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ABSTRACT

PLANE-STRAIN DEFORMATION ANALYSIS OF SOIL

by

JOHN THOMAS CHRISTIAN

Submitted to the Department of Civil Engineering on August
22, 1966, in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in Civil Engineering.

A major problem in soil mechanics is the prediction
of stresses and displacements under loads applied to soil
masses. Such predictions have usually been made from
solutions to classical problems in the theory of linear
elasticity even though neither the boundary conditions or
the material properties agree with the theory.

The applicability of the theory of plasticity to
soil mechanics is examined. Four different yield criteria
are proposed: Tresca's, Hencky's and von Mises', Drucker
and Prager's generalization of the Mohr-Coulomb law, and
a strain-hardening model which allows plastic compression.
The large volume changes predicted by the Drucker-Prager
criterion are described, and the development of more
reasonable strain-hardening models by Roscoe and his
associates is summarized. The strain-hardening model used
is based on Roscoe's but is simplified for computational
reasons.

Analysis leading to incremental stress-strain relations
for the four yield criteria is presented. A lumped para-
meter mathematical model, originally proposed by Ang and
Harper (1964), is described and the stress-strain relations
are developed in terms of it. A special relation for
elastically and plastically incompressible material
yielding according to Tresca's or Hencky's and von Mises'
criterion, is developed. Computer programs for all five of
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these relations and for purely elastic relations were written.

Results of twelve runs on an embankment loading problem
are shown. These indicate that the boundary conditions,
initial stress state, and yield criterion affect the dis-
placements and stresses in various ways. Vertical stresses
are not much affected, but horizontal and shear stresses
are greatly dependent on all factors. The final failure
load for non-frictional materials agreed in all cases with
theoretical predictions. Increasing the horizontal
initial compressive stress or using an expansive plastic
relation like the Drucker-Prager made the load-d isplacement
curves resemble those for general shear, even though much
of the soil might be plastic before the displacements
became large. Lower initial horizontal compressive stress
or use of the strain-hardening relation gave curves resembling
those for local shear. The pattern of plastic yielding
in consistent but is much larger than that necessary for
limiting equilibrium.

Descriptions of the program use and of the analysis
are presented. Suggestions are made for further research
in this area and for coordination of laboratory and field
measurements with this effort.

Thesis Co-Supervisor: T. William Lambe
Title: Professor of Civil Engineering

Thesis Co-Supervisor: Robert V. Whitman
Title: Professor of Civil Engineering
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CHAPTER 1

INTRODUCT ION

The deformation of soil masses under applied loads is

important in the design of almost all civil engineering

structures. Like most such problems it requires for its

solution a knowledge of material properties, a mathematical

solution of equilibrium and continuity equations, and the

results of field measurements to verify and refine the first

two items. All three of these must exist together.

The recent proliferation of computers and expansion in

their capacities has made possible an attack on a large

number of problems that were before unsolvable by traditional

methods. The present work represents the use of computer

approaches to the solution of one common type of soil

deformation problem, that involving plane strain, using

stress-strain properties predicted by plasticity theory.

It is part of a continuing research effort at M.I.T. into

analysis of soil deformations. Previous reports have been

made by Christian (1965) and Whitman and Hoeg (1965).

The immediate motivation for this work is the necessity

to understand the behavior of soil and structure systems

under dynamic loads. However, the results are also

directly useful in static applications. There is now a

concerted effort at M.I.T. to investigate the performance

of actual engineering structures by field measurements,



laboratory studies, model studies, and theoretical analyses.

The research reported here fits into both these over all

efforts.

Conditions of plane strain were assumed and a lumped

parameter mathematical model was used to analyze the behavior

of a soil layer under an embankment load. Five types of

stress-strain behavior were used under various boundary

conditions. The programs can be used for any plane rectangu-

lar strain geometry and loads can be specified by forces

or displacements at any mass point in the lumped parameter

array. Only one type of loading was used here, but input

requirements for a general loading are described in Appendix

C.

14
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CHAPTER 2

CURRENT PROCEDURE AND PREVIOUS WORK

2.1 Present Methods of Analysis

It is now the practice to consider that deformation of

soils under loads, particularly loads imposed by founda-

tions, can be divided into three stages. First, the soil

deforms with no movement of pore water; this is called

immediate or "elastic" settlement. Next there is additional,

time-dependent movement as the pore water flows out of the

soil to relieve the hydraulic pressure built up by the loading.

This is the "primary" consolidation. Finally, there is

a "secondary" consolidation, which is not well understood

and can be construed as including everything that did not

happen in the first two stages. Obviously, if the soil

has a high permeability, the first two stages will occur

rapidly and become indistiguishable, but even in cases of

low permeability there is bound to be some vagueness in

the demarcation between the three stages.

Almost all analyses based on the above assumptions

must begin with a determination of the stresses in the soil.

Most such calculations of stress use the linear theory of

elasticity or use prepared solutions which are based on

it. In particular, a commonly applied solution is that of

the problem of Boussinesq, which considers the effect of

a vertical point load on the surface of a semi-infinite,

homogeneous, isotropic, linearly elastic half space. The

15



expressions for stress are in a convenient algebraic form

that can be found in most books on elasticity theory (e.g.:

Timoshenko and Goodier, 1951, Sokolnikoff, 1956, or Love,

1944). Integrations of this solution for vertical stresses

under distributed vertical surface loads have been developed

into charts (Taylor, 1948, Newmark, 1942, Kondner and

Krizek, 1965) or computer programs (Stoll, 1960),

Elasticity theory has also been employed to obtain

solutions for cases on the half plane and for circular

loadings (Jurgenson, 1934, Terzaghi, 1943). Burmister

(1956) has solved the difficult problem of the finite

elastic layer loaded on the surface, and his expressions

have been integrated by Davis and Poulos (1965). Many other

problems can be approximated by results from the theory

of linear elasticity.

If the engineer feels confidence in the values of

the elastic constants he is using, he can compute dis-

placements directly from an available elastic solution.

This approach is usually used for immediate settlements,

although Ladd (1964) has shown that Young's modulus is

dependent on the stress history of the soil and on the

stress level to which the soil is loaded. A further in-

accuracy arises because most footing loads are applied

at some depth below the surface of the soil. Janbu, Bjerrum,

and Kjaernsli (1956) have proposed a chart for correcting

the solutions for depth of burial.

Consolidation settlements are usually computed by the

Terzaghi one-dimensional consolidation theory (Taylor, 1948).



This requires that the compressibility of the soil be

measured in a laterally confined test and then be used under

the assumption that the vertical stresses in the field

will have the same effect. That the vertical stresses

obtained from Boussinesq's problem do not depend on the

elastic constants makes this procedure attractive, but

the stress and strain conditions in the field and in the

laboratory compression test are still only coincidentally

the same.

Since the Terzaghi theory states that the consolidation

settlement results from dissipation of excess pore pressures,

Skempton and Bjerrum (1957) proposed the consolidation

settlement be corrected by using the empirical factor, A,

(Skempton, 1954) which describes the tendency of the

stresses in the undrained soil to become pore pressures.

It is defined for undrained soils by

A = _p- a 3 , (1)
AGI - A 3

where Ap = change of fluid pressure,

Aa = change of largest compressive stress,

Aa = change of smallest compressive stress,

and, for this case, compression is considered positive.

The correction involves reducing the calculated settlements

according to a chart as a function of A. A is considered

a material property even though it can be shown to be

17
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dependent on loading pattern (Appendix D), stress history

(Brinch Hansen, 1957), and magnitude of shear stress in

relation to fAilure stress (Ladd, 1964).

Lambe (1964) proposed that these corrections could be

avoided by the stress path method of estimating settle-

ments. This involves first calculating, by elastic theory,

stresses caused by the load under consideration. Next,

triaxial tests are run on samples of similar soil consoli-

dated to the same initial stresses as those in the ground

and loaded in the triaxial cell by increments of stress

identical to those calculated. The undrained, primary

consolidation, and secondary consolidation strains can be

measured and displacements calculated by integrating the

strains over the depth represented by the sample. Davis

and Poulos (1963) have presented a similar technique. Both

of these procedures require that the sample of soil be

chosen and loaded so it is representative of the entire

soil layer.

2.2 Improvements in Stress Distribution

In all the methods described above the stress

distributions are based on linear, isotropic, homogeneous

elastic theory for relatively simple boundary conditions.

One of the first improvements was preposed by Biot (1941

a, b,,c), )40oo-described soil as a two phase system

composed of a porous elastic skeleton and a fluid, which

is assumed incompressible in all solutions known to the

18



author. Although this is an idealized picture of soil,

solutions to specific problems have been few and are usually

rather complicated (McNamee and Gibson, 1960a,b). The

solutions do show that the stress pattern changes with

consolidation, sometimes dramatically (Gibson, Knight, and

Taylor, 1963, Josselin de Jong, 1965). Davis and Poulos

(1965) have developed an approximate technique for solving

some problems by ignoring certain coupling effects.

Developments in computation methods have made possible

the analysis of more complicated problems than those that

could be treated with closed form analytic techniques.

Finite differences have been used for complicated loadings

on linearly elastic bodies. Examples include solution for

the Airy stress function in plane strain (Allen, 1954,

Dingwall and Scrivner, 1954) and direct solution of the

finite difference forms of the partial differential

equations of equilibrium for plane strain (Schjodt,1958)

or for axially symmetric loadings (Wilson, 1948). Bendel

(1962) has applied such techniques to an elastic-perfectly-

plastic frictional material under plane strain conditions

in the cross-section of a dam.

A second technique involves dividing the body into

many discrete "finite elements" whose strains can be

approximated from the displacement of a few points around

each element. These have been used to solve problems in

linear elasticity for plane stress conditions (Clough,

1960), for conditions of axial symmetry (Clough and Rashid,

1965), and for three-dimensional situations (Argyris, 1965

19



a,b). Non-elastic problems have been treated by Argyris

(1965a,b) using deformation theories of plasticity and

by Reyes (1965) using incremental plasticity for a frictional

material in plane strain.

The mathematical model used here was developed by

Ang and Harper (1965). Whitman (1964) proposed using it

to investigate the behavior of soil under various assumptions

of elastic and plastic stress-strain behavior. A special

case of the model for undrained elastic soils under plane

strain conditions was developed by Christian (1965) and

is described briefly in Appendix D. The initial results

of the elastic-plastic calculations were presented by Whitman

and Hoeg (1965).

20



CHAPTER 3

THEORETICAL CONSIDERATIONS

3.1 Initial Assumptions

Soil is a complicated material, and any mathematical

representation of a stress-strain law is bound to be a

stark idealization. In this work certain reasonable

assumptions and simplifications were made in all analyses.

They could be changed in further developments of the research

effort.

First, the soil was assumed to be non-viscous; that

is, the mechanical behavior was not time dependent.

Second, the soil was made isotropic and homogeneous except

for anisotropies or inhomogeneities induced by plastic

flow. Third, the stress-strain behavior was described by

the incremental theory of plasticity.

3.2 Notation

In the remainder of the exposition the notation

conventions are compromises between traditional soil

mechanics usage and continuum mechanics usage. Appendix

B contains a description of the differences between soil

mechanics notation and that adopted here. The most

important features are mentioned below.

All stresses are positive in tension, and all strains

are positive in extension. Subscripts refer to orthogonal



Cartesian axes. Stresses are represented by a subscripted

a, and strains are represented by a subscripted e. The

same symbols without subscripts refer to volumetric stresses

and strkinn respectively. The deviatoric stresses and

strains are represented by subscripted s and e, respectively.

The Einstein summation convention over repeated sub-

scripts is used whenever the subscripts are the letters

i through n. The Kronecker delta is used.

A dot over a symbol indicates the rate of the quantity;

that is, its time derivative, or, if it is not time-

dependent, its incremental increase during the loading

process. The superscripts (e) and (p) over strain quanti-

ties indicate the elastic and plastic components, respectively.

A symbol without a superscript is the total of elastic and

plastic strain when both exist.

3.3 Elastic Relations

The consitutive relationships of linear elasticity

(Timoshenko and Goodier, 1951, or Sokolnikoff, 1956)

can be expressed for an isotropic body as

l+v v (2)ij E ai - E akk'ij'

or, in more conventional notation,

22



- v(oyy-azz)], etc.

and

y = 2 c a
xy xy G xy

1
G- 1' etc.
G xy

In the case of plane strain cx, e , and e are
xzall equal to zero, so equation (2) can beyznverted into

all equal to zero, so equation (2) can be converted into

E Eaxx (1-v)xx (1-2v)(1+v) L xx + veyy], etc.

E
xy - 2(1+v) xy

(3)

These relations apply to a body that has not yielded

plastically.

3.4 General Forms of Plastic Relations

There are two theories of plasticity: the deformation

theory, and the incremental theory (Hill, 1950). The

difference between them arises from the way they relate

plastic strains to stresses. In the deformation theory

the plastic strains are dependent directly on the stresses,

but in the incremental theory the basic relationship is

between strain rate and existing stresses and stress rate.

Both assume the soil is elastic or rigid until the

(2a)

and

r

1
e = - xx
xx EL xx



stresses satisfy a yield criterion, after which the material

'is plastic. When the loading involves a constant ratio

of applied loads, the two theories can be made identical

(Fung, 1965), but Hill(1950) has shown that there are

mathematical inconsistencies in the deformation theory

for general loading patterns. Because the deformation

theory leads to more convenient stress-strain relationships,

it has been favored by those working with finite elements

(Clough, 1965, Argyris, 1965a,b).

Within the incremental theory materials can be divided

into perfectly plastic ones and strain hardening ones.

Incremental perfect plasticity has been described mathema-

tically by several authors (Hill, 1950, Prager, 1959).

It postulates that the material yields when the stresses

satisfy the yield function or yield criterion, f, so that

f(aij) = 0 (4)

In the absence of any further constraint the body would

then flow plastically. Figure la shows a stress-strain

diagram for a tension specimen of a rigid-plastic material,

for which there is no strain below yield. Figure lb

shows such a diagram for an elastic-perfectly-plastic

material, which has elastic strains below yield.

Figure lc demonstrates strain hardening behavior.

In this case the material starts yielding when the stresses

reach a critical value defined by a yield function, f,

24
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but now the yield function changes as plastic strain occurs,

so f is defined by

(p)
f(a ijij K) = 0, (5)

where K is a term dependent on the plastic strain and

(P)ci. is the plastic strain.
ij

Drucker (1950,1951,1954) has described the general

concept of a stable material as one on which an increment

of load does positive or zero work during a full cycle of

loading and unloading. He has shown that, if such a

material has plastic strain increments whose principal

axes coincide with the principal axes of stress, there

must follow that the yield function is convex around the

origin when plotted in coordinates of stress and that the

plastic strain increment is a vector normal to this yield

surface. Drucker's stability definition can be regarded

as a way of prescribing that the material must not

collapse during yielding or, in other words, that its

strength must not decrease during failure under increasing

loads.

The results of Drucker's theoretical work are shown

in Figure 2. The curve, f, is the yield function plotted

in stress coordinates, aij is the stress at plastic yielding,

and i.. is the plastic strain increment. It follows that

ij is not an admissible plastic strain increment. The

25
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same result has been demonstrated from thermodynamic

considerations by Ziegler (1963) and Aldrich (1966).

The conclusion is known as the normality condition.

A mathematical statement of the normality condition

follows from the recognition that both the plastic strain

increment and the gradient of the convex yield function are

normal to it. Drucker (1951) shows that for a perfectly

plastic material the two must be proportional:

(P)
S=xi (6)

In this expression X is a constant to be determined. The

equation states the theory of the plastic potential, which

is basic to much of plasticity theory (Hill, 1950, Prager,

1959).

Because the function, f, depends only on the stress,

equation (6) can also be written

(P)
= Xg(aij), (7)

ij

where g is a function of stress and is the gradient of f.

Equation (7) resembles the equation of Newtonian viscosity,

and X does indeed have the dimensions of a viscosity.

The relation is not, however, a viscous one because the dot

over the epsilon does not denote differentiation with



respect to time but merely indicates that the relation

applies to some infinitessimally small strain increment.

