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Abstract:
As online merchants compete in the growing e-commerce markets for customers, attention to data
generated from merchant and customer website interactions continues to drive ongoing online analytical
innovation. However, successful online sales forecasting arising from historical transaction data still
proves elusive for many online retailers. Although there are numerous software and statistical models
used in online retail, not many practitioners claim success creating accurate online inventory management
or marketing effectiveness forecast models. Thus, online retailers with both online and offline strategies
express frustration that although they are able to predict sales in their offline properties, even with
substantial online data, they are not as successful with their online-stores.

This paper attempts to test two analytical approaches to determine whether reliable forecasting can be
developed using already established statistical models. Firstly, we use the original Bass Model of
Diffusion and modify it for analysis of online retail data. Then, we test the model's forecasting
effectiveness to extrapolate expected sales in the following year. As a second method, we use statistical
cluster analysis to categorize groups of products into distinct product performance groups. We then
analyze those groups for distinct characteristics and then test whether we can forecast new product
performance based on the identified group characteristics. We partnered with a medium-sized online
retail e-commerce firm with both online and offline retail channels to provide us with online transaction
data.

Using a modified Bass Diffusion Model, we were able to fit a sales forecast curve to a sample of
products. We then used k-means cluster analysis to partition products into similar groups of sales
transaction-behavior, over the period of 1 year. For each group, we tried to identify characteristics which
we could use to forecast new product launch behavior. However, lack of accurate, characteristic mapping
of products made it difficult to establish confidence in cluster forecasting for some groups with similar
curves. With more accurate characteristic mapping of products, we're hopeful that cluster analysis can
reasonably forecast new product performance in online retail catalogs.

Thesis Supervisor: Vivek Farias
Title: Assistant Professor, MIT Sloan School of Management
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Introduction
We think it will be helpful to provide background information on the industry we chose. For the purposes

of this thesis, we make the following assumptions about the marketplace and provide background

information on the current offerings. These offerings are geared towards online retail and are centered on

the study and research of analysis of transaction data. This is by no means an exhaustive list and excludes

customized solutions and other niche offerings that may be offered currently.

What is Online Retail

Online Retail may be defined as all business to consumer transactions that are conducted via the Internet

or through some electronic medium that substitutes for a consumer to visit a physical store or use of a

telephone to place an order transaction for a product or service.

According to the US Online retail sales growth through 2010 was expected to show growth at anywhere

from 10% to 15% with total online retail sales projected to reach $165 Billion by 2009.1

Figure 1 shows the historical growth of online retail in the United States in 13 categories ranging from

Computer Hardware to Office Products.

As merchants compete in the growing e-commerce markets for customers, attention to data generated

from merchant and customer website interactions are important to helping these companies understand

their business competitive positioning. Out of attending to this need for data-driven intelligence, new

industries have sprung up with companies that provide various analytical services to measure

effectiveness.

What is Online Marketing

Online marketing consists of the various methods that are used by merchants to call consumers to act on

an e-commerce site. Online marketing may consist of web advertising, email advertising, online

merchandizing and product promotions. Online marketing can also consist of using offline or traditional

media to push customers into the online store. For example, traditional retailers may use catalogs or on-

air advertising to encourage customers to purchase online.

1 Source: Jupiter Research, Inc., New York, NY, unpublished data (copyright)
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What is E-Commerce Analytics

A by-product of internet traffic and e-commerce transaction on any retail website is the storage of data,

via weblogs or databases, of each e-commerce transaction that occurs. E-Commerce analytics consist of

the various methods and tools that are used to measure customer interaction with an online property. E-

commerce transaction can thus include any type of customer interaction with an online store.

Companies provide various analytical services to measure effectiveness in such areas as:

* Site Content

o Analyzing website logs, tags, and cookies to understand how consumers interact with

website content including links, images, videos, etc. This can be useful for improving

site usability and effectiveness. In addition, web-masters and designers use web-log

analysis to verify web-link integrity and site quality.

* Path Analysis

o Analyzing website logs, tags, cookies and back-links to track customers as they traverse

to and then through an online store. Path analysis can help online properties understand

how customers interact with the site. It can be used to answer such question as: "How do

customers get to the site?" Or "Where are customers going on the site and how does that

determine the consumer online shopping experience?" Path analysis also includes site-

wide tracking to add another level of understanding.

* Online advertising

o Analysis of advertising effectiveness across online store and website. Click-through rates

and conversion rates are used to measure return on advertising dollars spent. It can be

used between online and offline advertising campaigns to understand trends.

* Business Rules

o Data-driven website content updates that are based on threshold triggers that are pre-defined

and usually static. Based on a user's entry into a website, dynamic content will be delivered

to the online shopper. Thus, customers who click a link through an advertising campaign

may see a different layout than an online shopper arriving via an Internet search engine.
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Merchandizing

o Data-driven promotions to drive consumer behavior to meet certain e-commerce goals.

Online merchants may use A/B testing, or "split testing". These tests help merchants test

a small sample of online consumer behavior against a baseline measurement.2
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Figure I: E-('ommerce trends by product 3
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Diffusion Models:

Diffusion models are equations that are typically used to describe and model the process by which

innovation "is communicated through certain channels over time among members of a social system."

