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Abstract

Measurements have been made of the characteristics of silicon
point-contact rectifiers as microwave high-level mixers, or absorption
modulators. Conversion efficiency, linearity of modulation, r-f impedance,
(3000 Mc/sec) and modulating-frequency (5 Mc/sec) impedance were measured.
Crystal types tested were 1N21B, high-inverse-voltage silicon crystals,
and some special Bell Telephone Laboratories crystals.

Use of a pair of crystals in a balanced modulator gave 10 to 20 mw
of power in each sideband in the linear modulation region. Carrier suppression
of the order of 20 db below the first sidebands is easily maintained in such
a modulator.
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THE USE OF SILICON POINT-CONTACT RECTIFIERS

FOR MODULATING MICROWAVE SIGNALS

1. Introduction

A survey of the microwave art indicates that the techniques of

modulation are rather primitive when one compares them to the techniques

available at lower frequencies.

At present, various methods of pulse modulation of microwave

oscillators (or amplifiers) are in common use. Frequency-modulated klystrons

are fairly well developed, and electronically tuned magnetrons are in a more

or less satisfactory state of development. Amplitude modulation is not very

far advanced, particularly if one is concerned with large power levels. The

lighthouse tubes and the recently announced close-spaced triodes of the Bell

Telephone Laboratories may be amplitude-modulated through their control grids.

The upper-frequency limit of the lighthouse tube series is about 2000 Mc/sec,

and the new Bell Telephone Laboratory tube can be used up to about 6000 Mc/sec,

but it is not generally available to the public.

In view of the considerations briefly outlined above, it was decided

to make a study of the various techniques of modulating microwave signals,

with the emphasis on means of "continuous" modulation (AM,FM,PM) as distinct

from pulse modulation. As a first step in this program it was decided to make

a detailed study of the characteristics of silicon point-contact rectifiers

used as absorption modulators. Crystals have been employed as modulators by

various people (1),(2),(3), but no detailed study of their performance has

been previously published.

The data presented here are abstracted from a Master's thesis(4) by

William N. Coffey.

2. Measurement Technique

All measurements were performed at a radio frequency of 3000 Mc/sec,

and a modulating frequency of 5 Mc/sec. This particular radio frequency was

chosen because oscillators and r-f components were easily available; the

modulation frequency was chosen low enough so that both sidebands and the

carrier could be seen simultaneously on a spectrum analyzer, and high enough

so that it was possible to filter out any one of the components with cavities

of reasonable Q. A number of spot checks confirmed our assumption that the

modulation efficiency was the same at 30 Mc/sec and 60 Mc/sec as at 5 M/sec.

No tests were made at higher radio frequencies, or with crystals such as the

11123B or 1N26; all tests were made on lN21BIs, on some special 1N28 crystals

used by the Bell Telephone System in their Boston-New York radio relay link,

and on some crystals made with high-voltage silicon obtained from the

University of Pennsylvania (5).
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Figure l(a) illustrates the basic measuring circuit. A coaxial

hybrid Junction was used, with the crystal and means for matching it on

one arm, a matched load on the opposite arm, and the r-f input and output

circuits on the remaining arms. It will be recalled that in an ideal magic

T or hybrid Junction, power coming to the Junction from any arm divides

between adjacent arms and none goes directly to the opposite arm.

D

R-F
INPUT ->

fo

(a)

R-F
)-> OUTPUT

,/SIDEBANDS,~

SUPPRESSED
CARRIER .

I
L

fo 2fm fO*-fm

(b)MODULATING
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Figure l(a),(b). Basic circuit used for measuring modulation
characteristics of crystals.

By proper adjustment of the matching device the crystal impedance at the

zero of the modulating voltage can be made equal to the line impedance. Under

these conditions no r-f carrier power will be reflected to the output, and a

condition of two sidebands with a suppressed carrier will be obtained as

shown in Figure l(b). In this way it is possible to measure the absolute

sideband power for quite low levels of modulation, without the use of elabo-

rate filters to reject the carrier.

10 db
PAD DIRECTIONAL

COUPLER a
THERMISTOR

MODULATING
CIRCUIT

fm

Figure 2. Block diagram of test setup.

Figure 2 is a block diagram of the test setup. A 50-watt c-w

magnetron (QK61) with a power divider was used as the r-f power source. The

incident power was monitored with a directional coupler and thermistor. The

modulating signal was obtained from a 5-Mc/sec oscillator and it was measured

with a conventional peak voltmeter.
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Besides measurements of sideband power, measurements were also

made of the impedance presented by the crystal to the modulating signal,

and of the r-f impedance of the crystal. The modulation-frequency impedance

was measured with a General Radio bridge, while the r-f impedance was

measured in the usual manner with a coaxial slotted section.