The strain can occur slowly or rapidly so long as it is

the same increment. This distinction must be borne in mind,

for the incremental stresses and strains are often referred

to as stress or strain rates without implication that the

phenomena involved are dependent on time. Similarly,

incremental displacements are often referred to as veloci-

ties.

For the strain hardening materials the expressions of

the plastic potential theory can be derived by differentiating

equation (5) to obtain

S(P) f =K (P)b+ f dij +  " = 0 (8)
ij be K (P) ij

ij ij

If normality holds, terms can be collected to give

(p)
= A .f (9)

1ij

and

Kl
A = - (10)

6f + hf aK , f
(P) bK (P) Ci
ij i

These can be written in another form, which is often more

27



convenient,

(P)
(11)

aij K1 l

and

(12)

(P) + K (P) Iamim is mnmn mn

The expression for G is a scalar function which can be

evaluated algebraically.

3.5 Elastic-Plastic Relationships

When a material has yielded and is flowing plastically,

it also continues to undergo elastic strains. If the

stresses should become less than those required to satisfy

the yield criterion, the strains will become elastic only.

No stress state is allowed which exceeds the yield criterion.

These three rules can be summarized thus:

(e)
. . = .

(e) (p)
ij =i + 1..

if f < 0,

if f = 0,

and f > 0 is inadmissible.
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(e)

ij = ij + .. (14)

or
i+v

ij E ij
a y kk 6  + b f

E kk ij aij

In these equations X must be determined from the additional

condition that the stresses cannot violate equation (4).

The relations for the strain hardening material will

be

ij E l+
3i E ii

V A f df
akk6ij + G ~aij aklE~ ~ i ak ij bc8k1

A
In this equation the G is determined from equation (12).

In subsequent sections these relations are specialized

for the various yield criteria considered. Nevertheless,

in all cases the general forms are those of equation (15)

or equation (16).
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(16)

The elastic relations of stress and strain are stated

in section 3.3. The relations for elastic-plastic materials

can be of two forms, depending on whether the material is

perfectly plastic or strain hardening.

The elastic-perfectly-plastic relations are



3.6 Non-Frictional Material

3.6.1 Conventions and Invariants

The stress, oij, acting on a point can be written as a

three by three array

all 012 013

ij = 221 022 023 (17)

131 a32 03 3

the elements of which change values as the coordinates

change. The array transforms according to the rules for

a second order tensor (Sokolnikoff, 1956), so aij is

called the stress tensor. It is also known that this

tensor is symmetrical, i.e. Oxy = ayx . In the coordinate

system (x,y,z) the stress tensor is

aXX axy Oxz Oxx Txy Txz

oij = Oxy 0yy Oyz - Txy Gyy Tyz (18)

xz cyz ozz Txz yz 0 zz

It is a fundamental result of the theories of tensor

algebra and matrix algebra that such an array has three

invariants, or algebraic functions of the elements of the
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array that do not change even though the elements change

value as the coordinates transform. These are defined by

the three relations

I = + 22 + a = 0.. (19)
1 11 22 33 (19)

12 = 11 a12 a11 a31 + I22 a23
+ + (20)

012 22 13 33 23 033

011 012 013

13 = 012 a22 a23 (21)

013 023 033

Another important result is that there must be some

coordinate directions such that when the stress tensor is

transformed into those coordinates only the diagonal

elements are non-zero. These are the principal stresses,

designated by 01, 02, 03 . In terms of the principal

stresses the invariants become

I1 = 01 + 02 + 03 (22)

12 = a012 + 0103 + 020 3  
(23)

13 = 010203 (24)
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One third of the first invariant of stress is the

hydrostatic component of the stress or the volumetric

stress, a. It is a tensor with the elementary form

a 0 0

S =  0 a 0 (25)

0 0 a

which does not change when the coordinates change.

If the volumetric stress tensor, a. is subtracted

from the stress tensor, Oij* a new tensor, sij, results:

ij= ij - 06ij (26)

or

a11-o a12  a13

s = 012 a22-0 023  (26a)

a13  a2 3  033-0

S11 812 s13

= 12 s22 s23 (26b)

s13 s23 s33
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This is called the stress deviator tensor or the deviatoric

stress tensor, and it is not the same as the deviator

stress used in triaxial testing of soil. Since it is a

tensor, it too possesses invariants, which will be desig-

nated Jl' J2. and J3 to distinguish them from Il, 12, and

13•

The first invariant of the deviator stress

J1 = a1 1-a + a22-a + a33-a = I1 - 3a = 0. (27)

Thus, the deviator stress tensor has no hydrostatic component

but represents purely deformational stress, while the

volumetric stress has only a hydrostatic component. This

division of the tensor is a convenient way to separate the

effects of these two components of stress. The three

tensors, aij, sij' and a, all have the same principal

directions.

A similar analysis can be performed on the symmetrical

infinitessimal strain tensor, cij. This leads to a total

strain tensor,

11ll 12 C13

ij= el12 £22 £23 (28)

C13 £23 C33

a volumetric strain tensor or dilatation,
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C

S= 0

0%M

o o

e o

0 e

and a deviator strain tensor,

e =ij

ell el2 e13

e12 e2 2  e2 3

e13 e23 e33

(30)

(31)eij = e6ij + eijij ii ii

These strain tensors possess

directions like those of the

not be used in what follows.

invariants and principal

stress tensors, but they will

(29)

3.6.2 Yield Criteria

A non-frictional material is one whose strength or

yield criterion does not depend on volumetric stress or

strain. Many engineering materials are included in this

definition, and saturated clays are often considered

unaffected by volumetric stress in the "d = 0" analysis

(Skempton, 1948). Since the yielding does not depend on

the volumetric stress, the yield function will not depend

Again
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on I 1 , or

- 0 (32)
I 1  tai

The plastic volumetric strain rate is, therefore,

S(p) *(p) f
3i = x- =0 (33)

There are two generally recognized yield criteria for

non-frictional materials, one named after Tresca and the

other after von Mises and Hencky. The Tresca criterion

specifies that yielding occurs when the maximum shear

stress exceeds a critical value, k. If it is known that

the major and minor principal stresses are in the plane

(x,y), this criterion can be stated

x+ 2 = k 2  (34)
2 xy

The Hencky-von Mises criterion is stated by the equation

J 2 = k 2  (35)

This expression accounts for all the principal stresses

and is much simpler for mathematical purposes, but its

physical meaning is not immediately clear. Novozhilov



(1952) has obtained the criterion by considering a sphere

as it deforms elastically. Such a body has all orientations

of faces distributed equally. If a limit is set on the

root mean square of the shear strain on all orientations

of faces, the controlling stress function becomes proportional

to the Hencky-von Mises criterion.

When these two yield functions are plotted in coordinates

of principal stress, they appear as a hexagonal prism and

a right circular cylinder, respectively. The common central

axis is the line of volumetric stress (al=C2 = 3 ). Figure 3a

shows this representation. Since there is no change along

the volumetric stress line, the figure can be equally well

represented by a cross section perpendicular to that line

which is shown in Figure 3b as seen by an observer looking

down that line toward the origin. Distances in this figure

measured from the origin parallel to the al, G2, and o3axes

are proportional to the s1 , s2, and s 3 components of the

stress, respectively.

Stress-strain relationships for the elastic-plastic

materials which yield according to these criteria are

derived in Appendix E. Both derivations follow similar

lines. For the material that follows the Hencky-von

Mises criterion a rate of deformational work is defined by

W = sijeij. (35)



There being no volumetric plastic strain, equation (6)

can be written

(p)
f. = x (36)iij

The unknown constant, X, is then found to be

= - 2 (37)
k

The difference between the stress-strain relations

resulting from the two criteria involves the effect of the

intermediate principal stress, strain, and strain rate.

Since the Tresca criterion is independent of the intermedi-

ate principal stress, there must be no plastic strain in

the direction of intermediate principal stress. For plane

strain conditions this will usually be the direction normal

to the plane.

A graphical view of this can be seen in Figure 3b,
(p)where a strain rate, e , normal to the Trescal surface

at a point C, is seen to be normal to the axis labelled

02, which actually represents s2 . Therefore, there is no

component of the deviatoric strain rate in the 02 direction,

and it has been shown previously that there is no volumetric

plastic strain. The total plastic strain rate must have

no component in the 02 direction.

If the Hencky-von Mises criterion applies, the situ-
(p)

ation is quite different. A strain rate, e , drawn
ij



at point D in Figure 3b obviously does have a component in

the a2 direction. There will be plastic straining normal

to the plane, which must be countered by equal and opposite

elastic strains to maintain zero total normal strain. The

intermediate principal stress, a2 , will necessarily increase

more rapidly than it would if the material were still

elastic. The resulting movement of the stresses from

point D to point A in Figure 3b has been demonstrated

analytically by Hill (1950). When the stresses are at

point A, the strain rate is again normal to 02 and no

more plastic strain normal to the plane of plane strain

occurs.

It is possible for a material obeying the Hencky-von

Mises criterion and loaded under plane strain conditions

to have no plastic strain normal to the plane under two

special conditions. The first is that the elastic strains

are so small that the material is considered rigid before

yielding. Then all strains are plastic, so the normal plas-

tic strain must be zero. Such a material is called a von

Mises material by Prager and Hodge (1951) to distinguish it

from the elastic-plastic material obeying the same yield

criterion, which is usually called the Prandtl-Reuss material.

It will be called that here.

The second special case occurs when the Poisson's

ratio for the elastic portion of the behavior is equal to

one-half. For plane strain conditions the elastic stress
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normal to the plane will be equal to the volumetric stress,

and the corresponding deviatoric stress component will be

zero. The stresses must therefore meet the yield criterion

at point A or point A' in Fibure 3b, where the strain rate

has no component in the a2 direction. It should be noted

that, for an elastically incompressible material, both

the Tresca and Prandtl-Reuss materials give the same re-

sults in plane strain.

3.6.3 Incompressible Material

Soil loaded so rapidly that pore fluid cannot escape

is often considered elastically incompressible, and it is

necessary to have solutions for stress distributions in

such a material. When closed form solutions exist for a

general isotropic, linearly elastic body, they can be

made to apply to the incompressible case by setting

Poisson's ratio to one half, making the bulk modulus infi-

nite. Davis and Poulos (1965) have applied this approach

to the Burmister (1956) solutions of an elastic layer in

cylindrical coordinates.

When finite difference or finite element methods are

used, the problem cannot be so easily treated. Such

techniques involve the calculation of stresses from dis-

placements, and it can be seen from equation (3) that

directly setting Poisson's ratio to one half would make the

denominator of the elastic expression equal to zero. This

__



results from the special problem that the volumetric stresses

are independent of the volumetric strains, so some modifi-

cation is necessary in formulating the mathematical model.

The modifications were developed from the effective

stress principle of soil mechanics. This states that soil

is a two-phase system, one phase a soil skeleton and the

other a pore fluid. The two phases have different stress-

strain properties, but, if no flow of the pore fluid occurs,

the strains must be identical in the two phases. Any stress

applied to the material as a whole is carried partly by the

skeleton as "effective stress" and partly by the pore

fluid as "pore pressure". This allows the creation of a

model similar to Biot's (1941a,b,c) porous elastic consoli-

dation model.

The skeleton of the soil is considered here an elastic-

perfectly-plastic porous material whose behavior is des-

cribed by the elastic constants E and v and by the plastic

yield stress, k. The pore fluid is incompressible and has

no shear strength. In other words, the skeleton has finite

values of bulk modulus, K, and shear modulus, G, and the

pore fluid has an infinite K and zero G. The two phases

deform together so that their strains are compatible. A

more detailed description of the analysis for this material

is in Appendix D.

3.7 Frictional Materials

3.7.1 Drucker and Prager's Generalized Criterion

The yield criteria considered above require that the
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strength of the material not be dependent on the volumetric

stress. For rapid, undrained loading of soil this may be

close to the truth (Skempton, 1954), but it is not generally

so for slower, drained loadings. The shear strength then

increases with normal stress on the failure plane according

to the Mohr-Coulomb law:

7 = c + a tan , (44)

where 7 is the shear strength on the surface of failure,

c is a physical constant called "cohesion"

a is the normal stress on the surface of failure, and

g is a physical constant called the "angle of friction"

This law is generally accepted as valid for failure

conditions even though experimental determination of c and

f is the subject of controversy and the two physical

constants can vary with void ratio of the soil, relative

density, previous consolidation history, and perhaps the

stress system. The relation can be plotted as shown in

Figure 4, where tensile stresses are positive.

Use of Mohr's circle in Figure 4 allows the law to

be written in the form

a -a a1+0
+ 2 2 3 os = c cos , (45)

where 01 and 03 are major and monor principal stresses,
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and in the form

+ 7 2 + 2 cos f = c cos (46)
2 xy 2

Two questions arise from examination of these relations:

a) How, if at all, should the effect of the stresses

out of the (al003) plane be considered?

b) Is this a yield criterion?

If the effects of intermediate stress are ignored, the

relation can be plotted in Figure 5a against axes of

principal stress, and a cross-section normal to the volu-

metric stress line can be plotted as in Figure 5b. The

surface is an irregular, hexagonal puramid. These plots

assume that when 02 becomes a major or minor principal

stress it is substituted for the appropriate quatity in

the equation (45).

Prager and Drucker (1952) have suggested the following

generalization of the Mohr-Coulomb law to account for all

principal stresses:

1
I + j2 = k, (47)

k 

(47)2

where a and k are physical constants. It plots as a right

circular cone in Figure 5.
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The constants a and k are not uniquely belated to c

and p because of the effect of the intermediate principal

stress. In Appendix F relations between these terms are

derived for conditions of plane strain, axially symmetric

compression, and axially symmetric extension. The results,

plotted in Figures 6 and 7, show that the Mohr-Coulomb

surface must be adjusted to touch the Prager-Drucker sur-

face at a line corresponding to the stress conditions. In

Figure 5 points A and A' correspond to axial compression,

point B to axial extension, and points C and C' to plane

strain. Points C and C' will move along their respective

yield surfaces as Poisson's ratio for the elastic behavior

varies.

Which of these two frictional criteria to use is diffi-

cult to decide, in part because, as is explained in the

next section, there is ground for doubting the validity

of either as a yield criterion. Since the Prager-Drucker

form does not have "corners", it has been chosen here for

mathematical convenience.

3.7.2 Validity of Drucker-Prager Yield Criterion

Prager and Drucker (1952) showed that their generali-

zation of the Mohr-Coulomb law in combination with the

normality rule predicts plastic volumetric strains according

to the equation
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(p) -b f
3X (48)

This means there must be positive (expansive) volume

changes during drained plastic strain. The same result can

be seen from Figure 8, in which the outward normal to the

Prager-Drucker surface clearly has a positive volumetric

component. The same conclusion would also apply to the

Mohr-Coulomb law if it were used as a yield criterion.

It is a well established fact of soil mechanics

(Henkel, 1958, Ladd, 1964) that some soils, such as over-

consolidated clays and dense sands, do expand at the early

stages of shear. Others, such as normally consolidated

clays and loose sands, compress during shear. Inorganic

clays tend to arrive at a stable volume after shear so

that further distortion continues with no volume change.

This behavior is obviously in conflict with Prager and

Drucker's predictions from the generalized Mohr-Coulomb

law, and they clearly recognized this.

There are several possible solutions for the dilemma.

First, the material may be yielding on a number of discrete

surfaces. Second, the normality rule may not apply.

Third, the Mohr-Coulomb and Drucker-Prager laws may not

be yield criteria in the sense meant by plasticity theory.

Finally, plasticity theory may not apply to soils.

The first objection, that the soil may not yield as

a mass, is certainly valid in many cases, as Prager and Drucker

(1952) and Brinch Hansen (1953) have pointed out. The

soil, failing along separate surfaces, behaves essentially
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as two or more solids sliding past each other. Since the

thickness of these zones is vanishingly small, there is a

small volume of yielding material and no measurable volume

change. Drucker (1954) has demonstrated that an assemblage

of sliding masses is not necessarily stable, so the limit

theorems of plasticity theory cannot be shown to apply to

such an assemblage. The bearing capacity formulas of

soil mechanics (Terzaghi, 1943) are applications of the

limit theorems, and they also assume a yielding mass

rather than an arrangement of blocks. Further, it is

reasonable that some soft soils must flow in a mass,

especially under contained flow conditions. For these

reasons this objection cannot be the only explanation of the

problem. The mathematical model adopted here for computa-

tions cannot at this time be used for cases of thin line

failures, and this mode of yielding is not considered

further.