Diffusion models were first introduced into marketing-science during the 1960s.(Bass, 1969)

What is the history of the tools?

In the late 1970s, Mahajan and Muller (Muller, 1979) described diffusion models as an attempt to

describe a theoretical framework that could accurately model how innovation spreads through a

population of adopters. "The purpose of the diffusion model is to depict successive increases in the

number of adopters and predict the continued development of a diffusion process already in progress

(Christopher J. Easingwood, 1983)." These models grew out of a need to attempt to forecast the progress

of innovation4. The view was that once an innovation was introduced into a market, the innovation would

purchased by a set of early adopters. These early adopters would use the product, and then by word of

mouth, would inform others of the values and benefits. The "diffusion" of the value, benefits and other

product information would influence the uptake of the innovation of product over time. One of the

popular equations used to model these phenomena was known as the Bass Model.

3 U.S. Census Bureau, Statistical Abstract of the United States: 2009 (128th Edition) Washington, DC, 2008;

http://www.census.gov/statab/www/

4 Easingwood Mahajan and Muller 1983
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The Bass Model

The Bass Model describes the diffusion of innovation by taking of certain inputs:

1. N(t) Cumulative number of adopters at time, t

2. N-bar is the ceiling on the potential number of adopters

3. A is the coefficient of innovation

4. B is the coefficient of imitation

5. F(t) - N(t)/N-bar is the ratio of adopters who have adopted the innovation by time (t)

The equation forms that describe the diffusion curve of the above inputs are as follows:

dN (t)d - a[N - N(t) ] + B x 9 x N(t) x [9 - N(t)]
dt 5

Or

dF(t)
d [a + bF(t)] x [1 - F(t)]dt

Original Hypothesis

The Bass Model is typically applied to novel products at a level of the manufacturer. It has been used to

predict market penetration and adoption rates as a whole. Using a similar notion we hypothesized that it

could be applied to certain products that individual stores might sell. If a product was novel or

differentiated from any other offering in the market it would be possible to apply a diffusion model to the

information. This would allow the model to predict the total sales and rate of dispersion of a product

based on limited data collected in the first weeks of availability. We looked to apply our hypothesis to an

ecommerce site due to the availability of the data and the fact that all transactions will occur on the site

and will be relatively straight forward to collect and analyze. Over the years, researchers have developed

a number of applications of the Bass model to various hypotheses in marketing and inventory

management (Teck-Hua Ho, 2002).

13 Page
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The original hypothesis was:

Given access to all ecommerce sales data for a given store over a discrete time period and a

discrete catalog of products, one can identify and then apply a diffusion algorithm to predict the

rate of sales and total cumulative sales for a new product.

Online Retail Partner:

In order to test the diffusion model and later hypothesis against the data, we partnered with an online-

retail or e-commerce company in the United States to be our research sponsor. Our original objective in

finding a partner was that they had a large amount of transactions online and that they introduced several

new products per sales cycle. Our partner is an online retail company with a large, established company

with both an online and offline retail operation. It was not ideal for the company to have 'off-line' sales

that were not captured in our data. However, we felt that given a large portion of sales are captured in the

data and that it is difficult to get any sizable company to revel their sales data it was an acceptable data set

to move forward with.

Why do we use this data?

The objective of this case-analysis is to work with transaction data from an e-commerce sponsor

company. Sales transaction data must contain information about product sales over time and be granular

enough to look at daily sales volume for any given SKU as well as the average sales price for the day.

We felt that this information should be readily available from any sponsor company and we would be able

to filter and prepare the data for our analysis in a timely manner. Using basic data that would be available

across multiple sponsors allows us the flexibility to add more information from additional partners if

additional sponsor companies could be found.

How is the data prepared?

We obtained the data through the following data sources:

1. E-Commerce software transaction history: We interacted with the e-commerce software vendor

of our sponsor company. We requested an XML file consisting of all recorded transactions. Data

was cleaned by the vendor of any personally identifiable information present. Each record was

based on a single order and had information such as date of transaction, items ordered with

quantity and price, unique customer number, use of gift card, shipping zip code, and whether the

customer signed up for future contact from the company.
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2. Google Analytics: We also secured access to Google Analytics to help verify the quality of the

data submitted by the e-commerce transaction software. This data was available in a more

generic format based on dates, volume, and price of the items. Google Analytics contained very

little information on the individual customer's profile of each transaction. One advantage to

using Google Analytics was the fact that the data could be exported in a more desirable format

and there was no middle process manipulating the information (in order to clean the customer

information).

We obtained and processed the data in order to obtain the fields we felt would be beneficial to our

identification and analysis of possible diffusion patterns. This was completed in various ways, but

included creating customized software, written in the JAVA language, to parse and reformat the XML

data. Google Analytics data was concise enough to import the data directly into Microsoft Excel for

analyzing and visualizing the information. Our goal was to make a robust process that could be

repeated with more partners or future data sets.

