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ABSTRACT

Diffusion of He3 in Superfluid Background

George Arthur Herzlinger

Submitted to the Department of Physics on August 16, 1971 in partial
fulfillment of the requirement for the degree of Doctor of Philosophy.

The diffusion constant has been measured in dilute He3-He 4

solutions at temperatures from 1.270 to 1.690K, at concentrations of
the order of 10- 4. Under these cgnditions, the diffusion is determined
by the interaction between the HeJ solute "quasiparticles" and the
roton excitations of the He II. The experiment constitutes the first
direct (in the sense of measuring the tigle dcay of a concentration
gradient) measurement of diffusion in He -He4 solutions.

The concentration gradients were produced by exploiting thq
"heat flush" effect, and could be carefully controlled. The HeJ
concentration was monitored continuously by sampling the vapor just
above the mixture with a small capillary tube leading to a high
vacuum system and a mass spectrometer. The effect of the measuring
process on the diffusion was negligible.

The measurements indicate that D varies by a factor of 10 over
the temperature range of the experiment. The observed temperature
dependence is due primarily to the roton number density, but also
indicates that the He3-roton cross section is energy dependent. The
effective cross section was computed, and found to increase wi h
temperature, rangin from about 160 A2 at 1.27* to about 240 A at
1.690. This behavior is unlike that seen in gaseous helium mixtures,
and unlike that predicted by the delta function interaction usually
assumed for He-roton collisions.

The results for values of D are compared with those predicted by
the theory of Khalatnikov and Zharkov, and with those obtained by
other methods of measurement. Finally, a model indicating how an
energy-dependent interaction might arise is presented.

Thesis Supervisor: John G. King
Title: Professor of Physics
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CHAPTER 1

Introdiuction ard Desoiption

of the Experiment
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I. Introduction

The nodel for He II as a gas of excitations in an inert super-

fluid "ether" has been sucoessful in explaining the thevynaic and

hydrodynamic properties of the liquid. At teqperatures below about

1.70, the thernmdynamic quantities are determined primarily by two

regions in the excitation spectrum, the low energy phnon region, where

the excitation energy is proportional to the ment+u, G = c A

and the roton region, where Ca (. /-p..) A - 4 A If a s all

amxnmt of He3 is dissolved in the He II to form a dilute solution,

then the He3 solute atoms can be thought of as an additional excita-

tion gas having the spectrum + -C o.

where 4 is a binding energy, and m* epresents a hydrodynamic

effective mass which takes into account that motion of a He3 atom

involves backflow of the surrounding superfluid. Measurements of

specific heat and the velocity of second sound in solutions confirm

the validity of this spectrum, and the picture of a dilute He3 -He4

solution as a gas of phonon, roton, and He3 excitations all noving in a

superfluid background.+

Experiments involving He3-He4 mixtures are generally of two types.

In one type of experiment the bulk properties of the solute He3 atoms

are of interest, primarily because He3-He4 solutions are unique in that

both Fermi-Dirac and classical properties can be observed in different

temperature and concentration ranges. In another type of experiment

+ The proerties of liquid He4 and 1He 3-e4 mixtures are discussed in
wore detail in Appendix I.
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the He3 solute atnms are used to investigate the properties of the

He II. This work is of the latter type and involves the measurement

of the interaction between the semi-classical He3 quasi-particles

and the roton excitations of the Helium II. This is Iacmplished by

measuring the diffusion constant D in very dilute solutions at

moderately high temperatures where the effects due to phonons are

small. Since D is a direct measure of the mean free path of a He3

solute atom, the measurements give values for the He3- roton cross

section. These measurements, it is hoped, will lead to a clearer

understanding of the nature of the roton.

The measurements involve Amnitoring the time decay of an applied

He3 concentration gradient in the solution and constitute a direct

measurement of D. A previous atterpt at a "direct" (in the sense of

measuring the time decay of a concentration difference) measurement

has been reported( but no results for He3-He4 mixtures belwM the

superfluid transition teperature were achieved before the effort was

abandoned. The diffusion constant has been previously obtained by

monitoring the decay of a ruclear polarization in a mixture, using the

spin-echo technique, and from thermal conductivity measurements. The

spin-echo measurents have, in general, been carried out in the

regime where He3-He3 interactions play a significant role in the

diffusion, enabling the contribution due to He3-roton interactions to

be determined only indirectly. In the present work, the effect of

He3-He3 interactions is negligible, and the He3-roton interaction

determines the diffusion.

_ UYI_ __



II. The Experiment

In the experiment, the diffusion constant was

measured directly by establishing a He3 concentration

gradient in the solution and monitoring the decay of

the gradient under known boundary conditions.

At first it might seem that the initial concentration

difference could be produced by mechanically injecting

3 4
a small amount of He into a solution of pure He .

One configuration for accomplishing this was considered

3 4
in the course of the experiment. A He -He mixture was

condensed on one side of a superfluid-tight valve I at

t=O the valve was opened to one side of a U-tube filled

4 3
with pure He . The build up of the He signal on the

other side of the U-tube was then observed as a function

of time. This method suffered from difficulties which

characterize most injection schemes:

1. The large vapor pressure difference between even

dilute He 3-He mixtures and pure liquid He4 implies a

pressure difference across the U-tube. Thus the

diffusion is plagued by initial turbulence and a changing

level difference.

2. Opening a valve involves the generation of a

substantial amount of heat at the valve seat, leading to

a spurious heat flush effect.

A working superfluid-tight valve, designed by Mr. Frank O'Brien

of the Molecular Beam Laboratory,was incorporated into an

early version of the apparatus.

= _ _ __ _ _ii_ _~_i_ I



3. If pure He3 liquid were to be used, the pressure

difference referred to in (1) would be enormous, and in

addition, heat flush due to the substantial "heat of

mixing" of the two liquid isotopes would be present. The

above difficulties are severe, and rather than overcoming

them, a new method was developed.

The method finally adopted for producing initial

concentration distributions does not require external

3 4
injection of He into the He solution, but rather the

"heat flush" effect is exploited in a controlled way to

produce the initial gradient internally. A plane heater

at the bottom of the diffusion chamber produces a steady

convective current of thermal excitations. The current

interacts with the He atoms, forcing them to the region

near the top of the apparatus. When a steady state has

been reached, the flow of He atoms due to the thermal

current just equals the "back flow" current produced by

gradient of the concentration distribution. If it is

assumed that:

1. The current of He3 atoms is characterized by Vn,

the velocity of thermal current. V = Q/ST ,

where Q=heat applied/cm2, SEentropy per unit mass.

2. All of the heat is propagated via the convective

process.

Then for 1-dimensional geometry:

3-= V,n s "



implying an exponential distribution n 3 ,- exp(VnZ/D).

In analyzing the experiment, an initial exponential

distribution is assumed, n3 . exp(O( Z), but no

assumption as to the value of 0( is made.

After the steady state has been established, the

heater is turned off, and the exponential distribution

decays into a uniform distribution as the He3 atoms

diffuse through the superfluid in the chamber. During this

process the He3 concentration is monitored as a function

of time by continuously sampling the vapor just above the

liquid by means of a small capillary "sniffer" which is

connected to a high vacuum system and a mass spectrometer.

The vapor concentration monitored in this way

follows the decay of the concentration in the liquid,

since

1. The diffusion times the vapor are much smaller

than those in the liquid. (See Chapter 3,Section III.)

2. The vapor concentration of sufficiently dilute

solutions is proportional to the concentration at the

liquid surface. (See Appendix 1i, Section IIC.)

From the measured decay of the He concentration at the

liquid surface the diffusion constant is derived.

------------------
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CHAPTER 2

Apparatus and

Procedure



I. Diffusion Chamber

The diffusion occurs in an inner cylindrical chamber

which is surrounded by a vacuum space between it and an

outer brass shell. (See Fig. 1). At the liquid level,

near the top of the inner chamber is a thin perforated

copper block which provides a good thermal link to the

outer helium bath. A 51 JL plane heater consisting of

about 12" of .004" diameter evanohm wire wound in a plane

configuration on a thin teflon disc is at the bottom of

the chamber. The vacuum space between the chamber and

the outer shell provides thermal isolation, so that the

only thermal connection between the liquid mixture and

the bath is via the copper block. Since the heat flow

through the .010" stainless steel walls of the chamber

is negligible, nearly all of the heat current flows

from the heater through the He -He 4 mixture to the outer

bath via the copper block. The interior part of the

block is about .04" thick, and is perforated by 28 holes,

about 12% of its total area. The exterior part of the

block is roughened to increase its effective surface

area.

The chamber is filled with "crinkly" and plane

.001" thick stainless steel foil coiled together to

form numerous vertical channels about .05" in diameter,

as illustrated in fig. 1. The purpose of the channels

is to maintain a one-dimensional geometry, and to eliminate
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any secondary convection when the thermal current is

applied.

The mixture is condensed into the cheaber by means

of a .029" i.d. capillary, and filled to just above the

copper block. When the apparatus was first tried, the

condensing liquid produced a large pressure in the chamber,

overloading the vacuum system. This was due to the thermal

isolation of the liquid which had not yet reached the

copper block. This problem was solved by adding the

copper tail piece to the bottom of the inner chamber,

and partially filling the "vacuum space" with a few c.c.'s

of superfluid helium, thus maintaining thermal contact

with the outer bath until the liquid level had reached

the copper block. Once the condensation in the inner

chamber was complete, the liquid in the vacuum space was

pumped away, restoring the thermal isolation. The amount

of helium liquid needed for this process was minimized

by the small volume formed by the copper tail piece and

the well at the bottom of the outer shell.

One feature of the diffusion chamber design is that

any spurious heat inputs propagating through the vapor

from above the chamber flow through the copper block to

the bath, rather than through the liquid He3-He4 mixture.

3 4
Several papers dealing with He -He mixtures refer to a

spurious heat flash effect arising from the evaporation

of the mobile helium film at a warm part of the apparatus,

_i_ ~



and the subsequent condensation at the liquid surface.

This effect was probably not present in the apparatus

since the level of the outer bath was always well above

the diffusion chamber, and the only path for the film

to flow to a warmer region was through the .029" fill

capillary. Any surge of vapor originating from the higher,

warmer part of the capillary must then pass through a

length of cold capillary, having a large surface to

volume ratio, so that most of the surge would condense

out before reaching the diffusion chamber. But even if

the film effect were present, the fact that the thermal

path is through the copper block to the bath, rather

than through the He 3-He4 mixture, means that the concentration

distribution in the liquid would be unaffected.

II. "Sniffer" Capillary

The experiment was performed at temperatures ranging

from 1.270 to 1.690. At these temperatures, the vapor

pressure ranged from about Imm to about 10mm of mercury.

The .002" i.d. "sniffer" capillary tube is used to limit

the flow rate from this relatively high pressure vapor

to the high vacuum system. Since the "sniffer" is located

just above the surface of the superfluid mixture, and it

too is at the temperature of the He4 bath, there is a

continual flow of superfluid film through the "sniffer".

