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ABSTRACT

The performance of the Wiener predictor is shown to be closely
connected to the behavior of the signal derivatives; in turn, this
behavior is related to the structure of the signal autocorrelation curve
in the immediate vicinity of the ordinate axis. Careful reproduction of
this structure in the analytical work is the fundamental condition for an
accurate predictor design. The expected performance of the predictor,
measured by the "error", may be anticipated by noticing that: (a) a
signal whose first derivative reaches infinite values is practically
unpredictable; (b) prediction is possible if at least the first deriva-
tive of the signal remains finite; and (c) the quality of prediction
increases when derivatives of increasing orders of the signal are con-
strained to remain finite. Again, these characteristics of the signal deriva-
tives are interpreted in the central structure of the autocorrelation
curve. For example, a common feature of "predictable" signals is that
their autocorrelation curves have zero initial slopes.

Failure to give due weight to the severe accuracy requirements
in fitting analytically the central part of the autocorrelation curve
accounts for the unsatisfactory results obtained in a first trial
experiment on prediction, attempted in Chapter II.

A close correspondence between the central region of the
autocorrelation curve and the high frequency content of the signal is
recognized. If one deals with experimental data on power spectrum,
it follows that the higher the frequency range, the greater the
required accuracy of the data for prediction analysis. In all pre-
diction experiments it is therefore more adequate to deal with auto-
correlation data, which need to be accurately reproduced only in a
narrow range of the variable. The analytical expression thus obtained
for the autocorrelation curve gives the power spectrum by a simple
Fourier transformation.
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CHAPTER I

Introduction

1. Generalities

The filter problem, in communication engineering, may be defined

as the problem of recovering a given signal, selected among a number

of other signals or disturbances that may be present.

The classical solution given to this problem consists in convey-

ing the various signals through separate frequency "channels," and

designing filter systems, each responding to the desired channel,

with as sharp as possible a "cut-off" in amplitude response, in order

to prevent overlapping of the frequency ranges assigned to the other

signals.

The sharp cut-off in the amplitude response is unfortunately

associated with a strong distortion in the phase response.

The ear seems to tolerate a considerable amount of phase distor-

tion, which therefore results in a minor disadvantage in the reproduc-

tion of audible signals. But when the ultimate destination of the

signal is either the eye, as in the video reproduction of television

receivers, or a mechanical system driven by a servomechanical trans-

mission, then phase distortion may become seriously inconvenient.

Another disadvantage o the classical solution lies in the fact

that it disregards such random disturbances known as "noise," whose

interference into the frequency channel considered cannot be completely

discriminated against.
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On account of these difficulties, a completely new approach to the

general filter problem has een given by N. Wiener in an NDRC Report

dated February 1, 1942,1 and made public in 1945.

Under this approach, signals are considered in the time domain

to begin with, and as such are recognized as effectively covering the

entire frequency range when transposed into the frequency domain.

Whereas the classical solution focussed attention upon the response to

sinusoidal time signals confined within the region surrounding the

carrier frequency, Wiener attempted to deal with the actual signal and

the statistical character of its time representation.

A fundamental requirement for studying the problem along these

lines is that the signals considered must represent stationary time

series. In other words, their individual statistical properties must

be fixed in time. It is intuitively evident that such conditions are

met, for example, in the time representation of speech messages modu-

lating some arbitrary carrier frequency: Speaking of stationary statis-

tical characteristics for such messages amounts to saying that, in a

given language, the frequency of occurrence of any letter of the alphabet

is governed by a fixed probability distribution pattern; and the succession

of letters, associating any one of them with the others, gives rise to

combinations which follow statistical laws.

Under such conditions we may say that if we split the message into

its sinusoidal Fourier components, we shall find components having a

certain distribution in relative amplitude and phase, characterizing

the statistical properties of the message considered. Whereas the

classical approach considers these sinusoidal components individually,
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disregarding the manner in which they contribute to the actual message,

Wiener has shown that the optimum solution to the filter problem is

obtained by choosing a convenient measure of the distribution of these

components. This measure is the power sectrum; representing the average

power density of the message for any frequency component. Alternatively,

an equivalent representation of the statistics of the message is given

by its autocorrelation function pl11() , defined as:2

^T

P1 (r) = lim 1 fl(t) f(t +)dt (1)
T-.oo 2 T 1 1

where fl(t) is the time representation of the message.

The equivalence between autocorrelation 11(r) and power spectrum

11(c) lies in the fact that they are Fourier transforms of one another.3

Symbolically,

=I 2 Tfo dt (2)

m,(l - i 1-co) CTdco (3)
00

When two signals fl(t) and f2(t) are present, "cross-correlation"

terms may arise, and lead to analogous definitions:

P1 2 (t) = lim fl(t) f 2 (t +t) dt , (4)

12 TJ (p1 2 (T) e dt (5)
-T
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m,(PLr);l Hi2(0)·lord(6)

These "cross-terms" are identically zero or constants if the two

signals considered are incoherents for example, a speech message and

"shot noise" produced by an amplifier are completely unrelated, and

their cross-correlation is zero.

One particular problem whose solution is given by Wiener's theory

in terms of the symbols defined above is the following: Consider a

signal fl(t) and an interfering signal f2(t); the expression

fi(t) = f(t) +f 2 (t) (7)

represents the "corrupted" signal that we are confronted with, and that

we apply at the input terminals of a filter. What is the optimum filter

transfer function (or "system" function) in order that, under such con-

ditions, the filter output fo(t) reproduce "as closely as possible"

the "uncorrupted" signal fl ? The criterion of performance chosen by

Wiener is that the transfer function should be so chosen that it mini-

mizes the "mean-square error" between observed and expected outputs.

Formally, it must minimize the expression:

T 2

= lim [f(t) - fl(t - a)] dt , (8)
T-o co T

where a represents a fixed lag or time delay after which the signal

fl(t) is expected to be approximated by the output fo(t) . The formal

solution to the minimization problem has the remarkable property of

being independent of the algebraic sign attached to the parameter a 

in other words, a "predictor" may be synthesized as a particular case



of a filter having a leading time response. To emphasize the gener-

ality of the solution, the parameter is written as a . In terms

of the complex frequency variable

X = + (9)

the transfer function resulting from Wiener's analysis reads:

H (X) t t+ a edt = (10)

whereoo 

Y (t +1 a) = + e1j2) (ta)w dw (11)

In these expressions, the "input power spectrum"

i ii = + 22 + 212 (12)

is "factorized" into product components + ii and containing,i ii

respectively, those poles and zeros of ii that lie in the upper and

the lower half of the complex frequency variable plane. We have:

System function (10) minimizes the mean-square error ) between

System function (10) mlnimizes the mean-square error 8) between

the observed output fo(t) and the uncorrupted signal fl(t + a)

This error, however, is not zero; its value is given by:

Emin 'P( 0 ) .f {2t -) dt . (14)

In a great number of problems, the signals in presence, fl(t)

and f2(t) are incoherent; for example, fl(t) may be a speech message

and f2(t) shot noise. Then 12 = 0 and eqs. 11 and 12 become:
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(t a) i1() lj( )w dw , (15)

ii(w) = l(W) + 22(w) * (16)

A particular problem, with which this paper will be mainly concerned,

is the one of "pure prediction," in which f2 (t) is made equal to

zero in order to optimize the performance. The function of the filter,

or "pure predictor," is then to extrapolate the message fl(t) into

the future, message statistics being described by its power spectrum.

In thiis ~ 11 + Symbols and equa-

tions defined above read as follows, for the case of a single message

function f(t):

fT

(p(T) = Pff(T) = lim f(t) f (t +T) dt (17)

T oooo

cp(r) = | (c) e d X , (18)

0J -o

(co) = 2o (Pr) eja d = +())-() , (19)

H(X) = )' (t + a) e-j t dt (20)

Y (t + a) = +(w) e ( t + a) w dw (21)

-oo
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If fo(t) is the predictor output, which is expected to reproduce

the value that the input f would have a seconds later, the mean-

square error

s = lim 2T J fo(t) - f(t + a) dt (22)
T- oo

becomes, when eq. 20 is satisfied by the filter system function:

min -2 2(t) dt (23)

Equations 17 through 23 are the fundamental predictor formulas.

2. Brief Historical Back gound

In an early paper, giving the first rigorous approach to the

problem of "The Harmonic Analysis of Irregular Motion," 4 N. Wiener

credits G. I. Taylor for having introduced the concept of correlation

in the study of irregular phenomena. Autocorrelation functions for

some simplified classes of time messages were computed by G. W. Kenrick,5

as well as the corresponding power spectra or "frequency-energy dis-

tributions."

The fundamental mathematical tools for dealing with statistical

functions extending through the infinite time range were developed by

Wiener in his paper on "Generalized Harmonic Analysis."3

The general theory of filtering and prediction was given by the

same author in 1942, as was previously mentioned.1,8 The theory was

made available by Y. . Lee in a practical form, for direct use as a

new technique of communication engineering.6
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Use of the mean-square-error criterion in servomechanism design

was attempted in a recent publication of the M.I.T. Radiation Laboratory

Series.7 However, the methods studied in the latter do not have the

generality of Wiener's approach to the synthesis problem. Rather, the

over-all structure of the servo system is given, and only the circuit

coefficients are adjusted for optimum performance, in the presence of

disturbances described by their autocorrelation function.

3. PurPose of the Present Paper

The wide range of possible practical applications of the new

filter theory, suggested in the works of Wiener and Lee, have not been

attempted as yet. A considerable amount of information has to be gath-

ered before the various aspects of the theory can be applied to their

full extent.

Before any significant practical achievement can be obtained, auto-

correlation functions, or power spectra, must be computed from experi-

mental records for various classes of signals. Several measurements

are needed for each individual type of signal to establish the invari-

ance of these statistical functions, since the theory applies to signals

that are stationary time series, in "statistical equilibrium." In some

cases, cross-correlation must be measured that may appear between inter-

fering signals.

For these experimental data, suitable approximation criteria must

be developed, ultimately leading to an analytical expression of the

* An electronic autocorrelator is being built by T. Cheatham and
E. Kretzmer at the M.I.T. Research Laboratory of Electronics.

_ __



at

system function that matches as closely as possible the theoretical

performance.

In the present paper, an attempt is made to develop the techniques

and outline limitations, in dealing with the pure predictor synthesis.

It is the author's belief that, besides its great possibilities

of practical applications, the prediction problem is the most suitable

for initial experimental work in connection with Wiener's theory. It

is the simplest, since it deals with a single time function and requires

computation of only one correlation function. The final result may be

easily compared with the result expected from the theory. This verifi-

cation of Wiener's theory by experiment, on the minimum mean-square-

error basis, would be much more difficult for the filter problem, where

more than one signal is involved. Besides, in the latter case, perform-

ance would also have to be compared with that of filters whose design

follows the radically different criteria of the classical approach.

The prediction problem thus appears to afford a possible first

insight into the mechanism of the new theory. Conclusions that may be

derived from prediction studies will perhaps suggest analogous approaches,

or prove to be directly applicable, to the general filter problem.
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CHAPTER II

A Trial Experiment on Prediction

1. Choice of he In ,ut Fn ction

For any random function, in statistical equilibrium, an optimum

prediction operator may be derived by the methods of Wiener's theory,

summarized in the last chapter.

