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 ABSTRACT

The performance of the Wiener predictor is shown to be closely
connected to the behavior of the signal derivatives; in turn, this
behavior is related to the structure of the signal autocorrelation curve
in the immediate vicinity of the ordinate axis, Careful reproduction of
this structure in the analytical work is the fundamental condition for an
accurate predictor design. The expected performance of the prediector,
measured by the "error", may be anticipated by noticing that: (a) a
signal whose first derivative reaches infinite values is praciically
unpredictable; (b) prediction is possible if at least the first deriva-
tive of the signal remains finite; and (c¢) the quality of prediction
increases when derivatives of increasing orders of the signal are con=
strained to remain finite. Again, these characteristics of the signal deriva-
tives are interpreted in the central structure of the autocorrelation
curve., For example, a common feature of "predictable" signals is that
their autocorrelation curves have zero initial slopes.

Failure to give due weight to the severe accuracy requirements
in fitting analytically the central part of the autocorrelation curve
accounts for the unsatisfactory results obtained in a first trial
experiment on prediction, attempted in Chapter II.

A close correspondence between the central region of the
autocorrelation curve and the high frequency content of the signal is
recognized., If one deals with experimental data on power spectrum,
it follows that the higher the frequency range, the greater the
required accuracy of the data for predictiorn analysis. In all pre-
diction experiments it is therefore more adequate to deal with auto=
correlation data, which need to be accurately reproduced only in a
narrow range of the variable., The analytical expression thus obtained
for the autocorrelation curve gives the power spectrum by a simple
Fourier trensformation.
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CHAPTER 1

Introduction

1. Generalities

The filter problem, in communication engineering, may be defined
as the problem of recovering a given signal, selected among a number
of other signals or disturbances that may be present.

The classical solution given to this problem consists in convey-
ing the various signals through separste frequency "channels," and
designing filter systems, each responding to the desired chamnel,
with as sharp as possible a "cut-off" in amplitude response, in order
to prevent overlapping of the frequency ranges assigned to the other
signals. )

The sharp cut—-off in the amplitude response is unfortunately
associated with a strong distortion in the phase response.

The ear seems to tolerate a considerable amount of phase distor-
tion, which therefore results in a minor disadvantage in the reproduc-
tion of audible signals., But when the ultimate destination of the
signal is either the eye, as in the video reproduction of television
recelvers, or a mechanical system driven by a servomechanical trans-
mission, then phase distortion may become seriously inconvenient.

Another disadvantage of the classical solution lies in the fact
that it disregards such random disturbances known as "noise," whose
interference into the frequency channel considered cannot be completely

discriminated against.



On account of these difficulties, a completely new approach to the
general filter problem has Yeen given by N. Wiener in an NDRC Report
dated February 1, 1942,1 and made public in 1945.

Under this approach, signals are considered in the time domein
to begin with, and as such are recognized as effectively covering the
entire frequency range when transposed into the frequency domain.
Whereas the classical solution focussed attention upon the response to
simisoidal time signals confined within the region surrounding the
carrier frequency, Wiener attempted to deal with the actual signal and

the statistical character of its time representation.

A fundamental requirement for studying the problem along these

lines is that the signals considered must represent stationary time

series. In other words, their individual statistical properties must
be fixed in time, It is intultively evident that such conditions are
met, for example, in the time representation of speech messages modu-
lating some arbitrary carrier frequency: Speaking of stationary statis-
tical characteristics for such messages amounts to saying that, in a

given language, the frequency of occurrence of any letter of the alphabet

is governed by a fixed probability distribution pattern; and the succession
of letters, associating any one of them with the others, gives rise to
combinations which follow statistical laws.

Under such conditions we may say that if we split the megsage into
its sinusoidal Fqurier components, we shall find components having a

certain distribution in relative amplitude and phase, characterizing

the statistical properties of the message considered. Whereas the

classical approach considers these sinusoidal components individually,



disregarding the manner in which they contribute to the actual message,
Wiener has shown that the optimum solution to the filter problem is
obtained by choosing a convenient measure of the distribution of these
components. This measure is the power spectrum, representing the average
power density of the message for any frequency component. Alternatively,
an equivalent representation of the statistics of the message is given

by its autocorrelation function @llct? , defined as:?

T
_ g L

where fl(t) is the time representation of the message.

The equivalence between autocorrelation ¢ll(f) and power spectrum

@ ll(m) lies in the fact that they are Fourier transforms of one ano’r,her.3
Symbolically, 0o
= L S )1 4
-00
fs 9]
T) = @ JoT
941 (T) joo 11@ e . (3)

When two signals fl(t) and fz(t) are present, "cross-correlation®

terms may arise, and lead to analogous definitions:

T
. 1 .
(plz(T) = %imw o fl(t) £,(t +T) dt , (4)

~T
Q
q)lz(co) = % 9,0 % ar (5)



00
¢1,(T) = f ‘ﬁlz(m) 3T 4y (6)
-00

These "cross-terms" are identically zero or constants if the two
signals considered are incoherents; for example, a speech message and
"shot noise" produced by an amplifier are completely unrelated, and
their cross-correlation is zero.

One particular problem whose solution is given by Wiener's theory
in terms of the symbols defined above is the following: Consider a
signal fl(t) and an interfering signal fz(t); the expression

fi(t) = fl(t) + fz(t) (7)

represents the "corrupted" signal that we are confronted with, and that
we apply at the input terminals of a filter. What is the optimum filter
transfer function (or "system" function) in order that, under such con-
ditions, the filter output fo(t) reproduce "as closely as possible"
the "™uncorrupted" signal f1 ? The criterion of performance chosen by
Wiener is that the transfer function should be so chosen that it mini-

mizes the "mean-square error" between observed and expected outputs.

Formally, it must minimize the expression:
T

e = lim = [f(t)-f(t-a)}zdt (8)
Tep 2T r o 1 ’

where a represents a fixed lag or time delay after which the signal
fl(t) is expected to be approximated by the output fo(t) . The formal
solution to the minimization problem has the remarkable property of
being independent of the algebraic sign attached to the parameter a j

in other words, a "predictor" may be synthesized as a particular case



of a filter having a leading time response., To emphasize the gener-
ality of the solution, the parameter is written as ta. Interms
of the complex frequency variable

A= o+jo (9)

the transfer function resulting from Wiener's anslysis reads:

©
1 -Jat
H(A) = T— tta) at (10)
on .;..i()\') jo Y( a) e ’

here d o+ d
w) + w .
Ytta) / 11 12" J(ta)w o (11)

ii(")

In these expressions, the "input power spectrum®
é1:1 "éu*ézz*'Zélz (12)

is "factorized" into product components @ L_ and é ;.i containing,
respectively, those poles and zeros of ¢ 11 that lie in the upper and

the lower half of the complex frequency variable plane. We have:
b+ b-
éii - ¢ TR ETI (13)

System function (10) minimizes the mean-square error {8) between
the observed output fo(t) and the uncorrupted signal f,(t tao) .

This error, however, is not zeroj; its value is given by:

(s o]
Catn = @5(0) - 5}—;/ Y3t ta) a . (14)
(o)

In a great number of problems, the signals in presence, fl(t)
and fz(t) are incoherent; for example, fl(t) may be a speech message

and fz(t) shot noise. Then 412 = 0 and eqs. 11 and 12 become:



* &)11(") j(tta

(tta) = = e L , (15)
Y ~00 Qii(w)
d.m =0 P m . (16)

A particular problem, with which this paper will be mainly concerned,
is the one of "pure prediction," in which fz(t) is made equal to
zero in order to optimize the performance. The function of the filter,
or "pure predictor," is then to extrapolate the message fl(t) into

the future, message statistics being described by its power spectrum.

by _p-

In this case, @ i1~ ¢ll 3 = éll « Symbols and equa-

ii
tions defined above read as follows, for the case of a single message

function f(t) :

T
OT) = @pp(t) = lim %—T- £(t) £ (¢t +T) at , (17)
T 400 _T
[0 0]
o(T) ‘—‘] é(w) T4 ’ ' (18)
-00
0
Qw - = | om e Tat = ¢+ , (19)
-0
Q0
H(A) = L ¥ (6 +a) Mgy (20)
2n§ (A) °

[00]
VAR Q) = ‘[ §+(w) Q)W o0 (21)
-00



If fo(t) is the predictor output, which is expected to reproduce
the value that the input f would have a seconds later, the mean-

square error
T 2

. 1
e = lm Zx [fo(t) - f£(t + a)] dt (22)
T 0 -7

becomes, when eg. 20 is satisfied by the filter system function:

Q
= i 2
€pin = 370 Y (t) dt . _ (23)
o

Equations 17 through 23 are the fundamental predictor formulas.

2. Brief Historical Background

In an early paper, giving the first rigorous approach to the
problem of "The Harmonic Analysis of Irreguler Motion," 4 N. Wiener
credits G. 1. Taylor for having introduced the concept of correlstion
in the study of irregular phenomena.2 Autocorrelation functions for
some simplified classes of time messages were computed by G. W. Kenrick,5
as well as the corresponding power spectra or "frequency-energy dis-
tributions.”

The fundamentel mathemstical tools for deeling with statistical
functions extending through the infinite time range were developed by
Wiener in his paper on "Generalized Harmonic Analysis."3

The general theory of filtering and prediction was given by the

same guthor in 1942, es was previously mentioned.l’8

The theory was
made availsble by Y. V. Lee in a practical form, for direct use as a

new technique of communication engineering.



Use of the mean-square-error criterion in servomechanism design
was cttempted in a recent publication of the M.I.T. Radiation Laboratory
Series.7 However, the methods studied in the latter do not have the
generality of Wiener's approach to the synthesis problem. Rather, the
over-gll structure of the servo system is given, end only the circuit
coefficients are adjusted for optimum performence, in the presence of

disturbances described by their sutocorrelation function.

3. Purpose of the Present Paper

The wide range of possible practical applications of the new
filter theory, suggested in the works of Wiener and Lee, have not been
attempted as yet. A considerable amount of information has to be gath-
ered before the various aspects of the theory can be applied to their
full extent,

Before any significant practical achievement can be obtained, auto-
correlation functions, or power spectra, must be computed from experi-
mental records for various classes of signals.* Several measurements
are needed for each individual type of signal to establish the invari-
ance of these statistical functions, since the theory applies to signals
that are stationary time serles, in "statistical equilibrium." In some
cages, cross-correlation must be measured that may appear between inter-
fering signals.

For these experimental data, suitable approximstion eriteris must

be developed, ultimately leading to an analytical expression of the

#* An electronic autocorrelator is being built by T. Cheatham and
E. Kretzmer at the M.I.T. Research Laboratory of Electronics.



system function that matches as closely as possible the theoretical
performance,

In the present paper, en attempt is made to develop the techniques
and outline limitations, in dealing with the pure predictor synthesis.

It is the author's belief that, besides its great possibilities
of practicel applications, the prediction problem is the most suitable
for initial experimental work in connection with Wiener's theory. It
is the simplest, since it deals with a single time function and requires
computation of only one correlation function. The final result may be
easily compared with the result expected from the theory, This verifi-
cation of Wiener's theory by experiment, on the minimum mean-square-
error basis, would be much more difficult for the filter problem, where
more than one signal is involved. Besides, in the latter case, perform-
ance would also have to be compared with that of filters whose design
follows the radically different criterie of the classical approach,

The prediction problem thus appears to afford a possible first
insight into the mechanism of the new theory. Conclusions that may be
derived from prediction studies will perhaps suggest analogous approaches,

or prove to be directly applicable, to the general filter problem.



CHAPTER II

A Trial FExperiment on Prediction

1., Choice of the Input Function

For any random function, in statistical equilibrium, an optimum
prediction operator may be derived by the methods of Wiener's theory,
summarized in the last chapter.

Random functions are very common in nature: shot noise in elec-
tronic amplifiers, speech messages, pressure of wind gusts on the
structure of airplanes in motion, turbulent flow of fluids, meteoro-
logic records, etc.