As, 1) the He3 does not participate in superfluid flow,
(3)

and 2) the film flow is considerable, for a smooth tube

q



the number of atoms/second
(4 )  r).. iI 18

(r=radius of tube), the film flow produces a large

irrelevant He4 background pressure in the vacuum system,

and hence in the omegatron. In the experiment, the

superfluid film flow through the "sniffer" was, in fact,

about 10 times that of the gas flow. This effect could

not have been reduced merely by reducing the"sniffer"

diameter since the film flowiis proportional to the radius

of the tube, while the gas flow (Poiseuille viscous flow)

is proportional to r4 . The film flow effect, although

unwanted, was not serious, for it was still possible to

use the mass spectrometer to detect low concentrations of

He

III. Mass Spectrometer

A. Operation and Circuitry

The omegatron mass spectrometer and associated biasing

and detecting circuitry are shown schematically in Fig. 2.

Details of the operation of omegatrons are discussed in

the literature (see for example Ref. 5). Briefly, the

operation of the omegatron is as follows: electrons are

accelerated through 95-100 volts as they pass from the

filament to the box-like region. Ions produced in the

box spiral around the 3.8 kilogauss magnetic field which

is oriented along the path of the electron beam. An rf

electric field applied to top plate of the box at the

_II ~II
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cyclotron frequency of the relavant spiraling ion causes

the ion to gain energy and hence increase the radius of

its spiral until it is collected at the internal collector

electrode just above the bottom plate.

Background ions whose cyclotron frequency differs

from the applied rf field are alternately in and out of

phase with the electric field and receive no net acceleration.

The collected ion current is transmitted by a short

shielded coaxial cable to an electrometer. The electrometer

is used in the "fast" position, and operates as a unity

7 10
gain voltage follower between the 10 to 10 input

impedance and a low impedance 100 to 1000 strip chart

recorder.

Ih the present experiment, He3 partial pressures of

-9 -8
the order of 10 to 10 mm of mercury are detected in

-5 4
the presence of about 4 to 7 x 10 mm of He . The

absolute value of the total pressure is obtained from a

Bayert Alpert ionization gauge, corrected for the reduced

helium efficiency. Because of this relatively large

background pressure, the spiraling beam of resonant He
3

ions is attenuated if the total path length is too long.

Thus, relatively large rf electric fi&lds are required.

Neglecting space charge effects, the equations of motion

for the resonant ions:

are 

easily solved.

where e ; are easily solved.

jp~._~??l~eul
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For W , one finds that r = v4, :

plus a small oscillating term. For r=r the distance

to the collector, the number of revolutions

For the 45 peak to peak voltage used in the experiment,

this gives about 7 revolutions rather than the 500 or so

conventionally used. The He 3and He4 spectral lines are

still well separated despite the loss in resolution

inherent in reducing the total path length, and the large

difference in the partial pressures.

The filament current was regulated by floating the

guard plate just in front of the filament at -95 volts,

a few volts above the filament. This resulted in an

electron current which was limited by the space charge

present between the filament and the guard plate, and was

relatively insensitive to changing filament conditions.

It was empirically found that maintaining the sides of the

box slightly above ground, and the bottom plate slightly

below ground improved the omegatron sensitiVity. It was

also found that when detecting He3 in the presence of the

large He4 background that floating the electron collector,

which quickly charged up to -90v, also improved sensitivity.

III. B. Omegatron Linearity

The linearity of the omegatron in detecting He3 in

the presence of 104 times as much non-resonant He was
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verified as follows: A gaseous He 3-He4 mixture having He3

concentration of about 10-3 contained in a volume in the

external gas handling system used in the experiment was

expanded into a larger volume and then into the diffusion

chamber where it was sampled by the "sniffer" and detected

by the omegatron. The omegatron signal was noted, the

first volume closed off, and the gas in the second volume

and diffusion chamber pumped away. He4 was then added to

the first volume until the total pressure equaled that

at the start of the process. The whole procedure was
3

then repeated. After N such cycles, the He concentration

was reduced by a factor ( ~) , while the total pressure

remained constant. In Fig. 3 the log of the omegatron

He3 signal is plotted versus N. A straight line results,

indicating a power law dependence to the omegatron

response. The measured slope of the line is equal to

the measured V/V4/ indicating that the power invalved

is 1 and the omegatron is linear under roughly operating

conditions.

IV. Low Temperature Thermometry and Temperature Regulation

Low temperatures are achieved by pumping on the He II

bath surrounding the apparatus. Temperatures were measured

by an oil manometer with observations taken with a

cathetometer. The bath was maintained at a constant

temperature by a mechanical "Walker regulator", which

_ 4--51UICICI
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consists of a latex condom in series with the bath pumping

line. The condom expands or contracts, thus changing

the pumping line impedance, as the bath vapor pressure is

higher or lower than that in a surrounding volume. More

precise regualtion was achieved by adding an electronic V

servo system in which the signal from a bridge containing

a resistance thermometer was amplified to drive a heater

resistor in the superfluid bath. The circuit (see Fig. 4)

consists of a d.c. bridge, an impedance matching voltage

follower, a high gain amplifier, and a final emitter

follower which drives the low impedance, 200 XL evanohm

wire heater. The power through the thermometer resistor

in the bridge was about one microwatt. The bridge was

set so that the output power from the heater was about

40 milliwatts.

The apparatus was such that the ambient heat input

from the main pumping tube was quite sensitive to the level

of the bath; as the bath level dropped, the ambient heat

input changed considerably. Using the regulator, (only

the electronic regulator was used below 1.350 K) the tempera-

ture change of the bath was less than about 4 x 10-4 0 K

for the longer diffusion runs, and of the order of 1 to

2 x 10-4 K for the shortest runs (low temperatures).

The resulting power input to the mixture can be

estimated by computing(NC4T) /t where N=number of atoms

in the mixture, c=specific heat per atom, about .2k to

-- ~Wef~Psry_ ~



1.0k in the experiment, AT=4 x 10-4 K, t=80 minutes. 25

This gives about 2 x 10-7 watts, a negligible amount of

power, about 10-3 of that applied to the chamber heater

in the diffusion runs. Thus the temperature regulation

for the experiment was adequate, and long term temperature

changes did not produce significant error.

The sensitivity of the system to short term tempera-

ture fluctuations was tested several times by deliberately

adjusting the decade resistor of the bridge to raise the

bath temperature a few times 10-4 K for about 15-20 seconds,

and then reducing the temperature to its initial value.

After about 20 seconds, the omegatron signal returned to

tracing out a curve identical with that extrapolated

before the perturbing temperature change was applied.

The perturbing temperature fluctuation introduced was

the amount estimated to have occured over a long period

about 60 to 90 minutes: the actual short term temperature

fluctuations were much smaller.

~ i_ _ _-~a-^--- --TL-=U~-;rm~- --
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V. Procedure for a Given Run 27

Some of the procedures used have already been discussed.

The complete procedure for a given run is presented for

clarity:

1. Transfer liquid helium into the dewar.

2. Cool to about 1.70 K by pumping on the He4 bath.

3. Condense about 2 cc of liquid He4 into the well

contained at the bottom of the "vacuum space" between the

diffusion chamber and the outer shell.

4. Condense the He3 and He into the diffusion chamber.

This was done in 3 steps, condensing 20 liters at about

160 Torr of He4 gas in each step. Before the last step,

a 30 cc volume of about 45 Torr of He3 was condensed into

the chamber.

5. Pump out the liquid He4 contained in the "vacuum

space". This took about 15-20 minutes at 1.70.

6. Cool the bath to the desired temperature and

regulate, using both the Walker regulator and the electronic

servo. (Only the electronic regulator was used at the

lower temperatures.)

7. Monitoring the He3 signal, wait until the system

is near equillibrium, i.e. until a nearly uniform He3

concentration is reached. This took from about 20 minutes

to about an hour. The initial deviation from equillibrium

was produced by a "heat flush" effect inherent in cooling

the bath. The effect was reduced by cooling below the

desired temperature and then warming. Since an excess

__i ~1_1



concentration at the bottom of the chamber was reduced by

natural convection ( F3 < Ps ), while an excess

at the top of the chamber is reduced only by diffusion.

8. Turn on the heater and monitor the build up of

the He3 signal. The times for the complete build up were

of the order of L/2av , where V is the normal fluid

velocity V,-= Q/pT

9. Turn off the heat and monitor the decay of the

He signal.

About 6 to 7 hours were available from the beginning

of step number (1) until the bath level was near the top

of the diffusion chamber. If all of the components in

the apparatus were functioning properly, from 1 to 3 runs

were made, depending on the temperatures involved.

Note that the liquid had to be pumped out of the diffusion

chamber (through the fill capillary) before the bath was

depleted to avoid the danger of explosion.
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CHAPTER 3

Formal Solution to the Diffusion Problem, and Consideration

of Experimental Conditions



I. Solution to the Diffusion Equation - Ideal Case .

The diffusion problem is determined by the following

considerations: The diffusion chamber is one dimensional.

The heater is at the bottom of the diffusion chamber, and

the thermal path for the current of excitations is through

the mixture to the copper block at the top of the chamber.

The resulting steady state distribution of He3 atoms is

approximately nt--exp(+O(Z) for 0 <Z<L. This represents

the initial He3 distribution in the diffusion problem.

No He3 atoms can flow through the bottom of the

apparatus, and since the amount of He3 in the vapor is at

all times much smaller than that of the liquid, relatively

very small amounts of He3 are involved in flow to or from

the vapor. Thus, the boundary conditions for the problem

are J=O at Z=0, and J=0 at Z=L, where L= the distance

from the bottom of the chamber to the copper block. The

solution to the diffusion equation:

subject to the above boundary conditions is:

Y- \ Am cs e

where

The coefficients Am are determined by the initial distribution:

n Q+ -) n eXP(C 7)

_1 _ --



and are found in the usual way.

Integrating

0

and using the orthogonality of the cosines, one gets:

A, o CcSf-L-cgr C.ostn
Co5 ~"2 dea

and

(oAY -

At the surface of the liquid, the cosine terms each give (-1) m

so that

Y) h COe
eLL L YL &

-dL -AL h frZ-

3
The constant nI is determined by conservation of He :

LL 01h e-Z
hle A-

5---3 hcgL

The observed enhanced initial He3 concentration is related

to the equilibrium concentration (uniform concentration n.) by

h' -- e
e LL e o L

-- he ' -I

(The distributions at t=O, and t=wO, are shown in figure 5

below). Thus the approximate value of o(L for a given

run could be estimated from the steady state enhanced He3

2 2
signal. In the experiment (0L) was about .25 . Hence

the coefficients A decreased rapidly with m. This togetherm

with the fact that the time constant for the decay of

e I L

C



hemth modethe mth mode means that except near

t=O, only the first term in the series is important.

Thus for t sufficiently large

and the diffusion constant is determined by the slope of

the time dependence of log (n-n ,).