Random functions are very common in nature: shot noise in elec-

tronic amplifiers, speech messages, pressure of wind gusts on the

structure of airplanes in motion, turbulent flow of fluids, meteoro-

logic records, etc.

A great number of these functions contain "hidden periodicities"

arising, for example, from the alternation of seasons, or of day and

night, in temperature records. In such cases it is evident that a very

large number of experimental data, extending through a considerable

range of time, is necessary for studying the true statistical character

of the function} in other words, from an experimental point of view, a

study of small records would not be adequate for verifying the condition

of statistical equilibrium. In fact, temperature records extending

through twelve hours of observations would give different statistical

distributions according to whether the origin of time is taken at noon

or at midnight, and according to the season, and perhaps to the cyclic

variation of sun spots. For such functions the difficulty lies in the

fact that they are generated by a great number of interfering factors.

More likely to exhibit a stationary statistical character from small

-- . _--
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records, are those functions which are produced by a limited number of

known "agents" that can be isolated from other external conditions.

Shot noise generated in a given amplifier belongs to this class of

functions.

However, the above restrictions will become important in the con-

structive phases of applications of Wiener's methods, when filters will

be required that operate steadily with a constant performance on a cer-

tain type of input functions. From the more academic point of view

taken in this paper, where preliminary experimental examination is

sought, the random function chosen for study needs to be stationary

only in a local sense, within the range in which the experiment has to

be performed.

The function chosen is shown in Fig. 1. It represents a latitudinal

cross-section of the Rocky Mountains, extending across lands having a

uniform geological pattern; the internal pressures of the earth that

have given rise to the mountainous eruption, and the erosion that has

taken place since, have therefore met with a reasonably uniform resist-

ance of the ground surface within the range shown; a local stationary

pattern may therefore be assumed along any section lying within the

limits of the graph.

The problem is to compute a prediction operator for this function

f(t) , for which arbitrary co-ordinates are chosen (Fig. 1), abscissae

being interpreted in time rather than space units, in order to use the

language and symbolism of Wiener's theory.
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2. Experimental Comoutation of Autocorrelation Function

Until some continuous autocorrelator is available, autocorrela-

tion functions have to be approximated from finite experimental records.

If the record extends from 0 to T , the approximate expression for

eq. 17 is:
T

1J f(t) f(t +1) dt , T T . (24)

An integral has to be computed for each value of r .

Two procedures may be used, illustrated in Fig. 2 and 3.

In Fig. 2, T = To/2 = constant: The averaging process of eq. 24

is performed along a constant interval, for all values of T ranging

from 0 to To/2 . The same degree of accuracy is therefore obtained

for the resulting p(r) , when the variable t varies within these

limits.

In Fig. 3, the averaging takes place over an interval T = T - ,

which decreases as the shifting parameter increases. Equation 24

becomes:
To

p(t) = 1 I f(t) f(t +) dt . (25)

In this case the accuracy of (p(T) is greatly improved for small values

of , since the statistical data available from the record are used

to a fuller extent. The accuracy decreases with increasing r , until

it becomes equal to that obtained in the process of Fig. 2, when C = To/2

In spite of its nonuniform accuracy, the process of Fig. 3 will be

preferred, since the nature of the problem itself requires the greatest

See footnote, p. 8.
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possible precision for small values of shift . Although this state-

ment will be further elaborated in the following chapters, it is intui-

tive that the "correlation" described by p(T) , between values of

f(t) and values of f(t +T) , needs to be known very closely within

the range of the functional "displacement" (lead or lag) that the filter

must produce. In other words, if a lead or lag of a seconds is re-

quired, the "dependence" between values of f(t) and values of f(t +)

taken by the function T seconds later, must be known with particular

accuracy for t ranging between 0 and a .

The autocorrelation function obtained from Fig. 1 is shown in

Fig. 4, for T ranging between 0 and 5 . The point-by-point compu-

tation was made for intervals = 0.2 between successive points.

To that effect, ordinates of f(t) , read off Fig. 1, were listed for

discrete values t = pO.2 , with p = O, 1, 2 ... 275. Let these

ordinates be: f(O) = a ; f(0.2) = b f(O.4) = c ; ... f(55) = e 

An identical list of values of f(t) was repeated along the former,

"shifted" by an amount = n x 0.2 . The resulting picture, shown

below, is identical with the one described by Fig. 3. On the third

line, products corresponding to values of the integrand of eq. 25 are

computed.*

a hb c... h i j k 

ft + : a b i c d e . . . j k '

f(t) f(t +) : ac bd ce . . . hj ik jt

L J

(276 - n) data
(275 - n) intervals

The tabulation shown corresponds to = 0.4 , or n = 2 , but
the argument is general.



C

16

'1

0-!i

�� _________

i
ItD



17

Values of the integrand f(t) f(t +T) are plotted in Fig. 5.

Fc) F (t r)

1
I I

U. 

ik

....... I je
~I I I

I Il l V
t

Fig. 5

The integral of eq. 25 is the area under the integrand curve of

Fig. 5, for which the trapezoidal approximation shown gives:

Area = 0.2 ac bd+ bd + ce h + ik + 2

= 0.2 x 2 + bd + ce + ... + h + ik + 2

fT _T
_ T

~0

f(t) f(t +T) dt .

The total interval, as shown on Fig. 5, is:

To - = (275 - n) x 0.2 .

Equation 25 becomes:

1
(p(1) = 275 - n ac+ bd + ce + ... + hj + ik + (26)eJ

2J

with r = n x 0.2 .

Therefore p(T) is obtained by summing all the column products of

ac

0
__ __: ·

55 - I
=/ TS rt) 0-2

o, 2.



the tabulation described above, the first and last products being

halved, and dividing the resulting sum by 275 - n

3. Functional Approximation to xperimental Autocorrelation

The experimental points obtained in Fig. 4 show that the auto-

correlation of f(t) goes very nearly to zero for increasing "shift" t.

This is expected for a function that does not contain periodicities, pro-

vided its average value is zero. This statement will be considered rigor-

ously correct, and local departures from this theoretical behavior will

be considered as experimental errors arising from the finite range of the

record.

In the case of Fig. 1, where the abscissa axis has been drawn arbi-

trarily, the average value of f(t) is not zero; its approximate expres-

sion yields:
275

f(px 0.2)
p=O

fa = -0.20 , (27)

where values of f(t) are taken, as before, at discrete intervals

t = p X 0.2 , with p = 0, 1, 2 ... 275

Therefore it is the function

fl(t) = f(t) - fav ' (28)

rather than f(t) itself, that has a zero average, and its corresponding

autocorralation

1p(=) Too 2T i fl(t) f(t +V) dt , (29)

Calculations have been performed by the Computing Group of the
M.I.T. Research Laboratory of Electronics.



rather than (r) , which must approach zero for increasing .

We have:

f(t) - fav] [ f(t + t) - fa1 dt

T

f(t) f(t +)dt + (f )2 lim 1/
av 2T7--

dt

LT
I 

(pV(?) = ura
T-.oo

T 3L f

(Pi(C) = lim 2T
T-.oo 2Tel~)=lir ~!T T

fav limUD 2T 

TT
f ff(t)dt - lim f

av T -wo 2T]
f(t +r)dt .

The last two integrals are equal, for a stationary time series, since

they differ only in the choice of the origin of time; their common

value is precisely fav ; therefore,

l(r) = (T) - (fav) (30)

For our case, from eq 27, (fa )2 = 0.04 , and it is the functionav

Pl(r) = P(r) - 0.0o4 (31)

which must approach zero for increasing .

The problem is to obtain an approximating function for (P1r)

whose Fourier Transform ~ () shall be rational in order to factorize

it as (O) = + (X) -(O) , separating the singularities in the upper

and lower half-planes.

Noticing that epl(-t) is an even function of T , we get:

(co) 2 00
_O

()e -Jr at = L | cl(r) cos cor d . (32)
1 T 

19
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The condition that (o) be rational requires that (p(T) be expressed

as a sum of exponentials of the forms

A e- a , (33)

B' n e- b v (n integer) (34)

If (p1(t) were oscillating about zero for small values of T , expres-

sions of the form Aeat cos and Bcould be used,

leading to rational expressions for () . The condition that P1(t)

approach zero for large values of t is met by using terms of the forms

suggested above.

The method used for the approximation is now described. The ex-

perimental points of Fig. 4 are seen to follow the theoretical behavior

for ranging from 0 to 4.6 the approximation will be performed

within this range.

Arbitrarily, we may choose to use a single term of the form Ae -a

the corrective terms B n e-b that will be added will have a value

zero for = , and we are left with A = actual ordinate of 1 (0) =

5.849 - 0.04 = 5.809. In order that the corrective terms be positive,

we choose the value a = 1 , which makes the exponential term Ae aT

remain slightly below the 1 (C) values for practically all the range

considered. We now write:

91() = 5.809 e + 2 () · (35)

Values of p2(T) are computed in Appendix I and plotted in Fig. 6.

They exhibit two maximal, around r' = 0.25 and = 3 , and need there-

fore be approximated by two terms of the form (34):

__ ____________�_________
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'P2() = B n be + B'rn' b't (36)

(n and n integers).

Let us approximate the region of the first maximum with the

term B T n e The maximum occurs for

B n n-l e-bt _ b B n e-br = 0

T M b · (37)

The corresponding maximum value of the term is

B T e-n . (38)

In our case, T M = 0.25 , and the corresponding value of 2 is 0.5

this value will not be appreciably affected by the other additional

term, whose maximum will occur at t = 3 . We may write, therefore,

according to (37) and (38):

n = 0.25 b , (39)

B (0.25)n e- = 0.5 (40)

A third equation is needed, to solve for n b , B ; we may write

that for = 1 (see Fig. 6) the value of the exponential must be

very small} it must be appreciably smaller than the value (0.093) of

~2( ) , since at t= 1 the second corrective term will start being

appreciable. Let, for example,

B (1) n e- b(l) = 0.02 ,

B e-b = 0.02 . (41)

Using eq.39, eq. 41 reads:

B e-4n = 0.02 . (42)
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Dividing (40) by (42), we get:

(0.25)ne3n = 25

(0.25 te3 ) 25 ,

n = 2 . (43)

Equations 39 and 41 give, respectively:

b = 8 , B = 59.5 (44)

Therefore eq.36 reads:

2(T) = 59.5 2 e-8t+ Blnt b'l

Now the same procedure is applied to the second term, approximating

the maximum of 92(T) occurring at = 3 since for Cl> 1 the first

term is negligible, p2(T) reduces to B e b n this range and

the maximization gives:

n = 3b , (46)

B'x = 0.35 , (47)

A third equation is obtained by letting T2(t) = 0.25 for Tr= 4

(see Fig. 6):

B'x e' -4b = 0.25 . (48)

Again, solving (46), (47), and (48), we get:

B' = 0.182 , n' = 6 , b' = 2 (49)

Replacing in eq. 45,

92(t) = 59.5C2 e8 + 0.1826 e-2 (50)

Finally, eq.35 reads:

l(') = 5.809 e- + 59.5 " e-81 + 0.182t 6 e - 2 ' (51)
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This function, plotted in Fig. 4 after addition of 0.04 to the

ordinates (see eq. 31), is seen to give a very close approximation to

the experimental data.*

Expression 51 for p1(T) could be used directly to compute the

power spectrum, according to eq 32. The process leads to an expression,

4(o) = 2

Q( )

having a numerator of 10th degree and a denominator of 11th degree in

c2 . The factorization of () requires therefore the solution of

high-order equations if Expression 51 is used in its present form.

