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A comprehensive description is given of the effects of gravitational loading and of
a laboratory suspension system on the dynamics of controlled space structures which
are tested on the ground pre-flight. Initial stress effects, initial deformation effects,
and suspension system effects are examined in turn, in a general manner. This work
focuses on how these effects perturb the modal structure of a suspended beam or
beam-type structure.

The fundamentals of initial stress modeling theory are presented to convey an
understanding of the origin of the geometric stiffness effect and how the latter differs
from the initial deformation type of effect. The role played by non-linear strain and
element rotation is described to link the direct effects of gravity on the structure
with those on the sensors and actuators. A general finite element geometric stiffening
framework is presented and verified for a twelve-degree-of-freedom beam element sub-
ject to concentrated nodal loads. The same framework is subsequently used to derive
the geometric stiffness matrix for a beam element subject to both concentrated nodal
loads and distributed loads. Non-dimensional parameters are derived describing the
sensitivity of the eigensystem of clamped-free, pinned-pinned and free-free beams, or
beam-like structures, to geometric stiffening effects and static suspension stiffening
effects.

The direct effects of gravity on the control and output matrices of the controlled
structure model due to perturbations to the dynamic performance of accelerome-
ters and proof-mass actuators are thoroughly described. A single non-dimensional
measure is derived describing the sensitivity of either device to the effect of gravity.
The modeling technique is applied to the MACE testbed and found to improve the
accuracy of accelerometer output transfer functions.

A parametric variation analysis of gravity effects on a simplified model of the
MACE testbed is performed and a higher order model of the MACE testbed is de-
veloped for comparison with experimental data. Suspension, gravity stiffening, and
initial deformation effects are all included in the MACE model. A flexible appendage
experiment is designed to sensitize the MACE testbed to initial deformation effects
and experiments are performed to verify the predictions.

Information is provided in the appendices on the details of using existing finite
element codes to capture gravity and suspension effects, as well as on the optimal
design of simple extensional spring suspension systems.
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Chapter 1

Introduction

As the projected size of future large spacecraft grows, the tendency is for their reso-

nant frequencies to drop. As performance requirements similarly continue to grow the

trend is for the spacecraft control system bandwidth to increase. When the flexible

dynamics of the spacecraft structure approach or enter the controller bandwidth it is

necessary to take into account the interactions of the control system and the struc-

ture. This is the principle motivation for control structure technology development -

a current area of widespread and intensive research [1, 2].

The solution to the control structure interaction problem requires that the struc-

ture be designed for control or that the control system be designed for the structure,

i.e. taking into account the structural flexibility. Both of these solutions, or a combi-

nation thereof, require an accurate model or set of models of the spacecraft structural

dynamics. The accuracy required of the model is proportional to the control authority

one wishes to exercise. Even very small errors in the model can lead to closed-loop

instabilities as control authority is increased [1, 3]. An alternative technique is to

use more than one model and to attempt to describe a space of feasible plant be-

haviors [4, 5]. While less sensitive to modeling errors, this and other robust control

strategies would benefit nonetheless from obtaining better models at the outset [3].

To verify the model of the spacecraft dynamics and to verify the stability and

performance of the controlled payloads (or controlled elements of the structure) actual
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physical tests are essential [6-10]. These tests may be performed on components of

the spacecraft, on models of the spacecraft, or on the spacecraft itself. Given the

costs associated with performing routine tests in orbit, and the risks of delaying tests

until orbital operation, these tests are typically performed on the ground. Special test

environments, procedures, or suspension devices can be used to simulate the free-free

boundary conditions of space but these methods only approximate the spacecraft's

operational environment.

Given the need to test controlled space structures on the ground, coupled with the

need for high fidelity models of the in-orbit dynamics of spacecraft, three important

questions arise which are addressed by this thesis. First, what are the perturbing

effects of gravity and of a suspension system on the dynamics of a controlled flexible

structure? Second, how may these effects be captured in a model of the system

dynamics? And third, when is such modeling required? Including the effects of

gravity and the laboratory suspension system in the ground-based model results in

an improved 1-g model for model-based control, and an improved 0-g model which

is obtained by removing the gravity and suspension effects from the 1-g model after

it is tuned using ground-based data.

Currently the most popular and practical approach to modeling the dynamics of

a structure (and developing the associated model of the controlled structure) is to use

the displacement-based finite element method. This thesis examines therefore how the

effects of gravity and of a suspension system may be captured in a displacement-based

finite element model. To obtain useful non-dimensional parameters and to study

the fundamental coupling mechanisms on a simple three dimensional structure this

thesis focuses on beam-type structures and how their eigenstructure (vibration modes

and resonant frequencies) is affected by gravity and the presence of a suspension

system. Furthermore, to comprehensively address the question of how gravity affects

the ground testing of a controlled flexible structure, this thesis also examines the

effects of gravity on structural sensors and actuators.



1.1 Background 19

1.1 Background

This section provides additional background on the motivation for this thesis and on

the controlled structure technology problem.

Spacecraft Design

The typical design procedure used in the past to prevent control-structure interac-

tions aboard spacecraft has been to stiffen the spacecraft structure so that structural

resonances lay outside the control bandwidth. When one refers to a flexible space-

craft the implication is usually that the structural flexibility is an important concern

and cannot be so easily eliminated. An excellent present-day example of a spacecraft

whose performance was adversely affected by structural dynamic interactions is the

Hubble Space Telescope where solar array flexibility degraded the pointing perfor-

mance [11,12]. This was corrected by modifying the pointing control algorithm using

in-flight identification data, but the flexible appendage excitation problem could have

been anticipated and prevented through the use of ground-based model and test data.

Other examples of space platforms which will most likely be susceptible to control

structure interaction problems are the Space Station Freedom (particularly during as-

sembly with the Remote Manipulator System), the Large Synthetic Aperture Radar

Satellite, the Earth Observation System and the Large Space-Based Interferometer

mission.

Other than stiffening the structure, approaches for solving the control structure

interaction problem are: to passively increase the damping in the structure with a

judicious placement of dissipative material, to isolate the structure from the distur-

bance sources, to isolate the output devices (i.e. the performance metric) from the

structure, to use low authority control for local damping at critical locations in the

structure, and to use high authority control to modify or avoid the excitation of

the global modal behavior of the structure. Figure 1-1 illustrates the principal el-

ements of the structural control problem [1]. All of the aforementioned techniques
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Disturbances Performance

High Authority
Global Control

Figure 1-1: Controlled Structures Technology Problem

have one thing in common and that is their requirement for a model of the plant,

i.e. the structure, the sensors and the actuators. The effectiveness or success of the

structural control technique is directly related to the accuracy of this model.

Spacecraft Modeling

There are two fundamental models pertinent to this discussion: the structural dy-

namics mass and stiffness model, and the controlled structure state space model. The

structural dynamics model essentially consists of a discretized mass and stiffness (M

and K) representation of the structure while the controlled structure model consists

of the state-space A, B, C and D matrices, i.e. the system, control, output and feed-

through matrices (see Chapter 4). Information provided by the structural dynamics

model is used to construct the controlled structure state space model. The fundamen-
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tal system properties provided by the structural dynamics model to derive the state

space model are the structural eigenfrequencies and eigenmodes, collectively referred

to as the eigensystem. Thus, in this study of the effects of gravity and of a suspension

system on the dynamics of controlled flexible spacecraft we are principally concerned

with the perturbations to the eigensystem of the suspended structure. Direct effects

on the control and output sensitivities (and hence on the state space model) are also

possible for certain structural sensors and actuators. These effects are examined in

Chapter 4 for the accelerometer and the proof-mass actuator. Note that the study

of gravity and suspension effects on the damping in the structure is not considered

here due to the established difficulties of a-priori damping modeling and the common

practice of measurement-based damping identification.

Spacecraft Testing

To develop an accurate and meaningful model of the structural dynamics it is neces-

sary to tune the system model based on experimental data, particularly in the case

of controlled structures [1, 3]. This requires that pre-flight models of the system, or

its fundamental components, be built and tested [6-10]. For safety, cost and prac-

ticality reasons the structural dynamics tests and closed-loop system performance

tests are most often performed on the ground (rather than in the operational orbital

environment) with the structure suspended from above using long cables and soft

springs to simulate the free-free boundary conditions of space [10]. This ground-

based testing unfortunately introduces a number of discrepancies as compared to the

orbital environment, e.g. aero/acoustic effects, suspension effects, gravity effects and

thermal/radiation effects [13]. It is felt that the most significant of these are the

family of gravity and suspension effects. Ashley [10] and Wada [14] for example state

that gravity effects represent a major obstacle to the testing of large space structures

rather than a minor inconvenience. Hanks and Pinson [6] compare the differences

between ground-based test results and orbital results to "noise" on the ground-based

test data which must either be removed or accounted for. They identify the following

three approaches for removing, reducing, or accounting for the effects of gravity and

a suspension system:
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1. Special Test Environments

(e.g. O-g parabolic aircraft flights and vacuum chamber drop tests)

2. Special Test Procedures

(e.g. subassembly testing, component testing, test article size reduction via

scaling and test article suspension using sophisticated low-frequency suspension

devices)

3. Analytical Modeling

(i.e. analytically removing the gravity and suspension effects incorporated in

the ground-based model to yield the orbital model)

For practical reasons the use of 0-g parabolic aircraft flights and vacuum chamber

drop tests is not well suited to the testing of controlled structures. This thesis and

the M.I.T. Space Engineering Research Center therefore adopt a combination of the

remaining two options in an effort to address the real problems encountered in the

ground-based verification of controlled flexible spacecraft: i.e. analytically accounting

for gravity and suspension system effects in the model of a structure which has been

suspended using state-of-the-art low-frequency suspension devices. This approach is

also the one which has widely been adopted by industry. While most of the elements

of the work presented in this thesis have been used for some time by the aerospace

industry, the industry's interest was not on the nature and prediction of gravity and

suspension effects but on the final answer (i.e. what is the final structural dynamics

model?). The result is that gravity effect modeling methods vary from project to

project and corporation to corporation and no comprehensive treatment of the topic

of gravity and suspension effects has ever been produced. This thesis attempts to fill

this void by addressing the three questions of what are the effects of gravity and of a

suspension system on a controlled flexible spacecraft, how are they are modeled, and

when are they important.

Using the analytical gravity and suspension effect modeling technique one derives

two structural dynamics models: a ground-based or 1-g model and an orbital or
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0-g model derived from the 1-g model. The 0-g model is simply obtained by removing

the effects of gravity and of the suspension system from the 1-g model. To obtain

the best possible 0-g model it is important to include the effects of gravity and of

the suspension system in the ground-based model prior to the tuning of the model

in order to avoid tuning the wrong parameters in an effort to compensate for gravity

and suspension effects.

The principal M.I.T. Space Engineering Research Center testbed used in this work

is a multiple payload platform model known as the Middeck Active Control Exper-

iment (MACE) testbed [13, 15]. The MACE testbed is geared precisely towards the

study of gravity and suspension effects present even with state-of-the-art pneumatic-

electric suspension devices [16, 17]. In the future this testbed will serve to verify the

range of validity of the analytical techniques described in this work with an actual

orbital test aboard the Space Shuttle.

1.2 Overview of Gravity and Suspension Effects

The effects of gravity and of a suspension system on a controlled flexible structure

can be grouped into the following categories:

1. Suspension Effects

2. Gravity Effects on Structure

2.1 Geometric Stiffening

2.2 Initial Deformation Effects

3. Gravity Effects on Sensors and Actuators

4. Non-linear Gravity and Suspension Effects

In general terms, the effect of attaching a suspension system to the test article is

to change the system boundary conditions. By augmenting the system description
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to include the suspension system the overall system mass and stiffness description is

perturbed thus affecting the system eigenstructure.

The two gravity effects on the structure similarly result in changes to the system

eigenstructure. Geometric stiffening is a change in the system stiffness due to initial

internal stresses which occur due to gravitational loading. Initial deformation effects

are perturbations to both the system mass and stiffness properties due to initial

deformations which occur when the otherwise unloaded structure is suspended and

deforms in the gravity field.

The direct effects of gravity on the performance of certain sensors and actuators

are a result of harmonic rotation of the devices when attached to a vibrating struc-

ture. Presently, only accelerometers and proof-mass actuators have been identified as

structural control devices susceptible to this effect.

All of the above linear effect categories are examined in this work. The non-linear

effects are not studied herein. The non-linear effects of gravity and of the suspension

system are typically linear effects on non-linear components, e.g. gravity loading of

joints or mechanisms with backlash or deadband. Occasionally a suspension system

may introduce minor non-linear dynamic effects such as stiction or Coulomb friction

but these are typically negligible.

1.3 Survey of Previous Work

This section briefly highlights the past work performed in the area of modeling gravity

and suspension effects.

1.3.1 Suspension Effects on Structures

In 1974 R. Herr of the NASA Langley Research Center performed seminal research on

cable suspension system perturbations to the lateral flexural eigenfrequencies of slen-

der aerospace structures [18]. Herr identifies the non-dimensional parameter A as a
nla
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preliminary measure of the magnitude of the error in the flexural frequency, where 1 is

the vehicle length. Herr also found, for his vertically suspended rocket-like structures,

that axial stiffening effects were the dominant source of error.

Hanks and Pinson, also of the NASA Langley Research Center, discussed the

trade-off between lowering suspension pendular frequencies and lowering cable violin

mode frequencies with increasing cable length [6].

M. Gronet and R. Brewster of Lockheed Missiles and Space Co. and E. F. Crawley

of M.I.T. identified potential suspension cable interactions with the space station

hybrid scale model, specifically: added mass, added stiffness and coupling of cable

dynamics with the structure [19]. The dislocation method is mentioned as a method

of tuning the cable tension in the model to mimic the experimental tuning which is

performed to obtain a level suspended structure. In their discussion of cable location

selection they describe the optimal suspension stiffness distribution to be proportional

to the attachment point mass and or stiffness so that the eigenmodes of the test article

remain unperturbed and the eigenfrequencies shift uniformly.

Experimental results obtained from the Middeck Open-Loop Dynamics Experi-

ment (MODE), a space flight experiment (STS 48, Sept. 1992), indicated that the

effect of a four point suspension system attached to the four corners of the top surface

of a the square truss test article was to introduce a significant yet predictable linear

change on the test article's torsional resonant frequencies and damping ratios [20].

Resonant frequencies increased linearly with an increase in vertical suspension bounce

frequency, while damping ratios decreased linearly with increasing suspension fre-

quency.

The experimental work of V. Cooley [21] in comparing zero spring rate mechanisms

(ZSRMs) to pneumatic-electric suspension devices found that mass coupling effects

dominated stiffness effects for his test article. Damping effects were found to be

substantial.
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1.3.2 Gravity Effects on Structures

Ben Wada of the Jet Propulsion Laboratory refined a Special Test Procedure for

suspended structures he named the Multiple Boundary Condition Test (MBCT) [14,

22, 23]. The approach of his MBCT work consists of using multiple pin joints or

clamps to support the structure and reducing the support spacing to the point where

gravity effects can be considered negligible. No description of the circumstances under

which the gravity effects can be considered negligible is presented although Wada does

identify gravity sag and gravity stiffening as two important effects of gravity on the

structure. By performing a large number of tests with a variety of boundary conditions

he identifies different sub-matrices of the system mass and stiffness matrices with

every test. Therefore the approach is in essence a form of sub-assembly testing where

gravity effects are ignored. The method attempts to predict the system 0-g dynamics

and cannot be used for the derivation of a 1-g model.

C. F. Shih's work [24, 25] derives the closed-form expressions for the 2D eigen-

behavior of a vertical and horizontal pinned-pinned beam subject to its own weight.

While the scope of this work is very limited it is a practical reference for the devel-

opment of simple rules of thumb for simple structures. Shih's colleagues at the Jet

Propulsion Laboratory, J. Chen and J. Garba [26], also examined the special case of

2D horizontal pinned-pinned beam behavior. They identified a very small effect on

the shapes of the bending modes but a substantial effect on the resonant frequencies.

This effect was found to decrease with increasing wave number.

M. Gronet, R. Brewster and E. F. Crawley [19] describe some of the system issues

in ground-based testing of flexible structures. While the focus of their review was on

suspension effects, the use of geometric stiffness modeling techniques is mentioned as

a means to capture gravity stiffening effects.

No explicit work was found which dealt with the incorporation of gravity and

suspension effects in a finite element model.
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1.3.3 Gravity Effects on Sensors and Actuators

Norris, Thompson and Das [27] recently examined the attenuating effect of gravity

on the dynamic performance of accelerometers subject to bending-induced rotation

in the vertical plane. Their work is extended here to include amplification effects,

sign changes, torsionally induced rotation, arbitrary accelerometer and rotation ori-

entations and the dual effect on the proof-mass actuator.

1.4 Methodology and Outline

Methodology

The approach adopted in this thesis is to keep the analysis, the results, and the

observations concerning gravity and suspension effects as general as possible. Since

the method of choice for modeling the dynamics of complex structures is the finite

element method, this thesis is largely concerned with the incorporation of gravity

and suspension effects into the finite element framework. Unfortunately, to illustrate

the derivation of a geometric stiffness matrix, to examine the nature of the modal

couplings induced by gravity or the suspension system, and to derive useful non-

dimensional parameters for predicting the magnitude of the gravity and suspension

effects, it is necessary to focus on a particular type of element or structure. This

thesis focuses thus on beam-like structures and beam-type finite elements due to their

widespread applicability in finite element models and their susceptibility to gravity

effects.

Since the suspension system itself is susceptible to gravity effects, the theory of

initial stress stiffening and the effect of initial deformations are examined first. A

general framework is presented to allow for the derivation of a geometric stiffness

matrix or initial stress stiffness matrix for an arbitrary element and to present the

initial deformation effect on a finite element model in a general context. A geometric

stiffness matrix is derived for a homogeneous 12 degree-of-freedom Bernoulli-Euler

27
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beam element subjected to concentrated nodal loads, and is compared to the results

of Yang and McGuire [28, 29] to verify the methodology. A second geometric stiff-

ness matrix which incorporates gravity-like distributed forces is then derived for a

Bernoulli-Euler beam element and its performance is compared to that of the previ-

ously derived concentrated-load geometric stiffness matrix. The enhanced geometric

stiffness matrix was found to be unnecessary if one uses the proper consistent nodal

loads.

The sensitivity of the eigenstructure of clamped-free, pinned-pinned and free-free

beam elements to the effects of initial stress stiffening are examined in a general an-

alytical fashion by identifying the symbolic eigenvectors of the unperturbed system

and using them to project the symbolic representation of the perturbed eigensystem

onto the original eigenspace. This technique results in a "sensitivity matrix" which

readily exposes the resulting eigenfrequency shifts and modal couplings. The rela-

tionship between this eigenprojection technique and the definitions of the eigenvector

and eigenvalue derivatives is also presented. An important advantage of using this

analytical technique to describe the impact of the perturbations on the beam eigen-

structure is the ease with which key non-dimensional parameters can subsequently be

identified.

The initial stress effects examined are initial bending, torsion, and extensional

stresses. The effects of shear loads are ignored since the focus is on long slender

flexible structures. A general analytical treatment of the effects of initial deformation

on the eigenstructure of a beam element was also attempted but exceeded available

computational resources. A verification analysis is performed where the eigensystem

of a drooping beam is identified and compared to the published analytical results

of Minguet [30]. The Minguet reference case is one of the only references available

where the effects of small initial deformations and stress stiffening on a full three

dimensional beam eigenstructure is detailed. Unfortunately the Minguet beam was a

composite beam rather than a homogeneous beam which limited the extent to which

28
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his results could be reproduced. Eigenfrequencies were shifted for both the loaded

and unloaded case but the eigenmodes were accurately predicted.

The static effects of a suspension system on the eigenstructure of a horizontally

suspended free-free beam are then examined in a similar analytical fashion. Non-

dimensional parameters are derived to describe the sensitivity of a beam-like structure

to the suspension stiffness effects. The dynamic effects of the suspension system are

not examined in this thesis as it is shown rather how these effects can be captured by

including the suspension system in the finite element model before the computation

of geometric stiffening effects.

To study the effects of gravity on structural sensors and actuators an effort is

made to identify fundamental perturbation mechanisms which affect even the ideally

performing sensor or actuator. It was found that only those devices whose operation

is based on a translating internal mass are susceptible to a gravity induced perturba-

tions. The focus is therefore on the accelerometer and the proof-mass actuator. To

identify the corresponding perturbations to the controlled structure input and output

matrices the approach was to identify the fundamental gravity effect on the dynamic

performance equations and then to examine the modal modeling of the performance

equations. Non-dimensional parameters describing the sensitivity of the devices to

the additive gravity perturbation effect were then derived, and found to be identical

for both these devices.

The MACE testbed is used as a case study for all three of gravity stiffening,

initial deformation and sensor/actuator effects. A parametric variation analysis is

performed using the ADINA finite element modeling software [31] to capture gravity

and suspension effects in a simplified version of the MACE model. The effectiveness of

the non-dimensional parameters presented in Chapters 2 and 3 is investigated. A high

fidelity model of the MACE testbed is developed and used to generate the important

system transfer functions for comparison with experimental transfer function data.
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Outline

Chapter 2 of this thesis examines the direct effects of gravity on the property matrices

of a structure, i.e. the effects of initial stress stiffening and the effects of initial

deformations on the mass and stiffness matrices of a structure. The most theoretical

of all chapters, Chapter 2 presents a formal derivation of the geometric stiffening

and initial deformation effects. Highlighted is the relationship between infinitesimal

rotations and the non-linear strain contribution to the geometric stiffness matrix.

The final result of the first section of Chapter 2 is a set of equations describing

how the mass and stiffness matrices should be formed to capture initial stress and

initial deformation effects. The subsequent sections of Chapter 2 focus on beam-like

structures and the finite element beam element. A new geometric stiffness matrix is

derived which allows for gravity-like distributed loads. The nature of the effect of

initial stresses or initial deformations on the eigenstructure of a clamped-clamped,

pinned-pinned, or free-free beam element are derived, observations are made, and

non-dimensional parameters identified. Chapter 2 closes with a verification of the

gravity effect modeling techniques and the analysis of a few sample problems.

Chapter 3 investigates the effects of a suspension system on the eigenstructure of

a horizontally suspended beam or beam-type structure. The focus is principally on

static effects although it is shown how dynamic effects are captured by including the

suspension system in the structural model and incorporating the geometric stiffening

effects. Non-dimensional parameters are again identified to help predict the mag-

nitude of the suspension stiffening effects on the structure dynamics. The different

types of dynamic effects that one should be aware of are also described.