A great number of these functions contain "hidden periodicities"
arising, for example, from the alternation of seasons, or of day and
night, in temperature records. In such cases it is evident that a very
large number of experimental data, extending through a considerable
range of time, is necessary for studying the true statistical character
of the functionj in other wordé, from an experimental point of view, a
study of small records would not be adequate for verifying the condition
of statistical equilibrium. In fact, temperature records extending
through twelve hours of observations would give different statistical
digtributions according to whether thp origin of time is taken at noon
or at midnight, and according to the season, and perhaps to the cyclic
variation of sun spots. For such functions the difficulty lies in the
fact that they afe generated by a great number of interfering factors,

More likely to exhibit a stationary statistical character from small



records, are those functions which are produced by a limited number of
knowm "agents" that can be isolated from other external conditions.
Shot noise generated in a given amplifier belongs to this class of
functions.

However, the above restrictions will become important in the con-
structive phases of applications of Wiener's méthods, when filters will
be required that operate steadily with a constant performance on a cer-
tain type of input functions. From the more academic point of view
taken in this paper, where preliminary experimental examinastion is
sought, the random function chosen for study needs to be stationary
only in a local sense, within the range in which the experiment has to
be performed,

The function chosen is shown in Fig, 1. It represents a latitudinal
cross-section of the Rocky Mountains, extending across lands having a
uniform geological pattern; the internal pressures of the earth that
have given rise to the mountainous eruption, and the erosion that has
taken place since, have therefore met with a reasonably uniform resist-
ance of the ground surface within the range shown; a local stationary
pattern may therefore be assumed along any section lying within the
limits of the graph.

The problem is to compute a prediction operator for this function
f(t) , for which arbitrary co-ordinates are chosen (Fig. 1), abscissae
being interpreted in time rather than space units, in order to use the

language and symbolism of Wiener's theory.
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2. Experimental Computation of Autocorrelation Function

*
Until some continuous autocorrelator is available, autocorrela-

tion functions have to be approximated from finite experimental records.

If the record extends from O +to TO s the approximate expression for

eq. 17 is: v

p(t) = f(t) f(t+T) dt, T QTO . (24)

)

o
An integral has to be computed for each value of T .

Two procedures may be used, illustrated in Fig. 2 and 3.

In Fig, 2, T = T°/2 = constant: The averaging process of eq. 24
is performed along a constant interval, for all values of T ranging
from O +to T°/2 . The same degree of accuracy is therefore obtained
for the resulting ¢(T) , when the variable T varies within these
limits.

In Fig. 3, the averaging takes place over an interval T =T -T ,

o

which decreases as the shifting parameter T increases. Equation 24

becomes:

{fro_r
olt) = = £(t) £(t +T) at . (25)
T, -T j
(o]

In this case the accuracy of @(¢) is greatly improved for small values

of T , since the statistical data available from the record are used

to a fuller extent., The accuracy decreases with increasing T , until

1t becomes equal to that obtained in the process of Fig. 2, when T =1T_/2 .
In spite of its nonuniform accuracy, the process of Fig. 3 will be

preferred, since the nature of the problem itself requires the greatest

Y

¥ See footnote, p. 8.



Fig, 2

f()

Fig. 3




possible precision for small values of shift T . Although this state-
ment will be further elaborated in the following chapters, it is intui-
tive that the "correlation" described by @(T) , between values of
f(t) and values of f(t +T) , needs to be known very closely within
the range of the functional "displacement" (lead or lag) that the filter
must produce. In other words, if a lead or lag of a seconds is re-
quired, the "dependence" between values of f(t) and values of f(t +T)
taken by the function T seconds later, must be known with particular
accuracy for T ranging between O and a . |

The autocorrelation function obtained from Fig. 1 is shown in
Fig. 4, for ¥ ranging between O and 5 . The point-by-point compu-
tation was made for intervals AT = 0,2 between successive points.
To that effect, ordinates of f(t) , read off Fig. 1, were listed for
discrete values t = p%0.2 , with p=0, 1, 2 ... 275. Let these
ordinates be: f£(0) = a 3 £(0.2) =b ; £(0.4) =c 5 ... £(55) = .
An identical 1list of values of [(t) was repeated along the former,
"shifted" by an amount T = nx0.2 ., The resulting picture, shown
below, is identical with the one described by Fig. 3. On the third

line, products corresponding to values of fhe integrand of eq. 25 are

computed.* )
! |

£(t) : ya b c...h i 3! x ¢
| |

£f(t +T) . a P ¢ d € ¢ o o J x {£ :
|

ac bd ce...hj ik jf
- -

(276 - n) data
(275 - n) intervals

£(t) £(t +T)

*
The tabulation shown corresponds to T = 0.4 , or n =2 , but
the argument is general.

15
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Values of the integrand f(t) f(t +T) are plotted in Fig. 5.

f(t) f(tst)

ce
ac

bd

e — — —— — —
b e — — —

Fig. 5

The integral of eq. 25 is the area under the integrand curve of
Fig. 5, for which the trapezoidal approximation showm gives:

Area = 0.2 X[%Zbd+m;ce+tao+

hj+ik+ik+jﬁ
2 2

= 0,2 x[%q-+bd+ce+... +hj+ik+-3§E-J

T T

n

£f(t) £f(t +T) dt .
(o]

The total interval, as shown on Fig. 5, is:
To-‘t‘ = (275 - n) x 0.2 .

Equation 25 becomes:

1 ac c L J
(p(‘c)zm [E-+bd+ce+...+h3+lk+"2"‘] s (26)

with Tz nx0.2 .

Therefore @(T) is obtained by summing all the column products of
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the tabulation described above, the first and last products being

halved, and dividing the resulting sum by 275 - n .*

3. Functional Approximstion to Experimental Autocorrelation

The experimental points obtained in Fig. 4 show that the auto-
correlation of f(t) goes very nearly to zero for increasing "shift" T.
This‘is expected for a function that does not contain periodicities, pro-
vided its average value is zero. This statement will be considered rigor-
ously correct, and local departures from this theoretical behavior will
be considered as experimental errors arising from the finite range of the
record,

In the case of Fig. 1, where the abscissa axis has been drawn arbi-
trarily, the average value of f(t) is not zeroj its approximete expres-

sion yields:
275

Z f(px 0.2)

_ p=0 _
£y = 7 = -0.20 , (27)

where values of f(t) are taken, as before, at discrete intervals
t=pXx0.2 , with p=0, 1, 2 ... 275 .
Therefore it is the function

£(8) = £(8) - £, (28)

rather than f£(t) itself, that has a zero average, and its corresponding

autocorrelation

T
cpl('c) = %i_’,“oo > fl(t) £,(t +T) dt, (29)

-T

*Calculations have been performed by the Computing Group of the
M.I.T. Research Laboratory of Electronics.,




rather than ¢(%¥) , which must approach zero for increasing T.

We have:
T
= 1im -
g (¥) = lim 3% [f(t) - fav] [ £t + T) - fav] at ,
T 00 -7
T T
6,(T) = Lin 3= £(t) £(t +T)at + (£, )% lin 2= at
T 00 ¥ Tewm
~T -T
T T
1 1
-f, lin o= £(t)at - £, lim 5 £(t +T)at .
T»® -7 T -7

The last two integrals are equal, for a stationary time series, since
they differ only in the choice of the origin of time; their common

value is precisely fav 3 therefore,

)2

0, (®) = 0@ - (£, )7 . (30)

av

For our case, from eq 27, (:E'av)2 = 0.04 , and it is the function

¢, (T) = ¢(T) - 0.04 (31)

which must approach zero for increasing T .

The problem is to obtain an approximating funetion for. (pl(‘t')
whose Fourier Transform ¢ () shall be rational in order to factorize
it as cP(uo) = +(m) <pn(m) , separating the singularities in the upper
and lower half-planes.

Noticing that cpl(t‘) is an even function of T , we get:

@
(o ]

b - o, @e T ar =

-0

S
= cpl('r) cos wT 4T . (32)

19
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The condition that é(w) be rational requires that (pl(‘t) be expressed
as a sum of exponentials of the forms

A8t (33)

BT® e , (n integer) (34)

If (pl('r) were oscillating about zero for small values of T , expres-

8T cos pt and BT® e Pt

sions of the form Ae” cos qT could be used,
ledading to rational expressions for @ (w) . The condition that <pl(‘t)
approach zero for lerge values of T 1is met by using terms of the forms
suggested above,

The method used for the approximation is now deseribed. The ex-
perimental points of Fig. 4 are seen to follow the theoretical behavior
for T ranging from O to 4.6 ; the approximation will be performed
within this range.

Arbitrarily, we may choose to use a single term of the form Ae ='j

BT i1at will be added will have a value

the corrective terms BT” e~
zero for T =0 , and we are left with A = actual ordinate of ¢, (0) =
5.849 - 0.04 = 5,809, In order that the corrective terms be positive,
we choose the value a = 1 , which makes the exponential term Ae-ar
remain slightly below the (pl(t) values for practically all the range

considered. We now write:

@@ = 5.9 + gD . (35)

Values of q)z(‘t) are computed in Appendix I and plotted in Fig. 6.
They exhibit two maxima, around T'= 0,25 and T = 3 , and need there-

fore be approximated by two terms of the form (34):
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1 1
(pz(r-) = B‘t'n e--b‘c’_'_ B'th e-b ‘c’ (36)

(n and n' integers).

Let us approximate the region of the first maximum with the

term BT® e-bt . The maximum occurs for
Bt e PT_bBTP e Ptz 0 s
n
TM = T . (37)

The corresponding maximum value of the term is

n -n
BT, e . (38)

In our case, T, = 0.25 , and the corresponding value of 0, is 0.5 ;

M
this value will not be appreciably affected by the other additional
term, whose maximum will occur at T= 3 ., We may write, therefore,
according to (37) and (38):

n = 0.25b , (39)
B (0.25)" e™ = 0.5. (40)

A third equation is needed, to solve for n, b, B ; we may write
that for T=1 (see Fig. é) the value of the exponential must be
very smally it must be appreciably smaller than the value (0.093) of
(92(1‘.') , since at T=1 the second corrective term will start being
appreciable. Let, for example,
-b(1)

B (1) e 0.02 ,

-b

Be 0.02 . (41)
Using eq.39, eq. 4l reads:

B e—An = 0.02 . (42)




Dividing (40) by (42), we get:
(0.25)%" = 25 ,

(0.25 ge)"

25 ,
2 . (43)

n

Equations 39 and 41 give, respectively:
b =8 |, B = 59.5 (44)

Therefore eq.36 reads:

t 1
0, = 59.5T° T4 B'T T, (45)

Now the same procedure is applied to the second term, approximating

the maximum of @,(T) occurring at T=3; since for T)1 the first
n' b'r

term is negligible, (pz(‘l:') reduces to B"C e in this range, and
the meximization gives:
n' = »', (46)
a3E
3 = 0.35 , (47)

A third equation is obtained by letting (pz(‘t) =0,25 for T=4

(see Fig. 6):
1 1
B'x 4% P = o0.25 . (48)
Again, solving (46), (47), and (48), we get:
B' = 0.182 , n'=6 , b' =2 (49)

Replacing in eq. 45,

8T 6 -2T

0,(0) = 59.5T% ¢ 8"+ 0.182T° & T, (50)

Finally, eq.35 reads:

0@ = 5.89 ¢ T+ 59,57 et T4 00018 P (1)
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This function, plotted in Fig. 4 after addition of 0,04 to thke
ordinates (see eg. 31), is seen to give a very close approximation to
the experimental data.®

Expression 51 for (pl(t') could be used directly to compute. the
power spectrum, according to eq 32. The process leads to an expression:

¢ (@) = “’
a(?)
having a numerator of 10th degree and a denominator of 1lth degree in
co2 « The factorization of @ (w) requires therefore the solution of
high-order equations if Expression 51 is used in its present form.

In order to simplify the problem, it is noticed that the high-order
terms in é(w) arise from the Fourier transformation (32) applied to
terms of the form BT" e PT . One must therefore try to approximate

eq. 51 with terms of the form 2e72T » to the exclusion of other exponen-

tial forms. This leads to:

¢ (T) = 2. A, T (52)
P

0
@(w) = e Z A e %% cos 0TA4T,
L S P

o

dw - = 5 (53)
P

a a>
p

If three terms are used in the expansion (52), @ (w) , when reduced to
a common denominator, will have a numerator of 2nd degree in ®2 and

may be readily factorized.

