in Figure 4-7. Thus, the stresses 

are zero except at the ends of the contact region, where (in theory) they are concentrated 

as Dirac delta functions. Figure 4-7(a) and (b) illustrate the two scenarios that could yield 

the lower bound presented in Equation (4-12). Figure 4-7(c) and (d) illustrate the two 

scenarios that could yield the upper bound presented in Equation (4-13). 

 

Figure 4-7. Locations of concentrated stresses for lower bound ((a) or (b)), and upper bound ((c) or 

(d)) 

Here, θ1 is calculated from the absolute sinkage zabs as  
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For simplicity, θ2 is assumed to be equal to -θ1, implying that soil does not build up 

behind the wheel to a height higher than the undisturbed soil surface. In steady state, this 

means that disturbed soil (behind the wheel) is at least as dense as undisturbed soil (in 

front of the wheel). Given this assumption, the bounds can be simplified to 
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4.2.4.2 Bekker Model with Relative Sinkage 

The complexity of the stress functions in the Bekker model prohibit derivation of 

an explicit solution for DP/W bounds, so numerical optimization is used to find the 

minimum and maximum DP/W. Constrained optimization is implemented using 

sequential quadratic programming (SQP) using the Matlab fmincon function 

(Mathworks, 2005). Specifically, DP/W as calculated using Equations (4-2) and (4-3) is 

minimized (or maximized) over the parameters defined in Table 4-3. The optimization 

problem to find the lower bound is posed as the following minimization: 
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where σslip1(θ) and σslip2(θ) are the normal stress distributions at slip ratios islip1 and islip2, 

calculated using Equation (4-5), and τslip1(θ) and τslip2(θ) are the shear stress distributions 

at slip ratios islip1 and islip2, calculated using Equation (4-8). The optimization problem to 

find the upper bound is a maximization with the same arguments and bounds. Here the 

experimentally observed wheel torque (Tslip1 and Tslip2, measured at two different slip 

ratios, islip1 and islip2), relative sinkage zrel , and vertical loads Wslip1 and Wslip2 are enforced 

using equality constraints. 

TABLE 4-3. OPTIMIZATION PARAMETERS FOR BEKKER MODEL WITH RELATIVE SINKAGE 

Parameter Lower Bound Upper Bound Units 

Terrain parameters    

kc/b + kφ 1000 3000 kPa/m
n
 

n 0.578 1.2  

c1 0.18 0.43  

c2 0.32 0.41  

c 0 42 kPa 

tan φ tan 15° tan 43°  

K 0.01 0.04 m 

Sinkage angles    

θ1,slip1 0 π/2  radians 

θ1,slip2 0 π/2 radians 

θ2,slip1 - θ1,slip1 0 radians 

θ2,slip2 - θ1,slip2 0 radians 

Since numerical optimization routines are known to have the potential to find 

local minima (or maxima) rather than the desired global minima (or maxima), the 

optimization procedure was repeated ten times with randomly generated starting 

conditions. It should be noted that the optimization starting conditions must satisfy the 

equality constraints in Equation (4-17), so randomly generated parameters from the 

ranges defined in Table 4-3 underwent an initial optimization to find values satisfying the 

equality constraints. 
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4.2.4.3 Bekker Model with Absolute Sinkage 

The optimization process for the Bekker model assuming knowledge of absolute 

sinkage differs only slightly from the process in 4.2.4.2, where knowledge of relative 

sinkage is assumed. Again, due to the complexity of the stress functions in the Bekker 

model, derivation of an explicit solution for DP/W bounds is not feasible, so numerical 

optimization is employed. Constrained optimization is implemented using sequential 

quadratic programming (SQP) using the Matlab fmincon function (Mathworks, 2005). 

In this optimization, DP/W as calculated using Equations (4-2) and (4-3) is minimized (or 

maximized) over the parameters defined in Table 4-4. The optimization problem to find 

the lower bound is posed as the following minimization: 
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where σ(θ) is the normal stress distribution calculated using Equation (4-5), and τ(θ) is 

the shear stress distribution calculated using Equation (4-8). The optimization problem to 

find the upper bound is a maximization with the same arguments and bounds. Here the 

experimentally observed torque Tmeasured and vertical load Wmeasured are enforced as 

equality constraints in the optimization. In contrast to the relative sinkage case, when 

absolute sinkage zabs is measured, θ1 can be calculated directly from zabs, allowing it to be 

removed from the set of parameters being optimized:  
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r
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(4-19)

TABLE 4-4. OPTIMIZATION PARAMETERS FOR BEKKER MODEL WITH ABSOLUTE SINKAGE 

Parameter Lower Bound Upper Bound Units 

Terrain parameters    

kc/b + kφ 1000 3000 kPa/m
n
 

n 0.578 1.2  

c1 0.18 0.43  

c2 0.32 0.41  

c 0 42 kPa 

tan φ tan 15° tan 43°  

K 0.01 0.04 m 

Sinkage angle    

θ2 - θ1 0 radians 

The optimization routine was repeated ten times with randomly seeded initial 

parameter values. As with the relative sinkage case, these parameters were run through an 

initial optimization phase to find a set of parameters satisfying the equality constraints, 

prior to the DP/W optimization.  
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4.3 Experiment Details 

The mechanical terrain characterization approaches were validated using data 

from laboratory experiments with the FSRL wheel-terrain interaction testbed. Additional 

experiments with the TORTOISE rover on Wingaersheek Beach were also conducted. 

4.3.1 FSRL Wheel-Terrain Interaction Testbed Experiments 

Initial validation of the mechanical terrain characterization approaches was done 

on data collected during experiments with the FSRL wheel-terrain interaction testbed, 

using five distinct terrains. These experiments were conducted by Shinwoo Kang for 

research presented in (Kang, 2003). The analysis of the data presented here represents 

work completed for this thesis. 

The FSRL wheel-terrain interaction testbed, shown in Figure 4-8 and described in 

detail in Appendix C, is an apparatus designed to measure forces on a rigid wheel driven 

over terrain. It consists of a driven wheel mounted on an undriven vertical axis. The 

wheel-axis assembly is mounted on a driven carriage, so that the wheel forward velocity 

and angular velocity can be controlled independently. These testbed experiments were 

conducted using a rigid black plastic wheel 4.8 cm wide and 20 cm in diameter. Sand is 

bonded to the outside of the wheel to improve traction. 



 121 

 

Figure 4-8. FSRL wheel-terrain interaction testbed 

Under the wheel is a Plexiglas bin containing the terrain material. The bin is 90 

cm long, 30 cm wide, and 15 cm deep. Five distinct terrains were used in these 

experiments: dry bentonite clay, modeling clay, orange sand, dry topsoil, and wet topsoil. 

The dry bentonite clay was a tan colored fine-grained material with the appearance of 

fine-grained sand. The modeling clay was a medium gray, damp, highly cohesive 

material that was flexible enough to be formed by hand, but rigid enough that it would 

maintain its shape once formed. The orange sand was fine-grained, nearly cohesionless 

dry sand. The topsoil was loamy black soil. In some of the experiments the soil was dry 

to the touch. In other experiments it was wet. 
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Figure 4-9 shows the sensors used for mechanical terrain characterization. 

Drawbar pull was measured using a six-axis force-torque sensor mounted between the 

wheel assembly and the vertical axis. Wheel torque was measured using a rotating torque 

sensor mounted between the motor and the wheel. Wheel angular velocity was measured 

with a tachometer attached to the wheel motor, and the horizontal position of the carriage 

was measured with an encoder. Sinkage was measured using a linear potentiometer 

mounted on the carriage, not shown in the figure. The vertical load was adjusted by 

attaching metal plates to the top of the vertical axis, and the total vertical load was 

measured between experiments using a digital scale. 

 

Figure 4-9. FSRL wheel-terrain interaction testbed wheel with sensors 

Each test run consisted of the wheel traveling from one end of the bin to the other 

at a specified forward velocity and angular velocity, over a single terrain and with a fixed 

vertical load. Twelve combinations of terrains and vertical loads were tested: bentonite at 

21.4 N; clay at 53.2 N, 68.4 N, and 83.5 N; orange sand at 53.2 N, dry topsoil at 53.2 N, 
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60.8 N, 68.4 N, 76.0 N, and 83.5 N; and wet topsoil at 53.2 N and 68.4 N. Each of these 

combinations was run at least twice for each of two slip ratios, with the higher slip ratio 

ranging from 0.2 to 0.5. The lower slip ratio ranged from 0.04 to 0.23.  

After the experiments were completed, steady-state wheel torque and sinkage 

values were extracted from each run, and the median value of torque and sinkage was 

used in the analysis for each combination of terrain, vertical load, and wheel slip. For 

validation of the relative sinkage approach, zrel was calculated as the difference between 

the sinkages observed at low slip and high slip. 

4.3.2 TORTOISE Experiments on Wingaersheek Beach 

Additional experiments were conducted using the four-wheeled rover, 

TORTOISE, in an outdoor beach environment. Both TORTOISE and Wingaersheek 

Beach have been described previously, so this section will address the aspects of the 

experiments specifically relevant to terrain characterization. 

TORTOISE, shown in Figure 4-10, is robot with four rigid aluminum wheels, 

specifically designed for terrain sensing experiments. For the terrain characterization 

algorithm, TORTOISE sensed wheel torque using a torque sensor mounted to the motor 

driving the right front wheel, as seen in Figure 4-11. A camera mounted on the belly of 

the robot captured images of the right-front wheel during experiments, for use in 

measuring absolute wheel sinkage, and a potentiometer measured the angle between the 

rover body and the right wheel pair. Complete details about TORTOISE are presented in 

Appendix A.  
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Figure 4-10. Photo of TORTOISE, showing location of local sensor suite 

 

Figure 4-11. TORTOISE’s local sensor suite, with torque sensor and belly-mounted camera 

As described in the previous chapters, Wingaersheek Beach is an outdoor beach 

environment. Here, the three distinct terrain classes are sand, rock, and beach grass. The 

area used for experiments was below the high-tide level, so the sand was densely packed. 

Full details about Wingaersheek Beach are presented in Appendix B. 
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To induce wheel slip, the “Incremental Slip” behavior described in 2.2.2 was 

implemented. Here, the rover drives normally for 11 seconds, then (at t=0 seconds) starts 

to spin the right-front wheel faster than the other wheels. Since the rover body remains 

moving at the speed of the other three wheels, this causes the right-front wheel to slip 

relative to the terrain, at a slip ratio of 33%. At t=3 seconds, the other three wheels are 

slowed down, reducing the rover body speed and increasing the slip ratio to 50%. At 

t=6 seconds, the other three wheels are slowed down further, increasing the slip ratio to 

67%. At t=9 seconds, the rover resumes normal driving. The process then repeats.  

For mechanical terrain characterization, analysis was performed using wheel 

torque recorded during the second half of the 50% slip stage. The 50% slip stage was 

selected because 50% slip is close to the range of slip ratios studied on the wheel-terrain 

interaction testbed. The second half of the stage was used to allow the wheel sinkage and 

torque to reach their steady state values. 