The proposition that normality may not apply has been

advanced by several writers. Brinch Hansen (1953) and

Takagi (1962), for example, have solved problems of limiting

equilibrium or plastic flow by assuming the Mohr-Coulomb

criterion is valid but normality is not. The stresses

satisfy the Mohr-Coulomb law, but the strains and strain

rates satisfy boundary conditions or assumed conditions of

no volume change. If it were possible to determine before-

hand what sort of volume change could be expected, this

type of approach could also be used for contained flow.
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Rowe's (1962) stress-dilatancy relations are possibly useful

for such an empirical approach.

The major difficulty arising from discarding normality

is that it eliminates the proof of the limiting equilibrium

theories of plasticity, leaving them only intuitively

supported (Drucker and Prager, 1952). These are among the

most useful results of the theory and are widely used in

soil mechanics for analysis of bearing capacity, lateral

earth pressures, and slope stability. In addition, lack

of normality implies the material is unstable in Drucker's

sense or becomes instantaneously anisotropic with respect

to strain rates. Both of these are unreasonable as general

assumptions.

The last two possible alternatives to the consequences

of the frictional yield criteria are discussed in the

following sections.

3.7.3 Capped Yield Surfaces

Because the consequences of abandoning normality seem

to be as unpleasant as those of retaining it for the frictional

critieria, it is attractive to consider the possibility of

another yield criterion. The techniques developed for

computation in plastic flow problems in which the stresses

satisfy the Mohr-Coulomb law and the strain rates do not

remain normal to its surface may still be valid if it turns

out there is another yield surface which intersects the
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Mohr-Coulomb surface at the stress in question but at an

angle. Such a situation is illustrated in Figure 8. The

curved surface intersects the Drucker-Prager surface at

point A. The normal to the curved surface is not normal

to the Drucker-Prager surface. Thus, normality is satis-

fied if the curved surface is the yield surface, but it

is not if the Drucker-Prager or Mohr-Coulomb laws are the

yield surfaces. Drucker, Henkel, and Gibson (1957)

suggested such a solution to the normality problem.

These authors proposed that the yield surface for

soils should look like the Mohr-Coulomb surface except

that it should be capped at the open end by a dome which

would expand and contract as the volume of the soil

changed. The dome was assumed spherical for simplicity.

Figure 9a shows a cross-section through such a surface

cut by a plane on which a2 is equal to a3 , that is, a

plane of stresses possible in a triaxial test.

If a triaxial sample were consolidated isotrophically

from point A to point B, the cap would move along the

isotropic line with the stress. The effective stress path

for subsequent undrained shearing would follow the cap

of the yield surface from B to C. The normal to this

surface has a negative (compressive) volumetric strain

rate component, which would be countered by an increase

in compressive pore pressure. This would decrease the

effective compressive volumetric stress to allow elastic

expansion to balance the plastic compression. The net effect
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would be no volume change. At point C the normal would have

no volumetric component, and further tendency for volume

change would cease.

Experimental results (Henkel, 1958) indicate that this

theory is too simple for soils because, among other things,

it predicts strain rates which do not agree with the data

from laboratory triaxial shear tests. Since then the more

accurate definition of the plastic behavior of soils has

concerned Roscoe and his associates (1958, 1963), who have-

made several modifications to the basic capped yield

criterion theory.

First, they have shown that the yield criterion moves

during shear to make the soil a strain hardening or

softening material. The position of the surface is assumed

to be a function of the plastic volumetric strain. Second,

they have described a bullet-shaped yield surface, pointed

at the isotropic end, like that shown in Figure 9b. Third,

they have assumed all deviatoric strains are plastic, which

makes the material rigid with respect to deformation in

the elastic range. The only elastic strains are volumetric.

This is not a necessary assumption, but it greatly simplifies

the analysis of the soil behavior while still being fairly

reasonable.

A sample of soil consolidated isotropically would be

represented by the point A in Figure 9b. The yield surface

would be the line AB. As the soil was sheared, the yield

surface would move out until the stresses reached point C,



where the normal to the yield surface would have no volumetric

component. This is called the "critical voids ratio line"

by Roscoe.

A heavily over-consolidated soil might be initially

at a point such as D in Figure 9b, but there is very little

evidence about the plastic behavior of such a soil. It can

be assumed intuitively that an over-consolidated soil would

be strain softening. Its stresses would move elastically

from D to some point E, whereupon plastic yielding would

start and the yield surface would collapse. The stresses

would finally reach the critical voids ratio line at a

point F. Such a material would be unstable and would

probably develop failure along discrete cracks rather

than in the mass.

3.7.4 Elliptical Cap

For the purposes of this research a simplified,

composite mathematical model was adopted. The soil was

assumed elastic-plastic with strain hardening as a result

of plastic volumetric strain. The yield surface was assumed

to be elliptical when plotted as in Figure 10. The position

of the ellipse is defined by its center (points A and B),

and the movement of the ellipse during plastic strain is

linearly dependent on the plastic volumetric strain. Thus,

if the stresses move from A' to B', the surface will move

along with them, and the plastic volume change will be

proportional to the change in stress. It would be more in

accordance with the known compression behavior of soil for

the plastic volume change to be logarithmically related
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to stress, but this idealization makes the analysis simpler

without changing the essential character of the yield

criterion.

Further assumptions are that the ratio of the principal

axes of the ellipse is a constant and that when the soil

stress moves below the yield surface (as from C to D)

it does not move. If the stresses return to the sur-

face (as at point E), the surface can then move out

during further plastic strain.

The heavily over-consolidated case was not of primary

interest here, but it happens that the analysis indicates

that the ellipse will collapse if stresses occur on it

between F and G. Although this is reasonable, the behavior

is open to question, so the model is not intended to serve

for heavily over-consolidated clays or dense sands.

The derivations of incremental stress-strain relations

for the Drucker-Prager criterion and for the elliptical

strain hardening criterion are described in Appendix E.

3.8 Other Stress-Strain Relations

The computational techniques described in the next

chapter can be applied with almost any stress-strain law.

This would allow the use of empirical relations for pre-

dicting soil deformation under load. This has not been

done here largely because the aim of this work was the

investigation of incremental plasticity theory and its

applications, but nothing should be inferred about the possible
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validity or lack of validity of other stress-strain relations.

In particular, the results of Rowe's (1962) work has

already been mentioned, and correlations such as those

presented by Brinch Hansen (1965) could also be used.

Experimentally determined relations between stress level and

stress-strain moduli (Ladd, 1964) could similarly be

included.

The major problem in using such equations is that

it is not always clear how they can be generalized for

stress systems other than those under which they were

obtained, usually those of the triaxial compression test.

The most direct approach would be to use an apparent

Young's modulus, E, dependent on the stress level. In any

case, such extrapolations are likely to be very intuitive

and will lack much of the mathematical justification inherent

in plasticity theory. Nevertheless, it is to be hoped that

future developments of this research effort will include

consideration of such empirical stress-strain laws.



CHAPTER 4

MATHEMATICAL PROCEDURES

4.1 Solution of Lumped Parameter Model

The Ang model has been described extensively elsewhere

(Ang and Harper, 1964, Whitman, 1964, Christian, 1965),

so only its main features are summarized here. The model

is basically a physically reasonable way of representing

a continuum in such a manner that there result linear

algebraic equations identical to those resulting from

central finite difference analysis.

The plane continuum is approximated by discrete points

called mass points and stress points, which are shown in

Figure 11. The coordinate directions, x and y, and the

corresponding displacement components, u and v, are defined

at each mass point in the positive sense shown in the

figure.

Strains can then be calculated at the stress points as

differences between the displacements of the surrounding

mass points. If the subscripts UR, UL, LR, and LL stand

for "upper right", "upper left", "lower right", and "lower

left", respectively, the three strains become

exx = (ULR - uUL)

S= (VLL- vUR)/

xy = (u -u +LR UL)/6 (49)xy LL UR LR UL
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where 6 is the diagonal

This is clearly a first

to the relations

distance between mass points.

order central difference approximation

c =
xx x

yy xyy

If a stress-strain law is known, the stresses, axx'
a , and a , can be computed from the strains. These

stresses must now exert forces on the surrounding mass

points, and the forces are

6

6
F =a -

y yy 2

50)

rxy xy 2 (51

The positive directions in which the forces act on

neighboring mass points are shown in Figure 12. It should

be noted that extensional strains and tensile stresses

are positive.
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The model is loaded by applying forces or displacements

to any chosen mass points. The resulting displacements at

all mass points are computed by an iteration procedure.

The computer program calculates the forces exerted on each

mass point by the surrounding stress points and by applied

forces at the mass point and adds the forces to find whether

it is in equilibrium. If it is not, the displacements of

the mass point are adjusted to eliminate the unbalanced

forces. The process continues throughout the array of mass

points repetitively until the unbalanced force at each mass

point is less than a convergence criterion. The displace-

ments are then the solution. From them can be calculated

the strains, stresses, and forces in the stress points or

on the mass points.

The convergence criterion requires that the magnitude

of the unbalanced force in each direction at each mass

point be less than the sum of the absolute magnitude of the

forces exerted in that direction multiplied by a small

number, e, plus the existing displacement in that direction

divided by the flexibility in that direction and multiplied

by c. Values of e have ranged from 10-4 to 10-6 in this
-5

research, but 10 has generally been the most satisfactory

compromise between computational speed and accuracy.

Only rectangular boundaries have been included in

the programs, although the basic square grid could be

fitted to geometries with rectangular inclusions or stepped

boundaries. The boundary conditions are restricted to
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four types: free, fixed, reflected, and "smooth". The

free boundary has no displacement restraint, and the fixed

boundary has full displacement restraint. The reflected

boundary occurs on the center line of a symmetrical problem.

The last boundary condition is an approximation of the

conditions far from the loaded zone. It requires points

on the boundary to move only parallel to the boundary and

by the same amount as the parallel component of the motion

of points one step in from the boundary. All boundaries

must be composed of mass points. Displacements can be

prescribed on any boundary, as they can be at any other

mass point. Any boundary can be of any type, except that

the bottom can be fixed or smooth only.

Plastic relations or otherwise non-linear stress-

strain laws can be used by solving the problem incrementally.

That is, a small load is applied, the problem is solved,

new stress-strain relations are calculated, and a new

increment of load is applied. This continues until the

desired load or displacement level is reached.

4.2 Programs Developed

4.2.1 General

Six basic programs were written for six different

stress-strain relations. Table I lists them and summarizes

their salient features. Appendix C describes the use of

the programs and the input required for each. The following

paragraphs describe the important points about them.
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4.2.2 Tresca Material

The basic program for this material was originally

called PERPLAS and is the program described by Whitman

and Hoeg (1965). Some slight modifications have since

been made to convert it to the M.I.T. Computation Center

I.B.M. 7094 machine. It is now called MASS-TR, which is

an acronym for Multi-dimensional Analysis of Stress and

Strain - TResca. The analysis for the elastic-perfectly-

plastic Tresca material is presented in Appendix E.

The iterations are carried out by row. At each inter-

nal mass point forces must be computed from each of four

surrounding stress points, two of which are common with

the previous mass point on the row. The forces in the two

common stress points are not calculated again as the program

moves from one mass point to another along a row: instead,

the previously computed values are used. When the program

moves to the next row, it does compute new values for forces

from stress points in common with the previous row. This

means that the iteration is essentially a total step

process within a row and a single step process from row to

row.

There is a searching subroutine that estimates the

increment of load required to make one additional point

yield. It is also possible to advance by fixed increments

of load. The most satisfactory procedure seems to be to

use the searching subroutine to find the load required to

cause the first stress point to yield and then to use fixed
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increments (see Whitman and Hoeg, 1965).

After the iteration has converged, the stresses are

checked to be sure none exceed the yield criterion. If

any one stress point does have stresses above the yield

criterion, the stresses are corrected according to Appendix

E. Further iterations are then carried out to put the

system in equilibrium. Final convergence is not satisfied

until all plastic stress points have stresses at the yield

criterion and equilibrium is satisfied.

Early in the research effort it became evident that

some method was needed for preserving the status of a

problem after a computer run so the problem could be

started again later. The program now includes instructions

to dump the status on a magnetic tape after each load

increment has been solved. Since the M.I.T. Computation

Center has a rigid timing control on jobs, a time check

is included in the program to prevent the dump if there

is not enough time left in the run to complete the dump.

The problem is started again by the same program if an

input quantity is properly set. The status is read back

from the tape, and calculations proceed.

4.2.3 Prandtl-Reuss Material

The program for this material is called MASS-PR, which

stands for Multi-dimensional Analysis of Stress and Strain -

Prandtl-Reuss. The analysis is in Appendix E. In most

1



1I

respects the program is very similar to MASS-TR, except

that it uses the Prandtl-Reuss relations.

The speed of convergence was improved for this

material by including the correction for forces in excess

of the yield criterion directly in the calculation of forces

at each cycle of iteration.

4.2.4 Undrained Material

Two programs were written for undrained material:

one for purely elastic material, and the other for elastic-

perfectly-plastic material. The first, called PLANE for

PLANe Elastic, is an improved version of the routine des-

cribed by the author in a previous report (Christian, 1965).

The second is called PLUSS for PLane Undrained Stress and

Strain. The analysis for both is in Appendix D, where it

is shown that the Tresca and Hencky-von Mises criteria

give the same results for an imcompressible solid. PLUSS

is, therefore, based on MASS-TR, the simpler of the two

elastic-perfectly-plastic programs above.

The main change from MASS-TR is the addition of a

routine for calculation of the pore pressures after each

increment. The convergence criterion for pore pressures

is that the required change must be less than the existing

pore pressure multiplied by c.

The iteration procedure for displacements was converted

from the partially total step, partially single step arrange-

ment in MASS-TR to a fully single step method. The change
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was made because the technique used in MASS-TR usually would

not converge when used with the pore pressure routine for

eliminating volume change.

Program PLUSS, for elastic-perfectly-plastic material,

allows initial stresses to be specified in the soil. These

are specified as some fraction of the yield stress. An

initial vertical effective stress in compression and hori-

zontal effective stress in tension provide the required

shear stress, To insure vertical equilibrium a tensile

pore pressure is included to balance the vertical compression.

These stresses must be subtracted from the stresses under

load to obtain the incremental behavior patterns, but

they do permit problems to be started from states other

than unstressed ones.

The program uses the same technique as does MASS-TR

to preserve the status of a problem and to start it again.

4.2.5 Drucker-Prager Material

The program for the analysis of problems using the

Mohr-Coulomb failure law as generalized by Drucker and

Prager is called MASS-DP, for MASS - Drucker-Prager. The

analysis is in Appendix E, and the same dump and restart

techniques as the other programs.

The program uses a single step iteration procedure.

It checks periodically throughout the calculation whether

the strains of all stress points agree with the assumptions
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about their elastic or plastic status. If a stress point

is found whose stresses are, say, in the plastic range,

but whose strains indicate it should be unloading, the

point is changed from plastic to elastic. This allows

points to yield and return to the plastic state as they

need to during the incremental loading of the soil mass.

Convergence is satisfied when forces are in equilibrium

and all stresses and strains agree with the assumed state

of the stress points.

The correction to prevent forces' exceeding the yield

criterion is made when the forces are calculated in the

iteration process. The flexibility is also calculated each

time for the mass point so its displacement correction will

be more accurate.

For a frictional material the weight of the soil

is important. This program calculates the weight at each

mass point and uses it as one of the forces to be included

in the equilibrium equation. Initial stresses are computed

from the weight and from a specified ratio of horizontal to

vertical stress.

4.2.6 Strain Hardening Material

The program for the strain hardening material is called

MASS-SH and follows the analysis presented in Appendix E.