*
Computetions sre tabulated in Appendix II.
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The well-known procedure for obtaining the closest approximation
to eq 51 by an expansion of the form (52) is to use a set of normal-
orthogonal function. Using the first three terms of the Legendre set,
the optimum representstion obtained for eq. 51 reads:*

-0,87T

-0.487 -0,16%T

Qle) = 7,365 e - 1.855 e + 0.332 e . (54)

This funection is plotted in Fig. 4.

Summarizing, the procedure leading to the workable approximation (54)
consists of two steps: first, a function is sought that fits the experi-
mental data with the least amount of cut-and-try techniques, and leads
to Expression 513 next, an orthonormal expansion is computed for this
function in order to obtain a more suiteble expression (54) for further

computational work.

L. Optimum Predictor System Function
Expressions 52, 53, and 54 give directly:

é(w) _ _L.877 028, _0.0169 _ _ P (55)

0.64 + o 0.23 + @  0.0256 + o @)

After reduction to a common denominator, the numerator reads:

Plo) = 1.61 o + 0.3047 w° + 0.0088
= 1.61(c° + 0.1538) (a° + 0.0356) .
Therefore,
2 2

(0.64 + 02)(0.23 + &°)(0.0256 + o°)

Separating the singularities lying in the upper and lower half planes,

* Computations are performed in Appendix III.



we get, respectively:

(P+ 1.27(0.392 + jw)(0.189 + jw)
@ = 5,80 + @) (0.48 + %)(0.16 + 3} > (57)
(p- _1.27(0.392 - j0)(0.189 - jw)

@ = 75T 1) (048 - §0)(0.16 - %) ° (58)

Expanding eq.57 in partial fractions ylelds:

1543 0,317 0.0416
q)(“’) = T0.20 + J(D) 048+ 50 T [0.16+ 50 ° (59)

Replacing this expression into eq.2l, we obtain directly:

-0.48(t+a)

+ 0.0416 -0.16(t+a)] ’

y(t +a) =2n [1.543 o~0:8(t1a)_ g 517 ¢
veee (60)

Replacing into eq, 20 yields:

153 608 0317 07048 9046 o015
(0.80 + 3A) ~ (0.48+ 3 1) 0.6+3% | °

H(A) =

1
+
¢
v ¢+
Reducing to a common denominator and using for the expression

found in eq, 57 yields:

. . 2
- L+MjaA+N(GA)
B = (0.392 + j A)(0.189 + j &) ? (61)

with
L = 0.0933 ¢+ _ 0,032 048 40,0126 6010 |
M= 0.777 6 0% _ g4 048 | g o4 o 00162
N o= 1214 0% 0,25 048 4 00328 ¢ 001 |

For a =0, we get H(A) =1 , which simply means that for zero
prediction time, the system function, operating on the input f(t) ,
must be unity: If f£(t) represented a voltage wave, the corresponding

"filter® or "predictor" would be a simple open circuit.,
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5. Performance of the Prediction Operator

Let, for example, a = 0,1 . Replacing into (61) and expanding in
partial fractions yields:

_ 0.00064, 0.0017
BA) = 0912 -G i n ~ Gl 5N

for a=0.1.

It appears that the trangfer function practically reduces to a constant
0.9142, the other terms being negligible. This means that, in the inter-
val of time a = 0.1 , the function f(t) d4id not change very appreciably,
and the optimum expression of this change is deseribed by an over-all
factor 0,9142 .

In order to make the frequency dependent terms of the system func-
tion more significant, we must choose a larger value of prediction time.
However, we must remain within a range of time displacement where the
function is highly correlated. From Fig. 4, a value T= 0.5 of time
displacement is seen to give still a reasonably large value of autocorre-
lation. We may therefore use a = 0.5 , for which eq 61 becomes:

0.01083 0.017L
0.189 + A ~ 0.392 + 3 &’

H(A) = 0.6476 + for a=0,5. (62)

This expression shows that, although we have chosen a prediction
time sufficiently large (larger values would lead to poor performance,
since they would exceed the range in which f(t) is well correlated),
the prediction system function still reduces essentially to a constant.

In fact, the frequency dependent terms, which become zero for large values
of frequeney A , yield a maximum correction for zero frequency, of mag-

nitude

0.01083 _ 0,071 _
0.159 0.392 -~ 0.0,

which is still very small compared to the constant term 0.6476 .
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This result is interpreted as follows: If we multiply all ordi-
nates of the function

£1(6) = £(t) - £, = £(t) + 0.20

%
by the factor 0.6476 , we obtain an "output" function

fOl(t) = fo(t) + 0.20 = 0.6476 fl(t) (63)

which yields the closest possible approximetion (in the mean-square-
error sense) to the function £y(t + 0.5) .
This result is‘clearly unsatisfactory; it may afford good predic-

tion in regions of

f(t)l having small negative slope (see Fig. 1),
since the predicting factor 0.6476 means that f£(t) [?ctually fl(tﬂ
should have decreased by that factor after an interval a = 0.5 3 but
when the trend of |f(t)| is upward, prediction becomes very poor.

The actual experimental value of mean-square error, obtained by
applying the prediction operator to the record of Fig. 1, is approxi-
ma"c.ely+

£ = 2.95 . (64)

From the definition of eqs 22, this means that the deviation, in absolute

value, of the actual output fo(t) from the output f£(t + a) expected

* We recall that the axis of abscissae of £(t) had to be shifted
in order to eliminate the average component of f(t) ; the prediction
operator was derived for values fl(t) s referred to the new exis, The
predicted output fo1 » therefore, also refers to the new axis, and corre-
sponding readings fo(t) for the original axis are given by eq 63.

¥*¥ For the more general case, in which H(A) contains significant
terms depending on A , a computational method is deseribed in Appendix IV,
yielding numerical values of the output function from a given record of the
input function,

+ See Appendix V.
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for perfect prediction, is in the average: V:; = 1,72 ; this error
is considerably large, since inspection of Fig. 1 shows that values of
f(t + a) seldom exceed four to five units in magnitude. However, ap-
plication of Wiener's theoretical expression for minimum error to the
analytical developments of the preceding sections yields*

€y = 3415 (65)

which is in good agreement with the experimental value (64).

These results suggest two alternative interpretations: Either the
function of Fig. 1, whose behavior is described by its autocorrelation
curve, does not lend itself to satisfactory prediction; or the accuracy
of the functional approximation to the experimental values of correlation
was not sufficient for deriving the actual optimum prediction operator.

Both interpretations focus attention upon the character of the auto-
correlation curve. A systematic study of autocorrelation behavior is
attempted in the following chapters, in order to derive: (a) criteria
for the performance that may be expected from any given type of correla-
tion curve, and (b) approximation requirements for an adequate use of

experimental data.

# See Appendix V.



CHAPTER III

Structural Reletions Between Time
Function and Autocorrelation Curve

1. Fundeamentel Theorems

The signal function f£(t) will be alweys considered to be of
finite amplitude, of zero average, and in statistical equilibrium. The
latter condition will be assumed to hold for a1l time derivatives of
the function, designated by f£'(t) , £"(t) ... f(n)(t) 3 however, unless
otherwise specified, these derivatives need not be finite.

It may be proved6 that if

T
1
ow) = = fe) £k +T) at (66)
~-T
then ; T
1
== = = [t Tyt (67)
-T
and 5 ) Ly
_d9 _ -¢'o = lim f'(t) f'(t +T) dt . (68)
T-»o0 2T
o e,

In other words:

Theorem I. The first derivative of the autocorrelastion of the
functlon equals the cross—correlstion between the function and its
time derivative. Symbolically, if

then

Q' (T) = Qpp(T) -+ (70)




Theorem II. The negative of the second derivative of the auto-

correletion of the function ecuals the autocorrelation of the time

derivative of the function. Symbolically, if

OT) = @pelT) (7)
then
T . (72)

- (p"(r) = (pf'f‘

Generalizing these properties for higher-order derivatives

yields, with the type of notation used above:

(1) o) (z) = (73)

9 n)p(m1) B
n (2n) _

where orders of derivatives are given by the superseripts (written in
parentheses).
Referring to the expression defining the autocorrelation of a

function f , it is seen that its value for T = 0 is the mean value

of f2 s written £ . From eq, 74, we have therefore:
(n) 2 n (2n)
f = (1) ¢ (0) . (75)

For example, for n=1 and n =2 :

£2 = _g"0) , (76)
£ = o) (77)

Let us now return to eq. 67, which we repeat below:
T v

tiey . lim 1 '
9'(T) = Tl E £(t) £'(t +T) dt . (67)

-T



Integrating by parts gives:

( T T

£(t) £(t +T)}] - f(t +T) £'(t) dt},
\ ~T ~T

' _ lim e
¢ (T =100 2T

0'(T) = g B [ £(1) 2(7 +7) - £(-1) £l +'c)]
.

+T

lim 1 £(t) £'(t -T) at .

" Tgpoo 2T
-T+T
The first term is zero, since the finite bracket is divided by the

infinite quantity T . We are left with the second term, which may be

written:*
T
' — lim Ry e
¢ (T) = -T,0 o7 £f(t) £'(t -T) dt . (78)
-T

Comparing (67) and (78), we get:
p'(t) = -¢'(-T) , (79)

which states that ¢'(T) is an odd function of T , a result which
is apparent from the fact that @(T) is an even function of T . But
comparison of expressions (67) and (78) is particularly interesting
when T approaches zero: If, for example, T goes to zero from the

right in eq. 67, then (-T) goes to zero from the left in eq. 78; and,

in the vicinity of zero, we may still write by eq, 79:
@'(0+) = -g'(0-) . (80)

If both f(t) and f£'(t) remain finite, the limiting process may be

* Shifting the limits of integration is permissible, since f and
f' are in statistical equilibrium.
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carried to the very value T = 0 , and yields:
¢'(0) = -9'(0) = 0 , (81)

for f'(t) finite, which means that in this case the autocorrelation
of f(t) has zero slope for T = 0 , Repeating the same argument for
f'(t) s 1t follows that its autocorrelation will also have zero slope
at T =0, provided f"(t) remains finite; recalling that the auto-
correlation of f'(t) is also the negative second derivative of the

autocorrelation of f(t) , we have:

Theorem III. If f(t) , f£'(t) , and f£"(t) remain finite, both

o(t) and o"(T) have zero slope at T=0 ,

- e ww e wr e wr wm wm @e e ww W me e wm we aw w

Example (illustrating Theorem III)

Let f(t) be the function resulting from the algebraic sum of
ordinates of overlapping pulses of the form A(t) = *l'.2e-t , starting
on the time axis and occurring at random at the average rate of k
pulses per second, with equal probability of being positive or negative
(Fig. 7a2). The individual pulses are seen to have no steep rises and
no sharp corners. Their first and second derivatives remain therefore
finite, and the same applies to the resulting function f£(t) .

The autocorrelation of the resulting function may be shovm6 to

reduce to the expression:

0o
o(¥) = k A(t) A(t +T) dt = —E-e'ltl[t2+3ltl +3] , (82)
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yielding:
') =0, (83)
-g'0) = ¥ [= mf.f.(m] (84)
-(p"'(O) = 0 [: (pi'"f'(O)} . (85)

These results are in agreement with Theorem III, eqs 83 and 85
representing, respectively, the slopes of ¢(T) and @"(13 for
T=0. Equation 8, compared with eq.76, gives the average square
derivative of the function, a positive finite quantity as expected.

Figure 7 illustrates these results.

-_— em e em mn mw e em Er e e e mr e mm e e -

If the second derivative of the function is not finite, the

argument leading to Theorem III does not hold for @"(t) .

Theorem IV. only f(t) and f£'(t) remsin finite, f"

becoming infinite, @(¥) has zero slope for T =0 , but @"(T)

doeg not.