Data from a single rover traverse of 11 meters over all three terrain classes was 

collected. Absolute wheel sinkage was measured using the images from the belly-

mounted camera by hand-labeling the wheel rim and wheel-terrain interface. Images from 

the belly-mounted camera were also used to identify the terrain being traversed at any 

instant. Wheel sinkage and torque were passed to the optimization algorithm to determine 

bounds on the normalized drawbar pull, DP/W. No measurement of the drawbar pull was 

made, so assessment of the accuracy of the bounds relies on consistency between the 

predicted bounds and the known terrain classes. 
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4.4 Results  

4.4.1 FSRL Wheel-Terrain Interaction Testbed 

Each of the terrain characterization approaches—contact region model with 

absolute sinkage, Bekker model with relative sinkage, and Bekker model with absolute 

sinkage—were applied to the FSRL wheel-terrain interaction testbed data, to compare the 

experimentally observed drawbar pull to predicted bounds for the drawbar pull.  

Figure 4-12 shows the results for the contact region model with absolute sinkage 

measurement. In this figure, the horizontal axis indicates the terrain type and vertical 

load, and the vertical axis indicates the normalized drawbar pull, DP/W. The triangles and 

squares indicate the predicted upper and lower bounds predicted for the normalized 

drawbar pull, and the circles indicate the experimentally observed normalized drawbar 

pull.  
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Figure 4-12. Testbed results for Contact Region Model with Absolute Sinkage (CRAS) 
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In this figure it can be seen that this approach is consistently correct with respect 

to its bounds: none of the observed drawbar pull values fall outside the predicted bounds. 

However these bounds are quite loose, with an average margin
22

 of 0.84 between the 

observed value and the upper bound, and an average margin of 0.53 between the 

observed value and the lower bound. Thus they are likely to be marginally helpful in 

confidently identifying terrain that can be safely traversed. For example, although wet 

topsoil is relatively easy to traverse (with a measured DP/W of just over 0.5), the bounds 

cannot confidently predict that it would be at all traversable, since the predicted lower 

bound is less than zero. 

Figure 4-13 shows results for the Bekker model with relative sinkage measured. 

Here the predicted bounds are significantly tighter. With this approach, the average 

margin between the measured value of DP/W and the upper bound was 0.10, and the 

average margin between the measured value and the lower bound was 0.43. In one case 

(clay at 53.2 N) the optimization predicted an upper bound which fell below the 

measured value of DP/W. However, while this small underestimation may lead the rover 

to underestimate the safety of traversing this terrain, a pessimistic error such as this 

would not put the rover in danger. In another case (bentonite at 21.4 N) the optimization 

algorithm was unable to find any combination of parameters that yielded the observed 

wheel sinkage and torque. This suggests that the model may not accurately represent the 

relationship between slip, sinkage, and torque in that terrain. Overall, the results are good, 

with tight upper bounds. While the looseness of the lower bounds is somewhat improved 

                                                 
22

 The average margin was calculated as the average of the absolute values of the differences between the 

measured DP/W and the bound. 
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over the contact region model, tighter lower bounds would improve the ability of this 

approach to identify safely traversable terrains. 
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Figure 4-13. Testbed results for Bekker Model with Relative Sinkage (BRS) 

Figure 4-14 shows the results for the Bekker model with absolute sinkage 

measured. This approach shows the tightest bounds of the three approaches, with an 

average margin of 0.23 between the observed DP/W and the upper bound, and an average 

margin of 0.21 between the observed DP/W and the lower bound. Compared to the 

previous approaches, the greatest improvement is in the tightness of the lower bound.  
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Figure 4-14. Testbed results for Bekker Model with Absolute Sinkage (BAS) 

There are three cases in which the experimentally observed drawbar pull lay 

outside the calculated bounds. For clay at 53.2 N the upper bound on DP/W was too low, 

and for orange sand the lower bound was too high. This suggests that the model may not 

accurately represent the stress distributions in terrains producing very low (<0) or very 

high (>1) values of DP/W. This may be related to the range of terrains for which the 

Bekker parameters were previously measured,
23

 and that the Bekker parameter ranges 

defined in Table 4-2 need to be widened to accurately model the terrains used in this 

experiment. Additionally, the lower bound for bentonite at 21.4 N was 0.87 higher than 

the experimentally observed DP/W. This difference is large enough to suggest errors in 

                                                 
23

 The ranges for the Bekker parameters defined in Table 4-2 were based on several previous works, each 

of which measured Bekker parameters for only a few different types of terrain. Since the terrains studied in 

these previous works were not originally intended to span the space of physically reasonable terrains, there 

may be some terrains whose Bekker parameters lie outside the ranges defined in Table 4-2.  
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the data collection specific to this data set, but since no errors were obvious in the data, 

this case was included for completeness. Without including the Bentonite data set, the 

average margin between the measured DP/W and both the upper and lower bounds is 

0.15. 

Figure 4-15 shows a comparison of all the predicted bounds, and Table 4-5 

summarizes the numerical results. As described previously, the contact region model with 

absolute sinkage yielded the loosest bounds, while the Bekker model with absolute 

sinkage yielded the tightest bounds. For conservative traversability prediction, the lower 

bound is more important, and in this situation the Bekker model with absolute sinkage is 

significantly better in identifying safely traversable terrain than the other models, despite 

the slight overestimation of DP/W for orange sand.  
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Figure 4-15. Comparison of testbed results for all approaches 
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TABLE 4-5. SUMMARY OF TESTBED RESULTS 

 Average Margin between Measured DP/W and Bound 

Approach Lower Bound Upper Bound 

Contact Region Model with 

Absolute Sinkage 
0.53 0.84 

Bekker Model with  

Relative Sinkage 
0.43 0.10 

Bekker Model with 

Absolute Sinkage 
0.21 0.23 

 

4.4.2 TORTOISE Rover on Wingaersheek Beach 

To study the performance of the mechanical terrain characterization algorithm in 

an outdoor environment, the Bekker model with absolute sinkage approach was applied 

to data from the TORTOISE rover on Wingaersheek Beach, as shown in Figure 4-16. In 

this figure, the horizontal axis indicates the approximate position of the right-front wheel 

of the rover during the 50% spin state. The vertical axis indicates the normalized drawbar 

pull, DP/W. The shade of the background indicates the terrain being traversed, as 

determined by manual labeling. 
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Figure 4-16. TORTOISE results for Bekker Model with Absolute Sinkage 

While no ground truth for the drawbar pull measurement is available for these 

results, they appear to be consistent with known physical characteristics of the terrains 

being traversed. In this chart, the DP/W bounds appear to be lowest when the right-front 

wheel is on beach grass. This is consistent with the low available drawbar pull expected 

for beach grass, a highly compressible terrain that is relatively slippery. The predicted 

DP/W bounds are highest when the wheel is on rock. This result is consistent with the 

high available drawbar pull expected for rough, highly cohesive rock. For sand, both the 

DP/W bounds and the expected value of drawbar pull lie between those of sand and 

beach grass. 
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4.5 Conclusions 

This chapter has presented an approach for evaluating terrain traversability which 

is appropriate for situations when a high degree of confidence is required. This approach 

uses an optimization framework to find upper and lower bounds on the normalized 

drawbar pull subject to observed wheel sinkage and torque. It uses two general terrain 

models, and presents three distinct model/measurement pairs. The normalized drawbar 

pull is guaranteed to lie between the bounds if the terrain is accurately represented by the 

model. 

Using data from the FSRL wheel-terrain interaction testbed with five different 

terrains and six different vertical loads, the three methods were compared. The tightest 

bounds were achieved using the Bekker model with absolute sinkage, which 

demonstrated good consistency with experimentally observed drawbar-pull. This drawbar 

pull bounding method was also applied to data from a four-wheeled rover in a natural 

environment, and the associated drawbar pull predictions appear to be consistent with 

known physical characteristics of the terrains being traversed. 

This technique for terrain characterization is likely to be useful in situations where 

a conservative estimate of wheel thrust is desired but cannot be measured directly. As a 

proprioceptive terrain sensing technique, it can be used for terrain clustering (by simple 

binning of the predicted lower bound), or it can be used as a component of a larger 

system, such as the self-supervised terrain classification approach presented in Chapter 5. 

4.5.1.1 Future Work 

Future work in the area of terrain characterization has the potential to further 

improve the ability of a rover to predict terrain traversability. Because the approach of 
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measuring relative sinkage is particularly sensitive to the relationship between sinkage 

and slip ratio, use of a more accurate model for slip-sinkage
24

 behavior might improve 

the bounds for the relative sinkage measurement approach significantly. Additionally, 

experiments on sloped terrain would be valuable to determine how much the slope of the 

terrain affects the net traction force.  

                                                 
24

 Slip-sinkage is the mechanism by which a wheel that is slipping relative to the terrain exhibits higher 

sinkage than a wheel that is rolling without slip. Slip-sinkage behavior was observed in experiments by 

Hegedus (1963), and mathematical models were described by Bekker (1969, pp. 139-140) and by Steiner 

(1978). 
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Chapter 

5 
Chapter 5 Self-Supervised Classification 

 

In this thesis, a self-supervised classification framework is proposed which allows 

measurements of mechanical properties of local terrain to be generalized to yield 

predictions about mechanical properties of distant terrain. The self-supervised 

classification framework uses the algorithmic components presented in Chapters 2, 3, and 

4.  

This chapter presents two instantiations of the self-supervised classification 

framework. The first instantiation, presented in Section 1.1, uses a supervised 

proprioceptive terrain classifier to identify human-defined terrain classes associated with 

proprioceptively sensed terrain patches. Because the exteroceptive terrain classifier learns 

to identify terrain patches in the distance that correspond with the human-defined terrain 

classes, this instantiation is used to experimentally validate the self-supervised 

classification framework, Thus the results of exteroceptive terrain classification can be 

directly compared to ground truth (i.e. hand-labeled terrain classes observed in stereo 

camera images). However, because human supervision is required to train the 

proprioceptive terrain classifier, this instantiation is not appropriate for implementation in 

novel environments where some of the terrain classes may not be known a priori. 
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The second instantiation, presented in Section 1.1, is designed for scenarios in 

which no a priori knowledge of the terrain classes is available. In this instantiation, 

terrain classes are defined to correspond to ranges of a traversability metric, and thus 

exteroceptive terrain class predictions are used to predict the traversability of distant 

terrain. This instantiation is demonstrated using experimental data. 

5.1 Experimental Validation of Self-Supervised Classification 
Framework 

5.1.1 Introduction 

Traditional methods for sensing non-geometric hazards, such as wheel sinkage 

measurement and wheel slip detection, are typically dependent on proprioceptive sensing 

of wheel-terrain interaction, and thus are limited to characterizing terrain patches in 

physical contact with the rover. This implies that a rover could not recognize a potentially 

hazardous situation until it has at least one wheel in contact with the hazard. To allow for 

predictive non-geometric hazard avoidance, remote detection of non-geometric hazards is 

needed. The self-supervised classification framework presented here provides a method 

for generalizing information gained from proprioceptive sensors to yield information 

about distant terrain. 

Here, “self-supervised” refers to automatic training of the remote terrain 

classifier. Whereas in a traditional (i.e. manually) supervised classifier a human provides 

labeled training examples for each class of interest, in a self-supervised framework 

another classification algorithm identifies these training examples. In the context of this 

thesis, proprioceptive sensors are used to identify terrain patches associated with the 

terrain classes of interest, and visual features associated with these terrain patches are 
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used to train a visual classifier. This visual classifier then identifies instances of these 

terrain classes in a distant scene.  