In order to simplify the problem, it is noticed that the high-order

terms in (0) arise from the Fourier transformation (32) applied to

terms of the form B n eb . One must therefore try to approximate

eq. 51 with terms of the form Ae ar, to the exclusion of other exponen-

tial forms. This leads to:

(r)= E. A eaPr (52)

p§ (c) = ± Ap e aP cosof dUI,

) = (53)
p a + 

If three terms are used in the expansion (52), (co) , when reduced to

a common denominator, will have a numerator of 2nd degree in 2 and

may be readily factorized.

Computations are tabulated in Appendix II.

___ I I I
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The well-known procedure for obtaining the closest approximation

to eq 51 by an expansion of the form (52) is to use a set of normal-

orthogonal function. Using the first three terms of the Legendre set,

the optimum representation obtained for eq. 51 reads:

= 7.365 -0.48T -o. 16'!
1(T) = 7.365 e- '8 T- 1.855 e 4 + 0.332 e . (54)

This function is plotted in Fig. 4.

Summarizing, the procedure leading to the workable approximation (54)

consists of two steps: first, a function is sought that fits the experi-

mental data with the least amount of cut-and-try techniques, and leads

to Expression 51; next, an orthonormal expansion is computed for this

function in order to obtain a more suitable expression (54) for further

computational work.

4. Optimum Predictor System Function

Expressions 52, 53, and 54 give directly:

iU()) = 1.877 0.2 + 0.0169 _ Q(o) (55)

0.64 + 2 0.23 + 02 0.0256 + 2 Q

After reduction to a common denominator, the numerator reads:

P(0) = 1.61 04 + 0.3047 2 + 0.00884

= 1.61(2 + 0.1538)(o 2 + 0.0356)

Therefore,

~ (0) = 1.61(o 2 + 0.1538)(2 + 0.0356) (56)

(0.64 + 02)(0.23 + 2)(0.0256 + 2)

Separating the singularities lying in the upper and lower half planes,

* Computations are performed in Appendix III.
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we get, respectively:

+ 1.27(0.392 + j) (0.189 + jo)
() = (T.o )(0.4 + )(0.16 ¥ ;+ ) ,

()

(57)

(58)
1.27(0.392 - jco)(0.189 - Jo)

(0.80 - )(0.48 - jw) (0.16 - jo) -

Expanding eq.57 in partial fractions yields:

()) _1-.5 - 0.317 +_ 0 6
(0.80 + jo) (0.4 8 + jo) (0.16 + j) (59)

Replacing this expression into eq. 21, we obtain directly:

y(t + a) = 2 [1.543 e-0.8(t+a)_ 0.317 e-048(t+a)+ 0.0416 e-0 16(ta)

.... (60)

Replacing into eq.20 yields:

H(X) = 1
=- -% I

1.3 o e-' ) 0.47 e0.16+ e-
(0o.so8 + j ) (0.48 + j -) (0.16 + j ) ·

Reducing to a common denominator and using for + the expression

found in eq,57 yields:

H(X)
L + j + N(j X)2

(0.392 + j )(0.189 + j )
(61)

with

L = 0.0933 e °-0 8 - 0.032 e- 0 48a + 0.0126 e- O! 6a

M = 0.777 e - a

N = 1.214eM e-

- 0.24 e -0 ' 4 8a + 0.042 e-0.1 6a

- 0.25 e-0 ' 48. + 0.0328 e- 0.1 6 a

For a = 0 , we get H(X) = 1 , which simply means that for zero

prediction time, the system function, operating on the input f(t) ,

must be unity: If f(t) represented a voltage wave, the corresponding

"filter" or "predictor" would be a simple open circuit.
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5. Performance of the Prediction Operator

Let, for example, a = 0.1 . Replacing into (61) and expanding in

partial fractions yields:

H(X) = 0.9142 - 0.0006 0.0 j for a = 01 -0.392 + j 0.189 + j , f =

It appears that the transfer function practically reduces to a constant

0.9142, the other terms being negligible. This means that, in the inter-

val of time a = 0.1 , the function f(t) did not change very appreciably,

and the optimum expression of this change is described by an over-all

factor 0.9142 .

In order to make the frequency dependent terms of the system func-

tion more significant, we must choose a larger value of prediction time.

However, we must remain within a range of time displacement where the

function is highly correlated. From Fig. 4, a value = 0.5 of time

displacement is seen to give still a reasonably large value of autocorre-

lation. We may therefore use a = 0.5 , for which eq, 61 becomes:

H(X) = 0.6476 + 0.9010 - 0.392+ j for a = 0.5 . (62)

This expression shows that, although we have chosen a prediction

time sufficiently large (larger values would lead to poor performance,

since they would exceed the range in which f(t) is well correlated),

the prediction system function still reduces essentially to a constant.

In fact, the frequency dependent terms, which become zero for large values

of frequency X , yield a maximum correction for zero frequency, of mag-

nitude

0.01083 0.0171 0.01/,
0.189 0.392

which is still very small compared to the constant term 0.6476 .



This result is interpreted as follows: If we multiply all ordi-

nates of the function

fl(t) = f(t) - fav = f(t) + 0.20

by the factor 0.6476 , we obtain an "output" function

f0l(t) = fo(t) + 0.20 = 0.6476 f(t) (63)

which yields the closest possible approximation (in the mean-square-

error sense) to the function fl(t + 0.5) .

This result is'clearly unsatisfactory; it may afford good predic-

tion in regions of If(t)l having small negative slope (see Fig. 1),

since the predicting factor 0.6476 means that f(t) (actually f(t)

should have decreased by that factor after an interval a = 0.5 ; but

when the trend of If(t)l is upward, prediction becomes very poor.

The actual experimental value of mean-square error, obtained by

applying the prediction operator to the record of Fig. 1, is approxi-

mately

s = 2.95 . (64)

From the definition of eq. 22, this means that the deviation, in absolute

value, of the actual output fo(t) from the output f(t + a) expected

* We recall that the axis of abscissae of f(t) had to be shifted
in order to eliminate the average component of f(t) ; the prediction
operator was derived for values fl(t) referred to the new axis. The
predicted output f , therefore, also refers to the new axis, and corre-
sponding readings f(t) for the original axis are given by eq 63.

** For the more general case, in which H(X) contains significant
terms depending on X , a computational method is described in Appendix IV,
yielding numerical values of the output function from a given record of the
input function.

+ See Appendix V.
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for perfect prediction, is in the average: = 1.72 ; this error

is considerably large, since inspection of Fig. 1 shows that values of

f(t + a) seldom exceed four to five units in magnitude. However, ap-

plication of Wiener's theoretical expression for minimum error to the

analytical developments of the preceding sections yields

emin = 3.15 , (65)

which is in good agreement with the experimental value (64).

These results suggest two alternative interpretations: Either the

function of Fig. 1, whose behavior is described by its autocorrelation

curve, does not lend itself to satisfactory prediction; or the accuracy

of the functional approximation to the experimental values of correlation

was not sufficient for deriving the actual optimum prediction operator.

Both interpretations focus attention upon the character of the auto-

correlation curve. A systematic study of autocorrelation behavior is

attempted in the following chapters, in order to derive: (a) criteria

for the performance that may be expected from any given type of correla-

tion curve, and (b) approximation requirements for an adequate use of

experimental data.

* See Appendix V.



CHAPTER III

Structural Relations Between Time
Function and Autocorrelation Curve

1. Fundamental Theorems

The signal function f(t) will be always considered to be of

finite amplitude, of zero average, and in statistical equilibrium. The

latter condition will be assumed to hold for all time derivatives of

the function, designated by f'(t) , f"(t) ... f(n)(t) ; however, unless

otherwise specified, these derivatives need not be finite.

It may be proved that if

f T

() lim f f(t) f(t +T) dt , t66)

-T

then

d = (Ptr) Tlim 2T J f(t) f'(t +T) dt , (67)

and-T
and
d P = _ -a() = a lim JI f (t) f (t +t) dt . (68)

T-*do J -T

In other words:

Theorem I. The first derivative of the autocorrelation of the

function eUals the cross-correlation between the function and its
time derivative. Symbolically, if

(() = Pff(1C) , (69)

then

(70)TI ( = ff I () 
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Theorem II. The negative of the second derivative of the auto-

correlation of the function euals the autocorrelation of the time

derivative of the function. Symbolically if

@(x) = (ff() , (71)

then

-~ () = (Pftf,() . (72)

Generalizing these properties for higher-order derivatives

yields, with the type of notation used above:

(_1)n (2nl)) = (n)(2n+l) (73)

(_l)n T(2n) t) = f(n)f(n) (7) )

where orders of derivatives are given by the superscripts (written in

parentheses).

Referring to the expression defining the autocorrelation of a

function f , it is seen that its value for 1O = 0 is the mean value

of f2 , written 2 . From eq. 74, we have therefore:

[(n)] 2 = (- 1)n (2n) . (75)(pt ? I(0) (75)

For example, for n =1 and n = 2 :

f,2 = _ "(O) , (76)

fn2 = (4)<) (77)

Let us now return to eq.67, which we repeat below:

T
,( ) tin 1 f(t) f'(t +t) dt . (67)

T
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Integrating by parts gives:

Too 2Tli f(t) f(t +) - f(t +) f'(t) dt 

-T T

liToo 2T f(T) f(T +) - f(-T) f(-T +)

lim 1 (T+ 
f(t) f'(t -) dtT-p oo 2T

-T+I

The first term is zero, since the finite bracket is divided by the

infinite quantity T . We are left with the second term, which may be

written:*
(T

c (I) T-oo 2T l f(t) f'(t - ) dt . (78)

TComparing (67) and (78), 

Comparing (67) and (78), we get:

('(r) = - (p(-t) , (79)

which states that p'(r) is an odd function of t , a result which

is apparent from the fact that (p(T) is an even function of . But

comparison of expressions (67) and (78) is particularly interesting

when IC approaches zero: If, for example, T1 goes to zero from the

right in eq,67, then (-1) goes to zero from the left in eq. 78; and,

in the vicinity of zero, we may still write by eq, 79:

(p'(+) = - (O-) . (80)

If both f(t) and f'(t) remain finite, the limiting process may be

* Shifting the limits of integration is permissible, since f and
f' are in statistical equilibrium.
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carried to the very value 1C = O , and yields:

@t(0) = -P(0) = 0 , (81)

for f'(t) finite, which means that in this case the autocorrelation

of f(t) has zero slope for r = 0 . Repeating the same argument for

f'(t) , it follows that its autocorrelation will also have zero slope

at C = O , provided f"(t) remains finite; recalling that the auto-

correlation of f'(t) is also the negative second derivative of the

autocorrelation of f(t) , we have:

Theorem III. If f(t) f'(t) . and f"(t) remain finite, both

(t) and p"(t) have zero slope at 1 = 0 .

