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ABSTRACT

Within the visual cortex a vast assortment of molecules work in concert to
sharpen and refine neuronal circuits throughout development. With the advent of
genetic mouse models it is now possible to probe the individual contributions of
single molecules implicated in this process.

The Arc (activity-regulated cytoskeletal associated) gene is an effector
immediate early gene that has been suggested to play a critical role in synaptic
plasticity. The goal of this thesis is to understand the workings of Arc within the
visual cortex. Specifically, we ask how genetic deletion of Arc influences plasticity,
and how visual response properties differ between cells types containing, and not
containing Arc. To elucidate a role for Arc in visual cortical plasticity we took
advantage of knockin mice expressing GFP in place of Arc protein (referred to as KO
mice for simplicity). We combined intrinsic signal imaging, visually evoked
potentials, and two-photon in vivo calcium imaging to assess plasticity in juvenile
and adult wild-type (WT), heterozygote, and KO mice.

We find that plasticity is disrupted in the visual cortex of Arc KO mice in the
absence of obvious deficits at the level of basal response properties. In addition, this
work has revealed that: 1) Arc is necessary for the establishment of normal ocular
dominance during development and critical for deprived eye depression in the visual
cortex of juvenile animals 2) Loss of Arc impairs AMPA receptor internalization in
visual cortex- a necessary requirement for synaptic weakening after lid suture. 3)
Open eye potentiation fails to occur after extended deprivation in the absence of Arc
4) Arc is required for stimulus response potentiation in juvenile animals. 5) Arc is not
required for the synaptic scaling up of response suggesting a specific role in Hebbian
plasticity. 6) Single cell analysis within the binocular zone of Arc-GFP homozygotes
reveals that the distribution of Arc lacking GFP-positive cells does not display a
contralateral-bias as compared to controls, and the majority of Arc-lacking GFP-
positive cells receive equal input from each eye, suggesting that Arc is critical for
synaptic weakening during development. Together, these experiments illustrate the
essential role for Arc in qxperience-dependent plasticity within the visual system.

Thesis supervisor: Mriganka Sur, Ph.D., FRS
Title: Department Head and Newton Professor in Neuroscience



ORGANIZATION OF THESIS

For those eager readers venturing into the depths of this thesis, I include the

following roadmap: This thesis is organized into five chapters. First, an introduction to

experience-dependent plasticity within the visual system is provided to orient the reader

to the history and current challenges within the field. Second, I provide two sections

outlining experiments designed to assay plasticity in juvenile and adult Arc KO mice. In

these experiments, intrinsic signal imaging and VEPs (in collaboration with Jason

Shepherd in the Bear lab) are used to probe how functional loss of Arc affects visual

cortex plasticity at different points in development. In the third section, I present

experiments using in vivo two-photon calcium imaging to investigate visual response

properties in identified cell types within Arc-GFP heterozygous and homozygous mice.

To our knowledge, we provide the first in vivo two-photon functional imaging

experiments assaying visual response properties in genetically identified knockout cells.

Each of the three experimental sections contained within this thesis is organized into a

brief introduction, followed by a section outlining methods and results, and concluding

with a detailed discussion. The final chapter of my thesis provides a careful discussion

of the overarching implications of this work and how it contributes to our current

understanding of visual cortex plasticity.



TABLE OF CONTENTS

ABSTRACT 2

CHAPTER 1:

Current mechanisms and molecules proposed to underlie experience-dependent

plasticity

CHAPTER 2:

Deficient plasticity in the visual cortex of juvenile Arc KO mice 4

CHAPTER 3:

Disrupted plasticity in Arc KO adult mice 9

CHAPTER 4:

In vivo two-photon functional imaging of identified subtypes and knockout cells

in the visual cortex of Arc-GFP mice 11

CHAPTER 5: Concluding remarks 16

ACKNOWLEDGEMENTS

4

1

174



CHAPTER 1

CURRENT MECHANISMS AND
MOLECULES PROPOSED TO

UNDERLIE EXPERIENCE-DEPENDENT
PLASTICITY



INTRODUCTION

Neurons are exquisitely sensitive to changes in sensory input. Even subtle

alterations in activity can result in profound changes in receptive field properties within

neural circuits. Monocular deprivation is the predominant model system for probing

how sensory experience alters visual circuitry. In this chapter I will review literature

illustrating the fundamental role of activity in normal visual cortex development,

provide an overview of the current mechanisms and molecules thought to mediate

plasticity, and delineate how Arc can be situated within the current framework of

experience-dependent plasticity.

Hubel and Wiesel: Plasticity in higher mammals

"Our very first recording from a kitten began badly, with nothing but electrical artifacts during
the first penetration .. Even with the patience of a couple of oysters we could end up yearning for
the day to end, regardless of whether or not it was successful. "

David Hubel 2005

Throughout development, changes in experience shape and mold neural

networks via a process referred to as experience-dependent plasticity. Even prior to eye-

opening spontaneous activity arising from the retina guides and refines cortical

connectivity (Meister et al., 1991). Modifications of neural circuitry within the brain are

dependent upon both the form of activity being relayed and the target brain region.

While these changes are most pronounced early in development, various forms of

synaptic plasticity operate throughout life to refine and optimize neural circuitry in the

face of changing external demands. Much of our current understanding of the visual

system rests upon experiments conducted by Hubel and Wiesel in the 1960's (Hubel and



Wiesel, 1962, 1963). As the quote above indicates, these experiments were not easy. In

their memoir, Hubel and Wiesel describe how trying many of the experiments could be,

and how often long hours resulted in failure (Hubel and Wiesel, 2005). However, their

curiosity and collaboration provided them with enough energy to persevere and the

discoveries from their early experiments transformed the state of visual neuroscience.

While numerous researchers since this time have contributed substantially to the

canon of knowledge regarding visual system physiology, it was in these seminal

experiments that we first learned that visual inputs from thalamus into VI of cats were

segregated into eye-specific ocular dominance columns. These early experiments were

exciting specifically because they revealed that normal experience is critical for

refinement of the visual pathway and that sensory deprivation in early development can

significantly alter the structure and function of these columns within the visual cortex.

This phenomenon was termed ocular dominance plasticity.

Using the cat and monkey visual cortex as an experimental system, they

discovered that visual deprivation resulted in a surprising degeneration of connections.

In the case of monocular deprivation, the percentage of cells being driven by the

deprived eye was significantly reduced and the size of ocular dominance columns being

served by the deprived eye decreased. The decrease in size of deprived ocular

dominance columns indicated that reduction of activity through the deprived eye

pathway led to a loss of afferent projections to the visual cortex. Interestingly, they

found a parallel expansion of ocular dominance columns receiving input from the

nondeprived open eye and a concomitant strengthening of inputs being driven by this

eye (Figure 1A-C). The competitive nature of this shift was revealed with experiments

where animals were binocularly deprived. While most cortical cells remained responsive

to the nondeprived eye following monocular deprivation, in the case of binocular

deprivation many cells remained responsive to both eyes. This result provided evidence

that it is the relative balance in drive between inputs that determines the plastic changes



that take place. Most strikingly, they discovered that this weakening and strengthening

could only occur at a very specific time early in development and often led to an

irreversible reduction of visually driven activity through the deprived eye within the

visual cortex.

Beginning at three weeks of age, monocular lid suture causes a shift in ocular

dominance, with maximal sensitivity to this procedure being reached at four to six

weeks. After this point, there is a decrease in degree to which the shift can be achieved.

Attempting the same manipulation in adult cats approximately 1 year old is

unsuccessful in causing any effect, regardless of the length of deprivation, suggesting

that outside of the sensitive period the visual cortex is insensitive to changes in visual

experience. Along the same vein, an additional discovery revealed that visual experience

is critical for normal closure of the critical period. Cats raised in complete darkness have

an extended critical period (Cynader, 1980; Mower et al., 1981). In these animals,

monocular deprivation by lid suture results in an increase in the representation of the

nondeprived eye well past the end of the critical period in normally reared cats.

Explanations for the developmental decline in plasticity will be discussed in detail in

subsequent sections.

While knowledge of physiological and anatomical effects of reduced afferent

activity has facilitated insights into visual cortex function, elucidating the molecular

underpinnings of activity driven changes has become the Holy Grail of many of today's

studies of experience-dependent plasticity. The advent of the mouse as a model system

has greatly expedited progress towards this goal.

The mouse as a model system for cortical plasticity

The mouse is extremely amenable to genetic manipulation, and with the increase

in knockin, knockout, and transgenic mouse lines it is possible to investigate the



contribution of both single molecules (Sawtell et al., 2003; Wang et al., 2006) and cell

types (Gandhi et al., 2008; Sohya et al., 2007) to changes occurring in response to

manipulations of experience. Many of the current theories for ocular dominance

plasticity such as Hebbian plasticity (Cruikshank and Weinberger, 1996), Bienenstock-

Cooper-Munro (BCM) (Bienenstock et al., 1982) and homeostatic plasticity (Turrigiano et

al., 1998), have been tested both in vivo and in vitro by taking advantage of genetic

mouse models where molecules that may be involved in these mechanisms are

genetically manipulated. Below, I present a number of experiments that rely on genetic

techniques to test the function of specific molecules or pathways implicated in

experience-dependent plasticity.

The mouse visual cortex provides a simple model system for studying the

mechanisms underlying experience-dependent plasticity. While the visual cortex of the

mouse does not contain ocular dominance columns, there exists a monocular region

receiving input from the contralateral eye and a smaller binocular segment receiving

input from both the contralateral and ipsilateral eyes (Figure 2). Within this binocular

region there exists a contralateral bias similar to that found in other species. Monocular

closure of the dominant eye results in a shift in ocular dominance towards the

nondeprived eye which mimics the affect found at the level of ocular dominance

columns in higher mammals such as monkeys, cats, and ferrets. The majority of work

described within this thesis regarding experience-dependent plasticity will be based

upon studies conducted within the mouse visual cortex.

The visual cortex of the mouse is a highly laminar structure, and this

organization can be used to inform our understanding of the sites of plasticity. Visual

input from the thalamus projects to layer 4 of the visual cortex. From here, the

supragranular layers 1, 2, and 3, serve as an integrative center for gathering data and

send it out to deeper layers in addition to other cortical areas. Layers 5 and 6 form the

infragranular layers, and are the primary output layers of visual cortex, projecting to



both cortical and subcortical areas. In the mouse visual cortex, layer 2/3 and 4 serve as

the primary sites of ocular dominance plasticity. Interestingly, they are also the layers

expressing the highest levels of Arc protein (Figure 3), the primary plasticity molecule

being investigated in this thesis. As mentioned above, there exists a sensitive period for

sensory manipulations within the mouse. This occurs between postnatal days 24-32

(P24-P32). The developmental expression of Arc correlates well with maturation of

visual cortex plasticity (Figure 4). The mRNA of Arc can first be detected in rats at

postnatal day 8 (P8) (Lyford et al., 1995). Arc expression is critically dependent upon

activity (Figure 5). After eye opening (-P13), Arc expression increases drastically and

reaches a peak at P21. Arc protein follows a similar pattern of expression, though more

gradual, showing an initial increase after eye opening and slowly reaching a peak

between P28-P30. This developmental progression suggests that Arc may be important

during the increased period of synaptogenesis and pruning that occurs after eye

opening in visual cortex.

Hebbian plasticity, the BCM theory (metaplasticity), and homeostasis have all

been proposed to explain the activity-dependent mechanisms underlying how

experience so drastically impacts cortical circuits. Of these the most familiar may be that

of Donald Hebb. Hebb proposed that a basic mechanism for synaptic learning would be

such that repeated firing by a presynaptic neuron of its postsynaptic target would result

in robust potentiation (Hebb, 1949). Hebb's postulate states that, "When an axon of cell

A is near enough to excite cell B and repeatedly or persistently takes part in firing it,

some growth process or metabolic change takes place in one or both cells such that A's

efficiency, as one of the cells firing B, is increased". Often this quote is simply referenced

by the mnemonic "neurons that fire together wire together". This principle states that

temporal correlation of electrical activity between afferent fibers and that of the

postsynaptic neuron receiving these fibers, results in a strengthening or maintenance of

the connection. In the case where temporal correlation does not exist, afferent



projections will be weakened and lose their hold on the cell. Activity-dependent

potentiation (LTP) and depression (LTD) are thought to underlie this process (Malenka

and Bear, 2004). Studies conducted in vivo suggest that LTP and LTD may explain the

experience-dependent plasticity that occurs within the visual cortex after monocular

deprivation (Crozier et al., 2007; Heynen et al., 2003; Kirkwood et al., 1996). Ocular

dominance shifts are commonly explained by an initial reduction of deprived-eye

responses followed by a delayed strengthening of nondeprived eye responses. LTD-like

mechanisms are proposed to mediate the initial depression of the deprived eye

response. Indeed experiments conducted in both mice and rats show that lid suture

mimics the changes found with LTD and that similar molecules are recruited (Heynen et

al., 2003). While LTP has been hypothesized to mediate open eye potentiation, a specific

role in ocular dominance plasticity has not been discovered. However, stimulus

response potentiation (SRP), a persistent form of response enhancement detected with

visually evoked potentials, is a mechanistic correlate of LTP known to operate in mice

(Frenkel et al., 2006). In this form of learning, repeated presentation of gratings of a

single orientation over a period of days results in a significant potentiation of response

to that orientation. The amplitude of response to an orthogonal orientation is

comparable to the initial response. However, repeated exposure to a novel orientation

can also result in a potentiation of response amplitude. While this potentiation can take

place in both juveniles and adults the absolute magnitude of SRP is reduced in adult

mice. Modifications in response to the initial repeated orientation are extremely

persistent and last over several days. Interestingly, SRP is NMDAR-dependent and

requires AMPAR trafficking, as does LTP, and open eye potentiation (Frenkel et al.,

2006). In order to probe the interaction between SRP and ocular dominance plasticity

Frenkel et. al induced SRP in two groups of WT animals for a period of 6 days. After this

point, the first group of mice was returned to their home cages, and the second group

was deprived of one eye for an additional 7 days to investigate open eye potentiation.



The response magnitude remained elevated in the first group of mice, revealing the

persistent nature of SRP, however in the second group an additional potentiation of the

open eye response was seen suggesting that activity through the intact open eye is

enabled by monocular deprivation.

Homeostatic mechanisms may also contribute to ocular dominance plasticity. In

response to silencing activity with TTX, a compensatory increase in firing referred to as

synaptic scaling occurs within visual cortex (Turrigiano and Nelson, 2004). This form of

scaling is multiplicative, meaning that it acts globally at all synapses, and it is thought to

work in tangent with Hebbian mechanisms of NMDA receptor-dependent LTP and LTD

to stabilize neural networks and prevent runaway excitation or quiescence. Recent

evidence suggests that homeostatic mechanisms may modify the threshold for synaptic

plasticity, and play a role in ocular dominance plasticity.

Mrisic-Flogel et al used two-photon functional calcium imaging to examine the

ocular dominance distribution of individual cells before and after a period of monocular

deprivation (Mrsic-Flogel et al., 2007) (Figure 6). They found that the relative change in

ocular dominance that occurred in a given cell depended on the amount of visual drive

received from each eye. As such, a weakening of deprived eye response only took place

in those cells receiving input from the open eye. This weakening occurred rapidly within

a period of only 2-3 days of monocular deprivation followed by a slower potentiation of

the open eye response after 3 days of deprivation. These findings align with a Hebbian

framework of synaptic competition, and suggest that the mismatch between activity

through the open eye and that of the sutured eye may lead to decorrelated activity and

thus synaptic weakening. However, in the case of those cells receiving input

predominantly from the deprived eye there was an increase in responsiveness that the

authors attributed to a homeostatic mechanism of synaptic scaling. In support of this

conclusion, they also found that neuronal responsiveness increased in monocular visual

cortex after deprivation of the contralateral eye. In addition, binocular deprivation



resulted in an increase in response to both eyes within the binocular zone of visual

cortex, suggesting that indeed reduced drive through the closed eyelids is sufficient to

trigger homeostatic mechanisms for maintaining firing rates. One major aspect of their

experimental design that makes interpreting their findings difficult is that they were

unable to perform chronic imaging in mice. Because they were imaging across animals it

is not possible to specifically assess the contribution from each eye and the subsequent

changes that occur after monocular deprivation. However, further evidence that

homeostatic response compensation is likely to be an important component of OD

plasticity comes from experiments using mice lacking tumor necrosis factor alpha (TNF-

alpha), a cytokine derived from glia and implicated in homeostatic synaptic scaling.

While depression of the deprived eye response occurs similarly to that found in WT

animals after lid suture, TNF-alpha mutant mice have reduced ocular dominance

plasticity due to a deficit in open-eye response potentiation(Kaneko et al., 2006).

An additional theory frequently drawn upon to explain ocular

dominance shifts is the BCM theory. The BCM theory postulates a flexible modification

threshold that regulates the strength and direction of plasticity based upon the history of

post-synaptic activity (metaplasticity) (Bienenstock et al., 1982). For example, decreasing

overall cortical activity by dark rearing shifts the modification threshold such that LTD

is no longer preferred and LTP is easily elicited (Czepita et al., 1994). As a case in point,

mice that have been injected with tetrodotoxin (TTX) do not display deprived eye

depression, however open eye potentiation is facilitated (Frenkel and Bear, 2004).

A number of studies have implicated the NMDA pathway in ocular dominance

plasticity (Fagiolini et al., 2003; Kleinschmidt et al., 1987; Roberts et al., 1998). NMDA

receptors are heteromeric ion channels, composed of NR1 and NR2 subunit proteins.

Blocking NMDA receptors reduces the effects of monocular deprivation. This has been

shown by pharmacological blockade (Kleinschmidt et al., 1987), reduction of the NR1

subunit using antisense oligonucleotides (Roberts et al., 1998), and most recently genetic



knockout of the NR2A subunit (Cho et al., 2009). NMDA receptors that are composed of

the NR1 and NR2B subunits tend to have slower kinetics with currents on the order of

~250ms. By contrast, incorporation of the NR2A subunits speeds up the kinetics five-

fold. As such the specific subunit configuration confers distinct properties on the NMDA

receptor and due to subtle differences in calcium flow (Vicini et al., 1998). Interestingly,

NMDA receptors are developmentally regulated and after birth there is a gradual

decline in the presence of the NR2B subunit, and an increase in NR2A that correlates

with the peak and decline of the critical period for plasticity (Chen et al., 2000). Genetic

removal of the NR2A subunit leads to deficient synaptic weakening after monocular lid

suture, and a precocious increase in open eye potentiation proposed to be due to a

decrease in the NR2A/NR2B ratio (Cho et al.,2009). Conversely, increases in the

NR2A / NR2B ratio are thought to raise the threshold for LTP and the gradual

developmental switch in NR2B and NR2A receptor subunits may be related to closure of

the critical period.

The start and closure of the critical period have also been suggested to be

dependent upon levels of inhibition (Hensch and Fagiolini, 2005). Mice lacking GAD65,

one of two isoforms critical for the synthesis of gamma amino-butyric acid (GABA),

show no shift in ocular dominance following brief monocular deprivation (Hensch et al.,

1998a) possibly due to a disruption in LTD (Choi et al., 2002). Amazingly, infusion of the

GABA-agonist diazepam can restore ocular dominance plasticity in both juveniles and

adults, suggesting that an appropriate level of inhibition is critical for normal plasticity

to occur. In addition, by modulating inhibition earlier in development a precocious

critical period can be elicited. Normal WT mice injected with diazepam just after eye

opening show a shift in ocular dominance after lid suture (Fagiolini and Hensch, 2000).

Going along with this, over expression of brain-derived neurotrophic factor (BDNF), a

molecule known to facilitate the maturation of inhibition, also speeds up the time course

of ocular dominance plasticity. In addition, visual acuity in BDNF-over expressing mice



matures more rapidly than in normal WT animals (Hanover et al., 1999; Huang et al.,

1999). Clearly, these studies suggest that the overall balance of inhibition within the

cortex is critical for plasticity.

Another study showed that subtle alterations in the amount of inhibition had a

significant influence on whether plasticity could occur at all. Too much and too little

inhibition could equally delay initiation of the critical period. These subtle changes in

inhibition may be mediated by fast-spiking basket cells synapsing on pyramidal cells

containing the GABA A receptor (Fagiolini et al., 2004). Infusing the GABA synthesis

inhibitor (MPA) or the GABA A receptor antagonist (picrotoxin) reduced inhibition, and

restored ocular dominance plasticity in adult rats (Berardi et al., 2004). What might be

the role of inhibition during the sensitive period? One suggestion is that a specific level

of inhibition may be necessary to facilitate the subtle changes in activity between the two

eyes that underlie the competitive affects of monocular deprivation. In an in vitro

preparation the precise timing of activity was shown to be able to determine the precise

direction of plasticity (Bi and Poo, 1998; Markram et al., 1997). While most studies

probing ocular dominance plasticity have focused on changes occurring at the level of

excitatory cells, the data mentioned above suggest that plasticity in inhibitory cells may

be of equal importance. In experiments discussed in Chapter 4, we use fluorescently

labeled mice combined with two-photon functional imaging to dissect out how

alterations in activity may differentially influence excitatory and inhibitory cells.

In adult mice, the affects of deprivation are qualitatively different from critical

period mice. In the case of ocular dominance plasticity, while the adult visual cortex is

susceptible to alterations in activity (Tagawa et al., 2005) the time course of the effect is

much slower and the extent of plasticity reduced. For example, brief deprivation no

longer elicits an affect on the deprived eye response (Sawtell et al., 2003). By contrast,

extended deprivation results in a minor decrease in deprived eye response and a larger

potentiation of the open eye response that leads to a saturating shift in ocular dominance



(Sato and Stryker, 2008). While a slight depression of the deprived eye response has

been shown with both VEPs (Frenkel et al., 2006) and intrinsic signal optical imaging

(Sato and Stryker, 2008) in adult mice, most studies agree that this depression is

transient and that open eye response potentiation dominates the ocular dominance shift

at this point in development. Similar to young animals, there is a dependence upon

NMDAR however it is possible that synaptic scaling may also play a greater role at this

time point than in younger animals.