3. Test Results

Single Crystal Modulator. Measurements were made on a number of 1N21Bs all

of which had closely similar modulation characteristics, as illustrated in

Figure 4. Here we have plotted modulation voltage against sideband voltage
1

(sideband.pcwer)2, with the r-f power incident on the crystal as a parameter.

Figure 4. Modulation characteristics of 1J21B crystals.

It is evident that above an incident power level of 200 mw the increase in

sideband power is very slow, and since there was some evidence of deteriora-

tion of the crystal at power levels above 350 mw, it was decided to call

200 mw a maximum useful value. Under these conditions a maximum power of

about 10 mw/sideband, and a maximum power in the linear range of about

6 mw/sideband was available.

The actual measured power included both sidebands and their

harmonics. None of the harmonics (second or higher order sidebands), however,

was larger than about 1 per cent of the sidebands. The values plotted are

the actual measured power in the output line, and are equal to the sum of the

powers in the two sidebands. Alternatively, the data may be interpreted as

giving the total power generated in each sideband, half of which is absorbed

in the r-f generator impedance.

A number of crystals were made for us at the Sylvania Electric

Products Company Inc. out of high-inverse-voltage silicon obtained from

W. E. Stephens at the University of Pennsylvania(5). The crystals were
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prepared Just like lN21B's, and were given no particular treatment. As a

result, the properties of the various units were quite non-uniform. Figure 5

shows the modulation characteristics of one of the better units. The

maximum useful driving power was 800 mw, and at this level 25 mw of maximum

sideband power was available and the limit of the linear range was about

15 mw of sideband power. It will be observed that both the r-f driving

power and the modulating voltage for a given sideband power are larger than

for a lN21B crystal, but that greater absolute values of sideband power ean

be obtained with these crystals.

3 ,W-
ao

z
>0

3 z
ow

Figure 5. Modulation characteristics of high-inverse-voltage silicon
crystals (No. H-l).

Two crystals were furnished by H. T. Friis of the Bell Telephone

Laboratories. These were of the type used in the Boston-New York relay link,

and are similar to the 1N28 crystal. Figure 6 shows their characteristics,

Figure 6. Modulation characteristics of special BTL crystal (No. K2950-45).
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Both crystals were very closely alike, and were better matched than any pair

of the 1N21B's tested. It will be noticed, however, that their sideband

power output is definitely less than that of the N21B's.

In passing, it should be noted that a CV-58 microwave diode was

tested as a modulator in the same circuit. Although its conversion effi-

ciency was low, it had excellent linearity. With an exciting power of 214 mw,

the power per sideband was linear up to the maximum available modulation

voltage of 8, and was 9 mw at this point.

The effect of d-c bias on the modulation characteristics of lN21B's

was measured. Figure 7 summarizes the results obtained on one crystal.

Figure 7. Effect of d-c bias on modulation characteristics of lN21B
crystal. 85 mw of microwave power incident on crystal.

The addition of positive bias increased the maximum available power, and

negative bias reduced it. If we are concerned with the linear range only,

then e see that the maximum power in the linear range is nearly independent

of bias; but it can be obtained with a smaller modulating voltage if positive

bias is used.

D-c bias may also be used as a fine control of the r-f impedance

of a crystal. The magnitude of this effect is indicated in the section on

r-f impedance characterics.

Two-Crystal Balanced Modulator. A balanced modulator may be devised by put-

ting two crystals on opposite arms of a hybrid unction, at equal distances

from the unction, and driving them push-pull with the modulating signal. If

the crystals are exactly alike, the output will have only sideband energy,

and the carrier will be suppressed. Moreover, all the sideband power will

go out the arm away from the r-f exciting source, and is therefore all

useful power.
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A number of tests of such a circuit were made. The coaxial hybrid

ring was terminated by a pair of "type-N" crystal holders. (A crystal in

such a holder presents a mismatch of 3.0 or greater to a 50-ohm line.) Under

these conditions, it was relatively easy to find a pair of 121B's which

produced a carrier at least 20 db below the level of the first sidebands.

Other crystals chosen at random would give a suppression of the order of 13 db.

This could be improved, however, by adding a small amount of positive bias to

one or the other of the crystals, and a suppression of 15 to 20 db was attain-

able for large values of the modulating voltage.

Tests on particular crystals resulted in very nearly twice the

sideband power produced by one alone. The data in Figures 4, 5 and 6 give the

total power in each sideband produced by one crystal; this is actually twice

the measured power in the output arm. Thus, the balanced modulator produces

four times as much available sideband power as a single-crystal modulator.