II. Correction to the Ideal Case - Geometry

Corrections due to geometry are due to 1) the fact

that the heater is not exactly at Z=0, but is located a

small but finite distance from the bottom of the apparatus;

2) the finite thickness of the capper block., and a small

uncertainty in the liquid level. Conditions 1) and 2)

imply that there are thin layers of liquid at the top and

bottom of the diffusion chamber through which there is no

heat flow, and thus the initial concentration distribution

when the heat is just turned off, will be given by n=n1
z(zZ-Z) a n Z2for 0 Z<Z I , n=nle for Zl< Z(22 and n=nle 2

for Z2< Z <Z3, where Z and (Z3-Z2 ) are both much smaller than

Z3, (See Fig. 5), and Z3 =L.

Since the boundary conditions are the same as for

the ideal problem, the general solution is the same

=h +7 A co r e .- xr -t

only the A are different. Since the difference between

this initial condition and the pure exponential initial

i_ ..- ~^-I ._.. ._. - ------- - f~lC----c-e
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condition is a flattening at the beginning and end, one 35

would intuitively expect that the corrected solution would

contain more of the principal mode Cos 1) and less of

the higher frequency terms. A detailed solution to the

problem verified that this is indeed true. The solution

is obtained as for the ideal case. The result is a clumsy

expression which is simplified by treating Z1/Z3 and

(Z3-Z2 )/Z3 as small quantities and expanding trigonometric

and exponential functions accordingly.

Writing

and assuming reasonable estimates for Z1, Z2, Z3, the

following relative values are obtained for A1 , A2 , A 3 in

both the ideal and corrected cases:

Al A2 A3
ideal case 1 .20 .14

non-ideal 1 .17 .12

geometry

Thus the net effect is a small decrease in the magnitudes

of the higher order modes relative to the principal mode,

which for purposes of the data analysis is desirable

although insignificant in magnitude. The important point

is that the characteristic length for the problem is

still L, the distance from the bottom of the chamber to

the liquid level. The fact that there are small regions
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at the top and bottom of the chamber where there is no

initial cornentration gradient, only produces changes in

the relative sizes of the various modes, and does not

affect their decay frequencies.

III. The Effect of the Finite Diffusion Time in the Vapor

A. Preliminary Discussion

3 4
The diffusion coefficients for gaseous He -He mixtures

at pressures equal to the saturated vapor pressures for

the temperatures of the experiment are about 40 to 75 times

the values derived for the liquid.

The gaseous diffusion coefficient for dilute He 3-He

mixtures has been measured (1) over a range of temperatures

and pressures, but the lowest temperature data is at

1.74oK. However, the data indicates that the quantity

( V T /T ) (where n=no. density of atoms,

/L =He -He reduced mass) proportional to l/ Tef f , is a

weakly varying function of temperature. The experimental

values for ( n 1 / T'/) are very close to theoretical

calculations based on a Lennard-Jones potential
(2 ,3 )

and to calculations based on other potentials (4 )

Thus the behavior of the gaseous diffusion constant seems

to be fairly well understood, and the theoretical extension

of the experimental values for the gas diffusion constant

are used at the lower temperatures. (Only numerical

estimates for Dg are desired; the exact shape of the

potential is not of interest.)



Since the distance from the sniffer to the liquid surface

was slightly less than L, the characteristic distance for

the liquid diffusion problem, one might at first think

that the effect of the diffusion in the vapor is completely

insignificant, and that sniffer response time would depend

on quantities on the order of e -?) ( )/ ,)

where T is the decay time for the principal liquid mode.

In fact the problem is not quite this simple. The

diffusion depends on the total length of the vapor

region of the chamber, and since the vapor boundary

condition is different from the liquid case, the frequencies

of the various modes are different from the liquid

frequencies.

B. Solution to the Vapor Diffusion Problem

Consider the vapor portion of the diffusion chamber

as a cylinder terminating at the liquid surface, having

an effective length slightly smaller than the actual

length, due to the volume occupied sniffer mount. Since

the diffusion arises from the changes in concentration at

the liquid surface, and such changes occur uniformly over

the surface, radial diffusion modes will be unimportant,

and the problem will be treated as 1-dimensional. The

problem is determined by the boundary and initial conditions:

1) J=O, at Z=0, the top of the chamber.

2) At the liquid surface, n 3 g(t)=Cn 3L(t)

3) n3g (t=0)=ng uniform throughout the chamber.



Taking the first three terms of the series solution for

nL, the boundary conditions 1) and 2) determine the

general form of the solution:

Let D2=gas diffusion coefficient

D =liquid diffusion coefficient

L2=effective length of the vapor region of the chamber

L0=length of the liquid diffusion region

Then, from 2)

This equation, and conditions (1,3) are simutaneously

This equation, and conditions (1,3) are simutaneously

satisfied by:

V\ "-(a "rC
Cos (- E-Ilk L ".* I ?

we ( isL4 L)h ncd3

where f(Z,t) is chosen to satisfy the initial condition 3),

and where f(L 2 ,t) = Q., and

to satisfy the boundary conditions. This implies that:

(5) ?GrT )

where the B are determined by integratingm
Ij.L 
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and using the orthogonality of the cosines, and the initial

condition 3).

Thus the solution consists of a series of "transient"

terms which decay with frequencies < I ___

and terms proportional to those of the ideal solution for

the liquid.

Since the diffusion coefficient is determined from

the slope of the principal liquid mode, the relative

magnitude, and the decay frequencies of the other terms

must be considered. All of the transient terms except

for the first decay very quickly compared to the liquid

terms. The decay frequency of the first transient term is

compared with

for the principal mode of the liquid. In the experiment

L2/LO=2, so that the ratio of the two frequencies is

At the lowest temperatures of the experiment D2/D1 is

lowest, and the effect of the first transient mode will

be largest. Using D2/D1 -740 V, c-

and thus the effect could be noticeable. (Note that the

frequency of the second transient mode,

and except near T=O is completely insignificant). To

calculate the relative magnitudes of the various terms,

n3 (Z,t) defined in 4) and 5) must be evaluated at the

-- --- .---. 1.~-- .- _.~....~ --1C~r=1LeeSf=II L
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sniffer, Z=L 1 ,  .6L2 . A detailed calculation shows

that the magnitude of the lowest transient mode (at the

lowest temperatures) is less than about .07 of that of the

principal liquid mode, and that the determination of the

slope of the decay of the liquid mode is unaffected.

The solution 4), as written, looks as though singularities

can occur, as for example when L o

However, when this occurs

i.e. the second order liquid mode has the same frequency

as the zero gas mode, and the large magnitude of the

coefficient of the ey(i  - VA+ term is

almost completely cancelled by the coefficient BO, the

net magnitude is thus quite small, and the principal

liquid mode still dominates.

The result for the diffusion problem in the vapor can

be understood in physical terms as follows: initial changes

in the He3 vapor concentration at the liquid surface

produce a gradient at the surface. When the gradient

"propagates" back to the sniffer, a change in the He
3

signal is detected. But a decrease in concentration at

the sniffer causes flow of He3 from the region above the

sniffer, and the full effect of a charge in the concetration

at the surface is not felt until the gradient has

propagated throughout the chamber. Further changes of

L- .x....,l...... ~. - -----n -.-~ia~t~i



the surface concentration propagate much more quickly 41

since a gradient, and hence a current J= t) ~SI

has already been established. Thus the solution consists

of a "transient" part whose characteristic length is

that of the chamber, and a second part which readily

responds to zanges at the liquid surface. The higher

order liquid terms enable the initial gradient to be

established much more rapidly than if the principal liquid

made were present alone, and the result is that the

transient modes do not substantially contribute to the

signal except near t=O.

IV. The Effect of the Finite Amount of He3 in the Vapor

In obtaining the "ideal" solution, it was assumed

that J=O, at the liquid surface. However the presence

of a small, but finite, amount of He in the vapor

(proportional to the He3 liquid concentration at the

surface) means that there will be small fluxes of He3

passing between the liquid and the vapor as the liquid

concentration at the surface changes. Although the vapor

density is much smaller than that of the liquid, the

ratio CV
CL Qu / / L

is quite large (see Appendix) and the net effect is that

the He3 number density in the vapor is about 3% of that

for the liquid, ranging from .027 to .044 over the

temperature range of the experiment.
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To derive the effect of the small flux from the

vapor to the liquid on the solution to the diffusion

equation, the composite liquid-gas diffusion problem

must be considered. The diffusion equation must be

solved for the two regions simultaneously, with:

1) D=D 1 in the liquid, Z<0

2) D=D2 in the vapor, Z>0

3) Jl=J 2 at the liquid surface, Z=0

4) n3v= O(n3L at Z=0

The solution will be similar to the separate liquid

and gas solutions, except the wave numbers and, hence

the frequencies, will be shifted slightly.

Considering only the principal "liquid" mode, and

ignoring the transient vapor modes which are unimportant

except near t=O, awA the solution is:

5) liquid, Z< 0 YI-I h C cc So.5 E

6) vapor Z> O, Z6, os e - 4  )

where L1, and L2 define the boundaries of the diffusion

chamber. Conditions 3) and 4) can be satisfied simultaneously

if:

7) - and

8) - 0 ( 4b(KJ'L)

The diffusion constant is determined from the principal

liquid mode n=l, which dominates the solution except at

.i- -- -- ----- l I
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very small times, so that it is only necessary to determine

kl. Note that (7, ais small, so

that L~, 'T as expected. Let -- )~so s )1 r)

and -  ,and put LL. it

Then equation (8) after expanding the tangent, becomes:

9) -K E, < c

Values for 0( are obtained from section IIC of the Appendix,

(o(/- .03 as mentioned above), initially, C1 , is obtained

from the values of D gotten be assuming k L= y , the

"ideal" solution. The transcendental equation (9) is

then solved for & , a new ?, obtained, and the

process is iterated until a self consistent solution is

obtained. The frequency of decay /

so that the diffusion constant for the liquid,

II

where D1 is the diffusion constant obtained assuming

that klL = .

The above correction was computed using a programmed

electronic calculator. The result was that the "ideal"

diffusion coefficients were all shifted about the same

amount, from 17 1/2% to 22% over the temperature range

of the experiment.

In summary, the vapor correction can be understood as

_ il.~l_ .~.1~.,~ -3~-_W---P-



follows: after a short period during which transient

effects occur, the solution in the vapor follows the

solution in the liquid, decaying with the same frequency.

But in order for this to occur small currents flow from

the vapor to the liquid across the surface. The liquid

mode accomodates this by making k-L slightly less than 'j

so that <Dt -S Jn3 L just matches the

vapor current. The shift derived above, is about the

same over the entire temperature range, the largest shift

being only about 4% more than the smallest.

V. Effects Due to the "Sniffer" Capillary

A. Pumping Effects.

1. In several runs the system was allowed to come

into equilibrium and a steady He3 signal obtained and

observed as a function of time. The resulting decay

(or lack of it) is then due to omegatron fluctuations,

and any pumping effect due to the sniffer. Observations

at about 1.50 K, near the middle of the temperature range,

indicate that an upper limit for such an effect is about

1% in an hour. As the diffusion times are all smaller

than this, the direct effect of the sniffer on the He3

signal is insignificant.