Interestingly, many of the molecules shown to be important for ocular

dominance plasticity lie upstream of Arc and signal through NMDA receptors. Of

particular interest is the mitogen-activated protein kinase/ extracellular signal-regulated

kinase (MAPK/ERK). The MAPK pathway plays a pivotal role in a number of forms of

synaptic plasticity such as hippocampal learning (Atkins et al., 1998), and the promotion

of genes required for consolidation of memory. Inhibition of this pathway suppresses

the induction of LTP and prevents the shift in ocular dominance towards the

nondeprived eye (Di Cristo et al., 2001) In addition, the cAMP/protein kinase A (PKA)

signaling cascade is crucial for experience-dependent plasticity in a wide variety of

species and appears to be required for normal ocular dominance plasticity. In the visual

cortex, inhibiting the PKA subunits RIBeta, RIalpha, RIIbeta, and RIIalpha results in

disrupted LTP, LTD, and ocular dominance plasticity (Beaver et al., 2001; Liu et al.,

2003). Interestingly, in visual cortex, specific deletion of the RIBeta subunit of PKA has

no significant effect on ocular dominance plasticity, although LTP and LTD are severely

disrupted (Hensch et al., 1998b).

RIIBeta is the predominant PKA subunit within the neocortex. Mice lacking the

RIIbeta regulatory subunit of PKA show deficits in LTD (Fischer et al., 2004). In the

hippocampus of RIIbeta -/- mice (P10-P14), NMDAR-dependent LTP is disrupted while

LTD remains intact at the Schafer collateral-CA synapse. Mechanisms taking place at

this synapse have been suggested to be similar to those within layers 2/3 and 4 of visual



cortex. Interestingly, just a few days later at a time point that coincides with the critical

period for visual cortex plasticity, there is a developmental switch and LTP remains

intact whereas LTD is completely abolished (Yang et al., 2009). Targeted deletion of the

RIIbeta subunit of PKA blocks the shift in ocular dominance that occurs after monocular

deprivation during the critical period (Fischer et al., 2004). While LTP is normal, LTD

occurring within the visual cortex is completely disrupted. These results suggest that

ODP plasticity may be primarily mediated by the RIIBeta isoform of PKA. Interestingly,

at the synapse, RIlBeta is localized near and interacts with AMPA receptors. In

hippocampus, RIIBeta has been shown to promote phosphorylation of the Ser845

regulatory site of GluR1 (Colledge et al., 2000). Changes in phosphorylation of this site

have been suggested to mediate LTD via changes in AMPA receptor trafficking (Ehlers,

2000). Internalization of AMPA receptors may mediate the depression of deprived eye

response occurring after lid suture (reviewed in detail below). Because RIIBeta -/- mice

lack a mechanism for dephosphorylation it has been suggested that these mice exist in a

chronic LTD like state, which occludes further LTD, and is manifested as a disruption in

ocular dominance plasticity.

A role for Arc in experience-dependent plasticity

Interestingly, the induction of Arc is dependent on both PKA and MAPK/ERK

activity (Waltereit et al., 2001) suggesting that this downstream molecule may also play

a key role in ocular dominance plasticity. Arc is an ideal molecule for mediating the

changes that occur in response to differential activity, specifically ocular dominance

plasticity. One, its developmental expression follows that of the sensitive period for

changes, two, its synaptic expression is regulated by and sensitive to changes in activity

(Figure 5 and 7), and three, as our experiments show loss of Arc reduces visual cortex

plasticity. Arc is a single copy gene that encodes a single protein. One of the most



fascinating aspects of the Arc gene is its ability to translocate to sites of recent plasticity.

Arc mRNA accumulates in dendrites and at synaptic sites (Figure 7). Furthermore, Arc

protein also accumulates and becomes enriched at sites of local synaptic activity

suggesting that it is synthesized locally (Figure 8). Thus, one function for Arc may be to

couple synaptic activity to protein synthesis-dependent synaptic plasticity. The

involvement of Arc in plasticity was also suggested by two studies that found that

patterns of activity that resulted in LTP also caused an increase in Arc at synaptic sites

(Steward 1998, Moga 2004). In the hippocampus, Arc expression was also found to be

dependent on NMDA receptor activation (Steward and Worley 2001). Similarly,

injecting WT mice with the NMDA receptor CPP prevents Arc induction in the visual

cortex (Figure 9). As mentioned above, the NMDA receptor pathway is crucial for

normal ocular dominance plasticity.

A recent study using GAD 65 KO mice provides further evidence for the

importance of signaling through NMDA receptors (Kanold et al., 2009). These mice have

a reduction in both GABA A and NR2A subunit levels. In addition, ocular dominance

plasticity and LTD are completely disrupted (Choi 2007). Interestingly, application of

diazepam rescues the deficit in NR2A subunit levels, leaving GABA A subunit levels

unchanged, and restores both LTD and ocular dominance plasticity. Whether restoration

of NMDA receptor function might enable normal ocular dominance plasticity due to

Arc-mediated LTD-like mechanisms remains to be tested.

Arc is activated by both metabotropic glutamate (mGluR) and NMDA receptor

activation. However, while mGluR activation triggers Arc translation within 5 mins in

an elongation factor 2 -dependent manner (Waung et al., 2008), NMDAR activation

triggers Arc on a longer time scale. This activation is under tight temporal and spatial

control. Arc mRNA is a natural target for nonsense-mediated mRNA decay (NMD) by

virtue of its two conserved 3'-UTR introns. NMD and other related translation-

dependent mRNA decay mechanisms are thought to serve as critical brakes on protein



expression that contribute to the fine spatial-temporal control of Arc synthesis

(Bramham et al., 2008). Interestingly, NMDA receptor activation enhances AMPA

receptor endocytosis via a signaling mechanism required for the induction of LTD

(Beattie et al., 2000) (Figure 10).

Two recent reports point to a role for Arc in regulating AMPA receptor

trafficking. These studies reveal that the Arc protein interacts directly with endophilin

and dynamin, two molecules involved in clathrin-mediated endocytosis to modulate the

rate of AMPA receptor endocytosis at the synapse (Chowdhury et al., 2006) (Figure 11).

The regulated trafficking of AMPA receptors is a key aspect of plasticity, specifically at

the level of AMPA receptor endocytosis. In the visual cortex, changes in AMPA receptor

subunit dephosphorylation and internalization are thought to underlie synaptic

weakening. The depression in deprived eye response occurring after lid suture may be

mediated by an LTD-like mechanism, as changes occurring after monocular deprivation

in rat visual cortex mimic those found in response to LTD induction (Heynen et al.,

2003). In addition, monocular deprivation for as little as 24 hours occludes further LTD.

This result has also been replicated in the mouse (Crozier et al.,2007).

Regulation of AMPA receptor trafficking at the synapse places Arc in an ideal

position to exert an influence on synaptic weight. Indeed, it has been suggested that Arc

may serve as a homeostatic scaling molecule to "scale down" synapses in response to

increased activity (Shepherd et al., 2006). Homeostatic mechanisms are rapidly emerging

as a critical component of synaptic plasticity and possibly ocular dominance plasticity

(see above). For example, in response to deprivation, neurons in slice culture display an

increase in neuronal activity as measured by mEPSCs. The increase in mEPSC

amplitude is not accompanied by a change in mEPSC frequency, suggesting a

postsynaptic locus for the change. Accordingly, this same chronic inactivity has been

shown to result in an increase in AMPA receptors at the membrane. Overexpression of

Arc in cortical and hippocampal slice culture prevents this upregulation and leads to a



decrease in AMPA receptor mediated currents and a global loss in surface expression of

AMPA receptors (Rial Verde et al., 2006). By contrast, Arc null cultures display an

increase in surface AMPA receptors and AMPA receptor-mediated EPSCs. In

hippocampal culture, TTX and bicuculline resulted in an increase and a decrease

respectively in surface GluR1 in WT mice, however these same manipulations had no

effect in Arc KO mice. Similarly, in cortical forebrain neurons, TTX treatment of WT

neurons led to a significant increase in mEPSC amplitudes and a multiplicative shift in

the cumulative distribution function (CDF) not seen with Arc KO neurons treated in the

same manner. However, in response to bicuculline both WT and Arc KO showed a

modest downregulation of AMPARs suggesting that mechanisms in addition to Arc

may contribute to downregulation in cortical neurons (Shepherd et al.,2006).

One possible candidate is the protein kinase Polo-like kinase 2 (Plk2). Plk2 is

induced by activity and contributes to synaptic weakening by degrading SPAR, a

postsynaptic Rap GAP (GTPase-activating protein) and scaffolding protein found at

synapses (Seeburg et al., 2008). After chronic elevation of activity, Plk2 is activated and

facilitates the downward scaling of synaptic strength. Organotypic hippocampal slice

cultures treated with RNAi targeted at Plk2 fail to downregulate membrane excitability

in response to epileptiform activity elicited by GABA A receptor blockade (Seeburg and

Sheng, 2008). However, the synaptic weakening mediated by Plk2 differs from that of

Arc in that it does not appear to be multiplicative in nature. Thus, it may not contribute

to global synaptic scaling in the same manner as Arc.

Surprisingly, in addition to a deficit in synaptic scaling down in response to high

activity, the increase in surface expression found in Arc KO mice occludes further

scaling up of synapses in response to activity blockade by TTX (Shepherd et al., 2006).

This result suggests that synaptic scaling is completely disrupted in these mice.

Studies in rats which have been dark reared from eye opening provide evidence

that this same homeostatic mechanism operates in vivo and take place throughout



development (Desai et al., 2002). This homeostatic plasticity operates such that decreases

in activity result in a compensatory increase in mEPSC amplitude and AMPA receptor

number. Conversely, increases in activity cause a concomitant decrease in quantal

amplitude. Synaptic weakening is particularly relevant in the visual cortex after eye

opening. A reduction in AMPA receptor mEPSC amplitude occurs between P14 and P18

in development (Figure 12) suggesting that the large increase in sensory and synaptic

occurring after eye opening may trigger specific molecules that lead to a scaling down of

synapses. Interestingly, the decline in mEPSC that occurs after eye opening parallels the

increase in the expression of Arc protein. Because Arc has been shown to regulate

AMPA receptor internalization it is possible that Arc may act during this time period to

globally scale down all synapses in response to increased activity. Thus, the strongest

inputs to a cell can activate Arc expression and reduce overall synaptic strength at the

expense of weaker inputs. We hypothesize that this form of synaptic weakening may

facilitate the sharpening of both orientation preference and ocular dominance. In

support of this role for Arc, dark reared animals (in which Arc expression is low) do not

show this same reduction in mini amplitude. In addition, binocularity and orientation

selectivity remain in a deprived state in adult animals dark reared from birth (Fagiolini

et al., 1994). Indeed, previous studies have shown that deprivation decreases basal levels

of IEGs, while activity leads to a rapid increase in IEG expression. This supports the

view that the decrease in AMPA receptor number and amplitude, in response to

increased activity, may be directly due to higher levels of Arc protein expression after

eye opening. Dark adapting mice for two days during the critical period causes an

increase, or scaling up, of layer 2/3 AMPA receptor mEPSCs which mimics results

found in culture using TTX (Goel and Lee, 2007). This increase may be mediated by

TNF-alpha, a cytokine implicated in regulating AMPA receptor insertion, as studies in

our lab have shown that TNF-alpha KOs do not scale up after deprivation. Interestingly,



as little as one day of exposure to light is sufficient to return AMPA mEPSCs to normal

levels possibly mediated by Arc.

That Arc lies downstream of a number of plasticity molecules shown to play a

role in ocular dominance plasticity, combined with its role in regulating AMPA receptor

trafficking and the "scaling down" of synapses suggests that this molecule may be

mechanistically situated at the intersection of a number of plasticity processes. In

addition to playing a role in homeostatic plasticity, the Arc molecule is important for

classical Hebbian forms of plasticity. Studies in the hippocampus have shown that after

LTP inducing high frequency stimulation, continued Arc expression, during a critical

window lasting between 2 and 4 hours, is necessary for local actin polymerization and

consolidation of LTP (Soule et al., 2006). Injection of antisense oligodeoxynucleotides,

which block synthesis of the Arc protein, into the hippocampus of adult mice revealed

that inhibition of Arc expression impaired the maintenance, but not the induction of

LTP. In a spatial water maze task, mice treated with the Arc antisense

oligodeoxynucleotides had no deficits in short term memory or task acquisition, but

consolidation was impaired (Guzowski et al., 2000). Similarly, experiments done in Arc

KO mice show that loss of Arc results in a surprising 50% enhancement of early LTP,

while consolidation is completely abolished. In addition, these mice exhibit deficits in

LTD (Plath et al., 2006)(Figure 13). Tied together, these studies suggest that Arc may be

intricately involved in the functional stabilization of synapses by interacting with the

endocytic machinery to regulate AMPA receptor surface expression. The absence of Arc

may result in a disruption in plasticity due to loss of a mechanism that limits total

synaptic strength and ensures that neuronal transmission remains within an optimal

operating range. Indeed, a recent study in hippocampal slice showed that saturation of

synaptic strength leads to a shutdown of LTP (Roth-Alpermann et al., 2006). Whether

disruptions in ocular dominance plasticity are due primarily to Hebbian or homeostatic

deficits in Arc KOs remain to be seen, and may be difficult to untangle.



One caveat to many of the studies mentioned above is that the functions of Arc

relevant to experience-dependent plasticity have been tested in either in vitro culture

systems or acute slice. In addition, the majority of studies probe Arc function in the

hippocampus and dentate gyrus. Aside from a 2006 study using Arc-GFP mice to

examine orientation tuning in vivo (Wang et al., 2006), the function of Arc in visual

cortical plasticity has been essentially neglected. The activity-dependence of Arc, its

localization at the synapse, involvement in both Hebbian and homeostatic plasticity, and

interactions with plasticity-related molecules, all suggest that Arc is intimately involved

in key aspects of experience-dependent plasticity. To further explore Arc's role in the

visual cortex in vivo, we took advantage of Arc null mice where the open reading frame

of Arc has been replaced with GFP. In Chapters 2 and 3, I present experiments that

examine how loss of Arc is disruptive to experience-dependent plasticity in both

juveniles and adults. In Chapter 4, I combine visual identification of Arc containing

neurons with functional two-photon imaging to probe how loss of Arc impacts both

orientation tuning and ocular dominance in identified cell types. We find that Arc is

critical for the sharpening of response properties within the visual cortex.
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Figure 1. A. Ocular dominance columns in a normal adult monkey injected with
a radio labeled tracer into one eye. The width of each column is the same for each
eye. B. Image from a section of visual cortex similar to that in A from a monkey
deprived of one eye from two weeks of age. Tracer was injected into the open
eye. Columns serving the injected eye are shown in white. Notice the expansion
of the open eye columns at the expense of the deprived eye columns (shown in
black). C. Image from a section of visual cortex similar to that in A and B from a
monkey deprived of one eye from two weeks of age. Tracer was injected into the
deprived eye. Columns serving the deprived eye (white) are significantly
reduced in size compared to those of the nondeprived eye columns. Adapted
from Fundamentals of Neuroscience.
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Figure 2. Schematic of the visual pathway in the mouse.

bI
L.



Figure 3. Laminar Arc protein expression in the visual cortex of a WT CP mouse
dark adapted overnight and exposed to light. Arc expression can be seen in
layers II/III, IV, and VI. Layers II/III and IV correspond to primary sites of
ocular dominance plasticity in the mouse. Scale bar= 50 pm
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Figure 4. A. Developmental increase in Arc expression overlaps with the period
of synaptic pruning/refinement and critical period plasticity. B. Peak of Arc
mRNA expression falls within the peak of OD plasticity. Adapted from Lyford
1995. C. Arc protein expression shows a similar increase to that of Arc mRNA
reaching a peak around P28.
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Figure 5. A. In situ hybridization illustrating Arc expression in visual cortex.
Lower image is of a mouse monocularly injected with TTX. Arrows indicate the
area of reduced Arc expression in the hemisphere contralateral to the injected
eye. Adapted from Lyford 1995. B. Western blot of Arc expression in tissue from
the nondeprived (control) and the deprived hemisphere of the visual cortex after
lid suture.
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Figure 6. A. The initial response to brief deprivation is a depression of the
deprived eye response. Arc is required for this initial depression. B. After a
period of extended deprivation (5-7 days) there is a gradual potentiation of the
open eye response strength. This has been attributed to scaling molecules such as
TNF-alpha. TNF -/- mice do not show the same potentiation. Adapted from
Kaneko 2008. C. Function calcium imaging experiments suggest that homeostatic
mechanisms may operate in conjunction with Hebbian plasticity mechanisms.
The response to deprivation depends upon the amount of input initially received
from each eye prior to deprivation. There is a leftward shift in the distribution of
those cells that are less contra (OD score of .25-1) prior to deprivation. Cells
predominantly driven by the contralateral eye (0-.25) show a rightward shift. D.
Response strength before and after deprivation for the range of OD scores. E. The
initial eye-specific inputs also determine the direction of shift for ipsi eye MD. F.
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Response strength before and after deprivation for the range of OD scores.
Adapted from Mrsic-Flogel 2007.
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Figure 7. Arc mRNA is dynamically regulated by activity. A. Example of Arc
labeling in the non-activated dentate gyrus. B. Global seizure induction results
in Arc labeling throughout dentate gyrus. C. Targeted high-frequency
stimulation of specific lamina results in a prominent band of labeling within the
medial perforant path. D. Schematic illustration of the dendrites extending out
from a dentate granule cell and the pattern of termination of medial perforant
path projections. HF, hippocampal fissure; GCL, granule cell layer. E. Arc mRNA
translocates from the nucleus to the activated region over a period of two hours.
The increase in Arc labeling is specific to activated areas. There is a minimal
increase in non-activated regions suggesting that Arc mRNA is captured by
activated synapses. Adapted from Steward 2001.
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Figure 8. A. Arc protein expression follows a similar pattern of expression as that
shown for Arc mRNA. B. Zoomed in image of A. Adapted from Steward 2001.
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Figure 9. Arc expression is dependent upon NMDA receptor activation. Figure shows a Western
blot of Arc expression in a WT critical period mouse deprived of light overnight and exposed to
light for two hours (Control). A second mouse was deprived in a similar manner, but injected
with the NMDA receptor antagonist CPP 30 mins before exposure to light (+CPP). Injection of
CPP prevents Arc induction.
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Figure 10. A. NMDA activation results in an internalization of AMPA receptors.
B. There is a decrease in mEPSC frequency in cultured hippocampal neurons
after NMDA application. C. Application of an NMDA receptor antagonist
prevents this decrease in frequency. Adapted from Beattie 2000.
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Figure 11. A. Overexpression of Arc reduced AMPA receptor currents. Adapted
from Rial-Verde 2006. B. Similarly, overexpression of Arc results in an
internalization of GluR1. Adapted from Shepherd 2006. C. Removal of the
region of Arc that binds to endophilin (A91-100) abrogates Arc's ability to
internalize AMPA receptors. D. A deletion mutant (A195-214) that does not bind
dynamin has no affect on GluR1 surface expression. C,D Adapted from
Chowdhury 2006.
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Figure 12. A. Developmental reduction in AMPA receptor mEPSC amplitude
occurs within layer 2/3. B. There is a similar decrease seen in Layer 4 after eye
opening. Adapted from Desai 2002.
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Figure 13. LTP at perforant path/granule cell synapses is disrupted in Arc KO
mice. There is an enhancement in early LTP in the KO mice (~ 1.5 X WT)
followed by a rapid decay to baseline. B. In addition, there is reduced LTD at
Schaffer collateral/CA pyramidal cell synapses in Arc KO mice compared to
WT. Adapted from Plath 2006.
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CHAPTER TWO

DEFICIENT PLASTICITY IN THE VISUAL
CORTEX OF JUVENILE ARC KO MICE



ABSTRACT

Visual experience can profoundly modify cortical function. The molecular processes
underlying these changes are poorly understood, but are thought to occur via mechanisms similar
to those mediating synaptic plasticity. Here we show that Arc, which has previously been shown to
play a critical role in various forms of synaptic plasticity, is essential for experience-dependent
plasticity in mouse visual cortex. Using intrinsic signal imaging and visual evoked potential
recordings (VEPs) we find that Arc knock-out (KO) mice do not exhibit depression of deprived eye
responses or a shift in ocular dominance after brief monocular deprivation. Extended deprivation
also failed to elicit a shift in ocular dominance or open eye potentiation. Moreover, Arc KO mice
lack stimulus-selective response potentiation (SRP), a form of experience-dependent cortical
plasticity that exhibits properties similar to long-term potentiation (LTP). Although Arc KO mice
exhibit normal visual acuity, baseline ocular dominance was abnormal. A similar phenotype was
observed after dark rearing wild-type (WT) mice from birth, suggesting that Arc and experience-
dependent processes are required for the normal establishment of ocular dominance in mouse
visual cortex.



INTRODUCTION

Experience-dependent reorganization of eye-specific inputs during development is a major

mechanism by which neuronal connectivity is established in the primary visual cortex (VI). Changes

in neuronal activity lead to a strengthening or weakening of synapses, which is believed to facilitate

the structural remodeling of visual networks. During a period of heightened plasticity (P23-P32 in

mice), the visual cortex is exquisitely sensitive to changes in activity. During this period, even brief

monocular deprivation (MD) results in striking functional and anatomical reorganization within the

binocular zone of V1 (Antonini et al., 1999) due to an initial and rapid weakening of the cortical

response to the deprived eye and a shift in ocular dominance in favor of the nondeprived eye (Gordon

and Stryker, 1996). Interestingly, after an extended period of deprivation, a compensatory

strengthening of the open eye response takes place, suggesting that multiple molecular mechanisms

may mediate different phases of deprivation-induced plasticity in V1 (Frenkel and Bear, 2004; Kaneko

et al., 2006; Mrsic-Flogel et al., 2007).