Diffusion Model Case-Analysis:

Our first exercise with the attached data was to observe the cumulative sales trends of individual products

in 2008 and 2009. We selected a number of products that exhibited sales trends over the year and

attempted to chart 2008 and 2009 cumulative sales. The objective was to observe behavior of product

sales from year to year.

We selected a product that had full 2008 transaction data and partial 2009 data. Our first product selected

was product PB, a durable goods product. A durable good product is a product that a customer may

purchase and use repeatedly across a certain period of time.
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Figure 2: % Sales increases PB Product, 2008 and 2009

Figure 2 shows the % increase in sales for product, PB. This product is priced at $12.95. The chart

shows the changes in sales during 2008 and 2009. The data points used included the weekly sales over

the first 14 weeks of each year. Our objective was to determine whether sales in 2008 could be modeled

and then effectively extrapolated to a full forecast for the 2009 year. If we could successfully fit our

diffusion model to the cumulative sales changes, we would successfully model the diffusion pattern of

sales over the year.

From the rates of change of sales, above, it appears that sales increases and decreases occurred during

very similar times of the year in 2008 and 2009. However, the magnitude of the increase in sales was

greater in 2009.
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Figure 3: PB product 14-week Cumulative Sales 2008 actual and 2009 estimated

The 2008 Cumulative curve in Figure 3 represents cumulative sales for Product PB. The Cumulative
2009 estimate was used with a modification to the traditional Bass Model. The Diffusion Model that
describes the Cumulative Estimate is as follows:

-N(t)
x B x N(t)

Where:

1. N is the total estimated cumulative 2009 sales of product PB

2. N(t) is the estimated 2009 sales at time t.

3. B is the coefficient of imitation

Model Issues:

The model equation was fitted against a sample of 10 products in a similar way as product PB. A number
of products showed similar Bass curve type distributions of cumulative sales. However, there were some
issues with diffusion forecasts past 14 weeks for each of the products tested. In order for our work to be
useful we felt that we would need to predict sales at or before week 14 of the year. This was based on our
particular sponsors ordering behavior for the year. Any prediction or notification after such time would
not be timely and would probably be useless to the sponsor. Using data at week 12 to try to fit a diffusion
curve with our equation yielded undesirable behavior. The model appeared to be fitting the curve well for
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the first 16 to 18 weeks, but was only a 'good' fit beyond week 18 on one of the ten products that we

identified as potential candidates. We had narrowed down the products from over 1500 to 10 in an effort

to pick the most likely candidates that would work with our model and having only a 10 percent success

rate was dismal. Our conclusion was that there was a strong seasonality effect on our products in the

early spring and the winter months. The tapering off of sales was due to the end of the year and not

necessarily from saturation of the market as would be required for the Bass Model to be effective. This

observation influenced us to analyze the life-cycle of these products more closely. We determined that

given the data set that we had (about 14 months of transactions) we could not see a full cycle of any

product. Our partner's typical successful product could stay on their site for several years. We could not

use the Bass Diffusion Model because our 'saturation' of customers was not occurring. We noticed

strong seasonality patterns in all of the products that we looked at, so we decided to examine the

possibility of clustering products together based on their sales trajectory over a given year. In addition we

noticed that products tend to exhibit similar patterns year after year, Figure 2.

In addition to observations previously mentioned, we felt that cluster analysis could be performed across

the catalog of products, new and old, and would be more applicable to an individual retailer versus a

diffusion model. Our initial goal was to provide better sales predictions for new products. We felt that if

we could cluster products and identify characteristics among clusters we would be able to provide not

only estimated sales information, but provide expected demand on a week to week basis. We felt that

with the appropriate information we would be able to assign a new product into a cluster and be able to

estimate total sales over a year's time within the first 6-10 weeks of launch. This objective was one of

our original hopes with the diffusion model. In addition after spending time interviewing with employees

at the sponsor company it was clear that this type of information would be more useful to them,

specifically their inventory control group.

Cluster Analysis:

The objective here was to understand how pervasive are distribution similarity across different groups of

products.

Our team collected all weekly sales transaction records, for each product SKU, from Google Analytics

and our online-retailer's e-commerce software provider. Then, weekly sales were normalized across the

total of 52 weeks so that the cumulative sales patterns of various products could be examined as groups.

In addition this would allow us to group a product that might sell only a few hundred items and one that

sells thousands of units together. Our goal with normalization was that we didn't want the volume of
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sales to be a critical factor in clustering. Sorting by volume is something that is not only easily done, but

is usually an obvious piece of information to an ecommerce retailer.

Data was then prepared into a training and test partitions using a 60% of the available observation for the

training sample and a 40% of the observations for our test sample. The partition size of the training

partition consisted of 973 products. The partition size for the test partition consisted of 650 products.

Once successfully, tested, we would use the 2009 catalog sales data to forecast and validate the particular

clusters. 2009 catalog data will be blind data against which we will validate each cluster.

What is clustering?

We used a clustering methodology as a grouping method to quickly identify clusters of similar groups of

products according to some particular measurement. According to Shmueli and Patel, clustering is an

appropriate tool for "market structure analysis: identifying groups of similar products according to

competitive measures of similarity (Galit Shmueli, 2007)."