2. Most of the flow through the sniffer is due to

the He II film. The total flow rate can be estimated

from the pressure measured by the ion gauge. This was

--~~I__ ~-~ I I-- r~F~I'P- --
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nominally about 1.4 x 10-5mm of mercury which when 45

corrected for the relative ionization efficiency of

helium (5) gives about 6 x 10-5mm. The pumping speed

at the ionization gauge is determined primarily by the

flow resistance of the pump tube. For free molecular

flow of a gas of molecular weight M in a tube of radius a,

and length L, the flow conductance is(6)

atoms/second into the vacuum.system.

-5
Putting T=room temperature about 290 0K, P=6 x 10 mm

and the relevant dimensions, the flow rate is about

16 -6
3 x 10 atoms/second. This is equivalent to 1.5 x 10 cc

of liquid per second. The sniffer radius was 1 mil, and

the perimeter about .016cm. The flux divided by the

-4
perimeter is then about 10 cc per cm. Values for the

film transfer rate given in the literature (7) range from

about 7 x 10- 5 to about 17 x 10-5 cm 3/cm, the higher values

presumably resulting from surface contamination. The

magnitude of the total pressure is thus consistent with

the film flow rate of the sniffer. The transfer rate of

-6
1.5 x 10 cc/second, when considered as a fraction of

the total amount of liquid in the chamber-about 14cc,

implies a change in liquid level of about a few mils per

hour, clearly a negligible effect.
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3. The pumping of the helium vapor produces a net

evaporation rate at the surface of the liquid, and therefore

a small cooling effect. However, the surface of the liquid

is in direct thermal contact with the exterior bath via

the copper block in the diffusion chamber, so that there

can be no heat flow through the mixture itself, and no

heat flush effect. As it turns out, the amount of heat

withdrawn is negligible anyway--the heat flux is the flux

of atoms times the latent heat per atom, about 70 K for

He4 . The vapor flow is at most 10% of the total flux of

atoms, so that

-23 15 -7
Q < (1.4 x 10 ) (70) (3 x 10 ) 3 x 10- watts

which is less than 1/400 of the power applied to the heater

in the actual runs.

B. Transmission of the Vapor

It was observed that at a given temperature, the

omegatron signal increased nonlinearly with He3 concentration.

Since it has been well established that for dilute

He 3-He4 mixtures, the He3 partial pressure varies linearly

with liquid concentration, this effect must be due to

the flow properties of the sniffer in the presence of the

superfluid film. If the flow were strictly the viscous

flow of gas through a tube, the pressure gradient and the

average pressure would be determined by the total pressure

3
in the chamber I, P . The He flow would be the

P3/P4f(P 4), and the flow would be linear in P3. However,

I_~_.___.~ .. _. _ III _.~.-5--Cu~C-- lc~ I-



in the experiment film flow was also present; in fact it

was of the order of 10 times that measured when only

helium gas was present in the chamber. Although the flow

of gas under these conditionslis quite complicated, the

reason for the nonlinearity of the He3 flow can be

qualitatively understood. In order for the film flow

to transport such relatively large numbers of atoms

through the sniffer, most of the evaporation of the film

and thus most of the pressure drop must occur near the

end of the sniffer. He3 does not participate in superfluid

flow (8  so that the pressure near the beginning of the

sniffer is approximately P40 ' (the pressure of pure He4),

while the pressure in the diffusion chamber is P3+P 4

Thus, the initial pressure gradient will be determined

at least in part by P3, so that the net flow of He3 to the

vacuum system will depend on P3 both through the vapor

concentration, and through a pressure gradient which in

part determines the total gas flow rate. This indicates

that the He3 flow rate is a nonlinear function of P3.

The details of the mechanism for producing the

nonlinearity were not explored since the effect could

be corrected for by determining the relationship between

signal and concentration empirically. Measurements taken

at two temperatures indicate that to a good approximation

the signal Svaries as: S r. n3P where P is a function of

temperature. Figure 6 shows log S plotted versus log n3

~L1
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for T=1.3650 K, the straight line indicating the power law

relationship. Further, less detailed, data were taken

over the entire temperature range of the experiment. The

range of P was from about 1.2 to 2.4,

The diffusion constant.'is determined from the slope

A \ [VI S l Vt6 h, 0

Let the signal S be determined from a power law S -n .

Then for n not too far from n , , the above slope is

insensitive to the precision to which g is known. Suppose

it is assumed that S L n , then n n will be assumed to

be Sl/P=Ang/P

Then ( ( -&- F ,)=--

An fba¢% /_

log t --~ =const. + log -n /t--

putting r 4 , this becomes

log C O ) =const. + log 4 -

r- const. + log . -

after expanding ( 4.. i and keeping the first

3 terms. For

P-~CU-t~-rPD -
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independent of P. For larger An, P need only approximate g-

for precise values of log (C )-X to be obtained. In

the experiment the error in g is estimated at about ± .15,

and the resulting error in D at less than 1%.

VI. Method for Determining D

The diffusion coefficient is determined from the

measurements of the decay of the He3 signal by computing

the slope: tA oa( (h -hou/ , after

waiting a short time until the transient vapor modes,

and the higher order liquid modes have damped out. The

discussion of this chapter indicates that the details of

the experimental configuration-the geometry of the diffusion

chamber, the presence of the sniffer capillary, and the

monitoring the diffusion in the liquid via the vapor

concentration-do not affect the general validity of this

method. However, n is derived from the signal S by

n - S1/P where P varies from 1.2 to 2.4, and D is

2-
related to the measured slope by: D=(slope)/k , where

k= (I- , and ( varies from .077 to .095 over
L-

the temperature range of the experiment.
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I. Relation of the Diffusion Coefficient to the Cross Section

To extract information from the diffusion measurements,

the relationship between D and more fundamental quantities,

such as the cross section, must be known. For a dilute

mixture of two classical gases, simplified kinetic

theory gives:

(1) -£- =

where the mean free path A in a Maxwell-Boltzmann gas is

/ h . More rigorous theory gives(1)

(2)D Ve

where

(3) and g x(-co-~s) oey7

S is an effective cross section which takes into account

the velocity distribution of the gas, and the fact that

diffusion is produced mainly by large angle scattering.

The diffusion problem in a dilute He 3-He 4 solution

involves particles having a nearly classical energy

spectrum interacting with particles having the roton

and phonon energy spectra. This problem is more compli-

cated than the problem of classical particles, and requires

solving the Boltzmann equation, in the presence of a

concentration gradient, for rotons, phonons, and He3



quasi-particles. This has been done by Khalatnikov,

and Zharkov (3 ) (referred to subsequently by "KZ"), who

consider the more general problem with both concentration

and temperature gradients present, and present solutions

for various simplifying circumstances. In deriving

their solution, KZ observe that:

1. Above .60 K, the phonons play no part in transport

processes. Although this point is not discussed at

length in their article, it would appear that this is

due in part to kinetics. At the lowest temperatures of

the experiment, where phonons would play the largest

role, the averagephonon momentum kph e 3kT/Xc is about

1/4 of the average He momentum '3 "

so that very few of the phonons can effect large momentum

transfers required for large angle scattering of the He3

atoms. Since diffusion is determined primarily by large

angle scattering, this means that phonons play a much

smaller role than is suggested by their number density

which is almost as large as the roton density at 1.270 K.

2. If the number density of He3 atoms is much

smaller than the number density of rotons, then the roton

distribution can be taken to be the equillibrium distri-

bution.

3. Inelastic processes, such as the creation of

phonons, when a He3 atom is decelerated in a collision,

are improbable and can be neglected.

_~s



4. Thermal diffusion is negligible when n3 is much

less than nre

The solution for the diffusion coefficient in the

high temperature regime, T -7 .60K, obtained by KZ is:

(4) Tr4

where: pO =normal density contribution from the He4

excitations)

P =total normal density%

(5)

3

(6) -!

and ~ has been assumed to be independent of pr"

II. Temperature Dependence of D

A. Khalatnikov and Zharkov Calculation of the Cross Section
(2 )

KZ calculate the roton-He3 cross section by assuming that

the interaction can be approximated by

VO -Y . (No physical reason for this

choice is given.) The cross section is then determined by

calculating the transition rate from the "Golden Rule"

of perturbation theory:

~I __~U_
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(7) w = -IV,gl" J!,--EA'-E,- ) a4

where the primed quantities refer to the final state in the

collision, and V1 2 is the matrix element of the potential

evaluated between the initial and final states.

The kinetics for roton-He collisions are complicated.

For example, the magnitude of the relative velocity, when

viewed from the center of momentum frame, is not conserved

as for particles having classical spectra, and the usual

simplification resulting from putting the problem into

the "center of mass" frame does not seem to apply here.

The choice of the delta function potential simplifies

the calculation, but integrating the final densities of

states, which first must be written in terms of the

initial momenta, and angles of incidence, is still quite

tedious. After some work, 'U .is derived in terms of

Vo, ur, and m3 . The important point is that qiv-

is independent of the He3 and roton energies.

B. Evaluation of (Po/V)

The roton contribution to the normal density can

be written v = V( :r/ ) , a

result which was pointed out by Landau. Numerically,

this is rn ( JH) . (Note that

2
p /3kT refers to an effective mass for convective

transport, since the normal density is defined in terms

~ ~



of the momentum density of a heat current, Q,

The p p(/VnIS .)
Y 33The normal density contribution of the He atoms is

n33*(2) In the experiment, the He3 concentration was

about 1.4-1.5-10-4 , equivalent to a He3 number density

18of about 3.0-101. The number density of rotons

(see Appendix) varied from about 7.0-1019 at the lowest
20

temperature, to 5.1-10 at the highest temperature.

Thus, n <<n r and % / - b mt ) /( t ' C O

making O : - . If higher concentrations had

been used, this would not have been true; for a 1%

He3 solution at 1.270, n3 /is about 1/3.

Thus, for conditions of the experiment

(8) D -----------

If the delta function approximation is valid, that

3is if the roton-He potential is like that of a hard

sphere of very small radius, then ; is independent of

P' the momentum of the He3 atom. Then, since V3 / '/ •

and h '  r x -4F /T) , the temperature

dependence of the diffusion constant is given by: ~ exp (AIT)

where & is the roton energy gap.

_~PC



III. Spatial Distribution of Rotons

The quasi-equillibrium achieved after the heater has

been on for a long time implies a time independent

exponential He3 distribution, and a steady normal fluid

current of excitations. Since the entropy is dominated

by the roton contribution, and since it is roton-He
3

collisions which are of interest for diffusion, only

the roton distribution will be considered.