Example (illustrating Theorem III)

Let f(t) be the function resulting from the algebraic sum of

ordinates of overlapping pulses of the form A(t) = t2e , starting

on the time axis and occurring at random at the average rate of k

pulses per second, with equal probability of being positive or negative

(Fig. 7a). The individual pulses are seen to have no steep rises and

no sharp corners. Their first and second derivatives remain therefore

finite, and the same applies to the resulting function f(t)

The autocorrelation of the resulting function may be shown 6 to

reduce to the expression:

(p(T) = k A(t) A(t +T) dt = e { 31 + C I +3 (82)4 + 3 +
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yielding:

' (0) = 0 , (83)

- (0) = 4i ( ffI()] (84)
- 4 f'f' ]

- p'I(0) = o (Pff(O) (85)

These results are in agreement with Theorem III, eqs 83 and 85

representing, respectively, the slopes of (p(1) and q"(r') for

T = 0 . Equation 84, compared with eq.76, gives the average square

derivative of the function, a positive finite quantity as expected.

Figure 7 illustrates these results.

If the second derivative of the function is not finite, the

argument leading to Theorem III does not hold for p"nk) .

Theorem IV. If only f(t) and f'(t) remain finite. f"(t)

becoming infinite, 2(x) has zero slope for = , but QO"()

does not.

Example (illustrating Theorem IV)

The function f(t) will be defined as in the preceding example,

the individual pulses being this time of the form A(t) = t e-t , as

shown in Fig. 8a. The first derivative remains finite, since there are

no steep rises; but the second derivative becomes infinite, since indi-

vidual pulses start from the time axis with a sharp corner (infinite

rate of change of first derivative). We have:

_�^1_1_1__1_______1__·I�----
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(1 = k A(t) A(t +) dt = e (Iti + 1] (86)

yielding:

p'(0) = O , (87)

k _
_- "(0) k 4 · co) , (88)

and

_ , '(o+) - 2 = (o+) (89)

Figure 8 illustrates these results, which are in agreement with Theorem IV.

The result of eq.89, which agrees with the statement of Theorem IV

may be given another interpretation; actually, according to Theorem II,

it represents the slope of the autocorrelation (Pf,ft of the derivative

function f'(t) . It is seen that this slope is not zero when the deriv-

ative f(t) of the function f'(t) is not finite. Applying this prop-

erty to f(t) and f'(t) instead of f'(t) and f"(t) , gives the

following theorem:

Theorem V. If f(t) has a derivative f'(t) which becomes in-

finite, the autocorrelation (t) does not have zero slope at the

point T = 0 , but has symmetrical slopes about this point. Therefore,

point = 0 is in this case an angular point for the curve (t) .

It is therefore recognized that the limiting process leading to

eq 81 cannot be carried to the very value = , but only to values

at the right and at the left of zero, as expressed by eq. 80. According

to Theorem V, the latter equation must be rewritten as follows:

(p'(0+) = - t'(0-) o (90)

if f'(t) becomes infinite.
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Theorem V is already illustrated by Fig. d, where the function

f(t) is replaced by f(t) . A direct example is given below.

Example (illustrating Theorem V)

The function f(t) will be defined as in the previous examples,

the individual pulses being this time of the form A(t) = e t , as

shown in Fig. 9a. The resulting function remains finite, but it is

seen to have sharp rises which make its derivative become infinite.

Te have:

T) = k A(t) (t +) dt = k I ~ (91)

which is drawn in Fig. 9b and illustrates Theorem V and eq 90; also,

according to the latter, values at 0+ and 0- of the function p'()

appearing in Fig. 9c are seen to be opposite:

k
cp'(r) = - (sign oft ) -A e (92)

The function - p() is shown in Fig. 9d :

-n k e- e .(93)

It must be understood that the plots of Fig. 9c and 9d have signif-

icance only for e >O and <(O , but not for the very value = 0

Actually, if we assign the value - - to - i (0) as would appear

from Fig. 9d, we must conclude from eq. 76 that the average value of

ft2 is a negative number, which is obviously incorrect. As a matter

of fact, we know in this case that f = oo . Also, from Theorem II,

Fig. 9d is the autocorrelation of the derivative function f'(t) . It

would be incorrect to say that this derivative function is obtained by
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-t
a superposition of derivative pulses of the form - e ; actually,

the correct derivative pulses start with an infinite impulse, after

-t
which they become of the form - e .

Explanation of Fig. 9d is illustrated by Fig. 10 and the following

heuristic argument.

Figure lOa shows two typical pulses of the f(t) function (from

Fig. 9a). Figure 10b shows the corresponding derivative curve. Infin-

ite derivative at a point is interpreted as an impulse in the derivative

curve, with area equal -- in magnitude and sign - to the corresponding

"jump" of the time function f(t) . This description verifies the re-

quirement that f(t) must be the integral of its derivative curve.

Now the autocorrelation Pfif, of the derivative curve must be

evaluated, and justify the form of Fig. 9d. Applying a property already

used in the text, we call A'(t) a single derivative pulse consisting

-t
(as shown in Fig. lOc) of a unit impulse followed by - e . For the

average rate of k pulses per second, the autocorrelation of the result-

ing function f'(t) is given by

(Pf f ) = k A'(t) A'(t +) dt . (94)

It will be convenient to separate in this integral the contributions of

-tthe impulse and the exponential - e . The impulse will be considered

as the limit, for A t-_O , of a rectangle of width t and height

i (area = 1, for the function considered).

For = 0 , the contribution of the impulse to integral (94) is:

lim lim (95)
Ato t t- at d = co (95) 

- I -- -- ---- rr�--------�---·�---------
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the contribution of the exponential being finite, we have the result:

(Pff,(0) = a . (96)

Under a finite displacement t, the impulses, of differential width,

do not overlap (Fig. 10c), even for very small 1T (for example, for

T= O0+). The contribution of the impulse to the integral (94) is

lim O k - e dt = _ t -Irl 
At- k 1 - e dt = At ~ Edt= -ke 

at~ [ ji-~1i - d i '

.... (97)

and the contribution of the exponential is

k et _ e(t+T) dt =

identical with (91). Equation 98 would

expected for the derivative pulse if we

portion. Adding the contributions (97)

obtain:

k - T(Pf~,,(r) = - 'y e

k -1 l
2 (98)

be the positive autocorrelation

neglected the initial infinite

and (98) to integral (94), we

for Vft O. (99)

Results (96) and (99) are illustrated in Fig. lOd, which in the limit

becomes identical with Fig. 9d and explains the behavior of pf,, at

't= 0 . Figure lOd appears as a limiting case of Fig. 8d, where points

I" and I2 are compressed against the ordinate axis.

Notice that this contribution is equal to k times the ordinate
OB of the displaced curves at the level of the impulse (Fig. lOc).

As well as the corresponding inflection points I and 12 of

Fig. 8b are compressed against the ordinate axis in Fig. 9b.
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Inspection of Fig. 10 allows us to draw a general proof of

Theorems IV and V. We first recall that the radius of curvature of a

function p is given by the expression

R - -- in' 9. (100)

The sign of R is the same as the sign of p" , and has the following

interpretation:

(a) If R > 0 (or (p>O) , the circle of curvature lies above

the p-curve, which is said to have "positive curvature" (Fig. lla).

(b) If R <0 (or "<O), the circle of curvature lies below

the -curve, which is said to have "negative curvature" (Fig. llb).

(c) If R = 0 (or I9" = oo) , the circle of curvature reduces

to a point, and the (-curve has "infinite curvature" at this point,

which becomes an angular point (Fig. llc and lld).

We read from Fig. lla that whenever the function p , interpreted

as the autocorrelation of f(t) , has positive curvature, the autocorre-

lation of f'(t) is negative (compare Fig. 9b and 9d). Figure lld indi-

cates that when - p" = o , then p has an angular point (compare Fig. 9b

and lOd); this occurs precisely when f'(t) assumes infinite values, since

in that case ft = oo, giving - p (0) = o (see eq 76).

Let us now investigate the types of pulses A(t) that will give

negative curvature for (p at = O+ and T= 0- , when q(0) is an

Expressions "infinite curvature" and "zero radius of curvature"
are therefore equivalent. The first one pictures the sharpness of the
turn made by the curve; the second refers to the small circle around
which the turn is made.
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angular point (A'(t) becoming infinite). The analysis of Fig. 10 has

-t
shown that for pulses of the type et the curvature of p is posi-

tive ( fft negative), as shown in Fig. 9b. This resulted from the

fact that the negative contribution (97) of the derivative impulse to

integral (94) was larger than the positive contribution (98) of the

area of the finite derivatives squared. If we can reduce the negative

contribution of the impulse to zero, or even make it positive, then

fft, will certainly be positive for t = O+ or O- , and ('C) will

have a negative curvature near zero. Recalling that the contribution

of the impulse reduces to the ordinate OB of the derivative pulse for

*
See footnote, p. 42.
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an abscissa NC , we see that the requirement is met if the derivative

is zero or positive after the vertical rise. This leads to the follow-

ing theorem for the resulting function f(t) :

Theorem Vi. If f(t) contains vertical rises ( f'(t) infinite),

immediately followed by_a slope which is positive or zero (nonconstant)

in the average, the autocorrelation p(1) has negative curvature in

the vicinity of = 0 . The point = is still an angular oint.

Example (illustrating Theorem VI)

The function f(t) is defined as in previous examples, the in-

dividual pulses being now of the form A(t) = (1 + t)e-t , shown in

Fig. 12a. The sharp rises of the pulses are followed by horizontal

slopes, and the resulting function f(t) meets the conditions of

Theorem VI, of having jumps followed by a zero, nonconstant slope in

the average. We have:

(T) = 4 e I' (311 + 5) (101)

and

- (p"() =k (1- 3 ) (102)

Function (102) is shown in Fig. 12c, where the point at infinity,

arising from analysis of Fig. 12b, is also included. The positive

values of - p for C= O+ and 0- yield, as expected, a negative

curvature for (C) around C= 0 (Fig. 12d).

From Theorem V, since f'(t) becomes infinite.
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The same type of autocorrelation as the one shown in Fig. 12d

would be obtained for pulses of the forms illustrated in FigS. 13 and

14, whose derivatives are positive at the right of the vertical rises.

A /m _ , v
,I 11 t)

Fig. 13 Fig. 14

Some typical results outlined so far in this chapter are sum-

marized in Fig. 15.

It should be noticed that if a function f(t) is tiurned end for

end, the same autocorrelation is obtained: therefore all the pulse

shapes studied above may be turned end for end without changing the

resulting autocorrelation. We may therefore extend Theorem VI:

Corollary to Theorem VI. If f(t) contains vertical descents

( f'(t) = - co), immediately followed by a slope which is negative

or zero (nonconstant) in the average, the autocorrelation cp(t) has

negative curvature in the vicinity of = 0 .

