
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-056 November 9, 2009

Graphite: A Distributed Parallel Simulator
for Multicores
Jason E. Miller, Harshad Kasture, George Kurian,
Nathan Beckmann, Charles Gruenwald III,
Christopher Celio, Jonathan Eastep, and Anant Agarwal

Graphite: A Distributed Parallel Simulator for Multicores

Jason E. Miller, Harshad Kasture, George Kurian, Nathan Beckmann, Charles Gruenwald III,
Christopher Celio, Jonathan Eastep, and Anant Agarwal

Massachusetts Institute of Technology, Cambridge, MA

Abstract

This paper introduces the open-source Graphite
distributed parallel multicore simulator infrastructure.
Graphite is designed from the ground up for exploration of
future multicore processors containing dozens, hundreds,
or even thousands of cores. It provides high performance
for fast design space exploration and software development
for future processors. Several techniques are used to
achieve this performance including: direct execution,
multi-machine distribution, analytical modeling, and lax
synchronization. Graphite is capable of accelerating sim-
ulations by leveraging several machines. It can distribute
simulation of an off-the-shelf threaded application across a
cluster of commodity Linux machines with no modification
to the source code. It does this by providing a single,
shared address space and consistent single-process image
across machines. Graphite is designed to be a simulation
framework, allowing different component models to be
easily replaced to either model different architectures or
tradeoff accuracy for performance.

We evaluate Graphite from a number of perspectives and
demonstrate that it can simulate target architectures con-
taining over 1000 cores on ten 8-core servers. Performance
scales well as more machines are added with near linear
speedup in many cases. Simulation slowdown is as low as
41× versus native execution for some applications.

The Graphite infrastructure and existing models will be
released as open-source software to allow the community
to simulate their own architectures and extend and improve
the framework.

1 Introduction

Simulation is a key technique both for the early explo-
ration of new processor architectures and for advanced soft-

ware development for upcoming machines. However, poor
simulator performance often limits the scope and depth of
the work that can be performed. This is especially true
for simulations of future multicore processors where the
enormous computational resources of dozens, hundreds, or
even thousands of cores must be multiplexed onto the much
smaller number of cores available in current machines. In
fact, the majority of simulators available today are not par-
allel at all [3, 17, 30, 23, 4], potentially forcing a single core
to perform all the work of hundreds of cores.

Although cycle-accurate simulators provide extremely
accurate results, the overhead required for such detailed
modeling leads to very slow execution (typically between
1 KIPS and 1 MIPS [11] or about 1000× to 100, 000×
slowdown). In the past, this has limited architectural eval-
uations to application kernels or scaled-back benchmarks
suites [20, 5]. To perform more realistic evaluations, re-
searchers are increasingly interested in running larger, more
interactive applications. These types of studies require
slowdowns of about 100× to achieve reasonable interactiv-
ity [13]. This level of performance is not achievable with
today’s sequential, cycle-accurate simulators.

Another compelling use of simulation is advanced soft-
ware research. Typically software lags several years behind
hardware, i.e., it takes years before software designers are
able to take full advantage of new hardware architectures.
In many cases, the hardware has actually moved on to the
next generation before the software catches up. High per-
formance simulators can help break this pattern by allowing
innovative software research and development (e.g., operat-
ing systems, languages, runtime systems, applications) for
future architectures. With current industry trends, it is now
clear that processors with hundreds or thousands of cores
will eventually be available. It is also clear that the com-
puting community is not able to fully utilize these architec-
tures. Research on this front cannot afford to wait until the
hardware is available. Existing simulators are not up to this

1

task because of the difficulty of simulating such large chips
on existing machines.

Graphite is a new parallel, distributed simulator infras-
tructure designed to enable rapid high-level architectural
evaluation and basic software development for future mul-
ticore architectures. It provides both functional and per-
formance modeling for cores, on-chip networks, and mem-
ory subsystems including cache heirarchies with full cache
coherence. The design of Graphite is modular, allowing
the different models to be easily replaced to simulate dif-
ferent architectures or tradeoff performance for accuracy.
Graphite runs on commodity Linux machines and can exe-
cute unmodified pthread applications. Graphite will be re-
leased to the community as open-source software to fos-
ter research and software development for future multicore
processors.

A variety of techniques are used to deliver the perfor-
mance and scalability needed to perform useful evalua-
tions of large multicores including: direct execution, multi-
machine distribution, analytical modeling and lax synchro-
nization.

For increased performance, functional modeling of the
computational cores is provided primarily through direct
native execution on the host machine. A dynamic binary
translator is used to add new functionality (e.g., new instruc-
tions or a direct core-to-core messaging interface) and inter-
cept operations that require action from the simulator (e.g.,
memory operations that feed into the cache model) [27].

Graphite is a “multicore-on-multicore” simulator, de-
signed from the ground up to leverage the power and par-
allelism of current multicore machines. However, it also
goes one step further, allowing an individual simulation to
be distributed across a cluster of servers to accelerate sim-
ulation and enable the study of large-scale multicore chips.
This ability is completely transparent to the application and
programmer. Threads in the application are automatically
distributed to cores of the target architecture spread across
multiple host machines. The simulator maintains the illu-
sion that all of the threads are running in a single process
with a single shared address space. This allows the simula-
tor to run off-the-shelf parallel applications on any number
of machines without having to recompile the apps for dif-
ferent configurations.

Graphite is not intended to be completely cycle-accurate
but instead uses a collection of models and techniques to
provide a good estimate of performance and various ma-
chine statistics. Instructions and events from the core, net-
work, and memory subsystem functional models are passed
to analytical timing models that update individual local
clocks in each core. The local clocks are synchronized us-
ing message timestamps when cores interact (e.g., through
synchronization or messages) [36]. However, to reduce the
time wasted on synchronization, Graphite does not strictly

Applica'on 
Target Architecture

Target 
Tile 

Target 
Tile 

Target 
Tile 

Target 
Tile 

Target 
Tile 

Target 
Tile 

Target 
Tile 

Target 
Tile 

Target 
Tile 

Graphite 

Host 
Process 

Host 
Process 

Host 
Process 

Host 
Core 

Host 
Core 

Host 
Core 

Host 
Core 

Host 
Core 

Host 
Core 

Host OS  Host OS 

TCP/IP Sockets

Host Thread

Figure 1: High-level architecture. Graphite consists of
one or more host processes distributed across machines and
working together over sockets. Each process runs a subset
of the simulated tiles, one host thread per simulated tile.

enforce the ordering of all events in the system [9]. In cer-
tain cases, timestamps are ignored and operation latencies
are based on the ordering of events during native execution
rather than the precise ordering they would have in the sim-
ulated system (see Section 3.6 on Lax Synchronization).

Graphite has been evaluated both in terms of the valid-
ity of the simulation results as well as the scalability of
simulator performance across multiple cores and machines.
The results from these evaluations show that Graphite scales
well, has reasonable performance and provides results con-
sistent with expectations. For the scaling study, we perform
a fully cache-coherent simulation of 1024 cores across up to
10 target machines and run applications from the SPLASH
benchmark suite. The slowdown versus native execution
is as low as 41× when using 8 machines, indicating that
Graphite can be used for realistic application studies.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the architecture of Graphite. Section 3 dis-
cusses the implementation of Graphite in more detail. Sec-
tion 4 evaluates the accuracy, performance, and scaling of
the simulator. Section 5 discusses related work and, finally,
Section 6 summarizes our findings.

2 System Architecture

Graphite is an application-level simulator for tiled mul-
ticore architectures. A simulation consists of executing a
multi-threaded application on a target multicore architec-
ture defined by the simulator’s models and runtime configu-
ration parameters. The simulation runs on one or more host

2

machines, each of which may be a multicore machine itself.
Figure 1 illustrates how a multi-threaded application run-
ning on a target architecture with multiple tiles is simulated
on a cluster of host machines. Graphite maps each thread
in the application to a tile of the target architecture and dis-
tributes these threads among multiple host processes which
are running on multiple host machines. The host operating
system is then responsible for the scheduling and execution
of these threads.

Figure 2a illustrates the types of target architectures
Graphite is designed to simulate. The target architecture
contains a set of tiles interconnected by an on-chip net-
work. Each tile is composed of a compute core, a network
switch and a part of the memory subsystem (cache hierarchy
and DRAM controller) [32]. Tiles may be homogeneous
or heterogeneous; however, we only examine homogeneous
architectures in this paper. Any network topology can be
modeled as long as each tile contains an endpoint.