It uses the same dump and restart procedure as the other

plastic programs.
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Although the program is quite similar to the other

plastic programs, there is a distinction in that the points

are all plastic at the start of loading. Some points

must become elastic as loading progresses, so there must

be the same sort of ability for points to yield or become

elastic as exists in the MASS-DP program. The yield

surface moves as a point strains plastically. Therefore,

no correction routine has been included in the iteration,

but, after each incremental solution, each plastic stress

point acquires a new position of the yield surface which

is based on the stresses developed in that point up to

that time.

4.3 Other Comments

4.3.1 Errors

The errors involved in calculation procedures such

as these are of two types: truncation and round off.

The first is the error induced by approximation a conti-

nuous problem with a finite system. The second is the

error involved in solving the simultaneous algebraic

equations numerically.

The round off error has been minimized by using a

rather stringent convergence test and small convergence

criteria. The effects of varying the convergence criterion

from 10-4 to 10 - 6 were not important. Reproducible results
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were obtained from different types of computing machines.

The general experience with finite elements and finite

diffence techniques is that the round off error is less

important than the truncation error. For these reasons

the round off is not the major problem, but it is evident

that some must exist.

The truncation error is a far more serious problem.

It should be greatest where the stress and strain gradients

are largest because the model does not allow for reduction

of point spacing in these regions. Figure 20, for example,

shows that the vertical stresses oscillate between tension

and compression outside of the loaded area at the surface.

This is caused by truncation error, specifically the

elimination of higher order terms from the solution.

Comparison of the stress distributions in the elastic

range with closed form solution for the half plane indi-

cate good agreement except at the bottom, where the boundary

changes their distribution (Whitman and Hoeg, 1965).

Also, comparisons between theoretically predicted final

failure loads and loads at which the calculations appear

to continue indefinitely indicate agreement within one or

two per cent (Whitman and Hoeg, 1965). These two facts

suggest that, although the truncation error may be serious

for certain regions, the general pattern of the results

is correct and can be relied on for research purposes.
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4.3.2 Initial Stresses

It is highly desirable to be able to run problems with

initial stresses other than zero, but this raises certain

problems in computational technique and analysis. The

initial stresses can be stored in the machine memory and

all additional stresses added to them to give the stress at

any time. This incremental technique has to be employed

in any case for the plastic stress points, and it can be

used just as easily for elastic points. One must be care-

ful to remember that the stresses in such elastic points

are no longer linear functions of the strains alone but

are linear functions of the strains added to some initial

value. The difficulty arises in determining what the

initial stresses will be.

An initial approach is to calculate them from elastic

theory, which predicts that a linearly elastic, isotropic,

homogeneous material, loaded vertically with a stress,

a , with no lateral displacement allowed, will have

lateral stresses, ah , given by

a - - a = Ka (52)
h l-v v ov

This equation predicts values of Ko of 0.25 for v of 0.2.

Now, a cohesionless material can be shown to have a

ratio of ah to av at failure (Kf) defined by

ah 1 - sin 0
f a 1 + sin $ (53)

v
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If d is 300, this means Kf is 0.333. In other words, the

material is presumed to be beyond the failure state before

loading unless a restriction is placed on allowable values

of v.

The computer programs for the frictional materials

(MASS-DP and MASS-SH) avoid this problem by allowing an

initial value of K to be specified as independent input

data. The internal forces in the stress points implied by

this value and by the weight of the material are calculated

and stored as initial forces. The solution then proceeds

from these initial values.

The frictionless material cannot be handled in this

way because the shear stresses must increase linearly with

depth if the K is constant. At some depth they must
o

ultimately exceed the yield stress, making the material

plastic under its own weight. In the program for an un-

drained elastic-plastic material (PLUSS) the initial stress

is specified as a fraction of the yield stress and is

constant with depth.
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CHAPTER 5

RESULTS AND DISCUSSION

5.1 General

After the computer programs were debugged and tested,

the problem shown in Figure 13 was analyzed under various

boundary conditions for differing material properties.

The loading was always force controlled and simulated the

effect of a long embankment on a layer of soil. The

lateral boundary of the soil was between 280 feet and 300

feet from the center line of the load. The change was

the result of the use of three computers (an IBM 7040, an

IBM 7094, and an IBM 360/40) during the course of the

research. The IBM 360/40 had stringent limitations on

the allowable size of COMMON storage, which limited the

size of arrays that could be handled by the programs.

Therefore, several runs were made with lateral boundaries

at 280 feet, while the previous work of Whitman and Hoeg

(1965) had used 300 feet. In some of the test runs on

the frictional material the lateral boundary was at 320

feet. The salient features of the runs are summarized

in Table II.

In the following discussion it is convenient to refer

to points by number. The convention is found in Figure 13.

Row numbers are given first. Thus, mass point 1-4 is the

rightmost loaded point. Stress points are identified by

the mass point above and to the left of them.
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The previous work of Whitman and Hoeg (1965) showed

from runs with PERFPLAS on a single material that the model

performs well, giving elastic stresses and displacements

that agree reasonably well with available analytic solutions.

The vertical stresses were less in error than the hori-

zontal. The highest attainable load is within a few

percent of the theoretically predicted Prandtl failure

load of (2 + T) times k. The effect of moving both the

lateral and bottom boundaries together was to increase

displacements but not to change the load of initial yield

or final failure. However, the lateral boundary does have

a confining effect so that moving it closer to the load

without moving the bottom retarded the first yield without

affecting the final load. Although finer mesh sizes gave

better results, the spacing used here gave result quite

close to those from finer meshes. The greatest error is

near the corner of the load, where the stress gradients are
-5

high. A convergence criterion of 10 seemed to be the

best compromise between accuracy and speed of solution.

These results were considered as starting points for the

present research.

5.2 Effects of Poisson's Ratio

Examination of the incremental stress-strain relations

of Appendix E reveals that Young's modulus, E, can be

factored out of them. This means that the effect of changing

E can be achieved by changing all displacements for a
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given load proportionally. The effect of changing the

yield stress, k, can be simulated by changing all stresses

and Young's modulus proportionally and then adjusting for

the change in Young's modulus. This is essentially the

same thing as adjusting for a change in units. The only

remaining material property for non-frictional material

whose effect must be determined from actual computer runs

is Poisson's ratio.

Runs 1 through 4 were made with essentially the same

boundary conditions and material properties except for

changing Poisson's ratios. Run 2, which is the same as

run XIV of Whitman and Hoeg, had the lateral boundary

20 feet further out than the other runs, but the effect

is minor. All runs had E of 3,000 TSF and k of 1.75

TSF, this being achieved in run 4 by an effective stress

E of 2,600 TSF and an effective stress Poisson's ratio of

0.3.

The surface displacements plotted in Figure 14 show

that the material with low values of Poisson's ratio

compresses more vertically and moves less to the side.

All runs showed excessive convergence times at a load of

about 9 TSF, which is the Prandtl failure load. In all

cases the plastic zone tends to move down before it moves

out to the side. The major effects of the change in

Poisson's ratio are to change the load at first yield and

to alter the pattern of the plastic zone near the bottom

of the layer of soil. The load at initial yield increases
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from 4.05 TSF for Poisson's ratio of 0.2 to 4.93 TSF for

Poisson's ratio of 0.5. Figures 15 through 18 show that

the plastic zone tends to reach the bottom increasingly

farther from the center line as Poisson's ratio increases

and that for values of 0.4 to 0.5 the zone does not reach

the center line by the time of ultimate failure. Besides

these two points the pattern of the yielded zones is very

similar for the range of values of Poisson's ratio used.

The conventions used in the stress distribution dia-

grams are illustrated by Figure 19. The space for the pore

pressure is left blank for the non-frictional runs on

material with Poisson's ratio not equal to 0.5. The plots

for the runs on frictional material (runs 11 and 12)

use this space for the stress normal to the plane of the

problem.

The stress distributions for runs 1 through 3 are

shown in Figures 20 through 26. Stress distributions for

the material with Poisson's ratio of 0.5 are shown for

run 5 in Figures 36 through 41, which will serve for run

4 also. These figures, and all similar figures presented

later, represent the normalized stresses, that is, the

stresses divided by the applied surface load. They are

presented as percentages so that -99 means 99% compressive

stress.

The elastic stresses are shown in Figures 20, 22, 25,

and 36. The vertical stresses are not much affected by

changes in Poisson's ratio, which is in agreement with the

results of most closed form solutions to elastic stress

68



distribution problems. The horizontal stresses, however,

become increasingly compressive as Poisson's ratio increases.

This increased compressive stress explains the higher

load at first yield for the material with higher Poisson's

ratio.

The plastic stress distributions in Figures 21, 24,

26, and 41, which show the situation at the highest load

attained in each run, show that the vertical stresses may

become somewhat more compressive as yielding progresses,

but the changes from the elastic case are small. The

horizontal stresses, however, become markedly more

compressive as yielding progresses. The horizontal stresses

near the lateral boundary are more compressive for higher

values of Poisson's ratio than for lower values. Near

the load the variation is much less pronounced between

materials with different Poisson's ratios. It is evident

the lateral boundary acts as a strong restraint on lateral

movement during failure. Figure 23 shows an intermediate

stage during the development of the plastic zone and is

plotted primarily for comparison with later runs with

different yield criteria.

In Figures 36 through 41 the pore pressure reflects

the increasing compressive stress as yielding spreads. The

pore pressure for this material does not depend on the

shear stress and so therefore will not increase as yielding

occurs. This is contrary to the behavior of soil, and as

a result the mathematical model must be regarded as a

total stress model even though it uses the effective stress
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principle to handle incompressible materials. There is,

of course, no reason why a similar model could not be set

up which would compute pore pressures dependent on deviatoric

stress or strain if a valid relation were developed experi-

mental ly.

The displacements under elastic conditions and at

the final load are shown in Figures 27, 28, and 29 for

runs 1i, 2, and 3. It can be seen that the general patterns

of displacement are quite similar for all three materials.

The materials with the higher Poisson's ratios do have

more upward movement at the surface outside the loaded

area at failure. It is also evident that point 2-4, directly

under the corner of the loaded area and one row beneath the

surface develops large displacements during plastic strain.

This is caused partly by errors in the lumped parameter

model, but it also reflects the failure of the corner of

the load. Since each loaded mass point can move independently,

the failure actually involves the displacement of the outside

portion of the load.

The development of the failure is seen in more detail

for the incompressible material in Figures 30 through

33. The final displacements (Figure 33) are reasonably

similar in pattern to the elastic ones (Figure 30a) but

much larger. Point 2-2 has moved somewhat less strongly

to the right, and point 2-4 again has large displacements

at failure. Figures 30b through 32 show the increments of

displacement between successive loads. In effect, these

are velocities. They show the marked increase in vertical
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movement directly outside the loaded area as failure is

approached. Also point 1-3 tends to move inward at early

stages of yielding, but its velocity changes near failure.

The increase in displacement of point 2-4 is remarkable

in Figure 32. It should be remembered that the displacements

in Figures 30 through 33 are for run 5, which used a lower

E than run 4. The patterns are the same even though the

magnitudes are not.

The effect of increasing Poisson's ratio is to increase

the lateral stresses at all stages of loading, and as a

result the load at first yield is increased. There is

more upward movement outside the loaded area and less

downward movement directly under the load for higher

values of Poisson's ratio.

5.3 Effects of Boundary and Initial Stress

Runs 5 through 8 and run 10 were run on an incom-

pressible material with the same yield stress as the

previous runs. Young's modulus (with respect to total

stress) was 865 TSF for all runs except run 6, for which

it was 3,000 TSF. The effective stress parameters were

705 TSF and 0.3, respectively, for most runs, and 2,600

TSF and 0.3 respectively, for run 6.

The displacement fields for run 5 are shown in

Figures 30 through 33 and have been described in the

previous section. Figure 34 shows the vertical displace-

ments of some points on the surface. Since the material



is incompressible, the points outside the loaded area must

move up as the loaded area moves down. Failure seems to

occur near the Prandtl failure load of 9 TSF. Point 1-4,

which is at the edge of the loaded area, moves very little,

while at failure point 1-3 seems to accelerate as the edge

of the load fails.

Figure 35 shows the spread of the plastic zone.

Differences between this and Figure 18 are the result of

plotting at different stress levels. The patterns are

identical if the same stresses are picked. Figures 36

through 41, which show the stress distributions have already

been discussed.

Run 6 was done for a material having a smooth inter-

face at the bottom of the layer. Comparison of the surface

displacements in Figure 42 with those in Figure 14 shows

that the smooth bottom causes larger displacements at

the surface, as might be expected from a reduction in stiff-

ness of the system. Figure 42 suggests that failure is

occurring at a lower load than the Prandtl load, and, from

the behavior of point 1-4, that something unusual is

happening at loads immediately above 8 TSF.

Figure 43 shows that the plastic zone starts to

spread quite similarly to the way it did for run 5, except

that the initial yield load is 4.75 TSF rather than 4.93

TSF because of reduced rigidity. However, at a load of

7.93 TSF another plastic zone starts to spread out from

the side boundary. The material is being pushed out

laterally against the boundary until it yields there. This
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effect of the lateral boundary was observed during testing

of the program for incompressible material. A run with

lateral boundaries 140 feet from the center line and with

a fixed bottom developed a similar yield zone near the

outer boundary. The lateral boundary has an increasing

influence on the yield pattern as the material becomes less

compressible and as the boundary becomes more necessary

for static equilibrium in the lateral direction.

The stress patterns in Figures 44 through 49 show

the marked increase in lateral horizontal stress near the

boundary compared to the patterns in Figures 36 through 41.

However, the fixed bottom causes much higher horizontal

stresses near the bottom. The displacements and incremental

displacements in Figures 50 and 51 are much larger outside

the loaded area than they are for a problem with a fixed

bottom. They are what would be expected.

The problem of the plastic failure of a plane material

on a smooth base is described by Hill (1950), who presents

on page 257 a figure relating the ratio of width of loaded

area to depth to the failure load. This applies to a rigid

load on a layer infinitely wide, but the results were used

to check the program. Run 7 had a smooth bottom and a

free side. The surface displacements in Figure 52 indicate

failure occurs at about 4.5 TSF of load. Hill's figure

indicates, for the present geometry, that the failure load

should be about 4.6 TSF. This is a remarkable agreement,

which confirms confidence in the program.
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Figure 52 shows that the failure occurs rapidly when

there is no lateral restraint. The plastic zone spreads

to the bottom in Figure 53, and final failure happens soon

thereafter. The initial yield load is reduced by the

absence of restraint from 4.75 TSF to 3.70 TSF. The stresses

in Figures 54 and 55 show little difference between vertical

stresses for the two runs 6 and 7 but a sizeable difference

in horizontal stresses. Obviously, the greatly reduced

compression in run 7 allows yielding to occur at lower

loads than before. The displacements in Figures 56 and

57 are predominantly in the horizontal direction, which

confirms Hill's picture of the mode of failure.

Run 8 started from an initial stress distribution in

which the horizontal stresses were in tension and equal to

the yield stress. This means the soil would have initial

shear stresses equal one-half the yield stress. The distri-

bution would simulate the situation in most normally consoli-

dated deposits, where the horizontal stresses before

loading are less compressive than the vertical stresses.

Figure 58 compares the surface displacements from run

8 with those from run 5, which was identical except for

the lack of initial stress. The effect of the initial

stress is to make the material act softer. The vertical

displacements are all increased, and the yielding occurs

at lower load so as to make the curve flatter. At the

theoretical failure load the curves of displacement for

points 1-1 and 1-3 do not appear to be vertical, but the

number of iterations for convergence was increasing as it



does near failure. The over-all effect of initial stress

is to make the displacement curve look more like that for

"local shear" rather than "general shear" (Taylor, 1948).

The plastic zone spreads in Figure 59 in much the

same way as it does in run 5, except that it starts spreading

at a lower stress. The load at initial yield is reduced by

one half to 2.48 TSF. In Figures 60 and 61 are plotted the

changes in stress at two points in the plastic range, that

is, the normalized difference between the initial stresses

and the calculated stresses at that load. The stress

increment during the elastic portion of the run is identical

to that for run 5. The vertical stresses are little affected

by the initial stress, but the horizontal stress increment

is greatly increased in run 8, especially near the lateral

boundary, where the increment is nearly doubled. This

phenomenon arises because at failure the material outside

of the loaded area must fail with greater horizontal than

vertical compressive stress and this can only happen if

large changes in horizontal compression overcome the

initial stress in the other direction. The displacements

in Figures 62 and 63 show that the mode of failure is the

same as that for run 5 but with larger displacements.