In the self-supervised framework presented in this section, local terrain patches 

are classified based on the vibration signature in the rover structure caused by wheel 

terrain interaction, and distant terrain patches are classified based on stereo imagery as 

belonging to one of the terrain classes of interest. Note that visual data used for training 

can be gathered either 1) from a camera with a view of the terrain under the rover wheels, 

or 2) from stored imagery from a camera with a view of the terrain in front of the rover. 

In the latter scenario, odometry-based position estimation is used to identify where the 

currently sensed terrain patch appears in the stored images. 

To assess the performance of self-supervised classification in these two scenarios, 

experiments were performed using the four-wheeled TORTOISE rover in an outdoor 

beach environment. The accuracy of the self-supervised approach in classifying terrain 

was compared to that of the traditional “manually supervised” classifier presented in 1.1. 

Results demonstrate the viability of the self-supervised classification framework. 

Section 5.1.2 describes the self-supervised classification approaches. Section 

5.1.3 presents detailed information about the experiments, and Section 5.1.4 presents the 

results of the experiments. Section 5.1.5 presents the conclusions drawn from these 

results and suggests directions for future research. 
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5.1.2 Self-Supervised Classification Approaches 

5.1.2.1 Overview 

The self-supervised learning process has two stages: the training stage and the 

classification stage. In the training stage, the proprioceptive terrain classifier—in this 

instantiation a supervised vibration-based terrain classifier—identifies terrain class labels 

for proprioceptively sensed terrain patches, as illustrated in Figure 5-1(a). These labels, 

along with visual features associated with the labeled terrain patches, are used to train the 

visual terrain classifier. In the classification stage, illustrated in Figure 5-1(b), the visual 

terrain classifier is used to predict terrain classes associated with distant terrain patches. 

 

Figure 5-1. Schematic of self-supervised classification, (a) vibration-supervised training of visual 

classifier, (b) prediction using visual classifier  
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A block diagram showing the inputs and outputs of the visual classifier is 

presented in Figure 5-2. In the training stage, shown in Figure 5-2(a), the visual classifier 

takes as inputs (1) terrain class labels identified by the vibration-based terrain classifier, 

and (2) visual features associated with the labeled terrain patches. In the classification 

stage, shown in Figure 5-2(b) the visual classifier takes visual features as inputs, and 

outputs the terrain class associated with the observed terrain patches. 

 

Figure 5-2. Information flow in self-supervised classification framework during (a) training and 

(b) classification 

5.1.2.2 Vibration-Based Terrain Classification 

In the self-supervised classifier framework studied in this section, a vibration-

based terrain classifier (described in 2.1) provides labeled examples for training a visual 

classifier (described in 1.1). The vibration classifier labels terrain patches based on 

vibrations recorded by a contact microphone fixed to the rover suspension near its right 
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front wheel. Here it fills the role of the “supervisory” classifier, because it supervises the 

labeling of training data. 

The vibration-based terrain classifier represents vibrations as log-scaled power 

spectral densities computed over a 1-second window. The 558-element representation is 

classified using a support vector machine (SVM) that has been trained using human-

labeled vibration data. Full details on this classifier are presented in 2.1. 

It should be noted that in the self-supervised classification framework, care must 

be taken to ensure the accuracy of the supervisory classifier. This is necessary to prevent 

incorrect labels from corrupting the training of the visual classifier. In this work, 

accuracy is guaranteed by combining multiple separate vibration-based class predictions 

for each terrain patch. Thus, the vibration-based terrain classifier identifies a terrain class 

based on each 1-second segment of vibration data. Since the rover travels at a slow speed, 

multiple vibration segments correspond to the same terrain patch, and each of them is 

classified independently. If any of these terrain class assignments disagree, no training 

data from that terrain patch is used for training the visual classifier. 

5.1.2.3 Vision-Based Terrain Classification 

The vision-based classifier in this self-supervised framework has been presented 

in 1.1. This classifier is intended to classify distant terrain patches based on visual 

features derived from color stereo images. As described in 1.1, color stereo cameras yield 

color, visual texture, and geometry classification features. Features associated with each 

of these sensing modes are classified using separate support vector machines, and the 

resulting class likelihoods are combined using naïve Bayes fusion. It should be noted that 
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no novel terrain detection stage is employed here, because all of the terrain patches are 

expected to correspond with one of the known terrain classes. 

5.1.2.4 Self-Supervised Training Framework 

Two different approaches for obtaining the visual data necessary for training a 

vision-based classifier are considered here: 1) the visual data can be captured using a 

belly-mounted camera, termed “local training,” or 2) the visual data can be captured 

using stereo cameras, termed “remote training.” Each of these approaches has advantages 

and disadvantages, and these two approaches are compared based on their experimental 

performance in 5.1.4. 

5.1.2.4.1 Local Training 

The first approach, termed “local training,” trains the visual terrain classifier 

using images from a belly-mounted camera captured simultaneously with the vibration 

data collection. The information flow for the this approach is shown in Figure 5-3, and a 

sample image from a belly-mounted camera is shown in Figure 5-4. Thus, as soon as the 

vibration-based classifier returns a terrain class label, the belly-mounted camera captures 

an image of the terrain. Image data from all proprioceptively classified terrain patches are 

used to train the visual classifier, which is then used to classify terrain based on visual 

features derived from the forward-looking stereo cameras.  
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Figure 5-3. Information during training phase using local training approach 

 

Figure 5-4. Sample image from belly-mounted camera 

This approach is easy to implement but has several drawbacks. First, terrain 

geometry is not available in images captured by the monocular belly-mounted camera on 

our rover, so no geometry data is available to train the visual classifier. Second, texture 

data calculated from a belly-mounted camera image is not easily comparable to texture 

data from a forward-looking stereo camera image because the scales at which the terrain 

is viewed are different.
25

 Thus, visual texture training data is not available to train the 

visual classifier. Because of these limitations, the visual classifier is restricted to 

                                                 
25

 Scaling of the texture features from one camera to another may be possible, but it was not explored in 

this thesis. 



5.1 Experimental Validation of Self-Supervised Classification Framework 143 

classifying terrain based on color features, and consistency of color data between the 

belly-mounted camera and forward-looking stereo cameras depends on careful control of 

the color calibration between the cameras. 

5.1.2.4.2 Remote Training 

In the second approach, termed “remote training,” forward-looking stereo images 

are stored in memory and recalled when the rover classifies a previously observed terrain 

patch using proprioceptive sensors, as illustrated in Figure 5-5. Thus, color, visual 

texture, and geometry features (Fcolor, Ftexture, and Fgeometry) associated with a given terrain 

patch, located at position (x,y) are stored in memory after being observed by the forward-

looking stereo cameras at time t0. When, at a later time t1, the rover reaches position (x,y), 

it uses proprioceptive sensors to identify the terrain class C associated with terrain patch 

P. The proprioceptively identified terrain class C, and the remotely sensed visual features 

Fcolor, Ftexture, and Fgeometry are then used to train the visual terrain classifier. 

 

Figure 5-5. Illustration of visual information being recalled in remote training approach 

This second approach relies on stereo processing to correlate image pixels with 

their corresponding terrain patch and on accurate position estimation to identify the 

location of the terrain patch the rover’s proprioceptive sensors are measuring. However, 
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this approach does not depend on accurate color calibration between multiple cameras, 

and texture and geometric data are readily available for use in training the visual 

classifier. 

5.1.2.4.3 Local and Remote Training 

In both self-supervised classification approaches, training data is accumulated as 

the rover travels, and the training data for each terrain class is stored in memory. To limit 

the training time for the visual classifier, each terrain class is limited to a maximum of 

400 sets of features
26

—some of the older data is discarded if new data arrives that would 

exceed that maximum.
27

 Visual terrain classification is implemented on a patch level; 

each terrain patch is classified via naïve Bayes fusion of the color, visual texture, and 

geometric features sensed for pixels corresponding to that patch. 

It should be noted that the decision to use a support vector machine for the self-

supervised visual classifier is particularly important, because there is a non-negligible 

chance that some of the training data may be incorrectly labeled. A boosting algorithm 

such as AdaBoost (Freund & Schapire, 1997) would be particularly inappropriate, 

because it would tend to assign excessively high importance to misclassified training 

data. 

                                                 
26

 It was observed in experimental analysis that 400 sets of features per terrain class represented a good 

balance between computation cost and classification accuracy.  
27

 The number of new feature sets added to the training data is the number of new feature sets sensed, up to 

the maximum of (1) 400 minus the number of old sets of features, (2) 400 divided by the number of terrain 

patches represented in the training data, and (3) four (representing 1% of 400). If adding this many new 

feature sets would increase the training data beyond the 400 sets of features, older feature sets are discarded 

randomly to decrease the number to 400 feature sets. Randomly discarding older features has the effect of 

providing an exponentially decreasing likelihood that a feature from an older data set will be maintained, 

thus allowing the visual terrain classifier to adapt to slow changes in illumination, while not being 

excessively sensitive to the appearance of the most recently added terrain patches. 
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5.1.3 Experiment Details 

The two self-supervised classification approaches were compared to a traditional 

manually trained classifier—presented in 1.1—using experimental data collected on 

TORTOISE, a four-wheeled mobile robot developed at MIT, in an outdoor beach 

environment. 

5.1.3.1 Robot Configuration 

TORTOISE, shown in Figure 5-6, is an 80-cm-long, 50-cm-wide, 90-cm-tall 

robot with 20-cm-diameter rigid aluminum wheels with grousers. The wheels on either 

side are connected to the main body and mast via a differential. Full details on this robot 

are presented in Appendix A.  

 

Figure 5-6. TORTOISE, showing location of stereo camera pair 

For validation of the self-supervised classification framework, many of 

TORTOISE’s sensors were used, including the forward-looking mast-mounted stereo 
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camera pair, the belly-mounted monocular camera, the vibration sensor, and a body-

mounted two-axis tilt sensor. The stereo camera pair captured 640×480 resolution RGB 

color image pairs of the terrain in front of the rover. Range data were extracted from 

these images using SVS (Small Vision System), Videre Design’s commercial stereo 

processing software. The belly-mounted monocular camera captured 320x240 resolution 

RGB color images of the right-front wheel and its immediate surroundings. Vibrations 

were sensed using the contact microphone mounted on the suspension near the rover’s 

right front wheel. The two-axis tilt sensor measured body pitch and roll for proper 

registration of the stereo camera images. 

During experiments the rover traveled at an average speed of 3 cm/sec. Vibrations 

were recorded at 44.1 kHz, body pitch and roll were captured at 26.7 Hz, images from the 

belly-mounted camera were captured at 2 Hz, and forward-looking stereo image pairs 

were captured at 0.66 Hz.
28

 These data were stored during experiments and processed 

offline. 

5.1.3.2 Experiment Environment 

Wingaersheek Beach was used as the environment for validating the self-

supervised classification framework. Here, the three distinct terrain classes were sand, 

rock, and beach grass. These classes are shown in Figure 5-7. A full description of 

Wingaersheek Beach is presented in Appendix B. 