Graphite has a modular design where each component is
implemented as a swappable module that has a well defined
interface to other modules in the system. Each module can
be configured through run-time parameters. Alternatively,
one may replace a particular implementation of a module
with a different implementation in order to study certain
aspects of the system; all that needs to be ensured is that
interfaces to other modules are correctly implemented.

Figure 2b illustrates Graphite’s modular design. In
Graphite’s front-end, a dynamic binary translator (DBT)
is used to modify the application and generate events at
points of interest. These events cause traps into the back-
end including the core model, the memory model and the
network model. The core model itself may use the net-
work model for the modeling of certain events. The net-
work model is built on top of the physical transport module,
which provides a portable communication interface that ab-
stracts the host architecture dependent details of intra- and
inter-process communication.

Points of interest intercepted by the dynamic binary
translator include: memory references, system calls, syn-
chronization routines and user-level messages. The DBT
is also used to generate a stream of instructions for core
modeling. Many classes of instructions in the application,
such as arithmetic and logical operations do not need to be
emulated and run natively on the host machines, providing
significant speedup. Currently, Graphite uses Pin [22] as
the front end, although Graphite’s modular design means
that another dynamic translation tool such as QEMU [4] or
DynamoRio [7] could be used instead.

Graphite’s simulation back-end can be broadly divided
into two sets of features: functional and modeling. Model-
ing features model various aspects of the target architecture
while functional features ensure correct program behavior.
The following two sections describe the back-end’s model-

ing and functional features.

2.1 Modeling Features

As shown in Figure 2b, the Graphite backend is com-
prised of many modules that model various components of
the target architecture. In particular, the core model is re-
sponsible for modeling the processor pipeline. The mem-
ory model is responsible for the memory subsystem (Sec-
tion 3.2), which is composed of different levels of caches
and DRAM. The network model (Section 3.3) handles the
routing of network packets over the on-chip network and
accounts for various delays encountered due to contention
and routing overheads.

Note that these models interact with each other to de-
termine the cost of each event in the application. For in-
stance, the memory model uses the round trip delay times
from the network model to compute the latency of memory
operations, while the core model relies on latencies from
the memory model to determine the time taken to execute
load and store operations.

The challenge in achieving good simulator performance
is mainly solved by Graphite’s lax synchronization model
(Section 3.6.1). In this model, each target tile maintains
its own local clock which runs independently of the clocks
of other tiles. Synchronization between the local clocks of
different tiles happens only on application synchronization
events, user-level messages, and thread creation and termi-
nation events. Due to this, modeling of certain aspects of
system behavior, such as network contention and DRAM
queueing delays, become complicated. Section 3.6.1 talks
in detail about how Graphite addresses this challenge.

2.2 Functional Features

Graphite’s ability to execute an unmodified pthreaded
application across multiple host machines is central to its
scalability and ease of use. In order to achieve this, Graphite
has to address a number of functional challenges to ensure
that the application runs correctly:

1. Single Address Space: Since threads from the appli-
cation execute on different hosts and hence in differ-
ent address spaces, allowing application memory ref-
erences to access the host address space won’t be func-
tionally correct. Graphite provides the infrastructure to
modify these memory references and present a uniform
view of the application address space to all threads and
maintain data coherence between them. Section 3.2
explains this in greater detail.

2. Consistent OS Interface: Since application threads
execute on different host processes on multiple hosts,

3

Target 
Tile 

Interconnec.on Network 

Processing 
Core 
Proc 
Core 

Network 
Switch 

DRAM 

DRAM Controller

Target 
Tile 

Target 
Tile 

Cache Hierarchy

(a) Target Architecture

Host Process 

Target 
Tile 

Target 
Tile 

Target 
Tile  

Target 
Tile 

  MCP    LCP 

Host Process 

Target 
Tile 

Target  
Tile 

Target 
Tile 

Target 
Tile 

  LCP 

Host Process 

Target  
Tile 

Target 
Tile 

Target 
Tile 

Target 
Tile 

  LCP 

Physical Transport 

Core 
 Model 

MMU 

Net API 

Network Model 

PT API 

TCP/IP Sockets 

App  User 
API 

I$, D$ 

DRAM 

(b) Modular Design of Graphite

Figure 2: System architecture. a) Overview of the target architecture. Tiles contain a compute core, a network switch, and a
node of the memory system. b) The anatomy of a Graphite simulation. Tiles are distributed among multiple processes. The
app is instrumented to trap into one of three models at key points: a core model, network model, or memory system model.
These models interact to model the target system. The physical transport layer abstracts away the host-specific details of
inter-tile communication.

Graphite implements a system interface layer that in-
tercepts and handles all application system calls in or-
der to maintain the illusion of a single process.

3. Threading Interface: Graphite implements a thread-
ing interface that intercepts thread creation requests
from the application and seamlessly distributes these
threads across multiple hosts. The threading interface
also implements certain thread management and syn-
chronization functions, while others are handled au-
tomatically by virtue of the single, coherent address
space.

To help address these challenges, Graphite spawns ad-
ditional threads called the Master Control Program (MCP)
and the Local Control Program (LCP). There is one LCP
per process but only one MCP for the entire simulation. The
MCP and LCP ensure the functional correctness of the sim-
ulation by providing services for synchronization, system
call execution and thread management.

In addition, Graphite’s network component together with
the physical transport layer provide the functionality to
transport data between threads on the same as well as across
different processes.

3 Implementation

This section describes the design and interaction of
Graphite’s various models and simulation layers. It dis-
cusses the challenges of high performance parallel dis-
tributed simulation and how Graphite’s design addresses
them.

3.1 Core Performance Model

The core performance model is a purely modeled com-
ponent of the system that manages the simulated clock local
to each tile. It follows a producer-consumer design: it con-
sumes instructions and other dynamic information produced
by the rest of the system. The majority of instructions are
produced by the dynamic binary translator as the applica-
tion thread executes them. Other parts of the system also
produce pseudo-instructions to update the local clock on
unusual events. For example, the network produces a “mes-
sage receive pseudo-instruction” when the application uses
the network messaging API (Section 3.3), and a “spawn
pseudo-instruction” is produced when a thread is spawned
on the core.

Other information beyond instructions is required to per-
form modeling. Latencies of memory operations, paths of
branches, etc. are all dynamic properties of the system not
included in the instruction trace. This information is pro-
duced by the simulator back-end (e.g., memory operations)
or dynamic binary translator (e.g., branch paths) and con-
sumed by the core performance model via a separate inter-
face. This allows the functional and modeling portions of
the simulator to execute asynchronously without introduc-
ing any errors.

Because the core performance model is isolated from
the functional portion of the simulator, there is great flex-
ibility in implementing it to match the target architecture.
Currently, Graphite supports an in-order core model with
an out-of-order memory system. Store buffers, load units,
branch prediction, and instruction costs are all modeled and
configurable. This model is one example of many different
architectural models than can be implemented in Graphite.

It is also possible to implement core models that differ

4

drastically from the operation of the functional models —
i.e., although the simulator is functionally in-order with se-
quentially consistent memory, the core performance model
can be out-of-order core with a relaxed memory model.
Models throughout the remainder of the system will reflect
the new core type, as they are ultimately based on clocks
updated by the core model. For example, memory and net-
work utilization will reflect an out-of-order architecture be-
cause message times-tamps are generated from core clocks.

3.2 Memory System

The memory system is composed of several modules
such as instruction and data caches, and DRAM controllers,
each associated with one of the simulated tiles and con-
nected using the network layer. The memory system is
responsible for simulating the cache hierarchies, memory
controllers and cache coherence engines of the target archi-
tecture under study. For this purpose, the various modules
of the memory system interact with each other using addi-
tional messages that simulate various aspects of the target
memory subsystem such as the cache coherence scheme.