The mechanisms underlying the response to brief deprivation have been well studied. Early

studies indicated that the initial cortical depression occurring in response to deprivation is dependent

upon calcium signaling through NMDA receptors (Bear et al., 1990), appropriate levels of inhibition

(Hensch et al., 1998), and protein synthesis (Taha et al., 2002). In addition, weakening of the deprived

eye response may require alterations in AMPA type glutamate receptors (AMPAR), which mediate

fast excitatory transmission within the cortex. Indeed, reductions in surface expression of both GluR1

and GluR2 AMPAR subunits occur after brief MD (Allen et al., 2003; Heynen et al., 2003), possibly due

to the induction of Hebbian LTD-like mechanisms (Allen et al., 2003; Crozier et al., 2007; Heynen et al.,

2003). The regulated trafficking of these receptors is a major cellular mechanism underlying synaptic

plasticity at excitatory synapses (Malinow and Malenka, 2002; Shepherd and Huganir, 2007), and

AMPA receptor phosphorylation and internalization may contribute to the loss of visual

responsiveness observed after MD.



Due to competitive interactions between the two eyes, decreases in the deprived eye response

results in a gradual strengthening of response to the open eye. The temporal separation of depression

and strengthening has led to the suggestion that these two phases are mediated by separate and

distinct mechanisms and may be independent of one another. It has been suggested that Hebbian

competitive mechanisms initiated in response to brief deprivation may trigger a homeostatic scaling

up of response that results in a strengthening of the open eye. In support of this, mice lacking tumor

necrosis factor alpha (TNFa), a molecule critical for homeostatic synaptic scaling show normal

deprived eye depression with a specific deficit in open eye potentiation, providing further evidence

that these two processes may be mechanistically distinct. Because normal hippocampal LTP is found

in these mice, it has been proposed that the lack of open eye potentiation is due to loss of a mechanism

for synaptic scaling. However, it is unclear whether open eye potentiation occurs in the absence of an

initial Hebbian depression after MD.

The immediate early gene Arc (activity-regulated cytoskeletal associated protein), also known

as Arg 3.1, has recently been implicated in many forms of synaptic plasticity (Kaneko et al., 2006; Park

et al., 2008; Shepherd et al., 2006; Tagawa et al., 2005; Wang et al., 2006; Waung et al., 2008), and is a

prime molecular candidate to play a role in experience-dependent plasticity. Recent experiments in

cultured primary neurons have revealed that Arc regulates AMPAR internalization via its interactions

with the proteins dynamin and endophilin 2/3, two integral components of the clathrin-mediated

endocytosis machinery (Chowdhury et al., 2006). High levels of Arc expression are found to accelerate

the rate of AMPAR endocytosis, leading to decreased AMPAR surface expression (Shepherd et al.,

2006), while loss of Arc reduces AMPAR endocytosis (Shepherd et al., 2006). Arc gene activation has

been shown to be dependent upon activity through NMDA receptors (Lyford et al., 1995), and

blocking NMDAR activation using MK-801 or CPP prevents efficient Arc induction (Bloomer et al.,

2008). NMDAR dependent signaling pathways have been implicated in ocular dominance plasticity

(Bear et al., 1990; Daw et al., 1999; Sawtell et al., 2003) suggesting that Arc may act downstream of

these receptors to mediate plasticity by regulating AMPARs. We hypothesized that loss of a putative

regulator of AMPA receptor trafficking would prevent the initial deprived eye depression that occurs

in response to brief MD.
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In the present study we took advantage of Arc knock-out (Arc KO) mice (Wang et al., 2006) to

explore a role for Arc in visual cortical plasticity using intrinsic signal optical imaging and visually

evoked potentials (VEPs) to assess changes in cortical responses after manipulation of experience.



METHODS

Animals

WT (C57/B16) and Arc KO mice (Wang et al., 2006) on the same genetic background were used

for all experiments (P25-P30). Mice were normally housed in cages under a 12 hour light-dark cycle.

All experiments were performed under protocols approved by MIT's Animal Care and Use

Committee and conformed to NIH guidelines.

Lid suture

Animals were anesthetized using Avertin and the eyelid margins trimmed. The eye

contralateral to the hemisphere being imaged was sutured using prolene sutures (Henry Schein) for 3-

4 days. Animals were checked daily to ensure that the eye remained shut throughout the deprivation

period.

Immunohistochemistry

Animals were transcardially perfused with saline followed by 4% paraformaldehyde (PFA).

Brains were placed in 4% PFA overnight and cryoprotected in 20% sucrose. Immunohistochemistry for

Arc protein (1:250, Santa Cruz), C-Fos (1:250, Santa Cruz), GFAP (1:500, Chemicon), GABA (1:500,

Chemicon) and parvalbumin (1:500, Chemicon) was carried out on 30-40 pm thick coronal sections.

Sections were analyzed using Image J software (http:/ /rsbweb.nih.gov/ij/) and Photoshop CS3.

Western Blots

Animals (n=7, WT and Arc KO) were anesthetized gently with isofluorane prior to

decapitation. The visual cortex was dissected from both hemispheres and homogenized in a modified

RIPA buffer (20 mM Tris-Hcl, 50 mM NaC1, 1 mM EDTA, 1% Triton, .1% SDS, protease inhibitor tablet

(Roche 11836170001). The homogenate was centrifuged (14,000 g for 5 mins) and the supernatant was

removed and quantified. Samples were loaded at a concentration of 35 ug and run on a 10% gel and

transferred at 40 V for 80 mins. Antibodies used included GluR1 (1:500, Chemicon, rabbit), VGAT

(1:250,Chemicon, rabbit), GAD65 (1:500, Chemicon, rabbit), and Parvalbumin (1:250 abcam, rabbit).

Membranes were incubated in a secondary against the appropriate species for 2 hrs at room

temperature. Membranes were developed using chemiluminescence (Amersham).



Biotinylation Assay

Acute slices (300 pm) were prepared from critical period animals deprived briefly by lid suture

as described previously (Heynen et al. 2003). V1 ipsilateral to the deprived eye was used as a within-

animal control and comparison of surface expression was made between the ipsilateral (nondeprived)

and contralateral (deprived) hemispheres. The animal was anesthetized using isofluorane and the

brain rapidly dissected out and placed in ice-cold dissection buffer (75 mM sucrose, 10 mM dextrose,

87 mM NaC1, 2.5 mM KCI, 1.25 mM NaH2PO4, .5 mM CaC12, 7 mM MgC12). A vibratome was used to

take 300 pm coronal sections containing the visual cortex. Slices were washed 3 times in ice-cold ACSF

buffer (24 mM NaCI, 5 mM KC1, 1.25 mM NaH2PO4, 26 mM NaHCO3, 1 mM MgCl2, 2 mM CaC12, 10

mM dextrose), prior to being incubated in 100 kM S-NHS-SS- biotin for 45 mins. After the incubation

period the sections were washed two times in 100 [tM Lysine to quench the excess biotin. The

superficial layers of the visual cortex were dissected out and homogenized in a modified RIPA buffer.

The homogenate was centrifuged (14,000 g for 5 mins) and the supernatant removed. The protein

concentration was determined and thirty percent of the supernatant was set aside for the total protein

lane; ACSF was added to the remaining supernatant (for a total volume of 1 ml) and incubated with 40

[il of streptavidin beads overnight at 4C. The beads were centrifuged (3,500 g for 1 min) and the

supernatant discarded. The beads were washed three times in a 1:1 cocktail of ACSF and modified

RIPA buffer after which 2X loading buffer was added. The sample was boiled for 5 minutes, followed

by centrifugation (7,000 g for 1 minute). Samples were run side by side on a 10% gel and transferred at

40 V for 80 mins.

Injection of cholera toxin subunit B

Mice were anesthetized with avertin (0.016 ml/g, i.p.). The schlera of each eye was pierced and

vitreous fluid removed using a thin Hamilton syringe. Approximately 3 ul of CTB conjugated to either

Alexa Fluor 488 or Alexafluor 594 (Invitrogen) was injected.

Optical imaging of intrinsic signals

Animals were anesthetized with urethane (1.5 mg/kg) and chlorprothixene (0.2mg/mouse).

Heart rate was monitored throughout the trial and only those animals whose heart rate remained

stable throughout the experiment were used. Intrinsic signal images were obtained using a CCD



camera (Cascade 512B, Roper Scientific) and red filter (630nm) to illuminate the cortex during visual

stimulation, as previously described (Tropea et al., 2006) .Stimulation consisted of a drifting bar

(9'X72 °) moving continuously and periodically (9/ second) in an upward or downward direction.

Frames were captured at a rate of 15 frames/ second. Slow noise components were removed using a

temporal high pass filter (135 frames) and the Fast Fourier Transform (FFT) component at the stimulus

frequency (9' sec -1) was calculated pixel by pixel from the whole set of images (Kalatsky and Stryker,

2003). The amplitude of the FFT component was used to measure the strength of visual drive for each

eye. An ocular dominance index was calculated as ODI = (Rcontra - Ripsi) / (Rcontra + Ripsi), where R

refers to the response to each eye stimulated individually. Empirically defined correspondence

between the strength of eye-specific drive and retinotopic organization of the cortex yielded the

binocular zone as the top 40% of pixels responding to ipsilateral eye stimulation. To assess map

organization, we calculated the phase scatter of the retinotopic maps (Smith and Trachtenberg, 2007).

We calculated the difference between the phase value of each pixel and the mean phase of its 5 nearest

neighbors along with the standard deviation to get an index for map scatter.

VEP Recordings

Electrode Implantation

Mice were anesthetized with 50 mg/kg ketamine and 10 mg/kg xylazine i.p., and a local

anesthetic of 1% lidocaine hydrochloride was injected over the scalp. For purposes of head fixation, a

post was fixed to the skull just anterior to bregma using cyanoacrylate and a further application of

dental cement. Two small (<0.5 mm) burr holes were made in the skull overlying the binocular visual

cortex (3 mm lateral of lambda), and tungsten microelectrodes (FHC, Bowdoinham, ME) were inserted

450 Vtm below the cortical surface along the dorsal-ventral stereotaxic axis, positioning the electrode tip

in layer 4. Reference electrodes were placed bilaterally in prefrontal cortex. Electrodes were secured in

place using cyanoacrylate, and the entire exposure was covered with dental cement. Animals were

monitored postoperatively for signs of infection or discomfort and were allowed at least 24 hr

recovery before habituation to the restraint apparatus.

VEP Recording Procedure



VEP recordings were conducted in awake mice. Mice were habituated to the restraint

apparatus prior to the first recording session. The animals were alert and still during recording. Visual

stimuli were presented to left and right eyes randomly. A total of 100 to 400 stimuli were presented

per condition. VEP amplitude was quantified by measuring trough to peak response amplitude, as

described previously (Frenkel and Bear, 2004).

Visual Stimuli

Visual stimuli consisted of full-field sine wave gratings (0.05 cycles/ deg) of varying contrast

(0%-100%) generated by a VSG2/2 card (Cambridge Research System, Cheshire, UK) and presented

on a computer monitor suitably linearized by y-correction. VEPs were elicited by horizontal, vertical,

or oblique (450 or 135 °) bars. The display was positioned 20 cm in front of the mouse and centered on

the midline, thereby occupying 92' x 66' of the visual field. Mean luminance, determined by a

photodiode placed in front of the computer screen, was 27 cd/m2.



RESULTS

Arc KO mice develop normal cortical map organization and visual responses

Activity-dependent induction of gene expression and protein synthesis is critical for normal

neuronal development and function (Shepherd and Huganir, 2007). Arc mRNA expression can first be

detected in visual cortex at eye opening (Lyford et al., 1995). In response to visual activity, Arc mRNA

is rapidly induced and redistributed to active dendritic regions where local protein synthesis occurs

(Steward et al., 1998; Waung et al., 2008). While Arc has been shown to be involved in aspects of

learning and memory such as the consolidation of long-term potentiation (Guzowski et al., 2000),

orientation tuning in visual cortex (Wang et al., 2006), and synaptic scaling in the hippocampus

(Shepherd et al., 2006), no study has yet investigated how loss of a regulator of AMPAR trafficking

might work in vivo to influence developmental plasticity in cortex.

To address this issue, we used Arc KO mice in which GFP has been knocked-in to the Arc gene

locus (Wang et al., 2006) to study how loss of Arc protein might influence two forms of NMDA

receptor dependent plasticity; ocular dominance plasticity and stimulus response potentiation (SRP).

These animals are viable and show no gross deficits in size or weight compared to wild-type (WT)

mice. While previous reports have focused on Arc protein interactions within the hippocampus and

dentate gyrus, few studies have studied Arc in cortex. Therefore, we sought to investigate Arc

expression within V1 of juvenile animals.

First, we examined the distribution of Arc protein expression in mouse visual cortex by

immunofluorescence using an Arc specific antibody. In the visual cortex, Arc did not colocalize with a

stain for GFAP, which labels astrocytes, or for the inhibitory neuron marker GABA (Figure S1A). This

suggests that Arc protein is selectively expressed in excitatory neurons within V1.

Previous reports have shown that Arc mRNA is regulated by physiological activity and shows

prominent expression in the visual cortex (Lyford et al., 1995; Tagawa et al., 2005). Within mouse V1,



Arc protein expression was detected in all cortical layers with the exception of layer 5, with greatest

expression being seen in layers 2/3 and 4, the predominant sites of ocular dominance plasticity (Figure

SIB). Protein was detected within cell bodies and dendrites of V1 pyramidal neurons. As expected, no

Arc expression was detected in Arc KO tissue (Figure SIA).

We used intrinsic signal imaging to test whether loss of Arc altered visual cortex responses and

retinotopic organization (Kalatsky and Stryker, 2003; Tropea et al., 2006). Because previous studies

have implicated Arc protein in regulation of AMPA receptors, which are known to play a role in

synaptic transmission, we asked whether loss of Arc protein would influence the strength of response

to visual stimulation in mouse visual cortex. Mice were shown a periodic moving bar of light and

cortical responses to contralateral and ipsilateral eye stimulation were assessed with optical imaging

of intrinsic signals to create an ocular dominance map of VI (see Methods). V1 in Arc KO mice was

similar to that in WT mice in area and organization of binocular and monocular zones (Figure 1A). To

examine whether loss of Arc protein might impact retinotopic organization (Figure 1A), we evaluated

scatter within the retinotopic (phase) maps (Figure 1B). Map organization in Arc KO mice was

indistinguishable from WT mice (Figure IC). In addition, there was no significant difference in

response magnitude within V1 in response to binocular stimulation (Figure ID). These data

demonstrate that loss of Arc protein does not grossly disrupt the development of normal visual cortex

organization. We assessed visual acuity in Arc KO mice by measuring VEPs in response to sinusoidal

gratings at various frequencies. There was no significant difference between WT and Arc KO

responses at the highest detectable spatial frequency of 0.6 cycles per degree, suggesting that Arc KO

mice have normal visual acuity (Figure 1E).

Arc protein is required for deprived-eye depression after short-term MD.

The initial cortical response to MD is a weakening of deprived eye inputs (Frenkel and Bear,

2004). Endocytosis of AMPA receptors is required for the initial depression of the deprived eye

response that occurs after brief lid suture. To determine how loss of Arc protein might influence

cortical plasticity we deprived mice of vision through one eye by suturing the eyelid closed for 3-4

days during the period of heightened plasticity (P25-30). We then used intrinsic signal imaging to



measure the cortical response to visual stimulation within the binocular zone of VI contralateral to the

deprived eye. As described above, stimuli were shown to each eye alternately, and the strength of

response to contralateral or ipsilateral stimulation was assessed and an ocular dominance index (ODI)

calculated. This method has been shown to reliably detect the changes in ocular dominance that can be

induced by MD in WT animals (Cang et al., 2005).

In keeping with previous reports, WT mice show a robust decrease in ODI after brief

deprivation (Figure 2A). By assessing the magnitude of response in deprived and nondeprived

animals, this shift appeared to be mediated by a diminished response to the deprived eye (Figure 2B).

By contrast, Arc KO mice did not exhibit a change in ODI (Figure 2A) and cortical responses to the

deprived eye remained unchanged (Figure 2C). These results indicate that Arc protein is required for

the deprived eye depression induced by brief MD.

In addition to intrinsic signal optical imaging, which mainly measures responses in superficial

cortical layers, we used chronic VEP recordings to monitor changes in the strength of cortical

responses in layer 4 prior to and after MD (Porciatti et al., 1999; Sawtell et al., 2003). Electrodes were

implanted at a depth corresponding to layer 4 in V1 at P24-P25. After habituation to the restraint

apparatus, VEPs were recorded at P28 in fully awake, head-restrained mice in response to square

wave-reversing sinusoidal gratings. We collected baseline recordings, and then monocularly deprived

animals for 3 days by lid suture. After opening the sutured eye we gathered post MD recordings. WT

mice show a robust ocular dominance shift (Figure 3A), but Arc KO mice do not exhibit a change in

OD (Figure 3B). The shift in WT mice was due to a significant depression in deprived eye responses

(Figure 3A), which was not observed in Arc KO mice (Figure 3B).

These findings prompted us to examine whether the anatomical substrates of ocular

dominance plasticity remained unperturbed in Arc KO mice. During the pre-critical period, it has been

shown that experience-dependent competition between the two eyes as early as eye opening is

necessary for normal axonal refinement in central targets (Lu and Constantine-Paton, 2004;

Pfeiffenberger et al., 2005; Smith and Trachtenberg, 2007). We used intraocular injection of CTB to



examine eye-specific segregation in the lateral geniculate nucleus; no gross changes in contralateral or

ipsilateral inputs could be seen in Arc KO animals as compared to WT (Figure S2B).

Maintaining an appropriate balance of excitation and inhibition within the cortex is critical for

normal experience-dependent plasticity. Indeed, previous work shows that alterations in inhibition

may lead to altered plasticity in the visual cortex (Fagiolini and Hensch, 2000; Hensch et al., 1998),

with a particular role for inhibition mediated by parvalbumin-positive interneurons (Fagiolini et al.,

2004; Huang et al., 1999). In order to examine whether there were indirect effects on inhibition in Arc

KO mice, we investigated the expression of several inhibitory markers within the visual cortex of Arc

KO and WT animals. Westerns against VGAT, GAD65, and parvalbumin showed no difference

between the two groups (Figure S2A-C). In addition, no change in GABA expression was found,

suggesting that gross changes in inhibition are unlikely (Figure S2D).

Arc regulates AMPA receptor endocytosis in visual cortex

What might underlie the reduced deprived-eye depression in Arc KO mice? Manipulations of

sensory activity are known to regulate synaptic AMPARs in the cortex (Goel et al., 2006). In response

to as little as 24 hrs of MD, AMPARs are rapidly internalized, decreasing the surface to total ratio,

which mediates the depression in cortical responses from the deprived eye (Heynen et al., 2003). In

addition, cortical expression of a GluR2 c-terminus fragment that is known to block AMPAR

endocytosis and LTD in vitro also blocks deprived-eye depression and the OD shift after short-term

MD in vivo (Smith et al., in press). We hypothesized that loss of Arc protein might reduce the

deprivation-induced removal of surface AMPARs, and thus prevent the shift in ocular dominance. For

these experiments we decided to focus on the GluR1 subunit, as recent reports have indicated that

GluR2 and GluR3 subunits are not required for activity-dependent endocytosis of AMPARs (Biou et

al., 2008). In addition, GluR1 shows high immunoreactivity in the middle and superficial layers of

mouse visual cortex (Kim et al., 2006), which are key sites of ocular dominance plasticity. To test the

hypothesis we performed a biotinylation assay using acute slices in order to measure surface

expression of AMPARs after MD. In this preparation, surface proteins are tagged with biotin and then

pulled down using streptavidin beads that have a high affinity for the biotin molecule. Because Arc



protein is primarily expressed in layers 2/3 and 4 of visual cortex (Figure S1B), the deeper layers were

microdissected out and discarded from both hemispheres. The surface receptors in the remaining

tissue were then tagged with biotin and probed using a GluR1 specific antibody to quantify surface

expression. In WT mice, a significant decrease in the surface/total ratio of GluR1 could be detected in

the "deprived" hemisphere (contralateral to the deprived eye; Figure 4A) as compared to the

"nondeprived" control hemisphere (Figure 4B and 4C). Strikingly, Arc KO mice showed no significant

change in the surface/total ratio of AMPARs within the deprived hemisphere (Figure 4B and 4C). This

result suggests that loss of Arc protein reduces AMPAR internalization and thus prevents the synaptic

weakening that occurs in response to decreased activity.

Reduced open eye potentiation in Arc KO mice

The ocular dominance shift that occurs after long-term MD occurs in two temporally distinct

phases. In response to brief monocular deprivation, decorrelated input through the closed eye results

in a Hebbian weakening of the deprived eye response, which we have shown involves Arc.

Conversely, extended periods of deprivation result in potentiation of the open eye response. It has

been proposed that distinct cortical processes may mediate the two phases of ocular dominance

plasticity: with Hebbian, LTD-like mechanisms mediating synaptic weakening; and LTP or

homeostatic scaling underlying open eye response potentiation.

To address whether open eye potentiation occurs in Arc KO mice, in the absence of response

depression, we used intrinsic signal imaging to measure response magnitudes in mice deprived for 7

days. In response to deprivation, WT mice showed a significant shift in ocular dominance (Figure 5A).