..*-
Notice that for the first three rows of Fig. 15, the single

column labeled - p" may be set first under "Assumptions," and the
other three columns f', f", p would appear as "Conclusions." How-
ever. for the last row the single information given by - p" permits
one only to derive the corresponding tp curve and to state that f'
becomes infinite.
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2. Smooth Time Functions

Let us assume that f(t) represents an electrical quantity,

voltage, current, or charge. Its value is always finite. Its time

derivative is also finite. For example, if f(t) is a current, there

is always some inductance in the circuit whose instantaneous energy

storage is L f2(t) ; the rate of change of this energy is Lf(t)f'(t)

and must remain finite in any physical system; therefore f'(t) is

finite. Furthermore, resistance, capacitance, and inductance are

always present simultaneously in any physical circuit, and lead to a

second-order differential equation for the solution of f(t) . This

equation, therefore, involves f(t) , f'(t) , and f(t) ; and since

the first two quantities are finite, f"(t) is also finite.

The same argument applies in the case where f(t) is a mechanical

quantity like velocity, force, or displacement, for which the physical

constraints are friction, mass, and stiffness.

Therefore the electromechanical functions f(t) just considered

always yield smooth records: They present no vertical rise [ ft(t)

finite] and no sudden change in slope resulting in angular points

[f"(t) finite]. The autocorrelation p(r) and its second derivative

have therefore zero slopes at 1' = 0 .

In certain cases, however, this smoothing effect of the energy

storage elements is made unappreciable within the range of frequencies

involved in the time record of the function f(t) , whose autocorrelation

curve may then approximate the types described above for cases involving

See Theorem III or Fig. 15a.
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infinite derivatives. However, it is convenient to keep in mind that

there will always be a finite circle of curvature, however small, en-

closed by the autocorrelation curve at Z = 0 , indicating that f'(t)

and f"(t) , however large, are still finite. In fact, it will appear

in the following pages that the behavior of the autocorrelation in the

immediate vicinity of t = 0 gives the most valuable information for

prediction performance, and needs to be approximated with great accuracy

in the Wiener-prediction analysis.

3. Jump Time Functions

Many statistical functions give rise to records containing vertical

"jumps"; for example, a record of numbers appearing in successive throws

of a die would give a random jump function with horizontal steps at in-

teger levels between 1 and 6. Such functions inherently contain infinite

derivatives, and their autocorrelation will be of the types described in

Fig. 15c and 15d, presenting an angular point at T= 0 .



CHAPTER IV

The Power Spectrum Function

1. Se iaration of Conjugate Sinularities

It has been pointed out in Chapter II that the autocorrelation

should be expressed as a sum of functions whose Fourier Transforms

are rational, thus making it possible to split the resulting power

spectrum into a product of a finite number of factors. Under such

conditions we may write:

p (X2)

4 () = () , r s , (103)

Qs(2 )

where Pr and Qs are polynomials of degree r and s in the

variable k 2 . The condition r <s indicates that, for infinite

frequencies, the power density must be zero, since the total power

of the message is finite.

A first possible expansion of eq. 103 is the following:

(al+ j) (a2+ j) ... (ar +j) (bl- j)(a2 (b- j) ...(ba- j) 

..*.. (104)

where the complex conjugate pairs of zeros of the polynomials Pr and

2
Qs are in evidence, and A2 is the positive zero-frequency value of

power density. Considering only that part of (X) containing singu-

larities lying in the upper half-plane, we have:
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(a + JX) (a2 + j) ... (ar + j)
(X) = A ( +X)(b2 +J)...(b 5 +jX) (105)

and

$(t) f | ( (X)eiXt dX (106)

-00o

according to the definition (21)1 %r(t) appears to be the inverse

Laplace Transform of a function having poles in the upper half-plane;

Y (t) is therefore zero for t 0 .

An a'.ternate expansion of eq. 103 is:

K K2 K K

(b 1 + jX) (b 2+JX) +b + jX) (bl -j) (b 2 - X)

+ .. (bs- (107)

where the constants K are conjugate of the respective K's . Consider-

ing only poles in the upper half-plane, we have:

4)c) K 1 - 2 + + - S- 108s
p (bb s1 +X + (b 2 + ) (b + ) ( )

and

p(t) = f )p()e J ': dX , (109)
- 00

where tpp(t) is defined as the inverse Laplace Transform of a function

having poles in the upper half-plane, and is therefore zero for o .0

From eq, 109 we may write:

] -J (r) e- JX d (110)
p() 2T c)e r d fo



p(X) = 2.J
p~~~~~O

(n1)

where the bar indicates "conjugate value of." Since the functions

(Pp() and (p(-t) do not overlap, we may add eq.110 and 111 as

follows, recalling that p+ =p = , from eq,107 and 108:

() = T pp(T) + P(p .r) ejxT dT (L12)

From eq. 19 and 112, it appears that (Pp(t) is that portion of the

autocorrelation function (p() , lying to the right of r = 0 .

It should be noticed that +(X) and p(X) have the same poles,

and their transforms Y(t) and p(t) are therefore sums of exponentials

in equal number, having respectively the same time constants.

2. Differentiation

Integration by parts of eq.110 yields:

00oo

2rr (x) = - X ()e + _
0

L

C

Therefore:

P(T)e -J T d r = jp) ( - 2(+)
p0

00

dt .
p1h

Integration by parts of eq 111 yields:

o o1
2n p (%) = - tpp(-x)eJT 1 J+A qI(-T)e Jx T dr 

53

(113)

(P (-r) e-ixlr d 

1

211i.
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Therefore:

J0
-a 

J2_lr
't(-r)e-JX dr = J (X)

Recalling that

o(0+) = p (O-) = (0) ,

addition of eq.113 and 114 gives:

(r) e r dr = j) (o)

Repetition of the differentiation process on eq. 113 and 114

yields, respectively:

)(p) e j t dr = -e2 p() -
( (o+)

2r -
wp J

2 T- , (117)

and

1
2 I ~;(-T )e - j x dr

Ip
= 2 (X)

=~~2~(p
+jp(O-) p(o-)

+ ijX 2 ' + 2 T

By eq.115, and also recalling that

p(0+)Ip
= - I(o-) (119)

addition of eq,117 and 118 gives:

Equations 113 and 114 hold, respectively, for a 0 and 0>0 I
the sum holds for = 0 , or X = co .

See eq. 80.

(p (O-)
pr)

+ 2TC (114)

(115)

(116)

21 
Jo

(118)

*

1~1 

-00
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21 p" ( ()e- j d 2 () - '02p J - -erd (120)

It should be noticed that the process leading to eq 120 avoids

the value of q" at r = 0 , and should preferably be written:

2 [ + J )e dt = (121)

therefore the point at infinity that appears in cp"(O) when f'(t)

becomes infinite* is excluded from the integration. Under such con-

ditions, the theorem on Laplace Transforms, stating that integrals (117)

and (118) become zero for X-oo , applies to integral (120), when

X -oo . Therefore:

lin 2 () = p'(+) (122)

One also finds:+

lim 2 X (O) + '(°) = r +). (123)
(0-00 T IT

See Chap. III.

Under such conditions, the inverse transform of eq.120 reads:

i e(CO) +:" q( ) ej o' Td c , for 0 .

-oo

+ Actually a sequence of expressions of the same kind may be de-
rived, analogous to (122) and (123). They are seen to relate the be-
havior of the autocorrelation function around T = 0 , to the behavior
of the power spectrum at a) = o . The practical consequences of this
correspondence will be discussed in Chap. VI.
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Various cases may arise, according to the excess of denominator

degree in expression (103) for the power spectrum.

(a) s = r + 1 . For the variable w(or X) , the denominator

degree exceeds by 2 the numerator degree [for example: (wc) = 1 + 
1 + 4

Then eq 122 gives a finite value for initial slope of autocorrelation.

From the discussion in the last chapter, this case represents a signal

whose derivative becomes infinite (see Fig. 15c and 15d).

(b) s= r + 2 . For example, () = 2 . Equation 122
(1 + o2)2 

shows that the initial slope of the autocorrelation is zero; substitu-

ting this value in eq 123 gives a finite value of slope for - p" = ff,.

This case represents a signal whose first derivative remains finite, but

whose second derivative becomes infinite (see Fig. 15b).

(c) s = r + 3 For example, (O) = 1 + 2 Equations 122

and 123 yield p'(0+) = p"' (O+) = 0 . Both first and second derivatives

of the signal remain finite in this case (see Fig. 15a).

It should be noticed that if all derivatives of the signal remain

finite, yielding (p(2n+l)(0+) = 0 for all integer n , a rational ex-

pression for (co) could not satisfy all successive equations of the

types (122) and (123): Soon, the increasing powers of 2 multiplying

the successive equations would give a finite value for (2n+l)( 0+) .

An exponential expression for (co) avoids this difficulty, but is not

adequate for factorization purposes. In practice, however, if the sig-

nal f(t) represents some electromechanical function, very high-order

__ �I� __
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derivatives are not bound to remain finite, and a rational expres-

sion for (w) may apply, provided the denominator degree is suf-

ficiently large. Each additional finite derivative contributes an

additional degree in 2 in the denominator of () 

Theoretically, the nonlinearity of lumped parameters in a physi-
cal system results in differential equations involving all derivatives
of the signal. Practically, coefficients associated with high-order
derivatives are negligible, and corresponding derivatives may become
very large.



CHAPTER V

A Study of Prediction Error in Relation
to Sinal and Autocorrelation Behavior

1. The Unit-Transfer-Error Curve

An ideal predictor operating on an input function f(t) should

yield an output f(t + a) , for a prediction time a . It is precisely

to this perfect output that the actual response fo(t) of the predictor

is compared in computing the "mean-square error" of prediction:

r T
= lim 2T t) - f(t + a t (124)
T -co 2T o

If now the predictor system is removed and replaced by a direct con-

nection between input and output terminals (Fig. 16), the new "output"

merely reproduces the input f(t),

with no attempt to predict values of

f(t + a) . Obviously, if a predictor f( PEDIcT., f"(t)

system is any good, its output fo(t) SYSTEM

must do better than f(t) in approxi-

mating f(t + a) . Using the direct f(t) f(t)

connection in place of the predictor

systematically introduces a "prediction"

error Fig. 16

u = i 1T T [f(t) - (t + a dt , (125)
T-ooo2

which should prove appreciably larger than the error (124) computed
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for the predictor. Expression (125) may be called the "unit-

transfer-error." It is the mean-square error of prediction obtained

with a transfer function equal to unity. Expanding eq. 125 yields:

$u = lira T fT t)dt + lim T

rT

2- 1 /- 2 lim 1 / f(t)f(t + a)dt .
T,oo 2T

If f(t) is in statistical equilibrium, the first two integrals are

identical. Therefore, by definition of autocorrelation, we have:

EU = 2 [(0) - p(a)] (126)

The curve representing the variation of this error with a is the

mirror image, about an axis of ordinate cp(O) , of twice the auto-

correlation curve (Fig. 17).

0 O( or r

Fig. 17

They differ only in the origin of time about which the average

of is computed.
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If a predictor system is any better than the direct connection,

its error curve must always lie in the region below the su curve,

as indicated in Fig. 17.