The memory system in Graphite also has a functional
role, namely to maintain a single address space between
application threads, many of which may be executing on
different host machines and hence in different host address
spaces. Graphite redirects memory references in all appli-
cation threads to access data resident in the target address
space rather than in their respective host address spaces.
The memory reference redirection is achieved using dy-
namic binary translation, either by rewriting the memory
references in place or, in a small number of special cases,
emulating them in software. It is the responsibility of the
memory system to service these redirected memory ac-
cesses and efficiently manage the application’s data. It ac-
complishes this by statically partitioning the application’s
address space among the different machines participating
in simulation; the data corresponding to that portion of the
address space is ”homed” on that machine. Data frequently
accessed by an application thread is cached at its local mem-
ory module and all such cached data is kept consistent using
a cache coherency protocol. This allows Graphite to over-
come the potential bottleneck of always accessing the data
at the home location which could potentially be on a differ-
ent host machine.

If the modeling and functional aspects of the memory
system behavior were kept completely independent, it could
lead to inefficiencies since each application memory request
may result in two sets of network messages, one for en-
suring the functional correctness of simulation (actually re-
trieving the data) and the other for modeling the perfor-
mance of the target memory architecture. Graphite ad-
dresses this problem by modifying the software data struc-

tures used for ensuring functional correctness to operate
similar to the memory architecture of the target machine. In
addition to improving the performance of simulation, this
strategy automatically helps verify the correctness of com-
plex hierarchies and protocols used to implement the target
machine’s memory architecture, as their correct operation
is essential for the completion of simulation. Performance
modeling is done by appending simulated time-stamps to
messages sent between the different memory modules (see
Section 3.6).

Graphite currently simulates a target memory architec-
ture with L1 data and instruction caches and local unified L2
caches. Cache coherence is maintained using a directory-
based MSI protocol in which the directory is uniformly dis-
tributed across all the tiles. The cache hierarchy is easily
configurable and more layers may be added with ease.

3.2.1 Process Initialization and Address Space Man-
agement

Each process that participates in the simulation executes the
same statically linked binary and thus has the same view of
static data as every other process. However, maintaining
a single address space across multiple processes presents
additional challenges in process initialization and dynamic
memory management. Graphite replicates the state of sys-
tem memory at process start-up by copying all the data writ-
ten on to the process stack by the operating system into the
simulated address space before transferring control to the
application. Initialization of process state, such as the set-
ting up of thread local storage (TLS), is performed in each
process participating in the simulation. Only a single pro-
cess in the simulation eventually executes main(), while
the other processes execute subsequently spawned threads
as explained later in this section.

Graphite also implements certain memory management
functions normally provided by the operating system.
Graphite allocates a part of the address space for thread
stacks, and makes sure that addresses in this range are a part
of the valid host address space on each process. Addition-
ally, Graphite implements a dynamic memory manager that
services requests for dynamic memory from the application
by intercepting the brk, mmap and munmap system calls
and allocating (or deallocating) memory from designated
parts of the address space. Figure 3 depicts how Graphite
partitions the application address space.

3.3 Network

The network component provides high-level messaging
services between tiles built on top of the lower-level trans-
port layer (Section 3.3.1). It provides a message-passing
API directly to the application, as well as serving other

5

D i ll K lCode
Segment

Static
Data

Program
Heap

Stack
Segment

Dynamically
Allocated
Segments

Kernel
Reserved
Space

C
O
R

C
O
R

C
O
R

C
O
R

C
O
R

C
O
R

C
O
R

C
O
R

C
O
R

C
O
R

C
O
R

C
O
RProcess 0 Process 1 Process N 1R

E
R
E

R
E

R
E

R
E

…R
E

R
E

R
E

R
E

R
E

R
E

R
E

Process 0 Process 1 Process N‐1

Figure 3: Segments within the application address space

components of the simulator back end, such as the memory
system (Section 3.2) and system call handler (Section 3.4).

The network component maintains several distinct net-
work models. The network model used by a particular mes-
sage is determined by the message type. For instance, sys-
tem messages unrelated to application behavior use a sep-
arate network model than application messages, and there-
fore have no impact on simulation results. The default simu-
lator configuration also uses separate models for application
and memory traffic, as is commonly done in multicore chips
[32, 34]. Each network model is configured independently,
allowing for exploration of new network topologies focused
on particular subcomponents of the system.

The network separates functionality and modeling via
the different network models. The network provides com-
mon functionality, such as the bundling of packets, multi-
plexing of messages, high-level interface to the rest of the
system, and internal interface to the transport layer. The net-
work models are responsible for routing packets and updat-
ing time-stamps to account for network delay. Regardless
of the time-stamp of a packet, the network forwards mes-
sages immediately and delivers them in the order they are
received. This means that messages will arrive out-of-order
or “earlier” (in simulated cycles) than the receiving tile.
This is discussed in greater detail in Section 3.6.1. How-
ever, note that functionality and modeling are not perfectly
encapsulated, as the network model determines the route of
a packet and consequently impacts the traffic through the
transport layer.

Each network model shares a common interface. There-
fore, network model implementations are swappable, and
it is simple to develop new network models. Currently,
Graphite supports a basic model that forwards packets with
no delay (used for system messages), a mesh model that
uses the number of network hops to determine latency, and
another mesh model that tracks global network utilization
to determine latency using an analytical contention model.

3.3.1 Transport Layer

The transport layer provides an abstraction for generic com-
munication between tiles. All inter-core communication
as well as inter-process communication required for dis-
tributed support goes through this communication channel.

The current transport layer uses TCP/IP sockets for data
transport, however this could be replaced with another mes-
saging back end such as MPI.

3.4 Consistent OS Interface

Graphite implements a system interface layer that inter-
cepts and handles system calls in the target application. Sys-
tem calls require special handling for two reasons: the need
to access data in the simulated address space as opposed to
the host address space, and the need to maintain the illusion
of a single process across multiple processes executing the
target application. System calls that do not require special
handling are allowed to execute directly on the host ma-
chine.

Many system calls, such as clone and
rt sigaction pass pointers to chunks of memory
as input or output arguments to the kernel. Graphite
intercepts such system calls, fetches the data passed in as
input and modifies system call arguments to point to this
data before executing it on the host machine. Any output
data is copied to the simulated address space after the
system call returns.

Some system calls, such as the ones that deal with file
I/O, need to be handled specially to maintain a consistent
process state for the target application. For example, in a
multi-threaded application, threads might communicate via
files, with one thread writing to a file using a write sys-
tem call and passing the file descriptor to another thread
which then reads the data using the read system call. In a
Graphite simulation, these threads might be in different host
processes, and thus a file descriptor in one process need not
point to the same file as in the other. Simply executing the
system calls on the respective host systems will not yield
correct results. Instead, Graphite handles these system calls
by intercepting and forwarding them along with their argu-
ments to the MCP, where they are executed. The results are
sent back to the thread that made the original system call,
achieving the desired result. Other system calls, e.g. open,
fstat etc., are handled in a similar manner.

As already described in Section 3.2, memory manage-
ment system calls are also intercepted and handled by the
system interface layer. System calls that are used to imple-
ment synchronization between threads, such as futex, are
also intercepted and forwarded to the MCP, where Graphite
emulates the behavior of the futex system call.

3.5 Threading Infrastructure

One challenging aspect of our design was seamlessly
dealing with thread spawn calls across a distributed simu-
lation. Other programming models, such as MPI, force the
application programmer to be aware of distribution by allo-

6

cating work among processes at start-up. This design is lim-
iting and often requires the source code of the application
to be changed to account for the new programming model.
Instead, Graphite presents a single-process programming
model to the user while distributing the threads across dif-
ferent machines. This allows the user to customize the dis-
tribution of the simulation as necessary for the desired scal-
ability, performance, and available resources.

The above parameters can be changed between simula-
tion runs through run-time configuration options without
any changes to the application code. The actual applica-
tion interface is simply the pthread spawn/join interface.
The only limitation to the programming interface is that the
maximum number of threads at any time may not exceed
the total number of cores in the chip. Currently the threads
are long living, that is, they run to completion without being
swapped out.

To accomplish this, the spawn calls are first intercepted
at the callee. Next, they are forwarded to the MCP to en-
sure a consistent view of the thread-to-tile mapping. The
MCP chooses an available core and forwards the spawn re-
quest to the LCP on the machine that holds the chosen tile.
The mapping between tiles and processes is currently im-
plemented by simply striping the tiles across the processes.
Thread joining is implemented in a similar manner by syn-
chronizing through the MCP.

3.6 Synchronization Models

In order to meet performance and scalability goals,
Graphite allows cores to run independently with little syn-
chronization. This is necessary to achieve desired through-
put for a simulation distributed across several machines, but
it also means Graphite is not cycle-accurate. Furthermore, it
impacts models throughout the system, as events occur out-
of-order and cycle counts may significantly differ. Graphite
offers a number of synchronization models with different
accuracy and performance trade-offs.