Run 10 was started from the opposite stress state.

The horizontal initial stresses were made compressive and

equal to the yield stress to create initial shear stresses

equal to one-half the yield stress and in the opposite

direction to that of run 8. Figure 64 compares the surface



displacements to those from run 5. The effect of the ini-

tial stresses is to make the material act more as though

it were failing in general shear and to reduce the dis-

placements during plastic flow. As would be expected, the

effect is precisely the reverse of that in run 8.

Figure 65 shows the spread of the plastic zone from

the initial yield load of 6.89 TSFo That the first

yield should occur away from the center line is not sur-

prising, but the pattern of the plastic zone is. The

lateral and bottom boundaries have a significant effect,

as they do for most of the runs on stiffer material. It

should be noted that the plastic zone does not spread as

far down below the load and never reaches the bottom there.

The normalized stress increments are shown in Figures

66 and 67 for two stages in the plastic range. The

horizontal stress increments are reduced from those in run

8 while the vertical ones are not much affected. The

displacements, plotted in Figures 68 and 69, show the

same general patterns of motion as in the previous runs,

but there appears to be a more erratic motion near the

corner of the loaded area.

5.4 Effects of Other Yield Criteria

Run 9 was made with the Prandtl-Reuss material but with

otherwise identical properties and geometry to run 2.

Despite several changes in the computational technique the
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program for the Prandtl-Reuss material converges much less

rapidly than the program for the Tresca material. It

is not clear why this is so. To avoid excessive computer

use the run with the Prandtl-Reuss material was cut short

at a load of 5.22 TSF.

The displacements at the surface for run 9 and the

corresponding portion of run 2 are compared in Figure 70.

At this early stage of the load history there is not much

change between the two, but the Prandtl-Reuss material is

the softer. The load at initial yield is reduced from

4.43 TSF in run 2 to 4.09 TSF in run 9. These effects

result from the consideration of the intermediate princi-

pal stress, which can be seen graphically in Figure 3 to

cause yielding at lower loads than those predicted by

Tresca's criterion.

The plastic zone develops according to Figure 71.

Comparison with Figure 16 reveals that at comparable loads

the pattern of yielding is identical for the two materials.

The stress distribution at the final load is shown in

Figure 72 and is virtually identical to the distribution

at nearly equal applied load in run 2, which is shown

in Figure 23. The incremental displacements at the final

load and the final displacements are plotted in Figure 73.

These conform to the pattern of run 2.

Runs 11 and 12 were made with frictional material.

Both had no cohesion (k = 0) and had the coefficient a

equal to 0.165, which corresponds to a Coulomb friction

77



angle, 4, in triaxial compression of 21.80. The initial

ratio of lateral to vertical stress, Ko, was 0.5. In both

runs the elastic properties were selected to equal those

in run 2.

Results of run 12 are shown in Figures 74 through 77.

The run was stopped at an applied load of 5.30 TSF because

the convergence times were increasing and an excessive

amount of computer time was being used. The surface

displacements (Figure 74) are nearly linear until the load

has nearly reached 5.00 TSF, where the curves begin to bend.

This marks the beginning of the heave of the material being

pushed up by the failure. Such heave must precede the

failure because the criterion requires volume change during

yield.

The plastic zone spreads downward in Figure 75 as would

be expected from the spread observed in non-frictional runs.

There is more lateral extent to the zone than occurs for

non-frictional materials. The tongue-shaped plastic area

at the surface outside the loaded area results from the very

small confining stress at the surface and directly beneath

it. This is probably caused more by numerical inaccuracies

in the solution than by anything else.

Figure 76 shows the increments of stress at the final

load of 5.30 TSF. These are the differences between the

calculated stresses and the initial stresses. The incre-

ments are remarkably similar to those shown in Figure 23

for the Tresca material at a load of 5.31 TSF. Of course,

this load does not imply that the plastic failure has



developed to a corresponding degree, for the two materials

behave quite differently. The main difference between the

two stress distributions is in the horizontal stresses,

which are more compressive for the Drucker-Prager material.

This results from the expansion of the material as it yields.

There must be a counter action because of the restraint

of the lateral boundary, so the horizontal stresses become

more compressive.

The displacements in Figure 77b are in the same

general pattern as those previously computed in run 2, but

the increments shown in Figure 77a indicate that consi-

derable expansion is beginnning to happen at the edge of

the loaded area.

Run 11 was made with the strain hardening material.

The material constants were the same as for run 12 where

similar constants could be defined. In addition, plastic

compressibility and the shape of the ellipse were defined

as in Table II. The results in Figures 78 through 81

show a markedly different behavior. The vertical dis-

placements at the surface (Figure 78) are almost ten times

those in Figure 74, and they show a continually curving

downward trend which will soon pass the curves in Figure 74.

Since the material starts out entirely plastic and

there is almost no return to the elastic state, no plots

of the formation of the plastic zone are given. The initial

portion of the loading is clearly largely taken up by

plastic volumetric compression. Figure 79 shows that the
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lateral stresses and stresses normal to the plane are much

larger than in previous runs. This Figure shows incremental

stresses beyond the initial stresses.

The general stress paths followed by two typical

points are shown in Figure 80. This also illustrates the

increase in volumetric stress followed by increase in

deviatoric stress as measured by J2. In plotting this

figure it was observed that the stress paths often moved

erratically while following similar general patterns. The

erratic motion is caused by rounding error in calculating

the stresses from differences in displacements and by

truncation error from taking load increments too large.

The stability limits for size of load increments require

more investigation in the future.

The displacement patterns in Figures 81 and 82

indicate that at the load level reached there is relatively

little displacement outside tdleoaded area and that lateral

shear movement is just beginning.

5.5 Discussion of Mathematical Model

The results and discussion presented in the previous

sections indicate that the model developed by Harper and

Ang can be usefully extended to treat a wide range of

constitutive relations. It is still true that there must

be errors in any numerical technique. The most persistent

systematic error found in this research is a tendency for

values of stress or displacement to oscillate from point
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to point. The vertical stress at the surface just outside

the loaded area should be zero, but in all the stress distri-

bution figures there is an oscillation of the vertical stress

in the top stress point which decreases with distance from

the load. The large displacements of mass point 2-4 in

the plastic zone have already been commented on.

Some of this error results from ignoring several modes

of deformation. For example, in Figure 12, if the mass

point at the upper left were to move some distance up to

the right in the negative y direction with no x component

of motion and if the upper right mass point to move down

to the right an equal amount in the positive x direction

with no y component, there would be no stress calculated

in the stress point. There would, however, be stress

induced in an actual square piece of the continuum by these

motions, which correspond to an applied bending moment.

The ignoring of this type of behavior must cause error.

This type of error can also be predicted by considering

that there are eight independent components of displacement

of the four mass points around each stress point. Three

of these components will suffice to define the rigid body

motion of the stress point and mass points. The remaining

five can be used to describe five independent deformation

modes, which can in turn be used to calculate stresses.

In the present model only three deformation modes are used,

the two neglected ones being the two bending modes.
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Another difficulty in using the model is that it is

very difficult, and often impossible, to provide more small

grids in areas of large displacement or stress gradients.

A triangular array would be much more convenient from this

point of view.

For these two reasons it would seem that further

extensions of the work to more complicated geometries

should be done with a more sophisticated model. The

present model is extremely easy to use and allows a very

simple form of computer input, but it does have limitations.

The ultimate check on the displacement predictions

made by the model must come from experimental and field

measurements. The latter are particularly promising

because it is often possible to find conditions in which

plane strain is very closely approximated, as in the case

of long highway embankments. There are now in progress

several research projects to make such measurements, and

it is hoped that they will give information on the useful-

ness of the model as a design tool. At the same time the

predictions of the model will make the collection of signi-

ficant data more certain by indicating expected displacement

and stress distributions.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

First, the research has demonstrated a useful

technique for predicting displacements and stresses under

plane strain conditions. In particular, deformation modes

with no change of volume and two modes of frictional

behavior have been studied. The results can be obtained

from quite simple inputs to computer programs. The errors

on the results are largely caused by the approximations

inherent in the finite difference approach.

Several runs on material obeying Tresca's yield

criterion show that increase of Poisson's ratio while

keeping other parameters constant makes the material behave

more stiffly and reduces displacements. For the material

with no volume change initial stresses differing from zero

have a sharp effect on the stress and displacement field

but do not affect the failure load. The effect of lower

initial horizontal than vertical stress is to increase

the displacement under load and to reduce the load at

first yield. The reverse effects are noted for the case

of higher horizontal stresses than vertical.

Two types of frictional material were examined. One,

the Drucker-Prager material, expanded during yield, and

the other contracted during yield. The results of the runs
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showed the two materials to develop quite different stress

fields, the Drucker-Prager material having much lower

lateral stresses. The displacement fields indicated that

the Drucker-Prager material had displacements that

increased almost linearly with load until near failure.

The other material had displacements that increased more

rapidly than the load.

The surface displacements for the two frictional

materials closely resemble the displacements for local

and general shear. The strain hardening material shows a

continually increasing rate of displacement with no

obvious break from an initial straight line load-displacement

relation. This is similar to the curve expected for local

shear, where progressive failure occurs. The Drucker-Prager

material does show a straight line initial load-displacement

relation which curves at higher loads. This recalls the

general shear pattern, where the material fails almost all

at once.

However, in both the strain-hardening and Drucker-Prager

cases the material under the load is largely plastic

throughout the loading. Thus, the difference between

these curves is not the result of progressive as opposed

to sudden failure but of the plastic stress-strain

properties of the material. Expansive materials, such

as the Drucker-Prager material, have displacement curves

of the general shear form, but contracting materials have

curves of the local shear form.



The incompressible material with initial stress can

have curves of either form, depending on the initial stress.

Higher horizontal than vertical initial compressive stress

tends to retard yielding and to cause a general shear type

of failure. Lower horizontal compressive stress tends

to cause local shear failure. The ultimate load is not

affected by initial stress.

These results indicate that the difference between

local and general shear is not so much the pattern of

yielding and formation of the plastic zone as it is a

reflection of the plastic stress-strain properties of

the material or the initial stresses.

The stress distributions all reveal that changes of

material properties, initial conditions, and boundary

conditions do not have significant effects on the normalized

vertical stress distribution, which remains relatively

unchanged even during the development of plastic flow.

Therefore, the engineering use of quite simple methods of

predicting vertical stresses, such as the several charts

available, is quite justified. On the other hand, horizontal

and shear stresses are greatly affected by all these

factors. These last stresses therefore control the maximum

shear or maximum deviatoric stress on the soil and determine

whether it is plastic. Engineering use of horizontal

stresses and shear stresses (and, hence, of principal

stresses) derived from simple solutions, such as those of

Boussinesq's problem, does not appear justified without



field experience, experimental verification, or considerable

engineering judgement. This does not mean to imply that

simple solutions should not be used but only that they

should be used in the knowledge that the horizontal stresses

and shear stresses will be the ones in error. Exactly

what sort of approximation or correction should be used in

engineering design is a question to be answered from the

results of field measurements in conjunction with calculations

like those presented here.

The effect of the lateral boundaries is mainly to

restrict lateral motion. This can greatly affect the pattern

of the spread of the plastic zone for the stiffer materials

such as those with high initial compressive horizontal

stresses. When the bottom boundary is smooth, the effect

of the lateral boundary is also more noticeable than when

the bottom is fixed. The completely different behavior

of runs 6 and 7 illustrates this. If the lateral boundary

is close, enough the plastic zone often develops in part

at the boundary.

The two frictional materials used represent drained

behavior and apply primarily to sands. A clay could also

be treated by them if the loading were slow enough to

allow drainage. The same sort of changes which converted

the MASS-TR program into the PLUSS program for undrained,

incompressible material could be applied to MASS-SH to

describe the behavior of a saturated clay. Such a programming

effort in conjunction with experimental work to describe

better the stress-strain behavior of clay should be under-

taken.
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These computer programs demonstrate that it is possible

to treat analytically the deformation behavior of rather

complicated materials. The stress-strain relations used

in the last two programs are certainly not the correct

ones for a true soil, but there is still very little

known about the general stress-strain law for soils. This

is a subject which requires much further research, both

in the laboratory and in the field. Computer programs

like the present ones will be very useful in relating

laboratory observations to field measurements and

predictions. There is no apparent reason why almost

any experimentally observed stress-strain relation

cannot be used in a similar program.

One of the important advantages of plasticity theory

in calculation of stresses and displacements is that it

automatically allows treatment of rotation of the princi-

pal stresses. This certainly occurs as loading and

yielding progresses, but it is ignored by most relations

between principal stresses and strains. In particular,

empirical relations generally ignore it. The development

of better laboratory knowledge of the general stress-

strain relation for soil, including effects of rotation

of stress, will greatly improve the accuracy of computations

like those presented here. Together with field verification

these should increase the general understanding of the

load displacement behavior of soil masses.



6.2 Future Work

The present effort is part of a research project
into the dynamic behavior of structures and soil. This

work is continuing and represents the first and most

obvious area of expansion.

The errors mentioned in the discussion of the results

and the desire to distribute more elements in areas of

stress concentration indicate that more sophisticated

mathematical models and ones allowing finer elements may

have to be used for future static applications of the work.

The insights gained from the simple model used here will

be useful in such research. In particular, the knowledge

of how to treat incompressible material will be important.

Software for analysis of finite element systems of tri-

angular shape has been developed at M.I.T. and will be

used in some of the future developments. Such finite

elements will also allow consideration of axially sym-

metric cases after some additional programming effort.

There are several additional stress-strain relations

which could be used with very little more effort. The

empirical relations of Brinch Hansen (1965) and the

deformation theory of plasticity would both seem promising.

Rowe's (1962) stress-dilatancy relations may also

be used. Elastic solutions for incompressible and compress-

ible materials with Young's modulus varying with depth

would be a simple way of simulating real soil deposits.
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The availability of a technique for handling undrained

(incompressible) material and drained (compressible)

material having the same effective stress parameters suggests

that these methods could be used to solve two and three

dimensional consolidation problems in accordance with Biot's

(1941 a,b,c) theory. The analytical solution of such

problems is quite difficult, so a numerical procedure

could become a useful design tool.

Finally, the availability of this and other computatinal

schemes makes it possible to use complicated stress-strain

relations. This suggests that laboratory and theoretical

research into the stress-strain behavior of soil aimed at

developing general models is important and that the results

of such research can be used in calculations on real soil

masses and models. The coordination of laboratory, theory,

and field is necessary for expansion of knowledge about

soil behavior.
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APPENDIX A

LIST AND DEFINITIONS OF SYMBOLS USED

A Skempton's A factor

Coefficient in Drucker-Prager stress-strain relations

Coefficient in Tresca stress-strain relations

B Coefficient in Drucker-Prager stress-strain relations

Coefficient in Tresca stress-strain relations

C Coefficient in Tresca stress-strain relations

Ratio between plastic volumetric strain and

volumetric stress for strain hardening material

D Ratio of half axes of elliptical yield surface

Coefficient in Tresca stress-strain relations

E Young's modulus

F Derivative of strain hardening yield function

with respect to volumetric strain

F ,F Normal forces in x and y directions, respectively,x y
in stress point

F Shear force in stress pointxy
E

G Shear modulus =
2(1+v)

GInvariant term in expression relating plastic strain

rate and stress rate for strain hardening material
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I First stress invariant

J2 Second deviatoric stress invariant

K Coefficient of earth pressure at rest
o

Kf Coefficient of earth pressure at failure

E
K Bulk modulus =

3(1-2v)

[K,CK (P)],CK ( e ) ]  Stiffness matrices for strain hardening

material

T Ratio used in correcting stresses for Drucker-

Prager material

Tij Derivative of strain hardening yield function

with respect to stress, a..