Having studied the direct effects of gravity and the suspension system on the con-

trolled structure dynamics, Chapter 4 examines the effects on the structure's sensors

and actuators. The effect of gravity on the accelerometer and proof-mass actuator is

identified along with another non-dimensional sensitivity parameter. The modeling

techniques derived in this chapter are applied to the MACE testbed and shown to
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improve the transfer function of a horizontally oriented accelerometer.

Chapter 5 then comprehensively applies the gravity and suspension modeling tech-

niques described in Chapters 2 and 3 to the MACE testbed. The ADINA finite ele-

ment program is used to perform a parametric variation analysis and a high-fidelity

analysis of the MACE testbed. Five different configurations are studied in the para-

metric variation analysis to study the applicability of the non-dimensional parameters

and the variation in the nature of the gravity and suspension effects with variations in

the test article properties. The incorporation of gravity and suspension effects in the

high fidelity MACE model is shown to improve the low frequency description of the

test article, largely due to suspension effects and the application of geometric stiffness

effects to the latter. To sensitize the MACE test article to initial deformation effects

a flexible appendage experiment was designed and performed. Two graphite-epoxy

composite beams (identical to those used by Minguet in his study of small droop

effects) were attached to the node above the performance payload in the horizontal

plane forming a T with the bus. The appendages selected were not straight but

slightly bowed by just the amount needed to cancel the droop effect of gravity. This

made it possible to perform two experiments: a full droop experiment with the slight

curvature facing down and a no-droop experiment with the slight curvature mounted

upwards and straightened by the distributed gravity load. Transfer function data is

presented for the two cases and the predicted higher frequency modal coupling effects

due to the initial deformations are witnessed.

The final chapter summarizes the conclusions presented in this thesis and arrived

at over the course of this research. Recommendations for future work are listed after

the conclusions.

Appendix A presents the information required to implement the gravity and sus-

pension modeling techniques of Chapters 2 and 3 in a finite element program. The

general information provided is applicable to most finite element packages but addi-

tional detail is presented for the use of the ADINA finite element modeling package.
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The multi-step, non-linear ADINA analysis procedure is described and a sample set

of run-streams is provided.

Appendix B offers a set of procedures for selecting extensional springs for a sim-

ple vertical spring suspension system. This approach is only valid for test articles

whose first resonant frequency is near or above 2 Hz. Lower-frequency test articles

require cable and spring lengths which are typically not possible due to ceiling height

limitations, dictating therefore the use of more sophisticated suspension devices.

1.5 Contributions

Identified in this work are the different mechanisms by which gravity and a laboratory

suspension system affect the dynamics of suspended flexible structures. A coherent

step-by-step derivation of the geometric stiffness effect and the initial deformation

effect on the system mass and stiffness matrices is presented to highlight the difference

between the two effects, to identify the assumptions and limitations of the theory,

and to allow for original applications of the theory. The role of rotation in stress

stiffening and initial deformation is presented and proposed as a unifying link to the

sensor/actuator family of effects where rotation in a gravity field is the underlying

origin of the perturbation.

An original contribution of this work is the derivation of a geometric stiffness

matrix, Kgd, for a Bernoulli-Euler beam element which allows for linearly distributed

axial loads and uniformly distributed transverse loads. However, by comparing the

performance of the Kgd matrix to the geometric stiffness matrix Kg, which only

allowed for concentrated nodal loads, it was found that the enhancement of using

Kgd over Kg is negligible if one uses consistent nodal loads and a sufficient number

of elements. An exception to this is is the case of pure distributed axial loading for

which use of the Kgd matrix is recommended.

A second, more practical original contribution is a set of non-dimensional param-
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eters for quickly evaluating the approximate magnitude of gravity load and static

suspension effects on the eigensystem of suspended beam-type structures or beam-

type components of a structure. The beam configurations studied were the clamped-

free, pinned-pinned, and free-free beam which together cover most of the boundary

conditions one would typically encounter for a beam-like component or element of

a spacecraft structure. The non-dimensional parameters associated with initial de-

formation effects and with dynamic suspension effects are left for future work. The

thesis describes how the latter parameters can be derived.

Another valuable contribution of this work is the thorough description of gravity

effects on sensors and actuators and the modeling thereof. The work is an extension of

the accelerometer work of Norris, Thompson and Das [27] and describes amplification

effects in addition to attenuation effects, is generalized to describe arbitrary device and

rotation orientations, and identifies the fundamental non-dimensional gravity effect

sensitivity ratio common to both the accelerometer and the proof-mass actuator.

The application of the modeling techniques developed herein to a realistic con-

trolled flexible spacecraft testbed also allowed for the identification of realistic gravity

and suspension system effect types and magnitudes. For the structural dynamicist

who, for the first time, is faced with the problem of incorporating gravity and sus-

pension effects in a finite element model, the summary of Appendix A is a valuable

tool.
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Chapter 2

Gravitational Load Effects on

Structures

The objectives of this chapter are to:

* identify the origin of gravity effects on suspended flexible structures,

* derive general modeling techniques for the effects of gravity on the eigensystems

of flexible structures,

* examine general effects on the eigensystem of a beam or beam-like structure,

* derive non-dimensional parameters which describe the sensitivity of a beam or

beam-like structure to gravity effects,

* verify modeling techniques and evaluate performance of non-dimensional param-

eters by performing a numerical study of the dynamics of beam-like structures

in a gravity field.

To ensure clarity of purpose it is stressed here that the gravity effects we are interested

in are the effects on the eigenfrequencies and eigenmodes of the suspended structure

as these are the building blocks of the controlled structure model. We seek therefore

to identify the perturbation to the homogeneous system equations of motion, i.e. the



unforced equations of motion which yield the infinitesimal displacement eigenproblem.

Since damping is generally incorporated into the system model a posteriori (based

on conservative damping estimates or measurements), we are strictly interested in

the effects of gravity on the mass and stiffness matrices which define the structure's

eigensystem. The two direct effects of gravity on the dynamics of a suspended flexible

structure will be shown to be initial stress effects and initial deformation effects.

Initial stress effects are perturbations to the system stiffness matrix which are due

to the presence of stresses in the deformed reference structure. Initial deformation

effects are perturbations to both the mass and stiffness matrices which result from

changes in the reference structure geometry when gravity loading is applied to the

undeformed suspended reference structure.

Chapter Outline

The chapter essentially addresses the different objectives in sequence:

Section 1 contains a general derivation of the modeling of the two direct gravity

effects on the structural dynamics.

Section 2 derives a standard initial stress stiffness matrix for a beam element, as

well as a new initial stress stiffness matrix which also captures distributed load

effects.

Section 3 analyses the impact of initial stress effects on the eigensystems of clamped-

free, pinned-pinned, and free-free beam-like structures, and derives associated

non-dimensional sensitivity parameters.

Section 4 analyses the impact of initial deformation effects on eigensystem of free-

free beam-like structure and derivation of non-dimensional parameters.

Section 5 combines initial deformation and initial stress modeling techniques in the

numerical study of sample problems with known solutions.

36 Gravitational Load Effects on Structures



For the reader who is only interested in the key equations and the final results it

is recommended to refer directly to the fundamental intermediate results of Equa-

tions 2.34, 2.37, and 2.51 (on pages 52, 53, and 56) and to Equations 2.59, 2.61 and

2.62 (on pages 58, 58 and 58) for the key final results.

Chapter Overview

This chapter examines the modeling of gravity effects on the continuous structure

starting from an exact, non-linear statement of the principle of virtual work which

captures initial stress effects on the system stiffness properties. The effect of initial

stresses is to stiffen or destiffen static or dynamic infinitesimal element rotations of a

magnitude comparable to the strains. In this case, the initial stresses are due to the

presence of the constant gravitational load field. An incremental decomposition of the

stress and strain terms, followed by a finite element discretization, yields a matrix form

of the incremental principle of virtual work which makes clear the origin and form of

the different stiffness matrix components. One of these stiffness matrix components

captures the stress stiffening effect, another is the classic stiffness matrix, and the

two others are eliminated in the linearization required to form the eigenproblem. By

incorporating inertial load effects, the system mass matrix is obtained and shown to

be invariant to the stress stiffening effect. In the discussion of the solution of the

non-linear equilibrium statement, the second gravity effect is introduced, i.e. the

effect of initial deformations which affects both the mass and stiffness properties of

the system. Assumptions and limitations are highlighted throughout the derivation.

After deriving and presenting the general form of the stress stiffening and initial

deformation effects on the equations of motion of a discretized structure, this chapter

focuses on the particular case of a three-dimensional Bernoulli-Euler beam element,

and structures composed of such elements. Two geometric stiffness matrices which

capture initial stress stiffening effects for a beam element are derived-one which is

limited to lumped nodal loads and another which allows for certain gravity-like dis-
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tributed loads along the length of the beam element. These perturbations to the

original elemental stiffness matrix depend only the internal stress state which can be

determined based on the resolved nodal loads. The initial deformation transformation

matrices, on the other hand, are only a function of the rigid-body reorientation of the

individual beam element neutral axes.

Given general analytical descriptions of the two gravity effects on the system prop-

erty matrices of a beam element, an eigensystem sensitivity analysis is performed to

examine the impact of the gravitational loading on those flexible spacecraft dynamic

properties of interest, i.e. the resonant frequencies and eigenmodes. Non-dimensional

parameters which describe the sensitivity of a beam element or beam-like structure

to the gravity perturbations are then derived.

A verification analysis is then performed, making use of both the geometric stiff-

ness and initial deformation refinement procedures to study special cases of gravita-

tional loading for which well established results exist.

2.1 Initial Stress Modeling Theory

This section describes the theory behind incorporating gravity effects into a structural

dynamics model. In brief, the solution is to augment the regular stiffness matrix with

an initial stiffness matrix and to redefine the reference structure after computing

initial deformations. If necessary, the stiffness reformations should be included in the

solution for the static deformation state which is an incremental procedure in the case

of large deflections.

The initial stiffness matrix is obtained, as will be shown, by including the non-

linear strain terms in the equilibrium statement for the deformed configuration. These

non-linear strain terms are made important by the gravitational loading as they de-

scribe rotation of the element. The initial stiffness method or geometric stiffness

method is derived here in order to understand how it captures the effects of gravity



loading in addition to understanding its limitations and implied assumptions. It is

worthwhile to present here a rather detailed derivation in order to understand the

role of dynamic elemental rotations in the geometric stiffness matrix, as well as the

difference between the stress stiffening effect and the initial deformation effect. The

point of identifying the role of the dynamic elemental rotations is to establish a link

with the source of the gravity effect on the sensors and actuators as described by Rey

et al. in [32] and in Chapter 4, where harmonic rotation of the device in the gravity

field leads to an additive perturbation to the device input or output.

2.1.1 Background

It is somewhat surprising to find that the key to capturing the effects of gravity

on the linear structural dynamics model is to be found in the non-linear or large

displacement modeling literature, especially since our goal is to identify gravity effects

on the small displacement eigenproblem. This can be explained by recognizing that

the large displacement theory captures the effects of element rotations which are made

important by internal stresses. As pointed out by Martin [33], the large displacement

theory distinguishes itself from the small displacement theory not necessarily because

large displacements occur in a literal sense but because stresses exist which influence

the structural stiffness in the presence of certain displacements (i.e. rotations of a

magnitude comparable to the strains). Large displacement theory, or geometrical

non-linear theory, is thus a fundamental component of stability analysis which is a

special case of the generalized eigenproblem we are interested in. Note that it is not

necessary that the structure be stressed close to the point of structural collapse for

the perturbation to the eigensystem to be significant given the controlled structure

context where even small errors can lead to instabilities.

The first attempt to take into account a uniform initial stress is attributed to

Southwell in 1913 [34,35]. In 1928 Biezeno and Hencky introduced incremental stress-

strain relations in their work on elastic stability theory [36, 37]. In terms of the

2.1 Initial Stress Modeling Theory 39
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discrete structural property matrices, the seminal paper which proposed an updating

of the stiffness matrix for the large deflections of a structure subject to heating and

external loads was written by Turner et al. in 1959 [38]. The geometric arguments

used by these and other initial researchers [33, 39-41] to incorporate the effect of

membrane forces in the direct stiffness method led to the name geometric stiffness

matrix. Simple bar elements and beam elements were considered first [33, 42] and

then similar geometric arguments were used for various plate elements [43, 44].

2.1.2 Derivation

Approach

Several different approaches exist to derive the initial stress stiffness matrix, much

in the same manner as different approaches exist for deriving the regular stiffness

matrix. It is possible to use a virtual work approach using virtual displacements or

virtual stresses, or one can use a potential energy approach. The next step would

be to apply one of a number of different discretization techniques such as Galerkin's

method, Assumed Modes/Ritz-Method or the Finite Element Method.

The approach adopted here is to use the principle of virtual work and to discretize

using a displacement-based, finite element representation. The displacement-based

finite element method is by far the most common and successful method of deriving

complex finite-order structural models for static and dynamic analysis. The method

essentially consists of discretizing a structure into elements such as beams, rods,

plates, shells, etc. where each element has a finite number of discrete translation or

rotation degrees-of-freedom at a limited number of nodal points. These elements have

associated mass and stiffness matrices which are obtained by assuming displacement

interpolation shapes between their nodal points and integrating the appropriate terms

of the discretized principle of virtual work. The mass and stiffness matrices are

assembled into global mass and stiffness matrices by superposition.

The steps in this derivation are first to survey the classic small displacement
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analysis relations used in the regular stiffness matrix derivation before proceeding

to describe the large displacement analysis strain tensor which captures the all-

important element rotation information using non-linear strain measures. To yield

the system property matrices for an Updated Lagrangian formulation, the concepts

and notation of an incremental formulation of the static equilibrium are de-

scribed. An incremental decomposition of the stresses and strains is then

performed to yield a general incremental principle of virtual work which captures the

effects of initial stress through the use of non-linear strain measures. A finite ele-

ment discretization of this variational statement of equilibrium is then performed

to yield a discrete incremental static equilibrium expression which in turn yields an

expression for the stiffness matrices. A linearization of the stiffness matrices is

then performed and various iterative solution techniques are described to solve for

the initial static displacements. Finally, the mass matrix is derived to describe the

dynamic system behavior and the small displacement eigenproblem is formulated

about the statically deformed equilibrium.

It is assumed in the developments which follow that the material properties are

constant, the constitutive relations are linear, the deformations are elastic and the

strains are small with respect to 1.

Small Displacement Analysis

In a small displacement analysis it is possible to derive the system mass and stiffness

properties by applying finite element modeling techniques to the following statement

of equilibrium between the internal virtual work and the external virtual work for a

general body at time t, [45]

/t'i 'dV =dV + t& f tsu dS + E tFk 't (2.1)JV V Sk
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or,

vTij dV (2.2)

where Tij is the instantaneous Cauchy stress tensor evaluated at time t, tlij are

the linear (small displacement or classical) virtual strains, and tf B, tf s and tFk

are respectively the body forces, surface tractions and concentrated forces at time

t. The virtual displacements are denoted by U, where the S superscript denotes

surface displacements and the P denotes the displacements of those points where the

concentrated forces are applied.

The strain-displacement relation for the classical, small displacement, strain tensor

is given by

Seij- 6j + 6uju ) (2.3)

where ui (i = 1, 2, 3) is a Cartesian displacement measure, xi (i = 1, 2, 3) is a Cartesian

position measure, and ui,j is the derivative of the it h displacement measure with

respect to the jth direction (j = 1, 2, 3). The classic small displacement stress-strain

relation is given by

Tij - Cijk ekl (2.4)

where Cijkl is constant in this treatment limited to linear elastic materials. Such

measures of stress and strain, while very practical for small displacement analysis,

are not plausible for large displacement analysis as they are not invariant to rigid-

body rotations and translations. It is necessary to use more general stress and strain

measures to make apparent the effect of gravitational loading. Note that the word

"displacement" is used here as it is in the literature to describe both translational

and rotational displacements.

Large Displacement Analysis Strain Tensor

The general strain measure used in this analysis is the Green-Lagrange strain tensor

which is invariant under rigid body motion and is valid for both small and large

42
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Figure 2-1: Simultaneous Deformation, Rotation and Translation of an In-
finitesimal Element in Two Dimensions

displacements, [46]

1  + u Uk,i Ukj)=eij + ±ij( s ,i + k k, Bf 3j (2.5)

Note that the Green-Lagrange strain tensor is composed of the classical linear strain-

displacement quantity, eij, and an additional non-linear quantity, 7ij.

Rotation Representation in Strain Tensor

The Green-Lagrange strain-displacement relation is occasionally referred to as the

large displacement strain definition as it makes the strain tensor invariant to rigid-

body motion. The reason for this, it will be shown, is that the Green-Lagrange strain

tensor captures first order rotation information. It will also be shown that small

displacements and small strains are not a sufficient condition to justify the use of the

classical strain-displacement relation. Rather, it will be found necessary to evaluate

the relative magnitudes of the strains and rotations.

For an infinitesimal element subject to an elastic deformation and a rigid-body

displacement there is a unique rotation, 0, of the coordinate frame which maintains

symmetry of the strain tensor. This is readily appreciated in two dimensions as

portrayed in Figure 2-1. For the two dimensional planar case, the rotation angle is
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given by, [45]
6U2 _ 6u1

0 = tan-1 2 _ 6 a (2.6)

but for small strains " and b"2 are much less than 1 so that the rotation is described

by

- -" w2 1, Su2S 6 2U
W21 26X8X2 (2.7)

Similarly, for the three dimensional case we can define a rotation tensor wij,

(2.8)

Note that there are only three rotations as wij = 0 fori = j.

Based on the work of Novohilov [47], it is possible to write the Green-Lagrange

strain tensor of Equation (2.5) exactly in terms of the classical strain tensor eij of

Equation (2.3), and the rotation tensor wij of Equation (2.8),

el = ell + e

622 = e22 + 22 -2= 

2

E33 = e33 +

E12 = el 2 +

e

ell (2e12

613 el 3 + ell ( 13

E2 3 e 2 3 + e 2 2 2e23

2 1 2 le 3 - 13 2

e12 - w21 2 + 2  3 )2]

z we13- + 1 3 )2 + (e 2 3 - W3 2 )2]

- w2 1 ) + e 2 2 (12 w 2 1 ) 13 - 13

+ 13) + e 3 3 (2e1 3 - w 1 3 ) +- (el --w 2 1 )

- + e3 3 (23 32 - 21)

(2.9)

3 ' 3 2

(e 23 - W32

+13 13

Since the rotation tensor is anti-symmetric, i.e. wij = -wii, and the linear strain

term is symmetric, i.e. eij = eji, we are able to write Equation (2.10) in the following

more general tensor notation,

Ei = eii + [ ei + eij + wi)2] ;

Eij = eij + eii , e - w, 1) + ej,, (1ei + wji) (2.10)

A l6ui 6u)Wij ) x x
2 6Xj 6X,
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+ (Ieik + ki) ( ejk j) ; i P j; i k; j5 k

Neglecting the squares of the strains yields the more compact form,

;ii = eji + e- w i ij

i = eij- eiiwji e +jjw (eji,,w, + ejkwk) (2.11)

+wkwkj ; i j; i k ; j k

Clearly, the Green-Lagrange strain tensor captures not only the classical, pure de-

formation, small displacement strain but also the strain-rotation terms and second

order rotation terms. These terms cannot necessarily be neglected by the sole con-

dition of small displacements, i.e. rotations wi < 1, as the rotations must also be

small compared to the linear strain terms, i.e. wij < eij. For massive bodies the first

condition implies the second [47]. The need to include the non-linear terms is thus

most important for slender flexible bodies, where the extension in directions 1 or 2 is

small compared to the remaining direction(s), e.g. rods, beams, plates and shells.

Having found that the Green-Lagrange strain tensor captures element rotation

information and that the non-linearity is not only a concern in the case of large

displacements (as suggested by the often-used name for the tensor) but also in the

case of small rotations of magnitude comparable to the small strains, we now examine

how the non-linear strain terms lead to a stiffness perturbation in the presence of

initial stress.

It is interesting to note that the non-linear strain description described here is

essentially a description of elemental rotations superimposed on the linear strains

and that by incorporating this strain description in the derivation of the system

property matrices the effect of gravitational loading will be captured. There is thus a

strong parallel with the work of Rey et al. [32] on the effects of gravity on the dynamic

performance of structural sensors or actuators where dynamic rotation of the device in
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a gravity field was the fundamental mechanism by which gravity perturbed the system

dynamics (this work is detailed in Chapter 4). Due to the discrete nature of the sensor

or actuator rotation a discrete non-dimensional ratio describing the magnitude of the

gravity effect was easily derived [32], but since stress stiffening of the structure is

a distributed effect it is not possible to similarly identify a unique non-dimensional

ratio without integration. Since such an integration is already incorporated in the

stiffness matrix computation it is possible to identify meaningful non-dimensional

gravity effect sensitivity ratios for discrete finite elements. This topic is addressed in

Sections 2.3.4 and 2.4.4 in the context of a beam element.

Incremental Formulation of Static Equilibrium

Introducing the non-linear strain definition will lead to stiffnesses K which are a

function of the displacements U and the initial stresses T which in turn are both

functions of the loading R. We are thus faced with a static problem of the form,

K ( U(R), T(R)) U = R (2.12)

To solve this non-linear problem it is best to proceed by small load increments which

will ensure that in the case of multiple solutions the solution converged to is the

correct equilibrium [35].

It is therefore useful at this point to introduce the concept of an incremental anal-

ysis which will allow us to solve the non-linear principle of virtual work equilibrium

statement in terms of known initial conditions and an unknown increment. This ap-

proach will make clear the need to redefine the reference structure in the event of

finite deflections.

In the incremental formulation, it is necessary to identify the time at which a

quantity or tensor is evaluated (denoted herein with a left superscript) and the equi-

librium configuration co-ordinate frame used as a reference (denoted herein with a left

subscript if different from the left superscript). Given that the gravitational load is

46
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constant or static its application in increments makes the problem artificially dynamic.