2. The Zero-Transfer-Error Curve

If the predictor system is removed and no connection is made be-

tween input and output terminals, the transfer function becomes zero.

Again, the actual predictor output fo(t) should do better, in approx-

imating f(t + a) , than an output fo(t) = 0 . Therefore the error

(124) computed for the predictor must be smaller than

S =lim 2T f(t+a)dt=(p(0) (127)

J-T

Expression (127) may be called the "zero-transfer-error" and is rep-

resented, as a function of a by a horizontal line z of ordinate

p(O) . The error s of the predictor system, as a function of a 

must now lie both below the horizontal line ez and below the curve

SU drawn in Fig. 17. From Fig. 18 it is recognized that within the

0

Fig. 18
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range 0 <ca < o , u represents the upper limit of the error ,

and for larger prediction ranges the upper limit is represented by .

Physically this means that between 0 and ao , a convenient standard

of comparison for prediction performance is given by the performance of

the unit transfer function; above a0 , a more significant standard of

comparison is afforded by the zero transfer function. The composite

boundary of prediction error may be called the "maximum" prediction

error ma 

3. Behavior of the iener Prediction Error for Large a

Equation 21 gives for a = 0 :

y (t) = / (w)eiWt dw (128)

This expression shows that + (w) is the Fourier Transform of %'(t) .

Applying Parseval's theorem and noticing that (w) is the conjugate

of If(w) , we have:

00 +v)
J| w) (w) +(1) ef t d 21| Y (t) +) dt . (129)

By eq.19 and 18, the first member is

f j (w)ejwr dw = (T)

and in the second member, the lower limit of integration may be re-

placed by zero, since (t) = 0 for t <0 .*

Sec p.52-

_ ____ __ __ ____ __ _ _ _I I
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Therefore:

@(T) = 1211

(o0

Jo
Y(t) (t + )dt (130)

Now eq,23 giving the Wiener prediction error as a function of

prediction time a is rewritten below:

1
min 2T

I 2
(t)dt0o (131)

This expression shows that emin increases monotonically with in-

creasing a , since the integrand is always positive. Comparison of

eq.130 and 131 shows that when a oo , S_,_ increases to a maximum

value

lim 8 mi n = ((O)
(l-~00

6

is asymptotic to s z , as shown in Fig. 19.

Fig. 19

4. Behavior of the Wiener Prediction Error for Small a
_ ' ' -~ _ -..... u . . . . . . . . . . . . . . ,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The minimum error of prediction starts with the value zero at

a = 0 . A significant measure of the Wiener predictor performance

Therefore
min

X,

�Z
ol11

M114

0
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is the rate of increase of the error when the prediction time is in-

creased from zero. Comparison of this rate of increase with that of

the unit-transfer-error gives a valuable information on the performance

of the Wiener predictor. From eq. 131 we have:

d 2min S 2
dmia min = 21 y (a) (133)

For a = 0 :

el (0) 1 2 (134)

From eq.126 we have:

de
d = e = - 2 (a) . (135)

According to eq. 130 we have:

9(a) (t) (t + a)dt (136)

For a = O , eq.139 becomes:

(p' () 2 4y (t) 0 (t )dt
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p'() = d t dt a.(141)

p'(0) [ 2 (142)

2
But (oo) = , since integral (131) converges for a = oo . There-

fore:

u(b) 4Tig T ( ). (143)

Substituting in eq. 135 gives:

2
(0) 2 (0) (144)

Comparison of eq.134 and 144 shows that at a = 0 the rate of change

of the Wiener error is the same as the rate of change of the error ob-

tained with a unit transfer function. The curves &u and emin are

tangent at their starting point

(Fig. 20), and give practically

the same values of error for

small prediction times. However,

the smin curve cannot cross

above the Su curve, since emin

4a +ha mini4rmim thnorti'a error.

TheO a fod<
The above result is of funda-

mental practical importance. Since Fig. 20

If F (O) = O , making both "rates of change" equal to zero, a
more sensitive comparison of errors must be used: Comparison of the
higher-order derivatives will be seen to be adequate for this purpose.
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the u curve was obtained as the mirror image of the autocorrela-

tion curve (after doubling the ordinates of the latter), it appears

that the slope of the autocorrelation curve at = O+ must be known

and approximated with great accuracy if we want to prevent the pre-

dictor obtained by Wiener's method from yielding a larger error than

would be obtained with a unit transfer function (Fig. 21). In partic-

ular, the functional approximation to the experimental autocorrelation,

I

Mirror irnar of
esceri men
dVtocorret;on

'Wiener-error for the
funtonal aPProximat.'on
chosen

V

Fig. 21

obtained by an expansion with normal and orthogonal functions, may

very well give a curve that apparently follows the experimental ppints

in the average, but gives an incorrect slope at LT= 0 . This is true

of Fig. 4, in which the initial slope of the orthonormal approximating

curve (dotted lines) is larger than the slope obtained from the experi-

mental points. As a matter of fact, the autocorrelation of most physical

functions* has zero slope at = 0 , thereby making the su and 8min

-M - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~uFi

See Chap. III, Section 2.

21



curves tangent to the a-axis. However small the range in which the

autocorrelation curve is flat around 1 =0 , this character must be

accurately reproduced in the functional approximation, if one wants

the Wiener error to increase slowly from the -axis for increasing a

(Fig. 22). The importance of reproducing the zero initial slope of

the autocorrelation curve is also appreciated from the following addi-

tional feature of the min curve obtained in this case: The £u

curve has, at a = 0 , a radius of curvature reducing to R =
-2(p"( 0 )

a positive quantity resulting in an upward curvature for su ; but

the radius of curvature of the emin curve is, by eq. 133 and 143,

R ( 0- oo . This means that when ) =0 the Wiener

Y (0) (0) -
error curve is very flat around a = 0 , its tangency with the a-axis

being of high order: Prediction error remains very small for small

ranges of prediction time, and good predictor performance is obtained

in these ranges.

It is possible to show that

the flatness of the smin curve

is improved when the signal has

finite derivatives of increasing

orders. One first recalls that

4 mn---- a r +U

number of successive zero deriva-

tives of the Smin curve. For Fig. 22

See eq.100 and 135.

See Fig. 15a and 15b, corresponding to the case p'(0) = 0 here
considered.

See footnote, next page.

66
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example, from eq. 133,

1t

12

£min (°(0 r °) + Y (0) , (146)

1 + 1 ()() (147)
min (0) T) = (0 Tt

If qp'(0) = , corresponding to a signal having finite first deriv-

atives, eq 43 gives \I(O) O , and therefore "in (O) 0 a result

which has just been discussed, giving a second-order tangency of emis

with the a-axis. If b (0) is also zero, (p'(0) i 0), corresponding

to a signal having finite first and second derivatives one has the

following equations: from (139),

2 TX Y (t) (t + a)dt (148)

integrating by parts gives:

2 t"' (a) = ( (t + (t) (t + a)dt 

+ ctually. expansion of a (a) about zero in a MacLaurin series
gives: 2 3

,. (a) = ae'
em (a) = a min (0) + 2 &m (0) + 3 e . () +mi min 21 min 31min

which shows that if the first (n-l) derivatives are zero at a = 0 ,
emin (a) is an infinitesimal quantity of nth order.

See Chap. III, Theorem IV.

See Chap. III, Theorem III, and Fig. 15a.



but y(oo) = 0 and (O) is still zero, from eq. 143 then

2T "'(0) =- L Y (t) Y (t)dt 

or

= 1 I d I (t) dt

or
'2 '2

Y (°) - t (c) O

and thence

Y () = ,

which, together with Y (0) = 0 , gives in this case for eq.l46 and

147:

=:ua (o) = e () = o ,min min Y

as well as (0) = n (0) = 0 . We see that a fourth-order

tangency results in this case between the emin curve and the a-axis,

whereas a simple tangency still holds for the eu curve, and predic-

tion is very satisfactory.

The above discussion clearly stresses the importance of approxi-

mating all the features of the autocorrelation function at = 0

According to the footnote of p. 67, we have in this case
= 5

Smin (a) , (5)(0) + ... which shows that emin is a fifth-order

infinitesimal quantity.

s' (0) " ' (0) = , since p'(0) = p*'(0) = 0 but p"(O) O0

making S" (0) $ 0 , and u is simply tangent to the a-axis.U-'
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(derivative, radius of curvature, etc.). Figure 23 illustrates the

difference in prediction error curves for two autocorrelation functions

that differ in shape only in the immediate vicinity of = 0 .

0 0 ~ _O o o o.

Fig. 23

The physical reasons that make the shape of the Smin curve so

critically dependent upon the behavior of the autocorrelation around

T = 0 , are evident from the results of Chapter III, illustrated in

Fig. 15. A zero initial slope of autocorrelation corresponds to

finite signal derivatives (at least a finite first derivative) and

gives a very flat prediction error curve, expressing the fact that

future values of the signal do not differ very sharply from present

values, within small prediction intervals. A nonzero slope of auto-

correlation at 1r = O+ corresponds to signals having infinite deriva-

tives; the prediction error, as we saw, rises sharply in this case,

interpreting the fact that when a vertical jump occurs in the signal,

future signal values are difficult to predict.

5. Examples

The following examples of error curves correspond to the typical

signal functions studied in Chapter III, for which autocorrelation

-
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curves were computed and sketched (Fig. 7, 8, 9, 12). It is recalled

that each case corresponds to a particular behavior of the signal de-

rivatives: accordingly the prediction error will be shown to behave

along the patterns anticipated in the preceding sections of the present

chapter.

(a) Signal having finite first and second derivatives

The signal chosen is the one illustrated in Fig. 7a. From eq.82 :

(a) = e 'IV + + 1] (149)

where k is made equal to 4/3 (average number of pulses per second),

in order to normalize the signal to a one-watt power. W'e have:

= .1ft2et coe - dr'+jTe+ |cos woT d+ e cos oTd

_21 2 1 -) + 1 8/3+ + +
(1 + 2)3 (1 + 2 )2 1 + 1 2 (1 + 2)3

(0o - 2f2/n 3
F I(1 + j)3

1 jwt d - 2 -t
(t) =3 2 te (150)f so (1 + w) f

The unit-transfer-error curve is, from eq. 149:

Assuming) th(0e a voltageacross a one-ohm resistor (151)

Assuming the signal to be a voltage ross a one-ohm resistor;

in that case, eq.75 gives, for n = 0 : (t) = average square of the

signal = 9(0) = 1 watt.
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and the Wiener-error curve is, from eq 150:

1 -2a 4 2
s (a) = 21 (t)dt = 1 - e 2a (2a +3 +62+6a+3). (152)

We have for the unit-transfer-error curve:

s' O) O11( = 0

and

"(0) = $ 

indicating that a simple tangency occurs with the a-axis.