The spatial distribution of rotons is derived from

the condition that there is no acceleration of the super-

fluid. This is equivalent to setting the net gradient

produced by the fountain pressure, the osmotic pressure,

and the hydrostatic pressure equal to zero. The hydro-

static pressure accounts for a small effect, which is

present whether or not the heater is on, and so will be

ignored. (It is interesting to note, though, that the

equations imply a thermomechanical effect in pure He II

in a column of liquid, even without the presence of a

"superleak".) Then AFf equals o5 . In Appendix I,

it is shown that: =" ps AV k -~)

for the roton gas. Thus the condition on the superfluid

becomes:

or k4 k At T

Since n 3 ( nr , the second term on the left hand side is

negligible. Also the second term on the right hand side
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is about 15% of the first so that to a first approximation

Ah _* h, . The initial roton gradient is

thus about the same as the initial He3 gradient. In

the experiment, the He3 gradients were of the order of

n3/L , and since n3 << nr, 4nr/n r must be very small,

i.e. the initial roton number density is approximately

spatially uniform.
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IV. Concentration Effects in Mixtures

In a number of experiments with He3-He4 solutions, the purpose of

the He3 atoms is to act as probes to study the nature of the He4

excitations. In such experiments it is desirable to know what effect the

presence of the solute atoms has on the excitation spectrum and on the

excitation number density.

A. Estimate of Magnitude

The magnitude of such an effect can be estimated from the following

considerations:

1. The neutron scattering data indicate that as the number of

excitations gets to be large and the mean free path for an individual

roton gets to be small, the linewidths of the individual excitations

become large and the energy gap decreases.

2. The data for this effect at intermediate temperatures are

sparse but the level at which the effect becomes noticeable, on the

order of a few tenths of a degree, is at about 1.7 ° where Nr=5 x 102 0 /cm 3 .

(See Appendix I).

3. The magnitude of the cross section for He3-roton interactions

as derived from the present experiment ( in approximate agreement with

the value obtained from thermal conductivity measurements) is from

I. to2Ax 10 14cm2 . The roton-roton interaction estimate 3)from viscosity

data is about 5 x 10- 1 5/T1/2cm2 . Thus He3 solute atoms are more effective

than other rotons in limiting the roton mean free path, by a factor of

about 5. (Phonons play a very small role in limiting the roton mean free

path.)

4. Thus, if the variation of the roton energy parameters with the
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temperature is primarily a mean free path effect, one can estimate the

He3 number density at which the effect is important at about 102 0 /cm2 .

This corresponds to a concentration of about 5 x 10 3

B. Some Experimental Data

The above effect of He3 solute atoms on the roton spectrum has been

generally ignored in many of the papers on He3-He4 solutions. The effect

has been observed by Esel'son et al 4 ) In measurements of positive ion

mobilities in dilute He3 -He4 mixtures. Eselt'son et al. find that for

pure He4  ,A+ ep( /Tr) where A = 8.80 (in good

agreement with Rief and Meye 5)indicating that the mobility is determined

by ion-roton scattering. The reason for the exact value of A obtained

is not understood. At finite He3 concentrations, Esel'son et al. find

that at sufficiently low temperatures or sufficiently high enough

concentrations the mobility becomes independent of temperature, and

inversely proportional to the concentration. In this region the mobility

is dominated by He3-ion interactions which are apparently independent of

temperature. Since l// is proportional to the cross section, and the

scattering centers are presumably independent, the roton contribution to

the mobility is: /'/ = .Iy -

The authors find that AZ calculated in this way varies as exp(41/T),

where A varies with He3 concentration. At c = 7.5 x 10-3, is about

7.70 with an upper limit of about 8.20 to 8.30. At c = 6.3 x 102 A

is below 6*. Additional results are presented at higher concentrations

which agree with data from 4th sound measurements6).

The above data together with the order of magnitude calculation,

suggest that the roton energy spectrum and hence the number density are
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altered in He3 solutions having concentrations of about 1/2% or more.

The effect on the number density for a change in 4 ) (C' - (l)

is a factor of expE(4Cc - a (o) ) i] . This effect can be

substantial. At 1.2°K, a difference in 4 of .4°K, leads to a factor

of e 3 or about a 35% change in number density. However, in the

present work, c = 1.45 x 10' 4 , and the effect should be negligible.

_ ___
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CHAPIER 5

Data and Data Analysis
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I. General Observations

Using the apparatus and procedure described in previous

sections, measurements of the decay time of the applied

concentration gradient were made. Thirty four runs were

analyzed at 17 temperatures between 1.2740 K and 1.6930 K.

Most of the runs were made at concentrations of about
-4

1.45-10-4. Five runs were made at concentrations 2 to 4

times higher. The power applied to the heater was 1.3*10-4

watts, equivalent to about 30 microwatts/cm2 . In a few

of the runs larger amounts of power were applied up to

twice this amount. Some general observations follow:

1. At a given temperature, the He4 signal remained

constant, independent of whether the heater was on or off.

2. The He signal increased by a factor of from 2 to

5, depending on temperature, when the heat (lower power)

was applied.

3. After correcting for the "sniffer function"

n=S /P, plots of log [n(t)-n, ] versus time indicate a

fast decay near t=0 becoming an almost pure exponential

at later times, as expected.

4. The slopes derived were independent of the power

applied to the heater.

Plots of log[n(t)-no ] appear on subsequent pages.

The points at large times, near the end of the curves

have a relatively large amount of scatter since a small

error in n produces a large error in log(n-nc,) when n is

near n, . At small times, the pure exponential form has

C_



Figures 7 through 17 - Data from 11 of the 35 runs is shown on

pages 60 through 76. The data include runs at 10 temperatures covering

the entire temperature range of the experiment. In the plots

log (n - n) is plotted versus time. A few error brackets for the run

indicate the estimated uncertainty in reading the recorder, and that

due to short term fluctuations.
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not yet been reached, so that most of the information

regarding the diffusion coefficient is contained in the

middle of the curves. In general the higher temperature

runs took much longer to decay, but the signal levels were

higher, and hence, less noisy.

The independence of the slope of the curves on the

power applied to the heater is illustrated by the two

runs at T=1.280 in figures iand I7 . Thesegraphs show

decays at heater powers of 130 and 205 microwatts. The

initial omegatron signals (uncorrected for the sniffer

response) were about 4 1/3 and 8 1/2 times the final signals,

for the lower power and higher power respectively. Least

square fits to the two curves gave Elopes which were

identical to within the experimental error in either one.

Thus, although the higher heater power produced an

initial signal which was twice that produced by the

lower heater power, the slopes of the assymptotic exponen-

tial decays were the same.

II. Determination Diffusion Constant, and Discussion of

Sources of Error

A. Method For Determing D from the Data

The slopes of the exponential curves were derived

from least square fits to the curves. In fitting the data,

the sniffer response function, the equillibrium level na,

and the time tl after which the higher order modes in the

decay could be ignored had to be known. The sniffer

__~ _ __ ~____ __ ~ _ __C___
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response function, as explained in detail in Chapter 3,

was determined by measuring the signal level at various

concentrations and temperatures. At the lower temperatures,

n. could be determined experimentally, while at the

intermediate and high temperatures this required an

inordinate waiting time, and was known only approximately.

The time tl, was estimated from the time necessary for

the second liquid mode to damp out. For a crude estimate

for tI , let the ratio of the magnitudes of the two modes

be a2/a 1 .2, and T/ =V~ , Then the ratio

.2 exp(-4tf/)/exp(-/l)=.2exp(-3/ Il) is down to a few

percent after a time tlh /2. Thus if ~1 is known

approximately, tl can be estimated.

More precise values for the variables discussed above

were obtained by fitting the data on a computer. Least

square fits to the data were derived for various values

of the parameters tl, n.., and p, the exponent characterizing

the sniffer function. Values for tl were chosen by fitting

to the exponential form with progressively fewer points

and noting the values of the derived slopes. The effect

of uncertainties in p, was found empirically, and proved

to be quite small, in general less than about 1%. For

example in run no. K-5-A at T=1.565 0 (at a zero level of

6.22) D=8.50*10-4 for p=1.55, and D=8.55-10-4 for 0=1.40.

The computer analysis indicated that the principal

source of uncertainty in the slope was the uncertainty in

the "zero level" no. To reduce this error, n, was

calculated from the data at finite times. This was done

-4?
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by computing a measure of the error of the fit for various

values of nand chosing n, to minimize the error. The

quantity calculated was:

Vr\ aYL ,where Ayo I I -_____

4 W1i N

m and b are the least square slope and intercept repectively,

(ti,yi) are the measured pairs of time and He3 concentation,

and tl and t2 refer to the end points of the fit. A

plot of the relative error Am , and the derived diffusionm

constant D versus S., the signal at t= OA) oo T oO

for a given run (K-5-A, T=1.5650 ) is shown in Figure If.

The width of the curve gives an estimate of the error

in D due to the uncertainty in SW. In general the values

of n. obtained by minimizing the error curves were

consistent with the approximate values obtained by waiting

as long as possible and estimating n~,. In some of the

more noisy runs there were differences between the two

numbers, in these cases an average value was chosen.

The least square fits each involved points which

differed in the precision to which the values of the

ordinate y=log(n-n, ) were known. For this reason,

the least squares slope was chosen to minimize:

where Wi is a weighting factor added to the usual formula

to take into account this variation in the size of the

error bracket about each point. The factor Wi was chosen

_ __ _I~IX~ _ ~~___L~P_ _* I_



as follows: If there were a uniform uncertainty & in each

point, then the relative error in y, would be

r; h..- )- Io ; .
where - ( IM*S'1 If

in addition there was a uniform density of points per

unit time internal, then Wi would be Lc (vi) Er (ry

having picked the error at tl as a normalizing factor.

The actual data involved did not have a strictly uniform

error since for t large, the signal was decaying more

slowly and could be averaged over a larger time interval

than for smaller t, and the effect of short term

fluctuations was lower. In addition, the density of points

used was lower at t large. The weighting factor was

somewhat arbitrarily chosen as:

W(yi)=Err(n )/Err(n i ),

a value between the two extremes of W(yi)=l, and the

expression for uniform density of points and constant

error given above.

D was determined by D=(slope)/k 2 , as discussed in

Chapter 3. Vglues for D as a function of temperature are

given in the table on page 8q. For many of the temperatures

these values represent averages of 2 or more runs.

B. Additional Sources of Error

Sources of error in addition to those already

discussed were the error in fitting the curve due to

-- uL~-



scatter in the data, and uncertainties in the liquid

level, the temperature, and in the correction for the

finite flux of vapor at the liquid surface. The error

due to scatter in the data, iq given by the quantity Am

discussed above. The uncertainty in temperature was

due mainly to the uncertainty in reading the oil manometer,

which was about .01" of octoil "8", equivalent to about

3 millidegrees at 1.2740, and .6 millidegrees at 1.6930 K.

The absence of a temperature difference between the bath

and the mixture was verified by independently measuring

the pressure of the mixture with an oil manometer on

the thegas handling sstem which connected to the chamber

via the fill tube. The error in the correction of D

due to the vapor flux was due principally to the uncertainty

in the value of CV/CL at low doncentrations as discussed.

in the appendix. The fractional error in the correction

was estimated as less than 10%, when comparing a point

at one temperature with that at another, and less than

20% on an absolute scale. Since the magnitude of the

correction itself was about 20%, the net error was less

than 2% 6n a relative basis, and 4% on an absolute scale.