The time variable t is thus a dummy variable. In a Total Lagrangian (T.L.) formula-

tion the reference configuration is the initial configuration so that Equation (2.5) is

written as

t+At 1 t+At t+At t+At + t+At t+At_ (2.13)
t i = 2  i,-i o+Uj,i + OtUk,i OUk,j) - t+ eiji (2.13)

In an Updated Lagrangian (U.L.) formulation the reference configuration is the equi-

librium configuration at the previous increment so that Equation (2.5) now takes the

form

t+at 1 t+At t+At t+At t+at t+t t+at (214)
1 e = * t u,jy + tfj,i + t tUk,i t k,j) t e + t77j (2.14)

Both of these approaches yield the same result in theory [45]. For conciseness a single

At subscript will be used to indicate the evaluation of an incremental quantity about

t at t + At. The U.L. strain-displacement relation is thus written as

t+Ae 2 (Atui,j + Atuj,i + AtUk,i AtUk,j) = Atei + a0t1j (2.15)

The Updated Lagrangian formulation will be used in this development as it more

clearly separates the stress stiffening effect from the initial deformation effect. In

the U.L. formulation, the strains are obtained by differentiation with respect to the

configuration at time t, and the system property matrices are obtained by integration

over the configuration volume at time t, which simplifies the strain-displacement

relationship. To transform the K matrix of the deformed structure to global co-

ordinates a projection is required but in the case of the Total Lagrangian formulation

this effect is captured in a more complex strain-displacement relation (B,) obscuring

the difference between the stress stiffening effect and the initial deformation effect.

This will be further described in section 2.1.3.
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To formulate the expression for the internal virtual work we require the stress

measure which is the energy conjugate of the Green-Lagrange strain measure. This

stress tensor is the 2nd Piola-Kirchhoff stress tensor, [45],

otSij t 8tx n O OOS= S 'Tmn (im' Tmm n) (2.16)

where the change in material density due to volumetric changes is captured by the

density ratio Op/tp. That the Green-Lagrange strain tensor and 2nd Piola-Kirchhoff

stress tensor are energetically conjugate implies, [45]

jt+At SCi . tdV = j t+t ev Tr tAt Emn t+AtdV (2.17)
V t o t ij - tV

i.e. the internal virtual work of the configuration at t + At defined about the con-

figuration at time t with the Piola-Kirchhoff stress measure and the Green-Lagrange

strain measure is equal to the internal virtual work per unit current volume at time

t + At using the small displacement stress and strain measures.

To capture the effects of the gravitational loading it is necessary to consider the

equilibrium of the initially stressed body in a deformed configuration which may in-

clude non-negligible rotations. The principle of virtual work must therefore be applied

at time t + At with the body in an unknown configuration. From Equation (2.2) the

equilibrium equation we are therefore trying to reduce to matrix form is

I+AtV t+Atij t+Atij t+AtdV t+t (2.18)

The above expression cannot be evaluated since the volume is unknown at time t + At.

To capture the effects of small rotations in the presence of initial stresses we rewrite

Equation (2.18) using the Green-Lagrange strain tensor and the Piola-Kirchhoff stress

tensor. From Equations (2.17) and (2.18) the equilibrium of the deformed body at
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time t + At can be written in terms of the known configuration at time t as,

t+A Si t i tdV = tAtR (2.19)

Incremental Decomposition of Stresses and Strains

To solve the general non-linear large displacement problem described by Equation (2.19)

the stress and strain components can be decomposed into known initial quantities at

time t and unknown increments denoted by a left subscript At. The 2nd Piola-

Kirchhoff stress tensor becomes

t+At S. = Sj + at Sj = tTzj + AtSt (2.20)

and the Green-Lagrange strain tensor is given by

t+At = Ateij + AtTi (2.21)

It is important to note here that the stress tensor has both an initial value component

and an incremental component, whereas the strain is by its very definition uniquely

described by an increment about a known reference, (i.e. t;j 0). It is also of

note that the known initial Piola-Kirchhoff stress tensor at time t is equivalent to the

Cauchy stress tensor, (i.e. Sij = tTi), based on Equation (2.16).

Making use of the incremental relations we can rewrite Equation (2.19) as

IV (Ateij + Atij) (T, j + ASj) tdV = t+AtR (2.22)

Rearranging, we have

tSv d (Atj + At??i) tdV + tV T At7 j tdV = t+At'R- V tT7 Atizj tdV (2.23)



Making use of the constitutive relation

At S 3 = Cijrs t+a i (2.24)

we are able to substitute incremental strains for the incremental stresses to obtain

Cijrs3 (zte + Atj) (At- + At,) tdV+j t7 j t -t +dV = l Jt ' AtEijtd

(2.25)

Expanding Equation (2.25) yields the sought-after general incremental principle of

virtual work equilibrium expression,

SAtei Cijrs Ate tdV +

i Ati 3 Cijrs Atieij tdV + itAeij C,,7 atij tdV +

v Atii Ciirs, Atii dV + (2.26)

tj At7,j tdV = t+atl - I t~j At- tdV

By appropriately applying finite element modeling principles, this general incremental

form of the principle of virtual work will lead to the desired system property matrices

which include the effects of gravity. Notice the increasing order of the displacement

derivative powers in the first four terms as the first integral contains a product of

two linear strain terms, the second and third integrals contains a product of a linear

strain term and a non-linear strain term, and the fourth integral contains the product

of two non-linear strain terms.
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Finite Element Discretization

Using interpolation functions to describe the behavior of the continuous variables x.

and u. between the nodal points x. with nodal displacements u [46,45,48], we let

Ntx,(r)= hk(r) txk (2.27)
k=1

N

u (r) = E hk(r) tu (2.28)
k=1

where r identifies the point of interest in the body and the order of r depends on

the type of element being derived. By appropriately assembling the displacement

interpolation functions for a given element into a matrix H(m), their derivatives into

a strain-displacement matrix B(m) and the incremental nodal point displacements into

a vector AtU(m), we can describe the mth element incremental displacement tensor

Atu(m), the mth element linear incremental strain tensor ate ), and the mth element

non-linear incremental strain tensor A7in) in matrix notation as follows

n/u(m) tU (m) (2.29)

are M) [B, ,U](m) (2.30)

t7ij-t77() 1 [(t,, AtU)T (B At)] ()

1 U [ tBN T TB U (m) (2.31)

where T is an appropriate arrangement of the stress terms. The form of the H,

BL, BN,, and T matrices are dependent on the specific type of finite element being

modeled. In section 2.2 a beam element is studied in greater detail and the specific

forms of H, B and T are made apparent.
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Taking the first variation of Equation (2.30) and Equation (2.31) yields

Ae m tB, at(m) (2.32)

littj =:=1> B T tBNL U (m) (2.33)

Note that applying the chain rule to Equation (2.31) results in a matrix product of

both the variation in U and the actual U. Substituting Equations (2.30), (2.31),

(2.32) and (2.33) into the general incremental principle of virtual work equilibrium

statement Equation (2.27), yields

At-U T (m) B T tC B, tdV (M) ntU(m ) +

t [ (BT t UT B2L BNL) ( B NL AtU) C BL) tdV m U()

tUT (m )  B B AtUtC AtU T B T BNL tdV () U ( ) +

,tU [j BT T BNL 'dV (m) -U(m)

t-JT(m) t+atR(m) - t- tF(m)

(2.34)

where

t F(m) = BIV TtdV (2.35)

and

t+AtR(m) =[ T t+At B odV + HST t+At S OdS (M)

t+AtR(m) + t+AtR(m) (2.36)

For deformation-independent loading such as gravitational loading we are able to

reference the loading to the initial configuration as was done in Equation (2.36).

Note that this is not admissible in the case of "follower" forces (i.e. non-conservative
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forces where the direction of application of the force "follows" or is dependent on the

instantaneous orientation of the body at the point of application).

The transition from an elemental equilibrium to an equilibrium of the finite ele-

ment assemblage is straightforward. The virtual displacement theorem is repeatedly

invoked by imposing unit virtual displacements at each of the displacement compo-

nents in turn. This is equivalent to letting AttU = I where I is the identity matrix.

The m superscript is thus dropped from the H and B matrices and the local element

nodal displacement vector U(m) becomes the global nodal displacement vector U.

We are now in a position to identify the different global stiffness matrices. In Equa-

tion (2.34), each left-hand-side term corresponds to a stiffness term as it weights a

displacement to balance a force. The left-hand-side terms in square brackets therefore

correspond to stiffness matrices and we can write the static equilibrium as follows,

[Ko + Ki(AU) + K 2 (A U 2 ) + K,(T) AU = +AR - F (2.37)

The matrix Ko is the classical stiffness matrix, K 1 and K 2 are first order and second

order functions of the displacement increments (sometimes referred to as the initial

displacement matrices [49]) and K, is the sought after geometric stiffness matrix

which is uniquely a function of the initial stress state.

Linearization of Discrete Incremental Equilibrium Expression

As the stiffness matrices of Equation (2.37) weight an incremental displacement they

clearly combine to represent a tangential stiffness, denoted hereafter by KT, at a

given equilibrium point or configuration. A numerically efficient method of solving

the non-linear equation is to linearize and iterate at each increment until the error

due to linearization is negligible. Assuming a constant stress state over the increment,

a constant tangent stiffness matrix KT is obtained by dropping the K 1 and K 2 , i.e.

t KT = Ko + Kg( t (j2)

53
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-- RF t+4tR

Figure 2-2: Geometric Interpretation of Incremental Solution Equation

t [KT(T)] AU = t+atR-F (2.39)

To recognize the trivial structure of Equation (2.39) it is helpful to use a geometric

interpretation of the force-stiffness curve in two dimensions, i.e. for a single degree

of freedom system. The latter is portrayed in Figure 2-2. Note the error in the linear

predicted displacement t+Atu under loading t+"tZ.

Iterative Solution of Discrete Incremental Equilibrium Expression

To eliminate the error incurred by linearization one typically solves for the zeroes, i.e.

the incremental displacement, in the following system of equations where the right

hand side approximates the error in the predicted response. The error expression is

formed by taking the difference between the applied external loads and the resulting

internal nodal loads both at time t + At. Iterations are performed on the system of

equations until AU(i) =: 0, i.e.

tKTU() = t+t R _ t+AtF(i-1)

t+Atu(i) = t+AtU(i-1) + AU() (2.40)

where

+-F(-1) B, Lt+At'T (i- l ) t+AtdV (2.41)
t+t+ FAi-1



Note that the nodal loads at time t + At are approximated by using the result of

a previous iteration where T(' - 1) is a function of t+AtU(i-1). This corresponds to a

Newton-Raphson root-finding approach. More efficient methods such as the mod-

ified Newton-Raphson approach only update the system stiffness matrix with each

load increment rather than for each iteration. The choice of solution method will

not be further discussed as it is not particular to the modeling of gravity effects.

Reference [50] can be consulted for a thorough comparison of the computational ef-

fectiveness of a variety of solution procedures for geometrical nonlinear structural

analysis.

Mass Matrix Derivation

As with any static equilibrium analysis, extending the results to a dynamic equilib-

rium requires "only" including inertia effects. Thus, we now seek to identify the mass

matrix description. Using d'Alembert's principle we augment the body force vector

with the inertial load terms in nodal coordinates

+AtR = t+tRb - t+,tV (t+AtpH U) t+tdV (2.42)

Given a fixed mass per unit volume we can express the inertial loading in terms of

the original volume and density [45], i.e.

t+, H &+nU) t+AtdV = j pH t+AtU odV (2.43)

The practical consequence of this is that by using isoparametric finite elements where

the displacement interpolation functions are the same as the position interpolation

functions the mass matrix need not be updated in an incremental analysis. Discretiz-

ing the acceleration by taking the second derivative of Equation (2.29) and assembling

as was done for the incremental displacement yields the following linearized equilib-
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rium statement,

[tK 0 + tKg(tT)] AU=j HT ( fB _ opt+At) odV + t+At'R + tF (2.44)

or

M t+at& + [tK 0 + tKg(tT)] AU = t+atRb + t+atR + tF (2.45)

where

M = op HTH dV (2.46)

and Rb does not include inertial body forces.

Eigenproblem Formulation

Recall that the objective of this entire development is to formulate the small displace-

ment eigenproblem MU + KU = 0 which captures the effects of gravitational loading.

Since

U = ( tU + A) (2.47)

we can rewrite Equation (2.45) as follows,

MAU + [tKo + tKg] AU = t+atRb + t+AtR s + tF + MtU (2.48)

For a static configuration at time t we have the following eigensystem equation

MAO + [tK, + 'Kg] AU = 0 (2.49)

To yield the desired eigensystem form where the displacements represent small dis-

placements about the deformed configuration we redefine the reference structure by

letting AU _ U to obtain

MU + [tKo + tK,] U = 0 (2.50)
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where, from Equation (2.34) and Equation (2.37)

tK = i T tC ' , dV

t Kg = v B L TtB 'LdV (2.51)

The solution for the explicit terms in these matrices is described in section 2.2.

2.1.3 Stress Stiffening and Initial Deformation Effect

We now identify the separate stress stiffening and initial deformation effects. Recall

that an isoparametric element based mass matrix M is invariant to the choice of

reference configuration when using an Updated Lagrangian formulation [45]. The

displacements and the stiffness matrices on the other hand are given with respect to

the deformed equilibrium configuration so that Equation (2.50) may be written as

MU + [:Ko + Kg] U = 0 (2.52)

More generally, if isoparametric elements are not used we have

:MU + [ Kg] U = 0 (2.53)

or

M t U + KTU = 0 (2.54)

Taking the Laplace transform yields

(sM + KT) U = 0 (2.55)

To compare the eigenvectors and the system property matrices of the stressed and

deformed structure with those of the unstressed and undeformed configuration it is

necessary to express tM and tKo in the global co-ordinates used for the original OM



and 'KT. This is achieved using a standard orthogonal rotation matrix for each

element denoted here by T(m). Thus, given

T(m) (m) = Oz(m) or t(m) = T(m)- ' (Oz(m)) (2.56)

we have

tU(m) - T(m)-' ("U(m)) and tU(m) = T(m)-l (0(m)) (2.57)

so that for a single element

(a2 T(m) [M(m)] T(m) T(m)T [tKm) + tK~m)] T(m)) T(m)- (0 U) = 0 (2.58)

will yield an eigensystem which is projected onto the global coordinate reference

frame. Alternatively, we can write for the assemblage

(s2M - kT) U = 0 (2.59)

where

(m) = T((m) [M(m) T(m) (2.60)

= T(m)T [oP HTH dV](m) T(m)

and

Ki()- T(m)T [tK m) + tK(m)] T(m) (2.61)
T td t g

= T(m)T / t B t C tB t dV + LtB T tBNL dV ( T(m)
[fV LeV

Highlighted thus by Equation (2.58) or by Equations (2.59), (2.61) and (2.62) are

the two separate effects of gravitational loading: the stress stiffening effect, Kg, and

the initial deformation effect captured by the T transformation and projection. Note
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that only in an Updated Lagrangian formulation can the transformation effect of the

initial deformations on the structure be identified separately from the stress stiffening

effect, Kg. In the Total Lagrangian formulation the transformation T is embedded in

the formulation of the system property matrices since the displacements and strains

are always referred to the original configuration.

Having described the general formulation and origin of the stress stiffening and

initial deformation effects, the next section focuses on the more explicit formulation

for a beam element. This in turn makes it possible to examine the effects of stress

stiffening and initial deformation on the eigensystem of beam or beam-type structures

in Sections 2.3 and 2.4.

2.2 Beam Element Formulation

In this section we examine more closely the derivation of the system matrices for a

beam element and focus in particular on deriving expressions for the constituent ma-

trices of Equation (2.51) which describes the formulation of the regular and geometric

stiffness matrices. Our first objective is to compare the geometric stiffness matrix K9 ,

which captures the stress stiffening effects of gravity, with the original stiffness matrix

Ko for a beam element.

This work will focus on the beam element, as it is the most appropriate element

for describing the constituent elements of those types of slender flexible spacecraft

structures which are most susceptible to gravity effects. The beam element describes

axial or rod behavior, bending in two planes, and torsion. Shear is not considered

herein as it is almost always negligible for the slender type of structural elements we

are interested in. To simplify the identification of gravity effects, this analysis will

focus on beams of rectangular cross-section which are straight and have a constant

cross-sectional area.

In this section we briefly repeat the well-known formulation of the traditional
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Figure 2-3: Beam Element Reference Axes and Co-ordinate Notation

stiffness matrix before deriving a closed-form expression for an incremental geometric

stiffness matrix making use of the generalized notation of Cook [48]. A comparison is

made with Yang's closed form expression for Kg and weaknesses of Cook's generalized

notation are highlighted before extending his work and the work of Yang and McGuire

[28, 29] to allow for distributed forces between the concentrated nodal loads. The

approach adopted here, unlike Bathe's numerical integration approach (which is well

suited to computational implementation) is to derive the general expression for the

incremental geometric stiffness matrix in symbolic terms for analytical purposes.

2.2.1 Beam Element Fundamentals

The beam element derived here is a 2 node beam with 3 nodal translations (U1, U2, U3)

and 3 nodal rotations (U 4, U5 , U6) at each node A and B. As can be seen in figure 2-3

the neutral axis coincides with the X axis of the local XYZ reference frame. The

position of any point P throughout the beam is given by (x, y, z). The displacements

of a point N on the neutral axis are denoted by u Y(x) and rotation of the normal plane

about the neutral axis at N is denoted by 0'(x). The translational displacements of

all points P are denoted by uif(, y, z).

The displacements of any point along the neutral axis and the rotation of any

cross-section about the neutral axis can be interpolated from the description of the
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nodal displacements, i.e.

Uo(X) H,0 0 0 0 O H2 0 0 0 0 0

u'(x) 0 H3 0 0 0 H4 0 Hs 0 0 0 H6= U (2.62)

3u(x) 0 0 H 0 -H 4 0 0 0 H5 0 -H6 0

X"() 0 00 H 0 0 0 0 H 2  0 0

where

U= ... UAI UB ... UB] (2.63)

The linear interpolation functions for the axial and torsional displacement are given by

H1 and H2 whereas H3, H4, Hs and H are Hermitian functions for the interpolation of

bending displacement-based on nodal displacement and slope, i.e. for a beam element

of length h

H1 = 1-(x/h)

H2 = x/h

H3 = 1 - 3(x/h)2 + 2(x/h)3

H4 = (xh - 2(x/h)2 + (x/h)3) h (2.64)

Hs = 3(x/h)2 - 2(x/h)3

H6 = ((lh)3 - (/h)2) h

Having identified the displacement interpolation matrix it is convenient at this

point to present the classic Bernoulli-Euler beam element mass matrix. Performing

the integration of Equation (2.46) and making use of the displacement interpolation
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relations of Equation (2.64) yields [51]

M, = pAl

0

0

-111
210

0

12
105

0

111
210

0

0

0

105

sym.

m 1.1  0

M 2 . 2

0

0

9
70

0

-131
420

0

0

0

m 3 .3

0

0

0

Mr4 .4

where p is volumetric mass density, A is cross-sectional area, I is

I, is polar moment of inertia.

0

0

131
420

0

-12
140

0

0

0

-M 3 .5

0

m 5 . 5

0

-131
420

0

0

0

-l1

140

0

-m2. 6

0

0

m6. 6

(2.65)

element length and

Cross-section Deformation Description

In classical beam mechanics the transverse shear stress and transverse normal stresses

are zero so that T23 =T32 = T22= T33 = 0. Since planar sections normal to the neutral

axis remain planar and normal when the element is deformed, it is possible to describe

the position of any point in the beam as a function of the behavior of the neutral axis

point which lies in its normal plane, i.e. for small displacements

uf (x, y, z)

u, (x,, , Z)

U'(x, y, z)

= u'(x) - z Uf (x) - yu,(X)

= u~(x) - z6 0(X)

= u'(x) + y 0f(x)

(2.66)
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From Equations (2.64) and (2.66) we can write the following three-dimensional

displacement interpolation matrix for any point in the beam element, where a prime

(') indicates differentiation with respect to x,

-yH'

H5

0

-zH6

0

H5

0

- zH 2

yH 2

zH'

0

-H 6

-yH6

H6  U

0

(2.67)

(2.68)

(2.69)

The matrix H can be referred to as the displacement interpolation matrix.

2.2.2 Linear and Non-linear Strain-Displacement Relations

Given the displacement field description of Equation (2.67) for any point in the beam

volume we are now in a position to derive both the linear and non-linear strain-

displacement matrices, BL and BNL.

Linear Strain-Displacement Relations

From the linear strain definition Equation (2.3) and the interpolation matrix definition

Equation (2.67), we can write the following strain-displacement relation for the three

independent strain components e' , e'2 and e' 3,11, 12 13)

eP = BL U

PU-

-yH

H3

0

-zH

0

H3

0

- zH 1

yHi

zH4

0

-H 4

-yH' H 2

H4 0

0 0

where

uP= HU

U = u'(x, ,y, z) a(x, y, z) u (, y,z) T

(2.70)
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where

H' -yH" -zH" 0 zH"' -yH"' H' -yH' -zH" 0 zH"' -yH"'

BL 0 0 0 0 0 0 0 0 0

2 2

0 0 0 yH 0 0 0 yH 0 0
2 2

(2.71)

and

e P -  eP(x, y, z) eP,(x, y, z) eP3(x, y, z) T  (2.72)

Non-Linear Strain-Displacement Relations

Deriving the non-linear strain-displacement matrix, B,,, is not as straightforward as

for the linear strain-displacement matrix, BL, because of the non-linearity and the

need to obtain the proper stress term weighting. Recall the fundamental form of the

geometric stiffness virtual work integral,

it J t dV (2.73)

For clarity, letting u, v, and w represent the ul, u 2, and u 3 co-ordinates in a local

XYZ frame and letting a, 7, a, , Ey and ao represent the stresses T1, E1 2,

T13, T22, 23 and 133 we expand the above and write

2 V ( (U2 +U 2U 2 ) ax +r- (V 2 
+ V2 + V2 ) Oy + (W,2 W2 + W2 ) , z +

(u,,u, + v,v, + w,,w,) , + (uu,+ + , w, ,z) z + (2.74)

z + V,'vz + WWz) 17 i) tdV

We can now write a general expression in matrix form for the geometric stiffness
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contribution to the virtual work using a matrix parsing based on the work of Cook [48],

500

JWT 0 S 0 W

W OS

W= n,, = u,, u

where

tdV 1 WTTWtdV

v,y v,z w, w,y w,, J
and

S=T m , T, (2.77)

TXZ TYZ o'

The only problem with this formulation is the difficulty in dropping higher order

terms embedded in the interpolation function derivatives which make up W. This

will now be examined more closely in the context of a beam element formulation.

For a Bernoulli-Euler beam aUUZ a = T0 = 0 so that S becomes

O0

0

(2.78)

Xz

0

0

but for small strains u2 is negligible with respect to u, so that the (1, 1) term of S

should be made to be zero.

To separate the virtual and actual nodal displacements from the work expression

we rewrite the vector of displacement partial derivatives as a function of the nodal

(2.75)

(2.76)

65

= x
S TX
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co-ordinates

W(x, y, z) =

a

6y
--6z

0

0

0

0

0

0

0

0

0

6
8a

6

6z

0

0

0

0

0

0

0

0

0

6

6

6

6z-

u(x, , z)

v(x, y, z)

w(x , ,z)

=(D) (H U)

Therefore, since the work expression has the required quadratic form in U, i.e.