The Wiener-error curve has a derivative Sein (a) = 4 a4e 2a

which yields at a = 0 :

s' (0) = ., (0) = a. F (() = o,min m n t n min

and

rin (0) = 32 f ,

indicating that a fourth-order tangency occurs with the a-axis at

a = O for the smin curve. Curves u and emin are shown in

Fig. 24 (solid lines); prediction appears to be very good in this

case, for small a , as expected from the discussion of the preceding

section. The prediction time may be chosen between 0 and 1 second,

the error remaining very small in this range (less than 5 per cent of

the signal power, and less than 18 per cent of the unit-transfer-error).

(b) Signal whose first derivative only remains finite

The signal chosen in this example is the one illustrated in

Fig. 8a. From eq. 86 :

(p(r) = - I l Irl 1 (153)
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for an average rate of four pulses per second, yielding the same

signal power as in the preceding example. We have:

1tG (X) =T cos T d + j e cos cot dT

( 1 + o2 2 ( +l+ (02)2 $
(l+co) 

(1 + Jo))2

(t)= f (l +J w)2 d = 2 E t e . (154)

- i ( + Jw)

The unit-transfer-error curve is

EU () = 2 - 2e (a + 1) , (155)

and the Wiener-error curve is

f a
Emin (a) = j 28Tt2e-2tdt 1 - e-2a(2a2 + 2a + 1) (156)

We have for the unit-transfer-error curve:

s () = 

and

. (0) =2 

showing that again a simple tangency occurs with the a-axis.
2 -2Ca

The Wiener-error curve has a derivative 'in (a) = 4a e i

yielding at a = 0 :

-- -I
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n (o) mn (o) = o 

and

mimit,(°) = 8 , d t

which proves that emin has in this case a second-order tangency

with the a-axis at a = O : This result agrees with the discussion

of the preceding section of this chapter. Curves of su and emin

are shown in Fig. 24 (dashed lines): They indicate that prediction

is satisfactory when a is chosen between 0 and 0.5 . Prediction

error is smaller than 8 per cent of the signal power in this range and

represents less than 45 per cent of the unit-transfer-error, proving

the advantage of using the Wiener transfer function.

(c) Sig al having vertical rises (infinite first derivatives)

followed by a zero (nonconstant) or positive averageslo

The signal studied in this example is the one shown in Fig. 12a.

From eq 101 :

(p(t) = e (0.6 tl + ) , (157)

for an average rate of 4/5 pulses per second (normalizing the signal

power to unity). We have:

T(c) 0.6 Tecos ordr + e cos 1Tr d

2 2
o.6(1 - ) + 1 1.6 + ._ 2

( + 2 1 + 2 ( + 2o)

The signal also has (Corollary to Theorem VI) vertical descents,
followed by a zero (nonconstant) or negative average slope.
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M 2.&/tt 1( + '= + j +2 +1+ j)2 T1 + 1c

(t) [ + J 1 1+ w1 ejw t dw (158)

= 1.6Tt e-t (t + 1)

The unit-transfer-error curve is

e (a) = 2 - 2e (0.6a + 1) , (159)

and the Wiener-error curve is

a

i(a) = 2 1- 1.6e2t (t2 + 2t + 1)dt 1 - 0.4e2-(a2 3a+ 25)

......... .(160)

In agreement with the general analysis, both curves have at zero the

same slope

() () = 0.8
u min

The curves are represented in Fig. 24 (dotted lines) and are seen to

rise sharply along their common tangent from a = 0 . For a prediction

time as small as 0.25 seconds, the error obtained with the Wiener

predictor is as high as 20 per cent of the signal power, and is prac-

tically as large as would be obtained with a unit transfer function.

It appears, as expected from earlier theoretical remarks, that for

small prediction time the Wiener system function does not give in this

case any better prediction than is given by a direct connection between

input and output terminals. For larger prediction times the error of
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the Wiener predictor departs from the unit-transfer-error, but rep-

resents in those ranges a considerable percentage of the signal power,

and prediction is very poor. For example, for a = 0.75 , where the

Wiener system function gives a smaller error than the direct connec-

tion, that error represents nevertheless 52 per cent of the signal

power: One can easily realize that the "predicted" waveform would

bear very little resemblance to the input waveform.

(d) Sigpal having vertical rises (infinite first derivativesl

followed by a neative average_slope (or constant zero slope)

The signal considered is the one shown in Fig. 9a. From eq.91:

(P() = e- PI } (161)

for an average rate of two pulses per second (giving a signal power

equal to unity). We have:

-T 1
T[t () e cos Trdt = - 2

Jo 1+2

+(t) = ei;ig }+ j-- e

Tiwe~Y (t) + J 11 jw e dw = e t .(162)

The unit-transfer-error curve is

su (a) = 2 - 2eQ (163)

and the Wiener-error curve is

(a) 4 e =-2t e-2a (164)
in ( 2) = T-Cf4I 2t l 2

____1_111_11_PIIYI___W�·�·P�-I�--IIIII ---- -�· -·---
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The common slope condition at a = 0 is verified:

s'(0) = Ei (0) = 2

The curves-are shown in Fig. 24 (dash-dot lines); it is apparent in

this case that there is no prediction that one can speak about. To

illustrate the performance of the Wiener system function, we compute

its expression

H() 1 + -(ta) jdt -= e- (165)

a constant, independent of X . This constant, decreasing exponentially

when prediction time is increased, merely reduces the ordinates of the

input f(t) . For example, if the random input signal is the one shown

in Fig. 25a (which has the same autocorrelation6 as the signal just con-

sidered), the output fo(t) results from the graphical construction of

Fig. 25b, where it may be compared directly with the actual values of

f(t + a) . It is apparent that however the mean ssuare error has been

minimized by the Wiener procedure, the minimum obtained is so l__e

that the output bears no resemblance whatsoever to the curve f(t + a)

which it should approximate.

6. The Relative Error in Prediction

In the preceding examples, error curves were computed and plotted

for signals normalized to a unit power: Error values could thus be read

directly in percentage of signal power. The prediction error for signals

having finite derivatives was seen to be small for a certain range of

prediction time, but the unit-transfer-error was also small in that range.

A new figure of merit is therefore required comparing, forya iven -pe
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of sigal, the advantage of using the Wiener predictor rather than a

unit-transfer connection. rWe may define a relative error:

min.
r = £. (166)
r U

However, we have seen that for large prediction time the zero-transfer

function gives an error e z smaller than the error given by a unit-

transfer function (Fig. 18),. Therefore, after the intersection of the

curves su and s z , the significant figure of merit becomes

min min
r i= -- , (167)r S)

which coincides precisely, for these ranges of a , with the emi n

curves drawn in Fig. 24, normalized to a power (p(O) = 1 . Combining

eq. 166 and 167 for convenience, we have for the relative error:

.
min

= £m >(168)
r smax

where max is the composite curve shown in Fig. 18. Relative error

curves, for each of the four examples of the preceding section, are

plotted in Fig. 26. It is easy to show that for the signal (a), having

finite first and second derivatives, the function (166) has a third-

order tangency with the a-axis at a = O (solid line), whereas the

tangency is of first order for the signal (b) whose first derivative

only is finite (dashed line). The remaining two curves of relative

error, corresponding to signals (c) and (d) having infinite derivatives,

start from a value = 1 for a = 0 , and remain in the upper region

of the graph for all a , indicating that the Wiener predictor does

not perform much better than the direct connection (or the zero transfer

iL·
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for larger a ) for these types of ignals.

The behavior of the relative error durves, illustrated in

Fig. 26, in the vicinity of a = 0 , clearly confirms the fact that

only those sinals are re dictab le which have at least their first

derivative finite.



CHAPTER VI

Conclusions

Some of the most significant theoretical results of the pre-

ceding chapters are summarized and tabulated in Fig. 27. From a

qualitative point of view it may be said that: (a) a signal whose

first derivative reaches infinite values is unpredictable; (b) pre-

diction is possible if at least the first derivative of the signal

remains finite; and (c) the quality of prediction increases when

derivatives of increasing orders of the signal are constrained to

remain finite. Assuming that we deal with a predictable signal,

whose nature therefore precludes the existence of an infinite first

derivative, the fundamental anagtcal expression of this predictable

character lies in the zero initial slope of the autocorrelation of the

signal. Reproduction of this slope in the analytical work is the first

condition for a successful predictor design. Also, in the immediate

vicinity of = , the structure of the autocorrelation curve must

be accurately approximated, since it interprets the behavior of the

high-order derivatives of the signal, which condition (as we saw) the

quality of prediction performance.

The necessity of having accurate data on autocorrelation behavior

around I = 0 has an important practical consequence. We have seen

from eq.122 and 123 (and others of the like that can be written) that

the description of the autocorrelation function at = 0 corresponds

to the infinite frequency behavior of the signal power spectrum. It
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is therefore inadequate to take experimental data of power spectrum,

since the solution of the prediction problem would require approxi-

mating with extreme accuracy the manner in which the power spectrum

approaches zero for large aw ; moreover, however large the frequency

range in which the experiment is performed, the most important data

would still lie beyond that range. In practice, therefore, the

power-spectrum equation, representing the signal statistics in all of

Wiener's analytical work, must be derived merely as the Fourier Trans-

form of the autocorrelation curve. The above argument is made clear

from inspection of Fig. 28. All curves are represented only for

positive abscissae and must be completed by symmetry about the ordinate

axis. The go(a) curves have the general character of autocorrelation

functions (except curve 1 +); they show a variety of forms in the range

of the graph, corresponding to the various cases considered in the pre-

ceding chapters. The Go(Q ) curves are the normalized Fourier Trans-

forms of the respective g(a) curves; they may be interpreted as the

power spectra associated with the corresponding autocorrelation curves

g (a) . It clearly appears that the considerable differences between

This result stresses the fact that prediction performance is
related to the behavior of the high-frequency components of the signal,
which are responsible for the steep rises and sharp corners.

Taken from: "A Case of Linear Pulse Distortion Occurring in
Ionospheric Work," by H. Baerwald (Technical Physics of the USSR,
Vol. 3, No. 7, p. 7, 1936).

+ Wiener has shownl from the Schwartz inequality that the auto-
correlation p(r) is smaller (and never equal) for any than the
value it has at = 0 .

w

__________________�_______
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the various go(a) curves around = 0 are greatly reduced in

the Fourier Transform curves, which differ mainly in the way they

approach their common zero asymptote for large Q . If one has

experimental data for a Go0 Q ) curve, it becomes impractical to

reproduce accurately the important part, which lies in the highest

frequency ranges; it is much simpler to obtain experimental data for

go(c) in a narrow range around 0 = 0 , and take the Fourier integral

of the corresponding expression.

As far as the trial experiment of Chapter II is concerned, it

is now clear that failure of an adequate approximation of autocorre-

lation behavior around t= 0 accounts for the poor performance of

the resulting predictor. More experimental points are needed for

small values of ' than the ones recorded in Fig. 4. Inspection of

the signal function of Fig. 1 shows that a zero slope of autocorrela-

tion should result at Z = 0 , rather than the negative slopes given

by expression (51) or (54). Failure to meet the correct slope at

zero causes all further analytical steps to follow the pattern of

the last two rows of Fig. 27, corresponding to "unpredictable" sig-

nals. As a matter of fact, expression (54) used for autocorrelation

of the signal of Fig. 1 gave a system function practically reducing

to a constant; this result is comparable to the one obtained in

eq. 165 for the unpredictable functions studied in Example (d) of the

preceding chapter.