We used a non-hierarchical approach to clustering knows as K-Means. According to Shmueli and Patel,

k-means approach to clustering is "divides a sample into a predetermined number k of nonoverlapping

clusters so that clusters are as homogenous as possible with respect to the measurements used." 6 The

process of computing the clusters is an iterative one that starts form the k initial clusters. Clustering of

large data-sets of 100 records, or more, is also reported to be most effective using a k-means clustering

approach(Galit Shmueli, 2007). According to the SAS JMP software module the k-means process can be

described as follows:

"The k-means approach to clustering performs an iterative alternating fitting process to form the

number of specified clusters. The k-means method first selects a set n-points called cluster seeds

as a first guess of the means of the clusters. Each observation is assigned to the nearest seed to

form a set of temporary clusters. The seeds are then replaced by the cluster means, the points are

reassigned, and the process continues until no further changes occur in the clusters. When the

clustering process is finished, you see tables showing brief summaries of the clusters. The k-

means approach is a special case of a general approach called the EM algorithm, where E stands

for Expectation (the cluster means in this case) and the M stands for maximization, which means

assigning points to closest clusters in this case."7

6 Ibid 12

7 JMP Help Files, SAS Institute 2008
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Pre-determining the number of k clusters into which we partition the sample was done manually. We

began with a large number for k, approximately 15. We ran each clustering process on JMP and observed

the results. We iteratively reduced k until there were no ending clusters with less than 30 members. The

reduction of k through this process resulted in a k of size 9.

Iterative (lustering using K-Means: 2008 Old Products

Cluster Summary

750 iterations

Cluster Count Max Distance

1 109 1.27820843

2 228 1.12688535

3 40 0.74904074

4 192 1.30152767

5 64 1.38080534

6 98 1.18299809

7 45 0.66571951

8 146 1.46231675

9 51 1.3066909

Table I: (luster Summary 2008 Full-Year Products

Table 1 describes the initial output of a K-Means cluster analysis of the normalized cumulative sales

transactions from January 1, 2008 through December 31, 2008. Each cluster is labeled by a number with

a count of the number of products in that cluster. The Max Distance measures the maximum distance

from the center of the cluster to the furthest row in that cluster.

Products that exhibited no sales for the entire year were excluded from the analysis. Products that

exhibited no sales during the first 10 weeks were excluded from this current sample set and placed into a

separate sample set labeled "New Products." Due to the time lag in the initial sales, these products would

skew other clusters of full-year products or be placed into a separate cluster group. We felt that these

products could yield useful information on the launch of a new product in the future. In addition, the

sales pattern for the following year would not exhibit the similarities as was evident in Figure 2 for an old

product. Products with no sales from week 10 would be new products introduced during the year. Our

sponsorship partner informed us that products are added to the catalog during the year and we assumed

those would be captured as "New Products" exhibiting zero sales for extended periods of time. A

separate cluster analysis was executed on these products and will be described forthwith.
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2008 Full-year Sales: Parallel Coordinate Plots of Clusters

Cluster I: 149 Members

Figure 4: Cluster 1, 2008 Full-Year Products

Cluster 1, represented in Figure 4, is the 4 h largest cluster with 149 members. The products contained in
this cluster have a seasonal sales pattern that launches early in the year, during week 1 and then decrease
from week 13 through week 20. These products may possibly consist of "winter season" products that are
launched and marketed at the beginning of the year.
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Cluster 2: 228 Members

Figure 5: Cluster 2, 2008 Full-Year Products

Figure 5 represents the weekly change of cumulative annual sales of Cluster 2 members and the

subsequent cluster mean. Cluster 2 is the largest cluster of the set with 228 products as members.

The distribution of sales appears to follow an S-curve pattern of a Bass model of diffusion of innovation.

Sales, for products in this cluster, start slowly, but increase at a higher rate. The inflection points appear

to be for sales increases, weeks 4 through week 10. Weeks 20 through weeks 30 appear to be that time of

year that sales decrease with little sales occurring during the end of year holidays. There is no strong

holiday sales effect with this current cluster.
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Cluster 2 Minimum Distance Maximum Distance Range

Mean 0.00905558 0.99909879 0.99004321

Standard Deviation 0.00208439 0.12109352

Table 3: Cluster 3 Statistics - 2008 Full Year

Cluster 3: 40 Members

Figure 6: (luster 3, 2008 Full-Year Products

Figure 6 consists of the smallest cluster group, Cluster 3, with only 40 members.

Cluster 3 products appear to exhibit a very gentle slope of increasing sales during the first 40 weeks of the

year. The cumulative sales then show a sharp increase during the last 10 to 15 weeks of the year. Thus, it

appears that Cluster 3 products are most popular during the holiday season and may be holiday gift

purchases that are in the catalog for the full year.
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Inspection of products in this cluster shows that the products are small, relative to other products in the

catalog. One particular product appears to be a mini "gift" version of a larger regular product, from

another cluster.