SHTDT T DH U tdV/TV (2.80)

we can identify the sought after non-linear strain-displacement interpolation matrix

BNL,,

(2.79)

BNL = DH (2.81)
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which is key in the definition of Kg, Equation (2.51). Thus, for the beam element,

H' -yH' -zH' 0 zH" -yH'

0 -HI 0 0 0 -H

0 0 -H' 0 HI' 0

zH' 0 zH" -yH"

0 0 0 -HH'

H0

0

0 0 -H5 0 HI

0 H' 0 -z 0 H 0 H 0' 0 0 H2 2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -H 0 0 0 0 0 -H 2 0 0

o o H' -H'

0 0 0 H1 0

0 0 0 0 0

Note that for small strains v,y and w,z

S 0 0 HI -H 02 6

D 0 0 0 H2  0 0

0 0 0 0 0 0 0

(rows 5 and 9) are identically zero.

(2.82)

From Equation (2.78) and Equation (2.82) we can now write the following closed-

form expression for Kg in terms of the internal stress state,

BLTBNL tdV = Tv B L

it BN
0 S 0 BN LdV

00S

2.2.3 Stiffness Matrix Evaluations

Recall from Equation (2.51) the expression derived for the classic stiffness matrix,

tKo = v tB CtBLtdV (2.84)

For a uniform beam the constitutive properties are constant and the C matrix is

BNL =

K, = (2.83)
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given by

EO0

C= 0 G 0

0 0 G

where E is Young's modulus and G is the shear modulus given by

(2.85)

(2.86)G =
2(1 + v)

Evaluating Equation (2.84) is straightforward and yields the conventional Hermitian

beam element stiffness matrix, [48,52,51], reproduced in Equation (2.87) for future

reference.

EA
I 0

12EI,
13

0

0

12EI,
iS

0

0

0

6GJ
51

0

0

-6EI
12

0

4EIy
I

0

6EI.

0

0

0

4EIz
I

sym.

0

0

0

0

0
0

0

-k2.
2

0

0

0

- k2.6

k1.1  0

k2.2

0

0

- k3.3

0

- k3.5

0

0

0

k3.3

0

0

0

0

0

0

0

0

k4 .4

0

0

k3.5

0

2EI,

0

0

0

ks. 5
k5.5

0

k2-6

0

0

0

2EI.

0

0

0

0

k 6 .6

(2.87)

Note that the result of Equation (2.87) is based on the assumptions of the classic

Bernoulli-Euler beam and does not include shear effects or other refinements (see [53]

for examples) in order to simplify the focus on gravity effects. The moment of inertia
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about y and about z is denoted by I, and I, respectively. The St. Venant torsional

constant, J, is equal to the polar moment of inertia I. for a circular cross-section and

is smaller otherwise, e.g.
a3 b3

J (2.88)
3 (a2 + b2 )

for a narrow rectangular cross-section where a and b are width and thickness. (Consult

Table 8-18 of Reference [54] for information regarding other cross-section shapes.)

To interpret Equation (2.87) recall the ordering of the degrees of freedom given by

Equation (2.63) and portrayed in Figure 2-3.

Evaluating Equation (2.83) to obtain the geometric stiffness matrix is significantly

more complex than for the regular stiffness matrix as it requires a description of the

internal stress state of the element over the entire beam length and cross-section. In

modeling a space structure ground test-bed, this stress evaluation and integration

computation is typically automated and forms part of the incremental analysis. In

the case of the ADINA finite element modeling software, numerical integration is used

with discrete stress evaluations typically at Gauss points [31].

For the purposes of studying the impact of the geometric stiffness matrix, Kg, on

the tangential stiffness matrix, KT = Ko + Kg, it is desirable to obtain an explicit Kg

in terms of the applied loads. This requires that one either make certain assumptions

concerning the applied loading or consider special loading cases. Both approaches

are considered here. First we derive Kg given the assumption of concentrated loads

only and applied strictly at the element nodes. This case was studied by Yang and

McGuire [28] and is used to validate the different approach used here. Secondly we

derive Kg for the more pertinent case of a beam element subject to concentrated

nodal loads and both transverse and axial distributed loads of the same nature as

gravitational loading. A similar case which included distributed loading was studied

by Barsoum and Gallagher [55] but axial deformations were not considered given their

focus on torsional buckling behavior.
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* F

A B

Figure 2-4: Beam Element Nodal Load Sign Convention

Concentrated Nodal Load Case

The result of the assumption of strictly concentrated nodal loads applied only at the

nodal points is that the axial force, shear force and torsional moment are constant

throughout the beam element while the bending moment is either constant or varies

linearly in the presence of shear. Since the nodal forces of a given element must be

in static equilibrium, we have,

F = -

F = -P

M = -MA (2.89)

MB = - M-Fh

MZ = - Mz + Ph

where a standard finite element static sign convention is used for the forces and

moments at the element nodes, as shown in Figure 2-4, (rather than a standard

mechanics deformation sign convention). Given the above nodal force relations, the

continuous force and moment descriptions through-out the beam element can be

written as,

F. (x) = F,

F,(z) = FB =- +MY h
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MA + MB
Fz(x) = F=

M,(x) = MB (2.90)

M,(x) = -MA(1 - x/h) + M(xh)

Mz(x) = -Mz(1 - x/h) + M(zx/h) (2.91)

The axial stress in a Bernoulli-Euler beam element, given by

F, Mz MMy
aW + + (2.92)

A I, Iz

can thus be written in terms of nodal loads as follows

a. F + (-My - x/h) + MYB(x/h)) + (M(1 - x/h) + MzB(x/h))

(2.93)

To identify the shear stress description it is necessary to make certain limiting as-

sumptions concerning the type of beam cross-section. Assuming a narrow rectangular

cross-section or a circular cross-section and assuming that there is no resistance to

warping, i.e. simple St. Venant torsion, the contribution of torsion to the shear stress

can be added to the stress due to shear forces to yield

F, MzTY = F M
' A 2Hy

F, M.y
T = = A . (2.94)

A 21,

In terms of nodal loads we have thus

-= (MZ + MfM 21,z

T ( M YB+Ah (2.95)Ah 2 Iz
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(recall that in the absence of shear and distributed loads MA = -M and M, =
-MZ).

Given o,(x), T,,(z) and T,(x) we can now compute Kg in terms of the applied

nodal loads. Substituting the above stress definitions in Equation (2.78) and substi-

tuting both the result and Equation (2.82) into the Kg equation (Equation (2.83))

before performing a triple integration over the element volume yields the closed-form

expression for Kg in terms of the applied nodal loads shown in Equation (2.96).

By identifying those stiffness terms which are identical it is possible to write Equa-

tion (2.96) in the more compact form shown in Equation (2.97).

A comparison with the result of Yang and McGuire's special case analysis, [28],

verifies that this general approach, based on Cook's general notation [48], is correct.

Two minor differences are present however. The terms of the form of the k2.4 and

k3 .4 terms, i.e. MA/I, are given by [28] as 1.1MAJ/l- MB/(101), and the terms of the

form of k4.5 and k4 .6 , i.e. (MA + MB)/6, are given as MA/10 + MB/5. All other terms

being identical. It is concluded thus that the general approach described herein for

deriving the geometric stiffness matrix of an element is sound. General observations

concerning the stress stiffening effect for a loaded beam element are made in section

2.3.1 following the derivation of the distributed load case geometric stiffness matrix.

Distributed Load Case Derivation

A more appropriate set of assumptions in the study of gravity effects would be to

consider a beam element subject to a stress distribution which allows for distributed

forces over the length of the element in addition to concentrated nodal forces and

moments. One could include uniform, linear, quadratic or other higher order dis-

tributed load distributions but to directly obtain the gravitational loading case which

we are interested in, we shall apply here a uniformly distributed transverse loading

in one plane only and a linearly distributed load in the axial direction, (the latter

are in addition to the standard concentrated loads). The transverse distributed load



A0 M - (MY +M
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0
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6
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Is,

Kg --

FB(IV+I) M+Mp -(M6+MB)
Al 6 6

~ IV DL
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0
MA
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0

CTMT
61
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Al 6 6

2F1 0
15

k 5 -5

sym.

0 -kl. 2 -ki. 3 0 0 0

-kil 2 -k 2.2  0 -ks. 10 -k 2 5 k2. 6
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g4

FztZ
Mz p Ag Mz Fy

M Mx
A Bo 0=01

pAgx

Figure 2-5: Beam Element subject to Concentrated Nodal Loads
Proportional Distributed Loading

F
Mx

B

I

A

0

and= 90Mass-

and Mass-

and bending moments are weighted here by a cos(0) term and the distributed and

concentrated axial load terms are weighted by a sin(0) term so as to describe the

gravitational loading of a beam element at an angle 0 with the horizontal plane (see

Figure 2-5 for the 0 = 0 and 9 = 90 cases). Note that all loadings are through the

shear axis to avoid eccentricity complications and the sign convention adopted for

the distributed loading is positive downwards in the XZ plane. By allowing for these

loading effects of the distributed mass of the beam element we now have the following

nodal force relations

F = -F + pAg,h

F = -F + pAgch

MX = -MXA (2.98)

MB = MA- pAgh 2

2
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MBz

(2.99)

The continuous force and moment descriptions are now given by,

SF- pAg, (h - x)

MA + MZB

= F = -MA+M
- h

SMA + MB
= F- pAge (h x)- M)

= MX

pAgeh
2+ pAgcx2

pAg h
=-M(1 - /h) + MB(xlh) -

= -M(1 - x/h)+ M /(x/h)

(2.100)

pAge 2+ --2

(2.101)

The stress expressions of Equations (2.92) and (2.94) are now augmented with the

distributed load effects to yield,

-MA(1

(-M^(1

g (h - z) sin(0)+

pAghs- /h)+ MB(x/h) - 2
hh)) 2

- x/h) + M"(m/h))Y cos(0)

pAgm
2

2
- cos(O) +
'U

(MZA + MBAh

SAh

M z
cos(O) - 2

gh + pgr cos(O)
2

for a uniform beam element of density p, length h and cross-sectional area A.

Solving for the new Kg, as was done before for the concentrated load Kg, yields

the geometric stiffness matrix with distributed load effects, Kgd, shown in Equa-

My+ I21,

F,(x)

F,(x)

F,(x)

and

(2.102)

Txy

%,

(2.103)

(2.104)
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tion (2.105).

where
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sym.
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(2.105)

Kgdl1 --

Kgdl2 =

-kl. 3 0

and

Kgd22 -
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Table 2.1: General Nature of Stress Stiffening Effects on Beam

Load Type Nature of Stress Stiffening Effect

Axial load stiffens/destiffens all bending and torsion modes.

couples bending and axial modes.

Bending moment couples axial and torsional modes with bending modes.

Torsional moment couples bending modes.

2.3 Beam Element Stress Stiffening Effects

2.3.1 General Observations

Having derived general expressions for the geometric stiffness matrices of a beam el-

ement, a number of general observations can be made concerning the nature of the

initial stress effect on the tangential stiffness matrix by directly inspecting Kg (Equa-

tion (2.97)) and Kgd (Equation (2.105)), and by comparing them with Ko (Equa-

tion (2.87)).

The most important load type is clearly the axial load, (Fr), which appears in

every Kg and Kgd element which corresponds to a non-zero element of Ko (except

for the axial degree of freedom). The result is a stiffening of all bending and torsion

modes for a tensile load, and a destiffening of the same modes for a compressive load.

The effect of bending moment (M,,M,) induced stresses is to couple axial defor-

mations and torsional deformations with bending deformations.

The effect of torsional moment (M,) induced stresses is strictly to couple the

out-of-plane bending modes. These observations are summarized in Table 2.1.

Comparing Equation (2.97) with Equation (2.105) it is also possible to observe the

particular effects of the distributed loading. The distributed axial loading pAlg sin(8)

only appears where the concentrated axial nodal load terms F previously appeared

as one would expect. It is of note however that the relative weighting of the distributed

axial loading term pAlg sin(9) compared to the F: sin(0) term varies. Similarly, not
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all transverse bending moment terms My cos(0), M, cos(0) have an added distributed

transverse loading term pAlg cos(O) and for those which do, the relative magnitude of

the distributed loading term varies as compared to the concentrated load terms. The

most interesting effect of incorporating distributed load effects in the stress descrip-

tion is the introduction of a set of new identical coupling terms due to distributed

transverse loading, namely kl.s, k1.11, k5.7, k7.11, and their symmetric counter-parts.

The effect of these terms is to strengthen the coupling between bending in the plane

of the transverse loading and axial deformations.

Note that if the distributed transverse loading was also applied in the XY plane

in addition to the XZ plane (with appropriate weighting terms) the M, terms of

elements k3.4 and k4.5 would also be subject to the same form of additive distributed

loading as k2.4 and k4.6 by symmetry arguments. Similarly, the new kl .s family of

terms would also appear with appropriate weighting at k. 6 , k1.12, k6-7 and k7.12 by

symmetry arguments.

2.3.2 Eigensystem Sensitivity Analysis Technique

A simple yet powerful method of identifying the effects of perturbations to the sys-

tem property matrices of a discretized (e.g. finite element) structure on the latter's

eigensystem is described in this section. The technique consists of projecting the

perturbed M-1K system matrix product onto the original eigenspace using the origi-

nal unperturbed eigenvectors o. By examining the resulting matrix one can readily

identify the perturbing effects on the original eigenvalues and eigenmodes. Details

of the projection technique, and its relation to the eigenpair derivatives and the first

order eigenpair perturbations are described in this section. In the following section

the eigenprojection technique is used in a general symbolic analysis of a single beam

element subject to three different sets of boundary conditions. This low order analyti-

cal approach was used rather than a high order numerical approach to provide greater

insight and to more readily yield general non-dimensional parameters (as computed
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in Section 2.3.4).

Sensitivity Matrix Analysis Technique

The general eigenvalue problem equation for the unperturbed system is written as

K@ - "MAh = 0 (2.106)

and the simple eigenvalue problem equation (i.e. the first order form) is written as

(OM-1 OK) "4 = oi A (2.107)

where o4 is the column matrix of unperturbed right eigenvectors, "M and OK are

the unperturbed mass and stiffness system matrices, and A is the diagonal matrix of

unperturbed eigenvalues. Regardless of the normalization of (D the 04 - 1 ("M-'1 K) "0

projection will always yield the uncoupled diagonal matrix A, i.e.

A = 04-1 (OM-'1 K) "o (2.108)

This trivial projection of the unperturbed system matrix product onto the unper-

turbed eigenspace yields a diagonal matrix of original eigenvalues where every column

corresponds to an uncoupled fundamental mode.

Performing the same projection with a perturbed mass and stiffness system, i.e.

M, IK (where the dummy variable t indicates a system state other than the original),

will result in a matrix, say 9, which will be referred to as the sensitivity matrix:

S= 0 4(-1 eM-'W) o (2.109)

For the (i,j)t h element ofT

(2.110)S; 1 M -1 'K ) y
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where oi1 is the ith row of ao-1 and °oj is the jth column of a@.

The difference between the elements of T and A represent perturbations to the

eigensystem of (oM-1" K). Perturbations to the eigenfrequencies result in changes to

the diagonal terms of the original projection, while perturbations to the eigenmodes

result in non-zero off-diagonal terms in T. The positions of the off-diagonal terms

describe which modes are coupled and the magnitude of the terms describes to what

degree.

Further information can be extracted from 9 by recognizing that the matrix in-

herently captures all the information required for the computation of the perturbed

eigenvalues and eigenvectors and their derivatives. The advantage of computing IQ as

opposed to individual eigenvalues, eigenvectors and derivatives is that T captures the

latter information in a single matrix calculation and the computation is not limited

to the effect of a perturbation of a single parameter.

Eigenvalue and Eigenvector Derivatives

The easily derived expression for the partial derivative of an eigenvalue of an un-

damped mass and stiffness system with respect to some parameter P is [56-59]

oOT rVK °A 6M O
- No T oA o .)O i (2.111)

-0 op oMOOR

where eL and SR are the left and right eigenvectors respectively (for M and K sym-

metric the system is self-adjoint so that qL = QR).

For the first order eigenvalue problem formulation we can simplify Equation (2.111)

to the following
A 6o (tM - 1 K)=- oL otK) (2.112)

or,
A_ (( tM - 1 tK))

81t Oki (2.113)
81 =R 6
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and, as is the case in this analysis, if the original eigenvectors are not functions of the

parameter 3 we can write the following

( 6M '( K) 'R,) (2.114)

Comparing Equation (2.114) with Equation (2.110) we have

Aj= - (2.115)

and therefore, taking the partial derivatives of the diagonal terms of T, directly yields

the eigenvalue partial derivatives.

The eigenvector derivatives are given by [56-59]

80 ( ( 4ZA ) o j (2.116)813 oA. - oA.

or
6 ( RjSq OZ ( OA lK0j (2.117)

From Equation (2.110) we can simplify further to obtain

8_ O6 O (2.118)

Thus, normalizing the off-diagonal elements of the ith column of T by the (Ai - Aj)

difference in the original diagonal elements of I (i.e. A of Equation (2.107)) yields

the weighting coefficients for the eigenvalue derivative expression.

First Order Eigenvalue and Eigenvector Perturbation

Having identified the relation between the sensitivity matrix and the eigenpair deriva-

tives we now proceed to identify the relation between the sensitivity matrix, the orig-



inal eigenpairs and the perturbed eigenpairs. Based on the perturbation method we

can express the eigenvalues of the (tM- tK) system as the following series [59]

tAi = (O)A, + (1)AA3 + (2)A Ap 2 + (3)A Ap 3 + ... (2.119)

where the (")Ai are weighting coefficients and the An are perturbations of increasing

order. The first order perturbation to Ai, in the case of distinct eigenvalues, is given

by
tAi = ()Ai + - A3 (2.120)

618

Substituting Equation (2.115) into Equation (2.120) yields

_(O) + ~a3 (2.121)

Writing the sensitivity matrix as the sum of the unperturbed projection matrix and

a matrix of weighted first order perturbations cij, Pi we have

iFj = Aj + cij lij (2.122)

where the cij are the weighting coefficients and the P/3 are the first order perturbations,

(i.e. for the stress stiffening case the perturbations are the nodal loading terms such

as F,, M,, and My). Substituting Equation (2.122) in Equation (2.121) for the case

i=j and taking the partial derivative of iii with respect to /i3 yields

tAi = Aii + ciiAii (2.123)

Since the resonant frequency (or eigenfrequency) is the square root of the eigenvalue

[60-62] we have the following for the first order perturbation to the resonant frequency

i= A, + cAPii = Ow, + cii/ii3
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(2.124)
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and, in non-dimensional form

- 1 + (2.125)°fi Owi A i

For the perturbed eigenvector we can make the appropriate substitutions to similarly

show that

O A A i

Equations (2.123) and (2.126) could also be derived by directly integrating Equa-

tions (2.115) and (2.118), and making use of the fact that the perturbations are zero

for the unperturbed system. In summary, by subtracting the original projection ma-

trix A from the sensitivity matrix T we can identify the first order perturbations

to the eigenvalues, and the first-order modal coupling perturbations cjA3j3, can di-

rectly be identified by inspecting the off-diagonal of T. However, it should be pointed

out here that the eigenfrequency shift predicted by Equation (2.123) only captures

the effect of a pure frequency perturbation and does not include the effects on the

eigenfrequencies which result from the modal coupling predicted by Equation (2.126).

Establishing the exact relation which describes the effect of modal coupling on the

eigenfrequencies is recommended for future work.

2.3.3 Eigensystem Sensitivity Analysis Results

Rather than perform the eigensensitivity analysis numerically on a large accurate

discrete model with many modes under certain very specific conditions, a general

exact analytical (i.e. symbolic) eigensystem sensitivity analysis was performed using

only the fundamental modes of a single beam element subject to pre-load effects.

This approach was selected in order to identify valuable, general non-dimensional

parameters and to allow the study of multiple simultaneous perturbing loads. The

approach was also selected based on the knowledge that the fundamental modes

typically have the greatest impact on the system performance metric and are more
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susceptible to gravity and suspension effects.

Three different sets of boundary conditions were used in order to study the most

common configurations of beam-type elements of a structure. The boundary condi-

tions examined here are

1. clamped-free, (e.g. a flexible appendage clamped to a stiff structure),

2. pinned-pinned, (e.g. a strut which spans a bay of a truss type structure) and

3. free-free, (e.g. a beam supported by a soft suspension system).

While the boundary conditions listed above are only approximations to the real

boundary conditions, it is felt that approximation is a good one. Insight is also

gained as to the effects on the global behavior of the structure itself in the case of

a long slender structure (such as the M.I.T.-SERC MACE test article [13, 15]) or

on major beam-type elements of the structure itself (such as the truss legs of the

M.I.T.-SERC Interferometer testbed [63]).

Clamped-Free Beam Unperturbed Eigensystem Characteristics

Constraining all degrees of freedom at one end of the beam element results in a

clamped-free beam with no rigid-body modes. The system property matrices for this

boundary condition case are denoted by M, and K,. The unnormalized eigenvectors

of the unperturbed (Mc- 1Kc) system are the columns of the eigenvector matrix o4)

0 0 0 0 1 0

0 0 -21 -21 0 0-9+ V -9-v'"
21 21 0 0 0 0

o -9 v -9-V (2.127)
0 0 0 0 0 1

1 1 0 0 0 0

0 0 1 1 0 0
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where, recall, the order of the degrees of freedom for the unconstrained node are

(2.128)

as illustrated in Figure 2-3 or equivalently,

Uc = XB yB ZB OXB 9 YB OZ (2.129)

The projection of the original system, i.e. 04-1 o (Mc-'K) ~, yields the diagonal

matrix of eigenvalues A as expected.

o c _=

bending.
1

12.4802Ely
pAl 4
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0

0

0

0
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0
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pAl

4

0

0

0

0
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0

12.4802 EIz
pAl 4

0
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0

bending,
2

0

0

0

1211.52 EIz
pAl 4

0

0
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0

0

0

0

3E
p
12

0

torsion

0

0

0

0

0

3.6 A GJ
pll

2

(2.130)

The modes corresponding to each column of A appear as labels above the columns.

The correspondence can be determined by simple inspection of the eigenvalues them-

selves or by referring back to the eigenvector matrix of Equation (2.127).