W Work rate

a Minor half-axis of elliptical yield surface

b Major half-axis of elliptical yield surface

c Coulomb cohesion

eij Deviatoric strain tensor

f Yield function

i,j,k,l,m,n Subscripts used to indicate coordinate

directions

k Constant in various yield functions

kt  Temporary value to be corrected to k

p Pore pressure



poPc Stress states used in strain hardening derivation

sij Deviatoric stress tensor

u,v Displacement of mass point in x and y directions,

respectively

x,y Coordinate axes for each mass point in the plane

z Coordinate axis normal to plane

a Frictional coefficient in Drucker-Prager and

strain handening yield criteria

A Symbol to indicate finite increment

6xy Engineering shear strain in (x,y) plane = 2cxy

6 Diagonal distance between mass points

6.. Kronecker delta (= 1 when k = J; = 0 when i t j)

e Volumetric strain = (e11 + e22 + £33)/3

Convergence criterion

1u i  bu.
cj Total strain tensor = u + -1_), where u. and

Xi are displacements and coordinates, respectively,

and i varies from 1 to 3

x Coefficient in plastic stress-strain laws to be found

Horizontal distance between mass points

100

~-"-- ~ L'Y Y - -



Coefficient in plastic stress-strain laws to be found

7X
xy

Poisson's ratio

Volumetric stress = (all + 022 + a33)/3

Total stress tensor

Shear stress in (x,y) directions in plane

Coulomb angle of friction

Notes: 1. A dot(') over a quantity indicates the

incremental rate of that quantity.

2. The superscript (P) over a strain term

indicates the plastic component of the quantity.

3. The superscript (e) over a strain term indicates

the elastic component of the quantity.

4. A bar over a stress is used to distinguish

effective from total stress where such dis-

tinction is necessary.
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APPENDIX B

NOTATION

Most of the notation used in the mathematical deri-

vations is standard in all mechanics, including soil

mechanics, but there are some specific uses which are

unusual. The following comments describe those points.

1. Sign Convention

All stresses are considered positive in tension, and

all strains are considered positive in extension. This

is contrary to the usual soil mechanics usage but agrees

with continuum mechanics conventions. Shear stresses and

strains are positive when they are in a positive coordinate

direction on a surface whose outward normal is in a positive

direction. For example, a is positive if the stress

is in the +x direction on a face whose outward normal is

in the +y direction. The convention is illustrated in

Figures 11 and 12.

2. Subscripts and Summation Convention

Subscripts consist of two letters which refer to two

of three Cartesian axes. When specific axes are meant,

the letters x, y, or z are used. When a general expression

is being stated without reference to the specific x, y,
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and z system, subscripts i through n, representing a

coordinate system x1, x 2 , x 3 , are used.

The repeated subscript summation convention is used with

subscripts i through n. This means that whenever a sub-

script is repeated in a product or single term that term

is summed as the subscripts vary from 1 to 3.

For example,

sii = Sll + + s 33

sijsij = S11S11 + s12s12 + s13s13

+ s21s21 + s22 s22 + s23s23

+ s33s33 + s31s31 + s32s32

+ s33 33'

In connection with this convention the Kronecker delta

is used. This is defined by

f0 
if i = j

3. Stress and Strain Notation

Stresses are denoted by a subscripted a, i.e., aij,

or a x T and a can be considered interchangeable.
xy
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Volumetric stress is described by an unsubscripted a.

Deviatoric stress is described by a subscripted s, i.e.,

sij or s .
ii xy

Displacements are represented by u and v in the x and y

directions, respectively. Strains are denoted by a sub-

scripted c, and volumetric strains by an unsubscripted

c. Deviatoric strains are represented by a subscripted

e. It should be noted that volumetric strain is taken

to mean one third of the sum of the normal strains.

When the shear strain is described by exy, for

example, it is meant as

1 (6u ,v 1
xy 2 Sy ;x

This differs from the usual engineering strain, Y xxy
which is defined by

Su avv + --
xy By ;x

Whenever Yxy is used, it follows that

Y =2 e
xy xy

4. Other Conventions

Whenever a symbol has a dot over it, the symbol is

understood to represent the rate of change of the quantity
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or its change during an increment of loading. A superscript

(e) is used to indicate the elastic portion of a quantity.

A superscript (p) indicates the plastic portion. These are

used over strain symbols when the distinction between elastic

and plastic components is not plain from the context. When

they are used, the symbol without superscript indicates

total strain, elastic and plastic.

The following elastic constants are used:

E = Young's modulus

V = Poisson's ratio
E

G = Shear modulus =

K = Bulk modulus = E
3(1-2v)
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APPENDIX C

COMPUTER PROGRAM USE

1. General

All the programs described here are written to be

run on the M.I.T. Computation Center IBM 7094 computer.

Certain timer routines are used which are not available

elsewhere. All programs except PLANE (for elastic drained

and undrained material) must be run with a user tape

mounted on tape mount B5. This tape is used to store

data for restarting a problem. For all programs except

PLANE there are two available versions of the output

subroutine: one for regular runs (5 minutes), and one

for long runs (15 minutes). The programs are available

as source programs in FORTRAN and FAP and as binary decks.

2. Input

2.1 Input for MASS-TR

There are ten groups of cards or individual cards

required, as follows:

1. A card supplied with the deck which contains words

used in printing the boundary condition in the

output.

2. An arbitrary comment in columns 2 through 72.

This is printed at the head of the output.

3. Format (215) - two integers. The first is an

arbitrary problem identification number. The
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second can have three values: 0 if the loading is

by applied forces, 1 if the loading is by specified

displacements, 2 if this is a restart of a previous

problem.

4. Format (215) - two integers. First is the number

of rows of mass points in the array; second is the

number of columns.

5. Format (5E10.3) - five real numbers. These are,

in order, Young's modulus, Poisson's ratio, the

horizontal distance between mass points, the

convergence criterion, and the convergence

criterion for specified load levels.

6. Format (2E10.3) - two real numbers. These are

the yield stress and the size of the desired load

increment, which should correspond to the loads

input by cards under number eight below.

7. Format (4E5) - four integers. These are the

boundary conditions in the order left, right,

top, and bottom. There can be four choices for

each: 1 for free, 2 for fixed, 3 for reflected,

and 4 for smooth or infinite. At present the

bottom must be fixed or smooth.

8. Format (215,2E10.3) - Applied loads or displace-

ments. Each card specifies the loading of one

mass point. The first two fields are the row and

column of the point, respectively. The last

two are the load or displacement in the x and y



directions, respectively. After all loaded

points are specified, there must be a blank

card to end this group.

9. Format (315) - three integers. These specify

the manner of incrementing the load. The first

one can have two values: 1 to indicate a

constant, standard increment of load or dis-

placement, 2 to indicate the increment will

be calculated each time to make only one stress

point yield. The second applies only when a

standard increment is used, and it can have two

values: 1 for an increment that is standard

even through the elastic range, 2 to indicate

the increment to cause first yield will be

calculated and the standard increment will be

used after that. The last one applies to

whether a downgrade routine will be used to

reduce the applied load if it should stress an

elastic point beyond the yield stress. The number

one indicates no downgrading, and the number two

indicates downgrading.

10. Format (7E10.3) - There can be up to seven of

these cards, which list specific loads at which

there must be a solution.

If it is desired to restart a problem, cards one through

three must be submitted along with cards in group ten.

No further input is needed.
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2.2 Input for MASS-PR

The input for MASS-PR is identical to that for MASS-TR

with one exception. In runs which restart a problem one

additional card must be submitted after card three. This,

in format (E10.3), must contain the value of the standard

load increment to be used in the restarted run.

2.3 Input for PLUSS

The input for PLUSS is almost identical to that for

MASS-TR. Cards one through five are identical. The E

and v are specified with respect to effective stress. Card

six has four real numbers (format 4E10.3). The first is

the yield stress, the second is the magnitude of the standard

increment of load or displacement to be used, the third

is the magnitude of the initial load, and the fourth is

the decimal portion of the yield stress which is to be

the initial shear stress.

Card nine has only one integer, format (I5), which has

the value one to indicate a constant increment of load

and the value two to indicate the increment to cause

first yield is calculated and the standard increment is

used thereafter. There is no provision for calculated

increments during plastic flow.

2.4 Input for MASS-DP

The first four cards are identical to those for MASS-TR.

Cards five and six are as follows:
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5. Format (5E10.3) - The five real numbers are:

Young's modulus, Poisson's ratio, k in the Drucker-

Prager equation, a in the Drucker-Prager equation,

and the unit weight of the soil.

6. Format (5E10.3) - The five real numbers are:

the horizontal distance between mass points, the

standard increment of load, the initial load

magnitude, the convergence criterion, and K .o
Cards seven and eight are the same as those for

MASS-TR. Card nine is the same except that

it does not require the specification of the

downgrade option, which does not exist in MASS-DP.

Card ten is the same.

Restart problems have input similar to that for MASS-TR

except that the increment of load to be used must be

specified by a card in format (E10.3) after card three.

2.5 Input for MASS-SH

The first four cards are identical to those for

MASS-TR. Cards five and six are as follows:

5. Format (5E10.3) - The five fields are: Young's

modulus, Poisson's ratio, the horizontal distance

between mass points, the convergence criterion,

and the unit weight of soil.

6. Format (6E10.3) - The six fields are r, k, D, C,

the standard load increment, and K .
o
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Cards seven and eight are the same as before. Cards

in group nine are the loads at which specific solution is

desired, which are called group ten in the previous pro-

grams. There is no option other than that of a standard

load.

Restart problems are handled identically to those in

MASS-TR, except that the load increment must be specified

after card three by one card in format (E10.3).

2.6 Input for PLANE

There are six groups of cards for PLANE. This program

does not require a restart tape as it has no restart

capability. Several problems can be run consecutively by

submitting cards two through six for each problem as

successive data cards. The cards are as follows:

1. A card supplied with the deck similar to card

one in MASS-TR. It is not repeated in successive

problems.

2. A comment card as in MASS-TR.

3. Format (415) - four integers. The first is the

number of rows in the problem, and the second is

the number of columis. .The third indicates whether

forces or displacements will be specified. The

number one indicates displacements: the number

zero indicates forces. The last number is one if

the problem is to be run undrained (no volume change)

and zero if it is to be drained.
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4. Format (415) - four intergers. These are the

boundary conditions as in card seven for MASS-TR.

At present the top boundary must be free, and no

other boundary may be free.

5. Format (4E15.5) - four real numbers. The first

two are Young's modulus and Poisson's ratio with

respect to effective stress. The third is the

horizontal distance between mass points, and the

fourth is the convergence criterion.

6. These are the applied loads or displacements,

one card per loaded mass point. The format is

the same as in cards eight of MASS-TR. However,

the third field specifies the vertical load or

displacement, and the fourth specifies the hori-

zontal. The last card must be blank.

3. Output

The output from all these programs is in the form

of listings. At the head of the output is a description

of the input data. For each convergence at a load or dis-

placement the programs put out a list of all displacements

boundary forces, vertical stresses, horizontal stresses,

shear stresses on the horizontal plane, and stresses normal

to the plane or pore pressures where those are calculated in

the solution. For all but MASS-SH they put out the ratio

between the stress level at each stress point and the yield
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stress. For MASS-SH the square root of J2 is listed for

each stress point. All plastic programs except MASS-SH

provide a small map of the stress point array containing

a zero for each elastic point, a one for each plastic point,

and a two for each newly-yielded point. The corresponding

array for MASS-SE uses a one for an elastic point and a

zero for a plastic point because of the internal logic

of the program.

PLANE gives the same sort of listings and in addition

provides listings of the principal stresses at each stress

point and their orientation. An optional output package

for PLANE provides normalized values of all stresses

arranged on the page so the decimal point falls on the

stress point. This package works only for arrays of stress

points which have fifteen or less points on a row.
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APPENDIX D

MATERIAL WITH NO CHANGE OF VOLUME

1. Difficulties in Use of v = 0.5

The material considered here is an elastic or elastic-

perfectly-plastic one whose yield criterion does not imply

volumetric plastic strain. It is often a reasonable

approximation to the actual behavior of undrained clay to

assume that there is no volume change in the elastic range

either. This is done by setting Poisson's ratio, v, equal

to one half, for then the bulk modulus, K, is infinite.

The closed form solutions to many standard problems of

elasticity then give useful numerical results, and, in

particular, the solutions for vertical stress in

Boussinesq's problem do so because they do not depend on

Poisson's ratio.

Unfortunately, the direct use of Poisson's ratio of

one-half is not possible in the mathematical model used

here since the term (1-2v) appears in the denominator of

equations (E18) and (E35). The model tries to calculate

stresses from strains, but the volumetric stresses can have

any value in an element so long as the volumetric strains

are zero, so the calculation cannot be made. In other

words, the finite values of volumetric stress which

satisfy equilibrium and the boundary conditions are speci-

fied by a multiplication of an infinite quantity (the bulk

modulus) by a zero quantity (the volumetric strain).
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An initial approach was to make Poisson's ratio as close

to one half as possible. This caused exhorbitantly long

running times in the elastic range for v over about 0.4,

as Figure 13 by Christian (1965) shows. As Poisson's

ratio becomes close to one half, the terms with (1-2v) in the

denominator become quite large; large stresses result

from small displacements. The adjustments in displacement

at each mass point in each cycle become so small and so

dependent on minor errors in values of strain that many

more cycles are needed for convergence.

2. Porous Elastic and Porous Elastic-Plastic Materials

The soil may be considered a system with two phases:

the solid soil skeleton and the pore fluid. The pore

fluid is assumed incompressible and unable to carry any

shear stress. All deviatoric rigidity must lie in the

soil skeleton. It is further assumed that the strains

in the two phases must be identical.

If the soil skeleton is linearly elastic and iso-

tropic, the material is the "poro-elastic" solid, des-

cribed by Biot (1941 a,b,c). It is the material for which

most two- and three-dimensional consolidation work has

been done and is also the material used one-dimensionally

in the Terzaghi consolidation theory (Taylor, 1948).

Now, there will be no plastic volumetric strain for

a material obeying Tresca's or Hencky's and von Mises'

yield criterion. The elastic behavior of the skeleton
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can be defined with respect to effective stresses by

l+ - (Dl)
'ij E ij kk 6ij'

where B.. is the effective stress and E and v are the13
elastic constants with respect to effective stress. The

volumetric strain will be defined by

S- 2v, (D2)
E

if B is the effective volumetric stress. The pore fluid

pressure is represented by p to avoid confusion with the

displacement u, and, by definition of total stress, a,

B = a - p. (D3)

The problem is to reduce e to zero and, hence, B to

zero. At some stage in an iterative procedure there may

be some volumetric strain, c, and some volumetric stress,

*. If the pore pressure is now increased by a while a

is constant, the effective stress will reduce to zero, as

will the volumetric strain. This suggests the following

process:

1) All effective stresses are defined in terms of

strains, and the computer proceeds through one

cycle of the iteration without worrying about

pore pressures. This will cause volume change.
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It must be remembered that already existing pore

pressures must be considered in the equilibrium

equations.

2) The volumetric strains are calculated and the pore

pressures increased in accordance with

E
(Ap -2) C. (D4)

3) Steps one and two are repeated until the displace-

ments converge and further Ap's are smaller than

the convergence criterion.

This routine is convenient in the program for the un-

drained plastic material (PLUSS) since the updated forces

in the stress points are not stored until convergence has

occurred. The volumetric strain is the most easily calculated

measure of the effective volumetric stress. In the actual

program the calculation is done by evaluating the bulk

strain, which is three times e and equal to the sum of

e and y , and dividing it by the bulk modulus, K.
xx yy

A previous report (Christian, 1965) describes a program

for a purely elastic porous material. In this program the

updated forces are stored as the iteration is carried out,

so some further analysis is helpful. The expressions for

normal strain in such a porous elastic material are

E =e T - v(Ac + AN ) (D5)
xx xx yy zz
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and two others obtained by permutation of subscripts. For

plane strain conditions

ACzz =0, (D6)

and

A = v( Axx + A ). (D7)
xx yy

The requirement of no volume change is

Ae + Ae + Ae = Ae + Ae = 0 (D8)
xx yy zz xx yy

From these equations it follows that

(1 - 2v)(Aba + Ads ) = 0. (D9)
xx yy

AS + A7 = 0. (Dl0)
xx yy

Ao + AC - 2Ap = 0. (D11)
xx yy

p= (n xx+ yy)/2. (D12)

Since in each cycle of the iteration described above

the effective stresses are initially computed without

reference to changes in pore pressure occurring simulta-

neously, the changes are changes in total stress also.