- e wn e e wm wm me e e e e et s e e e mm .

Example (illustrating Theorem IV)

The function f£(t) will be defined as in the preceding example,
the individusl pulses being this time of the form A(t) = t ™' , as
shown in Fig. 8a. The first derivative remains finite, since there are
no steep rises; but the second derivative becomes infinite, since indi-

vidual pulses start from the time axis with a sharp corner (infinite

rate of change of first derivative). We have:
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oo
R | ]
o(® = k At) A(t +T) dt = - e |Tl+1], (86)
(o}
yielding:
9'(0) = 0 , (87)
- 9"(0) = -];‘; [= <pf'f.(0):l ’ (88)
and
-(Pm(o-}-) = ..-]é'— | [: (Pi:"f'(m)]' (29)

Figure 8 illustrates these results, which are in agreement with Theorem IV.

The result of eq.89, which agrees with the statement of Theorem IV,
may be given another interpretationj actually, according to Theorem II,
it represents the sglope of the autocorrelation (pf‘ £ of the derivative
function f'(t) . It is seen that this slope is not zero when the deriv-
ative f"(t) of the function f£'(t) is not finite. Applying this proﬁ-
erty to f(t) and f£'(t) instead of f'(t) and f£"(t) , gives the

following theorem:

Theorem V. If f(t) has a derivative f'(t) which becomes in-

finite, the sutocorrelation @(T) does not have zero slope at the

point T = 0 , but has symmetrical slopes about this point. Therefore,

point T=0 is in this case an angular point for the curve o(T) .

It is therefore recognized that the limiting process leading to
eq. 81 cannot be carried to the very value T=0 | s but only to values
at the right and at the left of zero, as expressed by eg 80. According
to Theorem V, the latter equation must be rewritten as follows:

@'(0+) = -g'(0-) 0 (90)

if f'(t) becomes infinite.

37
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Theorem V is already illustrated by Fig. 8d, where the function

f£(t) is replaced by f'(t) . A direct example is given below.
Example (illustrating Theorem V)

The function f£(t) will be defined as in the previous examples,
the individual pulses being this time of the form A(t) = e ' , as
shown in Fig. 9a. The resulting function remains finite, but it is
seen to have sgharp rises which make its derivative become infinite.
Vie have: ®

o(T) = k A(t) A(t +T) dt

o

x -7
> e ‘ ’ (91)
which is drawn in Fig. 9b and illustrates Theorem V and egq 90; also,
according to the latter, values at O+ and O~ of the function ¢'(T)

appearing in Fig. 9c¢ are seen to be opposite:

x -|T
e'(®) = - (sign of‘t)'z'el l . (92)
The function - ¢"(€) is shown in Fig. 94 :
k -[T
- ") = -5 I ) (93)

It must be understood that the plots of Fig. 9c and 94 have signif-
icance only for T >0 and TL O , but not for the very value T = 0 ,
Actually, if we assign the value - %% to - 6'(0) s as would appear

from Fig. 9d, we must conclude from eq. 76 that the average value of

f'z is a negative number, which is obviously incorrect. As a matter
of fact, we know in this case that £f'“ = 0 . Also, from Theorem II,

Fig. 94 is the autocorrelation of the derivative function ') . It

would be incorrect to say that this derivative function is obtained by
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a superposition of derivative pulses of the form - e"t 3 actually,
the correct derivative pulses start with an infinite impulse, after
which they become of the form - e .

Explanation of Fig. 9d is illustreted by Fig. 10 and the following
heuristic argument.

Figure 10a shows two typical pulses of the f(t) function (from
Fig. 9a). Figure 10b shows the corresponding derivetive curve., Infin-
ite derivative at a point is interpreted as an impulse in the derivative
curve, with area equal -- in magnitude and sign —— to the corresponding
"jump” of the time function f(t) . This deseription verifies the re-
quirement that f(t) must be the integral of its derivative curve.

Now the autocorrelation Pp of the derivative curve must be

'f'
evaluated, and justify the form of Fig. 9d. Applying a property already
used in the text, we call A'(t) a single derivative pulse consisting
(as shown in Fig. 10c) of a unit impulse followed by - et . TFor the

averange rate of k pulses per second, the autocorrelation of the result-

ing function f'(t) is given by
00
Pprpr(T) = k/ A'(t) A'(t +T) at . (94)
o

It will be convenient to separate in this integral the contributions of
the impulse and the exponentisl - e C . The impulse will be considered
as the limit, for A t-~#0 , of a rectangle of width A t and height

Zlg (area = 1, for the function considered).

For T = 0, the contribution of the impulse to integral (94) is:

At 2 2
lim 1 . lim 1 - '
A 10 [ﬂ] at = At oo [A ‘b] At = (95)
o




Area=1

/A

Figure 10
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the contribution of the exponential being finite, we have the result:
q)ftfl(o) = ® (96)
Under a finite displacement T , the impulses, of differential width,

do not overlap (Fig. 10c), even for very small T (for example, for

T = 0+). The contribution of the impulse to the integral (94) is

lim 5 -T we ox v [ -lt] =
At-p0 k E[-e ]dt=m‘_’0—z€e dt = ~ ke 9
o
eess (97)
and the contribution of the exponential is
00
k [- e—t] [- e“(“t)] a = 2 oIl , (98)
o

identical with (91). Equation 98 would be the positive autocorrelation
expected for the derivative pulse if we neglected the initial infinite
portion. Adding the contributions (97) and (98) to integral (94), we
obtain:

CPf.f;(T) = -%— e"“:| for 'Cf 0. (99)

Results (96) and (99) are illustrated in Fig., 10d, which in the limit
becomes identical with Fig. 9d and explains the behavior of Porpr at
T=0. Figure 10d appears as a limiting case of Fig. 8d, where points

Iﬂ

1 and Ig are compressed against the ordinate axis,

e

* Notice that this contribution is equal to k times the ordinate
OB of the displaced curve, at the level of the impulse (Fig. 10c).

o As well as the corresponding inflection points Il and 12 of
Fig. &b are compressed against the ordinate axis in Fig. 9b.
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Inspection of Fig. 10 allows us to draw a general proof of
Theorems IV and V. We first recsall that the radius of curvature of a
function ¢ is given by the expression

[}»+ 12 22
R = 2 ) (100)

¢
The sign of R is the same as the sign of ¢" , and has the following

interpretation:

(a) 1If R)O (or cp">0) , the circle of curvature lies above
the @-curve, which is said to have "positive curvature" (Fig. lla).

(b) 1f REO (or ¢"&0), the circle of curvature lies below
the @-curve, which is said to have "negative curvature" (Fig. 11b).

(¢) If R=0 (or l¢"‘ = 00) , the circle of curvature reduces
to a point, and the ¢-curve has "infinite curvature“* at this point,
which becomes an angular point (Fig. llec and 11d).

We read from Fig. lla that whenever the function ¢ , interpreted
as the autocorrelation of f(t) , has positive curvature, the autocorre-
lation of f'(t) is negative (compare Fig., 9b and 9d). Figure 11d indi-
cates thét when - @" =® , then ¢ has an angular point (compare Fig. 9b
and 10d); this occurs precisely when £'(t) assumes infinite values, since
in that case -;:5 = o, giving - ¢"(0) = 00 (see eq 76).

Let us now investigate the types of pulses A(t) that will give

negative curvature for ¢ at T =0+ and T= 0- , when @(0) is an

* Expressions "infinite curvature" and "zero radius of curvature"
are therefore equivalent. The first one pictures the sharpness of the
turn made by the curve; the second refers to the small circle around
which the turn is made.
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angular point (A'(t) becoming infinite). The analysis of Fig., 10 has
shovm that for pulses of the type e-t » the curvature of ¢ 1is posi-
tive ( Porpt negative), as shown in Fig. 9b. This resulted from the
fact that the negative contribution (97) of the derivative impulse to
integral (94) was larger than the positive contribution (98) of the
area of the finite derivatives squared. If we can reduce the negstive
contribution of the impulse to zero, or even make it positive, then
Qp1pr Will certainly be positive for T=0+ or 0-, and @(T) will
have a negative curvature near zero. Recalling that the contribution

*
of the impulse reduces to the ordinate OB of the derivative pulse for

* See footnote, p. 42.



an abscissa T , we see that the requirement is met if the derivative
is zero or positive after the vertical rise. This leads to the follow-
ing theorem for the resulting function f(t) :

Theorem VI. If £(t) contains vertical rises ( £'(t) infinite),

immediately followed by a slope which is positive or zero (nonconstant)

in the average, the autocorrelation ¢(T) has negative curvature in

the vicinity of T =0 . The point T= 0 is still an angular point.’
Example (illustrating Theorem VI)

The function f£(t) is defined as in previous examples, the in-
dividual pulses being now of the form A(t) = (1 + t)e“t , shown in
Fig. 12a. The sharp rises of the pulses are followed by horizontal
slopes, and the resulting function f(t) meets the conditions of
Theorem VI, of having jumps followed by a zero, nonconstant slope in

the average. We have:

¢(T) —fj oIl ||+ 5 (101)

and

- ¢"(v) -f- e'IT:l -3t . (102)

Function (102) is shown in Fig., 12c, where the point at infinity,
arising from analysis of Fig. 12b, is also included. The positive
values of - @" for T= 0+ and 0- yield, as expected, a negative

curvature for @(T) around T= 0 (Fig. 124).

- e e e ew W wm s e e . em

* From Theorem V, since f'(t) becomes infinite.
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The same type of autocorrelation as the one shown in Fig. 124
would be obtained for pulses of the forms illustrated in Fig$.1l3 and

14, whose derivatives are positive at the right of the vertical rises.

A(t) ,’/ A(t)

———— e

Fig. 13 ' Fig. 14

Some typical results outlined so far in this chapter are sum-
marized in Fig, 15.*

It should be noticed that if a function f£(t) is tiurned end for
end, the same autocorrelation is obtained: therefore all the pulse
shapes studied above may be‘turned end for end without changing the

resulting autocorrelation. We may therefore extend Theorem VI:

Corollary to Theorem VI. If f(t) contains vertical descents

( £'(4) = - @), immediately followed by a slope which is negative
or zero (nonconstant) in the average, the autocorrelation ¢(¥) has

negative curvature in the viecinity of T=0.

¥ Notice that for the first three rows of Fig. 15, the single
column labeled - w" may be set first under "Assumptions," and the
other three columns f', f", ¢ would appear as "Conclusions." How-
ever, for the last row the single information given by - @" permits
one only to derive the corresponding ¢ curve and to state that £!
becomes infinite.

47



(IX W3HO3H1 O1L AHVITIOHO09)

Sl 34N9Id

39VH3AV 3HL NI SIMIVA

3AILVO3N HO (LNVLISNOD-NON) OM3IZ A8 G3MOTI04 3HV S3NTVA oo — ANV (%)

~Iw (1+4)

X

4/

#3IOVHIAY
3HL NI S3IM
=VA 3AILISOd

HO (LNVLISNOD
-NON) O¥3Z A€
g3m07104 AuY

SAMIVA co+
in8 ‘31INg
-NI $3NM0238

aNv

‘4o

TN

)

3LINISNI
S3N0J39

~N

=24 /\1

\

VA

31INIINI

S3N0o3a8 |

31INId
SNIVW3Y

~J

~

N
~

-2 2

o
»

o

o

\

/
/
/

N

/H\

31INI3
SNIVN3Y

3LINIS
SNIVW3Y

NOILVNO3 3STNd| 3SINd 40 3dVHS

{4)3 30 SININOIWOD
35Nd AYVLN3WN313 40 S3NdWVYX3

¢

.Cﬁu_.ﬂl

(1),

(),3

‘ON
N3Y¥03HL

SNOISATONOD

SNOILdWNSSY




2. Smooth Time Functions

Let us assume that f(t) represents an electrical quantity,
voltege, current, or charge. Its value is always finite. Its time
derivative is also finite. For example, if f(t) is a current, there
is always some inductance in the circuit whose instantaneous energy
storage is -%-fz(t) 3 the rate of change of this energy is Lf(t)f'(t)
and must remain finite in any pﬁysical system; therefore f£'(t) is
finite, Furthermore, resistance, capacitance, and inductance sare
always present simultaneously in any physical circuit, and lead to a
second-order differential equation for the solution of f(t) . This
equation, therefore, involves f£(t) , f£'(t) , and f£"(t) ; and since
the first two quantities are finite, f"(t) is also finite.