Cluster 3 Minimum Distance Maximum Distance Range

Mean 0.03503712 0.97201371 0.93697659

Standard Deviation 0.03115272 0.11422886

Table 4: Cluster 3 Statistics - 2008 Full Year

(Cluster 4: 192 Members

Figure 7: Cluster 4, 2008 Full-Year Products

Figure 7 consists of the coordinate plot of the 2nd largest cluster of products in the 2008 product catalog.

These products exhibit a similar path of seasonality as that of Cluster 2. However, the increase in sales is
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a less steep curve that increases from week 10 through week 35. Sales in Cluster 4 also continue to

increase during the holiday season more steeply than in Cluster 2. The concentration of products around

the mean appears to be very high.

Cluster 4 Minimum Distance Maximum Distance Range

Mean 0.00789099 0.99843246 0.99054147

Standard Deviation 0.00284518 0.11235816

Table 5: Cluster 4 Statistics - 2008 Full Year

Cluster 5: 64 Members
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Figure 8: Cluster 5, 2008 Full-VYear Products
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Figure 8 shows the Cluster 5 products that exhibit a similar sales pattern to those products listed in

Cluster 3. However, these products annual sales distribution appear to be higher than Cluster 3. Also,

similar to Cluster 3, the products in Cluster 5 have a high sensitivity to increasing end of year holiday

sales. The increasing slope at the end of the year for Cluster 3 begins at week 28, around the middle of

the year. This could mean that these products have mid-year seasonal market trends that reflect

increasing customer demand at that time.

Inspection of the Cluster 5 table also shows a wide band of products, compared to the previous clusters

which appear to be organized around together bands. This band width indicates a wider degree of

variability in product sales rates over the year.

Table 6: Cluster 5 Statistics - 2008 Full Year
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Cluster 6: 98 Members
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Figure 9: Cluster 6, 2008 Full-Year Products

Figure 9 Products are grouped into Cluster 6. These products experience very high sales growth in the

first 8 weeks of 2008. Then, the products quickly taper off. This may be that these products sold out of

inventory early in the year and were not re-ordered by the online retailer. We believe that if the retailer

re-ordered, then sales would pick up once the products were replenished.

Our online-retailer sponsor company informed us that some products had very long lead times. As such,

those products were usually difficult to re-order once launched.

Table 7: Cluster 6 Statistics - 2008 Full Year
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(luster 7: 45 Members
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Figure 10: Cluster 7, 2008 Full-Year Products

Cluster 7 Products, in Figure 10, make up the 2 nd smallest cluster with 45 members from the test partition

of products. These products appear to have the most sales growth during the last 10 weeks of the year,

from week 41 through week 52. Product sales are very low during the first 40 weeks of the year.

Inspection of the products in this segment indicates that the products are holiday products which strong

holiday characteristics in their color, size and function. Additionally, some of these products are not

related to the online-retailers traditional business.
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Cluster 8: 146 Members

Figure 11: Cluster 8, 2008 Full-Year Products

Cluster 8, described in Figure 11, is a very unique cluster. The cluster mean appears as a linear growth

line from week 1 with steadily increasing growth through week 52. Similar to Cluster 5, there is a wide

band of product cumulative sales around the cluster mean. The maximum distance to the cluster center is

the highest of all clusters, measuring at 1.4.

It appears that products in Cluster 8 are purchased throughout the year at a steady rate. This could mean

that these products are necessary products for the customers of our online-retail sponsor and do not

respond well to advertising or marketing efforts during the year

Cluster 8 Minimum Distance Maximum Distance Range

Mean 0.01963221 0.9900194 0.97038719

Standard Deviation 0.01575374 0.11085825

Table 9: Cluster 8 Statistics - 2008 Full Year
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Cluster 9: 51 Members
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Figure 12: Cluster 9, 2008 Full-Year Products

Figure 12 consists of products members of Cluster 9 that appear to have a similar sales pattern to the

products in Cluster 8. Both clusters have some of the highest maximum distances from the center of the

cluster. Additionally, Cluster 8 and Cluster 9 have the weakest seasonality affects of all the products

identified in the 2008 sample.

However, Cluster 9 does appear to have the highest week 1 through week 40 annual cumulative sales,

before the holiday season pick-up. Thus, these products appear to outsell Cluster 3, Cluster 5 and Cluster

7 during the first 40 weeks of the year and under-perform during the holiday season's expected uptick for

holiday product shopping.

Cluster 9 Minimum Distance Maximum Distance Range

Mean 0.05987761 0.99256428 0.93268667

Standard Deviation 0.01742875 0.16037638

Table 10: Cluster 9 Statistics - 2008 Full Year
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Cluster Means: 2008 Full-year products

Figure 13: Cluster Means, 2008 Full-Year Products

Figure 13 represents all the cluster means and the mean cumulative sales curve of all the 9 clusters.

Interestingly, if the number of clusters is optimal, then the mean cumulative sales of all full-year products

appear to follow a mostly steady increase from week 1, with a slight uptick during the holiday season.
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Iterative Clustering using K-Means: 2008 New Products

In order to separate new products from full-year products, we created a separate sample of all products

that did not have any sales before week 10. This sample consisted of a total of 886 product IDs. We

created a Test partition and Validation partition using a 60% split for the test partition and 40% for the

validation partition. Below is the Cluster analysis for these products.