                                                 
28

 The belly-mounted camera rate of 2 Hz was chosen to be able to sense the slow changes of wheel sinkage 

and capture multiple images of each terrain patch contacted by the rover wheel. The forward-looking stereo 

image rate was limited by available storage on the rover computer. 
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Figure 5-7. TORTOISE on Wingaersheek Beach, showing terrain classes 

Six experimental data sets were used in this analysis. Each data set was collected 

during a single rover traverse of 10 to 35 meters along a straight-line path containing a 

combination of two or three terrains. No two paths were identical. These experiments 

were conducted over the course of three days. During experiments the lighting varied 

from uniform diffuse light from an overcast sky to harsh direct light from the sun low in 

the sky.  

5.1.3.3 Data Processing 

After the experiments were complete, stored data was processed offline. Range 

data were calculated for every fifth stereo image pair.
29

 Every 20
th

 stereo image pair
30

 

was labeled by hand to identify the ground-truth terrain class corresponding to each pixel. 

By combining the labels with the range data, ground truth terrain classes were identified 

                                                 
29

 Every fifth image pair was chosen to reduce the computation time for range data calculation and to 

reduce repeated training and testing on the same image patches viewed from nearly identical positions. 
30

 Every 20
th

 image pair was chosen to provide at least 10 labeled stereo image pairs in each data set. 
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for each 20-cm by 20-cm terrain patch. For each of the six data sets, between 10 and 28 

stereo image pairs were labeled. Additionally, every image from the belly-mounted 

camera was labeled to identify the ground truth terrain class under the rover’s right-front 

wheel. 

For the baseline manually supervised classifier, the first two stereo image pairs 

with ground truth labels were used to train a visual classifier for each data set. Four 

hundred data features for each sensing mode from each class were used for training the 

classifier. The remaining hand-labeled images from that data set were used for testing. 

Across all six data sets, 93 image pairs were used for assessing the accuracy of the visual 

classifiers. 

For self-supervised classification, a separate vibration-based classifier was trained 

for each data set, using hand-labeled vibration data from the other data sets. This 

vibration-based classifier was then used to provide labels for the entire rover traverse. At 

the end of the traverse, the self-supervised visual classifier was trained using 400 features 

from each sensing mode for each class. The accuracy of the self-supervised classifier was 

tested using the same stereo test images as were used for testing the baseline manually 

supervised classifier. 

5.1.4 Results 

5.1.4.1 Approach 1: Local Training 

The first approach for self-supervised training of a visual terrain classifier uses 

images from a monocular belly-mounted camera as training data, with labels provided by 

a vibration-based classifier. Since geometry information is not available from the belly-
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mounted camera and visual texture is not easily comparable between the belly-mounted 

camera and the stereo cameras (due to the difference in observation distance), color 

information is used exclusively. 

Figure 5-8 shows the receiver operating characteristic (ROC) curves for the 

locally trained self-supervised visual classifier. This plot shows classification accuracy as 

measured using the 26 test images from one data set. Here, the horizontal axis indicates 

the percentage of false positives (%FP) and the vertical axis indicates the percentage of 

true positives (%TP). Note that the scale of the horizontal axis is much larger than that of 

the vertical axis, to allow the curves to be seen more easily. Each curve on the plot 

represents a single terrain, since both %TP and %FP are functions of the threshold for 

leaving terrain unclassified. The end point of each curve represents the point at which 

none of the terrain is left unclassified. Random assignment of terrain patches to classes 

would tend to yield a diagonal line along which the true positive percentage equals the 

false positive percentage.  
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Figure 5-8. ROC curves for self-supervised classifier using local training 

It can be seen that more than 90% of the sand is correctly classified before 1% of 

the other terrains are falsely identified as sand. Classification of rock is also very 

accurate, though less sensitive, with more than 50% of the rock correctly classified before 

1.5% of the other terrains are falsely identified as rock. Here the curve for beach grass is 

only barely visible, since it lies along the vertical axis. With no terrain left unclassified, 

41% of the beach grass was correctly classified, with less than 0.1% of the other terrains 

being falsely identified as beach grass. High accuracy was also observed for several of 

the other data sets, but a few data sets showed significantly worse performance—some 

even worse than random—suggesting potential fragility of this local training approach in 

real world environments. 

For comparison, a manually trained visual classifier was implemented. This 

classifier was trained using color, texture, and geometry data from the first two images in 
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the data set. For each terrain, 400 feature vectors for each sensing mode were randomly 

selected and used for training. Figure 5-9 shows ROC curves for this classifier applied to 

the same 26 test images used for the self-supervised classifier. Note that there is no 

overlap between the images used for training and those used for testing. 
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Figure 5-9. ROC curves for manually trained classifier 

It can be seen that, the manually trained classifier performed very well for this 

data set. The highest classification accuracy is again observed for the sand class, with 

more than 95% of the sand correctly classified before any of the other terrain is falsely 

identified as sand. The correct classification rates of both beach grass and rock are 

improved over the self-supervised approach—at 66% and 81%, respectively—but at a 

cost of slightly higher rates of false positives.  

Self-supervised classifiers and manually trained classifiers were implemented for 

each of the six data sets, and the results are shown in Table 5-1. Here, ROC curves were 
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generated showing the combined true positive and false positive rates across all three 

terrain classes. The performance of each classifier on a data set was summarized by a 

single point on the ROC curves—the point at which the difference between the true 

positive percentage and the false positive percentage is at a maximum. The first two rows 

of the table show statistics of the true positive percentage of the classifiers, corresponding 

to the vertical coordinate of the optimal point along the ROC curves. The third and fourth 

rows show statistics of the false positive percentage, corresponding to the horizontal 

coordinate of the optimal point. The last two rows show statistics related to the ratio 

between the true positive percentage and the false positive percentage. This metric, 

%TP/(%TP + %FP), is the fraction of labeled patches which are labeled correctly. Note 

that the numbers in brackets indicate a 95% confidence interval for each metric. 

TABLE 5-1. COMPARISON OF SELF-SUPERVISED CLASSIFICATION USING LOCAL TRAINING TO 

MANUALLY SUPERVISED CLASSIFICATION 

 

Self-Supervised 

Classifier using 

Local Training 

(Color only) 

Manually 

Supervised 

Classifier 

Manually 

Supervised 

Classifier 

(Color only) 

Mean % True Positive 
42.7% 

[0% - 92.4%] 

94.2% 

[91.1% - 97.3%] 

96.6% 

[95.2% - 97.9%] 

St. Dev. of  

% True Positive 

47.4% 

[26.9% - 100%] 

2.9% 

[1.8% - 7.2%] 

1.3% 

[0.8% - 3.1%] 

Mean % False Positive 
7.3% 

[0% - 18.9%] 

4.7% 

[1.5% - 8.0%] 

3.3% 

[1.9% - 4.8%] 

St. Dev. of  

% False Positive 

7.3% 

[4.1% - 27.2%] 

3.1% 

[1.9% - 7.6%] 

1.4% 

[0.9% - 3.4%] 

Mean 

%TP/(%TP + %FP) 

0.76 

[0.30 – 1.0] 

0.96 

[0.94 – 0.98] 

0.97 

[0.95 – 0.98] 

St. Dev. of  

 %TP/(%TP + %FP) 

0.29 

[0.16 – 1.0] 

0.02 

[0.01 – 0.04] 

0.01 

[0.01 – 0.03] 

It can be seen that the self-supervised classifier using local training (Table 5-1, 

first column) demonstrates a poor true positive rate, as denoted by the 42.7% mean value. 
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The false positive rate is low—7.4% on average—but the other classifiers demonstrated 

significantly lower false positive rates, especially as compared to their true positive rates 

as indicated by the %TP/(%TP + %FP) metric. The manually supervised classifier 

demonstrates better performance than the self-supervised classifier using local training in 

each of the metrics. Most of these differences were statistically significant. It should be 

noted that there were several runs for which the self-supervised classifier using local 

training performed nearly as well as the manually supervised classifier, but its average 

performance was degraded by runs in which it performed significantly worse, suggesting 

that the self-supervised classification approach using local training suffers from poor 

robustness, possibly due to shadows on the terrain observed by the belly-mounted 

camera. 

To analyze whether the difference between these classifiers was due to the use of 

texture and geometric features
31

, an additional manually trained classifier was 

implemented using only color data. Results from that classifier are shown in the third 

column of Table 5-1. These results show that the manually supervised classifier using 

only the color feature is significantly more robust than the self-supervised classifier. 

Thus, other factors, such as miscalibration between cameras used for training and 

cameras used for testing, are likely to be the cause of the poor performance of the locally 

trained self-supervised classifier. 

It should be noted that while the manually supervised classifier based solely on 

color seems to perform slightly better for these data sets, this difference does not appear 

                                                 
31

 Recall that the self-supervised classifier using local training employed only color features, whereas the 

manually supervised classifier employed color, visual texture, and geometry features. 
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to be significant. In previous work this difference has favored the manually supervised 

classifier using color, texture, and range data (Halatci et al., 2008). 

5.1.4.2 Approach 2: Remote Training 

The second approach to self-supervised training of a visual classifier is to store in 

memory the appearance of a terrain patch (as measured by the forward-looking stereo 

pair) and recall the appearance when the rover comes into contact with that terrain patch. 

Stereo-derived range estimation is used to associate pixels with terrain patches, and 

wheel odometry-based position estimation associates the rover’s position at a later time 

with the terrain patch. Since this approach uses the same cameras for collecting both 

training data and test data, color, texture, and geometry data are all available for training, 

and the potential for color miscalibration is eliminated.  

Figure 5-10 shows ROC curves for the self-supervised terrain classifier based on 

remote training for the same 26 images used for the results shown in Figure 5-8 and 

Figure 5-9. The remotely trained self-supervised visual classifier demonstrates accurate 

terrain classification on this data set. More than 80% of both sand and beach grass are 

correctly classified before 1% of the other terrains are misclassified as either. While the 

classification of rock has a low false positive rate—less than 1.5%—the classifier is less 

successful at detecting rock than the other terrains. Just under 25% of the rock was 

correctly classified for this data set. 
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Figure 5-10. ROC curves for self-supervised classifier using remote training 

A remotely trained self-supervised classifier and a manually trained classifier 

were implemented for each of the six data sets, and the results are shown in the first two 

columns of Table 5-2. The metrics shown are the same as in Table 5-1. Here it can be 

seen that the self-supervised classifier using remote training performs almost as well as 

the manually supervised classifier for each of the metrics. In fact, the difference in 

performance between the two classifiers is not statistically significant. The low values for 

the standard deviations suggest that this remote training approach to the self-supervised 

classification is significantly more robust than the local training approach. 
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TABLE 5-2. COMPARISON OF SELF-SUPERVISED CLASSIFICATION USING REMOTE TRAINING TO 

MANUALLY SUPERVISED CLASSIFICATION 

 

Self-Supervised 

Classifier using 

Remote Training 

Manually 

Supervised 

Classifier 

Manually 

Supervised 

Classifier 

(Prior Data Set) 

Mean % True Positive 
94.7% 

[91.0% - 98.3%] 

94.2% 

[91.1% - 97.3%] 

69.1% 

[29.7% - 100%] 

St. Dev. of  

% True Positive 

3.5% 

[2.2% - 8.5%] 

2.9% 

[1.8% - 7.2%] 

37.6% 

[23.4% - 92.1%] 

Mean % False Positive 
5.3% 

[1.5% - 9.1%] 

3.8% 

[2.0% - 5.5%] 

11.3% 

[0% - 24.6%] 

St. Dev. of  

% False Positive 

3.6% 

[2.2% - 8.8%] 

1.7% 

[1.0% - 4.1%] 

12.6% 

[7.9% - 31.0%] 

Mean 

%TP/(%TP + %FP) 

0.95 

[0.92 - 0.99] 

0.96 

[0.94 - 0.98] 

0.85 

[0.66 - 1.0] 

St. Dev. of  

 %TP/(%TP + %FP) 

0.03 

[0.02 - 0.08] 

0.02 

[0.01 - 0.04] 

0.16 

[0.09 - 0.45] 

The self-supervised approach is intended for situations when a manually trained 

classifier is not a viable option, due to the necessity of human labeling of terrain. In a 

planetary exploration setting, manual training would impose a significant delay between 

the time that training images were collected and the time that the trained classifier could 

be implemented. Thus, the accuracy of a self-supervised classifier is more fairly 

compared to a manually trained classifier trained on a previously collected data set. In 

this scenario, the training images for the manually supervised classifier are hand-labeled 

images drawn from one data set, and the performance of the classifier is tested using 

images from the following data set, captured minutes or days later. This results in 

variation in illumination for some data sets. For example, one of the data sets was 

captured with overcast skies, and the next was captured with low-angle, direct sunlight. 