Consistent with previous reports, we found that this shift was mediated by a significant increase in

open eye responses (Figure 5B). The increase in open eye response was accompanied by a slight

decrease in the deprived eye response (Figure 5B). Strikingly, Arc KO mice did not show a shift in ODI

or significant open eye potentiation (Figure 5C). Similar results were found with VEP recordings after

7 days MD. WT mice exhibited a robust OD shift that was due to both significant deprived eye

depression and open eye potentiation (Figure 6A). In contrast, Arc KO mice did not exhibit an OD

shift or any significant changes in deprived eye or open eye responses (Figure 6B).



Arc is required for stimulus-selective response potentiation

We have previously described an in vivo form of potentiation in mouse visual cortex, stimulus-

selective response potentiation (SRP) that results from brief exposure to sinusoidal gratings of a

specific orientation (Frenkel et al, 2006). Mechanistically, SRP exhibits hallmarks of LTP; it is NMDAR-

dependent, is blocked by a GluR1 c-terminal peptide that has been shown to inhibit insertion of

AMPARs at synapses, and it seems pathway specific. We also find that SRP expression requires

protein synthesis as it is blocked by I.P. injections of cyclohexamide (data not shown). Since Arc KO

mice exhibit a defect in open eye potentiation, we wondered whether SRP would also be disrupted

due to a lack of Arc. Indeed, we find that Arc KO mice have a severe deficit in SRP (Figure 7) as

compared to WT mice. This adds further weight to the idea that Arc is required for experience-

dependent plasticity in the visual cortex.

Normal C/I ratio requires experience and is Arc-dependent

During the course of our MD studies we noticed that Arc KO mice seemed to have altered

baseline C/I ratios. After pooling baseline data from our experiments we found that Arc KO mice

have a significant decrease in C/I ratio as compared to WT mice (Figure 8A). This was mostly due to a

significant decrease in contra responses (Figure 8B). We hypothesized that establishing the C/I ratio in

mice requires neuronal activity or experience. To test this we dark reared WT mice from birth and

recorded baseline responses in P28-32 mice that had never been exposed to light. Dark rearing has

previously been shown to dramatically reduce Arc expression in visual cortex (Wang et al, 2006). Dark

reared mice exhibited a decrease in the C/I ratio due to a significant decrease in contra responses,

similar to that observed in Arc KO mice (Figure 8A and B).

DISCUSSION

Multiple molecular mechanisms have been proposed to facilitate the experience-dependent

changes that occur in visual cortex during development. Here, we investigated the role of Arc, a

molecule that has been implicated in NMDA receptor dependent plasticity and AMPAR trafficking, in



visual cortex plasticity. We find that removal of Arc results in a profound deficit in experience-

dependent plasticity. Our results show that loss of Arc protein leads to a reduced shift in ocular

dominance, and impaired AMPA receptor internalization in response to lid suture, suggesting that

Arc is crucial for the deprived eye depression that normally takes place after MD. In addition, both

deprived eye depression and open eye potentiation fail to occur even after extended deprivation. We

also find that Arc KO mice exhibit deficits in SRP. Strikingly, these deficits occur in the absence of

major changes in visual response properties as Arc KO mice exhibit normal visual acuity, and

retinotopic organization is similar to that found in WT mice. We do not observe any overt

compensation in proteins specific for inhibitory synaptic transmission in Arc KO neurons. Since Arc is

only expressed in excitatory cells in the visual cortex we believe that the phenotypes observed in Arc

KO mice are not due to aberrant inhibition, although we cannot fully rule out this possibility.

Arc mediates MD-induced deprived eye depression

A number of studies provide evidence for competitive Hebbian mechanisms contributing to

the decrease in deprived eye response (Crozier et al., 2007; Heynen et al., 2003; Rittenhouse et al.,

2006). The shift in ocular dominance that occurs after brief visual deprivation serves as one of the most

representative models of activity-dependent plasticity and has been shown to depend upon activation

of NMDA receptors (Bear et al., 1990; Roberts et al., 1998; Sawtell et al., 2003). Indeed, removing or

inhibiting components of the NMDA-dependent signaling pathway, such as MAPK, PKA, and

CamKII-alpha, reduces the shift in ocular dominance seen after MD (Di Cristo et al., 2001; Rao and

Daw, 2004; Taha et al., 2002). A recent study using GAD 65 KO mice provides further evidence for the

importance of signaling through NMDA receptors. These mice have a reduction in both GABA A and

NR2A subunit levels (Kanold et al., 2009). In addition, ocular dominance plasticity (Hensch et al., 1998;

Kanold et al., 2009) and LTD are completely disrupted (Choi 2007). Interestingly, application of

diazepam rescues the deficit in NR2A subunit levels, leaving GABA A subunit levels unchanged, and

restores both LTD and ocular dominance plasticity. We find that Arc KO mice lack deprived eye

depression, even after 7 days of deprivation. Since Arc transcription is also dependent upon activation

of NMDA receptors, MAPK and PKA signaling cascades our data suggests that Arc is a downstream

effector molecule for this pathway. Whether restoration of NMDA receptor function in GAD 65 KO



mice might enable normal ocular dominance plasticity due to Arc-mediated LTD-like mechanisms

remains to be tested.

Arc may be required for NMDAR as well as mGluR dependent AMPA receptor removal. In

hippocampal cultures, mGluR-induced decreases in AMPARs are prevented in the absence of Arc

protein, whereas overexpression of Arc mimics mGluR-induced decreases in AMPAR surface

expression. As an important correlate of Arc function, in a mouse model of fragile X syndrome in

which mGluR signaling is enhanced, Arc expression is increased and ocular dominance plasticity is

significantly enhanced compared to WT mice (Park et al., 2008). In contrast, a 50% reduction of

mGluR5 expression is sufficient to prevent the shift in ocular dominance, which normally occurs in

response to lid suture (Dolen et al., 2007). These data support our finding that Arc, operating

downstream of glutamate receptor activation, is required for deprived eye depression. Arc KO mice

have significantly smaller contra responses and a decrease in C/I ratio (see discussion below). It is

possible that Arc KO mice lack deprived eye depression because plasticity is occluded. We think this is

unlikely because we do not see any overt differences in basal surface AMPAR expression compared

with WT mice.

Arc is required for experience-dependent potentiation in visual cortex

In WT mice, we detected a robust potentiation of the open eye after 7 days of deprivation using

both intrinsic signal imaging and VEPs. However, the open eye response fails to potentiate after an

extended period of deprivation in the Arc KO mice. In addition, deprived eye response depression

does not occur even after 7 days of monocular lid suture. It has been proposed that response

depression and potentiation may be regulated by distinct mechanisms. Indeed, the strengthening of

open eye response after longer periods of deprivation may rely upon homeostatic mechanisms such as

synaptic scaling (Kaneko et al., 2006; Mrsic-Flogel et al., 2007). In support of this, mice lacking tumor

necrosis factor alpha (TNF-alpha), a cytokine derived from glia and implicated in homeostatic synaptic

scaling, have intact deprived eye depression after brief lid suture, however, there is reduced ocular

dominance plasticity due to a deficit in open-eye response potentiation (Kaneko et al, 2008). An

additional study found that MD resulted in a scaling up of response in cells within the binocular zone



receiving input predominantly from the deprived contralateral eye providing further evidence that

homeostatic mechanisms may operate in concert with Hebbian plasticity (Mrsic-Flogel et al., 2007).

However, in our current study, we find that both depression and potentiation are impaired in Arc KO

mice suggesting that these two phases may not be completely separable. It is possible that an initial

Hebbian depression in deprived eye responses mediated by Arc serves as a trigger for subsequent

open eye potentiation. Alternatively, Arc may be directly required for the induction of open-eye

potentiation. Consistent with this hypothesis, open eye potentiation was recently shown to require

NMDAR function (Sato and Stryker, 2008). Moreover, we show that Arc is required for the expression

of SRP, a form of experience-dependent plasticity that bears all the hallmarks of LTP.

Arc mediates activity-dependent establishment of normal C/I ratio in mice

Numerous studies have shown that activity is critical for the sharpening and refinement of

visual response properties such as ocular dominance and orientation tuning throughout development

(Fagiolini et al., 1994; Smith and Trachtenberg, 2007). In very young rats (P17-P19), there is a large

number of binocular cells within the binocular zone of visual cortex (Fagiolini et al., 1994). However,

by the peak of the critical period a contralateral bias has been established in cortex and continues

throughout adulthood. This suggests that there may be an activity-dependent pruning of the weaker

ipsilateral eye projections that occurs with development. Data from the visual cortex of dark reared

adult rats- where Arc is very low- suggests that this may well be the case as these mice exhibit a

greater percentage of binocular cells, compared to normally reared rats (Fagiolini et al., 1994). Using

VEPs we find that Arc KO mice, and mice that have been dark reared from birth, show a significant

reduction in the C/I ratio, reminiscent of the increased binocularity seen previously in dark reared rats

(Fagiolini et al., 1994) . These data suggest that both experience and Arc are critical for the normal

establishment of the C/I ratio. We believe the changes in ocular dominance in Arc KO mice occur at

the level of the cortex as Arc is not present in the thalamus at any age, and we have shown that eye-

specific segregation in the thalamus of Arc KO mice is not different from WT mice. However, it is also

possible that Arc is required for the anatomical refinement of thalamocortical axonal arbors from the

LGN.



One caveat of our study is that we use a full KO mouse that lacks Arc from birth. It is possible

that Arc may affect the normal development of the visual cortex prior to any experience-dependent

processes. However, Arc expression is virtually undetectable prior to eye opening in visual cortex

(Tagawa et al., 2005; Wang et al., 2006), and its expression rapidly increases after eye opening during

the period where experience-dependent changes take place. It is possible that Arc functions within the

neuron to enhance response properties by the removal or reduction of weaker inputs and the

potentiation of stronger inputs. This would result in a sharpening of overall receptive field properties

throughout development. In both Arc KO and dark reared mice, the loss of a putative mechanism for

synaptic refinement may retard the emergence of mature response properties. In the case of ocular

dominance this would manifest in an increase in binocular cells and a reduction of the C/I ratio. In

line with a role for Arc in the sharpening of visual response properties, adult Arc KO mice show an

increase in cells with low orientation specificity and broader tuning compared to heterozygous and

WT mice (Wang et al., 2006).

In conclusion, we have found that Arc is critically involved in multiple forms of experience-

dependent plasticity. Moreover, Arc is necessary for the establishment of the normal C/I ratio in mice.

Together these experiments illustrate the essential role for Arc in experience-dependent plasticity

within the visual system.
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Figure 1. Loss of Arc does not affect visual cortex responsiveness and organization. (A)

Intrinsic signal imaging of V1 (left inset) in WT and Arc KO mice. (Top) Ocular dominance map of V1,

in a WT mouse (left) and an Arc KO mouse (right); MZ=monocular zone, BZ=binocular zone. Scale at

right illustrates binocularity index of pixels. V1 in Arc KO mice is similar to that in WT mice in total

area (WT n=6, area=1.401 + .07 mm2; Arc KO n=10, area=1.270 + .15 mm2 ; p>0.5, t-test). (Bottom)

Retinotopic organization of V1 in a WT mouse (left), and an Arc KO mouse (right). Each image shows

the mapping of elevation according to scale at top right. (B) Scatter analysis of 50X50 pixel area within

white box in A. for WT and Arc KO (C) Analysis of scatter for total population, assessed as the average

difference in receptive field center location between nearby pixels, indicates the maps are similar in

Arc KO and WT mice (WT n=6; 2.85±.54 deg; Arc KO n=10; 3.2±.50 deg; p>0.8, t-test) Scale bar= 500

pm. (D) Response magnitude within the binocular zone, plotted as average AR/R x 10-3, in response

to binocular stimulation, is similar in WT and Arc KO mice (WT n=6; AR/R=2.3±0.27; Arc KO n=10;

AR/R=2.4±0.26; p>0.5, t-test). AR/R is the change in reflectance over baseline reflectance. Error bars

represent standard error of the mean (SEM). (E) Visually evoked potentials were used to assess visual

acuity in Arc KO and WT animals. No significant difference between the two groups could be detected

at the highest spatial frequency tested (VEP amplitude at 0.6 cycle/ deg, WT: 33.5 ± 3.5 jpV, n = 22; Arc

KO: 30.7 ± 6.4 tV, n = 19; p> 0.2, t-test).
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Figure 2. Intrinsic signal imaging after MD illustrates a requirement for Arc in deprived-eye

depression after short-term MD (A)(Top) MD was initiated near the peak of the critical period for 3-4

days. Control animals were age-matched to deprived mice. (Bottom) ODIs for individual mice are

shown as circles. Closed circles depict control mice, open circles deprived mice. Horizontal bars

represent group averages. (WT: control, n=9, ODI= 0.28±0.03; deprived, n=14, ODI= -0.05±0.03, p <.05;

Arc KO: control, n=10, ODI = 0.19±0.02; deprived, n=11, ODI = 0.13±0.02, p>0.1, Student's t-test). (B)

(Left) A significant decrease in the contra/ipsi ratio is seen (control=2.019±.15, deprived=0.94±.09,

p<0.001, Student's t-test). (Right) Response magnitude in WT animals driven by the contralateral eye

(filled bars) and ipsilateral eye (open bars), plotted as average AR/R x 10-3. A depression in the

contralateral eye response amplitude can be seen (control=2.9±.27, deprived= 1.62±.23, p<0.01,

Student's t-test). No change in the ipsilateral eye response is detected (control=1.56+.21,

deprived=1.68±.19, p>0.8, Student's t-test). (C) (Left) Ratio of contralateral eye response to ipsilateral

response in Arc KO animals without and with MD of the contralateral eye. No change in contra/ipsi

ratio is observed (control= 1.72±.14, deprived= 1.60±.13, p>0.4, Student's t-test). (Right) No change in

contralateral (filled bar) response occurs in Arc KO animals after deprivation (control= 2.25±.28,

deprived= 2.5±.26, p>0.2, Student's t-test); similarly, no change in ipsilateral (open bar) response is

detected (control=1.35±.23, deprived=1.64±.19, p>0.2, Student's t-test). AR/R is the change in

reflectance over baseline reflectance. Error bars represent SEM.
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Figure 3. Chronic VEP recordings show that Arc KO mice do not exhibit ocular dominance

plasticity after short-term MD. (A) (Left) WT mice exhibit a significant shift in the contralateral to

ipsilateral eye ratio (n = 11; Day 0 = 2.2 ± 0.16, 3 Day MD = 1.2 ± 0.16, p << 0.0001, t-test). (Right) The

change in ocular dominance ratio in WT mice is due to a significant depression in contralateral

(deprived eye, C) responses (n = 11; Day 0 = 149 ± 8.8 gV, 3 Day MD = 75.4 ± 8.8 giV, p << 0.0001,
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paired t-test). No significant change was observed in ipsilateral responses (open eye, I; n = 11; Day 0 =

70.4 ± 6.4 [tV, 3 Day MD = 68.8 ± 8 V, p>0.8, paired t-test). Averaged waveforms across all animals are

shown at top. (B) (Left) Arc KO mice exhibit no significant shift in the contralateral to ipsilateral eye

ratio (n = 8; Day 0 = 1.4 ± 0.12, 3 Day MD = 1.5 ± 0.33, p>0.8, paired t-test). (Right) Arc KO mice exhibit

no changes in contralateral responses (C; n = 8; Day 0 = 121 ± 14.7 pV, 3 Day MD = 111.3 ± 13.5 tV,

p>0.2, paired t-test) or in ipsilateral responses (I; n = 8; Day 0 = 92.5 + 15 ptV, 3 Day MD = 85.8 ± 10.7

V, p>0.7, paired t-test). Averaged waveforms are shown at top. Error bars represent SEM.
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Figure 4. Arc is required for the decrease in surface AMPARs after short-term MD. (A)

Schematic of mouse brain showing the segments of V1 dissected for biochemical analysis. Since V1 is

dominated by contralateral eye responses, cortex contralateral to the deprived eye was termed

"deprived" while cortex ipsilateral to the deprived eye was treated as "control". (B) Example

immunoblots of total and biotinylated surface proteins in the visual cortex of Arc KO and WT mice.

GAPDH was used as an internal control to show that biotin specifically labeled surface proteins. In

addition, a control image (bottom) shows the specificity of the biotinylation assay. No band can be

detected in the surface lane of protein sample not exposed to biotin. (C) Summary of changes in

surface protein levels occurring after deprivation (WT, n=5; Arc, n=7). Surface levels of GluR1 were

significantly lower in the deprived hemisphere of WT animals compared to control (p<.0001, Student's

t-test), but not in Arc KO animals (p >0.2, Student's t-test). Error bars represent SEM.
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Figure 5. Arc KO mice do not show a shift in ocular dominance after extended deprivation.

(A)(Top) MD was initiated near the peak of the critical period for 3-4 days. Control animals were age-

matched to deprived mice. ODIs for individual mice are shown as circles. Closed circles depict control

mice, open circles deprived mice. Horizontal bars represent group averages. (WT: control, n=9, ODI=

0.28±.03; deprived, n=7, ODI= -0.063±.02, p<0.0001; Arc KO: control, n=10, ODI = 0.19±.02; deprived,

n=8, ODI = 0.13±.02, p=.17). (B) Ratio of contralateral eye response to ipsilateral response in WT

animals, without and with MD of the contralateral eye. A significant decrease in the contra/ ipsi ratio

is seen (control=2.019±.15, deprived=0.95+.04, p<0.0001). (Right) Response magnitude in WT animals

driven by the contralateral eye (filled bars) and ipsilateral eye (open bars), plotted as average AR/R x

10-3. A slight, albeit not significant, depression in the contralateral eye response amplitude can be seen

(control=2.9±.27, deprived= 2.1±.23, p>0.05). Lid suture results in a increase in the ipsilateral eye

response (control=1.56±.21, deprived=2.49±..17, p<.05). (C) (Left) Ratio of contralateral eye response to

ipsilateral response in Arc KO animals without and with MD of the contralateral eye. No change in

contra/ipsi ratio is observed (control= 1.72±.14, deprived= 1.540±.11, p>.6). (Right) No change in

contralateral (filled bar) response occurs in Arc KO animals after deprivation (control= 2.25+.28,

deprived= 2.2±.21, p>0.6); similarly, no change in ipsilateral (open bar) response is detected

(control=1.35±.23, deprived=1.5±.21, p>0.6,). AR/R is the change in reflectance over baseline

reflectance. Error bars represent SEM. Statistical analyses for A-C conducted using one-way ANOVA

with Bonferroni correction.
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Figure 6. Arc KO mice exhibit no ocular dominance plasticity as assessed by chronic VEP

after long-term MD. (A) (Left) WT mice exhibit a significant shift in the contralateral to ipsilateral eye

ratio (n = 7; Day 0 = 1.9 -t 0.14, 7 Day MD = 0.8 ± 0.06, p < 0.0001, t-test). (Right) The change in ocular

dominance ratio in WT mice is due to a significant depression in contralateral (deprived eye, C)

responses (n = 7; Day 0 = 152 ± 9.2 jV, 7 Day MD = 89.5 + 11.5 lV, p < 0.003, paired t-test) and a

significant potentiation in ipsilateral responses (open eye, I; n = 7; Day 0 = 84.9 ± 9.8 gtV, 7 Day MD =

114.2 ± 10.1 tV, p>0.05, paired t-test). Averaged waveforms are shown at top. (B) (Left) Arc KO mice

exhibit no significant shift in the contralateral to ipsilateral eye ratio (n = 6; Day 0 = 1.2 ± 0.1, 7 Day
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MD = 1.25 ± 0.11, p>0.7, paired t-test). (Right) Arc KO mice exhibit no changes in contralateral (C; n =

6; Day 0 = 112 ± 2.2 [V, 7 Day MD = 100 ± 6 1 V, p>0.1, paired t-test) or in ipsilateral responses (I; n = 8;

Day 0 = 96 ± 8.6 gV, 3 Day MD = 84 ± 10 V, p>0.4, t-test). Averaged waveforms are shown at top.

Error bars represent SEM.
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Figure 7. Arc KO mice do not exhibit stimulus-selective response potentiation (SRP) in

visual cortex. WT mice exhibit large and sustained potentiation over many days of exposure to the

same stimulus orientation (n=11). Responses to a control orthogonal stimulus (900, blue circle) shown

at day 6 were not significantly potentiated. Arc KO mice exhibit no significant potentiation of

responses to the same stimulus (n-16). Responses to the control orthogonal stimulus (900, open blue

circle) were also not significantly different from baseline, suggesting no general decrease in responses

over time.
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Figure 8. Dark rearing WT mice from birth mimics the C/I ratio observed in Arc KO mice.

(A) Arc KO and dark reared (DR) mice exhibit a significant decrease in the C/I ratio as compared to

WT mice ( WT: n=16, 2.1 ± 0.1; Arc KO: n=16, 1.35 ± 0.08, p<<0.0001, t-test; DR: n=11, 1.29 ± 0.1, p <<

0.0001, t-test). The change in ocular dominance ratio in Arc KO and DR mice is mainly due to a

significant depression in contralateral (B) responses (WT: 146 ± 6; Arc KO, 116 ± 7, p<0.006, t-test; DR:

74 ± 9, p<<0.0001, t-test) as ipsilateral responses (I) were not significantly different (WT: 72 ± 5; Arc

KO, 90 ± 8, p<0.07, t-test; DR: 59 ± 8, p<0.2, t-test). Error bars represent SEM.
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Figure S1. (A) Arc does not colocalize with GABA or GFAP. Scale bar=50 um. (B) Layer

specific expression of Arc protein within the visual cortex of WT and Arc KO animals. Arc protein can

be seen in layers 2-4, and 6. Only sparse labeling is detected within layer 5. As expected no Arc

protein can be detected in mutant mice. Scale bar =50 um.
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Figure S2. Quantitative Western blot analysis of inhibitory markers reveal no change in (A)

parvalbumin (p=0.5 4 , Student's t-test) (B) GAD65 (p=0.18, Student's t-test) (C) VGAT (p=0.89,

Student's t-test) (D) or GABA within the visual cortex of WT (black bars) versus Arc KO (grey bars)

animals (WT= 4.34±.22 cells/ 50 pm 2, Arc KO= 4.19±.12 cells/50 pm 2;; p>0.6, Student's t-test). Scale

bar= 50 pm.
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Figure S3. Surface expression of GluR1 in visual cortex of Arc KO critical period mice is not

significantly different from WT ( WT, n=5, Arc, n=7, p>.3, Student's t-test).