Cluster Summary

500 iterations

Cluster Count Max Distance

1 204 1.35286399

2 59 1.1853648

3 87 1.58974037

4 37 1.0214895

5 3 0.22222222

6 3 0.34836141

7 33 0.86640183

8 40 1.57331841

9 65 1.50851761

Table 11: (luster Summary 2008 New Products

Table 11 represents the cluster summary output from JMP k-means processing of "new products"

launched in 2008. The cluster output for these products differs from the original cluster output in the

following ways:

1. There are 2 very small clusters with 3 products. These clusters may not provide any

2. There are 2 clusters with maximum distances of 1.5, greater than the maximum distance of 1.4 for

the all-year products in the previous cluster analysis.
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Cluster 1 (2008 New Products): 204 Members
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Figure 14: Cluster 1, 2008 New-Products

Figure 14 shows the cluster behavior and cluster-mean for Cluster 1 of the 2008 New Products. This

Cluster performs similarly to our "holiday" Cluster, Cluster 7 in the 2008 Full Year products k-means

analysis. Products generate very few sales until 37 t week or during the last 3 - 4 months of the year.

These products may be items that our online partner purchased for holiday sales, midyear, and launched

online by week 40.
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(ilusier 2 (2()008 New Ioducts): 59 M~mnhers

Figure 15: ('Iuster 2, 2008 New Products

In Cluster 2, Figure 15, products are launched during week 10 of 2008. The cumulative sales of these
products appear to move in a mid-year diffusion curve that tapers off between the 25" through the 30t

weeks. These products appear to be specific, seasonal products that are promoted and sold during the
spring season. However, these products could also be re-stocks of prior products that were stocked out
during the first 10 weeks of the year.

Table 13: Cluster 2 Statistics - 2008 New Products
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Cluster 3 (2008 New Products): 87 Members
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Figure 16: Cluster 3, 2008 New-Products

Figure 16, showing members of Cluster 3 of 2008 New Products is another cluster with large distances

from the cluster center. The shape of the cluster-mean curve appears to curve very slightly with sales

growth almost linear in shape. This product does not appear to have strong holiday sales sensitivity.

Cumulative sales appear to decrease from week 40 through week 52.

Table 14: Cluster 3 Statistics - 2008 New Products
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(Cluster 4 (2008 New Products): 37 Members
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Figure 17: Cluster 4, 2008 New-Products

Cluster 4 for 2008 New Products appears to be similar as Cluster 2, but a smaller group with only 37

members. This product is launched mid-year, with sharp sales from week 10 quickly ending by week

20 t . Again, it is possible that these products were highly popular and were out of stock within 10 weeks

of their launch. Our online retail partner informed us that due to lengthy lead times, some popular

products would run out of stock during the middle of the year.
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Cluster 5 (2008 New Products): 3 Members

Figure 18: Cluster 5, 2008 New-Products

Cluster 5, in Figure 18, is a small cluster of only 3 products that were launched at the same time and

quickly sold out within 3 - 4 weeks. This cluster's small number of members may indicate that no

conclusive points can be further ascertained from this group.
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(luster 6 (2008 Ne* Products: 3 NMembers
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Figure 19: ( 'tlster 6 2008 New -Products

Cluster 6 is very similar to Cluster 5. It is also is a small cluster of only 3 products that were launched at

the same time and quickly sold out within 2 - 3 weeks.

Table 17: Cluster 6 Statistics 2008 New Products
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Cluster 7 (2008 New Products): 33 Members

1.0o

0.8
0.6

0.4-

0.2-

0.0

Cluster7

Figure 20: Cluster 7, 2008 New-Products

Cluster 7, Figure 20, consists of holiday products launched during the holiday season. These 33
members experienced rapid sales growth during product launches that started around the last 10 weeks of
the year.
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Cluster 8 (2008 New Products): 40 Members

Figure 21: (luster 8, 2008 New-Products

Cluster 8 in Figure 21 of the 2008 New Products appears to consist of a number of products launched

from week 10 through week 35. The cluster mean curve of this group shows quick sales increases

through week 37 and then rapidly decreasing sales through the holiday season.

It is possible that these products were seasonal for the summer, ending at fall and then winter.

Table 19: Cluster 8 Statistics - 2008 New Products
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Cluster 9 (201)8 New Products): 65 Members
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Figure 22: Cluster 9, 2008 New-Products

Cluster 9 in, Figure 22, consists of a small group of 65 members. The products appears to be launched

anywhere from week 10 through week 40. The dominant trend is for the products to increase in sales

from week 40 through the end of the year. However, in the exclusion of 2009 data, we cannot infer any

substantial conclusions from this chart.