The accuracy of such a classifier is presented in the third column of Table 5-2. 

Here the difference in performance between the self-supervised classification approach 

and the manually supervised classification approach is clear. The self-supervised 
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classification approach yields better true positive classification, a lower false positive 

rate, and higher overall classification accuracy, as compared to the manually supervised 

classifier when training delay is added.  

5.1.4.3 Computation time 

To enable real time operation, an effort was made to limit the computational 

complexity of training and testing of these classifiers, so the most computationally 

intensive tasks were stereo data extraction and texture feature computation. Extraction of 

geometric features from a 3-D point cloud takes an average of 5 seconds per image using 

a Matlab script on a Pentium 4 1.8 GHz desktop computer. Texture feature extraction 

takes 17.3 sec, using an unoptimized Matlab script. A C-code implementation would be 

expected to run much faster. 

Because it doesn’t rely on stereo data or texture feature extraction, the locally 

trained classifier can be trained very quickly. Training takes 1.7 seconds on a Pentium 4 

1.8 GHz desktop using the LIBSVM library. Color-based classification takes only 0.7 

seconds for a full 640×480 image. Classifying terrain patches requires that stereo data be 

computed to identify which pixel belongs to which patch; once that data is computed, 

each patch took an average of 0.01 seconds to classify in Matlab, with an average of 400 

patches per image.  

The remotely trained classifier took slightly less time to train, at 1.5 seconds on 

average, because some of the terrains had fewer than 400 training data points. 

Classification was slower for the remotely trained classifier, at 4.1 seconds per image, 

due to the use of texture and geometry data. 
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5.1.5 Conclusions 

In this section, two self-supervised classification approaches were presented. Both 

approaches train a visual classifier using terrain class labels identified locally using a 

vibration-based terrain classifier. The first approach uses images from a belly-mounted 

camera as training data. It was shown to have excellent performance in classifying terrain 

for some data sets, but experimentally observed results were inconsistent. The second 

approach uses the recalled appearance of a terrain patch to provide training data for a 

visual classifier. This approach was shown to perform as well as a manually supervised 

classifier trained using the same data set, and was shown to perform significantly better 

than the manually supervised classifier when a delay due to manual training is 

considered.  

While these results support the use of autonomous labeling to train a visual 

classifier, the vibration-based terrain classifier used to perform the labeling requires its 

own manually supervised training. Thus it is not a truly unsupervised approach suitable 

for application to novel environments where no a priori knowledge is available. 

5.2 Self-Supervised Terrain Learning System for Novel 
Environments 

5.2.1 Introduction 

For scenarios in which no a priori information about the terrain is available, a 

completely unsupervised terrain learning system can be assembled using the self-

supervised classification framework and component algorithms developed and validated 

earlier in this thesis. As with the self-supervised learning system validated in 1.1, this 

terrain learning system learns to identify instances of a terrain class in the distance based 



5.2 Self-Supervised Terrain Learning System for Novel Environments 159 

on the appearance of proprioceptively sensed terrain patches. However, the terrain 

learning system presented in this section uses terrain classes defined based on an 

explicitly calculated traversability metric, eliminating the need for human supervision 

during the training of the proprioceptive terrain classifier. This unsupervised terrain 

learning system was applied to experimental data from a four-wheeled rover in natural 

outdoor terrain.  

5.2.2 Terrain Learning System Framework and Algorithmic 
Components 

The proposed framework for self-supervised terrain learning is shown in Figure 

5-11. Within this framework the various individual components—the proprioceptive 

terrain classifier, the exteroceptive terrain classifier, and the terrain characterization 

algorithm—can be modified depending on the scenario in which the system is operating. 

These components all work together to produce a terrain property map, which is a 

representation of the topography and predicted mechanical terrain characteristics of the 

terrain patches in front of the rover. The components assembled for the results presented 

in 5.2.4 are presented below. 

 

Figure 5-11. Information flow for self-supervised classification framework 
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5.2.2.1 Self-Supervised Learning Approach 

As described in 1.1, there are multiple potential approaches to self-supervised 

learning. Based on the experimental results, the “remote training” approach was chosen 

for implementation in this terrain learning system. In this approach, images from 

forward-looking stereo cameras are stored in memory. When the proprioceptive terrain 

classifier identifies the class associated with a terrain patch, the terrain patch’s 

appearance is recalled to use in training the exteroceptive terrain classifier. This approach 

relies heavily on the accuracy of stereo processing and rover position estimation to 

properly associate the image data with the class labels, but it was shown using 

experimental data to yield more robust classification than the “local training” approach. 

5.2.2.2 Proprioceptive Terrain Classifier 

The proprioceptive terrain classification component for the terrain learning 

system is derived from the mechanical terrain characterization work presented in Chapter 

4. In this algorithm the local terrain is divided into classes based on the minimum bound 

for the net traction force, sensed during the 67% slip stage of the “Incremental Slip” 

behavior described in 2.2.2. (Vibration-based terrain classification, presented in 2.1, was 

not used because it requires use of a priori knowledge of the terrain classes and human-

supervised labeling of vibration data. Torque-based terrain clustering, presented in 1.1, 

was not used because it didn’t perform well in the experiments with the “Incremental 

Slip” behavior, and experiments with moderate values of slip are required for the 

mechanical terrain characterization algorithm.) 

Here, for every local terrain patch with associated slip data, DP/W bounds were 

calculated using the Bekker model with absolute sinkage described in 4.2.4.3. Five terrain 
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classes were defined based on the lower bound of DP/W. These classes, labeled A 

through E, are shown in Table 5-3. Class A corresponds to terrain which can be easily 

traversed, such as rock with a rough surface that a rover’s grousers can grip. Class E 

corresponds to terrain which is untraversable for any slope, such as a highly compressible 

slippery powder into which a rover’s wheels would sink. Classes B through D correspond 

to terrains which lie between those two extremes. These class labels are passed on to the 

mechanical terrain characterization and remote terrain classification algorithms. 

TABLE 5-3. CLASS LABELS AND ASSOCIATED DP/W RANGES 

Class Label Range for DP/W lower bound 

A 0.5 to ∞ 

B 0.25 to 0.5 

C 0.1 to 0.25 

D 0 to 0.1 

E -∞ to 0 

5.2.2.3 Exteroceptive Terrain Classifier 

In the terrain learning system, exteroceptive terrain classification was 

implemented using the two-stage visual classifier presented in Chapter 3. This approach 

uses a two-class SVM classifier to identify whether a terrain patch contains novel terrain, 

and a separate SVM classifier to identify which of the known classes is associated with 

the terrain. Both stages use the same color, texture, and geometry features to represent the 

terrain. 

Since the two stages both output probabilities, it is straightforward to identify the 

probability of a distant terrain patch being associated with each of the five known classes 

(A, B, C, D, and E), or the unknown class, Unknown: 

 )()|()( KnownPKnownAPAP =  (5-1)
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and 

 )()( NovelPUnknownP = , (5-2)

where P(Known) and P(Novel) are outputs of the novel terrain detector, and P(A|Known) 

is one of the outputs of the known terrain classifier. Thus, the remote terrain classifier 

calculates the probability of each terrain cell belonging to each terrain class: [P(A), P(B), 

P(C), P(D), P(E), P(Unknown)]. 

5.2.2.4 Terrain Characterization 

In the instantiation of the terrain learning system described here, the terrain 

classes identified by the proprioceptive terrain classifier are defined by their mechanical 

characteristics, so a separate terrain characterization stage is redundant. 

5.2.2.5 Class/Property Fusion 

The last important step in producing the terrain property map is to combine the 

outputs of the remote terrain classifier with the output of the terrain characterization 

algorithm. To make the terrain property map easier to interpret, it is desirable to have 

only a single number represent the terrain traversability in each patch. For this terrain 

learning system, that number is a conservative estimate for the net traction force, DP/W.  

Here that conservative estimate of DP/W is defined as the highest value for which 

there is at least an 80% probability that the true value would be higher. This can be 

calculated from the ranges of lower DP/W bounds associated with the classes (Table 5-3) 

and the class probabilities from the remote terrain classifier. For example, given the 

probabilities P(A) = 50%, P(B) = 25%, P(C) = 6%, P(D) = 10%, P(E) = 4%, P(Unknown) 

= 5%, a conservative estimate of DP/W for the associated terrain cell would be 0.1 (i.e. 
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the lower end of the range for class C), because P(A) + P(B) + P(C) ≥ 80%. The value of 

80% was chosen because it provides a reasonable balance between being too cautious 

(since the ranges are already estimates of the lower bound of DP/W) and being too 

optimistic (which could endanger the safety of a rover).  

5.2.3 Experiment Details 

The terrain learning system was applied to data from a traverse of the four-

wheeled rover, TORTOISE, on Wingaersheek Beach. This is the same platform and 

environment on which all of the algorithms in this thesis have been tested. A description 

of TORTOISE is presented in Appendix A. A description of Wingaersheek Beach is 

presented in Appendix B. 

Several of the sensors on TORTOISE were used during testing of the terrain 

learning system. Rover wheel torque was sensed using the torque sensor attached to the 

right front wheel. The appearance of distant terrain was sensed using the mast-mounted 

stereo cameras. Rover wheel velocity was sensed using encoders mounted to each wheel 

motor, and this velocity was integrated to estimate the rover’s position. Pitch and roll of 

the main body were sensed using a two-axis tilt sensor mounted on the rover body. 

Images from the belly-mounted camera were used to measure absolute wheel sinkage. 

For the results presented here wheel sinkage measurement was implemented in post-

processing using a human to manually identify the wheel-terrain interface, but this 

process could be automated using the visual wheel sinkage measurement approach 

presented in (Brooks, 2004). 