Figure S4. Tracing of the retinofugal pathway with cholera toxin subunit B conjugated to

Alexa Fluor488 and 594, reveals normal eye specific segregation within the thalamus of Arc KO

animals compared to control. Contralateral projections are labeled green, ipsilateral projections are

labeled red. Scale bar=100 pm. Error bars represent SEM.



CHAPTER 3

DISRUPTED PLASTICITY IN ARC KO
ADULT MICE



ABSTRACT

Sensory input is believed to be essential for the functional refinement of

neuronal circuits in the mammalian visual system. Mice dark reared from birth

display broader orientation tuning and a reduced ocular dominance ratio compared to

normally reared mice. In addition, dark reared mice have a reduction in plasticity at

the normal peak of sensitivity, and the critical period is shifted to adulthood.

Interestingly, the cortical state of Arc KOs shares many similarities with that of dark

reared mice i.e. reduced orientation selectivity, binocularity, and impaired juvenile

plasticity. To determine whether plasticity is reinstated in Arc KO mice in adulthood

we monocularly deprived WT and Arc KO adult mice (>P60) for 4-7 days. In keeping

with the literature, we find that brief deprivation has no effect on the magnitude of

eye-specific response in the visual cortex of WT mice. Similarly, ocular dominance

remained at control levels in briefly deprived Arc KO adult mice. In response to 7

days of deprivation, a slight potentiation of open eye strength occurred in WT mice.

However, reduced potentiation occurred in Arc KO mice. Thus, we find Arc protein is

necessary for the expression of plasticity even in adulthood.



INTRODUCTION

Numerous experiments have demonstrated the remarkable ability of the brain to

adapt to altered sensory experience. This plasticity is particularly salient in mice during

a critical period early in development (P26-P32). Interestingly, the closure of the critical

period is not as defined as previously thought, and there is now evidence to suggest that

the adult visual cortex has the capacity to undergo significant plasticity. This plasticity

has been detected using visually evoked immediate early gene expression (Pham et al.,

2004; Tagawa et al., 2005), single-unit recordings (Gordon and Stryker, 1996), VEPs

(Pham et al., 2004; Sawtell et al., 2003) and intrinsic signal imaging (Sato and Stryker,

2008).

However, the extent and quality of plasticity in adult mice differs significantly

from that found in juvenile animals (Hofer et al., 2006). In juvenile mice ocular

dominance plasticity occurs in two distinct stages 1) an initial depression of the deprived

eye response after a brief period of lid suture followed by 2) an increase in open eye

strength with extended deprivation. The initial phase is believed to be due to an LTD-

like mechanism, whereas the open eye potentiation may rely upon an LTP-like

strengthening (Frenkel et al., 2006) or synaptic scaling (Kaneko et al., 2006; Mrsic-Flogel

et al., 2007). By contrast brief deprivation is ineffective in eliciting a significant

depression of the deprived eye response in adult animals (Sato and Stryker, 2008;

Sawtell et al., 2003). In addition, it is only with extended deprivation that a shift in

ocular dominance occurs. This shift is mediated primarily by a potentiation of the open

eye response.

The impact of monocular deprivation at various stages of development may be

related to alterations in the overall cortical state. For instance, over development there is

a maturation of inhibition (Fagiolini and Hensch, 2000; Hanover et al., 1999; Huang et



al., 1999) a down-regulation of CREB-mediated gene expression (Pham et al., 1999), and

changes at the level of myelin (McGee et al., 2005), that may influence the plastic

response. In addition, microarray studies indicate that there are distinct sets of visually

regulated gene expression across the lifespan of the animal (Majdan and Shatz, 2006;

Tropea et al., 2006). Many genes are only activated when monocular deprivation takes

place during the critical period (Tropea et al., 2006). Thus the cortical response to

deprivation may be drastically different depending upon the assortment of molecules

present at each stage of development. In addition, impairments of plasticity in early

development due to loss of a particular molecule may not be predictive of their impact

in adulthood (Glazewski et al., 1996).

In Chapter 1 we showed that Arc KO juveniles fail to express normal ocular

dominance plasticity after deprivation. In addition, another form of NMDA receptor

dependent plasticity, stimulus response potentiation, is also impaired. Arc KO juvenile

mice show a reduced contra/ipsi ratio that is similar to that found in dark reared

animals suggesting that Arc is necessary for proper maturation of receptive field

properties in visual cortex. However, little is known about visual cortex plasticity in

adult Arc KO mice.

At present there has been only one study examining visual cortical response

properties in adult knockout mice (Wang et al., 2006). These experiments revealed that

Arc adult animals have reduced orientation selectivity compared to both Arc

heterozygotes and WT mice. Because Arc protein has been implicated in regulating the

internalization of AMPA receptors (Chowdhury et al., 2006; Rial Verde et al., 2006;

Shepherd et al., 2006), this deficit is most likely due to a failure to remove weaker

nonspecific inputs- resulting in a broadening of the tuning curve in the absence of Arc.

The broadening of tuning found in Arc KO adults is highly reminiscent of that found in

dark reared mice. Similar to Arc KOs, mice reared in darkness from birth -and where



Arc protein is low due to a blockade of activity- show extremely poor orientation

selectivity compared normally reared mice (Fagiolini et al., 1994).

Along this same line, mice that have been dark reared from birth remain in a

plastic state and the visual cortex remains sensitive to monocular deprivation even in

adulthood (Fagiolini et al., 1994). More specifically, dark rearing appears to shift the

entire critical period such that plasticity is reduced in these mice at the normal peak of

sensitivity and increased at later ages. This result has been shown in cats (Mower et al.,

1981) and mice (Iwai et al., 2003). Whether plasticity in Arc KO mice follows a similar

progression in unknown.

In order to further probe the effect of loss of Arc protein later in development we

assayed visual cortex plasticity in Arc adult mice using monocular deprivation. We were

curious whether plasticity might be reinstated in adulthood. Thus, we deprived WT and

Arc KO mice for brief and extended periods of time after P60 and examined ocular

dominance plasticity. We find that plasticity remains impaired in the visual cortex of

Arc null mice even in adulthood.



METHODS
Animals

WT (C57/B16) and Arc KO mice (Wang et al., 2006) on the same genetic

background were used for all experiments (>P60). Mice were normally housed in cages

under a 12 hour light-dark cycle. All experiments were performed under protocols

approved by MIT's Animal Care and Use Committee and conformed to NIH guidelines.

Lid suture

Animals were anesthetized using Avertin (2 0pl/g) and the eyelid margins

trimmed. The eye contralateral to the hemisphere being imaged was sutured using

prolene sutures (Henry Schein) for 3-4 days. Animals were checked daily to ensure that

the eye remained shut throughout the deprivation period.

Optical imaging of intrinsic signals

Animals were anesthetized with urethane (1.5 mg/kg) and chlorprothixene

(0.2mg/mouse). Heart rate was monitored throughout the trial and only those animals

whose heart rate remained stable throughout the experiment were used. Intrinsic signal

images were obtained using a CCD camera (Cascade 512B, Roper Scientific) and red

filter (630nm) to illuminate the cortex during visual stimulation, as previously described

(Tropea et al., 2006) Stimulation consisted of a drifting bar (9°X72 °) moving continuously

and periodically (9/ second) in an upward or downward direction. Frames were

captured at a rate of 15 frames/second. Slow noise components were removed using a

temporal high pass filter (135 frames) and the Fast Fourier Transform (FFT) component

at the stimulus frequency (9" sec1') was calculated pixel by pixel from the whole set of

images (Kalatsky and Stryker, 2003). The amplitude of the FFT component was used to

measure the strength of visual drive for each eye. An ocular dominance index was
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calculated as ODI = (Rcontra - Ripsi)/ (Rcontra + Ripsi), where R refers to the response

to each eye stimulated individually. Empirically defined correspondence between the

strength of eye-specific drive and retinotopic organization of the cortex yielded the

binocular zone as the top 40% of pixels responding to ipsilateral eye stimulation.



RESULTS

The activity-dependent modulation of gene expression in response to changes in

sensory input is a critical aspect of experience-dependent plasticity. The immediate-early

gene Arc is extremely sensitive to such changes in input. Interestingly, Arc expression

peaks during the critical period after which point it plateaus into adulthood (Chapter 1

of this thesis). Our earlier experiments showed that loss of Arc abolished plasticity

during the peak of the critical period (Chapter 2). However, the influence of a gene in

juvenile plasticity is often not predictive of its affect at later ages (Glazewski et al., 1996).

Thus, it is possible that loss of Arc protein may not result in a similar deficit in adult

mice. A further possibility is that the critical period for plasticity is merely shifted to a

later point in development in Arc KO mice. Indeed, Arc KO mice share many similarities

to mice that have been dark reared from birth and where plasticity only occurs later in

development (Fagiolini et al., 1994; Iwai et al., 2003).

In adults, brief (3-4 day) monocular deprivation does not induce an ocular

dominance shift (Gordon and Stryker, 1996; Sawtell et al., 2003). However, He et al

found that ocular dominance plasticity occurs within the adult visual cortex when

monocular deprivation is preceded by a period of dark rearing. In this study, a shift in

ocular dominance could be detected in dark-reared WT mice after only 4 days of

deprivation. This shift is mediated by a robust depression of the deprived eye response,

similar to what is seen in juvenile animals, and a simultaneous potentiation of the open

eye (He et al., 2006). To examine whether Arc KO mice show accelerated plasticity

compared to WT mice, adult mice (>P60) were deprived briefly of vision through one

eye and the hemisphere contralateral to this eye imaged to assess changes in response.

In accordance with the literature, adult WT mice did not show a shift in ocular

dominance at this time point (Figure 1B and C). In addition, the magnitude of eye-



specific response did not change (Figure 2A). Surprisingly, there was no significant shift

in ocular dominance in Arc KO adult mice either (Figure 1B and D), ruling out the

possibility that the immature cortical state of Arc KO mice might facilitate greater

plasticity in adult mice. Both the deprived and open eye response remained unchanged

(Figure 2B).

Interestingly, in Arc juvenile mice, plasticity is abolished in response to both

brief and extended periods of deprivation. To test whether a longer deprivation period

might drive plasticity in Arc KO adult mice, we extended the deprivation period to 7

days. In adult mice, extended deprivation is due to a delayed strengthening of the open

eye response. This potentiation is thought to underlie adult ocular dominance shifts as

very little deprived eye depression occurs at this stage (Sato and Stryker, 2008; Sawtell et

al., 2003).

Both WT and Arc KO adult mice were deprived of one eye for 7 days and ocular

dominance plasticity tested. An alpha value of .10 was used to assess significance and a

one-way ANOVA performed using the same controls as those from the brief deprivation

experiments. WT mice that were deprived for an extended period of deprivation show a

significant shift in ocular dominance (Figure 3A and B). However, a significant shift did

not occur in Arc KO mice (Figure 3A and C). In WT mice, the shift in ocular dominance

was mediated by a weakly significant (Bonferroni correction, n.s.) increase in the open

eye response strength (Figure 4A). We did not detect this potentiation after four days of

deprivation, suggesting that the process occurs much more slowly than in juvenile mice.

Interestingly, in the Arc KO mice, there was a trend towards an increase in the open eye

response; however, this increase did not reach significance (Figure 4B). We were also

curious whether a depression of the deprived eye response might be detected after 7

days in WT mice. There was no significant change in the deprived eye response

compared to control (WT, control: AR/R= 2.6, deprived: AR/R=2.7, p=. 99, one-way

ANOVA, AR/R X10 3), suggesting that in adult WT mice the shift in ocular dominance is
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mediated purely by open eye potentiation. A decline in LTP occurs with age, and while

present in young mice does not occur in the visual cortex of adults. Stimulus response

potentiation (SRP) shares many features with LTP, and occurs in both juveniles and

adult mice suggesting that mechanisms for response strengthening are present in mice

(Frenkel et al., 2006). In addition, it will be of interest to determine whether open eye

potentiation in the adult visual cortex is mediated by other mechanisms such as synaptic

scaling (Kaneko et al., 2006). Interestingly, in Arc KO mice there was a small trend

towards an increase in the deprived eye response that paralleled that seen for the open

eye, however this did not reach significance (Figure 4B).

DISCUSSION

In this study we have examined ocular dominance plasticity in WT and Arc KO

adult mice. We find that brief deprivation is ineffective in eliciting a shift in ocular

dominance in either WT or Arc KO mice. In addition, while ocular dominance does shift

in adult WT mice, there is a reduced shift in Arc KOs revealing that loss of Arc protein

impairs experience dependent plasticity in both juvenile and adult mice.

However, the deficit in Arc KO juveniles appears to be much more extreme than

that found in the adult mice suggesting that compensatory mechanisms may occur to a

greater degree in adult KOs. In Arc KO juveniles, there is no deprived eye response

depression after brief deprivation. In adult animals this depression is not expected to

occur and was not seen in WT or Arc KOs. Thus, as expected there was no shift in ocular

dominance in WT or Arc KO adults after brief deprivation. However, after extended

deprivation, while there was no significant shift in ocular dominance in Arc KO adults,

as found in WT adults, there was a slight trend towards a decrease.

Evidence from the literature has shown that extended deprivation causes open

eye potentiation in both juveniles and adults. Indeed, in WT juveniles we find a



significant potentiation of the open eye response strength after deprivation. In juvenile

Arc KOs this does not occur ( see Chapter 2). However, in WT adult mice, we found only

a weakly significant potentiation of the open eye response that appeared to underlie the

significant shift in ODI in these mice. While not significant, there was a trend towards

potentiation in Arc KO adults suggesting that some level of plasticity may take place.

Interestingly, this trend towards potentiation also occurred for the deprived eye

suggesting that in Arc KO adults other mechanisms not requiring Arc may mediate

some plasticity.

It is interesting that the deficit in plasticity is much more extreme in Arc juvenile

mice. Studies of plasticity in the somatosensory system have provided convincing

evidence that molecules critical for plasticity in juveniles may not be important for adult

plasticity and vice versa. Barrel cortex plasticity can be tested in a similar manner to that

of the visual cortex; removal of vibrissae results in the depression of deprived cortical

vibrissa response and a potentiation of the spared vibrissa response. Similar to the visual

cortex this plasticity is greatest in juvenile mice, however adult plasticity does occur. In

adult mice lacking CamKII-alpha, barrel cortex plasticity is severely impaired

(Glazewski et al., 1996). Whereas the response to vibrissa removal is extremely

significant in WT adults, homozygous adult mice do not show a shift in the vibrissa

dominance index, and the response to the deprived vibrissa remains high. In addition, a

potentiation and expansion of the spared vibrissa does not occur. Conversely, in juvenile

mutant mice, barrels form normally, and there is no difference between receptive field

properties of CamKII-alpha mutant mice and WT mice. In addition, plasticity is

completely intact and potentiation of the spared whisker response and depression of the

deprived whisker response take place normally.

What might underlie the trend towards potentiation in the Arc KO adult mice?

Homeostatic synaptic scaling is a form of activity-dependent plasticity where the

strength of individual synapses onto a cell are globally increased or decreased in
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response to a reduction or an increase in activity, respectively. Interestingly, recent

studies suggest that in addition to Hebbian forms of plasticity, these homeostatic

mechanisms may underlie ocular dominance plasticity and facilitate the scaling up of

response seen with longer periods of deprivation (Kaneko et al., 2006; Mrsic-Flogel et al.,

2007). Indeed, synaptic scaling has been shown to operate in adult mice, however the

mechanism for scaling appears to differ from that found in younger animals in that it

may not be multiplicative in nature (Goel and Lee, 2007). As mentioned previously in

Chapter 2, although a severe deficit in ocular dominance plasticity is present in juvenile

Arc KO mice the synaptic scaling up of response after four days of deprivation remains

intact (Supplementary figure). Whether intact synaptic scaling is responsible for the

trend towards a potentiation of response strength in adult Arc KO mice is unknown.

However the fact that there is a trend towards potentiation of the deprived and

nondeprived eye, and that they appear to occur to the same degree suggests a scaling

related mechanism. It will be interesting to examine whether scaling contributes to adult

plasticity in future experiments.

Interestingly, in the adult hippocampus, plasticity is severely impaired in the

absence of Arc (Plath et al., 2006). Arc knockout mice have an extreme deficit in both

LTP and LTD. Knockout mice tested on a spatial learning task showed normal

acquisition of the task, however a deficit appeared during the late acquisition phase

where mice were trained to learn a new platform location. In addition, knockout mice

tested on a fear conditioning task were able to form a short lasting association between a

tone and a shock, however testing 24hrs later revealed a deficit in fear-related memory

as measured by reduced freezing in response to the tone or a return to the initial training

environment. WT mice, by contrast, showed significant freezing in response to the tone

and placement in the initial context after 24hrs.

It is clear from our findings that plasticity in Arc KO mice remains significantly

reduced compared to WT mice even in adulthood. However, the deficit in plasticity is
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abated compared to younger mice. This result suggests, Arc may be most essential

during the peak of the critical period for ocular dominance plasticity. At this point Arc

expression is at its highest. After ~4 weeks of age there is a slight decline of Arc

expression into adulthood. Therefore, in may be that loss Arc has the greatest impact

and results in a more pronounced deficit in plasticity at early ages within the visual

cortex.
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Figure 1. A. Schematic of the optical imaging setup. Control and deprived adult WT and

Arc KO mice were placed -20 cm away from a screen and shown drifting bars in either

elevation or azimuth. B. ODIs for individual mice are shown as circles. Closed circles

depict control mice, open circles deprived mice. Horizontal bars represent group

averages. Four days of monocular lid suture were not sufficient to elicit a shift in ocular

dominance in WT or Arc KO adult mice, (WT, control: n=7, ODI=.20±.02, deprived: n=4,

ODI=.19±.05, p>.64, Student's t-test; Arc, control: n=12, ODI=.17±.03, deprived: n=5,

ODI=.15±.02, p >.70, Student's t-test). Error bars represent SEM. C, Pixel distributions

from binocular V1 of WT mice, and D. Arc KO mice. Each ODI distribution is derived as

the mean of the population response over hundreds of pixels in each animal, plotted as

the percent of pixels at each ODI.
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Figure 2. A. (Left) Ratio of contralateral eye response to ipsilateral response in WT

animals, without and with MD of the contralateral eye. No change in the contra/ipsi

ratio is seen (control=1.65±.10, deprived=1.75±.19, p>.3, Student's t-test). (Right)

Response magnitude in WT animals driven by the contralateral eye (filled bars) and

ipsilateral eye (open bars), plotted as average AR/R x 10-3. Deprived eye depression

does not occur in WT adult mice (control=2.6±.58, deprived= 2.7±.38, p > .6, Student's t-

test). No change in the ipsilateral eye response is detected (control=1.6+.38,

deprived=1.6±.35, p>0.8, Student's t-test). B. (Left) Ratio of contralateral eye response to

ipsilateral response in Arc KO adult animals without and with MD of the contralateral

eye. No change in contra/ipsi ratio is observed (control= 1.64±.13, deprived= 1.49±0.08,

p>0.5, Student's t-test). (Right) No change in contralateral (filled bar) response occurs in

Arc KO animals after deprivation (control= 2.1±.38, deprived= 2.1+.35, p>0.9, Student's

t-test); similarly, no change in ipsilateral (open bar) response is detected

(control=1.31+.24, deprived=1.61±.24, p>0.7, Student's t-test). All error bars represent

SEM. AR/R is the change in reflectance over baseline reflectance.
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Figure 3. A. ODIs for individual mice are shown as circles. Closed circles depict control
mice, open circles deprived mice. Horizontal bars represent group averages. Seven days
of monocular lid suture resulted in a significant shift in ocular dominance in WT mice
(control: n=7, ODI=.20+.02, deprived: n=4, ODI=.03±.01, p=.01). No significant shift
occurred in Arc KO mice (control: n=12, ODI=.17±.03, deprived: n=4, ODI=.08±.02,
p=.3747 ). Error bars represent SEM. B, C, Pixel distributions from binocular V1 of
individual animals, as indicated at right. Each animal's ODI is derived as the mean of
the population response over hundreds of pixels in each animal, plotted as the percent
of pixels at each ODI. Statistical analyses in A) conducted using one-way ANOVA with
Bonferroni correction.
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Figure 4. A. (Left) Ratio of contralateral eye response to ipsilateral response in WT

animals, without and with MD of the contralateral eye. A significant change in the

contra/ ipsi ratio is seen after 7 days of monocular deprivation (control=1.65±.10,

deprived=1.1±.05, p=.014). (Right) Response magnitude in WT animals driven by the

contralateral eye (filled bars) and ipsilateral eye (open bars), plotted as average AR/R x

10". Deprived eye depression does not occur in WT adult mice deprived for 7 days

(control=2.6±.58, deprived= 2.7±.28, p=.99). However a weakly significant potentiation

of the open eye response is detected (control=1.6±.38, deprived=2.2±.25, p=.07). B. (Left)

Ratio of contralateral eye response to ipsilateral response in Arc KO adult animals

without and with MD of the contralateral eye. No significant change in contra /ipsi ratio

is observed (control= 1.64±.13, deprived= 1.21±0.06, p=.15). (Right) No significant

change in contralateral (filled bar) response occurs in Arc KO animals after deprivation

(control= 2.1+.38, deprived= 2.6±.35, p=.74); similarly, no change in ipsilateral (open bar)

response is detected (control=1.31+.24, deprived=2.1±.35, p=.21). All error bars

represent SEM. AR/R is the change in reflectance over baseline reflectance. Statistical
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analyses in A) and B) conducted using one-way ANOVA (alpha=.10) with Bonferroni

correction.
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Supplementary Figure. Synaptic scaling up intact in Arc KO mice. WT and Arc KO

animals were dark adapted for 4 days and reexposed to light. Intrinsic signal imaging

was used to assess whether responses scaled up. Both WT and Arc KO mice display a

significant increase in response (WT: control, n=6, AR/R= 2.3±0.27; deprived, n=3,

AR/R=.40, p=.05, Student's t-test; Arc KO: control, n=10, AR/R=2.4±0.31; deprived, n=5,

ODI = 3.89±0.65 p=.02, Student's t-test). Error bars represent standard error of the mean.
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CHAPTER 4

IN VIVO TWO-PHOTON FUNCTIONAL
IMAGING OF IDENTIFIED SUBTYPES AND

KNOCKOUT CELLS IN THE VISUAL
CORTEX OF ARC-GFP MICE
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ABSTRACT

Experience is essential for the sharpening of both eye-specific and orientation

preference within visual cortex. A major question in neuroscience is how excitatory

glutamatergic and inhibitory GABA-ergic cells uniquely contribute to these response

properties, and how their responses differ during plasticity. Recent advances in the

development of genetic mouse models provide an opportunity for more detailed inquiry into

the individual cell types composing cortical circuits in mouse visual cortex. While techniques

such as intrinsic signal imaging and visually evoked potentials serve as powerful tools for

studying the overall population response of neural circuits, they lack single-cell resolution.