The uncertainty in the liquid level was about 1/2% to 1%

when considering one run relative to another, and about

5% on an absolute scale.

_ _j_



An independent check of the total random error for a given run

was gotten by taking 5 runs at the same taperature, 1.2800. At this

taiperature the signal was relatively small and somewhat noisy, and

the estimated error in a particular run ranged from 5% to 10%. The

first 4 runs ware taken on the same day, the fifth a nonth earlier.

The data and the nan and standard deviation follow.

Run Code No.: L-1-A L-I-B L-I-C L-l-D I-26-B

D(*10 - 3)  : 4.35 4.45 4.3 4.65 4.4

The total relative error was estimated at each temiperature from

the considerations of the previous sections. The values obtained

are indicated by the error bars on the graph in Figure 19. In

addition, the absolute value of the curve as a whole has an uncertainty

of about 12%.



Values of D as a Function 84
of Temperature

He3 Concentration C=1.4-1. 510

D

(10- 4 cm2/sec)

46.7

44.3

T

(OK)

1.274

1.280

1.303

1.312

1.359

1.403

1.409

1.440

1.459

1.480

1.501

1.528

1.564

1.580

1.611

1.658

1.693

No. of Runs

2

5

41.2

36.5

27.8

21.7

20.8

15.6

14.4

12.6

10.7

9.83

8.67

8.08

7.15

6.04

4.94
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III. ,Taeraitiie Deareaic e of the Diffusion Coefficient and

Effective Scattering Cross Section

A. Diffusion Coefficient

In analyzing the data, log D is plotted against 1/$, since

He3-roton scattering is assimed to preado inate in the diffusion.

Coincidentally diffusion in some "ordinary" solids and liquids is

also described by plots of log D versus 1/T, hut in these cases the

diffusion is characterized by the fonaation of lattice vacancies in

a solid or holes in a liquid. (1) The process of fomLng a hole or

vacancy is deteznined by a given energy e . (Far the liquid case

£ is equal to a fraction of the evaporation energy.) The

diffusion is, thus, thermally activated, and D - exp (- C /k).

D, therefore, increases with temperature exactly opposite to the

roton-He 3 case where D - exp (+ /T) .

The log plot is shon in Figure 19 on page $5. The following

properties of the data can be seen:

1. D d-eceases with increasing tipserature, mnlike ,mest

"classical" mbstances.

2. The slope of the dbserved curve is not anstant, but the

curve as a whole is still close to being linear. If the data are fit

to a single straight line, the least sInres slope gives A = ll.70K.

3. Neutron scattering data indicate that the roton energy gap

A decreases slightly with tarperature, at the higher Iaeperatures,

(see Appendix I), and a perfect straight line is not expeced. But

this effect is not enough to account for observed steepness of the

curve, and an energy deendent He3-roton cross section is inplied.

-~"==E;;-~---~-L~ ~?~~3~_-



B. e3-Ioton Scattering Cross Section

The energy dependence of the effective cross section can be

obtained from the data by taking into account the tar~erature

variation of the roton number density and the average velocity,

i.e. by evaluating: 7-WD (o

where A is the roton energy gap. Plots of this ~uantity versus

teperature are shown in Figure 20. In Figure 20A, the eapirical
(2)

relation of Yarell et al. , derived from neutron scattering

data, A = 8.68 - .0084 T7 is assumed, while Figure 20B hows

the effective cross section assuaing a constant, A , equal to 8.65.0

Error brackets, reflecting the uncertainty in D, are shown. The error

associated with the empirical function of Yarnell et al. is not known,

but is probably subtsantial since it is based on only a few data

points, as discussed in Appendix I. Nevertheless, even if a cnsatant

roton energy gap is assumed, as in Figure 20B, the general slope of

the curve is the same; the cross section increases with increasing

teaperature, the high tueperature values being about 50% higher than

those at the lowest peratures.

In equating the expression e p (4/r) / D with the

effective cross section, the Khalatnikov - Zharkov expression has

been approximated as follows:

_ _ 4P _ _SICL V,M1()W3 ~V )



(where the averages refer to weighted integrations over nmuentmu

spaoe) .

The above apzvoiiation can be used to evaluate the absolute

value of the cross-section.

Using: (a) m*= 1.7 rA

(b) "A, = . ,I (')

(c) A4 C 8. --. oo t' T (i'

The He3-roton cross section ranges from:

,3j. C 1.6 x 10-1 4cm2 at T - 1.27*

to - 2.4 x 10-14cm2 at T - 1.690

If it is assimed that A - 8.65*, indepe#dent of tauperature,

then the higher teIIerature cross sections are saehbat larwer,

the value at T - 1.690 being about 20% greater.

.~_1 c~--- --
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IV. He3 Concentration Dependence

Data were taken at higher He3 concentrations - from 2 to 4 times

higher than the low concentration data where C * 1.45 x 10"4 . The

purpose was primarily to check that indeed D was approximately inde-

pendent of concentration,' that no anomalies were present. Also, the V

presence of the slight concentration dependence predicted by the

Khalatnikov-Zharkov expression was sought, although a detailed study

was not made. The He3 concentration enters the KZ expression for D

in the factor (P,. / . This expression was derived assuming

that n3<< nr where fwo/ A. An expression is also derived for

the (high temperature) case where n3 ) nr. This case leads to

several curious results which are not relevant to the experiment.

However, the high He3 concentration expression leads KZ to present

an "interpolation fornmula" covering the whole concentration range in

which D is proportional to (No /p .

The data, shown on page 42. , indicate that 0 is approximately

independent of He3 concentration as expected. Only at the lowest

temperatures can a weak concentration dependence be seen. Quanti-

tatively:

h h ,, +

for T = 1.2740, and the lower concentration, 6 a .0074. For a mixture

having a He3 concentration 4 times higher, the quantity (P/p,)

would be about 2.2% lower, and ( P*/p ). would be about 4 1/2%

lower. The observed values for D indicate a small shift with increasing

concentration, but the error brackets of about 5% for this pair of

runs are too large to distinguish between the two expressions,

_~ _ _ __~~__I~____ i__ll_~_ __ __I _ _I_~______~_____~_____~__~_



although the squared expression gives better agreement. At the

higher temperatures C is smaller, C a.0033 at 1.45*, and the

data indicate little if any concentration dependence, as expected.

It is interesting to note that for a classical gas, no

observable concentration dependence would be expected (see page 53 ),

while the KZ expression involving (p0 o Irp% is independent

of concentration only at very low He3 concentrations. The reason for

this is that there is an additional term proportional to the

concentration gradient in the Boltzmann equation for He3-He 4

mixtures. This term is not present in the usual Boltzmann equation

and arises out of the fact that in a He II mixture, the normal fluid

as a whole can move, and this motion is governed by the temperature

and concentration gradients in the mixture - equivalent to the He3

and roton kinetic pressures previously discussed. The coefficient

relating the collision integral to the concentration gradient in this

extra term involves the total normal density Ph = Pno + PV,

which except for very dilute solutions, involves a He3 concentration

dependence.



Concentration Dependence of D

3
He Conc.

(*1.45 10 - 4 )

1

4

1

3

1.6

.8

2

3

1

1

D

(.10- 4 cm2 /sec)

46.7(avg. of 2 runs)

44.0

36.1

34.2

12.4

12.8 1/2

15.6

14.9

15.0

15.9

The relative error in each of the above runs was

about 5% to 7%.

T

(OK)

1.274

1.274

1.312

1.312

1.479

1.481

1.437

1.439

1.440

1.441

_ = _ "I~P--
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V. Stealy State Data

The discussion in Chapter 1 indicates that, in principle, D

can be derived frn the steady state magnitudes of the He3 signal

both with and without the heater on, and that the ratio of the two

signals would be:

_ _ _ -- \-,, . . ,xf\
(1) h eX

where vn  nomal fluid velocity, related to the applied heat current

by Vn = Q/ pST, and L is the length of the chamber.

An analysis of these "static" data was not undertaken, primarily

because:

1) Unlike the "dynamic" method of measurement, this method is

sensitive to non-idealities in the geometry of the sample chauber.

Correcting equation (1) for geometrical effects leads to a clusay

expression, which requires precise knowledge of the chaer genantry.

2) The sniffer function, too, must be known precisely, for this

type of m asuresent, while this has shown not to be true for the time

decay method.

In addition the static method is cxuplicated by the following:

1) In He3 -He mixtures heat is transported by irreversible

diffusion in the nomal fluid, as well as by the convective transport

process assumed in equation (1). For the He3 concentrations of this

experinent, this process is dominant below about 1. 1K, (  ard still

may play a finite role at the lower tauperatures of the experiment.

The exact magnitude of the effect is not known at these tae neratures,

P~JrP_--~Pm ~
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since thermal conductivity experients measure the total heat transport

due to both processes.

2) The static method also requires the assuzption that:

J$ = vanr4i.e., that the He atcams move exactly at the normal fluid

velocity.

Neither of the above enter the analysis in the dynanic method of

measurement.
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CHAPTER 6

Comparison of Results with

Other ethods of Measurement



I. Thermal Conduction Measurements

A. Relation of the Effective Thermal Conductivity to D

As has been previously shown, a thermal current applied to a He3-

He4 mixture produces a He3 concentration gradient as well as an oppos-

itely directed temperature gradient. In order for a steady state to

be achieved, the somotic pressure difference produced by the concentration

gradient must exactly balance the roton kinetic pressure difference

produced by the temperature gradient (see chapter 4, section III). In

terms of thermodynamic quantities this is expressed as:

(1) AT v Mh - SoT7
(where n3 is the He3 number density, and S is the entropy per unit mass

of the pure He4). If it is assumed that the He3 atoms move with the

normal fluid, that (2) : V y}9

where (3) Q"' , =/"---,

then since (4) .= - ~~"

a relation between & and V n, is implied, which when put into equa-

tion (1)' gives an expression for the effective thermal conductivity W :

(5) -----/--J T V' ~T

Thus, the measurement of the effective thermal conductivity, and knowl-

edge of the entropy should enable a determination of D.

This method is complicated by the fact that a liquid mixture can

also transport heat via the (irreversible) diffusion of thermal exci-

tations as in an ordinary solid. In addition, a more detailed consider-

ation of the problem1 gives an added factor (fn/,p. )2 to (5) so that

~__ ____~_~_++s~-=~BgCYI; -- I_



the full expression becomes:

(6) -r* * 1- ) 'D +\

B. Results of Measurements

The finite thermal conductivity of He3-He4 solutions was discovered

by Beenakker et al. 2 The details of their results, however, have been

superseded by the later work of Ptukha. 3 The Beenakker apparatus relied

on the measurement of the vapor pressures of a surrounding He4 bath and

the mixture to determine temperature differences, while the Ptukha

apparatus measured the temperature at four points along the thermal path

and in addition corrected for the possibility of unwanted convective

effects. The data of Beenakker et al. for D are rather sparse, but

indicate a much steeper temperature dependence than either the data of

Ptukha or the present work. The lowest temperature point at about 1.20

does not include the contribution from the irreversible conductivity

process, and is probably in error. The only data point for D in the

temperature range of the present experiment, at T = 1.490 agrees with the

present results to within 10%.