The terrain learning system was applied to a single 10-meter traverse of the rover 

across the beach that included all three terrain classes: sand, beach grass, and rock. 
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During the traverse, the rover performed the “Incremental Slip” behavior described in 

2.2.2, and all data was stored so that it could be passed to an offline implementation of 

the sensing system. 

5.2.4 Results 

The output of the terrain learning system is a prediction of a lower bound of net 

drawbar pull for each terrain patch as predicted using each stereo image. This is most 

easily viewed as a video, but still frames are shown in Figure 5-12, Figure 5-13, and 

Figure 5-14. 
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(a) 

 

(b) 

Figure 5-12. Terrain learning system results, at t = 5.0 sec, distance traveled = 0.13 m, (a) 3-D view, 

(b) plan view showing terrain classes 

Figure 5-12 shows the rover’s internal map of the terrain, just after it has started 

its traverse. Figure 5-12(a) shows a 3-D view illustrating the topography of the terrain as 

sensed by the rover (which is shown in the lower left corner of the image). At this instant, 

the range data calculated from the first two images from the stereo pair is sparse, as 

shown by the large gaps in the terrain map. Figure 5-12(b) shows a plan view of the 

terrain, with the terrain patches labeled based on the predicted lower bound of the 

drawbar pull. Since the rover hasn’t completed mechanical characterization of any of the 
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terrain patches for which it has stereo data, there is no “known” terrain in the distance. 

All observed terrain is considered to be novel, and the terrain patches are labeled “U” 

(Unknown), signifying that it doesn’t have sufficient experience to assess the 

traversability. 

 

(a) 

 

(b) 

Figure 5-13. Terrain learning system results, at t = 129.0 sec, distance traveled = 3.4 m, (a) 3-D view, 

(b) plan view showing terrain classes 

Figure 5-13 shows the rover’s internal terrain map after 129 seconds, when the 

rover has traveled 3.4 meters. Figure 5-13(a) shows that the rover’s knowledge of the 

terrain topography has increased, as illustrated by the reduced number of gaps in its 



5.2 Self-Supervised Terrain Learning System for Novel Environments 167 

internal representation of the terrain. Figure 5-13(b) shows that the rover has identified 

the minimum net traction force for three terrain patches with associated stereo data. 

These are illustrated in the figure by the three labeled terrain patches at 1.9m, 2.5m, and 

3.7m. (Here, terrain patches which have been characterized through physical interaction 

are labeled with italicized letters.) Since these three patches all fall into class B 

(representing a lower bound of DP/W between 0.25 and 0.5 from Table 5-3), all of the 

recognized (i.e. not novel) terrain in the distance is predicted to fall into that range. 

Terrain that is sufficiently different from the terrain the rover has driven over is still 

labeled “U,” with unknown traversability properties. 
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(a) 

 

(b) 

Figure 5-14. Terrain learning system results, at t = 226.5 sec, distance traveled = 6.02 m, (a) 3-D view, 

(b) plan view showing classes 

Finally, Figure 5-14 shows the rover’s internal terrain map after 226.5 seconds. At 

this point the rover has tactile data from terrain with a range of net traction forces, and it 

has associated visual data with several locally identified classes. Thus, when the terrain is 

observed in the distance, a variety of net traction forces are predicted. Some sections 

show high traction forces (labeled “B”), while others show lower traction forces (labeled 

“C” or “D”). In the distance, terrain is still observed to be novel, suggesting that the 
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terrain in the distance may have a significantly different appearance than the terrains 

previously traversed. 

5.2.5 Conclusions 

This section has presented a terrain learning system for novel environments that is 

capable of learning from experience to visually recognize terrain and predict a lower 

bound on the net traction force. This system employs a self-supervised learning approach 

that uses the recalled appearance of terrain from stored images to train a visual classifier. 

Proprioceptive terrain classification is accomplished by grouping terrain patches based on 

the mechanically sensed lower bound on the net traction force. Exteroceptive 

classification is accomplished using a two-stage visual classifier capable of recognizing 

novel terrain. 

Results from the application of this complete terrain sensing system to an 

experimental data set yields reasonable results, however no ground truth is available to 

confirm the accuracy of the net traction force predictions. It is expected that the 

capabilities for visual recognition of the traction forces would continue to improve over 

significantly longer traverses. Future work is needed to establish how the tightness of the 

predicted traversability bounds will change over longer traverses. 
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Chapter 

6 
Chapter 6 Conclusions and Suggestions for Future Work 

 

6.1 Contributions of this Thesis 

This thesis has presented a framework of algorithms to enable a planetary rover to 

accurately predict mechanical properties of terrain at a distance by learning from 

experiences gained during traverses of similar terrain. This has been accomplished 

through the use of a self-supervised learning framework, which provides a coherent 

architecture in which local terrain classification, remote terrain classification, and 

mechanical terrain characterization can be combined. 

In Chapter 2, two distinct approaches were presented for classification of terrain 

based on proprioceptive sensor data. The first section presented a method for vibration-

based terrain classification using a support vector machine (SVM). It is suitable for a 

supervised scenario, i.e. when labeled vibration training data is available. The second 

section presented a novel method for segmenting terrain based on the wheel torque 

sensed during high wheel slip ratio conditions. This approach is suitable for an 

unsupervised scenario, i.e. when the terrain classes are not known a priori. A comparison 

of experimental results using this approach showed that higher induced wheel slip ratios 

improve segmentation accuracy. Both local classification approaches were validated 
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using experimental data from a four-wheeled rover in a beach environment. These local 

terrain characterization approaches are viable methods for distinguishing terrain using 

features from proprioceptive sensors, making them inherently insensitive to changes in 

illumination. 

Chapter 3 addressed exteroceptive classification of terrain. The first section 

described a SVM-based visual classifier, modeled on the approach of Halatci (Halatci, 

2006; Halatci et al., 2008). It presented new experimental results for this classification 

approach. The second section addressed a specific shortcoming of a supervised classifier: 

recognizing when new observations are not associated with any of the trained classes. 

This section introduced a new approach to detection of novel terrain. This approach was 

specifically targeted to the self-supervised classification scenario in which a large 

quantity of unclassified training data is available. Data from rover experiments in a beach 

environment were used to validate this novelty detection approach. A two-stage visual 

classification system combining these two algorithms can both accurately classify terrain 

and detect terrain not belonging to the set of trained classes. 

Chapter 4 addressed the issue of how to characterize terrain. It presented a method 

to calculate bounds on the net traction force based on observed wheel torque and sinkage 

under induced wheel slip conditions. Three different approaches were explored using data 

from laboratory experiments with a wheel-terrain interaction test platform, and the most 

promising approach was applied to experimental data from a four-wheeled rover on 

Wingaersheek Beach. This approach yields a physically meaningful metric for 

representing the traversability of terrain that is appropriate for situations when caution is 

required. 
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In Chapter 5, the self-supervised classification framework itself was studied. The 

first section compared two sources for training data for the visual classifier, based on 

classification performance on experimental data from Wingaersheek Beach. The second 

section presented a terrain learning system for novel environments, which combined 

proprioceptive classification, exteroceptive classification, and mechanical terrain sensing 

in a single system and applied it to experiment data from the TORTOISE rover on 

Wingaersheek Beach. Thus, the terrain learning system, in which each component was 

independently validated, was demonstrated. 

6.2 Suggestions for Future Work 

There are several areas in which this work could be extended. Where a suggestion 

applies only to a particular component, the suggestion has been included in the section in 

which the component is described. The suggestions described here can be divided into 

experimental extensions, computational extensions, and algorithmic extensions. 

Experimental extensions are additional experiments that could be implemented 

without changing the terrain sensing algorithms. The easiest extension to accomplish 

would be to use the same robot platform and demonstrate that this terrain learning system 

(and each of its subcomponents) will work in a variety of unique environments. This 

should be straightforward in any environment that can be modeled as a height field; 

changes in the terrain representation would be required for it to operate in a fully 3-D 

environment. Applying this terrain sensing algorithm to a different platform, such as a 

high-speed UGV or a human-driven automobile, might also be promising.  

Computational extensions would include changes in some of the underlying code 

which should reduce computation time without affecting the algorithm accuracy. For 
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example, all of the classification in this work is done using support vector machines. In 

situations when a linear or low-order polynomial kernel is used, the standard 

classification code can be significantly streamlined, which would enable faster 

classification. The overall approach for these optimizations are presented in Appendix D. 

There are likely to be optimizations along the same lines for reducing the time necessary 

for training the SVM classifier. 

Algorithmic extensions would include changing some of the larger components of 

this sensing system. For example, computing the texture feature of the visual classifier is 

currently one of the slowest steps. If some other texture feature is easier to compute or 

yields better discrimination, it might be worthwhile to implement. Other changes which 

might be made include replacing the SVM with another classifier; Bayesian logistic 

regression is currently in favor. Another classification replacement to consider is the 

regularized least squares (RLS), which is likely to have a closed form solution for 

incremental training. 
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Appendix 

A 
Appendix A TORTOISE Rover Description 

TORTOISE is the four-wheeled rover on which each of the algorithms developed 

in this thesis was tested. Shown in Figure A-1, this rover was designed and built for the 

purpose of studying terrain interaction and sensing issues affecting planetary rovers. 

Since it was first described in (Brooks, 2004), TORTOISE has been upgraded in both 

sensors and computing power. This appendix presents an updated version of the 

description originally presented in (Brooks, 2004). 

 

Figure A-1. Photo of TORTOISE, showing location of stereo camera pair 
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TORTOISE is a four-wheeled rover with an actively reconfigurable suspension. It 

is 80 cm long in its longest configuration and is 50 cm wide at its widest point. The 

angles between the two suspension struts on each side can be controlled independently. 

The two shoulders are connected to the main body via a differential, so that they can 

rotate independently. The main body pitches at an angle midway between the two sides. 

The direction of the rover is controlled using skid steering. Rover dimensions are 

summarized in Table A-1. 

TABLE A-1. TORTOISE DIMENSIONS 

Length 80 cm
32

 

Width 50 cm 

Wheel Diameter 20 cm 

Wheel Width 5.1 cm 

Grouser Height 1.0 cm 

The four wheels are made of 2.3-mm-thick round aluminum tubing. Each wheel is 

20 cm in diameter and 5.1 cm wide, with 20 stainless steel grousers extending 1.0 cm 

perpendicular to the surface of the wheel. The wheels are powered by 12-watt DC brush-

type motors with 246:1 planetary gearboxes and an additional 2:1 reduction with spiral 

bevel gears. The shoulder joints are powered by 10.5-watt DC brush-type motors, with 

134:1 planetary gearboxes and a 10:1 worm/worm-gear pair. The motion of each of the 

six motors is sensed using a magnetic encoder. Motor and transmission details are 

presented in Table A-2.  

                                                 
32

 Length measured with TORTOISE in longest configuration. 
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TABLE A-2. TORTOISE MOTORS AND TRANSMISSIONS 

Wheel Motor 12-watt DC brush-type Faulhaber 2342S012CR 

Wheel Transmission 492:1 
Faulhaber 30/1 246:1 

2:1 spiral bevel gear pair 

Shoulder Motor 10.5-watt DC brush-type Faulhaber 2824S012C 

Shoulder Transmission 2680:1 
Faulhaber 38/1 134:1 

20:1 worm/worm gear 

The front right wheel of the rover is equipped with several sensors to study wheel-

terrain interaction. A 5.6 N-m torque sensor measures the torque applied by the motor to 

the wheel, as shown in Figure A-2. A contact microphone, used to sense vibrations, is 

mounted to a suspension strut near the front right wheel, as shown in Figure A-3. 