In the case of single-cell recordings, although individual units can be isolated a major flaw is

the inability to identify the exact cell type being recorded.

We have overcome the shortcomings inherent in these techniques by using

functional two-photon calcium imaging in Arc-GFP mice, which allows for single-cell

resolution and genetic identification of cell type. Heterozygous and homozygous Arc-GFP

mice, in which GFP expression is placed under the control of the Arc promoter, were used to

explore 1) the individual contributions of putative inhibitory and excitatory cell types to

visual cortical response properties and 2) assay how genetic deletion of the Arc gene in GFP

expressing excitatory cells influences response properties of these cells and their nearby

neighbors not expressing GFP (putative inhibitory cells). We find that both juvenile

heterozygotes and homozygotes juvenile mice display broad orientation tuning during the

critical period. By contrast, ocular dominance, known to mature prior to orientation

selectivity, differs significantly between Arc heterozygote and homozygotes. In response to

5-6 days of monocular deprivation, both GFP-positive and -negative cells in Arc

heterozygotes show a significant shift in ocular dominance. However, in the Arc

homozygotes, GFP-positive cells fail to shift. Surprisingly, GFP-negative cells show a normal

shift in ocular dominance suggesting that plasticity in putative inhibitory neurons can

operate independently of excitatory cell plasticity. To our knowledge, we provide the first in

vivo calcium imaging data from the visual cortex of genetically identified knockout cells at

single-cell resolution.
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INTRODUCTION

A number of methods such as intrinsic signal imaging, visually evoked potentials,

single-unit recordings, and calcium imaging exist for mapping out the functional and spatial

organization of cortical areas. Each of these techniques affords a number of advantages and

disadvantages depending on the ultimate question being analyzed.

In Chapters 2 and 3, I described experiments using intrinsic signal imaging to assay

plasticity in genetically modified mice. Intrinsic signal imaging is a powerful tool for visualizing

brain activity and provides high spatial resolution and reduced invasiveness compared to more

traditional techniques. By visualizing changes in intrinsic optical properties, such as the light

reflectance of neural tissues in response to activity, it is possible to obtain a measure of

functional response to stimulation over large cortical areas in the same animal over time. At

wavelengths greater than 600 nm, active cortical regions have a higher absorption coefficient

than inactive regions, due to an increase in deoxy-hemoglobin in the former case. This depletion

of oxy-hemoglobin is followed by a local increase in blood flow and a subsequent decrease in

deoxy-hemoglobin that lowers the amount of red light absorbed (Malonek et al., 1997). Thus,

small changes in light reflectance, due to the oxygenation state of the cortex, provide an indirect

readout of local neural activity. While intrinsic signal imaging provides a reliable measure of

cortical response, the primary weakness of this technique is that it lacks resolution at the single-

cell level.

The cerebral cortex consists of two primary cell types, neurons and astrocytes. At the

level of neurons a further division can be made between excitatory glutamatergic cells and

inhibitory GABAergic cells. A major question in neuroscience is how these cell types function

individually and in concert to shape response properties such as binocularity and orientation

preference within the visual cortex. Classically, isolation of individual cell responses has been

accomplished with extracellular single-unit recording. However, single-unit recording is not



117

without its own flaws- primarily the inability to reliably separate out responses from identified

subtypes of cells.

To get a better understanding of the specific role these cell types play in

experience-dependent plasticity it is helpful to be able to directly visualize them in vivo and

analyze their functional properties. Bulk loading of calcium dyes provides an opportunity to

circumvent the low functional resolution of optical imaging of intrinsic signals and detect

individual cell response within a population of cells. By pressure injecting a membrane

permeant fluorescent calcium indicator such as Oregon Green BAPTA (OGB) into brain tissue

within mouse visual cortex, it is possible to measure neuronal response properties such as

ocular dominance and orientation tuning, among others. In addition, by combining this

technique with the use of genetically labeled mouse lines expressing GFP (or other fluorescent

markers) in specific cell types, and the infusion of membrane permeable dyes such as

sulfarhodamine 101 (SR101), which labels only astrocytes, it is possible to overcome the

inherent shortcomings of single-unit recordings mentioned above.

In previous experiments mentioned in this thesis, we used Arc-GFP homozygous mice

to test how loss of Arc impacts ocular dominance plasticity. In these mice, the coding portion of

GFP has replaced that for Arc protein, and is under the control of the Arc promoter. Thus, in

homozygous mice, activity results in GFP being expressed in cells that would have contained

Arc. In the case of Arc-GFP heterozygotes, these mice have one copy of Arc and one copy of

GFP. Interestingly, this results in only a 20% decrease in Arc expression that does not affect

neuronal response, and the overall physiology of Arc heterozygotes is comparable to WT

(Wang et al., 2006). Because Arc is found specifically in CamKII-alpha excitatory neurons, and

inhibitory interneurons in the cortex do not express CamKII-alpha (Liu and Jones, 1996), the

majority of GFP-negative neurons in the visual cortex of Arc-GFP mice are putative inhibitory

cells. Thus, it is possible to use these mice in combination with two-photon functional calcium

imaging, to visualize excitatory neurons directly, and to differentiate their spiking activity from

that of inhibitory cells.
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Arc containing neurons account for -96% of excitatory CamKII-alpha positive neurons.

There is evidence that Arc may facilitate the sharpening of response properties such as

orientation tuning and ocular dominance throughout development. Arc expression in the visual

cortex is intimately linked with neuronal activity, and it is dynamically regulated at the level of

both mRNA and protein (Lyford et al., 1995). Recent reports in culture (Chowdhury et al., 2006;

Rial Verde et al., 2006; Waung et al., 2008), and in vivo (refer to Chapter 2 of this thesis) show

that Arc is necessary for normal removal of AMPA receptors from the surface. This role is

accomplished through interactions with dynamin and endophilin; key components of the

clathrin-mediated endocytosis machinery (Chowdhury et al., 2006). It is thought that Arc

facilitates the global removal of AMPA receptors in response to activity such that total synaptic

strength is reduced. Indeed, Arc has been implicated in a form of synaptic scaling wherein

prolonged changes in activity result in a global weakening of the strength of all of a neuron's

synapses to stabilize firing (Shepherd et al., 2006). The major expression mechanism of synaptic

scaling is changes in the postsynaptic accumulation of AMPA receptors (Turrigiano, 2008).

Interestingly, the sharpening of orientation tuning is thought to be due to a weakening of

nonpreferred inputs, and this weakening most likely occurs at the level of AMPA receptors, as

these receptors are crucial for the formation of orientation maps (Yu et al., 2008). While

excitatory cells display orientation preference prior to eye opening, this tuning is relatively

broad and gradually sharpens in an activity-dependent manner throughout development.

However, few studies have investigated orientation selectivity in juvenile mice at the peak of

the critical period. Interestingly, the expression of Arc steadily increases around this time point,

paralleling this refinement process, and hinting at a direct requirement for Arc. In support of

this conclusion, in Chapter 2, we found, using intrinsic signal imaging and VEPs, that the

normal contralateral bias found in WT animals is moderately reduced in Arc KO mice,

suggesting that loss of a putative mechanism for synaptic weakening may facilitate the

retention of weaker ipsilateral eye projections and result in more binocular cells. In line with

this, adult Arc null mice expressing GFP show an increase in the number of GFP-positive cells
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with low orientation specificity and also broader tuning compared to heterozygous and WT

mice (Wang et al., 2006).

Inhibitory interneurons comprise 20-30% of cortical neurons. Within the cortex

the dendritic axonal arbors of excitatory and inhibitory cells are extremely intermingled.

However, connections between neighboring inhibitory and excitatory cells occur in a

preferential manner such that inhibitory cells connect most with those excitatory cells providing

them with reciprocal excitation, and only maintain weak connections onto other pyramidal cells

(Yoshimura and Callaway, 2005). In general, the specific subtype of interneuron determines

inhibitory-excitatory connections and this connectivity allows for inhibition to play a strong role

in shaping the receptive field tuning properties of excitatory neurons. While there are local

circuit rules that govern the direct connectivity of both pyramidal cells and interneurons within

the superficial layers, there is common excitatory and inhibitory input that arises from layer 5. It

has been shown that the excitatory and inhibitory balance determines normal information

processing within the visual cortex. Inhibitory neurons are critical for maintaining this balance

and act to refine ongoing and evoked cortical activity within the circuit. A number of studies

demonstrate that changes at the level of inhibition can drastically impact response properties

such as orientation tuning and ocular dominance (Chen et al., 2008; Mitchell et al., 2007; Sillito,

1975). In the case of orientation specificity, removal of inhibition (by iontophoretic application

of the GABA antagonist bicuculline) results in a broadening of the tuning curve (Jirmann et al.,

2008; Sillito, 1975, 1977). In a similar manner to Arc, inhibition is thought to act specifically to

hinder responses to nonpreferred orientations, resulting in a sharpening of orientation tuning.

This finding suggests that Arc and inhibition may be two sides of the same coin and function

separately to fine-tune response properties within the brain.

In addition to influencing orientation tuning, maturation of this cell type may mediate

the close of the critical period. Ocular dominance plasticity is disrupted in mice that lack

GAD65, one of two major isoforms responsible for GABA (Hensch et al., 1998). In mice

overexpressing BDNF, the GABAergic circuit matures early, accompanied by an early opening
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and closing of the critical period (Hanover et al., 1999; Huang et al., 1999) Similarly, direct

infusion of the homeoprotein Otx facilitates maturation of parvalbumin cells, resulting in a

precocious critical period and an acceleration of critical period closure. In addition, loss of Otx2

prevents maturation of parvalbumin cells and ocular dominance plasticity does not occur.

These experiments suggest that alteration of one cell type can influence overall cortical

plasticity.

Cell specific responses to monocular deprivation have been reported in slice and most

recently in vivo. In cortical slice, visual deprivation results in a potentiation in the circuit

between fast-spiking inhibitory cells and pyramidal neurons (Maffei et al., 2006). In addition, a

recent paper investigating how monocular deprivation influences inhibitory cells found that

inhibitory cells have a dramatic delay in plasticity compared to excitatory cells. While two days

of monocular deprivation are sufficient to induce an ocular dominance shift in excitatory cells, it

is not until four days of deprivation that a shift occurs in inhibitory cells. This finding lends

support to the theory that a subset of cells in the visual cortex may guide plasticity. Indeed, at

the level of laminar processing, studies in the ferret have shown that plasticity within layer 2/3

precedes that of layer 4 (Trachtenberg et al., 2000). As shown in Chapter 1, loss of Arc results in

deficits in both ocular dominance plasticity and SRP. Whether reduced plasticity in Arc lacking

excitatory cells propagates throughout the visual circuit to other cell types remains to be seen.

In order to better understand the role of Arc at a single-cell level, and to study inhibitory

contributions to plasticity, we decided to use in vivo calcium imaging of juvenile Arc-GFP mice

to probe OD and orientation tuning at the peak of the critical period. This technique provides an

excellent opportunity to test receptive field properties in identified cell types and to further

explore how loss of a gene in identified cells affects processing in neighboring cells. Using this

technique it is possible to assay visual response in four classes of OGB filled neurons: GFP- and

SR101-negative cells (inhibitory), GFP-negative and SR101-positive cells (astrocytes), GFP-

positive and SR101-negative cells (excitatory Arc-containing cells in heterozygotes), and GFP-

positive and SR101-negative cells (excitatory Arc-lacking cells in homozygotes). While we
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were interested in differentiating response properties in both excitatory and inhibitory neurons,

we were also curious to see how genetic knockout of Arc and the resultant reduction of

plasticity in excitatory cells affected overall plasticity in inhibitory cells.

We find that at the peak of the critical period, ocular dominance in both GFP-positive

and -negative cells of Arc heterozygotes, and GFP-negative cells of Arc homozygotes, displays

an adult contralateral bias. However, Arc lacking, GFP-positive cells do not show this

contralateral bias and the majority of cells respond equally to both eyes. By contrast, we find

that critical period orientation tuning is broad in both GFP-positive and -negative cells of Arc

heterozygotes and homozygotes, suggesting that sharpening of orientation selectivity may

occur at a slower rate compared to ocular dominance. In response to 5-6 days of monocular

deprivation, both GFP-positive and -negative cells in Arc heterozygotes show a significant shift

in ocular dominance. However, in the Arc homozygotes, GFP-positive, Arc-negative cells fail to

shift. Surprisingly, GFP-negative, putative inhibitory cells show a normal shift in ocular

dominance suggesting that plasticity in this cell type can operate independently of excitatory

cell plasticity.
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METHODS

Mice used

All experiments were completed according to established protocols and adhered to CAC

guidelines. Arc homozygous (n=5) and Arc heterozygous (n=5) mice (postnatal day 26-32)

were used for all experiments.

Lid suture

Mice were anesthetized with Avertin (20 pl/g). In addition, the analgesic Buprenex

(1pl/g) was administered post surgery. The eyelid margins contralateral to the hemisphere

being imaged were trimmed and the eye sutured shut using 2-3 horizontal mattress sutures.

Mice were deprived for 5-6 days. Eyes were reopened on the day of surgery prior to

craniotomy.

Dark adaption

Prior to experimentation, mice were dark-adapted for -12 hours. Mice were then removed from

the darkness and placed in a stimulation box and exposed to light (-250 lux) to drive GFP

expression.

Immunohistochemistry

Sections were prepared from WT or Arc-GFP mice adapted in darkness overnight. Mice

were exposed to light for 2 hrs as above. Mice were then perfused with saline and 4% PFA, and

the brain removed and placed in 20% sucrose O/N. Brains were sectioned at 50 microns, and in

the case of WT brains double-labelled using antibodies again Arc (Santa Cruz, Ms) and GFAP

(Chemicon, Rb) or GABA (Chemicon, Rb). To examine colocalization between Arc and markers

for inhibitory cell types, Arc-GFP mice were labeled with an antibody for GABA alone and a
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secondary antibody tagged with Alexafluor 594. Colocalization was defined as those cells

containing direct GFP fluorescence within the nucleus of GABA stained cells.

Anesthesia

Mice were anesthetized with a cocktail of Atropine (.001/ g), Fentanyl (0.05 mg/kg),

Midazolam (5.0 mg/kg), and Medetomidin (0.5 mg/kg) delivered i.p.. Mice were reinjected

with a maintenance solution containing Atropine, Fentanyl and Medetomidin every hour s.c. In

addition, all experiments were supplemented with isofluorane (approx .25%-.5%).

Surgery

A heating blanket was used to maintain body temperature at 38oC (monitored using a

rectal probe). Eyes were protected and kept moist by a thin layer of eye ointment. Lidocaine

was injected into the scalp over visual cortex and an incision made to expose the skull. The thin

membrane over the skull was scraped away and the surface washed with saline. The skull was

then affixed to a custom designed head chamber. A craniotomy was made over the binocular

zone of visual cortex. This region was determined using stereotaxic coordinates (-3-3.3 mM

lateral from midline). The skull was kept moist by bathing the surface with a solution of cold

ACSF. A dremel drill was used to thin a rectangular area over the binocular zone and the bone

was gently removed using sharp forceps. To facilitate matching of GFP and calcium dye loaded

cells, Sulfarhodamine 101 (SR101) was placed on the cortex and allowed to be taken up for -5

mins, and then gently rinsed away with warm ACSF. A thin layer of 2% agarose in ACSF was

applied over the exposed region.

Injection of Oregon Green and Two-Photon Imaging
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Pipettes were prepared using a pipette puller from Sutter Instruments (Model #P80).

Oregon Green Bapta AM (OGB) was dissolved in 4ul of 20% DMSO and -2 ul was loaded into

the pipette for injection. Prior to insertion of the pipette, an optimal area within the binocular

zone containing bright GFP positive cells was determined and the filled pipette lowered -200

um below the cortical surface using fluorescent light to guide the injection. A z-stack of Arc-

GFP positive neurons (excitation wavelength: 950 nm) was taken in order to align and identify

cells after calcium imaging. A bolus injection of the dye was then made using a picospritzer

(-1-5 psi for 2.5 minutes) such that a 300 um x 300 um area was filled. To ensure labeling of the

binocular zone the dye was injected in the center of the stereotaxically determined binocular

region.

The activity of OGB filled cells was imaged at an excitation wavelength of 950 nm

(-35mW) using a custom-built microscope and a 20X water immersion objective and the

response to visual stimulation analyzed. Imaged acquisition was conducted using freeware

from the Svoboda lab.

Visual stimulation

For both orientation tuning and ocular dominance an episodic stimulus was used. In the

case of orientation tuning, we stimulated the cortex using gratings which ranged from 0O to 359

in 20' steps. Single gratings were presented for four seconds on followed by a four second off

period. A total of 18 orientations were presented. The orientation selectivity index (OSI) was

calculated using the vector averaging method, and the preferred orientation was determined

from the angle of the mean orientation vector (Dragoi et al., 2000).

For the ocular dominance study we presented random orientations ranging between Oo

to 359" in 20" steps. The stimulus was presented with eight seconds on and eight seconds off,

totally five repetitions of random gratings.



125

Data Analysis

A z-stack of GFP-positive cells was taken prior to injection of OGB. After injection, a z-

stack was also taken of cells filled with OGB. This z-stack was taken so that calcium responses

from GFP-positive and -negative cells could be determined post hoc. To facilitate matching,

astrocytes contained within the GFP and OGB stacks were used as landmarks. In most cases,

due to a slow infusion of OGB (see above), there were only minimal distortions in the location

of cells before and after injection. All matching was done manually, and analyzed using Image J

and Photoshop.

All images obtained during stimulation were analyzed using custom programs written

in Matlab. In cases where movement artifact impaired analysis, image stabilization plugins in

ImageJ were used to realign individual frames. We identified and circled cells manually to

define the region of interest (ROI). Only cells with AF responses that were clearly

distinguishable from the neuropil were chosen for subsequent analysis. Individual pixels

enclosed within a cell's ROI were averaged to get a single time course. To determine the

response amplitude, we subtracted both dark noise and background and then calculated the

mean response across the stimulus period to determine AF/F. We determined the baseline by

taking the mean of the four frames immediately preceding stimulus onset.
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RESULTS

GFP-positive cells in Arc-GFP mice serve as a marker for excitatory cell types

The visual cortex is home to two groups of neurons- excitatory and inhibitory cells. As

mentioned above, each of these cell types plays a critical role in synaptic plasticity. A primary

goal of current neuroscience research is to isolate the contributions of these cell types to overall

neural activity. In support of this aim, a number of transgenic mouse lines are available which

target specific subtypes of cells. One such line is the Arc-GFP knockin mouse (Wang et al.,

2006). To identify excitatory neurons we used Arc-GFP mice in which GFP is under the control

of the Arc promoter. The immediate early gene Arc serves as a reliable marker for excitatory

neurons (Figure 1 A and B). Previous reports have shown that the mRNA of Arc does not

colocalize with astrocytes or GABA-positive neurons in visual cortex (Figure 2) (Tagawa et al.,

2005). However, one study examining Arc expression in the forebrain found that while Arc was

found exclusively in non-GABAergic -CaMKII-positive hippocampal and neocortical neurons,

some GAD65 /67-positive neurons in these regions were observed to express Arc, but only after

electroconvulsive seizure (Vazdarjanova et al., 2006).

To confirm the specificity of Arc protein to excitatory neurons, we first examined

the visual cortex expression of Arc in combination with GFAP, a marker for astrocytes, and

GABA, a marker for interneurons, using double immunofluorescent staining. We found no

colocalization between Arc and either astrocytes or inhibitory cells (Figure 1A). In addition, we

further confirmed that Arc and GABA do not overlap by examining colocalization of direct GFP

fluorescence and GABA protein in Arc-GFP mice. As expected, no overlap was seen, confirming

the specificity of Arc for excitatory cell types and proving the feasibility of using Arc-GFP

expression to facilitate differentiation of cell types in vivo (Figure 1B).
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Stimulating Arc expression and loading of OGB

In visual cortex there is a low basal level of Arc protein within the superficial layers.