The same argument applies in the case where f(t) is a mechanical
quantity like velocity, force, or displacement, for which the physical
constraints are friction, mass, and stiffness.

Therefore the electromechanical functions f(t) just considered
always yield smooth records: They present no vertical rise [.f'(t)
finit%] and no sudden change in slope resulting in angular points
[:f"(t) finite]. The autocorrelation @(T) and its second derivative
have therefore  zero slopes at T =0 .

In certain cases, however, this smoothing effect of the energy

storage elements is made unappreciable within the range of frequencies

involved in the time record of the function f£(t) , whose autocorrelation

curve may then approximate the types described above for cases involving

x See Theorem III or Fig. 15a.
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infinite derivatives. However, it is convenient t0 keep in mind that
there will always be a finite circle of curvature, however small, en-
closed by the autocorrelation curve at T = 0 , indicating that £'(t)
and f£"(t) , however large, are still finite. In fact, it will appear
in the following pages that the behavior of the autocorrelation in the
immediate vicinity of T = 0 gives the most valuable information for
prediction performance, and needs to be approximated with greét accuracy

in the Wiener-prediction analysis.

3. Jump Time Functions

Many statistical functions give rise to records containing vertical
"jumps"; for example, a record of numbers appearing in successive throws
of a die would give a random jump function with horizontal steps at in-
teger levels between 1 and 6. Such functions inherently contain infinite
derivatives, and their sutocorrelation will be of the types described in

Tig. 15c and 15d, presenting an angular point at T=o0.



CHAPTER IV

The Power Spectrum Function

1. Separation of Conjugate Singularities

It has been pointed out in Chapter II that the sutocorreletion
should be expressed as a sum of functions whose Fourier Transforms
are rational, thus meking it possible to split the resulting power
spectrum into a product of a finite number of factors. Under such

conditions we mey write:

P.(A
dw = = » r<s5, (103)

where Pr. and QS are polynomials of degree r and s in the
.varisble A° . The condition r <s indicates that, for infinite
frequencies, the power density must be zero, since the total power
of the message is finite.

A first possible expsnsion of eg. 103 is the following:

By = g2 Lt et Mo (ot ) ey - Bley - ). oy - )
(by + 3A) (b + JA)eue(b o+ 3A)  (by = JA)(Dy~ jA).uu(b = JA) 2

eees  (104)

where the complex conjugate pairs of zeros of the polynomiecls Pr and

are in evidence, and A2

Q

s is the positive zero-frecuency value of

power density. Considering only that part of é(k) containing singu-

larities lying in the upper half-plane, we have:
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CP+ (a; +3\)(ay +3A)ec(a, +30)
(W) = AR T, a0 (b, ¥ I0) (105)

and

mcp ot
Y (&) me*tar (206)
-00

according to the definition (21); Y(t) appears to be the inverse
Laplace Transform of a function having poles in the upper half-plane;
\Y(t) is therefore zero for t <0 .

An a’ternate expansion of eq.103 is:

K K
_ 1 K2 B K1 KZ
¢a - o+ W T+ m) * o T o+ ™) T o -t T,- W)
.K-S

where the constants K are conjugate of the respective K's . Consider-

ing only poles in the upper half-plane, we have:

¢ = 2 2 Ss__ ,
p ™ T oy +n) Ty Tt T o) (208)

and

[0 o]
cpp("c) j ‘Pp(x)em a , (109)
~00

where (pp(‘b') is defined as the inverse Laplace Transform of a function
having poles in the upper half-plane, and is therefore zero for T Lo.

From eq. 109 we may write:

dw =& | q@PTar (110)



o
@F(m =a | e ?Tar, (121)

-
where the bar indicates "conjugate value of." Since the functions
(p (t) and (pp(-‘t) do not overlap, we may add eq,110 and 111 as

follows, recalling that (? +(P @ from eqe107 and 108:

00

4)(1) = -2%}- [cpp(r) +<pp(-'r)] e gy . (112)

-00

From eq, 19 and 112, it eppears that qlp (Tt) is that portion of the

autocorrelation function ¢(r) , lying to the right of T =0,

+
It should be noticed that CP (A) and @p(X) have the same poles,
and their transforms \Ir(t) and (pp('t') are therefore sums of expomentisls

in equal number, having respectively the same time constants.

2. Differentistion
Integration by parts of eq.110 yields:

oo (o8]

I -AT S -IAT 4
2n¢p(7\-) = A CPP(T)e + Ih (P (T)e dT.
o o
Therefore:
(oo}
¢_(0+)
Fir [ gme T ar = jxcp () - —-gﬁ—— . (113)
o
Integration by parts of eq,1l1l yields:
E)—— o 1 o
_ 1 _ -jAT =+ v -JAT d
21 p(?w) T} <Pp( T)e + 7 (Qp( Te T .

-Q0 ~00
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Therefore:
o R
. ¢ _(0-)
1 -JN P
3T <pl',(—f)e W gz = a2 (E,(M 57 - (114)
-
Recalling that
Ppl0+) = @ (0-) = o(0) , (115)
addition of eq.113 and 114 gives:*
®
TS o' Tar = P . (116)
-00

Repetition of the differentiation process on eq.11l3 and 114

yields, respectively:

© '
- @ (0+) @ (0+)
1 -JAT _ 2 p p
3 |- (p;(‘t)e dT = - A @p(i\) - A T - am ¢’ (117)
o
and
[o) - !
¢ (0-) ¢ (0-)
1 n -JAT - 2 . _P p
-00
By eq.115, and also recalling that
0p(04) = -gl(0-) ,* (119)

addition of eq.1l7 and 118 gives:

* Equations 113 and 114 hold, respectively, for o’<0 and 00 3
the sum holds for 0 =0, or A=w.

5
See edq. 80.
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. N Y
EJ,-‘? (p’(t)e—amrd't = - u)2 cb(w) - SETTLO-Q' . (120)
-0

It should be noticed that the process leading to eq.120 avoids

the value of ¢" at T =0, and should preferably be written:

O o0 (pl(o_*_)
L / + ] o"Me T gt = - 2‘I)(o.») - 2
-Q0 o+

therefore the point at infinity that appears in ¢"(0) when f£'(t)
becomes infinite* is excluded from the integration.** Under such con-
ditions, the theorem on Laplace Transforms, stating that integrals (117)
and (118) become zero for A —»00 , applies to integral (120), when

@ ~»00 . Therefore:

lim mz‘i’(m) I e (122)
@W-» 0 n
One also finds:'
1 "t
:)1:00 o [m2¢(m) +(—p-?-(r9-+—)- = (—p—-—r—(t?ﬂ- . (123)

* See Chap. III.

Under such conditions, the inverse transform of eq.120 reads:

R '(0+) .
-¢'x) = Lw‘?@(w) +<-p-r] ¥Taw , for THo0.,
-00

+ Actually, a sequence of expressions of the same kind may be de-
rived, analogous to (122) and (123). They are seen to relate the be-
havior of the autocorrelation function around T = 0 , to the behavior
of the power spectrum at ® = oo . The practical consequences of this
correspondence will be discussed in Chap. VI.
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Various cases may arise, according to the excess of denominator

degree in expression (103) for the power spectrum.

(a) s=r + 1, For the varisble co(or A) , the denominator

’ 2
degree exceeds by 2 the numerator degree [for example:@(w) =1t “’4] .
l+w

Then eq 122 gives a finite value for initial slope of autocorrelation.
From the discussion in the last chapter, this case represents s signal

whose derivative becomes infinite (see Fig. 15¢ and 15d).

(b) s=r+ 2 ., For example, @(a)) = Equation 122

(1 + 0)2)2
shows that the initlial slope of the autocorrelation is zeroj substitu-
ting this value in eq 123 gives a finite value of slope for - @" = Pprpre
This case represents a signal whose first derivative remains finite, but

whose second derivative becomes infinite (see Fig. 15b).

@ 1+ o7
(¢) s=r + 3. For example, (w) = g Equations 122
1+

and 123 yield ¢'(0+) = ¢"'(0+) = 0 . Both first and second derivatives
of the signal remain finite in this case (see Fig. 1l5a).

It should be noticed that if all derivatives of the signal remain
finite, ylelding (p(2n+l) (0+4) = 0 for all integer n , a rational ex-
pression for CP (w) could not satisfy all successive equations of the
types (122) and (123): Soon, the increasing powers of o? multiplying
the successive equations would give a finite value for (p(2n+1) (o+) .

An exponential expression for Cb (w) avoids this difficulty, but is not

adequate for factorization purposes. In practice, however, if the sig-

nal f(t) represents some electromechanical function, very high-order




*
derivatives are not bound to remain finite, and a rational expres-
sion for ¢ (w) may apply, provided the denominator degree is suf-
ficiently large. Each additional finite derivative contributes an

additionsl degree in «® in the denominator of @(w) .

* Theoretically, the nonlinearity of lumped parameters in a physi-
cal system results in differential equetions involving all derivatives
of the signal. Practically, coefficients associated with high-order
derivatives are negligible, and corresponding derivatives may become

very large.
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CHAPTER V

A Study of Prediction Error in Relation
to Signal and Autocorrelation Behavior

1. The Unit-Transfer-Error Curve

An ideal predictor operating on an input function £(t) should
yield an output f(t + a) , for a prediction time a . It is precisely
to this perfeect output that the actual response fo(t.) of the predictor

is compared in computing the ™mean-square error" of prediction:

2
€ = lim '2}",1: [fo(t) - £t + a)] at . (124)
T-»00

-7
If now the predictor system is removed and replaced by a direct con-
nection between input and output terminals (Fig. 16), the new "output"
merely reproduces the input f£(t),

with no attempt to predict values of

f(t + a) . Obviously, if a predictor F (l‘) PREDICTS L([—)
system is any good, its output fo(t) SYSTEM

must do better than f£(t) in approxi-

mating f£(t + a) . Using the direct f(t) F(t)
: >—8 ~—>
connection in place of the predictor
systematically introduces a "prediction®
error Fig. 16
T 2
l B
€, = lim 57 [f(t) - f(t + a)] dat , (125)

T—p0

which should prove appreciably larger than the error (124) computed




for the predictor. Expression (125) may be called the "unit-

transfer-error.® It is the mean-square error of prediction obtained

with a transfer function equal to unity. Expanding eq.125 yields:

T T
e, = lin == £2(t)at + lin £2(4 + a)dt
u Ta® T-»00
-T -1
T
-2 lim ?elf £(6)£(t + a)dt .
T 7

If f£(t) 4is in statistical equilibrium, the first two integrals are

identical.* Therefare, by definition of autocorrelation, we have:
g, =2 [@(0) - @(a)] (126)

The curve representing the variation of this error with a 1is the

mirror image, about an axis of ordinate ¢(0) , of twice the auto-

correlation curve (Fig. 17).

Fig. 17

*
They differ only in the origin of time about which the average
of f2 is computed.
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If a predictor system is any better than the direect connection,

its error curve must always lie in the region below the g, curve,

as indicated in Pig. 17.

2. The Zero-Transfer-Error Curve

If the predictor system is removed and no connection is made be-
tween input and output terminals, the transfer function becomes zero.
Again, the actual predictor output fo(t) should do better, in approx-
imating f(t + a) , than an output fo(t) = 0 ., Therefore the error
(124) computed for the predictor must be smaller than

7

_ A _
€, = 1lim 57 i‘z(t + a)dt = ¢(0) .