Ptukha3 carried out thermal conductivity measurements at several

concentrations at temperatures. The measurements indicated that the

irreversible process dominated the heat transport below 1.1, and thus

results for D were obtained only above 1.2MK. Some of the measurements

were taken in the temperature range of the present experiment. These are

shown in Figure 21 , along with the diffusion data of the present experi-

ment. In the higher temperature region,l.5* < T < 1.7, the derived

values for D agree quite well with the present measured values, while

~_ _I; ___~__ _Y_ ~ 1



at lower temperatures, the curves differ, the results of Ptukha curve

being lower.

The reason for the discrepancy is not known. However, the following

points should be noted:

1. In deriving D from the effective thermal conductivity at the

lower temperatures of the curve, the small but finite contribution of the

irreversible transport thermal process had to be subtracted out. Since

only the total thermal conductivity can be measured, this contribution

could not be known exactly but must have been extrapolated from thermal

conductivity data at much lower temperatures, where the irreversible

process dominated.

2. No statement as to the temperature dependence of the cross sec-

tion is made in the Ptukha paper. If the data at 10-4 and 10'3

concentrations are considered as one curvethen regions of differing

slope become apparent, although the average slope is between about 8* and

99.

In general the data are not inconsistent with a constant cross sec-

tion, but could be fit to a U 3-r (T) as well.

3. A numerical value for -3-r is given for the one point at

T = 1.5" in the Ptukha paper. By coincidence this is the one point where

the values for D given by the two methods agree to within a few per

cent.

4. An assumption inherent in the above derivation of the diffusion

coefficient is that the He3 atoms move with the characteristic normal

fluid velocity, vn, that is 'Dn) 9 (n /sr) '3

__
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This assumption is not necessary in the present work and is not made.

II. Nuclear Magnetic Resonance Diffusion Measurements

A. Spin-Echo Measurements

1. Description of the Method - Classical Picture (for a more

complete description see (4) and (5) ).

In this method a liquid He 3-He 4 mixture is placed in a uniform

magnetic field H. , on which is superposed a small field gradient

G.Z z. A pulse of rf field at the Larmour precession frequency /

o =  Ho , having a magnetic field strength H1 perpendicular to z,

is then applied. In a frame of reference rotating with the precessing

He3 spins, this appears as a nearly constant transverse field about which

additional precession occurs. If the direction of the pulse is such that

f 14,/ jt t= I / ,-  , then the net effect of the pulse is to

cause a 90* nutation of the precessing spins. (The factor of 2 in the

integral results from resolvingalinear sinusoidal signal into two circu-

lar components, only one of which is rotating in the correct sense).

After the nutation, spins which were initially oriented in the +Z direc-

tion begin to precess in the x-y plane. The applied magnetic field

gradient implies a spatial variation in W., and thus the spins rapidly

become dephased with respect to one another. The subsequent application

of a 180* pulse causes another nutation, which has the effect of reflec-

ting the spins about an axis in the x-y plane, causing the phase of the

faster precessing spins to lag behind that of the slower spins. Even-

tually the faster spins overtake the slower spins, all of the spins

become in phase again, and a pulse of magnetization, the so called

~ . ...._ .fC~Cf~ll L~PC- ~ --
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spin-echo, can be observed. If during the period between the application

of the two rf pulses, diffusion is occurring, the spins will have changed

position, and hence precession frequency, slightly. The original in-

phase signal will not be fully recovered, and thus diffusion implies a

decay in the echo signal.

Even if no diffusion is present, spin-spin interactions produce an

irreversible dephasing process characterized by the "transverse relaxa-

tion time" T2, where the polarization signal is proportional to

exp (-t/T2). The time decay of the signal due to diffusion should vary as

exp (-0t 3 ), where cis a constant, so that the two effects should be

separable. Note that unlike the "direct" method used in the present

work, He3 -He3 collisions contribute to spin diffusion. (A rigorous

analysis shows that only collisions of spins having opposite spin are

involved).

2. Experimental Results

The first spin diffusion measurements on He3-He4 solutions were

carried out by Garwin and Reich6, whose data was taken at concentrations

of 1% and 2% under 19 atmospheres pressure, and at 2% at 2 atmospheres.

The data at 19 atmospheres indicated that above 1.40 D varied as

exp(A/T), with a c-13.5°K. At low temperatures, below about .9K, D was

determined primarily by He3-He3 interactions. Garwin and Reich inter-

preted this result to be evidence of a large variation of the He3 -roton

cross section with energy. Part of this temperature dependence may be

due to the temperature variation of the roton energy gap under pressure.

At 19 atmospheres the gap (for pure He4 ) is less than 7 1/20K at T=1.1l

implying a higher density of excitations. The temperature dependence of
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the energy gap A under these conditions is not known, but even at

saturated vapor pressure a decrease in the magnitude of A is noticeable

above about 1.6°to 1.7K. The presence of the 1% and 2% He3 concentra-

tions may influence the roton spectrum as well. These considerations

make exact comparison with the present data difficult. However, the

general result of a large variation of D with temperature implying a

temperature dependent cross section does agree with the present result.

Additional measurements were carried out nine years later (1968) by

Opfer, Luszczynski, and Norberg7 who investigated spin diffusion over a

wide range of temperatures, at concentrations from 3 x 10-4 to 3 x 10-2

Unfortunately, no data above 1.10 were taken at the lowest concentration,

and very little of the data were taken in the regime where D was concen-

tration-independent. Two points which were taken at C = 1.0 x 10- 3 fall

in temperature range of the present experiment and are shown with present

data and the Ptukha data in Figure 21. The two points show the same

temperature dependence as the present data, and differ in absolute value

from the present data by 10%.

Data over the full range of concentration and temperature were ana-

lyzed by the authors by fitting D to the form:

(7) 1 CDCcI I, C

on a computer. The result was that for T > .8*K, D1 varied as exp(4/T)

with 4 = 8.65*K exactly. This results contrasts with the present data,

and implies that the diffusion is dominated by He3-roton scattering with

a cross section which is energy dependent. At temperatures less than

.8*K, the values for D1 lie lower than the exponential curve, indicating
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either that phonon-He3 interactions are important or that the roton He3

cross section is energy dependent. But the Khalatnikov-Zharkov theory

indicates that phonons do not play a significant role in limiting the

He3 mean free path until much lower temperatures, so that the former

assumption is not likely. The authors conclude that there may be a

temperature dependence to the cross section, but that the experimental

accuracy of these measurements is also questionable.

It should be noted that about half of the data presented in the

paper of Opfer et al. was taken at concentrations of 1% and 3%. In

fitting the data on the computer the effect of the He3 atoms on D is

supposed to be completely accounted for by the term C/D2(T) representing

the contributions of He3 -He3 interactions to the diffusion. The

considerations of Section IV of Chapter 4 indicate that at these concen-

trations, the solute He3 may have a substantial effect on the roton

spectrum, and hence on the roton number density as well. This is not

taken into account in the paper and may account for part of the discrep-

ancy between the present data and the data of Opfer et al.

Later work on spin diffusion in mixtures under pressure was published

recently by Biegelson and Luszczynski.8 This work was limited to

T < 1.150K, at concentrations from 4 x 10- 3 to 1.25 x 102. In this

regime D was dominated by the He3-He3 interaction. As in the previous

paper the data for D were fitted to the form defined by equation (7)

above. In carrying out the computer fit an exponential form was assumed

for D1 , 4 , I ^ exr - , the value for A being determined by

only two points at the highest temperatures. The result was 4 =9.10 at

S.V.P., decreasing with increasing density. The above comment on the

I~ _
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effect of He3 on the roton spectrum seems appropriate for this paper as

well. The Biegelson et al. paper also deals at length with the results

for D2 (T) and the He3-He3 interaction, results which are not relevant

to the present work.

A paper by Husa, Edwards, and Gaines9 describes diffusion measure-

ments at low temperatures at c = 2% and 12%. In analyzing the data, l/D

is plotted versus concentration, and at T a 1.2250K, a straight line can

be drawn through the 12% point, the 2% point and a point assumed to be at

0 concentration from the data of Ptukha. However, the error brackets

are such that a value for D at c * 0 as much as 2 1/2 times larger could

also be fit on the same line. In addition, the effect of the relatively

high He3 number densities on the roton parameters is ignored in the

analysis.

Other papers have appeared investigating diffusion in He3-He4

mixtures, but these have been in the He3-He3 regime, i.e. at low

temperatures and relatively high concentrations. Some of the data has

been taken well below the Fermi degeneracy temperature of the He3 solute

quasi-particle gas. These papers are quite interesting but not relevant

to the present work.

B. Nuclear Relaxation

In principle, the diffusion constant can also be derived from the

spin-lattice nuclear relaxation time T1 . The theory of nuclear relaxation

has been given by Bloembergen, Purcell, and Pound. 10 The time T1 can be

shown to depend on the correlation time T'during which a spin sees a

given local magnetic field. Taking into account that both a given spin

and neighboring spins are diffusing, '" turns out to be rc <.'P
12 ~

1
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where <r ) is the average distance between spins. The complete theory

shows that T1 is proportional to T' and is thus inversely proportional

to D.

The principal difficulty in measuring T1 in He3-He4 mixtures, and in

pure He3 for that matter, is that small amounts of paramagnetic impurities,

such as oxygen, on the walls of the sample chamber and at the liquid

surface are very effective in producing nuclear relaxation. Since

,AM << U s  and the relaxation varies as the square

of the impurity moment, concentrations of less than 10- 6 are very

important.

The papers referred to in the previous sections (6), (7), (8), all

present TI data which indicate effects due to relaxation at the sample

walls and other spurious effects. As yet no reliable measurements of

the true bulk relaxation times have been presented for dilute He3-He4

solutions.

_- -------------, ~~. .~. . 1
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CHAPTER 7

A Possible Model for the

He3-Roton Interaction
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One of the principal results of the experiment is that the cross

section for He3 -roton interactions is energy dependent, and is not

adequately described by a simple S function potential. One way in

which an energy dependent cross section might come about is through

an interaction dependent on the finite extent of the He3 atom and the

roton excitation and the consequential backflow of the surrounding

superfluid "ether". That is, instead of the infinitely narrow,

repulsive hard core described by a delta function, the interaction

might involve a hard core of finite extent, and a long range interaction

due to backflow effects in the superfluid.