Clamped-Free Beam Initial Stress Perturbation Results

Given a Kg perturbation the projection

cJ, = g o-1(Mc-I(K + Kg)c)N c (2.131)

Uc = [ U.1 UU
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yields the sensitivity matrix of Equation (2.133) which appears on page 88. Given a

distributed geometric stiffness matrix perturbation, the projection

XkFgd -= - (Mc-1(K + Kgd)c) 0 D (2.132)

yields the sensitivity matrix of Equation (2.134) which appears on page 89. Note

that for reasons of compactness, the nodal load form for the nodal bending moments

has been replaced with the equivalent single uniform shear term in the sensitivity

matrices where possible, i.e.

M + MB = F 1

M + MB = -Fl1

Note also that the nodal form of the loading terms is only required for incorporating

the stress stiffening effects in a discrete model and is not necessary here.

To facilitate the interpretation of 'kgd three special cases are extracted from it:

the no twisting moment, horizontal beam case (i.e. sin(9) = 0, M. = 0), the no

twisting moment, vertical beam case (i.e. cos(6) = 0, M. = 0), and the artificial pure

twisting moment case (i.e. sin(O) = 0, cos(6) = 0).

i gd bend =_ o (M-1 (K + Kgd(sin(B) = 0, M, = 0))) °o (2.135)

Igd axia1 = O- (M - 1 (K + Kgd(COS(O) = 0, M. = 0))) Q (2.136)

kWgdItwist = o)-1 (M-1 (K + Kgd(sin(B) = 0, cos(O) = 0))) o (2.137)

The pure twist case is artificially isolated here as it is not possible to have zero gravity

loading components in both the axial and transverse directions. The results of these

projections are shown on page 90 in Equations (2.138), (2.139) and (2.140).

Similar analyses will now be performed for the pinned-pinned beam case and the

free-free beam.
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Pinned-Pinned Beam Unperturbed Eigensystem Characteristics

Constraining the translational degrees of freedom at both ends of the beam element

results in a pinned-pinned beam with a single rotational rigid-body mode about its

neutral axis. The unconstrained degrees of freedom for the pinned-pinned beam case

are thus

(2.141)

The system property matrices for this boundary condition case will be denoted by

Mp and Kp. The unnormalized eigenvectors for the pinned-pinned beam case are

0 =

-1

0

0

1

0

0

(2.142)

Projecting the original

lowing diagonal matrix of
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which will be compared to the perturbed system projection to

are directly stiffened or destiffened by the geometric stiffening

identify which modes

and which modes be-

Up = 4 5 6 4 U. U



come coupled.

Pinned-Pinned Beam Initial Stress Perturbation Results

Applying the initial stress perturbation to the pinned-pinned beam system and per-

forming the eigenprojection

T -, = 04-1(M;-(K + Kg)p) 0 p (2.144)

yields the sensitivity matrix of Equation (2.145) which appears on page 93 due to its

size. If the perturbation is the distributed geometric stiffness matrix, the result is the

sensitivity matrix 'gd which is also shown on page 93.

Free-Free Beam Unperturbed Eigensystem Characteristics

The free-free beam boundary condition case has of course six rigid-body modes which

implies that there are six repeated eigenvalues at the origin. Unfortunately, if there

exist multiple roots, the eigenvalue and eigenvector derivative relations presented in

Section 2.3.2 do not hold. While the sensitivity matrix is useful in identifying stiffen-

ing and destiffening effects as well as couplings, it is no longer possible to physically

relate the sensitivity matrix to exact eigensystem characteristics. The theory of eigen-

value and eigenvector derivatives in the presence of multiple eigenvalues and multiple

eigenvalue derivatives is beyond the scope of this work: see References [64] and [65]

for additional details. The previous analyses for the clamped-free and pinned-pinned

beam had the advantage that multiple eigenvalues are not a necessary condition.
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The unnormalized eigenvectors for the pinned-pinned beam case are

0 00001 0 0 0 0 -1 0

-L 0 01 0 0 0 L -L 0 0

0 L 0 1 0 0 -L L 0 0 0 0

0 0 1000 0 0 0 0 0 -1

0 1 0000 -6 12 0 0 0 0

1 0 0000 0 0 -6 12 0 0
°r = (2.147)

0 00001 0 0 0 0 1 0

0 0o 010 0 0 L L 0 0

0 0 010 0 -L-L 0 0 0 0

0 01000 0 0 0 0 0 1

0 1 0000 6 12 0 0 0 0

1 0 0000 0 0 6 12 0 0

and the eigenprojection of the original system yields the following diagonal matrix

94
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Free-Free Beam Initial Stress Perturbation Results

Clearly, it is not possible for a gravitational load field to apply initial stresses to an

unconstrained beam, but it is desirable to understand the pure effects of the initial

stress loading in order to study the case where the beam is suspended on a soft

suspension system. Due to use of discrete attachment points it is not possible for its

weight to be perfectly off-loaded and non-negligible residual stresses may exist in the

structure.

Applying the geometric stiffness perturbation to the unconstrained beam and

performing the eigenprojection

' , = 0°-'(M-'(K + Kg,)f) f (2.149)

ol/f =

95



Gravitational Load Effects on Structures

yields the sensitivity matrix of Equation (2.150) which appears on page 97. The sen-

sitivity matrix fd, which corresponds to the distributed geometric stiffness matrix

perturbation, is not reproduced here due to its size.

2.3.4 Observations and Non-Dimensional Parameters

The general observations of Section 2.3.1 can now be quantified for the three different

beam configurations studied. Examining Equations (2.133), (2.145) and (2.150) we

can confirm that the nature of the modal couplings and eigenfrequency shifts predicted

by direct inspection of Kg in Section 2.3.1 were correct. It is now possible, however, to

evaluate more precisely the impact of a particular perturbing effect on the eigensystem

of a clamped-free, pinned-pinned or free-free beam-like portion of a structure. This

is best accomplished by establishing non-dimensional parameters which describe, in

terms of general system properties, the system sensitivity to the stress stiffening

gravity effect.

Recall that a pure perturbation to an eigenvalue is described by a change in

the diagonal element of the sensitivity matrix, T. Thus, a useful non-dimensional

parameter for the eigenvalues is obtained by taking the square root of the ratio of

the perturbation to the diagonal element, over the original diagonal element. From

Equation (2.123) we have
ciiA ii (2.151)

That this measure is an additive perturbation to the normalized squared resonant

frequency was made clear in Equation (2.125) and is repeated here for clarity,

+ 1+ (2.152)
Of 1 A i

Note that negative Fii values correspond to destiffening while positive Fii values

correspond to stiffening. If ri equals negative one the perturbation effect corresponds

to buckling. However, since the first order perturbation equations are based on a
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constant sensitivity slope, precision is lost in the case of large effects (i.e. large Ap).

The accuracy of the change predicted by F is inversely proportional to the magnitude

of the change. This accuracy loss is not catastrophic since the principal objective of

the non-dimensional parameter is to allow for quickly identifying when it is necessary

to model the gravity effect under consideration-it should not be used to predict the

magnitudes of significant changes.

To predict the modal couplings we examine the off-diagonal elements of the sen-

sitivity matrix T. Based on Equation (2.126) a useful non-dimensional parameter

is obtained by taking the ratio of the off-diagonal element and the difference in the

corresponding original diagonal elements,

ScjiA ji (2.153)

This corresponds to a coupling coefficient which describes the contribution of the jth

modeshape to the perturbed ith modeshape. The results of these non-dimensional

parameter computations for the three beam configuration cases are shown in Tables

2.2, 2.3 and 2.4.

To verify the validity of the non-dimensional parameters for large perturbation ef-

fects, it is reasonable to compare the predicted buckling force with the exact buckling

force since the buckling load is proportional to the stiffness and the resonant frequency

is proportional to the square root of the stiffness. The predicted force required for

buckling in bending is determined by setting the non-dimensional parameter associ-

ated with a bending frequency perturbation to negative one and solving for F. For the

clamped-free case the predicted buckling load, -2.97E, is 5.2% greater than the exact

buckling load, -'I _ -2.469E [54]. This implies that eigenfrequency perturbations

are underestimated by roughly 2.6% for large perturbations. For the pinned-pinned

and free-free cases the buckling load predictions are the same which is promising since

the exact buckling loads for the two configurations are known to be the same. It was

found that the predicted buckling load for the two cases, 12 , was 22.1% greater
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than the exact buckling load, - '7t - -9.7E 1 [54]. Thus, for large perturbations, the

pinned-pinned and free-free non-dimensional parameters would underestimate the ef-

fect on the resonant frequency by approximately 10.5%. These errors are reasonable in

light of the large perturbation magnitudes required to achieve buckling (the smaller

the perturbation the more accurate the prediction). These results would seem to

indicate that the methodology and results of this analysis are in order.

It should be mentioned here that even for small perturbations there is an error in

the effect predicted by the non-dimensional parameter, due to the combined result

of having used a single beam element in our analytical treatment, and the fact that

the beam element was constructed using standard static deflection-based interpola-

tion functions. Solving the general symbolic eigensystem equations for higher order

multi-element configurations would have been preferable but was not successful (the

existence of a solution is not guaranteed). For uniform beam elements subject to

simple tip boundary conditions of the sort studied here it has been found that one

can predict reasonably well as many eigenfrequencies as there are Hermitian' beam

elements [66] (which is not true of isoparametric beam elements). Rough estimates

can also be made of the next higher eigenfrequency. It is a characteristic of the fi-

nite element method that as the number of elements is increased, convergence in the

eigenfrequency prediction is always achieved from above (i.e. adding elements always

reduces the stiffness while increasing the accuracy). For a single element, clamped-

free beam a typical error in the first eigenfrequency prediction is less than 0.5% (an

excellent result which is to be expected since the interpolation functions resemble the

dynamic clamped-free mode shapes). But for the pinned-pinned case (whose exact

dynamic mode shape is a pure sinusoidal function and is not as well approximated

by the interpolation functions) the error for the first single-element eigenfrequency

prediction can be as high as 10%. For the second, single-element eigenfrequency

prediction the error increases to 20% for the clamped-free beam and 25% for the

1As were used in this analysis, see Section 2.2.1.
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Table 2.2: Non-Dimensional Parameters for Clamped-Free Beam Sensitivity
to Gravity Load Effects

Load Type Effect Non-Dimensional Parameter

axial load l1t bending freq. pert. 0.385Fl

(Fx) 2 nd bending freq. pert. 0.049F 2

1' t torsion freq. pert. AG.3FI

Ist bending - 2 nd bending coupling -0.0081F1 2

E1

bending load 1't bending - torsion coupling 3.972MV46 .TAi2

(M, or M,) 2nd bending - torsion coupling 1.354M a-A1
2

orY 
336.7EI.I V -AGJ1

2

torsional load 15t z-bend. - 2 nd y-bend. coupling E(2.4M

(MX) 2nd z-bend. - 1st y-bend. coupling 2.84M1

pinned-pinned beam. Thus, while the symbolic non-dimensional parameters are use-

ful given their general form and ease of evaluation, they cannot be expected to yield

exact dynamic perturbation effect predictions.

Inspecting Tables 2.2, 2.3 and 2.4 reveals that, in general, the impact of the initial

stress loading is greatest on the fundamental eigenfrequencies. This supports the use

of the single beam element approach which is only valid for the lowest eigenpairs.

Tables 2.2, 2.3 and 2.4 also indicate, as expected, that the effects of initial stress

stiffening can be very important on closely spaced modes. Given that closely spaced

modes are a typical occurrence in structures at medium and high frequencies, and

particularly for structures which have planes of symmetry, the effects of initial stress

stiffening cannot be discounted at high frequencies.
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Table 2.3: Non-Dimensional Parameters for Pinned-Pinned Beam Sensitivity
to Gravity Load Effects

Load Type Effect Non-Dimensional Parameters

axial load 1
"t bending freq. pert. °.083F 2

El

(Fx) 2nd bending freq. pert. '.017F12
El

1lt torsion freq. pert. 0.833F1,
AGJ

1lt bending - 2 nd bending coupling 0

bending load 1it bending - torsion coupling 0

(M, or M,) 2nd bending - torsion coupling 0

torsional load 1it z-bend. - 2 nd y-bend. coupling -1.75M1

(M,) 2nd z-bend. - 1 t y-bend. coupling E(21III)

Table 2.4: Non-Dimensional Parameters for Free-Free Beam Sensitivity to
Gravity Load Effects

Load Type Effect Non-Dim ensional Parameters

axial load 1it bending freq. pert. 0.083F/2
E1

(F,) 2nd bending freq. pert. .02F 2

EI

1it torsion freq. pert. 0.833FIO
AGJ

1't bending - 2 nd bending coupling 0

xy or xz tilt stiffening O.166Fl

bending load 1"t bending (y or z) - torsion coupling 0

(M, or M,) 2nd bending (y or z) - torsion coupling -0.833M A 3

or 
583.3EI.Iy-AGJ

2

xy or xz tilt - torsion coupling -o.4M _

torsional load 1I
t z-bend. - 2nd y-bend. coupling -0.466M

(M) 2d z-bend. - 1 t y-bend. coupling .3MT,)

xy or xz tilt - same plane 1't bending I0.417MEl
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2.4 Beam Element Initial Deformation Effects

2.4.1 General Observations

As detailed in Section 2.1.3, to describe the system property matrices and eigen-

vectors of a deformed structure in the original global coordinates, it is necessary to

transform or rotate the individual elements prior to their assembly. For an n degree

of freedom structure the global system property matrices M and K are n by n. If the

elemental K(m) and M(m) matrices are written in the global n by n form (i.e. padded

with zeros) we can write the global system property matrices as a sum of the element

property matrices

OK = E K(m) (2.154)
m

OM = E M(m) (2.155)
m

When the structure undergoes initial deformation after being suspended in a gravity

field, the individual K(m) and M(m) must be transformed prior to assembly

tK = E T(m)T K(m) T(m) (2.156)

and

tM = C T(m)T M(m) T(m) (2.157)

Unless all T(m) are the same, it is not generally possible to write the global system

property matrices as a single global transformation of the assemblage, i.e.

K TT (E K(m) T (2.158)

S T E M(M) T (2.159)\-( /

102



Therefore the mass and stiffness matrices of the deformed structure, written in the

original global coordinates, cannot generally be expressed as a projection of the orig-

inal mass and stiffness matrices. It is possible however, in the case of a single element

(or a portion thereof) undergoing initial deformation. In this case we can write the

eigenproblem as

(TT (M-'K) T) T' O4 = T-' 0 A (2.160)

We can subsequently write the following simple relation for the effect of initial defor-

mations on the eigenvectors of a single element

4 = T-1 (O( ) (2.161)

To make further observations it is necessary to identify T.

The transformation matrix T(m), for any element, will always be some combination

of elemental rotations except in the case of distortion of the element. Given the

assumption of large displacements and small strains, it is assumed here that there are a

sufficient number of elements in the structure to represent the structural deformations

without distorting the elements. The latter assumption should always be the case

in a sound finite element model to ensure valid static and dynamic finite element

model predictions [45]. Using the global reference frame depicted in Figure 2-3, and

the same ordering of beam element degrees of freedom as in Equation (2.63), the

elemental transformation matrix is

10 0 0

T (m ) = (2.162)
0 07R0

0 0 7
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Table 2.5: General Nature of Initial Deformation Effects on Beam

Deformation Type Nature of Pre-Deformation Effect

Droop or Sag couples axial and vertical bending modes.

(Ry) couples torsion and horizontal bending modes.

Twist couples out-of-plane bending modes.
(R,)

For a pure vertical plane rotation, which corresponds to droop or sag

cos(O) 0 - sin(0)

R = R, 0 1 0 (2.163)

sin(0) 0 cos(0)

and for a twisting initial deformation about the beam neutral axis

1 0 0

7 = = 0 cos(O) sin(0) (2.164)

0 - sin(O) cos(9)

The role of rotation in the initial deformation class of gravity effects is plain here

and not hidden as in the case of the initial stress effect (where infinitesimal rota-

tions contribute to the non-linear strain which fundamentally leads to the geometric

stiffening).

From the relation of Equation (2.161) it is possible to identify the very general

nature of the initial deformation effect on a beam. Table 2.5 lists the couplings

induced by the two initial deformation types.

In the case of droop, the perturbation to the vertical plane dynamics is limited

to a coupling with the axial dynamics. Given the high axial stiffness as compared

to the vertical bending stiffness (which is necessarily very low in the case of finite

droop or sag), this coupling will have a minimal effect on the eigensystem of most
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structures. The coupling of the torsional dynamics with the horizontal dynamics, on

the other hand, has the potential to become a very important effect. The coupling of

out-of-plane bending modes due to torsional initial deformations is another possibly

important effect. However, given our assumption of a uniform beam cross-section, an

out-of-plane structural mass would be required to impart an initial twisting deforma-

tion to the beam component.

2.4.2 Initial Deformations of an Assemblage

To rotate all degrees of freedom of a single element, whether it is clamped-free, pinned-

pinned or free-free, simply results in a change of basis of the eigenvectors and does

not fully capture the effects of initial deformation on the eigensystem of a structure.

The fundamental nature of this effect, rather, is a relative deformation of two parts

of a structure. Thus, to capture the effects of finite deformations of a structure due

to gravity, it is necessary to study a free-free element with only one tip deformed, or

to use two or more elements for other boundary conditions.

The configuration studied in this work is a free-free beam element where only

one node is subject to the initial deformation effects. The two other configurations

recommended for future study are a two-element clamped-free beam, where the second

element has drooped some angle, say a, with respect to the first element and a pinned-

pinned beam, where the two beams sag at an angle of a with respect to the horizontal

(depicted in Figure 2-6). These configurations each have twelve degrees of freedom

and are recommended for study before the more complex eighteen degree of freedom

kinked, two element, free-free beam.

For the twelve degree of freedom free-free beam the effects of droop and twist

are studied using the techniques developed in the previous section; i.e. the original

free-free beam eigenvectors are used to project the perturbed eigensystem unto the

original eigenspace and non-dimensional parameters are identified.
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z

element 1

element 2 element 1 element 2

Clamped-Free Configuration Pinned-Pinned Configuration

Figure 2-6: Droop Initial Deformation Effect Configurations Recommended
for Analysis

2.4.3 Eigensystem Sensitivity Analysis

Beam Droop Effect

For a free-free horizontal beam element, for which one tip is subject to a rotation

a in the vertical plane, we have a perturbation to the system matrices which when

projected onto the original eigenspace with the transformation of Equation (2.165)

yields a sensitivity matrix FRy with first and second order sin and cos terms.

R = @-1RT (M-'K) R°J (2.165)

In the case of small deformations and small angles of rotation the result simplifies to

Equation (2.167) shown on page 107.

Beam Twist Effect

For a beam element where one tip is subject to a small rotation a about the beam

neutral axis (which corresponds to the global X axis in the convention adopted here)

we have the transformation

o ,= 041RT (M-1K) Ro0  (2.168)

which results in Equation (2.166) on page 107 when one assumes a small initial or

incremental deformation.
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2.4.4 Observations and Non-Dimensional Parameters

Inspecting the beam twist and beam droop sensitivity matrices Equations (2.166) and (2.167),

shows that the effect of beam twist is limited to a coupling of the out-of-plane bending

modes while the effect of beam droop is to couple axial modes with bending in the

droop plane, and torsional modes with bending out of the droop plane. The nature

of these effects of twist and droop correspond to the torsional load and bending load

induced stress stiffening effects respectively (see Section 2.3.1), as one would expect.

Using the same approach as in Section 2.3.4 we can now identify non-dimensional

parameters for the partially deformed free-free beam element using the sensitivity

matrices of Equations (2.166) and (2.167). Since no pure eigenfrequency perturba-

tions are evident in Equations (2.166) and (2.167) we are uniquely concerned with

eigenmode coupling. As was done in the study of the stress stiffening effect on the

eigenvectors, the initial deformation effect non-dimensional parameters are obtained

by taking the ratio of the off-diagonal element and the difference in the corresponding

original diagonal elements, i.e.

rij = CiA- (2.169)

The results of these computations are listed in Table 2.6. It is interesting to note

that the sensitizing effect of closely spaced modes (which is apparent in the eigenvalue

difference of the coupling coefficient denominator, Equation (2.126)) is offset by the

same difference in the numerator of the off-diagonal modal coupling terms.

2.5 Verification and Sample Problem Analysis

In this section we apply the technique of redefining a structure to capture initial

deformation effects and the technique of updating the system stiffness with the geo-

metric stiffness matrix Kg (or Kgd) to capture stress stiffening effects. The validity

and performance of these methods in correctly computing the perturbations to the

eigenstructure of a beam is tested for the case of a drooping beam.
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Table 2.6: Non-Dimensional Parameters for Clamped-Free Beam Sensitivity
to Initial Deformation Effects

Pre-Deform. Effect is to Couple Non-Dim. Parameter Condition

twist 1"t z-bending - 1lt y-bend. P EIy $ EI,

(R,) 2 nd z-bending - 2nd y-bend. / EI EI

1st vert. bending - axial 1.047/P EIy, A12

droop 2"d vert. bending - axial 0.1357P EIy A

(R,) 1lt hor. bending - torsion 0. 137 3 -pl EII, AGJ12
3.467

2 nd hor. bending - torsion 0.0985 EI, AGJ12
.,31 EIJ I.3.467

Comparisons between the effects of initial deformation and of stress stiffening are

made. In addition the performance of the concentrated nodal load geometric stiffness

matrix Kg is compared with that of the concentrated plus distributed load geometric

stiffness matrix Kgd derived in section 2.2.3.

The verification case is the dynamic analysis of Minguet and Dugundji [30] in

their study of a horizontal drooping slender beam. This case was found to be prin-

cipally affected by initial deformation. Also studied is the case of a vertical beam

under tension to verify the geometric stiffness refinement and to again compare the

performance of Kgd versus K,.

2.5.1 Effect of Distributed Bending Moment and Beam Droop

In this subsection we compare the eigensolutions predicted by an initial deformation

refinement, and by a Kg and Kgd refinement with those predicted by Minguet and

Dugundji in their study of the dynamics of long slender (helicopter-blade type) beams

subject to uniform bending loads [30]. This latter case examines the modeling of

bending-torsion coupling due to transverse loading and beam droop. Highlighted in

the verification analysis is the derivation of expressions for the internal nodal loads

(F^, Fx,, M M, MY, Mz, Mz, ... ) which are the result of internal element stresses and

2.5 Verification and Sample Problem Analysis 109



Gravitational Load Effects on Structures

are not to be confused with the external applied nodal loads (RA , R', etc...).

Nodal Load Computation

To compute the numerical geometric stiffness matrix K(m) or K') of an element, (e.g.