Thus caged Arc-GFP mice have very low GFP expression at any given time. In order to drive

expression of GFP and visualize excitatory cells, mice were placed in a light sealed room

overnight for -18 hours prior to experimentation. Mice were then removed from the darkness

and placed in a well-lit box and allowed to move around freely for - 15mins. After this point,

mice were removed from the box and anesthetized. While the anesthesia took affect, mice

received continuous visual stimulation. A craniotomy was then made over the visual cortex and

a custom designed head plate was affixed to the mouse prior to being placed under the two-

photon microscope for imaging (Figure 3A and B). In order to visualize astrocytes in addition to

neurons, SR101 was placed on the surface of the cortex and allowed to be taken up for - 5 mins

and then the cranial window was sealed completely with agarose. Mice were continuously

stimulated throughout this process.

The binocular zone of mouse visual cortex receives input from both eyes.

Because we were interested in assaying ocular dominance plasticity, in addition to orientation,

all experiments were targeted to this region. The binocular zone of the visual cortex is readily

identified using stereotaxic coordinates (-3mm from the midline). Using these coordinates we

were able to reliably isolate the binocular zone in each experiment. Localization to the binocular

zone was confirmed by the presence of a response to ipsilateral eye stimulation. After finding a

region within the binocular zone relatively devoid of vasculature, we used two-photon imaging

to examine the expression of Arc-GFP cells. We found, in agreement with a previous study

(Wang et al., 2006), that there was no difference in GFP fluorescence in Arc homozygous or

heterozygous mice. In some cases, it was necessary to adjust our location due to shadows from

surrounding blood vessels, which reduced the optics and thus impaired visualization of GFP

cells. Once an optimal imaging region was determined a pipette was lowered into the brain at a
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depth of -150 pm. The majority of our imaging took place between depths of 150-250 pm. This

depth corresponds to layer 2/3 of visual cortex. In general we found that beyond a depth of

-250-300 pm light scattering impaired fluorescence detection.

One concern from our experiments was that the anesthesia might interfere with

the expression of GFP. However, we found that by continuously stimulating the mice we could

reliably see bright cells after 2 hrs. In addition, as mentioned above we saw no significant

difference between overall GFP fluorescence in Arc homozygotes and heterozygotes as reported

previously (Wang et al., 2006).

Because there is an overlap in the emission spectra of OGB and GFP, we relied upon

post hoc matching of z-stacks taken before and after injection of OGB to determine the subtype

of individual neurons. Cells that were positive for GFP prior to injection, and filled with OGB

but lacking SR101 were classified as excitatory cells. Those cells that were negative for GFP,

negative for SR101, and filled with OGB were classified as inhibitory cells. In our experiments

this proved to be a reliable method for determining the cell type (Figure 3C). However, in early

experiments we realized that rapid infusion of OGB often led to distortions of the surrounding

tissue that impaired matching of cells taken prior to infusion. To overcome this, we reduced the

infusion rate of OGB into the cortex. In addition to improving post hoc matching of the images,

we found that slower infusion of OGB improved the overall cortical health of the mice and

resulted in an improvement in spiking activity. In most experiments we were able to load a

region of approximately 200 to 300 um 2. This resulted in labeling of approximately 50-100

cells/ mouse.

Inhibitory neurons comprise between 20-30% of all neurons. We found that in

most experiments 33-35% of neurons that took up OGB lacked GFP-expression-in a few animals

this increased to -40%. While this result is slightly higher than what is found within the

literature, it suggests that while all GFP- positive cells are excitatory, there is a small population

of cells that are GFP-negative which may also be excitatory and counted as inhibitory in our

analysis.
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Broad orientation tuning in GFP-positive and -negative cells of juvenile Arc

heterozygotes and homozygotes

Using Arc-GFP heterozygote mice we asked whether orientation tuning was different in

GFP-positive (putative excitatory cells) versus -negative neurons (putative inhibitory cells). We

stimulated Arc heterozygous mice using gratings at eight different orientations (separated by

20' steps), and drifting in two different directions. We then measured changes in the

fluorescence within individual cells in response to stimulation to readout the evoked calcium

response (~1frame s- ) (Figure 4A1 and A2). We found no significant difference in the

distribution of orientation selectivity in GFP-negative cells and GFP-positive cells (Figure 5A;

Kolmogorov-Smirnov test, p>.2). GFP-positive cells range from .493 (tuned) to .02 (poor

selectivity). The mean OSI was .105 ± .008 (SEM). Similarly, we failed to find GFP-negative

neurons with OSI values higher than .336, and the mean OSI was .100 + .01 suggesting that

during the critical period the majority of neurons within visual cortex are only mildly

orientation selective (Figure 5B). It should be noted that a portion of the cells identified as GFP-

negative may contain excitatory cells and it is possible that higher OSIs attributed to GFP-

negative cells may actually be excitatory (see above). Those cells with OSI values less than .1

were considered to be poorly selective in our study. Interestingly, 62% and 46% of the cells

found in GFP-negative and GFP-positive neurons respectively, of heterozygotes fell into the

category. This percentage correlates with the percentage of neurons found to be broadly tuned

in previous single unit studies (Hubener, 2003).

Next, we looked at orientation tuning in Arc homozygous mice (Figure 4B1 and B2). A

previous report showed that Arc adult mice have reduced orientation selectivity compared to

Arc heterozygous and WT mice. We wanted to see whether we could recapitulate this finding at

a single cell level in critical period mice. Examples of typical responses from GFP-positive and -

negative cells are shown in (Figure 4B1 and B2). We found that the distribution of OSIs did not

differ between GFP-positive cells in the Arc homozygotes compared to the heterozygotes
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(Figure 5A and B; Kolmogorov-Smirnov test, p>.1). The mean OSI in GFP-positive cells was .117

+ .008. OSI values ranged from .03-.305 (Figure 5C). As a further analysis, we examined

orientation selectivity in GFP-negative cells in these mice. The range of OSIs found in the GFP-

negative cells were similar to that found for GFP-positive cells (.03-.2182) with a mean of

.104±.008 (Figure 5C). In addition, like the GFP-positive cells the overall distribution was shifted

towards lower OSIs (Figure 5B; Kolmogorov-Smirnov test, p>.5). Overall, we detected no

significant difference between GFP-positive and -negative cells in Arc heterozygote and

homozygote mice (Figure 5C; one-way Anova, F (3, 245) = .55, p = .64). These findings suggest

that differences in OSIs between Arc homozygotes and heterozygotes, in addition to subtypes

of cells may not manifest until later in development.

Reduced contralateral bias in GFP-positive cells in Arc homozygotes

We next characterized the eye-specific response within the binocular zone of visual

cortex. We took heterozygous and homozygous mice that were at the peak of the critical period

and assayed ocularity in GFP-positive and GFP-negative cells. The ocular dominance score was

calculated as IPSI/(IPSI+CONTRA), where a score of 0 indicates a predominantly contra

response and a score of 1 indicates that a cells is exclusively driven by the ipsilateral eye. A

value of .5 indicates that a cell is equally responsive to both contralateral and ipsilateral

stimulation (Figure 6). We find that both GFP-positive and GFP-negative cells have similar

distribution of ocular dominance in Arc heterozygote mice (Figure 7A and 7B; p>.4, Wilcoxon

ranksum test). While many cells within the binocular zone of heterozygous mice responded

equally to both eyes, there was a significant contralateral bias. In addition, the average ocular

dominance score agrees with that found in the literature using both intrinsic signal imaging and

VEPs (Frenkel and Bear, 2004; Kalatsky and Stryker, 2003).

In our earlier study we found that Arc homozygotes had a trend towards more

binocular ocular dominance compared to their wild-type counterparts (Chapter 2 of this thesis).

We wanted to ask whether this also occurred at the level of single cells and if it was specific to
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ocular dominance towards more binocular ocular dominance in GFP-positive cells within the

Arc homozygotes (Figure 8A, p<.01, Wilcoxon ranksum test). However, GFP-negative cells in

the Arc homozygote mice displayed a normal ocular dominance distribution as seen in

heterozygotes with a trends towards a contralateral bias (Figure 8B).

Impaired ocular dominance shift in GFP-positive cells in Arc homozygotes

Next, we wanted to investigate how monocular deprivation might differentially affect

plasticity in GFP-positive versus -negative cells. A recent study showed that inhibitory cell

plasticity proceeds more slowly than excitatory cell plasticity, suggesting that inhibitory cell

plasticity may occur in a follow the leader manner (Gandhi et al., 2008). Because inhibitory cell

plasticity takes place more slowly than excitatory cells, we monocularly deprived Arc

heterozygotes for 5-6 days. In agreement with a previous study (Gandhi et al., 2008) we find

that there is a shift in both GFP-positive and -negative cells at this time point (Figure 9A,B,C

and Supplemental Figure 1A and B). We then asked whether or not inhibitory plasticity could

proceed in the absence of excitatory plasticity. As mentioned previously, Arc homozygotes

display reduced plasticity compared to WT mice (Chapter 2 of this thesis). To determine

whether there was a disruption of plasticity at the level of GFP-positive Arc lack cells compared

to neighboring GFP-negative cells we monocularly deprived Arc homozygous mice. We were

curious how inhibitory cells would behave in a circuit of Arc lacking cells with reduced

plasticity and whether inhibitory plasticity would also be impaired.

We found Arc lacking GFP-positive cells fail to shift their ocular dominance score in

response to monocular deprivation (Figure 10A, C and Supplemental Figure 1C). However,

GFP-negative cells show a significant shift in ocular dominance (Figure 10B, C, and

Supplemental Figure 1D). Thus, reduced plasticity in GFP-positive (putative excitatory) cells by

removal of Arc protein is ineffective in preventing plasticity within GFP-negative (putative

inhibitory) neurons.
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Discussion

Experience is critical for the refinement of both orientation tuning and ocular

dominance. In this study we have examined visual response properties in inhibitory (GFP-

negative) and excitatory (GFP-positive) cells of Arc heterozygotes and homozygotes. While

both GFP-positive and -negative cells of Arc heterozygotes and homozygotes display broad

tuning within the critical period, we find a significant difference in ocular dominance for GFP-

positive cells lacking Arc-protein.

It is conceivable that loss of a putative mechanism for synaptic weakening might have

an impact on the eye-specific preference of individual cells. By assaying the ocular dominance

for individual cells in both Arc heterozygotes and homozygotes we found that there is a greater

predominance of purely binocular GFP-positive cells in Arc homozygotes. By contrast, a normal

contralateral bias existed in GFP-positive cells in the Arc heterozygotes, and GFP-negative cells

from both homozygote and heterozygote Arc mice. Our earlier report showed that dark reared

mice mimic the cortical state of Arc KO mice (Chapter 2 of this thesis). These mice show a trend

towards a lower ocular dominance compared to normally reared mice, indicating that activity is

critical for the establishment of normal ocular dominance. In the case of Arc homozygotes, loss

of a mechanism for synaptic weakening may impair the normal pruning of weaker ipsilateral

inputs and lead to a more binocular ocular dominance score.

Furthermore, we assessed plasticity in Arc heterozygous and homozygous mice. As

reported previously, monocular deprivation shifts ocular dominance in both GFP-positive and -

negative cells (Gandhi et al., 2008; Mainardi et al., 2009). By contrast, we found that plasticity in

GFP-positive cells of the Arc homozygotes is reduced compared to GFP-negative cells. This

data supports our findings from Chapter 2. GFP-positive cells in the Arc homozygotes lack a

mechanism for removal of AMPA receptors from the surface. This removal is thought to

mediate the depression of the deprived eye response underlying shifts in ocular dominance. It

is will be interesting to determine in future studies whether reduced plasticity in GFP-negative
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cells affects the output of GFP-positive cells. Because inhibition plays such an important role in

maintaining overall cortical activity, it is reasonable to expect that a reduction of inhibitory

response might change cortical dynamics in some way. However, at present, it is difficult to

compare changes in absolute response across animals due to differences in anesthesia, and the

cortical state of each animal. Of additional interest would be to examine the contribution of

individual subtypes of inhibitory cells in vivo. Inhibitory interneurons can be separated into

three populations containing parvalbumin, calbindin, or calretinin (Defelipe et al., 1999).

Double immunostaining using c-fos and parvalbumin, suggests that parvalbumin positive cells

may have reduced ocular dominance plasticity after deprivation (Mainardi et al., 2009). In our

hands, putative inhibitory cells show a ready shift after 5 days of deprivation. This may be due

to contributions from other subtypes of inhibitory cells. In addition, as mentioned above -5% of

cells that are GFP-negative may actually be excitatory.

Arc expression in the visual cortex is critically dependent on NMDA receptor activity.

Our calcium imaging data provide strong evidence that the NMDA receptor-signaling cascade

is critical for the development of ocular dominance. In the mouse, there is a predominance of

crossed (contralateral) optic nerve fibers compared to uncrossed (ipsilateral fibers). Despite

this, in very young rats (P17-P19) there is a large number of binocular cells within the binocular

zone of visual cortex (Fagiolini et al., 1994). However, by the peak of the critical period a

contralateral bias has been established in cortex and continues throughout adulthood. This

suggests that there may be an activity-dependent pruning of the weaker ipsilateral eye

projections. Data from dark reared adult rats suggests that this may well be the case. Dark

reared adult rats have a greater percentage of binocular cells compared to normally reared rats-

similar to what we find for GFP-positive cells in the Arc homozygote mice.

Activity is also essential for the normal development of orientation tuning. Studies in

adult ferrets have shown that the NMDA receptor signaling pathway is necessary for the

developmental sharpening of orientation selectivity (Ramoa et al., 2001). However, our data

suggest that orientation selectivity may mature at a slower rate than ocular dominance. In
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support of this, experiments conducted in rats show that in very young rats, selectivity for

orientation is virtually absent (Fagiolini et al., 1994). Gradually, over a period of weeks cells

develop orientation specificity. At P30, the orientation selectivity of rats remains broad,

however by P45 an adult sharpening of response has occurred. Interestingly, the removal of

activity by dark rearing can also prevent this from occurring. For example, the visual cortex of

P60 rats dark reared from birth resembles that of P19 rats. In line with this, a previous study

examining orientation selectivity in adult Arc homozygotes found that these mice displayed

broader orientation tuning compared to their WT and heterozygote counterparts. This result

suggest that deficits in orientation selectivity between Arc homozygotes and heterozygotes may

not be apparent until a later time point in development then the critical period.

Interestingly, Arc expression rapidly increases after eye opening and parallels the period

during which experience-dependent changes take place. It is possible that Arc functions within

the neuron to enhance response properties by the removal or reduction of weaker inputs. This

would result in a sharpening of overall receptive field properties throughout development. In

both Arc homozygotes, and dark reared mice, the absence of Arc may then result in a deficit in

the emergence of mature response properties. In the case of ocular dominance this would

manifest as more binocular cells, and for orientation selectivity broader orientation tuning.

As we have shown, Arc-GFP mice provide an excellent opportunity to differentiate the

contributions of various subtypes of neurons to plasticity. In addition, a number of transgenic

lines are becoming available that more specifically label subtypes of interneurons and

astrocytes. Because of the wide variety of bright fluorescent markers available (e.g. RFP,

tdTomato, and CFP to name a few), it will soon become possible to simultaneously image OGB

and identify specific subtypes online by using a non-overlapping fluorescent marker; thus

overcoming the limitation of post hoc matching of cells and facilitating more conclusive

examination of cellular subtypes. Our findings for increased binocularity in GFP-positive cells

of Arc homozygotes support the hypothesis that Arc may function to sharpen response

properties throughout development by the removal or suppression of weaker inputs. In
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addition, loss of Arc affects the plasticity of excitatory cells specifically, while leaving plasticity

in inhibitory cells intact, suggesting a relative independence of plastic mechanisms operating in

these neurons. Whether inhibitory cells possess an "Arc-equivalent" molecule remains to be

seen. With the rapid pace of molecular genetics, combined with the ability to analyze the

functional response of single cells, a more complete understanding of interactions between

cellular subtypes and their individual contributions is in the near future.
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A

B

Figure 1. A. Sections from a WT CP mouse dark adapted overnight and exposed to light

prior to being double-labeled with antibodies against Arc and GABA (specific for

inhibitory cells), or Arc and GFAP (specific for astrocytes). No colocalization was

detected suggesting that Arc is specific to excitatory cell types. Scale bar= 50 pm. B.

Direct GFP fluorescence from an Arc-GFP mouse dark adapted overnight and exposed

to light prior to sectioning and immunostaining using an antibody against GABA. No

GFP fluorescence can be detected within the nucleus of GABA-positive cells. Scale bar=

10 pm.
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Arc & CaMKIIa Arc & GAD67

Figure 2. In situ hybridization using probes against mRNA for Arc, in addition to

CamKII-alpha and GAD67, markers for excitatory and inhibitory subtypes respectively.

Arc colocalizes with -96% of all CamKII-alpha positive cells. No overlap was found

between Arc and GAD67. Adapted from Tagawa et al 2005. Scale bar=l0um.
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A B

Front face

C

Figure 3. A. Image of a craniotomy centered over the visual cortex. The binocular zone

was determined using known stereotaxic coordinates and verified by the presence of

ipsilateral eye response to stimulation. B. Image of a mouse with head plate fixed and

prepared for two-photon imaging (courtesy of Daniela Tropea). A screen was placed

directly in front of the mouse and an episodic visual stimulus of 18 orientations was

presented. C. (Top row) Images of GFP expression and (right) corresponding astrocyte

labeling (SR101) prior to injection of OGB. (Bottom row) Image of filled cells after
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injection of OGB and (right) corresponding astrocyte labeling. (Overlay) Images were

aligned after the imaging session using astrocytes labeled before and after injection as

landmarks. In the overlay image it is possible to see cells filled with OGB and GFP-

negative (putative inhibitory cells, indicated by white arrow), in addition to cells filled

with OGB and GFP-positive (putative excitatory cells, indicated by black arrow). Scale

bar=O0um.
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Figure 4. Al. Imaging plane in an Arc-heterozygous mouse in superficial layer 2/3 of

visual cortex. (Green crosses= GFP-positive cells, White circles= GFP-negative cells,

Pink arrows= Astrocytes). A2. (Top row) Zoomed in image of two OGB filled neurons,

one GFP-positive (green circle) and the other GFP-negative (blue circle) contained

within the white box in Al. (Bottom row) Polar plots of responses elicited after the

presentation of gratings (00 to 3600 at 20°steps) from the two cells. Juvenile mice display

relatively broad tuning. The color of the trace corresponds to the response from the
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neuron circled using the same color in the image above. Bl. Imaging plane in an Arc-

homozygous mouse at a similar point in layer 2/3. Cells are identified in the same

manner as in Al. B2. Polar plot of response to presentation of gratings from two

neurons contained within the white box in Bl. Magnitude of response = AF/F x10 2.
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Distribution of OSIs from GFP-positive and -negative responsive cells in an Arc

homozygote mouse. (n=2, GFP-positive n=55, GFP-negative n=37). C. In addition there

was no significant difference between the mean OSI across groups (one-way Anova, F

(3, 245) = .55, p = .64)
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Figure 6. A. Schematic depicting the detection of eye-specific response. The relative eye-

specific drive was measured by stimulating each eye individually. B. Ocular dominance

was calculated as IPSI/IPSI+CONTRA. A score of 0 equals a purely contralateral eye

response and a score of 1 equals a purely ipsilateral response. A score of .5 indicates a

purely binocular response. Sample traces underlying a range of OD scores are shown

for the contralateral eye (purple) and the ipsilateral eye (yellow). Grey shaded area

represents the period during which the cells were being stimulated.
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coded ocular dominance map of GFP-negative cells in an Arc-heterozygous mouse.

Ocular dominance score calculated as in Figure 6.
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Figure 8. Al. Distribution of ocular dominance scores for 32 GFP-positive cells across 2

mice. A trend towards more binocular scores exists for GFP-positive cells within the

binocular zone of Arc-homozygotes. Grey shading indicates equal drive from both eyes.

A2. Color-coded ocular dominance map of individual cells within layer 2/3 of visual

cortex in an Arc-homozygous mouse. Ocular dominance was calculated as in Figure 6.

B1. Distribution of ocular dominance scores for 35 GFP-negative cells in 2 mice. A

contralateral bias, similar to that found in heterozygote mice, can be seen in GFP-
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negative cells contained within Arc homozygotes. Grey shading indicates equal drive

from both eyes. B2. Color-coded ocular dominance map of GFP-negative cells in an Arc-

heterozygous mouse. Ocular dominance score calculated as in Figure 6.
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Figure 9. Al. Cumulative distribution of ocular dominance scores in control (dark

green) and deprived (light green) Arc-heterozygous mice. A significant shift in ocular

dominance scores towards lower values can be seen (p<.05, Wilcoxon ranksum test; n=4

mice, control=112 cells; n=l mouse, deprived=12 cells). B. A significant shift in ocular

dominance score can also be seen for the distribution of GFP-negative cells. Dark blue-

control, light blue-deprived (p<.05, Wilcoxon ranksum test; n=4 mice, control=46 cells;

n=l mouse, deprived=13 cells). C. Mean ocular dominance score within the binocular

zone of GFP(+) and GFP(-) cells shown in A and B for an Arc-heterozygous mice with

and without monocular deprivation. A significant shift in the mean OD score after

deprivation is detected for both GFP-positive (p<.05, Student's t-test; GFP-positive, No
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MD= .32+.01, MD= .44+.05) and GFP-negative cells (p<.05, Student's t-test; GFP-

negative, No MD=.34+.02, MD=.48±.05). Bars are color-coded as in A. and B.
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Figure 10. A. Cumulative distribution of ocular dominance scores in control (dark

green) and deprived (light green) Arc-homozygous mice. A reduced shift in the ocular

dominance score occurs in GFP-positive cells in Arc-homozygous mice. (p>.45,

Wilcoxon ranksum test;; n=2 mice, control=32 cells; n=3 mice, deprived=26 cells) B.