3.6.1 Lax Synchronization

The first synchronization model is lax synchronization. Lax
synchronization is the most permissive in letting clocks dif-
fer and offers the best performance and scalability. To keep
the simulated clocks in reasonable agreement, Graphite uses
application events to synchronize them, but otherwise lets
threads run freely. Lax synchronization is the baseline
model for Graphite, and other models add additional mech-
anisms to it to limit the clock skew.

Lax synchronization is best viewed from the perspective
of a single tile. All interaction with the rest of the sim-
ulation takes place via network messages, each of which
carries a time-stamp that is initially set to the clock of the

sender. These time-stamps are used to update clocks during
synchronization events. A tile’s clock is updated primar-
ily when instructions executed on that tile’s core are retired
(Section 3.1). With the exception of memory operations
(Section 3.2), these events are independent of the rest of
the simulation. However, memory operations use message
round-trip time to determine latency, so they do not force
synchronization with other tiles. True synchronization only
occurs in the following events: application synchronization
such as locks, barriers, etc., receiving a message via the
message-passing API (Section 3.3), and spawning or join-
ing a thread. In all cases, the clock of the tile is forwarded
to the time that the event occurred. If the event occurred
earlier in simulated time, then no updates take place.

The general strategy to handle out-of-order events is to
ignore simulated time and process events in the order they
are received [9]. An alternative is to re-order events so they
are handled in simulated-time order, but this has some fun-
damental problems. Buffering and re-ordering events leads
to deadlock in the memory system, and is difficult to imple-
ment anyway because there is no global cycle count. Alter-
natively, one could optimistically process events in the or-
der they are received and roll them back when an “earlier”
event arrives, as done in BigSim [36]. However, this re-
quires state to be maintained throughout the simulation and
destroys performance. Our results show that lax synchro-
nization still yields reasonably correct performance trends
even in the presence of this error (as shown in Section 4.3).

This complicates models, however, as events are pro-
cessed out-of-order. Queue modeling, e.g. at memory con-
trollers and network switches, illustrates many of the diffi-
culties. In a cycle-accurate simulation, a packet arriving at
a queue is buffered. At each cycle, the buffer head is de-
queued and processed. This matches the actual operation of
the queue and is the natural way to implement such a model.
In Graphite, however, the packet is processed immediately
and potentially carries a time-stamp in the past or far future,
so this strategy does not work.

Instead, queueing latency is modeled by keeping an in-
dependent clock for the queue. This clock represents the
time in the future when the processing of all messages in
the queue will be complete. When a packet arrives, its delay
is the difference between the queue clock and the “global
clock”. Additionally, the queue clock is incremented by the
processing time of the packet to model buffering.

However, because cores in the system are loosely syn-
chronized, there is no easy way to measure progress or a
“global clock”. This is particularly problematic for cores
with no active thread — these cores will have no local up-
dates to their clock, and therefore no obvious reference for
global progress of the simulation. However, these cores still
participate in the simulation as memory controllers and net-
work switches.

7

This problem is addressed by using packet time-stamps
to build an approximation of global progress. A window of
the most recently-seen time-stamps is kept, on the order of
the number of tiles in the simulation. The average of these
time stamps gives an approximation of global progress. The
large window is necessary to eliminate outliers from overly
influencing the result. Because messages are generated fre-
quently (e.g., on every cache miss), this window gives an
up-to-date representation of global progress even with a
large window size.

Combining these techniques yields a queueing model
that works within the framework of lax synchronization. Er-
ror is introduced because packets are modeled out-of-order
in simulated time, but the aggregate queueing delay is cor-
rect. Other models in the system face similar challenges and
solutions.

3.6.2 Lax with Barrier Synchronization

Graphite also supports quanta-based barrier synchroniza-
tion (LaxBarrier), where all active threads wait on a bar-
rier after a configurable number of cycles. This is used
for validation of lax synchronization, as very frequent bar-
riers closely approximate cycle-accurate simulation. As ex-
pected, LaxBarrier also hurts performance and scalability
(Section 4.3).

3.6.3 Lax with Point-to-point Synchronization

Graphite supports a novel synchronization scheme called
point-to-point synchronization (LaxP2P). LaxP2P aims to
achieve the quanta-based accuracy of LaxBarrier without
sacrificing the scalability and performance of lax synchro-
nization. In this scheme, each tile periodically chooses an-
other tile at random and synchronizes with it. If the clocks
of the two tiles differ by more than a configurable number
of cycles (called the slack of simulation), then the tile that
is ahead goes to sleep for a short period of time.

LaxP2P is inspired by the observation that in lax syn-
chronization, there are usually a few outlier threads that are
far ahead or behind and responsible for simulation error.
LaxP2P prevents outliers, as any thread that runs ahead will
put itself to sleep and stay tightly synchronized. Similarly,
any thread that falls behind will put other threads to sleep,
which quickly propagates through the simulation.

The amount of time that a thread must sleep is calculated
based on the real-time rate of simulation progress. Essen-
tially, the thread sleeps for enough real-time such that its
synchronizing partner will have caught up when it wakes.
Specifically, let c be the difference in clocks between the
tiles, and suppose that the thread “in front” is progressing
at a rate of r simulated cycles per second. We approximate
the thread’s progress with a linear curve and put the thread

Feature Value
Clock frequency 1 GHz
L1 caches Private, 32 KB (per tile), 64 byte

line size, 8-way associativity, LRU
replacement

L2 cache Private, 3 MB (per tile), 64 bytes line
size, 24-way associativity, LRU re-
placement

Cache coherence Full-map directory based
DRAM bandwidth 5.13 GB/s
Interconnect Mesh network

Table 1: Selected Target Architecture Parameters. All ex-
periments use these target parameters (varying the number
of target tiles) unless otherwise noted.

to sleep for s seconds, where s = c
r . r is currently ap-

proximated by total progress, meaning the total number of
simulated cycles over the total wall-clock simulation time.

Finally, note that LaxP2P is completely distributed and
uses no global structures. It introduces less overhead than
LaxBarrier and has superior scalability. Results in Sec-
tion 4.3 show that LaxP2P with a carefully chosen slack
encounters a slowdown of only 8% when compared to Lax
synchronization and the simulated run-times of a target ar-
chitecture simulated using LaxP2P are within 1.28% of that
simulated using LaxBarrier.

4 Results

This section presents experimental results that demon-
strate Graphite’s scalability, as well as results from two
architectural studies. Section 4.1 describes the methodol-
ogy and configurations used in subsequent sections. Sec-
tion 4.2 presents scaling results across a single-machine,
across a cluster of machines, and for a 1024-tile simula-
tion. Section 4.3 discusses the impact of synchronization
models (Section 3.6) on simulation results, showing empir-
ically that lax synchronization gives consistent results with
little impact on accuracy for the studied applications. Re-
sults conclude with Section 4.4, which presents two vali-
dation studies of application characteristics in the memory
subsystem.

4.1 Experimental Setup

The experimental results provided in this section were all
obtained on a homogenous cluster of machines. Each ma-
chine within the cluster has dual quad-core Intel(r) X5460
CPUs running at 3.16 GHz and 8 GB of DRAM. They are
running Debian Linux with kernel version 2.6.26. Applica-
tions were compiled with gcc version 4.3.2. The machines
within the cluster are connected to a Gigabit ethernet switch

8

ch
ol

es
ky fft

fm
m

lu
_c

on
t

lu
_n

on
_c

on
t

oc
ea

n_
co

nt

oc
ea

n_
no

n_
co

nt

ra
di

x

w
at

er
_n

sq
ua

re
d

w
at

er
_s

pa
tia

l

0

5

10

15

20

Sp
ee

d-
up

Hn
or

m
al

iz
ed

L

64

32

16

8

4

2

1

Host Cores

Figure 4: Scaling of SPLASH benchmarks across different numbers of cores. Speed-up is normalized to a single core. From
1 to 8 cores, simulation runs on a single machine. Above 8 cores, simulation is distributed across multiple machines.

with two trunked Gigabit ports per machine. This hardware
is typical of current commodity servers.