(127)
T-w00 -

Expression (127) may be called the "zero-transfer-error" and is rep-

resented, as a function of a , by a horizontal line g, of ordinate

¢(0) « The error & of the predictor system, as a function of a ,

must now lie both below the horizontal line ez and below the curve

€, drawn in Fig. 17. From Fig. 18 it is recognized thet within the
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range O <a <a° ) su represents the upper limit of the error ¢ ,
and for larger prediction ranges the upper limit is represented by €, -
Physically this means that between O and a o ? & convenient standard
of comparison for prediction performance is given by the performence of
the unit transfer function; above a, » & more significant standard of
comparison is afforded by the zero transfer function. The composite
boundary of prediction error may be called the "maximum® prediction

error ¢ .

3. Behavior of the Wiener Prediction Error for Large g

Equation 21 gives for o =0 :
oo
+
Y(t) = / CP (med" aw . (128)
-m

+
This expression shows that @ (w) is the Fourier Transform of Y(t) .
Applying Parseval's theorem and noticing that @ (w) is the conjugate
+
of (P (w) , we have:

(e o]

o |
{)_(w)¢+(w)ej"t aw = == (t) W(t +T)dt .  (129)
& | yoy

-00

By €qs19 and 18, the first member is

o0
[ @(w)ej"" av = ¢(T) ,
=00

and in the second member, the lower limit of integration may be re-

#*
placed by zero, since Y(t) =0 for t <0 .

>

© Sec Ped2e
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Therefore: ' o
o(T) = 5-1,-[-/ Y Y+ Than (130)
o

Now eqs 23 giving the Wiener prediction error as a function of

prediction time a 1is rewritten below:

a
2
1
€nin = 310 ] (t)at . (131)
n ] ‘Y

This expression shows that ¢ increases monotonically with in-

min
creasing Qa , since the integrand is always positive. Comparison of
eqe 130 and 131 shows that when a —o00 , smin increases to a maximum

value

lim ¢ = @(0) .
a-+»00 min

Therefore ¢ min is asymptotic to €, 5 as shown in Fig. 19.

__

MIN

o 4
Fig. 19

4. Behavlior of the Wiener Prediction Error for Small a

The minimum error of prediction starts with the value zero at

a=0. A significant measure of the Wiener predictor performance



is the rate of increase of the error when the prediction time is in-

creased from zero.

the unit-transfer-error gives a valuable information on the performance

of the Wiener predictor. From eqel3l we have:

For

d g 2
min _ ¢« _ _1
T “Cmin-3nY @ -

a=0:

, 1w
€rin (0)=-2-ﬁ-Y (o) .

From eqe 126 we have:

ds\l J !
dg " =20 .

According to eg. 130 we have:

For

Qo
(p(a):é-]'f*t'j (t) (t + a)at ’
~Fe | ywy
®
%%:cp'(a)=§'lﬁ'j \lt(t)ag;[\’f(t*'a)l at ,
(o]
1
‘p:(a)=§___ (t)ET,[ (t+a)] at ,
T Yol

(s o]
¢'(a) = 5%{[ (t) W' (t + a)dt .
L Y®wy

a =0, eq.139 becomes:

[ o)
@' (0) =—2%;/ \y(t)Y'(t)dt s
[¢]

Comparison of this rate of increase with that of

(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)
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' _ 1 d 2
¢ (0) = 7x w®|Y (b)) a , (141)
(o)
2 2
10) = -1
¢ (0) = 7% [Y (o) -Y (0)] . (142)

2
But \V’(oo) = 0 , since integral (131) converges for @ = 0o . There-

fore:

2
¢'0) =- 77 Y © . | (143)
Substituting in eqs 135 gives:
' (0) = == “(0 |
e ) =37Y (@ . (144)

Comparison of eqg.134 and 14/ shows that at a = 0 , the rate of change

of the Wiener error 1s the same as the rate of change of the error ob-

tained with a unit transfer function.* The curves eu and amin &re

tangent at their starting point

(Fig. 20), and give practically €
the seme values of error for 1/////////
small prediction times. However, ,/CEEE

the Epin CUTVE cannot cross

above the g, curve, since €nin

A

is the minimum theoretical error. 0 P,

The above result is of funda-

mental practical importance. Since Fig. 20

*
If Y (0) = 0 , making both "rates of change" equal to zero, a

more sensitive comparison of errors must be used: Comparison of the

higher~order derivatives will be seen to be adequate for this purpose.




the €, curve was obtained as the mirror image of the autocorrela-
tion curve (after doubling the ordinates of the latter) s it appears

that the slope of the autocorrelation curve at T = O+ must be known

and approximated with great accuracy if we want to prevent the pre-

dictor obtained by Wiener's method from yielding a larger error than
would be obtained with a unit transfer function (Fig. 21). 1In partic~

ular, the functional approximation to the experimental autocorrelation,

ZCY(")— - e, = —
\Zunct{ona\ approximation
to ea(rarimmfdl
Foints

mirror image ol
experime nl’a.
dvtocorrelation

Wiener-error  for the
Euncﬂona\ spprox'\mah'on
chosen

*

° X
Fig., 21
obtained by an expansion with normsl and orthogonal functions, may
very well give a curve that apparently follows the experimental p?ints
in the average, but gives an incorrect slope at T= 0, This is true

of Fig. 4, in which the initial slope of the orthonormsl approximating

curve (dotted lines) is larger than the slope obtained from the experi-

mental points. As a matter of fact, the autocorrelation of most physical

functions’ has zero slope at T = 0 , thereby making the g, and ¢ nin

*
See Chap. IIT, Section Z,
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curves tangent to the a-axls. However small the range in which the
autocorrelation curve is flat around T = 0 , this character must be
accurately reproduced in the functional approximation, if one wants
the Wiener error to increase slowly from the a-axis for increasing a
(Fig. 22). The importance of reproducing the zero initial slope of
the autocorrelation curve is also apprecisted from the following addi-

tional feature of the smin curve obtained in this case: The su
-1
-2¢"(0)

3%
a positive quantity resulting in an upward curvature for €, } but

*
curve has, at a = 0 , a radius of curvature reducing to R =

the radius of curvature of the emin curve is, by eq, 133 and 143,

T
R=————=00 . This means that when ¢'(0) = 0 , the Wiener

Y (0)y(0)

error curve is very flat eround a = 0 , its tangency with the a-axis

being of high order: Prediction error remains very small for small
renges of prediction time, and good predictor performance is obtained
in these ranges.

It is possible to show that

the flatness of the smin curve

is improved when the signal has
finite derivatives of increasing

orders. One first recalls that

"flatness™ is measured by the
number of successive zero deriva-

. +
tives of the Smin curve, For Fig. 22

* See eq. 100 and 135.

o See Fig. 15a and 15b, corresponding to the case @f(O) = 0 here
considered.

+ See footnote, next page.
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example, from eq. 133,

ey O =2V @Y, (s)
n 1
i @ = EY QY@ + Y © (146)
and 1 m 1 n
e O =zYOVY @+ Iyoye  w

If @'(O) =0, corresponding* to a signal having finite first deriv-
atives, eq 143 gives \F(O) = 0 , and therefore a;in (0) =0, a result
which has just been discussed, giving a second-order tangency of €nin
with the a-axis. If ¢" (0) is also zero, ( 0"(0) # o), corresponding
to a signal having finite first and second derivatives, one has the

following equations: from (139),
. l ©o [}
¢" (a) = 3% (AW (¢t +a)at ; (148)
n
, Yoy

integrating by parts gives:

" °° «© ' n
2me" (a) = \‘l(t) Y (t +a) - / \l/ (t) Y (t + a)dt ;
o [o]

+ hLetually, expansion of €min (a) about zero in a MacLaurin series
glives:
] a ] a nt
= Y 1 : 0 eece
Snin (@) = O €3y (0) + 57 &gy (0) + 3y g (0) 4

which shows that if the first (n-1) derivatives are zero at a =0 s
€nin (a) is an infinitesimal quantity of nth order.

* See Chap. III, Theorem IV.

xx See Chap. III, Theorem III, and Fig. 15a.
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but \Y(oo) =0 and wf(O) is still zero, from eq. 143 ; then

ao,,,
21 o™ (0) = - (t) (t)at ,
Y wy

or oo d
) Y]
0 = w— — (t) dat ,
| wlY
or
t2 12
Y (O)"'Y (CD)=0,
and thence

\y (0 =0,

which, together with ‘HJ(O) = 0, gives in this case for eqs146 and
47 ¢
n = g(4) =
€hin (0) = €nin (0) =0 ,

as well as s;in (0) = a;in (0) =0, Ve see that a fourth-order
tangency* results in this case between the €pin Curve and the g-axis,
whereas 2 simple tangency** still holds for the su curve, and predic-
tion is very satisfactory.

The above discussion clearly stresses the importance of approxi-

mating all the features of the autocorrelation function at T =0

* According to the footnote of p. 67, we have in this case

-2 (5 .
(a) = 3T E (0) + ... which shows that ¢ ig a fifth-order

8min

infinitesimal quantity.
3¢

min

s& (0) = s;' (0) =0, since ¢'(0) = ¢™(0) =0 ; but ¢"(0) $ 0

making e; (0) 40, and e, 1s simply tangent to the a-axis.
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(derivative, radius of curvature, etc.). Figure 23 illustrates the
difference in prediction error curves for two autocorrelation functions

that differ in shape only in the immediate vicinity of T=0.

€z €=

y, €t

a X o o

Fig. 23

The physical reasons that make the shape of the ¢ curve 8o

min
eritically dependent upon the behavior of the autocorrelation around
T =0, are evident from the results of Chapter III, illustrated in
Fig. 15. A zero initial slope of autocorrelation corresponds to
finite signai derivatives (at least a finite first derivative) and
gives a very flat prediction error curve, expressing the fact that
future values of the signal do not differ very sharply from present
velues, within small prediction intervals. A nonzero slope of auto-
correlation at T = O+ corresponds to signals having infinite deriva-
tives; the prediction error, as we saw, rises sharply in this case,

interpreting the fact that when a vertical jump occurs in the signal,

future signal values are difficult to predict.

5. Examples

The following examples of error curves correspond to the typical

signal functions studied in Chapter 11, for which autocorrelation
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curves were computed and sketched (Fig. 7, 8, 9, 12). It is recalled
that each case corresponds to a particular behavior of the signal de-
rivatives: accordingly the prediction error will be shown to behave
along the patterns anticipated in the preceding sections of the present

chapter.
(a) Signal having finite first and second derivatives

S oot ot P Wn e S vt o — o — — —— — - - S— —— —— o—

The signal chosen is the one 1llustrated in Fig, 7a. From eqe &2 :

o) = o I¥! [~‘§-2-+|‘tl+ 1] , (149)

where k 1is made equal to 4/3 (aversge number of pulses per second),
*
in order to normalize the signal to a one-watt power. Ve have:

o0 @
-T - -T
ﬂ?(m) 't' e cos OTAT+ Te rcos oTdT+ e cos wTAT
) o )

20-%°) , 1-6° , _1 _ _ __ &3

(1 + m2)3 (1 + m?)z 1+ m? (1 + a:nz)3
CP+ _ _2Va/m
() = 3
V3(1 + jo)
——L—ZEL 3 eI gy = 2 2N 2.t . (150)
1+ JW) V3

The unit-transfer-error curve is, from egq.149:

‘ 3
su(a) =2 [¢(0) - ¢(ai] =2 -2 [%r +a+ 1] , (151)

¥ Assuming the signal to be a voltage across a one-ohm resistor;
in that case, eq. 75 gives, for n=0: (t) = average square of the
signal = @(0) = 1 watt.




and the Wiener-error curve is, from eg,150:

a
2
1 . 1 2a 4., 3 .2
aan)=§F/.WIHMt—1-3e (2 +40” +6a” +6a+3). (152)
)

We have for the unit-transfer-error curve:

81;(0) o,

1

and

") = 2
su(o) - 3 *O 2
indicating that a simple tangency occurs with the a-axis.

The Wiener-error curve has a derivative s;in (a) = %%_046-20 s

which yields at a =0 :
' - " _om - (4) _
Cpin (O) = Epiq (0) = gy, (0) = ey (0) =0

and
()

min () =320 ,
indicating that a fourth-order tangency occurs with the a-axis at

a=0, for the ¢ curve. Curves €, and I shown in

min
Fig. 24 (solid lines); prediction appears to be very good in this

case, for small ‘a s as expected from the discussion of the preceding
section, The prediction time may be chosen between O and 1 second,

the error remaining very small in this range (less than 5 per cent of

the signal power, and less than 18 per cent of the unit-transfer-error).