New procedures must therefore be used for an adequate fitting

of experimental data for the autocorrelation function. For example,

� 1_1



an expression of the form

p(r) = po(r) - hea'r cos b *

where h is chosen very small and a very large, may account for

the zero initial slope of (t') and its rapid change in the vicinity

of r= 0 . The term o0(T) is usually a sum of decreasing exponen-

tials** whose negative contributions to the initial slope may be off-

set by the positive contribution ah of the second term, for adequate

values of a and h . In most cases, a must be so large that the

oscillations produced by cos b are completely damped out before

the first half-period is over. The parameter b appears in the

second derivative of p(t) , and may be chosen to give the optimum

description of slope variation around T = 0 .

Dr. Manuel Cerrillo, of the M.I.T. Research Laboratory of Elec-

tronics, is developing an orthonormal system of functions which would

be particularly convenient for fitting curves having structures of

the autocorrelation types.

Use of the small subtractive term he cos bT in the expres-
sion for (t) was suggested to the author by Dr. Y. W. Lee.

*Making the power spectrum rational.

a
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APPENDIX I (See Fig. 6)

r (1C) 9P1(T ) 5.809e- 2 t )

0 5.849 5.809 5.809 0

0.2 5.276 5.236 4.750 0.486

0.4 4.289 4.249 3.895 0.354

0.6 3.598 3.558 3.188 0.370

0.8 2.810 2.770 2.610 0.160

1.0 2.273 2.233 2.140 0.093

1.2 1.675 1.635 1.750 -0.115

1.4 1.416 1.376 1.435 -0.060

1.6 1.180 1.140 1.175 -0.035

1.8 1.176 1.136 0.960 0.176

2.0 1.098 1.058 0.785 0.273

2.2 0.856 0.816 0.645 0.171

2.4 0.847 0.807 0.529 0.278

2.6 0.809 0.769 0.430 0.339

2.8 0.764 0.724 0.354 0.370

3.0 0.681 0.641 0.290 0.351

3.2 0.603 0.563 0.237 0.326

3.4 0.535 0.495 0.194 0.301

3.6 0.450 0.410 0.157 0.253

3.8 0.425 0.385 0.129 0.256

4.0 0.368 0.328 0.106 0.222

4.2 0.249 0.209 0.087 0.122

4.4 0.267 0.227 0.071 0.156

4.6 0.227 0.187 0.058 0.129

p(1) : experimental values (see Fig. 4)

91(T) = p(T) - 0.04 (see eq.31)

92(X) = ,(T) - 5.809 er (see eq.35)
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APPENDIX III

An orthonormal expansion, using Legendre functions, will be

computed for the expression

P 1 (T) = 5.809 e + 59.5 t 2 e -8+ 0.182t 6 e 2 r (51)

For a three-term approximation, the first three Legendre functions

must be used. They are:

Qo (' ) eP/

QI( = e-p T/ 2 (2e-p r - 1) (51a)

2 ( =) = e-PT' / 2 (6e - 2 pT - 6e -P + 1)

The resulting expression for eq. 51 will be:

2

P() E Cn Qn=Tr__

with

Cn = p ( ) Qn ( ) dr

C = 5.809'I'

00-
e Qn(T)dT + 59.5

R

a

(51b)

(51c)

T e 8Q()dr + 0.182 6e2T (T)dr
o ,o

I

TS

After trial, it has been found that the optimum set of functions (51a)

is obtained for

p = 0.32

Qn will contain therefore terms of the forms:

I

--

e-0.48C -0.8 re
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n -0.16t
For Q =

R = e.1 6 dt = 0.861

e .1 6 t = 0.0037

T .r6 e-2.16tdr = 3.30e dtY= 3.30

For Qn = e-0.48t:

R =f e- 1' 48T d' = 0.6755

S= fr2Jo e- 8. 4 8 T dT = 0.00334

T = T6 e-2.481dr
o~ed

For n -0.___8

R =
e-1.8trd
0 dt

S S- -8. 8d = 0.00294

T f t6 e -2 8t d

a

= 1.257

= 0.5555

-- --I�(·*Yrr*Y··IP�YZYIC*L-ICII""II(LUPr�l ·r--·�L·rr�r�^*.���ir*·+-�rr.ulrr--·r-_

a

= 0.5335

S T 2



Using now the complete expressions of Qo ,

developing the corresponding coefficients

Q1 and Q2 ' and

C o ' C1 , and C2

ing to eq. 51c, we get:

C -= .32 (5.809x 0.861+59.5% 0.0037+0.1823.3
0) = 3.298

C1 = ~0.96 (2x 5.809% 0.6755+ 2x 59.5x 0.00334
+2cO121.5 v )=28

+ 2 0.182x 1.257 - ) = 2.82
(6 5.809x .5555 6 59.5 0. 0032

02 = 1.(6,' 5.809K 0.5555+ 6 59.5% 0.00294

3C1 2Co
+ 6x 0.182x 0.5335 - 0. = 0.972

foo.qE oi7

Finally, from eq 51b, we obtain:

l( ) = e 16 0.972l.6

+ (2.82 ( 0.96X 2 - 0.972 1.6 X 6)e- 0 321

+ (0.972 1.6+3.298 0.32 - 2.82 0.96)

(i(T) = 7.365 0 8 - 1.855 e0.48 + 0.332 e016 t (54)

This is the desired three-term expansion of eq. 51.

The following values of this expansion were computed, and the

corresponding curve plotted in Fig. 4 :

92

accord-
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T (P,1(T), eq 54 .p = 1+0.04

0 5.842 5.882

0.2 4.909 4.949

0.4 4.136 4.176

0.6 3.464 3.504

0.8 2.914 2.954

1.0 2.442 2.482

1.5 1.577 1.617

2.0 1.019 1.059

3.0 0.433 0.473

4.0 0.203 0.243

A9

_ ____ __ _ _ _ __
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APPENDIX IV

Numerical Analysis of

System Function Performance

The system function, or "transfer" function H(c) obtained by

the methods described in this paper, can always be realized by a

linear electromechanical system. However, errors are introduced by

the physical elements used in the synthesis, and greater accuracy is

obtained by computing the theoretical system performance. If fl(t)

is the input function, for which the optimum H(o) has been obtained

by Wiener's method, we may describe the theoretical filter output by

(a) f01(t) = fl(t -t) h(t) d 

where

(b) h(t) =H() eT do

-o0

represents the output for a unit impulse input u(T)

For the system function given by eq. 62, for example, eq.(b)

gives directly:

h(T) = 0.6476 u(r) + 0.01083 e-0 1 89-lt 0.0171 e-0-392 T

where u) is the unit impulse function. In this case, eq.(a) becomes:

(c) f0(t) =0.6476 f(t) + j h(T) fl(t -T) d ,

(d) with h(t) = 0.01083 e-0 '1 89 T_ 0.0171 e-0 392T.

These equations are true for any system function.

- """ __ �_ ,
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The integral appearing in eq. (c) is computed by the same pro-

cedure described on pp. 15 and 17 for the autocorrelation function.

For the present case, a list of values of hl(T) is computed, for

T = nO.2 for example, n increasing from 0 to a value N,

after which hl(t) is practically zero. In front of this list,

values of fl are listed, for decreasing t , time intervals being

of the same magnitude 0.2 ; if the record covers the range from 0

to To , the first number of this list will be f(T0) . Now the

h(T) list is slid along the fl list until h(O) is in front of

the value f(t) at the time t for which the "output" given by

eq. (c) is sought. As illustrated by the tabulation below, horizontal

products represent discrete values of the integrand of eq (c), separated

by equal intervals of magnitude 0.2 .

fl(To)

fl(t)

fl(t -

fl(t -

fl(t -

fl(O)

0.2)

0.4)

x h(0)

X h(o.2)

X h(0.4)

- Po

Pl

= P2

N 0.2) x h( 1(N x 0.2)

0

0

0_
sO

---m**rp·^--rrulr~~~~~~~~~~~~~~~~~ar~~~r~~~g~~~LBY~~~~i~~~-Yll~~~~~ihl ··~~~~~~~~~~ ...

.

= 
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If values of the integrand are plotted as in Fig. 5, the trapezoidal

approximation to the integral of eq. (c) yields:

hl(T) fl(t -2~) dR 0.2L2 + Pl+P2 + PN-'"P-i/o
The particular case here described by eq. (c) and (d) makes the

value of this integral insignificant compared to the term 0.6476 fl(t)

of eq. (c); this result was pointed out on p. 27 of this paper.

However, the computational method described by the tabulation

shown above is completely general. The tabulation clearly illustrates

the mechanism by which a filter system, described by H(co) or h ) ,

operates on the past of the input function, past values of the input

contributing to the present output in a way determined by the "weight-

ing factor" h(r) . This factor represents the distribution in the

past of the contributions of the inputj since it decreases exponen-

tially, we have the obvious result that values of the input function

lying in the infinite past have negligible effect upon the present

output.

____
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APPENDIX V

Scheme of Computation for

Mean Square Prediction Error

For the experiment described in Chapter II, the "predicted"

output for a time interval a = 0.5 is given by eq*63, yielding:

fol(t) = f(t) + 0.20 = 0.6476 fl(t) = 0.6476 [f(t) + 0.20] ,

or

fo(t) = 0.6476 f(t) - 0.07 ,

where f (t) is the "filter" output referred to the co-ordinate

axes of the input record of Fig. 4.

In order to determine the mean-square error of prediction, this

output has to be compared with the value of the input at the later

time (t 0.5) . A scheme of tabulation of results is indicated below

and the actual value obtained in the summation of the last column is

shown.

t t+0.5 f(t) 0.6476f(t) fo(t) f(t+ 0.5) Ifo(t)_f(t +0.5)

48.8 49.3 3.4 2.20 2.13 2.2 0.005

48.6 49.1 1.0 0.65 0.58 4.2 13.10

48.4 48.9 0 0 -0.07 4.1 17.38

27.4 27.9 1.7 1.10 1.03 -1.5 6.40

318.62

-



98

The square-error summation, for the 108 samples of the tabula-

tion, is 318.62. The approximate mean-square error is therefore

(a) = i 8 = 2.95 (experimental)

We must compare this performanc6 with the theoretical one, ex-

pressed by eq. 23, which is repeated below:

mI = 2 a f Y (t) dt . (23)

From eq.60 we have:

(t) - i .2 e.-08t _ 0.17 48t + o.i6 e-o16 2
2t) = 42 .543 - 0.3171 e

2(t) = [4w2 [2.38 e-+6t + 0.01 e t+ .00173 -

-0.979 e -1 '2 8t + 0.1285 e -9 6t- 0.0264 e 0.64t]

0.32 128

+ .264 ( -0.64a)
- 0.64 1 -

For a = 0.5 we get:

(b) amin = 3.15 (theoretical)

The experimental value obtained in eq (a) is in good agreement with

the theoretical value (b), computed directly from the analytical ex-

pression of the autocorrelation function (since T (t) is uniquely

determined by (t)3.

.,

_ I�__
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