Each of the experiments in this section uses the target
architecture parameters summarized in Table 1 unless oth-
erwise noted. These parameters were chosen to match the
host architecture as closely as possible.

4.2 Simulator Performance

Single- and Multi-Machine Scaling. Graphite is de-
signed to scale well to both large numbers of target cores
and large numbers of host cores. By leveraging multi-
ple machines, simulation of large target architectures can
be accelerated to provide fast turn-around times. Figure 4
demonstrates the speedup achieved by Graphite as addi-
tional host cores are devoted to the simulation of a 32-
tile target architecture. Results are presented for several
SPLASH2 [35] benchmarks and are normalized to the run-
time on a single host core. The results from one to eight
cores are collected by allowing the simulation to use addi-
tional cores within a single host machine. The results for 16,
32, and 64 cores correspond to using all the cores within 2,
4, and 8 machines, respectively.

As shown in Figure 4, all applications except fft ex-
hibit significant simulation speedups as more cores are
added. The best speedups are achieved with 64 host cores

(across 8 machines) and range from about 2× (fft) to 20×
(radix). It is notable that several apps show a significant
benefit when going from 32 to 64 cores, even though the
application has only 32 threads. This is due to the extra
threads spawned by the simulator as well as the increased
total cache and memory bandwidth available when using
more host machines. Many apps will show an even greater
benefit to additional machines when simulating larger target
architectures.

Scaling is generally better within a single host machine
than across machines due to the lower overhead of commu-
nication. Because each host machine has 8 cores, the tran-
sition to multi-machine simulations occurs at 16 host cores.
Several apps (fmm, ocean, and radix) show nearly ideal
speedup curves from one to eight cores. Some apps show a
drop in performance when going from 8 to 16 cores because
the additional overhead of inter-machine communication
outweighs the benefits of the additional compute resources.
This effect clearly depends on specific application charac-
teristics such as algorithm, computation/communication ra-
tio, and degree of memory sharing. If the application itself
does not scale well to large numbers of cores, then there is
nothing the simulator can do to improve it and performance
will suffer.

These results demonstrate that Graphite is able to take
advantage of large quantities of parallelism in the host plat-

9

Application
Simulation

Native 1 machine 8 machines
Time Time Slowdown Time Slowdown

cholesky 1.99 689 346× 508 255×
fft 0.02 80 3978× 78 3930×
fmm 7.11 670 94× 298 41×

lu cont 0.072 288 4007× 212 2952×
lu non cont 0.08 244 3061× 163 2038×
ocean cont 0.33 168 515× 66 202×

ocean non cont 0.41 177 433× 78 190×
radix 0.11 178 1648× 63 584×

water nsquared 0.30 742 1317× 396 1317×
water spatial 0.13 129 966× 82 616×

Mean - - 1751× - 1213×
Median - - 1307× - 600×

Table 2: Multi-Machine Scaling Results. Wall-clock execu-
tion time of SPLASH-2 simulations versus native across 1
and 8 host machines. Times are given in seconds. Slow-
downs (relative to native) calculated from the wall-clock
times.

form to accelerate simulations. For rapid design iteration
and software development, the time to complete a single
simulation is more important than efficient utilization of
host resources. For these tasks, an architect or programmer
has to stop and wait for the results of their simulation be-
fore they can continue their work. Therefore it makes sense
to apply additional machines to a simulation even when the
speedup achieved is less than ideal. For bulk processing of
a large number of simulations, total simulation time can be
reduced by using the most efficient configuration for each
application.

Simulator Overhead. Table 2 shows simulator perfor-
mance for several benchmarks from the SPLASH-2 suite.
The target architecture is as described in Table 1. For each
application, the simulations employ problem sizes as de-
scribed in [35]. The host machine’s configuration is as
described in Section 4.1. The number of target tiles and
worker threads is set to 32 for each experiment.

The table lists the native execution time for each appli-
cation on a single 8-core machine, as well as overall simu-
lation runtimes on one and eight host machines. The slow-
downs experienced over native execution for each of these
cases are also presented.

The data in Table 2 demonstrates that Graphite achieves
very good performance for all the benchmarks studied. The
total run time for all the benchmarks is on the order of a
few minutes, with a median slowdown of 600× over native
execution. This high performance makes Graphite a very
useful tool for rapid architecture exploration and software
development for future architectures.

As can be seen from the table, the speed of the simulation
relative to native execution time is highly application depen-
dent, with the simulation slowdown being as low as 41× for

æ

æ

æ

æ

æ

æ

1 2 4 6 8 10
0

1

2

3

4

No. Machines

Sp
ee

d-
up

Hn
or

m
al

iz
ed

L

Figure 5: (Run-times of matrix-multiply kernel with
1024 threads mapped onto 1024 target tiles across different
no. of host machines.

fmm and as high as 3930× for fft. This depends, among
other things, on the computation-to-communication ratio
for the application: applications with a high compution-
to-communication ratio are able to more effectively paral-
lelize and hence show higher simulation speeds. While the
simulation of most benchmarks is slower than native exe-
cution by a factor of only a few hundreds, the few outliers
with higher slowdowns pull up the mean slowdown factor
to 1213×.

Scaling with Large Target Architectures. This section
presents performance results for a large target architecture
containing 1024 tiles and explores the scaling of such sim-
ulations. Figure 5 shows the run-time in seconds of a 1024-
thread matrix-multiply kernel running across differ-
ent numbers of host machines. The matrix-multiply
kernel was run with large matrices (102,400 elements) so
that most of the time was spent in the parallel region, even
with 1024 worker threads. matrix-multiply was cho-
sen because it scales well to large numbers of threads,
while still having frequent synchronization via messages
with neighbors.

This graph shows steady performance improvement up
to ten machines. Performance improves by a factor of 3.85
with ten machines compared to a single machine. Speed-up
is consistent as machines are added, closely matching a lin-
ear curve. We expect scaling to continue as more machines
are added, as the number of host cores is not close to satu-
rating the parallelism available in the application. However,
this is countered by initialization overhead, as initialization
must be done sequentially for each process. Therefore, scal-
ing will not increase continuously up to 1024 host cores.

4.3 Lax synchronization

As explained previously in Section 3.6, Graphite sup-
ports several synchronization models, namely lax synchro-

10

Lax LaxP2P LaxBarrier
1mc 4mc 1mc 4mc 1mc 4mc

Run-time 1.0 0.55 1.10 0.59 1.82 1.09
Scaling 1.80 1.84 1.69
Error (%) 7.56 1.28 1.31
CoV (%) 0.58 0.31 0.09

Table 3: Mean performance and accuracy statistics for data
presented in Figure 6. Data is averaged over ten runs of
three SPLASH2 benchmarks. Scaling is the performance
improvement going from 1 to 4 host machines.

nization and its barrier and point-to-point variants, to mit-
igate the clock skew between different target cores and in-
crease the accuracy of the observed results. This section
provides simulator performance and accuracy results for the
three models, and shows the trade-offs offered by each.

Simulator performance. We now present performance
results for a variety of benchmarks. Figure 6a and Ta-
ble 3 illustrate the simulator performance (wall-clock simu-
lation time) of the three synchronization models using three
SPLASH2 [35] benchmarks. Each simulation is run on one
and four host machines. The barrier interval was chosen
as 1,000 cycles to give very accurate results. The slack
value for LaxP2P was chosen to give a good trade-off be-
tween performance and accuracy, which was determined to
be 100,000 cycles. Results are normalized to the perfor-
mance of Lax on one host machine.

We observe that Lax outperforms both LaxP2P and
LaxBarrier due to its lower synchronization overhead. Per-
formance of Lax also increases considerably when going
from one machine to four machines (1.8×).

LaxP2P performs slightly worse than Lax. It shows an
average slowdown of 1.09× and 1.07× when compared to
Lax on one and four host machines respectively. LaxP2P
shows good scalabilty with an average performance im-
provement of 1.84× when the number of host machines
is increased from one to four. This is mainly due to the
distributed nature of synchronization in LaxP2P. Unlike
LaxBarrier, LaxP2P does not force all target tiles to syn-
chronize at regular intervals but instead performs synchro-
nization only between a randomly chosen pair of target tiles.
This enables LaxP2P to take advantage of the increased
number of host cores when going to four machines.