Equation (2.96) or Equation (2.97) for a beam element), it is necessary to first have

computed the internal nodal loads of the element, F(m). Sophisticated finite element

software typically performs the computation of F(m) by numerical integration of the

following

F(m) = () B(m) T (m) dV(m) (2.170)
fV

where B(m) is the strain-displacement matrix (Equation (2.30)), and r(m) is the ele-

ment stress vector obtained from the product of the strain vector E(m) and the con-

stitutive matrix C(m) (Equation (2.4))

7(m) = C(m) (m) = C(m)B(m)U(m) (2.171)

If one knows the consistent external applied loads, integration is not necessary to ob-

tain the internal nodal loads. The consistent external applied loads which correspond

to a uniformly distributed load on a beam element are [48] as shown in Figure 2-7,

and are determined by the integration

R(m) = H(m)' f() dV(m) (2.172)

The external nodal loads determined with Equation (2.172) are named consistent as

they make use of the same interpolation matrix as used by the displacements, i.e.

H(m). By integrating the distributed forces f(m) weighted by H( ' ) one is assured

that the resulting nodal loads will perform the same work as the distributed loads

when deforming the structure. This is in contrast to the use of "plain"lumped nodal

forces which are determined by simply dividing the applied distributed loads equally
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z
Y pl p

p2 p1
2

' X - - - - - -

Beam Element subject to Distributed Load Equivalent Consistent Nodal Loads

Figure 2-7: Example of Consistent Nodal Loads for a Beam Element subject
to Uniform Distributed Transverse Load

between the element nodes. For example, the plain lumped forces for the loading of

Figure 2-7 would not include the nodal bending moments.

The steps in computing the internal nodal loads given the consistent external

nodal loads are:

1. compute reaction forces,

2. sum external nodal loads and reaction forces to obtain internal nodal forces at

geometric boundary conditions, and

3. apply equilibrium principles to determine remaining internal nodal forces.

For a single horizontal beam element (of length h, density p, and cross-sectional area

A) cantilevered at node A and subject to gravitational loading, the above procedure

yields the following consistent nodal loads

- pAgh
2

F pAgh (2.173)

2
M 12

pAgh2

M 12

or, for an N element beam of length I (n = 1,2, 3... N), the internal nodal loads of



the nth element are

1
F^ = pAgl- (pAgh)(n- -)

F' = -FZ (2.174)

pAgh 2  pAg((N + 1 -n)h)M^-
Y 12 2

MB = - MY- Fz h

where the element length h is uniform, i.e. h = I/N.

If distributed forces are permitted in the load and stress state description, as

must be the case when using Kgd, the equilibrium relations change to allow for the

distributed forces and we now obtain the following internal nodal loads for the nth

element

F = pAgl - pAg(n - 1)h

F = -F+ pAgh

Mv = -pAg((N + 1 - n)h)2  (2.175)
2

pAgh2
MB = -MAv Fh 2

2

Analysis Procedure

Using the internal nodal forces of Equations (2.175) and the geometric stiffness ma-

trix Kg of Equation (2.97), (or the internal nodal forces of Equations (2.176) and

the distributed geometric stiffness matrix Kgd of Equation (2.105)), as well as the

transformation matrix of Equations (2.162) and (2.163) we are now in a position to

study the effect of droop or sag on a beam or beam-type structure. To compute

the eigensystem of the deformed beam, subject to geometric stiffening effects, the

iterative procedure outlined in Figure 2-8 was followed.
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MATLAB Finite Element Modeling Procedure

Initialization

load parameter values: E, ly, Iz, 1, G, J, m, A
define undeformed node positions: Xo
define reference node position: Xref

set deformed node positions Xi = Xo
set AX greater than tolerance

- Main Loop (until AX < tolerance)

zero global mass, stiffness matrices: Mglob, Kglob
zero global applied load vector: Qglob
update nodal position vector: Xi = Xi+l

Element Loop (once for each element)

compute rotation matrix: T(Xi)
rotate load vectors: Ql = T' Q1; Qc = T'Qc; Qd = T'Qd;
compute geom. stiff. matrix for plain lumped loads: Kgl = T' Kgl(Ql) T
compute geom. stiff. matrix for cons. lumped loads: Kgc = T' Kgc(Qc) T
compute geom. stiff. matrix for dist. + cons. lumped loads: Kgd = T' Kgl(Qd) T
compute and transform mass matrix: M = T' M T
add elemental M, K, Kg matrices to global assembly -> Mglob, Kglob

apply constraints to global property matrices
compute nodal positions of deformed structure: Xi+l = Xo + Kglob'
compute change in deformation: AX = max(Xi+l - Xi)

Solution
compute eigensolutions for different cases studied
extract and plot vertical, horizontal and torsional components of fund. modes

Figure 2-8: MATLAB-based Finite Element Procedure Flowchart

Computation

compute plain lumped nodal loads: Ql
compute consistently lumped nodal loads: Qc
compute cons. lumped + dist'd nodal loads: Qd
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Non-Dimensional Parameter Computation

Based on the general observations of Section 2.3.1 and Section 2.4.1, and on Tables

2.1 and 2.5, we expect to observe coupling between the horizontal bending modes and

the torsional modes of the clamped-free horizontal Minguet beam due to initial droop

and a bending-moment-induced geometric stiffening. To evaluate the effectiveness

of the non-dimensional sensitivity parameters derived in Sections 2.3.4 and 2.4.1 we

compute here the two parameters describing the magnitude of the geometric stiffening

non-dimensional parameter and the initial deformation non-dimensional parameter

for the bending-torsion coupling case. Using homogeneous beam parameters which

approximate the properties of the Minguet graphite-epoxy composite beam (listed in

Appendix B) we obtain

0.972M~/Ji72
rkg = = -0.05075M ; 0.003 (2.176)

3.466EI.I, - AGJ12

for the first bending-torsion coupling non-dimensional parameter based on the geo-

metric stiffness parameter expression from Table 2.1. The very small value of rkg

indicates that the geometric stiffness effect is negligible for the clamped-free Minguet

beam. Substituting the same Minguet beam properties in the initial deformation

parameter expression from Table 2.5 for first bending-torsion coupling, we obtain

Pdf = 0.1373 10 = 8.0780 - 1.57 (2.177)

The non-dimensional parameter associated with the initial deformation effect indi-

cates, on the other hand, very significant coupling between bending and torsion. In

fact, since the coupling parameter is close to unity one would expect the new modes

to have roughly equal contributions of the two original modes.
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Results

Using 15 elements to model the horizontal clamped-free beam, as did Minguet and

Dugundji [30], an unloaded or 0-g model was first derived using a load vector of zero.

The first vertical bending, torsion, and horizontal bending modes of this model, along

with associated eigenfrequencies, are shown in the lower-half of Figure 2-9 under the

Minguet/Reference results for the unloaded beam. It can be seen quite clearly that

the eigenmodes of the MATLAB model are nearly identical to the Minguet model

eigenmodes and that the vertical bending frequencies are exactly the same. The tor-

sion and horizontal bending frequencies on the other hand are quite different with

errors of +10.6% and +3.8% respectively. These errors are the necessary result of

modeling a 6 ply (3 ply symmetric) graphite-epoxy composite beam as a homogeneous

beam while the more sophisticated model of Minguet and Dugundji included descrip-

tions of each layer. The equivalent beam properties derived from the composite were

tuned to obtain the proper mass and stiffness distribution in the vertical/droop plane.

This resulted in an exact match between the computed tip deflection and Minguet's

reported tip deflection of 2% of the beam length, i.e. 11.2 mm.

Three different 1-g models were then derived for comparison with the Minguet

model 1-g results. The 1-g Minguet/Reference results are shown in the upper half of

Figure 2-10. The first 1-g model derived, shown in Figure 2-10 beneath the Minguet

results, was the best possible model and includes the effects of both initial deforma-

tions and Kgd geometric stiffening. The results are excellent in light of the original

frequency discrepancy. The MATLAB model successfully reproduced the magnitude

and shape of the coupled torsion-bending modes. The frequencies of the two new

coupled modes shifted in the appropriate directions and by nearly the right magni-

tude but not quite sufficiently, i.e. the error in the lower torsion-bending mode is now

+12.2% (instead of +10.6%) and the error in the second bending-torsion mode is now

+2.3% (instead of +3.8%). The MATLAB-based model therefore did not destiffen

the original torsional mode by as much as Minguet predicted (-6.5 Hz versus -7.0
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Hz), and did not stiffen the original horizontal bending mode by as much as Minguet

predicted (+3.9 Hz versus +5.5). As the modal coupling and eigenfrequency shift

was well captured the verification of the gravity effect modeling method was deemed

successful. The next figure, Figure 2-11, shows the eigensolutions for the case of

only including the effects of the initial deformation without a geometric stiffening

refinement, and the case of only including the effects of geometric stiffening without

a structure re-definition due to initial deformations. The initial deformation case very

nearly reproduces the results of Figure 2-10 while the pure geometric stiffness case

captures only the slightest amount of coupling. Clearly, in the case of a slight droop

or sag, the major part of the gravity effect is captured by solving for the initial de-

formation and transforming the system matrices to global coordinates. This confirms

the predictions made by the non-dimensional parameters in the prior subsection. As

an aside it should be mentioned that the gravitational load applied by Minguet was

actually upwards which was reflected in the MATLAB based model by the applica-

tion of -1 g. A sign reversal has the effect of changing the relative phasing of the

bending-torsion coupling.

2.5.2 Effect of Beam Tension

The second verification/sample problem studied is the case of a clamped-free vertically

suspended beam. The effect of tension on the dynamics of a beam in bending is an

extensively well-studied problem. Examined here however is the effectiveness of the

finite element geometric stiffness method and in particular a comparison is made

between the results obtained using Kg versus Kgd.

The homogeneous beam properties used in the previous horizontal beam study

are used here again, i.e. the Minguet beam properties. Rather than apply a fixed

gravity load of 1 g we examine here the effect of various load levels on the eigensystem.

The axial load is expressed in units of the first bending frequency non-dimensional

parameter, where a value of -1 corresponds to buckling. For ease of reference the
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Og REFERENCE RESULTS
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Figure 2-9: Comparison of 0-g Model Results with Minguet 0-g Results
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1g REFERENCE RESULTS
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Figure 2-10: Comparison of
1-g Results
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Ig MODEL RESULTS: Static re-definition only.
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geometric stiffness non-dimensional parameter for an axial load induced perturbation

to the first bending frequency is reproduced here from Table 2.1:

"kg 2  (2.178)
E

Nodal Load Computation

The internal nodal loads which correspond to the distributed gravitational loading of

a vertically suspended clamped-free beam for the consistent nodal load case are

_ pAgh(N - n + 1) (2.179)
: 2

pAgh(N - n + 1)
FX (2.180)

X 2

where A is the clamped node, B is the free node, n is the element number from 1 to

N, and the element lengths h are constant, i.e. h = I/N. Note the staircase nature

of the loading. When using Kgd distributed loads are permitted between the discrete

nodal loads so that the internal loads for this case are given by

Fx = -pAgh(N - n + 1) (2.181)

Fx = pAgh(N - n) (2.182)

Analysis Procedure

The same methodology used in the beam droop case was used here, i.e. the MATLAB-

based iterative finite element modeling procedure illustrated in Figure 2-8. Note that

for the case of pure axial loads the deformations are typically negligible and the

modeling process essentially consists of a single geometric stiffness refinement.
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Two Fundamental Clamped-Free Vertical Beam Normalised Eigenfrequencies
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Figure 2-12: Effect of Distributed Axial Load on Eigenfrequencies of
Clamped-Free Hanging Beam

Results

The eigenfrequencies of the two fundamental modes of the clamped-free beam are

tracked versus increasing load in Figure 2-12. The eigenfrequencies are normalized

and inverted for a compact plot. A downward slope indicates stiffening of the struc-

ture. For a non-dimensional parameter of one the first resonant frequency has in-

creased by a factor of nearly ten-fold. Clearly, when the non-dimensional gravity

effect sensitivity parameter is non-negligible with respect to one the geometric stiff-

ening effect is important. Figure 2-12 also shows the improved performance obtained

by using the distributed geometric stiffness matrix Kgd versus the pure consistent

load derived geometric stiffness matrix Kg. The Kgd case is more stable under large

loads and is more sensitive than using Kg. In terms of the effects on the eigenmodes

the use of Kgd was again found to be more sensitive than the use of Kg. This can

be seen in Figure 2-13 by comparing the lower three Kgd plots to the upper three Kg

plots. It should be pointed out that the magnitude of the loads required to obtain a
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Figure 2-13: Effect of Distributed Axial Load on Eigenmodes of Clamped-
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substantial difference between the two predictions is large and therefore encountered

less often. However, in cases where the loads are purely distributed and the axial

component is large it would appear to be advantageous to use the geometric stiffness

matrix derived in this thesis, i.e. Kgd, over the more common closed-form geometric

stiffness matrix Kg.
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Chapter 3

Suspension Effects on Structures

When performing ground-based tests of flexible space structures it is advantageous

to support the structure in a manner which simulates the unrestrained boundary

conditions of space as much as possible. The obvious goal is to minimize the effect

of the suspension system on the dynamics of the test article so as to facilitate and

enhance the prediction of on-orbit behavior and performance.

The fundamental approach is to minimize the mass, stiffness, damping and fric-

tion of the suspension system which participate in any modal behavior of the struc-

ture within the bandwidth of interest. For full three dimensional tests the result is

typically a multi-attachment point suspension system with long pendular cables to

minimize pendular stiffening and soft vertical springs. (Other gravity compensation

techniques which allow full spatial motion such as neutral buoyancy environments,

drop tube chambers and ballistic airplane flights are not viable for the respective

reasons of high viscous damping, short test window and routine testing impractical-

ity among others.) A typical goal is to have the suspension fundamental frequencies

half a decade below the structure's first resonance [6,67]. In one's attempt to keep

the suspension system dynamics outside the test article's bandwidth of interest, it is

sometimes necessary to push the higher suspension frequencies, e.g. cable modes and

surge modes, above the highest structural eigenfrequency of interest. This objective,

however, is in direct conflict with the objective of a soft suspension, complicating the
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design of a simple spring suspension system; see Appendix C for details. Numerous

suspension system designs which achieve very low bounce frequencies and overcome

the practical limits of a simple extensional spring suspension have been proposed

and successfully implemented, e.g. pneumatic-electric devices [16,17,21], spring lever

arrangements [16, 68], zero-spring rate mechanisms [16, 68, 21], and active disk sus-

pension systems [69]. Active control strategies are sometimes used to reduce any

remaining coupling by generating cancellation forces to compensate for the participa-

tion of suspension inertias, stiffnesses, damping or friction. While these technologies

have yielded promising results it is clear that achieving the required separation be-

tween the test article dynamics and the suspension dynamics is not always feasible,

especially in the case of lightweight low frequency test articles. It is therefore typi-

cally required to augment the states of the system model to include the suspension

system.

Whether or not one need include the suspension system in the plant model, and

to what degree of fidelity, is a function of many things including: the magnitude

of the frequency separation between the test article and the suspension system, the

performance objective of the spacecraft (i.e. do the rigid-body modes affect the

performance metric?), the authority of the control system (i.e. are the levels of control

effort so high as to make important even small perturbations?), and the amount of

initial deformation and gravity stiffening present since the attachment point boundary

conditions are required for the computation of the loads and subsequent gravity effects

on the structure. If the need to incorporate the suspension system is not immediately

obvious, an appropriate first step towards answering these questions is to examine

the correlation between the data and the model results. An appropriate second step

is to model the suspension system using simple spring elements at the attachment

points which captures the fundamental stiffening of the rigid-body modes. Finally,

if the model to data correlation is poor it may be necessary to model the higher

order suspension behavior such as cable modes where the dynamic behavior of the
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3.1 Static Stiffening Effects

cable mass is no longer neglected. Cable mode or surge mode behavior is typically

easily identified in a transfer function as closely-spaced pole-zero pairs which appear

as small "blips" at regular intervals in the transfer function. This observation is based

on data from the MODE ground-based testbed and the MIT SERC Interferometer.

It is difficult to identify general suspension effects on a controlled flexible space-

craft given the dependence on the specific structural configuration and suspension

configuration. In keeping with the focus on gravity effects on beam-type structures

this chapter will briefly examine in an analytical manner (as opposed to the numerical

treatment of Chapter 5 for the MACE test article) the effects of a soft suspension

system on a suspended horizontal beam.

3.1 Static Stiffening Effects

The principal perturbing effect of the suspension system is to stiffen the rigid-body

modes. This effect can be captured using static stiffness elements at the attachment

points. This approach can be used in practice as a rudimentary suspension model if

the higher frequency suspension behavior is well outside the test article bandwidth

of interest. The spring constants in translation are established based on the bounce

frequency wb, and the pendular frequency w,. The vertical stiffness, k, is given by

C, = w m, (3.1)

where m, is the mass at the attachment point associated with the vertical deflection.

The horizontal stiffness, kh, is given by

2 -mhg
kh = mh = (3.2)

where mh is the attachment point mass which is associated with the horizontal degree-

of-freedom and 1, is the length of the suspension cable. This constrains five of the six
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rigid-body modes. Assuming that spherical joints are used at the attachment points

and that the center-of-mass of the uniform cross-section is below the attachment point,

we can model the roll stiffness in terms of the test article double pendulum frequency

wp2. The torsional spring stiffness at the attachment point about the neutral axis is

thus given by

kIe = w, e (3.3)

where 1e is the lumped inertia about the neutral axis for the given attachment point.

The result is a set of three orthogonal extensional springs and a torsional spring

along the beam axis at each attachment point as illustrated in Figure 3-1. The

approximation here is that the suspension attachment points coincide with the beam

neutral axis. In practice it may be necessary to refine further the torsional spring

constant used to capture the rotational stiffening due to additional stiffening provided

by the offset translational springs.

These natural boundary conditions are incorporated directly into the stiffness

matrix by adding the spring constant to the diagonal element of Ko which corresponds

to the degree-of-freedom which is constrained. In the case of a single beam element
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3.1 Static Stiffening Effects

Kh
A L Z[e7

Kh Kh Ke

Figure 3-1: Static Modeling of Cable Suspension System

with a suspension cable attachment at each tip, we have
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(3.4)

and the perturbation to the system free-free stiffness matrix is simply K = Ko+K,,,,.

i
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3.1.1 Eigensystem Sensitivity Analysis

Unperturbed Eigensystem Characteristics

For the free-free beam the unnormalized eigenvectors are again written as the columns

of the eigenvector matrix 04)

0 0

-L 0

0 L

0 0

0 1

1 0

0 0

0 0

0 0

0 0

0 1

1 0

0

0

-L

0

-6

0

0

0

-L

0

6

0

0

0

L

0

12

0

0

0

-L

0

12

0

0

L

0

0

0

-6

0

L

0

0

0

6

0 -1

-L 0

0 0

0 0

0 0

12 0

0 1

L 0

0 0

0 0

0 0

12 0

0

0

0

-1

0

0

0

0

0

1

0

0

(3.5)

The projection of the original twelve degree-of-freedom system onto its own eigenspace,

i.e. 04-1 0 (M - K) 04, yields the diagonal matrix of eigenvalues A as expected. Note
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3.1 Static Stiffening Effects

the presence of the six zero frequency rigid body modes.
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(3.6)

The modes corresponding to each column of A appear as labels above the columns.

Recall that

respectively.

the z and y subscripts correspond to the vertical and horizontal axes

Using the original eigenvectors to project the suspension constrained system onto

the original eigenspace (as was performed in the previous chapter), i.e.

,, us= -o0- 1 (M-'(K + Kssp,)) o 4 (3.7)

yields the sensitivity matrix of Equation (3.8) on page 132. The first six columns of

Equation (3.8) correspond to the suspension modes of rotational-swing, tilt, double-

pendulum, bounce, horizontal or y pendulum, and axial pendulum. The rotational-

swing mode corresponds to a rotation of the beam in the horizontal plane about its

center and the tilt mode corresponds to a rotation of the beam in the vertical plane
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about its center. The other suspension modes are self-explanatory.

It can be seen by inspection of Equation (3.8) that the suspension bounce mode

and tilt mode only affect vertical bending behavior while the horizontal pendulum

mode and swing mode only affect the horizontal bending behavior as one would

expect. It is interesting to note that the while the latter perturbations affect both the

eigenmodes and eigenfrequencies the axial pendular stiffening and double-pendular

stiffening only perturb the axial and torsion eigenfrequencies respectively and do not

affect the corresponding eigenmodes (as revealed by the absence of off-diagonal terms

for the eleventh and twelfth rows and columns of ,,,).

3.1.2 Non-Dimensional Parameters

Normalizing the perturbations to the diagonal elements of x,,,,p by the original diago-

nal modal frequencies and taking the square root yields the non-dimensional parame-

ters of Table 3.1. Note that the suspension tilt mode eigenfrequency was expressed as

a function of the bounce mode eigenfrequency, Wb, and the two combine to stiffen the

vertical flexible modes. Similarly the rotational swing mode (or center pivot mode)

was expressed as a function of the horizontal pendular frequency, wp, and the two

combine to stiffen the horizontal flexible modes.

Inspection of Table 3.1 also reveals that the suspension does not introduce cou-

pling between the flexible modes of the structure for the configuration studied. There

is however a certain amount of coupling between the suspension modes and the fun-

damental flexible modes. Unfortunately, given the repeated roots associated with the

rigid-body modes of the original system, the off-diagonal elements of 9,,, do not

correspond to the frequency separation weighted eigenvector derivatives. This is to

say that the theory presented in Section 2.3.2 is only valid for systems with distinct

eigenvalues.

It is known however that as the number of suspension points is increased the

system bending behavior asymptotically approaches that of a beam on an elastic

3.1 Static Stiffening Effects



Table 3.1: Non-Dimensional Parameters for Beam Sensitivity to Suspension
Effects

Suspension Mode Stiffening Effect on Non-Dim. Parameter

bounce & tilt modes 1st vert. bending freq. 5w2/w2

2nd vert. bending freq. 7wb/w 2

horiz. pend. and 1st hor. bending freq. 5w /w 2
1

rotational swing modes 2nd hor. bending freq. 7w /w 2

axial pend. mode 1st axial freq. 3w /w2

double pend. mode 1st torsional freq. 3w 2 /w

foundation. By increasing the number of suspension attachment points and recom-

puting the sensitivity matrix 1,,,, we would thus expect the off-diagonal terms to

become smaller. For a beam on an elastic foundation it is known that the eigenmodes

of the structure are unaffected if the elastic foundation is massless [54]. The bending

eigenfrequencies of the suspended structure on the other hand all undergo a uniform

shift which becomes negligible at higher frequencies [54]

1 2 2 1/2
Wending bendin (Wbbounce i ) (3.9)

In the case where the beam or structure principal axes are not aligned with the hori-

zontal and vertical planes there is a loss of the proportional stiffening property of the

bending modes. This property occurs when the structure is suspended in a manner

which leaves it undeformed and level. If the structure is level the vertical stiffnesses

are mass proportional and the bounce frequency is uniform at every attachment point

(decoupling thus the flexible modes from the suspension bounce modes). If the struc-

ture is level and the suspension cables are the same length the pendular stiffening is

also proportional as it will be the same at every attachment point. The advantage

of proportional stiffening is that the impact on the structure's bending eigenmodes is
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minimized and only the eigenfrequencies are affected.