The backflow effects can be derived by applying hydrodynamics to

the case of 2 spheres moving in an inviscid, Irrotational background

fluid. The velocity field is then characterized by a velocity

potential, V= '94 where j obeys Laplace's equation: '#: o

The solution for a single sphere in an infinite medium is the

familiar dipole flow pattern, similar in form to the dipole field

pattern obtained for a conducting sphere placed in a uniform electric

field. For two spheres, having velocities ilA and 2, the boundary

conditions at the surfaces of both spheres must be satisfied

simultaneously: for sphere #1, vl at the surface must be uI cose ,

where e is the angle between the radius at the surface of the

sphere and , a similar condition holding for sphere #2. The

problem can be solved, as in electrostatics, by using the method of

images. The resulting velocity field can be used to calculate the

total kinetic energy of the background superfluid. The complete

~-~--_-L i_~i- li~ -------__
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calculation can be found in reference (1).

Letting ul , u2 represent components of velocity along the line

of centers, and wl, w2 represent velocity components perpendicular to

the line of centers, and expressing all distances in powers of R, the

distance between the centers of the 2 spheres, the result for the

kinetic energy of the fluid is:

-r= A(,4+,.") - e+ ('W% ) + )

with:

where a and b are the radii of the two spheres, P is the liquid

density, and M, and M2 are the masses of liquid displaced by the

spheres.

Keeping the lowest order terms, this simplifies to:

In considering collisions between the two spheres, the terms

involving the coefficients A and C are present even when the spheres

are isolated (at R = o~ ),and so can be ignored in determining the

interaction. Also, most collisions occur when ul and u2 have

opposite signs, (i.e. when two particles are approaching one anothetr

and when wl and w2 have the same sign. Thus, the energy of inter-

action due to the influence of the background superfluid is:

;i=~--~-----i----~i--*------.- --
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which in terms of the total velocities vl, v2 can be shown to be:

To get a rough estimate for the form of the cross section

from this rather complicated velocity dependent expression, the

interaction will be approximated by the potential:

with the strength of the potential U. proportional to the average

velocities V~/ Vr (assumed constant in calculating the matrix

element of the potential). Calling the He3 quasi-particle sphere

#1, and noting that the mass of the displaced superfluid, M -*- n,, ' "s

w6 c.c t. . -4 .e rt.E- .,44e A and letting #/ ~l3 6

represent the effective volume of the roton, the strength of the

interaction becomes:

U. =6 :3 V =

The cross section can now be estimated, using perturbation

theory. Let the incident and final wave functions be plane waves

(as was done in the Khalatnikov-Zharkov calculation).
;Z-
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The matrix element V1 2 for these wave functions is easily shown to be:

-p -oV, -, 1 v (4 -01\ '
where :

a- 3 X -

For the above potential, this can be shown to be:

where SL Ono fCCO,2

is tabulated in collections of mathematical tables.

The transition rate is then:

gN-Vr O 4 ErE--E '+-E- 'ES
The cross section is then determined by dividing by the relative

velocity. Noting that 3A and _

S- ~7 ,the expression can be reduced to a single

integral over c4L. The presence of the delta function indicates that

the integral is over a 2 dimensional phase space area. Without carry-

ing the details of the calculation further, the general result can
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be seen. The cross section is proportional to:

The temperature dependence of the cross section is gotten by

integrating qt over the Boltzmann distribution. The general form

of the result can be derived by noting that:

The phase space area A- (A increases with increasing temperature

but at a rate less than T2 . (To show this one calculates Ak in

terms of k. and kr-Wo, making the approximation that (kr-Ko)< < kr.)

The temperature dependence of the integral of f 2 (4 L..) is that of an

oscillating function which gradually decreases. The wet temperature

dependence is that of a cross section increasing at a rate slightly

greater than T, on which is superposed an oscillating function,

in qualitative agreement with Figure 20 of Chapter 5. The amplitude

of l' will not be computed since the calculation is still quite

crude. It has been seenthough that o' is proportional to

(r.s -_ 7 0 roton.

Thus, it has been seen that a plausible model for the He3-roton

interaction, that of a hard sphere repulsion together with a long

range I/r 3 attraction due to the dipole-dipole coupling of the super-

fluid backflow can, at least qualitatively, be fit to the observed

data.

Note that the kinetics of the He3-roton interaction are quite
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complicated, and for example the magnitude of the relative velocity

in the center of momentum system is not conserved, and no simple way

to reduce the problem to a l-body problem is evident. For this

reason phase shift methods for analyzing the cross section do not

seem to apply here.
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Appendix - 1

Some Properties of Liquid He 4

and of Liquid He -He Mixtures
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I. Liquid He4  117

A. Roton Densities

Since the energy of a roton is large compared with

temperatue of He II, Maxwell-Boltzmann statistics apply,

and:

Only a small error is introduced by extending the limits

of integration to o* , since exp(-x 2 ) drops off rapidly.

The result of the integration is:

2 - K .e A C /r)(I - I A

where K__ . In most derivations,

2 2
k dk is approximated by k 2dk and the second term is not

present. The value of A 1 //U,

when expressed as a temperature is about 140 0K, so that

this second term contributes about 1/2% numerically and

can be dropped. The error in replacing the Bose distri-

bution function by the Maxwell-Boltzmann function is on

the order of eXp (- E/r) or about - o 7

for the temperatures in the experiment and is numerically

insignificant. Similarly the error in extending the

(k-k )2 parabola to cocan be estimated at about 1% from
o

error function tables.

- ~,..._~.1._ ~~~- -. ~
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The neutron scattering data 2) on which the

roton parameters are based, indicate that the energy

gap A is not constant but a weak function of temperature

for the temperature range of the experiment,

1.270 to 1.690. The low temperature roton parameters

are known to a relatively high precision. The energy

gap A1 =8.65±.040K, at 1.120 K. However for the temperature

range of the experiment, the data are sparse, and the

precision is not high. Nevertheless, empirical

functions for A(T) have been derived by Bendt et al.(3)

which fit their neutron scattering data(1) below about

1.80, and are consistent with similar data of Henshaw

and Woods.(2) Bendt et al. also calculate the entropy of

He II, including contributions from all portions of the

dispersion curve, and find good agreement for temperatures

less than about 1.80 K. An empirical fit which agrees

with both the entropy and neutron scattering data is

1 =8.68-.0084T 7 . There is no physical basis given for

this expression and ab initio one would expect A to be

a function of the number of excitations already present.

However in the absence of better neutron data or a

better model, the above expression is used in tabulating

roton densities and other properties. Some numerical

data for a few of temperatures in the experiment are

given below.

_ ~C~ __
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T A =8.68-.0084!T 7  Nr/V

(OK) (oK) (1/cm3 )

1.274 8.63 7.0.1019

1.409 8.59 1.45-1020

1.564 8.49 3.0-1020

1.693 8.35 5.1-1020

B. Numbers of Phonons

Phonons in liquid helium presumably represent

density fluctuations and the number density, and thermo-

dynamic functions are calculated in a manner similar to

that for solids, except that no transverse modes can

exist in the liquid. The number density is

ph -il

Nph = .$.10 at 1.270

= .o.10"  at 1.690

C. Fountain Pressure in Liquid Helium as a Roton

Kinetic or Osmotic Pressure

The rTountain pressure" is a hydrostatic pressure

which develops between to vessels connected by a fine

channel "superleak" across which a small temperature is

applied.

This elementary derivation may be well known, but the

author has never seen a similar exposition.

-~I ~ 1. ._.~._ ._ ~._ '-f~Y~-clFII --
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This pressure is well understood in terms of two

(4)
f'tid hydrodynamics, and is given by:

- 7 a4
where S is the entropy per unit mass. Consider the

roton contribution to this pressure. The entropy per

unit volume of the roton gas is given by:(5)

S C* k Y' T'/t - I /
But this is just:

Thus: __mw _ T (1=T'1

Thus the thermomechanical pressure is just the

kinetic pressure of the roton gas. The form is the same

as Vant Hoff's Law for an "osmotic pressure" arising

from considering the rotons as solute atoms.in the super-

fluid.

II. Dilute He -He Mixtures

A. Phase Separation (6)

For the temperatures of interest in the experiment

He dissolves in He , and there is no phase separation.

In fact no phase separation occurs at all above .90K

B. Osmotic Pressure 7

The He3 solute atoms exert an osmotic pressure:

os

--~nry(-lrrCccw --
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C. Vapor - Liquid Equillibrium(8-14) 

121

The solution is not "ideal" in the sense that

the partial He3 and He4 vapor pressures are related in

a complicated way, and in particular, the ratio of

the concentration in the vapor to that in the liquid:
Cv.3

CL
where P30 ' P40 are the uapor pressures of pure He and

pure He4 at the given temperature. For sufficiently

dilute solutions, however, "Henry's Law" is satisfied,

the amount of He3 in the vapor is proportional to the

liquid concentration. The available data indicate

that this relationship holds for CL :C.02, that is

4L- CL is independent of concentration

for liquid concentration less than about 2%. (NOte

that P4 is veryclose to P40 for dilute solutions, and

it is P3 not- ---- which is independent of concentration

in the above relationship.) Numerical values of the

He3 vapor concentration were desired to determine the

effect of the flux of He3 which passed from the vapor

to the liquid as the diffusion progressed. (See Chapter 3

Section.)

There are a number of papers in which measurements

of C /CL or of related quantities are presented. The

values presented therein are not in total agreement with

one another, so that data had to be obtained by averaging

the various measurements. The work of Essel'son and
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(8)

and Berezniak, which covered a wider range of concen-

trations than the other papers, was combined with that

of Sommers , Sreedhar and Daunt(10) , and a small

portion of that of Roberts and Syderiak(11 ) who worked

at higher concentrations. The discussions contained

in several books and a review article (Peshkov(1 2)

(1 3 ) (14)Atkins, , and Wilks ) were also considered. Data

from the various sources were reduced to the form

CV/CL (in some of the papers, Ptotal' or X /XL, where

XV - v v q was given)i.

Results for two temperatures are tabulated in

figure 22. The composite curve for CV/CL extrapolated

to zero concentration is plotted versus temperature in

figure 03. CV/C L varies from about 20 to about 75

over the temperature range of the experiment. The

precision of the extrapolated values is about 10%,

and is adequate for the analysis done in the experiment.

D. Spectrum (15 )

Measurements of the specific heat of solutions,

and the velocity of sound are consistentwith thermo-

dynamic quantities calculated assuming that the He3

solute atoms behave like an ideal gas of "quasi particles",

each having an energy spectrum:

- E A ,where

m*- 2.7 m3I 3

~E
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E. "Heat Flush" 125

The presence of a thermal current in a He 3-He 4

mixture implies a flow of thermal excitations. Since

the excitations interact with the He3 solute atoms,

these atoms are "dragged along" by the thermal current,

producing an increase in the He3 concentration near

the coldest part of an apparatus. This phenomenon,

has been referred to many times in the literature and

has been used to extract He3 from a mixture of the two

(16)isotopes It is usually present as an unwanted

side effect, and some papers describe apparatus which

are equipped with mechanical stirrers to avoid this

"heat flushing" effect.

I - - ~ _
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