(b) Signal whose first derivative only remains finite

The signal chosen in this example is the one illustrated in
Fig. 8a. From eq.86 :
_ it
o(T) = e [T+, (153)




for an average rate of four pulses per second, yielding the same

signal power as in the preceding example. We have:

a [o 0]
ﬂq)(w) = Te"t cos TAT + e't cos ®TAT
[o] [o]
_o2-¢® 1 _ __ 2
(1 +a)% 1+ (1 + o)
Gt - Nerm
(1 + jo)®
Q0
\y(t) = {2/ 1 zeJ"t aw=2V2m te ¥ . (154
e (L4 W

The unit~transfer-error curve is
g, (@ =2-2"" (a+1) , (155)

and the Wiener-error curve is

a

S 2 =2t
8MA(a)—2n 8T te

[o]

at =1 - o2 +2a+1) . (156)

We have for the unit-transfer-error curve:

81;(0)=0 ’

and

240 ,

e, (0)

showing that again a gimple tangency occurs with the a-axis.

2 =20
The Wiener-error curve has a derivative EQin (a) = 4a"e

yielding at a =0 :




az:ﬂn (0) = 8;111 (0) = s

and

S:in (0) =840 ,

which proves that has in this case a gecond-order tangency

Cnin
with the g-axis at @ = 0 : This result agrees with the discussion
of the preceding section of this chapter. Curves of €, and €pin
are shown in Fig. 24 (dashed lines): They indicate that prediction

is satisfactory when « is chosen between O and 0.5 . Prediction
error is smaller than 8 per cent of the signal power in this range and

represents less than 45 per cent of the unit-transfer-error, proving

the Advantage of using the Wiener transfer function.

ks it G Ty . -0 it el i Gt S D = — > - — — o

— — ——— — . rmm D At Ve e D wsts owrew o oo omet — — T — o ——

The signal studied in this example is the one shown in Fig, 12a.
From eq,101 :

vl (0.6]T| +1) , (157)

oT) = e
for an average rate of 4/5 pulses per second (normalizing the signal
power to unity). We have:

00} o 0]

-T -T
]’[q)(@) = 0.6 Te cos oTAT + e cosoTA4dT
o o
_ 0.6(1 -2w§) P S, g./z,mz
(1 + o) 1+ w 1+ %)

s

* The signal also has (Corollary to Theorem VI) vertical descents,
followed by a zero (nonconstant) or negative average slope.



¢+(m) ) Yo.4/m (2 + jw) _ |04 1 + 1

1+ jw)? T {1+ L1t

Q0
\!o. 1 1 jwt
—ﬁﬁ / = jw)2 Ty | e dw (158)
-@®

frem o (1 +1) .

The unit-transfer-error curve is

\V(t)

g la) =2 - 2¢ %(0.6a + 1) , (159)

and the Wiener-error curve is

Q
S -2t ;.2 _ )
emin(a) T 1.6Mne (t°+2t+1)dt = 1 - O.4e (a“+3a+2.5).

o LK B N (160)

In agreement with the general analysis, both curves have at zero the
same slope

5:; (0) = sn"in (0) = 0.8 .

The curves are represented in Fig. 24 (dotted lines) and are seen to
rise sharply along their common tangent from o = 0 ., For a prediction
time as small as 0,25 seconds, the error obtained with the Wiener
predictor is as high as 20 per cent of the signal power, and is prac-
tically as large as would be obtained with a unit transfer function.

It appears, as expected from earlier theoretical remarks, that for
small prediction time the Wiener system function does not give in this
case any better prediction than is given by a direct connection between

input and output terminels., For larger prediction times the error of




the Wiener predictor departs from the unit-transfer-error, but rep-
resents in those ranges a considerable percentage of the signal power,
and prediction is very poor. For example, for a = 0.75 , where the
Wiener system function gives a smaller error than the direct comnec-
tion, that error represents nevertheless 52 per cent of the signal
power: One can easily realize that the "predicted" waveform would

bear very little resemblance to the input waveform.

— ——— — — — - ot Moty o — - o - W D i WS oot orot®

— mmm —  w—— — — o o -y e e R e

The signal considered is the one shown in Fig. 9a. From eq.91l:

<l

oT) = e (161)

for an average rate of two pulses per second (giving a signal power
equal to unity). We have:
(s3] T ,
thp(w) o cos oTAT = —= 3

l+c02

it

o

@ +(m) BAVLS
1+ jw

]

3

00
_ ‘l_g._ 1 L i
Y(t)-— n[_ml-i-jwel dw = Y4Tl e . (162)

The unit-transfer-error curve is
-
au (@) =2 - 2e s (163)

and the Wiener-error curve 1is

smin(a)=-§ln- 4Te =1, (164)

75
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The common slope condition at a = 0 is verified:
t — ] —
&, (0) = €nin (0) =2 .
The curves are shown in Fig. 24 (dash-dot lines); it is apparent in
this case that there is no prediction that one can speak about. To

illustrate the performance of the Wiener system function, we compute

its expression

(s 4]
H(A) = }-V—Z:‘L / (am o Ty - (165)
n
(o]

a constant, independent of A . This constant, decreasing exponentially
when prediction time is increased, merely reduces the ordinates of the
input f(t) . For example, if the random input signal is the one shown
in Fig. 25a (which has the same autocorrelation6 as the signal just con-
sidered), the output fo(t) results from the graphical construction of
Fig. 25b, where it may be compared directly with the actual values of

f(t +a) . It is apparent that however the mean square error has been

minimized by the Wiener procedure, the minimum obtained is so large
that the output bears no resemblance whatsoever to the curve f(t + a)

which it should approximate.

6. The Relative Error in Prediction

In the preceding examples, error curves were computed and plotted
for signals normalized to a unit power: Error values could thus be read
directly in percentage of signal power. The prediction érror for signals

having finite derivatives was seen to be small for a certain range of

prediction time, but the unit-transfer-error was also small in that range.

A new figure of merit is therefore required comparing, for a given type

77
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of signal, the advantage of using the Wiener predictor rather than a

unit-transfer connection. We may define a relative error:

min
b Su

However, we have seen that for large prediction time the zero-transfer
function gives an error g, smaller than the error given by a unit-
transfer function (Fig. 18). Therefore, after the intersection of the

curves € and €, s the significant figure of merit becomes

€ . E .
_ _min _ _“min
= T e, T 90 aen

Z

which coincides precisely, for these ranges of a , with the €nin

curves drawn in Fig. 24, normalized to a power @(0) =1 . Combining
eqs 166 and 167 for convenience, we have for the relative error:

€ .

g, = o= , (168)
max

where €pox is the composite curve shown in Fig., 18, Relative error
curves, for each of the four examples of the preceding section, are
plotted in Fig. 26. It is easy to show that for the signal (a), having
finite first and second derivatives, the function (166)‘has a third-
order tangency with the a-axis at a = O (solid line), whereas the
tangency is of first order for the signal (b) whose first derivative
only is finite (dashed line). The remaining two curves of relative
error, corresponding to signals (¢) and (d) having infinite derivatives,
start from a value e. = 1 for a =0, and remain in the upper region
of the graph for all a , indicating that the Wiener predictor does

not perform much better than the direct comnection (or the zero transfer
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for larger a ) for these types of sSignals.
The behavior of the relative error curves, illustrated in
Fig. 26, in the vicinity of a = 0 , clearly confirms the fact that

only those signalsg are predictable which have at least their first

derivative finite.,




CHAPTER VI

Conclusions

Some of the most significant theoretical resulis of the pre-
ceding chapters are summarized and tabulated in Fig., 27. From a
gualitative point of view it may be said that: (a) a signal whose
first derivative reaches infinite values is unpredictable; (b) pre-
diction is possible if at least the first derivative of the signal
remains finite; and (c¢) the quality of prediction increases when
derivatives of increasing orders of the signal are constrained to
remain finite. Assuming that we deél with a predictable signal,
whose nature therefore precludes the existence of an infinite first
derivative, the fundamental analytical expression of this predictable
character lies in the zero initial slope of the autocorrelation of the
signal. Reproduction of this slope in the analytical work is the first
condition for a successful predictor design. Also, in the immediate
vicinity of T = 0 , the structure of the autocorrelation curve must
be accurately approximated, since it interprets the behavior of the
high-order derivatives of the signal, which condition (as we saw) the
quality of prediction performance.

The necessity of having accurate data on autocorrelation behavior
around T = 0 has an important practical consequence. We have seen
from eq.122 and 123 (and othei's of the like that can be written) that
the description of the autocorrelation function at T =0 corresponds

to the infinite frequency behavior of the signal power spectrum. It
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is therefore inadequate to take experimental data of power spectrum,
since the solution of the prediction problem would require approxi-
mating with extreme accuracy the manner in which the power spectrum
approaches zero for large 3 moreover, however large the frequency
range in which the experiment is performed, the most important data
would still lie beyond that range.* In practice, therefore, the
power-spectrum equation, representing the signal statistics in all of
Wiener's analytical work, must be derived merely as the Fourier Trans-
form of the autocorrelation curve., The above argument is made clear
from inspection of Fig. éS.** All curves are represented only for
positive abscissae and must be completed by symmetry about the ordinate
axis. The go(d) curves have the general character of autocorrelation
functions (except curve 1+); they show a variety of forms in the range
of the graph, corresponding to the various cases considered in the pre-
ceding chapters. The GO(CI) curves are the normalized Fourier Trans-~
forms of the respective go(c) curves; they may be interpreted as the
power spectra associlated with the corresponding autocorrelation curves

g (0) « It clearly appears that the considerable differences between

X This result stresses the fact that prediction performance is
related to the behavior of the high-frequency components of the signal,
which are responsible for the steep rises and sharp corners.

o Taken from: "A Case of Linear Pulse Distortion Occurring in
Ionospheric Work," by H. Baerwald (Technical Physics of the USSR,
Vol. 3, No. 7, p. 7, 1936).

* Wiener has shownl from the Schwartz inequality that the auto-
correlation @(r) is smaller (and never equal) for any T than the
value it has at T =0 .
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the various go(o) curves around ¢ = 0 are greatly reduced in

the Fourier Transform curves, which differ mainly in the way they
approach thelr common zero asymptote for large Q « If one has
experimental data for a GO(SE ) curve, it becomes impractical to
reproduce accurately the important part, which lies in the highest
frequency rangesy it is much simpler to obtain experimental deta for
go(d) in a narrow range around ¢ = 0 , and take the Fourier integral
of the corresponding expression.

As far as the trial experiment of Chapter II is concerned, it
is now clear that failure of an adequate approximation of autocorre-
lation behavior around T= 0 accounts for the poor performance of
the resulting predictor. More gxperimental points are needed for
small values of T than the ones recorded in Fig. 4. Inspection of
the signal function of Fig. 1 shows that a zero slope of autocorrela-
tion should result at T= 0 , rather than the negative slopes given
by expression (51) or (54). Failure to meet the correct slope at
zero causes all further analytical steps to follow the pattern of
the laest two rows of Fig. 27, corresponding to "unpredictable" sig-
nals. As a matter of fact, expression (54) used for autocorrelation
of the signal of Fig. 1 gave a system function practically reducing
to a constant; this result is comparable to the one obtained in
eq. 165 for the unpredictable functions studied in Example (d) of the
preceding chapter,

New procedures must therefore be used for an adequate fitting

of experimentsl data for the autocorrelation function. For exsmple,




an expression of the form
-aT 3*
o(r) = (po(‘r) - he cos bT ,

where h is chosen very small and & very large, may account for
the zero initial slope of @(T) and its rapid change in the vicinity
of T=0. The term cpo(‘l') is usuelly a sum of decreasing exponen-
tials** whose negative contributions to the initial slope may be off-
set by the positive contribution &h of the second term, for adequate
values of & and h . In most cases, a must be so large that the
oscillations produced by cos bT are completely damped out before
the first half-period is over. The parameter b appears in the
second derivative of ¢@(T) , and may be chosen to give the optimum
description of slope varistion around T=0 .