3.2 Dynamic Effects

When the suspension system exhibits dynamic behavior (i.e. cable/bending modes,

surge/axial modes, and twist/torsion' modes) within a half-decade of the structure's

bandwidth of interest it is necessary to include the suspension system mass and

distributed stiffness properties in the system model. The distinction between the

suspension system and the structure disappears somewhat as the effects of gravity

now act on the combined dynamic system. For this reason, and recognizing the higher

order nature of the problem, the impact of dynamic suspension effects such as cable

and surge behavior is not investigated in a general manner here. A generalized study of

the perturbations of a suspension system with its own dynamics on the eigenstructure

of a suspended beam-type structure is left for future study. What will be discussed

here is how geometric stiffening applied to the combined suspension-structure model

effectively models the suspension dynamics and the suspension-structure interactions.

3.2.1 Gravity Effect on Suspension System

By incorporating the suspension system into the structural model and computing the

effects of initial stress on the loaded suspension system (as described in Chapter 2) one

is able to accurately model the suspension system dynamics and the dynamic coupling

between the suspension system and the test article. This is an excellent example

of the power of the geometric stiffness model updating technique. For example, the

geometric stiffening effect correctly describes the pendular stiffening of the suspension

and structure due to gravity as well as the effect of the axial load on the cable modes.

As a demonstration of the correct application of pendular stiffening by geometric

iTwist or torsion of the suspension springs or cables is typically a negligible effect given the small
polar mass moment of inertia of the cables or springs

3.2 Dynamic Effects 135



Suspension Effects on Structures

stiffening we examine here a simple pinned-free beam element hanging vertically. To

simplify the analysis we restrict the beam to motion in the vertical plane. The beam

element has thus the following five degrees of freedom

Uc [ OYA XB ZB O B OYB] (3.10)

The gravity-free modeshapes of this system are given by,

O pend =

1 -0.777

0 0

-1 -0.2171

0 0

1 1

0.523

0

-0.0931

0

1

(3.11)

and the eigenfrequencies corresponding to the above

cable bending, axial, and torsion modes are

swing, 1"t cable bending, 2 nd

0 307.805E/y 4912.19EI 3EA 3.6GJ
pAl 4 pAl 4 pAl 2 p 12 )

(3.12)

To best identify the nature of the geometric stiffening here, a general eigenprojec-

tion analysis is first performed. Applying the properly constrained geometric stiffness

matrix Kg from Equation (2.97) to the suspended pendulum stiffness matrix and pro-

jecting the result onto the original eigenspace yields,
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Clearly, the swing mode has been grounded by the application
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of the gravitational
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load effect as the zero diagonal element has been replaced by the new squared eigen-

frequency
3F,3 Fa (3.14)
pAl2

Since the axial load for the beam subject to its own weight is

F, = pAlg (3.15)

the pendular mode frequency (no longer a rigid-body swing mode) is given by

A = (3.16)

which is the exact pendular frequency of a tip suspended beam with a uniformly

distributed mass [54]. Were the above analysis performed on a rigid-link with a con-

centrated tip mass the familiar pendular frequency of gl would have been obtained.

3.2.2 Predicting Suspension Surge and Violin Mode Fre-

quencies

For reference purposes this section describes the vital yet simple calculations one

should always perform to estimate the principal suspension resonant frequencies and

assess the minimum initial modeling order required for the suspension system.

The surge modes of a simple translational spring can be very well approximated

by modeling the spring as a uniform pinned-pinned rod for which the axial resonant

frequencies are [54]

(f) i 2 (3.17)
= 2x, V

where

(f,) = i'th surge mode eigenfrequency [Hz]

ku = unit spring stiffness [in - lb/in]

x, = undeformed spring length [in]



IL = spring mass density [slugs/in]

Note the regular harmonic spacing of the surge modes which typically drives the

spring design length to be as short as possible so that the first surge mode is above

the bandwidth of interest.

The violin modes of the suspension cables are those modes where the suspension

rods or cables behave as pinned-pinned strings of a violin. These modes are also

referred to as cable modes, piano modes, etc. Estimating the violin mode eigenfre-

quencies first requires an estimate of the tension on each cable. For an overdetermined

system this information is best obtained by solving for the reaction forces in the finite

element analysis. The violin mode eigenfrequencies are given by [54]

(f)i = (3.18)

where

(f,)i = i'th violin mode eigenfrequency

1 = suspension cable length

To = tension in the suspension cable

p = suspension cable density

A = cable cross-sectional area

3.2.3 Summary

The effect of a laboratory suspension system on the dynamics of a suspended space

structure is principally to replace the structure's rigid-body modes with bounce, tilt,

and pendular modes, and to stiffen the fundamental flexible modes of the structure

when there is insufficient frequency separation between the fundamental suspension

dynamics and the fundamental structural flexible modes. If the rigid-body modes

affect the performance metric it is crucial to include at least a static representation
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3.2 Dynamic Effects

of the suspension system in the model. If the experimental transfer function data

indicates the presence of suspension dynamic behavior, i.e. violin or surge modes,

it is necessary to model the suspension cables themselves as flexible beam elements.

Whether the suspension system is modeled as soft spring supported rigid rods, or soft

spring supported flexible rods it is necessary to include the suspension description

in the system model prior to the solution for the initially deformed structure and

the incorporation of geometric stiffening effects. The geometric stiffness refinements

capture gravity's stiffening effect on the rigid-body modes of the suspended structure

as well as the coupling effects between the loaded suspension system and the flexible

structure.
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Chapter 4

Gravitational Load Effects on

Sensors and Actuators

This chapter identifies and develops models of the fundamental gravity effects on

sensors and actuators viable for use in the control of flexible spacecraft. The two

devices which have been found to have a fundamental operational principle which

is affected by the gravitational field are the accelerometer and proof-mass actuator.

Non-dimensional measures are established which describe when these fundamental

gravity effects are non-negligible. The MACE testbed is used as an example of the

application of the non-dimensional measures. The implementation of the gravity effect

modeling technique on MACE was found to improve transfer function predictions.

The approach adopted here is to focus on the dynamic effects of gravity and ignore

the static effects on device performance as the latter are typically eliminated using

zeroing techniques prior to their operation. After the identification of the fundamental

perturbation mechanism, the gravity effects are incorporated into exact dynamic input

or output equations which are used to generate the modal input or output equations

more practical for implementation into the discrete controlled structure model. The

non-dimensional parameters are then extracted from the modal form of the input or

output equations.
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4.1 Background

4.1.1 Controlled Structure Model

The dynamics of a controlled flexible structure can be represented in state space form

as
X AB1 X
Y CD] U

where the modal amplitude state vector is X, the output vector is Y and the input

vector is U. The homogeneous system dynamics matrix is A, the B and C matrices are

the control and output matrices respectively and the D matrix is the static correction

matrix or feed-forward matrix. A standard partitioning of the state vector is to group

the modal amplitudes and modal amplitude rates as follows

X = 77 1 (4.2)

The resulting form of the system matrix A, in the case of proportional damping, is

0 I
o I (4.3)

A - M-1K -CM-1K

where C is a diagonal matrix of damping coefficients.

4.1.2 Direct and Indirect Effects

The initial stress and pre-deformation effects of gravity on the M and K matrices

described in Chapter 2 are direct effects on the structure. This chapter on the other

hand is concerned with the direct effects on the sensors and actuators which corre-

sponds to direct effects on the control and output matrices B and C. Indirect effects

to the B and C matrices are those effects which result from perturbations to the A

matrix, i.e. effects on the eigensystem as described in Chapter 2.
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4.2 Gravity Effect on Accelerometer Output

initial

. accelerometer
" .orientation

g . :. d(t)

q(t)

Figure 4-1: Accelerometer Output Model Schematic

4.2 Gravity Effect on Accelerometer Output

The internal mass of an accelerometer is stiffly connected to the accelerometer base

such that internal inertial and damping forces are negligible within the device's ef-

fective bandwidth. The acceleration of the base is inferred by measuring the relative

displacement of the internal mass to the base. The output of an accelerometer is thus

given by

a(t) = -wn q(t) = d(t) (4.4)

where w, is the accelerometer natural frequency, q(t) is the relative displacement of

the internal mass and d(t) is the displacement component of the structure along go

as depicted in Figure 4-1. (For details of accelerometer operation see Reference [27]).

When the structure undergoes rotation a change in the translational gravity load
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initial accelerometer
orientation

r(t)

Figure 4-2: Schematic of Accelerometer Rotation in Gravity Field

is induced and for small rotations the accelerometer output is now given by:

a(t) = d(t) + . - (- x (t)) (4.5)

where j4 is the initial accelerometer axis unit vector and F(t) is the right-hand rule

rotation vector associated with 9(t), see Figure 4-2. This representation holds for

arbitrary accelerometer orientations and rotations in three dimensions where 0 is

positive for an upwards rotation and the gravity vector ' is positive when downwards

pointing. As captured by the dot product of Equation (4.5), the gravity effect is

clearly null when the rotation is about the sensitivity axis of the accelerometer or

about the vertical axis.

This rotation induced gravity effect on the accelerometer can lead to important

dynamic performance perturbations at low frequencies as will be shown in Section 4.4

and demonstrated in Section 4.6 after a brief description of the complementary gravity

effect on the output of a proof-mass actuator.
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4.3 Gravity Effect on Proof-Mass Actuator Input

. F t) m
m initialinitial nitialinitial proof-mass

proof-mass g position
position q(t)

Figure 4-3: Proof-Mass Actuator Input Model Schematic

4.3 Gravity Effect on Proof-Mass Actuator Input

Assuming high authority local control is used to reject disturbance forces, the proof-

mass actuator force input to the structure along 'o is prescribed by the controlled

acceleration of the proof-mass. The proof-mass actuator force input to the structure

along o is thus

F,(t) = -m i(t) (4.6)

as portrayed in Figure 4-3. When the proof-mass translates in a gravity field along

any axis other than the vertical, the translation induces a change in the torque on

the structure as the moment arm is changed. In general, for small rotations, the

proof-mass actuator input is thus a simultaneous force and torque input:

Fq(t) = -m q(t) (4.7)

1(t) = m q(t) (' x f) (4.8)
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where q(t) is the dynamic proof-mass displacement along the actuation axis, see

Figure 4-3.

To incorporate this effect and the accelerometer gravity effect into the controlled

structure model we now proceed to a modal representation of the sensor and actuator

dynamics making use of the fact that the devices are fixed at discrete locations on

the structure and that the structure has been modeled and its modal properties are

known.

4.4 Modal Modeling

The key to a compact and elegant representation of the effects of gravity on the

performance of flexible structure sensors and actuators is to recognize that the mode-

shapes 4P can be divided into translational components i and rotation components

i'. This is equivalent to expressing the deflection d(t) at x as a weighted sum of

translational modal amplitudes,

N

d(x, t)= 1j(t) P'(x) o (4.9)
j=1

and the rotation vector r(t) at x as a weighted sum of rotational modal amplitudes,

N

f(X,)t) = 7(t) PR(X) (4.10)
j=1

Taking the Fourier transform of Equation (4.5) and making use of the modal

displacement and rotation relations allows us to write the output equation for an

accelerometer as

N

a(t) = - + { (te(). Jt) + f" (O(x) x o) } 7(t) (4.11)
j=l

For the i th accelerometer located at xi the corresponding row vector of output matrix
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terms Cij is therefore given by

NC,, = - E {w ($f(x,). ito) + g" ( (,) X ,)} (4.12)

j=1

Note that the output matrix will have the form

c =[ CO 0 (4.13)

for the state vector partitioning described by Equation (4.2).

The proof-mass actuator input equation derivation is somewhat more involved

as the equations must be written in terms of the commanded force to obtain the

appropriate form for the input matrix terms. From Equation (4.8) we can write the

translation of the proof-mass as the doubly integrated time history of the commanded

forcing,
tf

q(t) = 1J Fq(t) dt2 (4.14)
to

which can be substituted into the gravity induced torque equation (4.8) to yield

tf

iq(t) = J F(t)dt' ( x /i) (4.15)
to

Note that the order of the cross-product was flipped to maintain a positive expression

for the moment on the structure. Making use of the modal displacement and rotation

relations of Equations (4.9) and (4.10) we can write the translational modal forcing

as

(4.16)

1474.4 Modal Modeling
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and the rotational modal forcing as

F(t) = () = - P (x) (& x 4)) Fq(t)
1

= (-. (_V,(x) x i)) F,(t) (4.17)

where the Fourier transform was used to eliminate the double integration. The entire

FjR(t) term here is the gravity induced input perturbation. For the ith proof-mass

actuator located at xz the corresponding column vector of input matrix terms Bji is

therefore given by

Bji = ( D(x). o) + - (-. ('(x) fO)) (4.18)

where the B matrix is of the form

B=[0 Bi] (4.19)

for the state vector partitioning described in Equation (4.2).

4.5 Non-Dimensionalization

Using the modal input and output relations of Equations (4.18) and (4.12) very useful

non-dimensional parameters can be derived for evaluating the impact of gravity on

the performance of a flexible structure mounted accelerometer or proof-mass actuator.

The derivation of the non-dimensional parameters is very straightforward since the

perturbation to both the accelerometer and the proof-mass actuator performance is

additive. To obtain the non-dimensional parameter for an additive perturbation we

simply take the ratio of the perturbing quantity to the unperturbed quantity. The

resulting ratio for both the sensing and the actuation case is in fact the same and is
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given by

r = × g (4.20)

or, for beam mounted devices we can normalize by the beam length to obtain a

non-dimensional parameter

r ( ) (4.21)

When the non-dimensional ratio of Equation (4.21) is finite or large with respect

to unity the effect of gravity on the dynamic performance of an accelerometer or

proof-mass actuator is important and should not be neglected.

4.5.1 Observations

A number of interesting observations can be made concerning the effect of gravity on

a flexible structure borne accelerometer or proof-mass actuator . The most interesting

is that the non-dimensional parameter is the same for the two devices so that they

are gravity effect sensing and actuation duals.

The effect of gravity on the accelerometer is such that all rotations other than

about the vertical or about go, (for which rj = 0) are sensed to some degree by

the accelerometer. In fact, the most sensitive orientation for both devices is clearly

the horizontal orientation (as the cross-product quantity will yield a vertical vector

which will be parallel to the gravity vector and the dot product or projection will be

equivalent to a multiplication by plus or minus one). The additive perturbation can

be constructive, i.e. rj > 0, or destructive, i.e. rj < 0, depending on the relative

sign between the perturbation and the unperturbed signal. The result is thus an

amplification of the accelerometer signal or an attenuation which can lead to a near

cancellation of the signal or to a phase reversal of the signal which can be catastrophic

if the accelerometer is a feedback element of a control system.
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It is not surprising to observe that the effect of gravity on the proof-mass actuator

is such that the proof-mass actuator will not excite rotations about the vertical or

about its actuation axis. As with the accelerometer the additive gravity perturbation

can be constructive (Pj > 0) or destructive (ri > 0) either enhancing the ability of

the proof-mass actuator to excite a given mode or reducing its effectiveness.

Clearly the impact of the gravity perturbation for both the accelerometer and the

proof-mass actuator is most important at low frequencies or at modes with a small

displacement component: Pj > 0, or, rI << O. It is for the latter cases in particular

that the effect of gravity on the system controllability and observability should be

taken into account. Note that a judicious placement and orientation of the device

can eliminate or significantly reduce the effect of gravity.

A few additional observations can be made for two special cases which correspond

to the two pure modal origins of the modal rotation component, i.e. pure bending

and pure torsion. When fr(xi) is due entirely to a twisting about the neutral axis

we have a pure torsion effect, (rj --+ oo). When 4f(x) is due entirely to a neutral

axis displacement we have a pure bending gravity effect.

For the accelerometer in the pure torsion gravity effect case, the gravity perturba-

tion is about an otherwise null signal which therefore makes the otherwise unobserv-

able torsion modes observable. This can be advantageous for ground-based systems

if the output matrix of the system model reflects this effect, but if unmodeled this

effect can lead to harmful spillover. Similarly, the torsional gravity perturbation to

the proof-mass actuator imparts some controllability to the torsional mode in ques-

tion. It is important to recognize that this enhanced observability and controllability

of torsion disappears in space and the orbital control system must take this into

account.

For the pure bending gravity effect case the relative phasing of the gravity pertur-

bation and the unperturbed input or output can easily be determined by inspection

for a given mode. One need only identify if the local component of rotation in the ver-
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4.6 MACE Accelerometer Output Experiment

sign( I2) Local Behavior Gravity Effect

pendular attenuation

+ inverse
pendular

----- ----- ----- - ---

amplification

pendular attenuation

inverse
+ pendular

amplification

Example of the Perturbation Phases for Various Accelerometer
Positions on a Pinned-Pinned Beam in the Second Flexible Mode
of Bending Vibration.

tical plane is pendular or inverse pendular, see Figure 4-4. (The accelerometer gravity

effect due to bending was the special case treated by Nor et al. [27, 70] who only rec-

ognized the attenuating effect of gravity in their pendular vertical plane structure.)

4.6 MACE Accelerometer Output Experiment

The Middeck Active Control Experiment, or MACE testbed is a flexible multi-body

dynamics test-bed with articulating payloads. The experiment is more fully described

in Section 5.1, but briefly it can be described as a scaled-down space platform with

an attitude control system and double gimballed pointing payload. The performance

metric is a weighted contribution of the payload pointing stability and jitter. The

objective of the experiment is to study the control structure issues involved in verifying

the performance of a controlled structure for space flight. This includes the study

of gravity and suspension effects as well as the management of interacting control

systems separated by a flexible bus.

Figure 4-4:
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Cell Triax Accelerometer

Strain Gauges Strut / Horizontal (+Z)
Dummy Gimbal Acceleration Gimbals

Rate Gyro Platform

Pointing/Scanning Payload

Figure 4-5: Middeck Active Control Experiment (MACE) Testbed Schematic

The key measure of how good a model is for control is how well the model predicts

the different possible transfer functions. This section examines the improvement

in transfer function prediction brought about by incorporating the direct effects of

gravity on the output of the horizontally oriented accelerometer on Node 2 of the

MACE test article, see Figure 4-5. This particular output quantity we know from

Section 4.5.1 will be most susceptible to the gravity perturbation. The input which

most excites horizontal acceleration is the Inner Gimbal, or X-Gimbal, so that the

transfer function under study here is Inner Gimbal Torque to Acceleration at Node

2.

4.6.1 Application of Non-Dimensional Parameter

No matter where the sensor or actuator is placed on a structure, at some frequen-

cies the modal rotation participation will be significant. This can be seen in the top

histogram of Figure 4-6 for the MACE structure, which shows the phase and magni-

tude of the modal rotation about X at Node 2 where the accelerometer is located.

It would be incorrect to assume that gravity will only affect the higher frequencies

Cable

Torque About
X-Axis Applied to

Inner Gimbal
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4.6 MACE Accelerometer Output Experiment

ROTATIONAL MODAL AMPLITUDES AND PHASES
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Figure 4-6: Torsional Modal Amplitudes and Non-Dimensional
fect Sensitivity Ratios for MACE

Gravity Ef-

as indictated since the frequency weighting and modal translation weighting of the

non-dimensional measure have yet to be incorporated. The lower histogram depicts

the phase and magnitude of the non-dimensional parameters (Equation (4.21)) for

the horizontal accelerometer at Node 2. Each visible bar on the histogram indicates a

significant perturbation at the frequency associated with that mode number. Clearly,

the direct effect of gravity on the Node 2 accelerometer should be incorporated into

the system output matrix.

Since the MACE test article has six rigid-body modes and five articulation modes

(one double gimbal and three torque wheels) Figure 4-6 indicates that six of the eleven

rigid-body modes are affected and the first three flexible modes are also affected.

By examining the modeshapes of the affected modes it was determined that the

R

j
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0
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greatest direct gravity effects were due to the modal rotation imparted by the pendular

swinging of the structure. This important observation recommends thus the use of

a suspension system which is not co-planar if the control system makes use of any

horizontally mounted accelerometers; (a non co-planar suspension system will allow

for a similar lateral swing but will not impose large rotations of the test article).

4.6.2 Transfer Function Results

Depicted in Figure 4-7 are three transfer-function curves for the Outer Gimbal to Node

2 Horizontal Accelerometer. The discrete points are experimental data, the solid line

is the model without the direct gravity effect and the dashed line is the improved

transfer function after incorporating the direct gravity effect on the accelerometer

output (using Equation (4.12)). The correction effect on the poles was minimal but

the effect on the zeros was significant as would be expected since the gravity effect

influences sensing. Of particular note is the improvement in the 0.8 Hz and 1.1 Hz

zero prediction.

4.7 Summary

The following items summarize the principal observations of this chapter.

* The non-dimensional gravity effect sensitivity ratio is the same for both the

PMA and the accelerometer.

* Direct gravity effects on accelerometers and proof-mass actuators can be very

important.

* Calculation of the non-dimensional gravity effect ratio is recommended, espe-

cially over low frequencies.

* The gravity effect can make observable otherwise unobservable modes.

* The gravity effect can make controllable otherwise uncontrollable modes.
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Figure 4-7: Gravity Effect on Horizontal Accelerometer Output for MACE
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Chapter 5

MACE Testbed Case Study

This chapter presents a numerical analysis of gravity and suspension effects per-

formed by computationally applying the gravity and suspension modeling techniques

described in Chapters 2 and 3. The techniques are first applied to a simplified model

of the Middeck Active Control Experiment test article (MACE) and to a set of para-

metric variations thereof. Two models are derived for each configuration studied: a

O-g model, which is gravity and suspension free, and a 1-g model, which includes

gravity and suspension effects. The gravity and suspension modeling techniques were

also used to improve the higher order model of the actual testbed for comparison with

experimental data. These results however are not contained in this thesis except for a

description of the modeling of the MACE Development Model testbed and a sample

overlay of typical O-g , 1-g , and experimental transfer functions in Appendix A.3.2

An experimental analysis of the effects of initial deformation is performed by fit-

ting MACE with flexible appendages and simulating the O-g and 1-g droop of the

appendages. The principal objectives of this chapter are thus:

* to gain insight into the realistic nature of gravity and suspension effects on a

beam-like spacecraft model,

* to evaluate the ability of the non-dimensional, gravity and suspension effect

sensitivity ratios in predicting eigenfrequency shifts and modal couplings, and
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* to evaluate the improvements of the high fidelity, finite element model of the

testbed after incorporating gravity and suspension effects.