R-F Impedance Measurements. A number of static measurements of the r-f

impedance of the crystal were made for various r-f power levels and d-c bias

voltages. Figure 8 shows the crystal admittance in a 50-ohm coaxial, with

the crystal matched at zero bias, and an incident r-f power of 42 mw.

Y cD

Figure 8. Microwave admittance of lN21B crystal as a function of d-c bias.
Crystal tuned to match a 50 il line with zero bias and 42 mw of
incident r-f power.

Figure 9 shows the absolute value of the reflection coefficientirl and its

angle , derived from Figure 8. In Figure 10 are plotted the instantaneous

values of ir and cp for an assumed sinusoidal modulating signal with a peak

voltage of 3.
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Figure 9.
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Absolute magnitude of Irl, and angle p of reflection coefficient
as a function of d-c bias. Plotted from Figure 8.
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Figure 10. Instantaneous values of Il and for an assumed sinusoidal
modulation signal with an amplitude of 3 volts. Computed
from Figures 8 and 9.
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We see from Figure 10 that the crystal actually produces a combi-

nation of amplitude and phase modulation. The expression for the amplitude

of the first-order sidebands is

= [ aoJl(c)2 (Jo2 J2 (1)}VI = a 0i 1 ((pi + 2 0 (91) - J2 ( : 1' (1)

where the Js are Bessel functions, ao and k are defined by

Ir = a + kl sin pt + k2 sin 2pt + . . . (2)

and 91 is the index of phase modulation in the expression for an amplitude-

and phase-modulated voltage.

V = [a + k sin pt sin wt + 90 + 91 sin pt (3)

and is given by

= o + 1 inpt +1 sin 2pt + . . . (4)

Thus, the effect of 1 is to produce an amplitude distortion in the first-

order sidebands. The value of 1, obtained by Fourier analysis of Figure 10,

is only 50, and its effect turns out to be negligible.

A complete Fourier analysis of Figure 10 was made, and the predicted

and measured values of the carrier and the first and second sidebands are

compared in the table below.

Calculated Measured

Carrier -13 db -14 db

First sideband 0 0

Second sideband -24 db -20 db

Note that the carrier, which was balanced out with no modulation, rose to a

level of 13 db below the sideband power. It can, of course, be returned for

balance at any level of modulating signal.
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Modulation Frequency Impedance. For all measurements the crystal was mounted

in the circuit shown in Figure 11.

C, 500ALuf

MODU
TER

Figure 11. Modulating-frequency bypass and blocking circuit.

L1, C1, and C2 serve as a d-c blocking circuit to permit measurement of the

rectified crystal current; C is the r-f bypass condenser in the crystal

holder; and L2 is a 10-cm, quarter-wave stub in the coaxial line. The

impedance measurements discussed here were all made at the "Modulation Termi-

nals", and were made with a General Radio Model 916A R-F Impedance Bridge.

Figures 12 and 13 show the measured values of the assumed parallel RC circuit

at the modulation terminals for a 1N21B and a high-inverse-voltage crystal,

while Figures 14 and 15 show the admittance at the terminal A, computed from

the data in Figures 12 and 13. It will be observed that the susceptance at

A is considerably larger than can be accounted for by the condenser

C3 (C 3 = 4 x 10- 4 mhos), and that it is not a constant, but is dependent

upon both the r-f and modulating levels.

4. Conclusions

The high-level modulation characteristics of several crystal types

have been measured at a radio frequency of 3000 Mc/sec. Their characteristics

are summarized in the following table. Although all the data were obtained

with a modulation frequency of 5 Mc/sec, a few tests indicated that the

performance at 30 and 60 M/sec was substantially the same: i.e., a given

modulating voltage at the crystal terminals produced the same amount of side-

band power. No measurements were made, however, of the modulation impedance

at these higher frequencies.

Since the performance of low-level crystal converters is substan-

tially the same in the various microwave bands for which they are designed,

we believe that the same general magnitude of sideband power should be avail-

able at frequencies at least as high as 10,000 Mc/sec.
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The performance of the high-inverse-voltage crystals is encouraging

enough to warrant a more careful study of their characteristics with a view

towards developing a unit that will be capable of generating large amounts of

sideband power. The importance of this can be estimated by recalling that

the transmitted power from a microwave relay station ought to lie between

100 mw and 2 watts. Thus, a balanced modulator, generating 10 to 20 mw of

sideband power, must be followed by 10 to 20 db of relatively wide-band

r-f amplification. Any substantial increase in the output of the modulator

allows either a simplification in the following amplifier or a corresponding

increase in the final output power.
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