Additionally, a color CCD camera with a 3.5mm-8.0mm varifocal lens is mounted to the 

rover body where it can maintain a view of the front right wheel, as shown in Figure A-4. 

Detailed information and model numbers for these sensors are presented in Table A-3. 

 

Figure A-2. Torque sensor mounted on TORTOISE 
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Figure A-3. Vibration sensor mounted on TORTOISE 

 

Figure A-4. Belly-mounted camera on TORTOISE 

TABLE A-3. TORTOISE SENSORS 

Motor Rotation Magnetic encoders Faulhaber HEM2342S16 

Torque 5.6 N-m Torque sensor Futek T5160 

Vibration Contact microphone Signal Flex SF-20 

Belly-Mounted Vision 
1/3” CCD camera 

3.5mm-8.0mm lens 

Genwac GW-202B 

Edmund Optics NT55-255 

Stereo Vision 
19-cm baseline color stereo 

camera pair 
Videre Design Dual DCAM 

Configuration 
2-axis Tilt sensor 

Potentiometers 

Crossbow CXTA02 

Vishay/Spectrol 65700103 

To sense terrain from a distance, TORTOISE is equipped with a stereo camera 

pair mounted on a mast 90 cm above the terrain. The stereo camera pair is a 19-cm-
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baseline Videre Design “dual DCAM” capable of capturing color images at 640×480 

resolution. Range data were extracted from the stereo images using SVS (Small Vision 

System), Videre Design’s commercial stereo processing software. The accuracy of the 

range estimation is sufficient to assign pixels to 20-cm by 20-cm terrain cells up to a 

distance of 8 meters. 

The rover is also outfitted with sensors to estimate its attitude and suspension 

configuration. A two-axis tilt sensor measures the pitch and roll of the rover body. The 

angles of the two shoulder joints are measured with potentiometers, as is the angle 

between the right shoulder and the body. Model numbers for all sensors are shown in 

Table A-3. 

All feedback control and data sampling is done on computers attached to the rover 

via a tether. Motor power is sent to the rover via this tether and sensory signals are 

returned the same way. Motor control is implemented on an off-board PC104 computer. 

Sampling of wheel torque and rover configuration is done by the same PC104 system, 

and images from the stereo camera pair are captured via a FireWire (IEEE 1394) 

connection to the PC104 system. Image capture from the belly-mounted camera and 

vibration signal recording is done on a tethered laptop computer. Figure A-5 shows a 

schematic of the rover communications. 
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Figure A-5. Rover communications schematic 

The PC104 system uses a VersaLogic Jaguar system board, with a Pentium III 

850 MHz processor and 256 MB of RAM. Analog signals, including signals from the tilt 

sensor, torque sensor, and potentiometers, are sensed using an analog input card. Encoder 

signals are received by a quadrature decoder card. Control signals for the motors are sent 

as voltage outputs from an analog output card, which are translated into current signals 

using a custom power amplifier board, based on the National Semiconductor LMD18245 
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full-bridge motor driver. The current signals are sent to the motor via the tether. Stereo 

camera images are received on a FireWire (IEEE 1394) card. The PC104 is also equipped 

with a sound card to receive vibration signals and a frame grabber to receive imagery 

from the belly-mounted camera, but use of these cards was never implemented. Model 

numbers for the components of the PC104 system are presented in Table A-4.  

TABLE A-4. TORTOISE PC104 SYSTEM COMPONENTS 

CPU Board (PC104+) VersaLogic Jaguar (Pentium III 850 MHz) 

RAM Crucial 256MB PC133 SDRAM 

Hard Drive 6 GB 2.5” Internal Hard Drive 

Analog Input, Digital I/O Diamond Systems Diamond MM-AT 

Quadrature Decoder Microcomputer Systems MSI-P400 

Analog Output Diamond Systems Ruby MM-4XT 

FireWire Advanced Digital Logic MSMW104+ 

Sound Card Diamond Systems Crystal-MM-HP-5 

Video Frame Grabber (NTSC) Parvus FG104 

The PC104 system runs Linux with an RTLinux microkernel for real-time control 

and data sampling. The control and sampling software was developed specifically for this 

rover. Stereo image capture was implemented using the libraries provided with the SVS 

software. User interaction with the PC104 system is done over a connection to the laptop 

computer, either using a 100BASE-TX Ethernet connection using SSH (preferentially) or 

using a serial console connection. 

The laptop computer, a PC running Windows XP, interacts with the PC104 

system, the belly-mounted camera, and the vibration sensor. It connects to the PC104 

system using either an Ethernet crossover cable or a null modem serial cable. It connects 

to the belly-mounted camera with a USB video capture box (ProVideo model PV321CE). 

The connection to the vibration sensor is via a standard audio cable which plugs into the 

laptop’s microphone port. 
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The entire system is run using battery power so that it can be taken to remote 

locations where electrical outlets are unavailable. Power to the PC104 is provided by a 

12V motorcycle battery, regulated to 5V and 3.3V with a DC/DC converter. Power to the 

motors is provided by two 12V motorcycle batteries and passed on to the motors by the 

power amplifier board. Power for the laptop is provided by onboard batteries. 
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Appendix 

B 
Appendix B Wingaersheek Beach Description 

Each of the algorithms developed in this thesis was applied to experiment data 

collected at Wingaersheek Beach, in Gloucester, MA. Overview pictures of the beach are 

shown in Figure B-1, Figure B-2, Figure B-3, and Figure B-4. This is a public beach 

located on Cape Anne just north of Gloucester, at the northern end of Atlantic Street. It is 

located roughly at 42.651 degrees North, and 70.686 degrees West.  

 

Figure B-1. TORTOISE on Wingaersheek Beach, looking northeast towards Annisquam lighthouse. 

Mats of beach grass lie between TORTOISE and the rock outcrops. 
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Figure B-2. TORTOISE on Wingaersheek Beach, looking southeast towards Goose Cove. A long 

stretch of sand with occasional mats of beach grass lies between the rover and the distant rock 

outcrop. 
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Figure B-3. TORTOISE (distant) on Wingaersheek Beach, looking northwest. A band of small, loose 

stones divides sections of washboard-textured sand between the camera and TORTOISE. 
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Figure B-4. Chris Ward and TORTOISE on Wingaersheek Beach, looking southwest. Large mats of 

dark beach grass lie over the sand between the camera and TORTOISE. 

Wingaersheek Beach is a sandy beach with a mix of small and large rock outcrops 

relative to the size of the rover, and was chosen as a test site due to its similarity in 

appearance to the MER landing sites on Mars. For the experiments described in this 

thesis, the beach was considered to be composed of three distinct terrain classes: sand, 

rock, and beach grass. Figure B-5 shows a sample scene from the beach. As seen by the 

rover, sand appears as a uniform gray flat surface, rock appears tan and orange with some 

steep slopes and fine uniform texture, and beach grass appears highly textured with 

mixed browns and shadows. 
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Figure B-5. TORTOISE on Wingaersheek Beach, showing terrain classes 

B.1 Sample Stereo Camera Images 

Six experimental data sets were used to assess the performance of the visual 

classifier in 1.1, the novel terrain detector in 1.1, and the self-supervised classification 

framework in 1.1. Sample images from the left camera of the TORTOISE’s mast-

mounted stereo camera pair are shown in Figure B-6 through Figure B-11. 
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Figure B-6. Sample image from Image Set 1 (Nov 30, 2006, Run 2) 

 

Figure B-7. Sample image from Image Set 2 (Dec 7, 2006, Run 4) 
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Figure B-8. Sample image from Image Set 3 (Dec 7, 2006, Run 5) 

 

Figure B-9. Sample image from Image Set 4 (Dec 7, 2006, Run 6) 
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Figure B-10. Sample image from Image Set 5 (Dec 14, 2006, Run 1) 

 

Figure B-11. Sample image from Image Set 6 (Dec 14, 2006, Run 2) 
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The terrain learning system for novel environments in 1.1 was applied to an 

additional data set. A sample image from that data set is shown in Figure B-12. 

 

Figure B-12. Sample image from terrain learning system for novel environments image set (Oct 30, 

2007, Run 5) 
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Appendix 

C 
Appendix C Wheel-Terrain Interaction Testbed Description 

The FSRL wheel-terrain interaction testbed, shown in Figure C-1, is an 

experimental platform in the Field and Space Robotics Laboratory. It was designed by 

Sharon Lin for the purpose of studying the behavior of a rigid wheel driving in 

deformable terrain and has been used in the past to characterize terrain properties (Kang, 

2003). This appendix is largely drawn from (Brooks, 2004) and is included here for 

reference. 

 

 

Figure C-1. Wheel-terrain interaction testbed, with dimensions 
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The testbed consists of a driven wheel mounted on an undriven vertical axis. The 

wheel-axis assembly is mounted on a frame such that the wheel’s forward velocity and 

angular velocity can be controlled independently. The testbed can be fitted with a number 

of different wheel assemblies, each assembly containing both a motor and a wheel. For 

the results presented in this thesis, tests were conducted using the black plastic wheel 

assembly.  

The black plastic wheel assembly, shown in Figure C-2, consists of a wheel, a 

motor, and a torque sensor. The wheel is 4.8 cm wide and 20 cm in diameter. Sand is 

bonded to the outside of the wheel to improve traction. The motor applying torque to the 

wheel is a 14.5-watt DC brush-type motor. It is mounted with a 246:1 transmission, and 

has a tachometer to measure angular velocity. The maximum linear velocity of the 

outside of the wheel is 15 cm/sec. Motor torque is measured using a rotating torque 

sensor with a working range of 7 N-m, mounted between the motor and the wheel. A six-

axis force-torque sensor is mounted between this wheel assembly and the frame, so that 

all of the forces and torques applied by the wheel on the terrain can be sensed. Table C-1 

provides detailed information about this wheel assembly including component model 

numbers. 
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Figure C-2. Black wheel assembly on wheel-terrain interaction testbed 

TABLE C-1. SPECIFICATIONS FOR BLACK PLASTIC WHEEL ASSEMBLY 

Wheel Diameter 20 cm  

Wheel Width 4.8 cm  

Motor 14.5-watt DC brush-type Faulhaber 3557K006C 

Transmission 246:1 Faulhaber 38/2 

Sensors 

Tachometer 

Torque Sensor 

Force-Torque Sensor 

 

Cooper LXT 982 

JR3 UFS-3515A100 

This wheel assembly is mounted to the carriage, which allows it to move freely in 

the vertical direction while constraining its forward and lateral movement. The vertical 

position of the wheel is measured using a linear potentiometer mounted on the carriage. 