LaxBarrier performs poorly as expected. It encounters
an average slowdown of 1.82× and 1.94× when compared
to Lax on one and four host machines respectively. Al-
though the performance improvement of LaxBarrier when
going from one to four host machines is comparable to the
other schemes, we expect the rate of performance improve-
ment to decrease rapidly as the number of target tiles is in-

creased due to the inherent non-scalable nature of barrier
synchronization.

Simulation error. This study examines simulation error
and variability for various synchronization models. Results
are generated from ten runs of each benchmark using the
same parameters as the previous study. We compare results
for single- and multi-machine simulations, as distribution
across machines involves high-latency network communi-
cation that potentially introduces new sources of error and
variability.

Figure 6b, Figure 6c and Table 3 show the error and co-
efficient of variation of the synchronization models. The er-
ror data is presented as the percentage deviation of the mean
simulated application run-time (in cycles) from some base-
line. The baseline we choose is LaxBarrier, as it closely
approximates a cycle-accurate simulation. The coefficient
of variation (CoV) is a measure of how consistent results
are from run to run. It is defined as the ratio of standard de-
viation (of simulated run-time over 10 runs) to mean (sim-
ulated run-time), as a percentage. Error and CoV values
close to 0.0% are best.

As seen in the table, LaxBarrier shows the best CoV
(0.08%). This is expected, as the barrier forces target cores
to run in lock-step, so there is little opportunity for devia-
tion. We also observe that LaxBarrier shows very accurate
results across four host machines. This is also expected, as
the barrier eliminates clock skew that occurs due to variable
communication latencies.

LaxP2P shows both good error (1.28%) and CoV
(0.32%). This is because LaxP2P prevents any thread from
running far ahead or falling far behind of other threads
by putting the faster thread to sleep. Thus, by preventing
the occurrence of outliers and forcing target tile clocks to
stay within a configurable number of cycles of each other,
LaxP2P maintains low CoV and error. In fact, LaxP2P
shows error nearly identical to LaxBarrier. The main dif-
ference between the schemes is that LaxP2P has modestly
higher CoV.

Lax shows the worst error (7.56%). This is expected,
because only application events synchronize target tiles. As
shown earlier, Lax allows thread clocks to vary significantly,
giving more opportunity for the final simulated run-time to
vary. For the same reason, Lax has the worst CoV (0.58%).

Clock skew. Figure 7 shows the approximate clock skew
of each synchronization model during one run of the
SPLASH2 benchmark fmm. Simulated clocks for each tile
are collected at many points during program execution. This
data is used to generate an approximate average “global cy-
cle count” for the simulation at any given moment. The
difference between individual clocks and the “global clock”

11

1 mc 4 mc
lu_cont

1 mc 4 mc
ocean_cont

1 mc 4 mc
radix

0.0

0.5

1.0

1.5
Si

m
ul

at
io

n
ru

n-
tim

e

(a) Performance

10.0 26.6

1 mc 4 mc
lu_cont

1 mc 4 mc
ocean_cont

1 mc 4 mc
radix

0

2

4

6

8

10

E
rr

or
H%

L

(b) Error (%)

1 mc 4 mc
lu_cont

1 mc 4 mc
ocean_cont

1 mc 4 mc
radix

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

C
oV

H%
L

Lax

LaxP2P

LaxBarrier

(c) Coefficient of Variation (%)

Figure 6: Performance and accuracy data comparison for different synchronization schemes. Data is collected from
SPLASH2 benchmarks on one and four host machines, using ten runs of each simulation. (a) Simulation run-time in seconds,
normalized to Lax on one host machine.. (b) Simulation error, given as percentage deviation from LaxBarrier on one host
machine. (c) Simulation variability, given as the coefficient of variation for each type of simulation.

(a) Lax (b) LaxP2P (c) LaxBarrier

Figure 7: Clock skew in simulated cycles during the course of simulation for various synchronization models. Data collected
running the fmm SPLASH2 benchmark.

is then computed. The full simulation time is split into sub-
intervals, and Figure 7 shows the maximum and minimum
difference for each interval. This method involves some ap-
proximation, so spikes are introduced during rapid changes
in application behavior, most visible in Figure 7c.

These clock skew results match what one expects from
the various synchronization models. Lax shows by far the
greatest skew, and application synchronization events are
clearly visible. The skew of LaxP2P is several orders of
magnitude less than Lax, but application synchronization

events are still visible and skew is on the order of ±10, 000
cycles. LaxBarrier has the least skew, as one would expect.
Application synchronization events are largely undetectable
— skew appears constant throughout execution.

Summary. Graphite offers three synchronization models
that give a tradeoff between simulation speed and accuracy.
Lax gives optimal performance while achieving reasonable
accuracy, but it also lets threads deviate considerably during
simulation. This means that fine-grained interactions can be

12

missed or misrepresented. On the other extreme, LaxBar-
rier forces tight synchronization and accurate results, at the
cost of performance and scaling. LaxP2P lies somewhere in
between, keeping threads from deviating too far and giving
very accurate results, while only reducing performance by
10%.

Finally, we observed while running these results that
the parameters to synchronization models can be tuned to
match application behavior. For example, some applica-
tions can tolerate large barrier intervals with no measurable
degradation in accuracy. This allows LaxBarrier to achieve
performance near that of LaxP2P for some applications.

4.4 Application Studies

This section presents two application studies of memory
system behavior. The first study characterizes cache misses
as line size varies and validates against published results for
SPLASH. The second compares performance of different
cache coherence schemes for blackscholes, a member
of the PARSEC benchmark suite.

Cache Miss-rate Characterization. The memory system
and network components are validated by characterizing
cache miss rates as a function of cache line size for 6 of the
SPLASH-2 benchmarks, and comparing the results to those
reported by Woo et.al. [35]. Since the memory architec-
ture that Woo et.al. [35] evaluates consists of only a single
cache level, the L1I and L1D cache models supported by
the Graphite system are disabled and all memory accesses
are redirected to the L2 cache for this evaluation. The L2
cache modeled is a 1MB 4-way set associative cache.

Based on Woo et.al’s [35] characterization of the 6
SPLASH-2 benchmarks we evaluate, the following appli-
cation behaviors are expected: In applications such as
lu contig and fft, miss rates should drop linearly as
the cache line size increases because of perfect spatial lo-
cality. Perfect spatial locality results from a contiguous al-
location of the data structures used by these benchmarks.
Hence, using a greater cache line size enables a higher quan-
tity of useful data to be cached as a result of a single cache
miss. In radix, miss rates should decrease steadily with
increasing cache line sizes till 128 bytes. However, at 256
bytes, the false sharing miss rate should become signifi-
cantly high since at this point, the granularity of interleav-
ing between the writes of multiple processors to the same
global array becomes less than that of a cache line. In
water-spatial and barnes, different threads are al-
located their own independent set of records. These records
may either be molecules (in water-spatial) or parti-
cles (in barnes). Each thread can write any record it owns
but can only read from certain fields of other records. In
these applications, true sharing miss rates should decrease

æ

æ
æ

æ
æ

æ

æ

æ

æ

à

à

à

à
à

à

à

à

à

ì ì

ì
ì

ì
ì ì ì

ì

ò

ò
ò

ò

ò
ò ò

ò

ò

1 2 4 8 16 32 64 128 256

0.01

0.1

1

10

100

No. Target Tiles

Sp
ee

d-
up

Hn
or

m
al

iz
ed

L

ò LimitLESSH4L
ì Full-map directory
à DirH16LNB

æ DirH4LNB

Figure 9: Different cache coherency schemes are compared
using speedup relative to simulated single-tile execution in
blackscholes by scaling target tile count.

and false sharing misses increase with incresing cache line
sizes owing to the above data sharing pattern. All the above
mentioned application behaviors are captured in Figure 8. A
minor difference in the results presented by our evaluation
versus those presented by Woo et.al was that our evaluation
reported lower overall miss rates. This is because in the
evaluations presented in the SPLASH-2 paper, the bench-
marks were compiled for SGI machines while for the eval-
uations presented in this paper, the benchmarks were com-
piled for the IA-32 architecture. The number of memory
accesses will be far higher on IA-32 machines due to regis-
ter spills and many of these accesses will hit in the cache.
Hence, the overall miss rate will be much lower than that
for SGI machines. These results demonstrate that although
Graphite is not cycle-accurate, it still displays correct appli-
cation trends in real-world parallel applications.