Table 20: Cluster 9 Statistics - 2008 New Products
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(Cluster Mleans: 2008 New Products
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Figure 23: ('uster Means, 2008 Nevv-Products

The Cluster Means, Figure 23, of the 2008 New Products showed that there are a number of clusters with

products that sell strongly. However, it was not clear whether the holiday season has an impact on sales

or whether these products continued to sell well into the 2009 year.
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Conclusions

Exploring our two key approaches, Bass Model and Cluster Analysis, we arrived at a number of broad

conclusions outlined below:

Bass Diffusion Model Analysis

Based our initial findings using a modified Bass Diffusion model we concluded that our particular retailer

did not exhibit, at least over a 14 month period, trends that could be explicitly associated to traditional

diffusion methods as described by Bass' original work.

Specifically, we noticed strong seasonality of cumulative sales changes over time for products in the 2008

online catalog. In addition, no saturation was found when we incorporated more recent data into our

analysis. As such, cumulative sales increases appeared to decrease at the end of the sales season, not

because the market has become saturated with a particular product. We feel that the longer life cycle of

our retail partner's products made it necessary to look over a greater time horizon. This was impossible

due to the constraints on obtaining data that could be trusted for any period reaching back more than one

year. We feel that the Bass Model may be applicable to certain industries that observe a short product life

cycle, but were unable to secure an appropriate research sponsor to examine the data. A potential

industry that we felt the Bass Model would yield interesting insight was online retail fashion.

Clustering Analysis

The clustering analysis we performed yielded promising results. We were able to cluster almost 1000

products into nine clusters. In addition, with no industry specific knowledge, we were able to start to

categorize the groupings. We look forward to sharing our insights with our retail partner and validate the

clusters and find more linkages between the products in cluster. This initial clustering will also be helpful

to start to look at the sales patterns within each cluster. Finally, these clusters are a starting point for

having conversations with the retailer to find more relevant sets of data or have them start to log certain

characteristics that come from the linkages that are apparent to the client within the clusters.

2008 Full-Year Cluster Analysis

Although we were not able to determine the optimal number of clusters for the 2008, full-year, sales data,

we were able to identify 9 individual clusters. These clusters have particular characteristics that explain

the groupings. The general characteristics are described in the following cluster table:
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Number of

Cluster Number Members Ouster Name Cluster Description

149 Early Spring Gardening gardening preparation

2 Products with strong sales for

mid-winter gardening or late

228 Late Spring Gardening spring gardening preparation

3 Normal Medium-All year and Medium all-year sales with

40 Strong Holiday holiday sales

4 Products with strong, but less

Late Spring Gardening intense sales during late spring

192 Discretionary season. Possibly discretionary

5 Strong Medium-All year and Products that are more essential

64 weak Holiday during the entire year with strong

6 98 Winter stock out Products that sold-out in Winter

7 Products that strictly showed

45 Strong Holiday strong holiday sales

8 Mostly consumables with

consistent all-year products with

146 Consistent All-Year no high variability in demand

9 Strongest spring sales with rest

Strongest Medium-All year of year performance and holiday

51 and weak Holiday sales

Table 21: 2008 Full-Year Cluster Descriptions

The cluster-names given in Table 21 are not definitive, but an approximation, based on our sponsors

system of promoting products during their particular sales season. In order to refine these categories, a

full inventory of the catalog would be required. SKUs with full inventory characteristics would then be

matched into their particular clusters, with the specific, common inventory characteristics acting as

identifiers to the cluster.

44 P age



2008 New Product Cluster Analysis

Number of

Cluster Number Members Cluster Name Cluster Description

1 Products purchased specifically

to drive holiday sales

204 Holiday Sellers conversions

2 Products purchased in the spring

59 Summer Products and used through the August

3 New consumables products

87 New Consistent All-Year launched during the year.

4 These products are launched in

the spring, but sell out before end

37 Strong Spring of summer

5 We excluded these products due

to the very small group member

3 Excluded size

6 We excluded these products due

to the very small group member

3 Excluded size

7 Due to the extremely late product

launch and its affect on the

cumulative sales figure, it is

unclear whether there are any

33 Late Launch common characteristics

8 Spring-Summer with Products launched in late spring

40 Autumn Sales and summer for Autumn sales

9 Products launched late during the

year, but with slow sales growth

appear to make up this particular

65 Late Launch and slow group
Table 22: 2008 New Product Cluster Descriptions
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Limitations

While working with any data there are always obstacles to overcome. We had no shortage of such things

in our data and here we go into some of the limitations in our data set as well as some shortcomings of

our model in its present state. Identified below are the key issues that we encountered with our research.

Data Integrity

SKU Changes - Our sponsoring company informed us that they occasionally changed the SKU

of an existing catalog product, as needed during the year. They do this for several reasons,

including a minor update of the product, accounting reasons, or to minimize customer confusion.

Examples of this include a second generation of a product that may have a slight modification,

but does not necessarily warrant a new product for the purposes of our model. Other examples

might be a new channel of distribution (or marketing) or possibly a new cost to a product. We

found examples where a product that is offered in multiple colors might have 3 unique SKU's and

then is migrated to one new SKU with a color indicator (from 123, 124, 125 to 200 Red, 200

Blue, 200 Green). The size of our research sample of 2008 and 2008 new products consisted of

1,643 products. Due to time constraints and catalog description constraints, we were not able to

match each catalog ID to verify all possible SKU changes.