Dr. Manuel Cerrillo, of the M.I.T. Research Laboratory of Elec-
tronics, is developing an orthonormsl system of functions which would
be particularly convenient for fitting curves having structures of

the autocorrelation types.

¥ Use of the small subtractive term he °' cos bT in the expres—

sion for ¢(T) was suggested to the author by Dr. Y. W. Lee.

bl Making the power spectrum rational.
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0.2
0.4
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0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
Red
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
4e2
hed
L6

o(T)
9 (D

9, (T)

APPENDIX I (See Fig. 6)

o(T)

5.849
5.276
44289
3.598
2,810
2.273
1.675
1.416
1.180
1.176
1.098
0.856
0.847
0.809
0.764
0.681
0.603
0.535
0.450
0.425
0.368
0.249
0,267
0.227

§(T)

5.809
5.236
4249
3.558
2.770
2.233
1.635
1.376
1.140
1.136
1.058
0.816
0.807
0.769
0.724
0.641
0.563
0.495
0.410
0.385
0.328
0.209
0.227
0.187

5.809¢" ©

5.809
44750
3.895
3.188
2.610
2,140
1.750
1.435
1.175
0.960
0,785
0.645
0.529
0.430
0.354
0.290
0.237
0.194
0.157
0.129
0.106
0.087
0.07
0,058

experimental values (see Fig. 4)

@lcf) - 5.809 e” ©

@(T) - 0.04 (see eq 31)

(see eqes35)

9 (1)

0
0.486
0.354
0.370
0.160
0.093

-0,115
-0,060
-0.035
0.176
0.273
0.171L
0.278
0.339
0.370
0.351
0.326
0.301
0.253
0.256
0.222
0.122
0.156
0.129
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APPENDIX III

An orthonormal expansion, using Legendre functions, will be
computed for the expression

8T -2T

9,(T) = 5.809 " + 59.5 T2 e84 0,182 70 o (5

For a three-term approximation, the first three Legendre functions

must be used. They are:

Q(t) = (5 <772
@ = 3 s FV? (2¢77F - 1) (5
o,@ = 5 P72 (66T _ 6aPT 4 1)

The resulting expression for eq.51 will be:

1)

la)

is obtained for
p = 0.32

Qn will contain therefore terms of the forms:

o-0.16T o0.48T 08T

2
9, (T) %__; C, Q,(T) (51b)
with 0o
C, = (Pl(T) Qn('t) at (51c)
)
00 . 00 T ‘00
_ - 2 -8 6 -2T
,Cp = 5.809 e Q. r)ar + 59.5 T Q(¥)av+ 0.1 [ Te T Q (T)AT
o o o
_ )]
v — v J - v _J
R S T
After trial, it has been found that the optimum set of functions (5la)




"‘O‘ 16—t .

For Qn =
00
R= / 110730 = 0,861
[o]
[0 0]
s=| T2 8T =0.0037
[o]
o0
T =f T,'6 e‘z'lérdt' = 3.30
(o)
For Qn = e'o’48t:
3]
o [ ATy o crss
(o]
(¢ )
S = T? 848 4 = 0.00334
[e]

a
7 =/ T6 eR48T g = 1,257
[o]

00
R = o 18Tt = 0.5555
o

3
|

= 0.00294

)
[

~
=N
«
"

0.5335
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Using now the complete expressions of Q, s Q » and Q2 s and

developing the corresponding coefficients Co ’ Cl , and 02 accord-

ing to eqs5lc, we get:
VO.BZ (5.809x 0.861 +59.5% 0.0037+0.18x 3.30) = 3.298

CO

c, Y0.96 (2x 5.809 % 0,6755+ 2% 59.5x% 0,00334
c
+ 2x0.182x 1,257 - —> = 2.8
V 0,32 )

c, = V1.6 (6x 5.809x 0.5555+ 6 x 59.5x% 0,00294
3C 20
i_ _ -0 ) = 0.972

+ 6x0,182x 0,5335 ~
‘ Y 0.96 Yo.32

Finally, from eq 51b, we obtain:
9, (T) = e'o'léT( 0.972 (1.6 x6e 0% T

+ (0,972 (1.6 43.298 Vo.32 - 2.82¥ 0.96)}

-0.16T (54)

“0.8T_ 5 g5 o~0+48T | g 337 ¢

7

cpl(T) = 7,365 e

This is the desired three-term expansion of eqe51.
The following values of this expansion were computed, and the

corresponding curve plotted in Fig. 4 :




T @ (T)5 eq 54 4 = @, +0.04

0 5.842 5.88
0.2 44909 4949
0.4 4.136 4.176
0.6 3.464 3.504
0.8 2.9L 2.954
1.0 2.442 2.482
1.5 1.577 1.617
2.0 1.019 1.059
3.0 0.433 0.473

4.0 0.203 0.243
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APPENDIX IV

Numerical Analysis of
System Function Performance

The system function, or "transfer" function H(w) obtained by
the methods deseribed in this paper, can always be realized by a
linear electromechanical system. However, errors are introduced by
the physical elements used in the synthesis, and greater accuracy is
obtained by computing the theoretical system performance. If fl(t)
is the input function, for which the optimum H(w) has been obtained

by Wiener's method, we may describe the theoretical filter output by

Qo
(a) fol("’) e £, (¢ ~-T) n(r) at ,
(o]
where ©
(b) h(t) = 5 H@) o %Ta *
-00

represents the output for a unit impulse input u(T) .
For the gystem function given by eg, 62, for example, eq.(b)
gives directly:

-0,189T ~0,392T

h(T) = 0.6476 u(T) + 0.01083 e - 0.0171 e

where uf(t) is the unit impulse function. In this case, eq.(a) becomes:

00
(c) f01(t) = 0.6476 fl(t) + hl(T) fl(t -T)aT,
[o)

-0.1897T -0.392°T

(@)  with h(T) = 0.01083 e - 0.,0171 e

#*
These equations are true for any system function.

o




The integrel appearing in eq.(c¢) is computed by the same pro-
cedure described on pp. 15 and 17 for the autocorrelation function.
For the present case, a list of values of hlft) is computed, for
T = nx0.2 for example, n jincreasing from O to a value N ,
after which tht) is practically zero. In front of this list,
values of f

1
of the same magnitude 0.2 ; if the record covers the range from O

are listed, for decreasing t , time intervals being

to T, the first number of this list will be f(To) . Now the

h(T) 1list is slid along the fl list until h(0) is in front of

the value fl(t) at the time t for which the "output" given by

eqge (¢) is sought. As illustrated by the tabulation below, horizontal
products represent discrete values of the integrand of eq (¢), separated

by equal intervals of magnitude 0.2 .

fl(To)
£, (%) X h, (0) = P,
fl('t - 0.4) X hl(o.?_ = pl
£1(t - 0.4) X h, (0.4) = Py
fl(t - Nx 0.2) X hl(N“ 0.2) = Py
. o
. 0
L] O
0
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If values of the integrand are plotted as in Fig. 5, the trapezoidal
approximation to the integral of eqs(c) yields:
oo . P, Py
hl(‘[') fl(t -T) dT = 0.2 [—2—+ Py+DPy * ees + Dy, +-7:}
o

The particular case here described by eqe (¢) and (d) makes the
value of this integral insignificant compared to the term 0,6476 fl(t)
of eq, (c); this result was pointed out on p. 27 of this paper.

However, the computational method described by the tabulation
shown above is completely general. The tabulation clearly illustrates
the mechanism by which a filter system, described by H(w) or h(T) ,
operates on the past of the input function, past values of the input
contributing to the present output in a way determined by the "weight-
ing factor" h(T) . This factor represents the distribution in the
past of the contributions of the input; since it decreases exponen-
tially, we have the obvious result that values ¢f the input function
lying in the infinite past have negligible effect upon the present

Output .




APPENDIX V

Scheme of Computation for

Mean Square Prediction Error

For the experiment described in Chapter II, the "predicted"

output for a time interval a = 0.5 is given by eqe 63, yielding:
£01(t) = £,() + 0.20 = 0.6476 £1(t) = 0.6476 [f(t) + 0.20] ,

or

£,(t) = 0.6476 £(t) - 0,07 ,

where f,(t) is the "filter" output referred to the co-ordinate
axes of the input record of Fig. 4.

In order to determine the mean-square error of prediction, this
output has to be compared with the value of the input at the later
time (t + 0.5) . A scheme of tabulation of results is indicated below
and the actual value obtained in the summation of the last column is
shown,

2
t t+0.5  £(t) 0.6476£(t) fo(t) f£(t+0.5) fo(t)~f(t+0.5)

48.8 49.3 3.4 2.20 2.13 2.2 0.005
48.6 49.1 1.0 0.65 0.58 o2 13.10
274 27.9 1.7 1.10 1.03 ~1.5 6.40

318,62




The square-error summetion, for the 108 samples of the tabula-

tion, is 318.62. The approximate mean-square error 1s therefore

(a) E= %%’—é’-z' = 2.95 (experimental) .

We must compare this performancé with the theoretical one, ex-

pressed by eq, 23, which is repeated below:

2 ,
1
€, =T == (t) at . (23)
min = 2
) Y
From eq,60 we have:
2 2[ -0.8t ~0.48t ~0.16t] 2
\Y’(t) = 4AMT J1e543 e °7° <« 0,317 ¢  ° + 0.0416 e °
2 B 6 0.96 t
Y (t) = 4m2 |2.38 e +%% + 0.00 670°9°F & 0.00173 70432

-0‘979 e-l.28‘b + 0.1285 e-0.96t - 0.0264 6-0.61&]

Then eq 23 reads:

=27 [%‘?ég (1 - e—-l.éa) + 0.1385 (1 _ e-O.%a)

€nin 0.96

, 0.00173 (1 ) e-o.sza) _0.979 (1 ) e—l.28a)

9.32 1.28
_ 06?2% (1 _ 9-0.64::)]
For a = 0.5 we get:
(b) €nin = 3.15 (theoretical) .

The experimental value obtained in eq (a) is in good agreement with
the theoretical value (b), computed directly from the analytical ex-
pression of the autocorrelation function (since \r' (t) is uniquely

determined by cp(t)].




ACKNOWLEDGMENTS

The author wishes to express his grateful
appreciation to Dr. Y. W. Lee for the incentive
of his lectures on Wiener's Theory and for his
helpful advicey to Mr. T. P. Cheatham for his
comments and suggestions; and to the Directors
of the Research Laboratory of Electronics and
their associates for providing the research
facilities.




100

2.

3.

b

5.

7.

8.

N.

N.

N.

Y.

He

BIBLIOGRAPHY

Wiener, "The Extrapolation, Interpolation and Smoothing of
Stationary Time Series," NDRC Report, M.I.T., Feb. 1, 1942.

I. Taylor, "Diffusion by Continuous Movements," London Math,
Soc. Proceedings, Ser. 2, Vol. 20, pp. 196-212, 1920.

Wiener, "Generalized Harmonic Analysis," Acta Mathematica,

Wiener, "The Harmonic Analysis of Irregular Motion," Jour.
of Math. and Phys., Vol. 5, pp. 99-121 and 158-189, 1926.

W. Kenrick, "The Analysis of Irregular Motions With Applica-
tions to the Energy-Frequency Spectrum of Static and of
Telegraph Signals," Phil. Mag., Ser. 7, Vol. 7, pp. 176-196,
1929.

W. Lee, "Theory of Optimum Linear Systems." (Notes dictated
at M.I.T., course 6.563 - as yet unpublished) :

M. Jemes, N. B. Nichols, R. S. Phillips, "Theory of Servo-
mechanisms,” M.I.T. Radiation Leboratory Series, Vol. 25,
Chapters 6-8, 1947 (N.Y., McGraw-Hill Book Company, Inc.).

Levinson, "A Heuristic Exposition of Wiener's Mathematical
Theory of Prediction and Filtering,®" Jour. of Math. and
Phys., Vol. 26, pp. 110-119, 1947,