Cache Coherence Study. As processors scale to ever-
increasing core counts, the viability of cache coherence
in future manycores remains unsettled. This study ex-
plores three cache coherence schemes as a demonstration of
Graphite’s ability to explore this relevant architectural ques-
tion, as well as its ability to run large simulations. Graphite
supports a few cache coherence protocols. A limited direc-
tory MSI protocol with i sharers, denoted DiriNB [1], is the
base-line cache coherence protocol. Graphite also supports
full-map directories and the LimitLESS protocol1.

Figure 9 shows the comparision of the different cache
coherency schemes in the application blackscholes,
a member of the PARSEC benchmark suite [5].
blackscholes is nearly perfectly parallel as little
information is shared between cores. However, by tracking
all requests through the memory system, we observed some
global addresses in the system libraries are heavily shared
as read-only data. All tests were run using the simsmall

1In the LimitLESS protocol, a limited number of hardware pointers
exist for the first i sharers and additional requests to shared data are handled
by a software trap, preventing the need to evict existing sharers.[8]

13

(b) lu contig (c) water spatial (d) radix

(e) barnes (f) fft (g) ocean contig

Figure 8: Breakdown of cache misses by type as line size changes for three SPLASH benchmarks.

input. The blackscholes source code was unmodified.
As seen in Figure 9, blackscholes achieves near-

perfect scaling with the full-map directory and LimitLESS
directory protocols up to 32 target tiles. Beyond 32 tar-
get tiles, parallelization overhead begins to outstrip perfor-
mance gains. From simulator results, we observe that larger
target tile counts give increased average memory access la-
tency. This occurs in at least two ways: (i) increased net-
work distance to memory controllers, and (ii) additional
latency at memory controllers. Latency at the memory
controller increases because the default target architecture
places a memory controller at every tile, evenly splitting to-
tal off-chip bandwidth. This means that as the number of
target tiles increases, the bandwidth at each controller de-
creases proportionally, and the service time for a memory
request increases. Queueing delay also increases by stati-
cally partitioning the bandwidth into separate queues, but
results show that this effect is less significant.

The LimitLESS and full-map protocols exhibit little dif-
ferentiation from one another. This is expected, as the heav-

ily shared data is read-only. Therefore, once the data has
been cached, the LimitLESS protocol will exhibit the same
characteristics as the full-map protocol. The limited map
directory protocols do not scale. Dir4NB does not exhibit
scaling beyond four target tiles. Because only four shar-
ers can cache any given memory line at a time, heavily
shared read data is being constantly evicted at higher target
tile counts. This serializes memory references and damages
performance. Likewise, the Dir16NB protocol does not ex-
hibit scaling beyond sixteen target cores.

5 Related Work

Because simulation is such an important tool for com-
puter architects, a wide variety of different simulators
and emulators exists. Conventional sequential simu-
lators/emulators include SimpleScalar [3], RSIM [17],
SimOS [30], Simics [23], and QEMU [4]. Some of these
are capable of simulating parallel target architectures but

14

all of them execute sequentially on the host machine. Like
Graphite, Proteus [6] is designed to simulate highly paral-
lel architectures and uses direct execution and configurable,
swappable models. However, it too runs only on sequential
hosts. FaCSim[21] solves the opposite problem, simulating
a sequential target on a parallel host. However, the par-
allelism is very limited and consists of breaking the target
processor’s pipeline into two pieces.

The projects most closely related to Graphite are par-
allel simulators of parallel target architectures including:
SimFlex [33], GEMS [24], COTSon [26], BigSim [36],
FastMP [19], SlackSim [9], Wisconsin Wind Tunnel
(WWT) [29], Wisconsin Wind Tunnel II (WWT II) [27],
and those described by Chidester and George [10], and
Penry et al. [28].

SimFlex and GEMS both use an off-the-shelf sequential
emulator (Simics) for functional modeling plus their own
models for memory systems and core interactions. Because
Simics is a closed-source commercial product it is difficult
to experiment with different core architectures. GEMS uses
their timing model to drive Simics one instruction at a time
which results in much lower performance than Graphite.
SimFlex avoids this problem by using statistical sampling
of the application but therefore does not observe its entire
behavior. Chidester and George take a similar approach by
joining together several copies of SimpleScalar using MPI.
They do not report absolute performance numbers but Sim-
pleScalar is typically slower than the direct execution used
by Graphite.

COTSon uses AMD’s SimNow! for functional model-
ing and therefore suffers from some of the same problems
as SimFlex and GEMS. The sequential instruction stream
coming out of SimNow! is demultiplexed into separate
threads before timing simulation. This limits parallelism
and restricts COTSon to a single host machine for shared-
memory simulations. COTSon can perform multi-machine
simulations but only if the applications are written for dis-
tributed memory and use a messaging library like MPI.

BigSim and FastMP assume distributed memory in their
target architectures and do not provide coherent shared
memory between the parallel portions of their simulators.
Graphite permits study of the much broader and more inter-
esting class of architectures that use shared memory.

WWT is one of the earliest parallel simulators but re-
quires applications to use an explicit interface for shared
memory and only runs on CM-5 machines, making it im-
practical for modern usage. Graphite has several similar-
ities with WWT II. Both use direct execution, and pro-
vide shared memory across a cluster of machines. How-
ever, WWT II does not model anything other than the tar-
get memory system and requires applications to be modi-
fied to explicitly allocate shared memory blocks. Graphite
also models compute cores and communication networks

and implements a transparent shared memory system. In
addition, WWT II uses a very different quantum-based syn-
chronization scheme rather than lax synchronization.

Penry et al. provide a much more detailed, low-level
simulation and are targeting hardware designers. Their sim-
ulator, while fast for a cycle-accurate hardware model, does
not provide the performance necessary for rapid exploration
of different ideas or software development.

The problem of accelerating slow simulations has been
addressed in a number of different ways other than large-
scale parallelization. ProtoFlex [13], FAST [11], and
HASim [15] all use FPGAs to implement timing models
for cycle-accurate simulations. ProtoFlex and FAST imple-
ment their functional models in software while HASim im-
plements functional models in the FPGA as well. These ap-
proaches require the user to buy expensive special-purpose
hardware while Graphite runs on commodity Linux ma-
chines. In addition, it is far more difficult to implement a
new model in an FPGA than in software, making it harder
to quickly experiment with different designs.

Other simulators improve performance by modeling only
a portion of the total execution. FastMP [19] estimates per-
formance for parallel workloads with no memory sharing
(such as SPECrate) by carefully simulating only some of
the independent processes and using those results to model
the others. Finally, simulators such as SimFlex [33] use sta-
tistical sampling by carefully modeling short segments of
the overall program run and assuming that the rest of the
run is similar. Although Graphite does make some approxi-
mations, it differs from these projects in that it observes and
models the behavior of the entire application execution.

The idea of maintaining independent local clocks and us-
ing timestamps on messages to synchronize them during in-
teractions was pioneered by the Time Warp system [18] and
used in the Georgia Tech Time Warp [14], BigSim [36], and
SlackSim [9]. The first three systems assume that perfect
ordering must be maintained and rollback when the times-
tamps indicate out-of-order events.

SlackSim (developed concurrently with Graphite) is the
only other system that allows events to occur out of order. It
allows all threads to run freely as long as their local clocks
remain within a specified window. Their “unbounded slack”
mode is essentially the same as plain lax synchronization.
However, their approach to limiting slack relies on a cen-
tral manager which monitors all threads using shared mem-
ory. This (along with other factors) restricts them to running
on a single host machine and ultimately limits their scal-
ability. Graphite’s point-to-point mitigation is completely
distributed and enables scaling to larger numbers of target
cores and host machines.

Separating functional models from timing models is a
well-established technique used in many simulators includ-
ing: FastSim [31], TimingFirst [25], GEMS [24], tsim [12],

15

Asim [16], HASim [15], FAST [11], and ProtoFlex [13].
TreadMarks [2] implements a generic distributed shared

memory system across a cluster of machines. However,
it requires the programmer to explicitly allocate blocks of
memory that will be kept consistent across the machines.
This requires applications that assume a single shared ad-
dress space (e.g., pthread applications) to be rewritten to use
the TreadMarks interface. Graphite operates transparently,
providing a single shared address space to off-the-shelf ap-
plications.