The iteration can then proceed by adding one half their

sum to the pore pressure, and the process is repeated until

convergence occurs.
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3. Skempton's A Factor

The A factor (Skempton, 1954) for an incompressible

material is defined by

A = A (D13)
1  3

if AoI is the greatest compressive stress change and

Ao3 is the smallest compressive stress change. From

equation (Dll) one can write

Aa1 - 6o 3 = 2Ap - 2A 3 .  (D14)

This leads to

A = 0.5 (D15)

For axially symmetric stress systems there are two

extreme cases: extension and compression. In extension

A2 = Acol and in compression Aa2 = A03 . The previous

analysis assumes the pore pressure is the volumetric stress,

so, in triaxial compression,

Ap = (Aa1 + Ao2 + Aa3 )/3

= (2Aa3 + Ao1 )/3. (D16)

This can easily be converted into
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i'

A = 1/3.

In triaxial extension the equation corresponding to

equation (D16) is

Ap = (2MA1 + A03 )/3. (D19)

This leads to

2Aa1 - 260 3 = 3Ap - 3Aa 3 ,

A = 2/3.

(D20)

(D21)

These results demonstrate that the A factor is very

much a function of the applied stress system even for this

simple material whose pore pressures are not affected by

shear stresses. The extrapolation of pore pressure

measurements from triaxial test results to conditions with

other stress systems on the basis of the A factor would

seem to have a considerable danger of error.

4. Total Stress Elastic Constants

It is useful to be able to convert the effective stress

elastic constants, E and v, to total stress elastic constants,

E* and v*. Since there is no elastic volume change, v* is
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one-half. The shear strains must be identical whether total

or effective stresses are used, and also total shear stresses

must equal effective shear stresses. This means that the

shear moduli, G and G*, relating effective and total

stress, respectively, to shear strain must be equal.

E E*E E(D22)
1 + v 1 + .5

and
1.5

E* - E. (D23)
1 + v

This expression has also been derived by Davis and Poulos

(1963).

5. Yield Criterion

Under undrained, plane strain conditions Tresca's and

Hencky's and von Mises' yield criteria give identical

results. This follows because the total stress normal to

the plane must be given by

a = 0.5 (axx + yy). (D24)

This means that the normal stress, a zz is the average

total stress, which is equal to the pore pressure. Sub-

traction of the pore pressure from equation (D24) leads to

= 0 = 0.5( + B ). (D25)
zz xx yy
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The second invariant of deviator stress, J2' which is

the critical term for the Hencky-von Mises criterion, can

be written in terms of principal stresses as

J2 =  (al - 02 ) 2 + (al - 3 ) 2 + (a2 - 3 )2 /6. (D26)

If the x and y axes are chosen to coincide with those of

principal stress and either of equations (D24) or (D25)

is substituted into equation (D26), the result is

J2 = (a1 - 03) 2/4. (D27)

Equation (D27) means that the Hencky-von Mises criterion

reduces to

0.5 (a1 - 3)I =k, (D28)

which is the Tresca criterion of maximum shear stress.

For this reason the program for the undrained elastic-

perfectly-plastic material obeying Tresca's criterion serves

for the undrained Prandtl-Reuss material as well.
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INCREMENTAL PLASTIC STRESS STRAIN RELATIONS

1. Tresca Yield Criterion

A similar analysis was originally presented by Harper

(1963) and Whitman (1964) and is included here for com-

pleteness. Dots over stresses and strains indicate rates.

The yield criterion, for plane strain, is de ined by

(a - a 2

f xx yy
f= 2

2 2+ k = 0
xy

if it is assumed all yielding will occur parallel to the

plane of plane strain. The theory of the plastic potential

requires that

i(P)= )" f
ij T.

(P) I
Since there is no volumetric plastic strain rate ( (  0),

it follows that the deviatoric plastic strain is

(E2)

(P) = bf
11 . (E3)

Further, the yield criterion can be expressed in terms of

the deviator as

s - s 2
xx yy
(_ 2

2 22 _ k= 0.
xy
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From equations (E3) and'(E4)

(P)
S = (s -s
XX XX XX

(P)
S =- (s - s
yy xx yy

(E5)

(P)
. . ..

xy xy

Now both sides can be multiplied by 2G and a new constant,

X, defined as 4Gk to give

2G (P)= xx yyxx 2

(P)
2G

yy

(P)
2G &

xy

(E6)= ( 2 xx

= G (P) G =Xxy
xy

From the equations of elasticity the elastic strain

rates can be defined as

2G 6

2G &

(e)

xx

(e)

yy

= xx
xx

yy
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2G 6
(e)

xy
= G (e) =

xy xy (E7)

Since the total strain rate must be the sum of the

elastic and plastic strain rates, equations (E6) and (E7)

can be combined to give

2G & = x + ( xx yy
xx xx 2

(E8)
S - S

2G 4 = i + yy xx
yy yy 2

GY = + X
xy xy xy.

A term, fI, can be defined

s - s )(
G = (xx yy )2 (xx

s - s

2 xx

-yy + Ixyjxy

s -s )
2 YY

(E9)

+ xyxy

Now the first of equation (8) is multiplied by

Sxx s , the second by yy x and the third by 2Txy
2 2 x

and the results are added to give

s -s as -s
2G = xx y S + xx yy

2 xx 2

s -s 2
+ ( yy xx ) 2T f

2 xy xy

s -S
YY+ xx

2 y

2
+ 2X 7 2

xy
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=

/ S -s r
xx %

s -s
yy xx

2-2 xx +

+ -S 2

+ 21 [ xxyy

= 1 + 2X k2 = 2X k2

+27 i
yy xy xy

2]

(ElO)

Therefore,

GW

k
k

Substitution of equation (Ell) into equation (E8)

and rearrangement of terms give

( xx Syy)

(s - ))
yy xx

22k

WS = G( - -2
xy xy k

stress rates are

xx
= 2G ex

( -xx

yy =yy

xy

(s -s )w xx yy
2k 2

W
2k

(Sxx yy
2

W
= G( -- 2xy xy k2

(Ell)

=2G exx 2k-

2k2xx

yy

S2G (

The total

(E12)

+ 3K

+ 3 Ki

7 ).
xy
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These equations can be converted into incremental form

by making all rate terms, such as & , into small increments,

such as Abxx. The term W can first be expressed incrementally

as

AW x y (d x - ACy ) + yT Y xy" (E14)

The equation (E13) then becomes, after some algebraic

manipulation,

S4G + 3K G axxyy) 2]
axx 3 k 2 2 xx

[ -2G + 3K +G xx- V)2]

G+ G 0 -

k 2 ( y )

Aa r-2G + 3K G xx -y

yy 3 k 2 xx

L 4G + 3K G (xxayy2
3 k2  2 yy

+ x y Yxy (E15)
k 2 

2
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[G I° a -
xyT kYG2 TxY y 2 Y xx

x -0
+xy k2 X 2 yy[ (o)]"rG x2 y

2
+ G 1 - AY

k 2 xy

The computer program uses forces and displacements rather

than stresses and strains. If 6 is the diagonal distance

between points and the abbreviations UL,UR,LL,LR stand for

upper left, upper right, lower left, and lower right,

respectively, following approximations can be used:

a6
F = -
x xx 2

6
F a -

y yy 2

6
F = 7 - (E16)

xy xy 2

and

S C xx ULR - UL

8 • c = v -v

Cyy VLL vUR

6 e = U - u + v - v (E17)
XY LL UR LR UL
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In these expressions the F's are forces in a stress point

and u and v are the two components of displacements at

surrounding mass points.

Then,

AFx = A(AuLR - UL) + B(AVLL- AUR)

- C(AuLL- AuUR + 4VLR- AVUL)

F y = B(AuLR- AuUL) + A(AvLL- AVUR

+ C(AuLL - AuUR + AvLR - AvUL)

AF = -C(Au LR- Au UL) + C(AvLL - AUR)xy LR UL LL UR

+ D(ULL- AuUR + LR UL

1 [ 4G + 3K
A=- 3

2 L 3

1
B =

2

(E18)

k 2  (F - F)
k 2 62 x y

- 2 G + 3K G (F 2 ]

3 k2 62 x - y

G
C2 2 Fxy (x - Fy)

k2 2 xy F x y

1 F 4G (FX 21

2 k2 2 xy
(E19)
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These equations will provide a finite approximation

to the actual differential behavior of the stresses. After

several increments the stresses may have departed markedly

from the yield surface because of accumulated errors. To

prevent this it is desirable to have a correction to the

above results.

It is assumed that during the correction the average

stress does not change. After application of equations

(El8) and(E19) a set of forces Fx, F , and Fxy, will have

been calculated. These should satisfy the equation

(F -F 2 2 2

x y 2 6+ F k (E20)2 xy 4

In fact the relation will be

2 2F - F 2 k 6Fx y 2 t (E21)2+ F
2 xy 4

A reasonable correction would be to reduce both components,

F - F and F , by an equal ratio. This leads to newx Y xy
2

values

F -F F - Fx y x y k
2 2 kt

F =F k (E22)xy xy kt
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By the assumption of constant average stress

I U

F' +F F +Fx y x y
2 2 (E23)

Therefore,

F (1+ - ) + - (1 -
x 2 k 2 kt t

F Fx k k
S(1 - k ) - (1l + -). (E24)

y 2 k 2 k

2. Prandtl-Reuss Material

The Prandtl-Reuss material is linearly elastic up to

the yield criterion and yields according to the von Mises

criterion,

2
f = J 2 - k  =0 (E25)

The second invariant of the deviatoric stress tensor can

be expressed, using the summation convention, as

1
2 2 sij ij (E26)

As in the case of the Tresca material, there is no

volumetric plastic strain, and the plastic potential gives
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a set of nine equations,

(P)
Sij= ' sij (E27)

These can be combined with the elastic stress-strain

relation (E7) to give

2G iJ = sij + ksij (E28)

The rate of deviatoric work is now defined as

W = si ei (E29) (E29)

Multiplication of each equation of (E28) by s.. and

addition of all equations (contraction) gives

2G W = ijij + ksijsij

= 2 + 2XJ = 2Xk 2
2 2

(E30)

There fore,

GW
.2

(E31)

By a process similar to that which led to equations

(E13), it follows that
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ij = 2G (4ij
- 2 S ij) + 3K i 6ij
2k

For plane strain, xz' yz, and c zz 0 ' zero, but

zz is not, nor is 6zz The equations (E32) can be converted

directly into incremental form, but it is first convenient

to eliminate azz. The volumetric stress, a, is entirely

elastic, so

a = 3K e = K( xx + Cyy),

xx xx xx Cyy

O = 0 - K(c + )
yy xx xx yy

(E33)

(E34)

s = -s - syy = 2K(Cxx + e ) -0 -

These can now be used to obtain the equations

[ 4G + 3K G
xx 3 xx

[ -2G + 3K3

- 0)2] 6Cxx

G a]A
- - (axx-a)(ayy-)] Ayy

+[ -'XY (a -a)] AY
k2 xxxy
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Acy= -2G + 3K G
yy = 3 k (xx

[ 4G + 3K G
3 k 2 yy

- a)(a - a)] AE
)2yy] xx

- )2  Aeyy

- a)] AYxy

Ar = -k (O - x xx
xy k2 xxxx

+ [ Gxy (a- a ) Axy
.2 yy xy

These equations can be converted into displacement form

to obtain relations analogous to equations (E18) and (E19).

The correction procedure for bringing the stresses

back to the yield surface is much more complicated for this

material than for the Tresca material. After an incremental

deformation thereiis a new set of stresses xx, a yy, zz
and 7 . These are the non-zero elements of the stress

xy
tensor a..,which will have a volumetric component a and a

deviatoric component s... The actual value of the second

invariant will be

1
t 2 ij ij'

and

(E36)

(E 37)
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The most obvious way to obtain new values of stress,

aij, would be to reduce each of the components s.. so that

k
si = s. (Eij kt ij*

and a = a.

However, this implies a change in e

1 1
AC Ao + 1 Azzz 3K 2G zz

(E39)

because

(E40)

To prevent a change in normal strain, which would violate

the conditions of plane strain, it is necessary to change

a also. This means that

(1 - 2v)Aa + (1 + v)Aszz = 0 (E41)

and O- s (1 - k (E42)
1-2v zz kt

Equation

Now,

(E42) replaces equation (E39).

the new value of a can be found, thus:xx

SI k (+v) kS = s + C = s -- + - (s +S)( - )
XX xX xx kt (1-2v) xx yy kt

k (l+v)(a +a

xx kt (1-2) xx yykt

3
+ a 1-2v

k
1 --

kt
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The volumetric stress, a, is purely elastic, so it can be

calculated from the volumetric strains:

a= K(exx + e ) (E44)

This can be used with equation (E43) to correct the values

of a , and a similar expression holds for correctingxx
a . The shear stress T is corrected directly from

yy xy
equation (E46).

3. Drucker-Prager Yield Criterion

The analysis presented here follows that presented

by Reyes(1966), whose work came to the author's attention

as he was debugging and correcting a program based on a

slightly different analysis. As in the Prandtl-Reuss

case the summation convention is used.

The Drucker-Prager (1952) generalization of the Mohr-

Coulomb yield criterion states that

1
f = ,I + J 2

2 - k = 0 (E45)

where the first stress invariant, I is defined by

1 = akk (F46)

and the second deviatoric stress invariant, J2, is defined
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1
2 2 sijsij

(E47)

The theory of the plastic potential then predicts that in

the plastic range

(P)
iij

bf

13
L6 + J2J2

l+v. v + [6.. +
E Cij - E iij ij 2J2

To obtain X, it is convenient to define the rate of

doing work, W, by

W = oij ij

l+v
E Uj ij

l+v
E aij ij

1

S2G 'ij iJ

EV
E

EV
E

1 i i3
+ [ a6i + s ]i

2J
2

1[ s.. (s + -I 6.