The horizontal position of the carriage is controlled with an 8.5-watt brush-type DC 

motor, with an overall 1936:5 transmission ratio mounted to a 5-cm-diameter pulley. The 

pulley position is sensed with a 2048-PPR encoder. The maximum carriage forward 

velocity is 5 cm/sec. This information is summarized in Table C-2.  
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TABLE C-2. WHEEL-TERRAIN INTERACTION TESTBED CARRIAGE DRIVE SPECIFICATIONS 

Motor 8.5-watt DC brush-type Escap 23DT 

Transmission 1936:5 overall  

Pulley Diameter 5 cm  

Pulley Position Sensor Encoder 2048 PPR 

The wheel rests in a bin of terrain 90 cm long by 30 cm wide by 15 cm deep. A 

large number of terrains have been used in experiments, including washed beach sand, 

dry bentonite, JSC Mars-1 soil stimulant, gravel, moist clay, and topsoil. 

Signals from the testbed are sent to an AMD K6-2 500 MHz desktop computer 

running Windows XP. All signals from the tachometer, torque sensor, and force-torque 

sensor are sent to an 8-axis 12-bit I/O board (ServoToGo STGII-8). Control signals from 

the computer to the testbed are output as voltage signals using the same 8-axis I/O board. 

These voltage signals are inputs to a custom power amplifier card. The power amplifier 

card sends a high-power voltage signal (15V, 3A max) to the wheel motor, and a high-

power PWM signal (25V, 3A max) to the carriage motor. The data sampling and control 

software was written specifically for this testbed. 
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Appendix 

D 
Appendix D Support Vector Machine Background and 

Optimizations 

The support vector machine (SVM) classifiers presented in this thesis were 

implemented using the open-source library LIBSVM (Chang & C. Lin, 2005, 2008). This 

appendix is intended to define the mathematical formulations used in this library. C-

support vector classification is the more traditional formulation of an SVM, and is 

presented in D.1. This is the formulation used for vibration-based terrain classification in 

2.1 and visual classification in 1.1. The one-class SVM, presented in D.2, is an extension 

to the SVM framework which can distinguish “similar” features from “different.” It is 

used as one of the baseline approaches to novelty detection in 1.1. Both of these 

classifiers use kernel functions for regularization, and the formulations of these kernel 

functions are presented in D.3. Finally, as mentioned in the main body of this thesis, there 

are some optimizations which can improve the speed of classification. These 

optimizations are presented in D.4. 

D.1 C-Support Vector Classification 

The C-support vector classifier is used for most of the two-class classification 

presented in this thesis. Here, it is assumed that labeled training data is available in the 

form of vectors lin

i ,,1, K=ℜ∈x  and labels { }1,1 −∈iy . Note that n is the dimension of 
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the feature space, and l is the number of training examples. Given this training data, the 

SVM software solves the following problem: 
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where φ is a mapping implicitly defined by the kernel function. The reason a support 

vector machine classifier can be trained quickly is that (D-1) can be written in a dual 

form. Here the dual form is 
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where e is a vector of length l composed of all ones, C is the factor regulating the 

complexity of the classification boundary, Q is an l-by-l matrix with elements 

),(, jijiji xxKyyQ ≡ , and )()(),( jiji xxxxK φφ≡  is the kernel. Using various 

techniques, the support vector machine software finds the vector α and scalar b. 

After the training process is finished, a new vector x is classified using the 

decision function 
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D.2 One-Class Support Vector Machine 

The one-class SVM is one approach for using a support vector machine to 

identify whether a new vector is similar to or different from a set of training data. Here, 
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training vectors lin

i ,,1, K=ℜ∈x  are provided without labels, and the problem solved 

by the SVM is 
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where ]1,0(∈ν  is the factor regulating the complexity of the classifier, and φ is a 

mapping implicitly defined by the kernel function. For this problem, the dual formulation 

solved by LIBSVM is 
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where e is a vector of length l composed of all ones, Q is an l-by-l matrix with elements 

),(, jijiji xxKyyQ ≡ , and )()(),( jiji xxxxK φφ≡  is the kernel. LIBSVM thus solves for 

the vector α and the scalar ρ.  

After training, a new vector x is considered to be similar to the training data if 

ypred > 0 in the decision function 
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D.3 Kernel Functions 

One of the main choices to be made when using a SVM is which kernel function 

to use. LIBSVM provides the option to choose between four different kernels: linear, 

polynomial, radial basis function (RBF) and sigmoid. The formulations for these kernels 

are presented in Table D-1. In this table, γ, r, and d are kernel parameters. 
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TABLE D-1. KERNEL TYPES AND CORRESPONDING EQUATIONS 

Kernel Type Equation 

Linear ( )
j

T

ijiK xxxx =,  (D-7) 

Polynomial ( ) ( ) 0,, >+= γγ
d

j

T

iji rK xxxx  (D-8) 

Radial Basis Function (RBF) ( ) ( ) 0,exp,
2

>−−= γγ jijiK xxxx  (D-9) 

Sigmoid ( ) ( )rK j

T

iji += xxxx γtanh,  (D-10) 

D.4 Optimizations for Linear and Polynomial Kernels 

In situations where there are many training points (i.e. l is large), calculation of 

the summation in the decision function—either ∑ ),( xx iii Ky α  in Equation (D-3) or 

∑ ),( xx ii Kα  in Equation (D-6)—can take a long time. This is mitigated by the fact that 

α is typically sparse, but α still contains O(l) nonzero elements. Thus, evaluating the 

decision function requires evaluating O(ln) multiplications, where n is the number of 

elements in x. When using a linear or polynomial kernel, the cost of evaluating the 

decision function may be reduced by changing the order of summation and precomputing 

some intermediate terms. 

When using a linear kernel, the approach to changing the order of multiplications 

is straightforward:  
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The multiplication is then regrouped: 
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This yields 
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with  

 ∑
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Here, w can be evaluated only once for each set of training data. Thus, using Equation 

(D-13), the decision function (D-3) can be evaluated using only O(n) multiplications. 

This is a savings of O(l) in classification time. 

A similar approach can be used to reduce the classification time when a 

polynomial kernel is used. For the sake of simplicity, the approach is presented assuming 

x has 3 elements (i.e. the feature space has 3 dimensions), but the extension to higher 

dimensions should be clear. First the polynomial kernel is substituted for K: 
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Then the terms of the polynomial are written as a summation: 
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This second summation with indices a0, a1, a2, and a3 has ( )!!/)!( dndn +  terms. 

Note that the x with two subscripts indicates an element of the training data, while the x 

with a single subscript is an element of the vector being classified. The order of 

summation can be changed: 
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Note that the inner summation does not depend on any features of the vector being 

evaluated, so it can be computed once for each set of training data: 
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Using these coefficients, Equation (D-17) becomes simply  
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Thus, using Equation (D-19), the decision function (D-3) can be evaluated with 

O( ( )!!/)!( dndn + ) multiplications. This approach can be a significant improvement over 

the O(ln) cost of the standard equation when both n and d are small. For example, with 

n=5 dimensions, polynomial degree d=3, and l=1000 training examples, 

( )!!/)!( dndn + =56 while ln=3000. This would result in classification time being reduced 

by a factor of approximately 50. 
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Appendix 

E 
Appendix E MATLAB Feature Extraction Code 

The algorithms developed in this thesis were implemented as Matlab scripts 

(Mathworks, 2005). This appendix presents short Matlab functions which can be used to 

extract classification features from raw sensor data. 

E.1 Vibration Feature Extraction 

Table E-1 presents Matlab code for the feature extraction used in the vibration-

based terrain classifier in 2.1. This function takes as an input the time series of 

accelerometer values, and returns the log-scaled power spectral density features as its 

output. 
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TABLE E-1. VIBRATION FEATURE EXTRACTION CODE 

function VibFeatures = CalculateVibFeatures(VibTimeSeries) 

% Calculate Vibration Features 

 

% Input:  

%   VibTimeSeries: Row vector of accelerometer values captured in  

%     1 second (44100 samples) 

% Output: 

%   VibFeatures: Vibration features in row vector 

 

NFFT = 2048; % Use 2048 samples for each FFT in Welch’s method  

VibPSD = pwelch(VibTimeSeries,[],[],NFFT); % Use Welch’s method to  

   % calculate PSD 

 

VibLogPSD = log(abs(VibPSD)); % Calculate log-scaled magnitudes 

 

MinFreq = 0; % Minimum frequency of interest (Hz) 

MaxFreq = 12000; % Maximum frequency of interest (Hz) 

SampFreq = 1/length(VibTimeSeries); % Sampling Frequency (Hz) 

 

MinFreqIdx = ceil(NFFT*MinFreq/SampFreq)+1; % Index of minimum freq 

MaxFreqIdx = floor(NFFT*MaxFreq/SampFreq)+1; % Index of maximum freq 

 

VibFeatures = VibLogPSD(MinFreqIdx:MaxFreqIdx); % Return features   

   % corresponding to frequencies of interest 

 

return  

E.2 Terrain Geometry Feature Extraction 

Table E-2 presents Matlab code for the geometry feature extraction used in the 

visual terrain classifier in 1.1, the novel terrain detector in 1.1, and the self-supervised 

classifiers in Chapter 5. This function takes as an input the 3-D coordinates of all of the 

points associated with a terrain patch, and returns the 4-element geometry feature vector 

for that terrain patch. 

TABLE E-2. TERRAIN GEOMETRY FEATURE EXTRACTION CODE 

function GeomFeatures = CalculateGeomFeatures(PointsInPatch) 

% Calculate Terrain Geometry Features 

% Input:  

%   PointsInPatch: n x 3 matrix containing positions of points on the  

%     surface of a terrain patch. Each row represents a distinct point. 

%     Column 1 is the position in the forward direction. Column 2 is  

%     the position in the right direction. Column 3 is the vertical  

%     position. The origin is the starting position of the rover. 

% Output: 

%   GeomFeatures: Geometry features in 1x4 row vector 
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UpVector = [0,0,1]’; % Specify vertical direction 

 

% Calculate the covariance matrix of the points 

CovMat = cov(PointsInPatch); 

 

% Select behavior based on rank of covariance matrix 

if (rank(CovMat) > 2)  % If points do not lie on a plane 

    % Find the vector with the lowest eigenvalue (i.e. normal to least- 

    % squares plane fit to points) 

    [U,S,V] = svds(CovMat,1,0); % Singular value decomposition,    

       % returning U as 3x1 eigenvector with eigenvalue closest to zero 

       % and S is the 1x1 eigenvalue closest to zero 

 

elseif (rank(CovMat) == 2) % If points lie on a plane 

    % Find the vector normal to the plane 

    U = null(CovMat); % Normal vector (3x1) is the null space of matrix 

    S = 0; % Zero variance in normal direction 

 

else % Points lie on a line 

    % Find the vector perpendicular to the line closest to the vertical 

    A = null(CovMat); % Two normal vectors (3x2) form null space of 

       % matrix 

    U = A * A’ * UpVector; % Project vertical axis into null space  

    S = 0; % Zero variance in normal direction 

end 

 

U = U ./ sqrt(U’ * U); % Normalize U  

 

% First feature: Slope 

Slope = acos(abs(U’ * UpVector)); 

 

% Second feature: Smallest Singular Value (i.e. plane fit error) 

SmSingVal = S; 

 

% Third feature: variance in vertical direction 

VertVar = UpVector’ * CovMat * UpVector; 

 

% Fourth feature: range of heights of points 

HeightRange=max(UpVector’*PointsInPatch)–min(UpVector’*PointsInPatch); 

 

GeomFeatures = [Slope, SmSingVal, VertVar, HeightRange]; 

 

return  

 