* Fraudulent Charges - Credit card fraud occurs on our partner's site. Although they typically

correct the problem in their final numbers, neither Google Analytics nor the E-commerce

software provider removes the orders from their transaction database. This is because it is

typically caught while the product is being processed. Although we could account for the

extreme cases (i.e. a $10,000 gift card) most fraud charges would be hard for us to detect.

* Incomplete Catalog Details - In order to check SKUs integrity, we reviewed the catalog SKUs

and product description for all products 2,500 products in our sponsor's catalog. We secured this

information from our sponsor's e-commerce software company. However, there were many

products in the catalog that lacked a description or were marked with descriptions of #N/A. Such

lack of descriptions made it harder to see full product descriptions for all members in a particular

cluster.
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Model Flexibility

During our research, we encountered a number of key issues that affected our ability to fully understand

and verify our modeling approaches. Below, we identify some of the modeling issues that constrained

our research efforts.

* Marketing effects - In or analysis we did not take into account the effect of marketing although

we considered this an important measure. Our initial reasoning for this was that 1) the data was

not readily available to us and 2) we felt that the sales trajectory would still be similar, but

marketing would just amplify the total effect. With this in mind, we felt that normalizing the

sales data would lessen the effect of the marketing campaign. However, within the time

constraints of our research, we were not able to verify this initial assumption as valid and the

degree to which it would affect the outcomes we were able to observe in both the diffusion

analysis and the cluster analysis.

* Promotions - Retailers, in addition to generally marketing, may execute a number of actions to

generate immediate response from customers. Usually these may be described as "promotions"

and are implemented at the discretion of the retailer. Our sponsor offered several different

promotions during the year to customers. These promotions included, free shipping, quantity

discounts, and special bundles. We did not account for the effect of these promotions on either

our diffusion or cluster analysis due to the constraints on time and access to specific promotion-

history data from our sponsor.

* Price changes - Our retail partner does not typically manipulate the price of goods sold in their

catalog. While talking to our thesis sponsor, we learned that typically price is drastically reduced

in order to clear excess inventory or when they retire a product from the catalog. In addition, the

price reductions typically happen on specific days determined by their chief marketing officer.

We felt that our cluster analysis approach was robust enough to handle occasional price changes,

as described by our thesis sponsor. However, we believe that there may be an upper bound of

such discrete price changes, above which cluster analysis may not yield effective results. During

our research, we were not able to test that boundary to fully account for how price changes would

affect cluster behavior.

47 Page



Next Steps

In general we feel that the information here can be used to better time marketing efforts of certain product

clusters. We would like to see a trial where a subset of customers is marketed certain products that our

clusters show to be optimally timed and compared to a control group of products that is picked by the

retail partner with traditional methods. We would use metrics such as click through rate, conversion, and

average order size to determine the success of our model.

One of the major issues that we ran into was the integrity and availability of relevant data. It seemed that

a lot of information was contained within the company, but was not collected and stored in a meaningful

way. The first area where we would like to see more information collected and analyzed is the attributes

of the clusters. We feel our retail partner should observe the groupings and determine the exact attributes

that are common in each cluster. This attributes might include dimensions, pricing, target segment, or

other general characteristics that someone with industry knowledge would be able to quantify or

categorize and store. We feel that using the clusters as a starting point to start talking about these features

of the products will prove extremely helpful.

Beyond product characteristics we feel that starting to incorporate customer purchases over time would

produce extremely useful data for the marketing department of our partner. Due to the limitations of the

data we were unable to perform these steps over the course the thesis, but our work presented here is

relevant. We feel that we can use the nine product clusters as a way of quickly finding patterns in

purchasing. This will give the company a useful tool to analyze over several years a way to understand

who is most likely to buy a new product given the cluster it would likely fall into based on product

characteristics. This type of information could lead to tailored efforts for various customer clusters.

Currently our partner uses rudimentary segmentation of their customer list to decide what promotions to

send to whom.

Finally, one critical set of data to incorporate into any recommendations based on our clustering is the

goal of the retail partner. Information such as margin and amount of inventory could be included in order

for the retailer to optimize the model based on a goal of maximizing revenue, maintaining a certain

margin, or eliminating excess inventory to reduce holding costs. This type of information would have to

be included in any recommendation in order to remain relevant and give tradeoffs between different

recommendations.

We feel that the timing of marketing effort and the addition of better customer segmentation will result in

a revenue lift to our retail partner. Using our methods we feel that marketing will be able to present more
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relevant communications to existing and potential customers that will result in higher click through,
conversion, and average order sizes.

In addition to the potential mentioned above, our models can be used to predict and monitor the pattern of

sales of new products. Our models can be used to monitor across thousands of SKU's on a daily basis.

Using the predicted total sales of a product and the cluster that it falls into we would be able to help with

order timing and inventory control. Finally, we could provide some level of revenue management by

recommending adding more products to a certain cluster in order to boost revenues at certain times of the

year. Revenue management can be particularly helpful for retailers that have strong seasonality to their

sales.
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