I1I  + J Il + i
12J

VI + Xk, (E51)
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Then,
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and
S1 . V *

- 1, I I-TT
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k LV - 2G Vijuij T E i1 1 (E52)

A further simplification is obtained by recognizing

that

1 2*= a;l + ) = il 2 - 0 (E53)
J 2

so

2 - 2a (E54)

Then,

Fiji 1 1
2G 2G ij 31 ijsij 3 1 ij2G - 2G + I i

2G 2 + 1 111

S2G_ Ii - 2 J2 ] (E55)

This can be substituted into Equation (E52 ) to give

Sk 9K G (E56)

Equation (E49) becomes



yE1i = - 6
ij 2G E ij

9K

J2
GI I ] •[ 6j 2J 2 1

2

1j

Ii11

6J 22

3aKJ 2

G

6 j I

It is now necessary to get expressions for 6.
1

of i.. and aij... First,

is contracted to give

S l+v 3v
kk E 1 E

9 2k2 J
+ k

in terms
-j

the first form of equation (E 5h

3a 1 1 LJ2
1 k 9K G 1

MI 3tw

k 1 k
(E58)

(E59)
k - J2

I =
1 &
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2G

[ 6ij
if

2J 2

I

(E7 )

3K

Since

3vK 1
E ( 3K

1 • 1 1 1
+ W

k 3K 3

k 1



equation (E58) becomes

[1 2

G
I J2

kk 3K k
3iW
k

Now a variable p is defined as

J 2
J2r 9a KP- 1 + G

Then, equation (E60) leads to

3K p kk k

This can be used in equation (E57) to give

39K 1
ij 2G E p

1 +i - - ( kk
k k

3k W]ij

3W )*(K- )-(l-p)

a 6 ij 2J (E63)
6J 2J

2 2

If this is expanded algebraically and terms are collected,

it becomes

140

(E60)

(961)

(E62)

--



d +
ij 2G kp

+ kk[ {

E 6

6J

6J3p

3vK
Ep

6 +]
ij +

2

ij 3 ap 2J2

(E64)

Three other variables, h, A, and B, can be defined by

9vK
h = ( 1 + - -

E

3 K
2 G

Ii11

6J 22 (E6 5)

I1

6J 22

A= P-1

6 cL pJ
2

(E6 6 )

(E67)

I1 P-1 3vK
B = (a 3p Ep

6 2

The last two terms can be simplified. First, it can be

shown that

P - 1 h
A = 1 -

p - pk6pJ 2

(E68)
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Second, it can also be shown that

R --= 2h

3ap 1[+90L2
G

2h
B=

1+9M2 ]
G

1 2i

6J2/

3vK
E

(E69)

(E70)

These terms now allow simplification of equation

(E64) into

I2G j
2G ij

w
kp [hi + i k[B 1J

2

+ A ij] (E71)

Under plane strain conditions this is, for

- xx

a x + £XX XX YY~ yy xy xyr
kp

:h + - x x]
2J2

2

xx yy xx

A new variable, C, is now defined as

(E72)

1
2K

2J 2 (l+9a )
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The final form is

xx = 2G[ B - 2Aa x - Ca i xx
xx xx xx x

+ 2G[- B - (axx + a )A - COxxyyyy

+ 2G - AT - Cxx 7Xy YXY

Similarly,

y& = 2G[- B - (a + y)A- C a
yy xx yy xx yy xx

+ 2G[1 - B - 2Aa
yy

2
yy yy

+ 20G- A"xy Cayy "xy I xy

+ = 2G[ - AT - Co a ]
xy xy xx xy xx

xy yy xy yy

+ 2G[ - 2C 7 .
2 C y or XYIY
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and

= 2G[ - B - ( + )A - Ca a )
zz xx zz zz xx xx

+ 2G[ - B - (a + a )A - Co a ] &
yy zz zz yy yy

+ 2G[ - AT - Czz (E77)
xy zz xy xy (E77)

These expressions can be easily converted into incremental

form.

The correction to bring stresses back to the yield

surface is quite complicated for the Drucker-Prager yield

criterion, so an approximate correction was developed.

This assumes the volumetric stress (or Ii), remains constant.

A measure of the amount by which the yield criterion is

exceeded is

k - a l = T (E78)

This term, T, will be unity when the yield criterion is

satisfied and otherwise will be less than unity. The

approximate correction involves changing (axx - a yy) and

7 by a ratio to T, leading to the expressions
xy

a axx 2 2
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S xx (1 - T) + fyy (1 + T)
YY 2 2

T' = T (T) (E79)xy xy

The new stresses are then used to reevaluate T from equation

(E78). The new T then leads to new values of the stresses

from equations (E79). The process continues until the

correction ratio differs from unity by less than a convergence

criterion.

4. Strain Hardening Material

The yield surface for the strain hardening material

is assumed to be the ellipsoid shown in Figure 10. Certain

parameters are to be constant regardless of the position

of the ellipsoid and are given as data. They include a,

k, and the ratio of half-axis AA' to half-axis AF, which is

called D. The straight sided cone is defined by the relation

al1 + J2 = k, (E80)

which is the Drucker-Praguer equation. If the axes AA' and

AF are denoted by a and b, respectively, and the stress at

A is po, the yield surface is represented by

(I/3 - po)2 J2 (E81)

a 2 b 2
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Equation (E81) is the equation of the yield criterion for

known values of a and po

It is now necessary to define how the yield surface

moves as a function of plastic strain. If the yield

surface depends only on plastic volumetric strain and if

the plastic volumetric strain depends linearly on vol-

umetric stress for a "virgin" compression, a final constant,

C, can be defined for isotropic stress, Pc' by

(p)C e = Pc = Po - a, (E82)

since a and b are always taken as positive. In fact the

plastic volumetric strain is more likely to depend on the

logarithm of pc, but the linear assumption is used here

for Simplidity.

The first problem is to find the yield surface for a

given state of stress, at point E, for example, if the

material is plastic. From equation (E80) it follows that

b = k- 3a po (E83)

and

a = Db = D(k - 3h po)  (E84)

Equation (E81) can then be expressed as

(11/3 -o ) 2 +2 2= D2(k - 3a po 2 ,  (E85)

which is a quadratic equation in po. If coefficients A,B,
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and C are defined by

22A = 1 - 9 D2 2

-2 2
B=- I + 6 D km3 1

C 1 + DJ2  D2 k2, (E861
1IT 2

the solution becomes

2
-B + B - 4AC

p 2 (E87)o 2A

the optional sign being taken as positive after examining

the geometry of the problem.

The major problem is to derive stress-strain relations

for this material. When the summation convection is used,

it can be shown that the plastic strains are defined by

(P) A bf af
S =kG kl
ij eij ak

A 1
G = - (E88)

Zf ,f
C(P) mn

s mnmn

The term f in these equations is the yield function derived

from equation (E81):

147



f(a (P) ) = b (11/3- P) + aJ 2 - a = 0

22 2
bao = b (I / - ) 8 + a sij

ij 3 1/3 0 xj 1

(E89)

(E90)

The derivatives with respect to plastic strain can be

found by first finding the derivatives of po, a, and b.

The first of these is

apo a C () + Dk
S ( P ) (P) 1 + 3D (E91)

?Po 1
(P) 3

The next one is

The next one is

6
1 + 3Dt ij

(P) (P)

ij ij

D&C
1 + 3D i

(E92)

3D cL p

1 + 3Dc /

(E93)
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Finally,

i ab _ C j
(P) - 1+3Dm ij

Now,

(P) = b 2  P1/(P) (P)
be:

+ 2 (1 /3 p)26b 2 (ba Cij

+ 2J2a a - 2ab2 ha - 2a 2 b (
2 (P) (P) (P)

ij ij ij

(E95)

This equation becomes, after substitution and algebraic

simplification,

bf 2C 1 1
(P) 3(1+3D0) 3b + 3 o

+ 3MbD2 (J - 2b 2 )  6i2 jij
(E96)

To evaluate G, equations (E90) and (E96) must be multi-

plied and added. From equation (E96) it is evident that

only terms with i = j will contribute and for all such cases

149

(E94)



will be the same, regardless of values of i and J.;)C P)
ij

If this term is called F, the result is

I
af _f 2 2 1 )S= F 2a (skk + 2b po ]

C (P )  mn kk 3 0
mn

I
= 2 b2( - p )F. (E97)

This expression can be evaluated and its negative reciprocal
A

found to obtain G.

For a more concise notation, the times Tij can be defined

as

Ti = = s  + (/3 -  ) 6 i ] a 2  (E98)
ij 3D

Then the conditions of plane strain can be invoked to elimi-

nate the terms e23, 32, c13, a23, a32, 013, and 31, all

of which are zero. The remainder of the analysis is then

carried out most conveniently by matrix notation. The

strain rates are defined by a column matrix (P)
ij

(P) (P) (P) (P) (P) (P)
i = 22 £33 C12 £21 (E99)
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The stress rates are similarly represented by

[ a I = ( 11 22 a33
a12

Then, equation (E88) becomes

2
TI

11

T *T 22

Tl'T 33
11 33

T11 T22 T11 'T33 T11 T12 T11 T21

T 2222 T22 T33 T22 T12 T22 T21

2
T22 T33 T33

T11 T12 T22 T12

(P)

22

(P)

33

(P)

12

(P)

21

T33T 12 T33 T21

2
T33 T12 T12 T12 T2 1

2 21
T22T21 T33"T21 T12"T21 T21

'11

a22

33

612

a21

(El01)

(P (P)

Since 12  2 1 = 2 12 andSince = = 12 and 12 = 21' the equation can

be written more conveniently
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T11 T22 T11 'T33 211 T12

ri:
(P)

(P)
22

= G

(P)

33

(P)
12

T11 T33 T22 T33 T33

2T "T12 2T *T12
Li 12 22 12

2T *T
33 12

2T33 T12

(E102)

or

i(P)
ij

S[(P) Ii

The elastic strain rates can be expressed by

-- v - v

-V 1 -v

-v -v 1 0

0 0 0 2(l+v)

611

"22

33

129

S= (e) ]

2
T11 T22 T22

11

a 2 2

33

12

(E103)

1
E (E104)

or (e)

iji 16iji (E105)
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Adding equations (E103) and (E105) will give

(P) (P)

) = = + [j K + K(e) ij)

= [K](6j). (E106)

The incremental stresses can then be found by inverting

[K) to satisfy the equation

(6 ) = [K] - (CU . (E107)

The computer program calculates the terms of [K] and inverts

the matrix to provide the required coefficients to compute

the incremental changes in stress.

No correction routine is used because the program cal-

culates a new position for the yield surface for each

plastic point after the iteration for a loading step has

converged.
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APPENDIX F

CONVERSION FROM 4 AND c TO a AND k

The Mohr-Coulomb law can be written in the form

- 03 01 + 3 COS =C cos 4, (Fla)

2 2

if tensile stresses are positive. (Reference to Figure 4

will help clarify this expression.) Equation (Fla) can be

rewritten

01 - 03 1-sin 4 2 c cos 4 (Fl)
l+sin 4 1 + sin 4

The Drucker-Prager (1952) relation is

aI + J21/2 = k. (F2)

The last expression does not allow the constants a and k

to be expressed in terms of c and 4 unless some assumption

or restriction is made about the intermediate principal

stress. Drucker and Prager (1952) assumed a rigid-

perfectly plastic material under plane strain and obtained

tan 4

(9 + 12 tan 2 ~)1/2

k= 3 c

(9 + 12 tan 2 ) /2
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-1 1e = tan (1-12a2 )Z

k
C 1 (F3)
(1 - 12a2 )

Analogous relations can be derived for the conditions

of the triaxial compression test and triaxial extension

test. The stress conditions for the compression test are

02 = 01' (F4)

since tension is defined as positive and the subscripts

1, 2, and 3 indicate decreasing positive or increasing

negative value. Then

I = 2a1 + o 3

1 3 2 2 2
J2 6 l 3) + (2 - 3) + (al-

2 6 2 3 1 2

= ( - 3 ) 2 2] = (a i - 2 . (F5)

Substitution into equation (F2) gives

1
a(2a 1 + 0 + (al1 - 03) = k, (F6)

)3 + 'r3 (
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and hence,

01 - 03 1 + 2 1 + 2aT (F7)

Equating corresponding coefficients in equations (Fl) and

(F7) and solution of the resulting simultaneous equations

give

2 sin cp

Y(3-sin e~)

k = 6 c coscp

3-sin )

= sin-1rp= sin 2+ T

(F8)3k 1

2[ (1-'/a.) (1+25%a) ]

In triaxial extension

02 = 03 , (F9)

and

1 = 01 + 203

1 2
2 3 - 03)
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A similar substitution into equation (F2) gives

1
a(Cl + 203) + ?3 (a - 03) = k, (F11)

and
1 - 2 \3 V k

1- 3 1 + V 1 + 3 (F2)

Solving the simultaneous equations results in

2 sin ec

3(3+sin e)

6 c cos CP (F3)
k (3+sin cP)

. -1 3Vp = sin 2-

1

2[ (1+ 3a) (1-2 V3a) ]7

Equations (F3), (F8). and (F13) are plotted in

Figures 6 and 7. These predict much higher values of c

and ep for plane strain and extension than for compression.

The plane strain curve would be different if a different

assumption were made from that of rigid-plastic behavior.

For example, 02 can be assumed some ratio of the sum of
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the sum of a1 and a3 between the limiting cases of triaxial

compression and extension. The difference in values of c

between extension and compression is not observed experi-

mentally (Bishop, 1966), so the Drucker-Prager generali-

zation remains a mathematical convenience which probably

will be abandoned when a better understanding of the effect

of 02 on the strength of soil is obtained by experiment.

Equation (F8) has been derived independently by Reyes

(1966), but he presents incorrect forms for the first

two of equations (F13).
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(b)

FIG. 69 INCREMENTAL
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= 1.0 FT.

DISPLACEMENTS - RUN 10

~/ / -
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- ~ #

r 10" J4 0 1 A

-- := 0.1 FT.



T
LOAD IN TSF
2 3 4

0.2

0.3

FIG.70 COMPARISON OF TRESCA AND
DISPLACEMENTS

PRANDTL-REUSS
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4.09 TSF

((a)

I

(b)

FIG. 71 SPREAD OF PLASTIC ZONE - RUN
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LOAD FROM 4.93 TO 5.22 TSF = 0.02 FT.

F V

'S

TOTAL DISPLACEMENTS AT 5.22 TSF - = 0.2 FT.

FIG.73 INCREMENTAL DISPLACEMENTS - RUN 9
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LOAD IN TSF
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FIG.74 DRUCKER PRAGER DISPLACEMENTS
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1.06 TSF

(a)

FIG.75 SPREAD OF PLASTIC ZONE - RUN
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\ \

Ilk & -% %

LOAD FROM 4.60 TO 5.30 TSF

(a)

-S.

\ 1%. *0 It

4 % 'A *A

LOAD IS 5.30 TSF

(b) FINAL DISPLACEMENTS

FIG.77 DISPLACEMENTS - RUN 12

- = 0.2 FT.
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LOAD IN TSF

2 3

FIG. 78 VERTICAL DISPLACEMENTS - RUN II
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JIN TSF

IN TSF
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I. IN TSF

STRESS PATHS - RUN II
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t ' '

tf U S

LOAD = 0.35 TSF

(a)

t %

- = 0.04 FT.

LOAD = 2.12 TSF

(b)

FIG. 81 DISPLACEMENT FIELDS - RUN II
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FROM 3.89 TO 4.24 TSF

FINAL DISPLACEMENTS

(b)
LOAD = 4.24 TSF - = 2 FT,

INCREMENTAL DISPLACEMENTS - RUN II

249

I

LOAD

(a)

- = 0.2 FT.

I
I

FIG. 82
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TABLE I

COMPUTER PROGRAMS

Program
Name

MASS-TR
(PERFPLAS)

MASS-PR

PLUSS

MASS-DP

MASS- SH

Material/Criterion
Name

Tresca

Prandtl-Reuss/
Hencky-von Mises

Tresca with no
Elastic Volume
Change

Drucker-Prager:

Strain Hardening

Yield Function

al-a

2

S2 - k = 0
1
2

-k O

1 3- k = 0

1

1~ 2

aI  2 _

2
a

k=0

2
2

b
= 0

PLANE Linearly Elastic-
Drained or Un-
drained

NONE

* For the strain hardening material a/b = D and all
ellipsoids are ave half axis b passing through the

surface al1 + - k = 0.
2
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TABLE II

RUNS MADE

Run No. Program

Horizontal
Distance
From q.

to Boundary
in Ft.

Vertical
Depth

of Soil
in Ft.

Final
Load
in
TSF

in
TSF

Constants

v k
in
TSF

Y Other
in

TSF

MASS-TR
It

It

PLUSS
01

9
10

MASS- PR
PLUSS

11 MASS- SH

12 MASS-DP

280 Ft.

300 Ft.
280 Ft.

is

300 Ft.
280 Ft.

300 Ft.

of

140 Ft. 8.47
f" 9.02
" 8.95
" 8.82
" 8.89
f" 8.28
o" 4,27

" 8.95

3,000
3,000
3,000
3,000

865
3,000

865

0.2
0.3
0.4
0.5
0.5
0.5
0.5

1.75
1.75
1.75
1.75
1.75
1.75
1.75

865 0.5 1.75

- Smooth Bottom
- Smooth Bottom,

Free Side
- Initial Stress

= 0.5k
" 5.22 3,000 0.3 1.75 - - Initial

9.00 865 0.5 1.75 - - Initial Stress
= -0.5k

4.24 3,000 0.3 0 0.165 0.05 D=2, k =0.5
C=600 SF

5.30 3,000 0.3 0 0.165 0.05 k =0.5
0

Notes:
tes:1. Effective stress v for all PLUSS runs is 0.3. Effective stress E for PLUSS

runs is 2,000 TSF when total stress E is 3,000 TSF and 750 TSF when total
stress E is 865 TSF.

2. Bottom is fixed, side is smooth, and top is free unless otherwise noted.
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