However, a significant shift in ocular dominance score can be seen for GFP-negative

cells. Dark blue- control, light blue-deprived (p<.01, Wilcoxon ranksum test;; n=2 mice,

control=35 cells; n=3 mice, deprived=26 cells). C. Mean ocular dominance score within

the binocular zone of GFP(+) and GFP(-) cells in Arc-homozygous mice with and

without monocular deprivation. No shift in the mean OD score is detected for GFP-

positive cells after deprivation (p>.25, Student's t-test; GFP-positive, No MD= .43±.02,
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MD= .47+.02) and GFP-negative cells (p<.05, Student's t-test; GFP-negative, No

MD=.33+.02, MD=.49±.01). Bars are color-coded as in A. and B.
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Supplementary Figure 1. Examples of color-coded ocular dominance maps of single

cells within the binocular zone of visual cortex. A. GFP(+) and B. GFP(-) cells from a

single plane within either a control or deprived Arc heterozygote mouse. C. and D.

show examples of color-coded OD scores for both GFP(+) and GFP(-) cells, respectively,

in Arc homozygotes with (control) and without (deprived) monocular deprivation.
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CHAPTER FIVE

CONCLUDING REMARKS
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In conclusion, we find that Arc is critical for experience-dependent plasticity and

the normal establishment of the C/I ratio. The data presented within this thesis provide

the first evidence of Arc's involvement in mediating the cortical response to monocular

deprivation. We also report that Arc is critical for SRP in visual cortex. It is clear from

these experiments that Arc-GFP mice have proved useful for probing the contributions

of Arc to experience-dependent plasticity at both a population and single-cell resolution.

Using these mice we have been able to unveil previously unknown contributions of Arc

to a number of processes operating within the visual cortex. However, a number of

questions still remain.

Alternative genetic approaches to assaying Arc's function in vivo

While knockout mice provide useful tools for understanding how a particular

molecule contributes to plasticity within specific regions of the brain, it would be ideal

to have even more precise control over the point in development at which Arc is

removed in order to more carefully examine its function and effects at the synapse. It is

always an issue that knockout of a gene may result in compensatory changes within the

animal that occlude or at times even magnify the deficit seen. Advances in genetic

mouse models have produced methods that allow for the conditional knockout or

tissue-specific targeting of a gene. With a conditional knockout it would be possible to

probe Arc's function at a particular stage of development such as the peak of the critical

period and examine how removal of Arc only during the period in which the eye is

being deprived impacts plasticity. Similarly, Arc over-expressing mice also provide an

opportunity to further investigate Arc's function in vivo. Increases in Arc protein might

facilitate a precocious critical period or accelerate the shift in ocular dominance that

occurs with lid suture.
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In regard to single cell analysis of Arc function, Arc-GFP mice are clearly useful

for the identification of specific cell types. However, Arc-GFP mice express a

destabilized form of GFP (d2EGFP) where the half-life has been shortened to 2 hrs (Li et

al., 1998), similar to the temporal profile of Arc protein. This, combined with the fact that

the endogenous reporter is driving GFP expression, leads to a lower level of

fluorescence than what might be seen otherwise. In addition, while two-photon imaging

reduces the autofluorescence inherent in other microscopy techniques, the light

scattering that occurs at deeper depths within the brain further occludes signal intensity.

Thus, when examining GFP-expressing cells in deeper layer 2/3, even with strong

stimulation it is possible that cells that appear to be GFP-negative may actually contain

GFP, but, due to optics or overall expression, fluorescence may be extremely dim. While

there are ways to optimize the signal intensity i.e. reducing scan speed, increasing laser

power etc. a brighter fluorescent tag would be ideal.

One candidate transgenic line is the Arc-dVenus line (Eguchi and Yamaguchi,

2009). In these mice the Arc promoter is used to drive expression of a dVenus reporter.

Importantly, a chimeric intron expressing a simian virus polyadenylation signal was

used to increase the Arc promoter levels to 100-fold greater than endogenous Arc, thus

increasing overall fluorescence intensity. Using this line it possible to visualize Arc-

dVenus expression with epifluoresence even under low magnification, suggesting that

with two-photon microscopy the cells would be remarkably bright. Interestingly, the

authors report that Arc-dVenus mice do not display deficits in learning and memory,

which would facilitate the use of this line for studies of plasticity using Arc solely as a

marker for excitatory cells. In addition, it would be possible to cross these mice with

other knockout lines to explore activity-dependent plasticity. However, while dVenus

cells display laminar organization similar to that of Arc mRNA and protein in WT mice,

one caveat of this study is that the authors fail to present evidence that dVenus

fluorescent cells in visual cortex actually colocalize with endogenous Arc at a single cell
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level. It would be necessary to confirm that dVenus-positive cells colocalize with Arc

protein using immunofluorescence.

Probing synaptic scaling, LTD, and LTP in visual cortex of Arc KO mice

While the studies conducted within this thesis have all been in vivo, in vitro

assays also provide an opportunity to further explore the role of Arc in both Hebbian

and homeostatic mechanisms. Studies in hippocampal and forebrain culture have

indicated that Arc is required for LTD, LTP, and synaptic scaling (Plath et al., 2006;

Shepherd et al., 2006; Waung et al., 2008). As in the hippocampus, the forms of LTP and

LTD operating within visual cortex are triggered by strong and weak activation of

postsynaptic NMDA receptors. Indeed, we find in vivo that a number of processes

thought to rely upon these mechanisms, such as deprived eye depression and open eye

potentiation, are disrupted. Whether these processes are indeed disrupted at the level of

a single synapse within the visual cortex remains to be seen.

As we have discussed throughout this thesis, increases and decreases in activity

result in homeostatic changes at the level of AMPA receptors. For example, decreasing

activity by dark-rearing mice results in an increase of AMPA receptor mEPSCs.

Conversely, increased activity reduces mEPSCs globally (Seeburg and Sheng, 2008). Arc

would be predicted to play a role in the synaptic weakening that occurs in response to

increased activity such in the case of GABA blockade. It would be interesting to see

whether loss of Arc would prevent this process within visual cortex. In addition, it

would be possible to probe the contributions of Arc in a layer specific manner. Because

the highest levels of Arc can be found within layers 2/3 and 4, and as Arc is not

expressed with in layer 5 (Tagawa et al., 2005) it would be interesting to determine how

response properties of cells in these layers differ from one another in the presence and

absence of Arc.
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An examination of the mechanistic contributions of Arc would be particularly

relevant around eye opening. As mentioned previously, Arc is rapidly upregulated after

eye opening (Lyford et al., 1995) and the gradual increase in Arc expression parallels the

gradual decrease in AMPA receptor mEPSCs that takes place in layer 2/3 and 4 during

the pre-critical period (Desai et al., 2002). One can easily hypothesize from the properties

of Arc that it would play a critical role in this developmental refinement process.

Structural plasticity in Arc KO mice

In addition to functional changes such as synaptic strengthening, many cortical

manipulations result in structural modification of dendritic processes (Engert and

Bonhoeffer, 1999). Indeed, Arc protein has been shown to interact with the actin

cytoskeleton, putting it in a prime position to not only influence synaptic strength but to

play a role in structural remodeling of dendritic spines after NMDAR dependent LTP

inducing activity. We have crossed Arc KO and WT mice into a GFP-S line that allows

labeling of layer 2/3 neurons (Feng et al., 2000) (Figure 1). Changes in spine density and

morphology are well correlated with synaptic plasticity (Oray et al., 2004). Indeed, after

monocular deprivation there is a decrease in spine density in layer 2/3 of visual cortex

(Mataga et al., 2004). It would be interesting to examine dendritic spine density in

monocularly deprived Arc KO GFP-S mice and compare to structural changes in

deprived WT GFP-S mice. It will be interesting to see whether there are both functional

and structural deficits in Arc KOs compared to WT in response to reduced cortical drive.

In addition to examining spine density, it would be interesting to assay spine size

and shape. Increased AMPA receptor surface expression in Arc KO mice may result in a

greater number of large stubby and mushroom spines compared to WT mice. Whether

these spines will have only the appearance of being stronger and mature spines, while

being functionally immature, will be interesting to determine. Alternatively, it is equally

possible that Arc lacking cells will have an increase in filopodia and thin spines.



166

Sustained synthesis of Arc protein is required for the expansion of the actin

cytoskeleton which accompanies LTP suggesting that Arc synthesis may be crucial for

stabilization of spine morphology after potentiating events (Soule et al., 2006). In Arc KO

mice this stabilization may not occur. Arc expression is activated via BDNF-induced LTP

(Ying et al., 2002), suggesting that Arc may work in concert with BDNF to stabilize

newly formed synapses. BDNF is known to influence axonal arborization and most

recently has been shown to exert an effect on postsynaptic neuronal connectivity as well

by coordinating synapse formation between pre- and postsynaptic neurons.

Microinjection of BDNF on tectal neurons in vivo results in increased axonal

arborization and an additional increase in spine density on dendrites. Blocking

NMDARs prevents this increase (Sanchez et al., 2006). Consistent with its hypothesized

role in synaptic growth and reorganization, a recent study found that a number of the

genes simultaneously co-upregulated with Arc in response to BDNF-induced LTP, are

involved in synapse formation and maturation e.g. Narp and Neuritin (Wibrand et al.,

2006). Neuritin, also known as the candidate plasticity gene 15 (CPG15), has previously

been shown to promote dendritic and axonal arbor growth (Nedivi et al., 1998).

One form of perceptual learning found in mice that may depend on Arc is

stimulus response potentiation (SRP), which occurs in mouse visual cortex (Sawtell

2006) and has been detected using visually evoked potentials. Interestingly, SRP is

NMDAR-dependent and requires AMPAR trafficking. In Chapter 2, we have shown that

Arc may be involved in this form of learning as SRP is completely disrupted in Arc KO

mice. Using the GFP-S line it would also be possible to determine whether there is a

structural correlate to SRP. As SRP is a mechanistic correlate of LTP, it is possible that

induction of SRP would lead to enlargement or stabilization of dendritic spines. It would

be interesting to examine structural changes in WT GFP-S and Arc KO GFP-S mice. In

addition, because SRP is expressed in all layers it would also be feasible to use Arc KO

GFP-S mice to examine differences in structural modifications occurring in those layers
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normally containing Arc (layers 2/3 and 4) and compare them to layer 5 where Arc is

not expressed. However, in the absence of Arc it is possible that structural correlates of

SRP in layer 5 apical dendrites would also be impaired due to deficits in upstream

neurons projecting to this layer.

A role for Arc in learning and adaptation paradigms

In addition, it will be interesting to examine whether Arc is involved in other

forms of plasticity such as adaptation and perceptual learning at a single cell level using

two-photon functional imaging. The mechanisms underlying SRP may be similar to

those underlying adaptation. In this form of learning, repeated presentation of gratings

of a single orientation result in a significant potentiation of response to that orientation.

Modifications in response to the initial repeated orientation are extremely persistent and

last over several days. However, adaptation operates over a much more rapid time

period- seconds to minutes. Whether Arc dependent mechanisms also underlie

phenomena such as adaptation remain to be seen.

Interaction with other candidate plasticity molecules

Intact operation of NMDA signaling pathways is critical for Hebbian plasticity to

proceed normally (Kleinschmidt et al., 1987; Sawtell et al., 2003). NR2A KO mice have a

deficit in deprived eye depression and a precocious potentiation of the ipsilateral eye

response (Cho et al., 2009). It is unknown how an impairment of signaling through

NMDA receptors due to loss of NR2A might influence activity dependent Arc induction.

As Arc signaling is dependent upon NMDA receptors, it is tantalizing to predict that

low levels of Arc in NR2A KO mice may mediate the disruption in deprived eye

depression seen. However, the precocious potentiation of open eye response would not

be predicted given that juvenile Arc KO mice do not show response potentiation after
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extended MD. It would be useful to assay basal Arc expression in these mice to

determine whether lower Arc levels are present in these mice compared to WT.

In addition, GAD65 KO mice have impaired ocular dominance plasticity and

LTD (Choi et al., 2002; Kanold et al., 2009). Recent evidence suggests that this

impairment may be due not only to changes at the level of inhibition, but also in levels

of excitation. Application of diazepam rescues deficits in both LTD and ocular

dominance plasticity, however this rescue is not due to enhancement of inhibition as

previously thought as GABA A receptor levels remain unchanged after treatment.

Instead, it appears that the restoration of plasticity is due to increased signaling through

NMDA receptors. As Arc operates downstream of NMDA receptors, it is possible that a

disruption of Arc induction occurs in GAD65 KO mice thus impairing LTD and ocular

dominance plasticity. Along this line, a restoration of proper signaling through NMDA

receptors by application of diazepam would also restore Arc function. Low levels of Arc

in both the NR2A and GAD65 KO lines would confirm our findings that Arc is critical

for ocular dominance plasticity and hone in on how upstream changes in inhibition and

excitation may result in deficits in plasticity due to an impairment of the function at the

level of a single molecule, Arc.

It is now apparent that both Hebbian and homeostatic processes operate hand in

hand to mediate experience-dependent plasticity over various timescales. How Arc

works in tandem with other molecules implicated in ocular dominance plasticity, such

as the synaptic scaling molecule TNF-alpha, remains to be clarified. In addition, a

comparison of orientation tuning in adult Arc KO and TNF-alpha mice would shed light

on mechanisms underlying the sharpening of response to preferred and weakening of

non-preferred inputs. Previous work suggests a role for Arc in the developmental

weakening of non-preferred inputs that facilitates orientation selectivity. Whether TNF-

alpha also plays a complementary role in the strengthening of the response of preferred

inputs remains to be seen. In addition, it would be of interest to cross Arc KO mice with
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TNF-alpha KO mice to determine how complete loss of synaptic scaling up and down

might influence synaptic plasticity. Because synaptic scaling has been suggested to serve

as a tool to prevent runaway excitation or depression as a result of Hebbian

mechanisms, it is possible that all forms visual cortical plasticity would be completely

impaired. However, due to the overlapping deficits of Arc KO and TNF-alpha mice,

crossing these two lines would serve to eliminate both Hebbian and homeostatic scaling.

Thus, it is not clear what findings might arise.

Conclusion

It is readily apparent from these experiments that the immediate early gene Arc

is a critical player in synaptic physiology. Arc's involvement in plasticity and the

developmental refinement of response properties provide only a small piece of the

puzzle regarding the role of this molecule in experience-dependent plasticity. Our

findings suggest the interesting possibility that disruption of Arc may also be involved

in brain disorders such as autism and Alzheimer's disease as it lies downstream of a

number of molecules that have been previously implicated in these disorders. In

addition, while it is clear that Arc serves as a powerful regulator of AMPA receptor

internalization, it is likely that Arc interacts with a number of other key molecules at the

synapse. It will be interesting to see how the function of Arc, previously thought to serve

merely as a marker for activity, is further elucidated through future experimentation.
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A B

Figure 1. Fluorescent labeling of layer 2/3 cells in WT and Arc KO mice allows analysis

of structural plasticity. A. Cell body and dendrites of a layer 2 / 3 cell in the visual cortex

of a GFP-S mouse. Scale bar= 20 um. Image take at 63X B. Arc KO mice were crossed

with GFP-S mice on a BL/6 background. Heterozygotes were bred and genotyped for

Arc KO and positive GFP expression. Images depict primary branch of a GFP positive

neuron in layer 2/3 of Arc KO/GFP-S (top) and WT/GFP-S (bottom).
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Cortina McCurry 12 Inman Street, Cambridge, MA 02139- (617)230-9534- mccurry@mit.edu

EDUCATION
Massachusetts Institute of Technology, Cambridge, MA

PhD in Systems Neuroscience June 2009, GPA 4.8/5

Walle Nauta Award for Excellence in Graduate Teaching 2007- awarded to 3 students each term

National Eye Institute Training Grant recipient 2007-present

Norman Leventhal Presidential Fellow 2004-2007

MIT Presidential Scholar 2003-2004

Lincoln University, Oxford, PA

Bachelor of Science, Chemistry, Math Minor

Graduated Summa Cum Laude

Coca-Cola Corporate Scholar- awarded to 50 students across the nation. Highly competitive

RESEARCH EXPERIENCE

Graduate Student, Brain and Cognitive Science Department, Cambridge MA
Discovered a critical role for the immediate early gene Arc in visual cortical plasticity.

2003-present

1999-2003

August 2003-present

Researcher, Lancaster University, Lancaster UK Summer 2003

Researched the role of amyloid beta protein deposits in the pathogenesis of Alzheimer's disease. Worked with physicists

and molecular biologists to explore the utility of tools investigating mechanisms for cell death.

INDUSTRY AND GOVERNMENT EXPERIENCE

Intern, Coca Cola Company, Scientific and Regulatory Affairs, Atlanta, GA Summer 2002

Regulated new products developed in the EU, Mexico, Puerto Rico, and Argentina. Designed and implemented database

tracking customs classifications and trade tariffs for import of Coca-cola concentrate in 100+ countries. Offered full time

position with the company.

Intern, Coca Cola Company, Product Development, Atlanta GA Summer 2001

Reviewed development of new Coca-Cola products and investigated areas for product improvement. Researched the effect

of aging on flavor and recommended procedures to increase shelf life. Worked with the Sprite/National Basketball

Development League marketing team to design promotional toolkits for nationwide campaign.

Private Contractor, High Performance Computing, Army Research Labs, Aberdeen, MD Summer 2000

Evaluated and assessed the utility of various computational analysis software packages and provided feedback to

management. Produced molecular dynamics code modeling usefulness of assorted glassy metal compositions as ideal

materials for new army technologies.

CONSULTANT RELATED EXPERIENCE

Student consultant, MIT Diversity Initiative and Graduate Student Office 2003-present
Collaborated with MIT GSO to recruit talented underrepresented scientists and engineers. Assisted in the development and

execution of an annual all-expense paid CONVERGE campus preview weekend. Approximately 20% of students accepted to

CONVERGE are accepted to MIT.

Computer consultant, MIT Information Services and Technology May 2005-2006
Provided computing and technology assistance to MIT students, faculty, and staff. Guided both experienced and novice
users in troubleshooting computer software and hardware problems and advised on appropriate action.
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LEADERSHIP AND PROGRAM DEVELOPMENT EXPERIENCE

MIT/Meridian Academy Spring 2008
Conceived of and organized a campus visit exposing talented high school students to prominent research laboratories at
MIT. Students were provided with an introduction to life in a PhD program, given the opportunity to visit labs, and speak
with current graduate student about their research. Aspire to make this a biannual event.

MIT Summer Research Program Summer 2006
Founded and facilitated the first MSRP Volunteer Day. Coordinated with local food banks and non-profits to send
approximately 60 volunteers to sites around the Boston area. Event now an annual component of summer program.

Converge Preview Weekend 2005-present
Served as a liaison between the Converge Planning Team and the MIT Careers Office. Organized information sessions, led
by the Careers Office and Writing Center, teaching students to efficiently incorporate their extracurricular and academic
experiences into a concise and persuasive personal statement.

Brain and Cognitive Science Interview Weekend 2005-present
Served on the planning committee for annual department graduate student interview weekend. Chair committee
responsible for working with local hotels to organize welcome dinner and graduate student information panel.

Sidney and Pacific Tax Workshop 2005
Worked on a team as a graduate student representative to organize tax workshop. Helped MIT students and Cambridge
residents needing assistance with tax returns. Certified by the IRS.

Graduate Residence Tutor, MIT Student Life Programs 2004
Lived with and supervised undergraduates (Kappa Alpha Theta) in MIT housing. Fostered a positive living environment,
coordinated social activities, built community atmosphere, and encouraged personal growth.

Student Teacher, Gear Up, Philadelphia, PA 2001
Designed and implemented computer science curriculum for advanced 7th and 8th grade students. Provided an
introduction to Windows and Macintosh platforms.

INVITED TALKS

" Meridian Academy, Introduction to Neuroscience, Coolidge Corner, MA, Fall 2008
* MIT High School Studies Program, How the Brain Perceives the World, Cambridge, MA, Spring 2007
" ACME Lunch, Rewiring the Brain, Cambridge, MA, Spring 2007

ACTIVITIES/HONORS
MIT Black Graduate Student Association Co-Chair, BGSA treasurer, Graduate student representative, GSO Diversity
Initiative, MIT Ballroom Dance Team, MIT Dance Theater Ensemble, Selected for Mckinsey Discovery Weekend, Bridge to
BCG, MARC Program Scholar, Laser Program Scholar, Lincoln University Presidential Scholar, PA Space Grant Consortium,
Sloan Foundation Scholar, President of Performing Arts Society

PUBLICATIONS/ABSTRACTS

1. A. Lyckman, S. Horng, C. Leamy, D. Tropea, A. Watanabe, A. Van Wart, C. McCurry, T. Yamamori, M. Sur, Gene expression
pattern in visual cortex during the critical period: rapid regulation of maturation and reversal by visual deprivation, PNAS
2008
2. E. Giacometti, D. Tropea, N. Wilson, C. McCurry, D. Fu, R. Flannery, M. Sur, Partial reversal of Rett Syndrome-like
symptoms in MECP2 mutant mice, PNAS, 2009
3. C. McCurry, J. Shepherd, D. Tropea, K. Wang, M. Bear, M. Sur, Reduced experience-dependent plasticity in the visual
cortex of Arc null juvenile mice, Neuron, (in submission)
4. C. McCurry, J.Shepherd, D. Tropea, K. Wang, M. Bear, M. Sur Reduced ocular dominance plasticity in the visual cortex of
juvenile Arc null mice, Society for Neuroscience 2008
5. C. McCurry, D. Tropea, K. Wang, M. Sur A role for Arc in constraining adult ocular dominance plasticity, Society for
Neuroscience 2007
6. K. Okamoto, R. Narayana, C. McCurry, Y. Hayashi. CamKII regulation of actin cytoskeleton in dendritic spine formation
and stabilization, Society for Neuroscience 2005