6 Conclusions

Graphite is a novel parallel distributed simulator tar-
getting large multicore processors. It uses a variety of
techniques to deliver the high performance and scalability
needed to perform useful evaluations and software devel-
opment including: direct execution, multi-machine distri-
bution, analytical modeling and lax synchronization. Our
results indicate that Graphite scales well to designs of more
than 1000 cores and several host machines. It successfully
predicts application characteristics for a number of bench-
marks and has low simulation overhead. It enables rapid
prototyping and evaluation of new architectures and pro-
vides an extensible and modular framework.

References

[1] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz. An
evaluation of directory schemes for cache coherence. In
ISCA ’88: Proceedings of the 15th Annual International
Symposium on Computer architecture, pages 280–298, Los
Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[2] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared
memory computing on networks of workstations. IEEE
Computer, 29(2):18–28, Feb 1996.

[3] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infras-
tructure for computer system modeling. IEEE Computer,
35(2):59–67, 2002.

[4] F. Bellard. QEMU, a fast and portable dynamic translator.
In ATEC’05: Proceedings of the USENIX Annual Technical
Conference 2005 on USENIX Annual Technical Conference,
Berkeley, CA, USA, 2005.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural impli-
cations. In Proceedings of the 17th International Confer-
ence on Parallel Architectures and Compilation Techniques
(PACT), October 2008.

[6] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E.
Weihl. Proteus: a high-performance parallel-architecture
simulator. In SIGMETRICS ’92/PERFORMANCE ’92: Pro-
ceedings of the 1992 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer sys-
tems, pages 247–248, New York, NY, USA, 1992. ACM.

[7] D. Bruening, T. Garnett, and S. Amarasinghe. An infras-
tructure for adaptive dynamic optimization. In Interna-
tional Symposium on Code Generation and Optimization,
San Francisco, Mar 2003.

[8] D. Chaiken, J. Kubiatowicz, and A. Agarwal. Limitless di-
rectories: A scalable cache coherence scheme. In In Pro-
ceedings of the Fourth International Conference on Archi-
tectural Support for Programming Languages and Operat-
ing Systems (ASPLOS IV, pages 224–234. ACM, 1991.

[9] J. Chen, M. Annavaram, and M. Dubois. SlackSim: A Plat-
form for Parallel Simulations of CMPs on CMPs. SIGARCH
Comput. Archit. News, 37(2):20–29, 2009.

[10] M. Chidester and A. George. Parallel simulation of chip-
multiprocessor architectures. ACM Trans. Model. Comput.
Simul., 12(3):176–200, 2002.

[11] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart,
D. E. Johnson, J. Keefe, and H. Angepat. FPGA-Accelerated
Simulation Technologies (FAST): Fast, Full-System, Cycle-
Accurate Simulators. In MICRO ’07: Proceedings of the
40th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 249–261, 2007.

[12] S. Cho, S. Demetriades, S. Evans, L. Jin, H. Lee, K. Lee,
and M. Moeng. TPTS: A Novel Framework for Very Fast
Manycore Processor Architecture Simulation. In ICPP’08:
The 37th International Conference on Parallel Processing,
pages 446–453, Sept 2008.

[13] E. S. Chung, M. K. Papamichael, E. Nurvitadhi, J. C. Hoe,
K. Mai, and B. Falsafi. ProtoFlex: Towards Scalable, Full-
System Multiprocessor Simulations Using FPGAs. ACM
Trans. Reconfigurable Technol. Syst., 2(2):1–32, 2009.

[14] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hy-
binette. GTW: A Time Warp System for Shared Memory
Multiprocessors. In WSC ’94: Proceedings of the 26th con-
ference on Winter simulation, pages 1332–1339, 1994.

[15] N. Dave, M. Pellauer, and J. Emer. Implementing a func-
tional/timing partitioned microprocessor simulator with an
FPGA. In 2nd Workshop on Architecture Research using
FPGA Platforms (WARFP 2006), Feb 2006.

[16] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk,
S. Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert,
R. Espasa, and T. Juan. Asim: A performance model frame-
work. Computer, 35(2):68–76, 2002.

[17] C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve.
Rsim: Simulating shared-memory multiprocessors with ilp
processors. Computer, 35(2):40–49, 2002.

[18] D. R. Jefferson. Virtual time. ACM Transactions on
Programming Languages and Systems, 7(3):404–425, July
1985.

[19] S. Kanaujia, I. E. Papazian, J. Chamberlain, and J. Baxter.
FastMP: A multi-core simulation methodology. In MOBS
2006: Workshop on Modeling, Benchmarking and Simula-
tion, June 2006.

[20] A. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC
benchmark workload for simulation-based computer archi-
tecture research. Computer Architecture Letters, 1, June
2002.

[21] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim, and
S. Han. FaCSim: A fast and cycle-accurate architecture sim-
ulator for embedded systems. In LCTES ’08: Proceedings

16

of the 2008 ACM SIGPLAN-SIGBED conference on Lan-
guages, Compilers, and Tools for Embedded Systems, pages
89–100, 2008.

[22] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, pages 190–200, June 2005.

[23] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform. IEEE
Computer, 35(2):50–58, Feb 2002.

[24] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and
D. A. Wood. Multifacet’s general execution-driven multi-
processor simulator (GEMS) toolset. SIGARCH Comput.
Archit. News, 33(4):92–99, November 2005.

[25] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system
timing-first simulation. In SIGMETRICS ’02: Proceedings
of the 2002 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pages
108–116, 2002.

[26] M. Monchiero, J. H. Ahn, A. Falcón, D. Ortega, and P. Fara-
boschi. How to simulate 1000 cores. SIGARCH Comput.
Archit. News, 37(2):10–19, 2009.

[27] S. S. Mukherjee, S. K. Reinhardt, B. Falsafi, M. Litzkow,
M. D. Hill, D. A. Wood, S. Huss-Lederman, and J. R. Larus.
Wisconsin Wind Tunnel II: A fast, portable parallel archi-
tecture simulator. IEEE Concurrency, 8(4):12–20, Oct–Dec
2000.

[28] D. A. Penry, D. Fay, D. Hodgdon, R. Wells, G. Schelle,
D. I. August, and D. Connors. Exploiting parallelism
and structure to accelerate the simulation of chip multi-
processors. In HPCA’06: The Twelfth International Sym-
posium on High-Performance Computer Architecture, pages
29–40, Feb 2006.

[29] S. K. Reinhardt, M. D. Hill, J. R. Larus, A. R. Lebeck, J. C.
Lewis, and D. A. Wood. The wisconsin wind tunnel: vir-
tual prototyping of parallel computers. In SIGMETRICS
’93: Proceedings of the 1993 ACM SIGMETRICS confer-
ence on Measurement and modeling of computer systems,
pages 48–60, 1993.

[30] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta. Com-
plete computer system simulation: The SimOS approach.
IEEE Parallel & Distributed Technology: Systems & Appli-
cations, 3(4):34–43, Winter 1995.

[31] E. Schnarr and J. R. Larus. Fast out-of-order processor simu-
lation using memoization. In ASPLOS-VIII: Proceedings of
the eighth international conference on Architectural support
for programming languages and operating systems, pages
283–294, 1998.

[32] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,
B. Greenwald, H. Hoffman, P. Johnson, J. Kim, J. Psota,
A. Saraf, N. Shnidman, V. Strumpen, M. Frank, S. Ama-
rasinghe, and A. Agarwal. Evaluation of the Raw micro-
processor: An exposed-wire-delay architecture for ILP and
streams. In Proceedings of the International Symposium on
Computer Architecture, pages 2–13, June 2004.

[33] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki,
B. Falsafi, and J. C. Hoe. SimFlex: Statistical sampling
of computer system simulation. IEEE Micro, 26(4):18–31,
July-Aug 2006.

[34] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Ed-
wards, C. Ramey, M. Mattina, C.-C. Miao, J. F. Brown, and
A. Agarwal. On-chip interconnection architecture of the Tile
processor. IEEE Micro, 27(5):15–31, Sept-Oct 2007.

[35] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: characterization and method-
ological considerations. In ISCA ’95: Proceedings of the
22nd annual international symposium on Computer archi-
tecture, pages 24–36, June 1995.

[36] G. Zheng, G. Kakulapati, and L. V. Kalé. BigSim: A
parallel simulator for performance prediction of extremely
large parallel machines. In 18th International Parallel and
Distributed Processing Symposium (IPDPS), page 78, Apr
2004.

17