The chapter opens with a general description of the MACE testbed and an

overview of the scaling analysis performed for the MACE test article. The scal-

ing analysis culminates in a discussion of the scaling of the effects of gravity. After

a description of the simplified MACE model and the different variations thereof for

the parametric variation study, this chapter outlines the practical steps involved in

modeling gravity and suspension effects with off-the-shelf finite element modeling

software (Appendix A provides a self-contained description of gravity and suspension

effect modeling with ADINA, for reference purposes). A summary table of predicted

gravity and suspension effects is presented for the parametric variation analysis before

presenting the results of the ADINA 0-g and 1-g modeling. The chapter closes with

the results of the flexible appendage experiment.

5.1 Testbed Description

The MACE testbed was designed as an experimental platform for the research and de-

velopment of modeling, control and qualification technologies for the next generation

of space platforms whose control bandwidth encompasses structural flexible modes.

As such the test article has a flexible slender bus with articulating payloads at each

end and a torque wheel attitude control system at its midpoint. Figure 5-1 shows

an artist's portrayal of the MACE Flight Model aboard the Space Shuttle middeck

with the Experiment Support Module and middeck lockers in the background. The

experiment is fully instrumented and various bus attitude and gimbal pointing control

laws can be implemented on a real time computer which drives the system [71]. The

testbed is equipped with state-of-the-art suspension devices to address and identify

the real problems associated with the qualification of flexible spacecraft. The test

program includes plans to fly the MACE test article aboard the Shuttle middeck
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MACE TEST ARTICLE DEPLOYED
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Figure 5-1: Schematic of the Middeck Active Control Experiment aboard the
Shuttle middeck

to evaluate the level of fidelity of the 0-g a-priori modeling and the performance of

different measurement and model based control systems developed on the ground. In-

flight identification information will also be transmitted to the ground for a control

system redesign with subsequent reevaluation at a later point in the flight.

Test Article

The bus is composed of four tubular section lexan struts held together end-to-end with

square aluminium nodes. The connections are designed in a quick connect fashion to

allow for easy assembly and disassembly by the Shuttle astronauts. This modularity

was also incorporated into the design to permit storage in a Shuttle middeck locker.

At the time of writing of this thesis, the test article was in its Development Model

configuration (a precursor to the Engineering and Flight Models). The Development

Model, which makes use of preliminary gimbal and torque wheel designs, is only fitted

with one double gimbal/payload assembly. The Engineering Model will be fitted with

two gimbal assemblies and will use redesigned gimbal and torque wheel hardware in

addition to new sensor and actuator hardware such as an active (piezoelectric) strut.
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MIDDECK ACTIVE CONTROL EXPERIMENT (MACE)
Development Model Lab Testing

(Flight unit will have smaller torque wheels and gimbal motors)

Figure 5-2: MACE Development Model Testbed

The Development Model is fitted with two tri-axis rate gyro packages (one mounted

on the articulated payload and one mounted underneath the central node), two tri-

axis accelerometer packages (mounted on the intermediate nodes 2 and 4), sixteen

strain gauges (mounted in opposition on the surface of each strut at its center), two

optical encoders (one per axis of the double gimbal assembly) and three load cells

(one at each test article suspension attachment point). The double gimbal provides

a conical pointing envelope for the payload.

The fundamental vertical flexible bending mode of the test article is approximately

1.8 Hz and the fundamental horizontal flexible mode is approximately 3 Hz.

Suspension System

Three pneumatic-electric suspension devices support the MACE test article with a

bounce frequency from 0.1 to 0.5 Hz. The test article is suspended by three 4.6 meter
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5.1 Testbed Description

long, 1/32" diameter, steel rods attached to the test article end nodes and center

node with small universal joints. The upper end of each rod is fixed to a suspension

carriage which is constrained to pure vertical motion by air bearing shafts. Fixed to

the top of the suspension carriage is a piston which is connected to an 80 gallon air

tank. Each of the air tanks is individually pressurized to provide the proper upwards

force on the piston to offload the test article weight in a level fashion. It is the large

air plenum which provides the soft vertical stiffness, see [16] or [17] for details. The

electric component of the pneumatic/electric devices are the electric displacement

transducers attached to the suspension carriages to provide a D.C. restoring force to

control piston drift. The electric stiffnesses can be controlled to compensate for the

carriage mass.

5.1.1 Scaling Analysis

To ensure that the MACE test article was addressing realistic issues concerning the

qualification of controlled flexible spacecraft, a scaling analysis was performed to

determine the key physical properties of MACE. Using the physical properties of can-

didate flexible spacecraft missions deemed susceptible to control structure interaction

problems, (e.g. Space Station Freedom, Hubble Space Telescope, Earth Observation

Platforms: EOS-A, EOS-B and GEOS) a consistent multiple scaling was performed

for the MACE test article [72]. The need to perform a multiple scaling parameter

scaling versus a single scaling parameter scaling (e.g. replica scaling) was the result

of criteria beyond the simple physical size of the scaled test article. It was necessary

to take into account the mass and length constraints imposed by the Space Shuttle

middeck (given the objective of having the MACE test article eventually fly as a pay-

load aboard the Shuttle) as well as the scientific criterion of unity time and rotation

scaling.

The Shuttle middeck imposes constraints of a test article length less than 6 feet

and total mass less than 54 lbs, this roughly fixes two scaling parameters: a geom-
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etry parameter, At, and a mass parameter Am. Given platform sizes of the order of

magnitude of 50 feet and platform masses of the order of 10,000 lbs we have

length MACE (5) 1(51)
length platfor 0(50) 10

mass MACE 0(100) 1
Am = M (5.2)mass platform (10000) 100

To simplify interpretation of system performance the frequencies and the rotations

or strains1 were selected to scale as unity. The resulting time scaling parameter, At,

and rotation scaling parameter, A0 , are thus fixed to be one

At = resonant freqMACE O(1Hz) = 1 (5.3)
resonant freqplatform O(1Hz)

rotations MACE (1) (5
rotations platform O(1)

The above selection of unity scaling for both time and rotation (or strain) has the

advantageous result of facilitating the interpretation of experimental results since

rotation and rotation rate both scale as unity and the two are directly linked to the

performance metric which weights pointing stability and jitter of the payload inertial

angle and bus attitude.

Having established the four scaling parameters, A1, Am, At, and Ae, all other

system physical properties are fixed by unique scaling parameters derivable by non-

dimensionalizing the system equations of motion. The scaling of forces, deflections,

stiffnesses, etc. are thus expressed in terms of A1, Am, At, and A0 , and are presented in

Table 5.1 for reference purposes. To better appreciate the advantages of the multiple

scaling used for MACE, Table 5.1 also includes the scaling values which would result

from replica scaling (where all properties are scaled based on a single geometry scaling

parameter). The replica scaling values are those associated with a 1/10th scale model.

1It can be shown by elasticity first principles that strain scales as rotation.
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Table 5.1: Summary Table of MACE Scaling Factors

Quantity Symbol MACE Multiple Scaling Replica Scaling

length I Ag 10-1 A 10-1

mass m Am 10-2  A3  10- 3

time t At 1 A 10-1

rotation & strain 0 Ae 1 1 1

displacement 6 AgAq 10-1 A 10- 1

force F AmAg A/A2 10-3 A2  10-2

acceleration a Ag Ae/A 10-1 A-1  10

torque T Am AeA/A 10-4  A3  10-3

flexural stiffness El mA /A2 10-s A4 10-4

axial stiffness EA AmAg/A 2 10- 3  A2  10-2

angular velocity 9 Ae/At 1 A-' 10

angular accel. 9 A9/A 2  1 A- 2  100

gravity effects - Ae 1 1 1

The multiple scaling is clearly preferable to the replica scaling in its scaling of angular

rate and angular acceleration, as well as in its scaling of frequencies (i.e. time) which

would be too low in the replica scaling case.

We come now to the interesting question of how the effects of gravity scale. Clearly

the gravitational acceleration is independent of the scale of the model so that g does

not scale. The effects of g, on the other hand, do scale and are a function of the type

of scaling adopted for the spacecraft model. The magnitude of the stress stiffening

effect of g on the structure's eigenfrequencies and eigenmodes is captured by the non-

dimensional parameters derived in Chapter 2. Thus, by evaluating the scaling of the

non-dimensional parameters, we evaluate the scaling of the effect of gravity. Applying

the appropriate multiple scaling parameters used for MACE (from Table 5.1) to the

various properties which make up a given non-dimensional parameter we obtain the
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following

axial load n.d.p. -- scales as

bending load n.d.p. -- scales as

torsional load n.d.p. -+ scales as

F12 Ae

( M 
V A 12

EI 2 - AGJ12

MIE

It is very interesting to discover that the effect of gravity scales as the rotation scales,

which for the case of the MACE testbed is unity. This observation further strength-

ens the proposition that infinitesimal or elemental rotations of the structure in the

gravity field are the underlying or unifying source of the family of gravity effects (as

discussed in Sections 2.1.2, 2.4.1 and 4.5.1 for the role of rotation in initial stress,

initial deformation and sensor/actuator gravity effects respectively.)

(5.5)

(5.6)

(5.7)

MACE Testbed Case Study164
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5.2 Parametric Variation Study

To examine the realistic nature of gravity effects on a beam-like test article and

explore the practicality of predicting the magnitude of gravity and suspension effects

with the non-dimensional parameters of Chapters 2 and 3, a parametric variation

study was performed. A simplified MACE model was developed along with four

variation cases where a single geometric, material or configurational change was made

for each case. The ADINA finite element modeling software was used to develop both

0-g and 1-g models for each case. The shifts in eigenfrequencies and the changes in

the eigenmodes from 0 g to 1 g are examined in addition to examining the changes

in two key system transfer functions.

5.2.1 Baseline Simplified MACE Model

To capture the fundamental physics of the MACE test article dynamics with a low

order model, a simplified MACE model was developed. The simplified model from

which the parametric variation cases are derived is called the baseline simplified

MACE model. As illustrated in Figure 5-3 the essential configuration features a pla-

nar structure composed of four lexan struts with 5 nodal point masses, a torque wheel

point mass raised above the bus axis, 2 double gimbal assembly point masses and 2

payload point masses. All point masses have appropriate rotary inertia properties.

The 0-g model has 6 rigid-body modes and 4 mechanism modes given the 2 double

gimbal mechanisms. The lexan struts have a density of 1200 kg/m 3 and a Young's

modulus of 3.3575e9 Nm 2 (increased from the nominal 2.3e9 Nm 2 specification to

obtain the correct first flexible frequency of approximately 1.72 Hz and capture the

stiffening effect of the unmodeled attachment nodes and collars). Other details of the

baseline case are provided in Table 5.2 which summarizes the fundamental properties

of each parametric variation case. The rigid links are modeled as having a stiffness

two orders of magnitude greater than the lexan struts and a density one tenth that

5.2 Parametric Variation Study
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SIMPLIFIED MACE MODEL

Torque Wheel Assembly (7.0 kg)

Nodes (1.5 kg)

Double Gimbal Assembly (2.7 kg)

Disturbance Performance
Payload (2.3 kg) Payload (2.3 kg)

1.5 m

1EGEND

mm lexan struts (length = 0.385 m)

rigid struts (length = 0.1 m)

* lumped masses

Figure 5-3: Simplified MACE Model Geometry and Lumped Mass Distribu-
tion for 0-g Analysis

of the struts.

5.2.2 Suspended Baseline Simplified MACE Model

The suspended simplified model is also referred to as the simplified 1-g model. As

shown in Figure 5-4, three devices are used to support the MACE test article. The

pneumatic-electric suspension devices are modeled as soft translational springs fixed

between the ceiling and a suspension carriage. All carriage degrees of freedom are

constrained except for the vertical (Y axis) degree of freedom. The carriages are

modeled as massless. A single rigid beam element is used to model the suspension

rods. Universal pin joints are included in the model at each end of the rods.

5.2.3 Parametric Variation Cases of Simplified MACE Model

Four different variations of the baseline case, case CO, were modeled using the ADINA

finite element modeling software. The first case, C1, is the 1 Hz case where the

Young's modulus of the lexan was reduced to obtain a fundamental vertical bending
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Figure 5-4: Simplified MACE Model with Suspension System for 1-g Analysis

frequency of 1 Hz, and simultaneously destiffen all flexible modes. It is expected that

all gravity effect sensitivity parameters will increase for this change from the baseline.

The second and third cases, C2 and C3, are rectangular cross-section cases where I,

and I, were reduced by a factor of 3, respectively, for the two cases. For C2 the

first vertical bending frequency remains unchanged and for C3 the first horizontal

bending frequency remains unchanged. In both cases the opposite plane bending

mode frequency is reduced by a factor of 1/3. The fourth case, C4, is identical to

the baseline case except for the orientation of the performance payload which it kept

at 45 degrees to the vertical but is rotated out of the suspension plane by 45 degrees.

This introduces a torsional load on the MACE bus.

5.2.4 Application of Non-Dimensional Parameters

Since the principal structural component of the MACE test article is beam-like it is

definitely suitable for the application of the non-dimensional parameters derived in

this thesis.

SIMPLIFIED MACE MODEL with SUSPENSION SYSTEM
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Summary Table of Fundamental Properties of Simplified MACE Model Baseline and Parametric
Variation Cases

Baseline C1
19 mm - 19 mmS I I

CROSS-SECTIONS

- . 19 mm

z

z 23.3 z n1

23.23 mm
mA mm

Table 5.2:

CASE E G Ix ly Iz J Area 1st vert. flex. 1st hor. flex. 1st torsion 2nd hor. flex. 2nd vert. flex.
(NmA2) (NmA2) (mA4) (mA4) (mA4) (mA4) (mn2) [Hz] / # [Hz]# [/ # [Hz] / # [Hz]/ #

Baseline 3.3575e9 1.262e9 2.8e-8 1.4e-8 1.4e-8 2.8e-8 2.232e-4 1.721 / #1 2.30 / #2 5.445 / #3 6.477 / #4 7.217 / #5

C1 1.337e9 5.026e8 2.8e-8 1.4e-8 1.4e-8 2.8e-8 2.232e-4 1.00 / #1 1.335 / #2 3.164 / #3 3.764 /#4 4.194 /#5

C2 3.3575e9 1.262e9 1.867e-8 1.4e-8 4.667e-9 1.217e-8 3.114e-4 1.717 /#2 1.322/ #1 4.451 / #4 3.689 /#3 7.162 /#6

C3 3.3575e9 1.262e9 1.867e-8 1.867e-8 1.4e-8 1.217e-8 3.114e-4 0.991/ #1 2.288 / #2 4.135 / #4 4.456 / #3 5.393 / #5

C4 3.3575e9 1.262e9 2.8e-8 1.4e-8 1.4e-8 2.8e-8 2.232e-4 1.718 /#1 2.30/ #2 5.44 /#3 6.454/ #4 7.218 /#5

25.4mm -- 25.4mm ; ..25.4 mm -.J.-T • YII



To estimate the sensitivity of the various configurations to the effects of gravity it

is necessary to estimate the internal loads on the MACE bus and the magnitude of the

initial deformations if any. To evaluate the sensitivity to the fundamental suspension

stiffening effects it is necessary to know or have estimates of the suspension bounce

mode, pendulum mode, and double-pendulum mode frequencies, as well as knowledge

of the fundamental resonant frequencies and mode-shapes of the test article which

can be obtained from the 0-g model.

Given the canceling effect of the bending moments induced by the two 45 degree

gimballed payloads at each end of the test article, and the fact that all significant

point masses are off-loaded it was estimated that the internal nodal loads were not

significant (and largely due to shear if they were non-negligible). Similarly, the effects

of initial deformations were considered to be negligible for all of the configurations

studied here. These two assumptions proved to be incorrect as will be demonstrated

in the following section. The non-dimensional parameters associated with geometric

stiffening and initial deformation should in fact have been computed.

The torsional load due to the out-of-plane gimbal in case 4, i.e. C4, was deemed

important and the following torsional internal load was estimated

0.1
MX = (2.3)(9.8) = 1.6 Nm (5.8)

To determine the suspension system non-dimensional parameters it is necessary

to identify the fundamental suspension resonances. The spring stiffnesses are tuned

to achieve a level structure with a bounce frequency fb of 0.1 Hz, the pendular fre-

quency f, is approximately 2.3 Hz (from f, = 1/27r (g/l)) and the double-pendular

frequency was found to be approximately 0.63 Hz.

NDP's for Suspension Effect

Treating the beam as a free-free beam and using the parameters of Table 5.2 with the

suspension resonant frequencies described above we can estimate the stiffening effect
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on the system fundamental modes. The results of these computations are tabulated

in Table 5.3 where, recall, the label CO is used to indicate the Baseline case. A sample

calculation follows for the stiffening effect of the suspension pendular behavior on the

1"t horizontal flexible mode

5(0.23)2
rhl 3)2 0.05 (5.9)

(2.3)2

The resulting impact on the resonant frequency is then

fhl = /1 + 0.05 = 1.025 (5.10)0fhi

which corresponds to a stiffening of +2.5%.

5.2.5 ADINA Modeling Procedure

The ADINA finite element modeling software [31] was used to generate 0-g and

1-g models of the baseline simplified MACE test article and the different parametric

variations thereof. As described in more detail in Appendix A capturing gravity ef-

fects with ADINA is a multi-step procedure. The initial step consists of developing an

unsuspended model of the test article (this is the 0-g model). Three different ADINA

input files are then required to derive the 1-g model. The first step in deriving the

1-g model is to add the suspension system description to the 1-g model and constrain

the lower end of each spring so that the suspension system is rigid. A description

of the mass-proportional loading is then added to the model and a non-linear iter-

ative analysis (with geometric stiffness refinements) is performed to compute initial

deflections and reaction forces. A linear analysis could equally be performed but

better results are obtained in the subsequent non-linear steps if this first step is also

non-linear. The reaction forces FR at the suspension upper attachment points are

then used to calculate the suspension spring stiffnesses k,up which will yield a level

170 MACE Testbed Case Study
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Table 5.3: Summary Table of Model Output and Non-Dimensional Parame-
ter Predictions of Gravity and Suspension Effects on MACE Sim-
plified Model Eigenfrequencies

1't v. bend. 1't h. bend. 1 st tors. 2nd h. bend. 2 nd v. bend.

Predicted 0.85% 2.5% 2.1% 0.4% '. 0%

CO Output 2.3% 3.1% 5.1% 0.25% 0.5%

(mode #) 1 2 3 4 5

Predicted 2.5% 7.1% 5.8% 1.2% 0.2%

C1 Output 10.0% 7.5% 14.0% 1.1% 1.2%

(mode #) 1 2 3 4 5

Predicted 0.85% 7.3% 2.9% 1.3% - 0%

C2 Output 2.4% 8.0% -9.8% , 0% -6.3%

(mode #) 2 1 4 3 6

Predicted 2.5% 2.5% 3.0% 1.9% 0.2%

C3 Output 10.0% 2.4% -9.7% 0.6% 1.5%

(mode #) 1 2 4 6 3

Predicted

Output

(mode #)

0.85%

2.7%

1

2.3%

4.7%

2

2.1%

4.85%

3

0.4%

-1.5%

4

~ 0%

4.5%

5

structure with the correct bounce frequency fb, i.e.

4n2 fFRi
ICksuspi = (5.11)

This first step is appropriate for suspension systems such as pneumatic-electric sus-

pension devices where the suspension device stiffnesses are tuned to obtain a level

structure. The tuning process is equivalent to setting the spring stiffnesses to be

mass-proportional. An alternate method of suspending a structure is to use fixed

C4

~--~L __~_~~~_~~_
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stiffness translational springs and to adjust the cable lengths2 and hence the off-

loaded mass so as to obtain a set of mass-proportional suspension stiffnesses and a

level structure. If this method is used it is necessary once again to determine the

reaction forces, preferably by constraining (i.e. pinning) the structure in a level con-

figuration directly at the suspension-structure attachment points. The dislocation

method can then be used to compute the change in cable length required to obtain

mass-proportional stiffening [19]

is
Al, = - l (5.12)

1+ FR(EA)i

Having determined the approximate suspension stiffnesses the second step is to release

the constrained springs and perform the non-linear iterative analysis which will solve

for the initial deformations of the system subject to geometric stiffness effects. The

non-linear iterative analysis with geometric stiffness refinements is an automated

feature of the ADINA finite element modeling software. This step yields the sought

after system property matrices for the deformed system (in global coordinates) subject

to geometric stiffness effects capturing thus the effects of the suspension system, initial

deformations and geometric stiffening. The third and final step consists of performing

the eigensolution for the system described at the end of step two. More details of the

ADINA modeling procedure are provided in Appendix A.

5.2.6 Results

Several different methods are used here to compare the dynamics of the O-g and

1-g systems: eigenratio plots, eigenmode cross-orthogonality plots, and superimposed

O-g and 1-g transfer function plots.

2 typically with turnbuckles
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Eigensystem Comparison Methods

The eigenvalues of the first 15 flexible modes3 are compared in eigenratio histogram

plots where the the 1-g resonant frequency is normalized by the O-g frequency (see

Figures 5-5 to 5-9). An alternate normalization technique for the eigenfrequencies is

to take the difference between the 1-g and O-g frequencies and normalize by half of

the half-power bandwidth. The motivation for this approach of plotting the eigen-

frequency shifts in units of half-power bandwidths is to provide a useful measure for

estimating the importance of the eigenfrequency shift based on the assumption that

robust control strategies have difficulty coping with eigenfrequency shifts of greater

than a half-power bandwidth. This approach sensitizes the measure of the gravity

effect to the amount of damping at each resonance. However, since no experimental

data exists for the hypothetical simplified MACE model a uniform damping ratio of

1% was used. The half half-power bandwidth normalized plots therefore correspond

to histograms of the percent shift in frequency.

Before discussing these results, the eigenmode cross-orthogonality plots are ex-

plained. The two mesh plots in each of Figure 5-5 to 5-9 are two views of the same

mesh. The mesh is obtained by taking the absolute value of the inner product of the

O-g and 1-g eigenvector matrices: i.e. 140Tg'lg1. If the eigenvector matrices were iden-

tical the modal cross-orthogonality mesh would be diagonal. Non-zero off-diagonal

terms correspond to couplings between modes. The first fundamental mode (i.e. the

bounce mode in the 1-g case) is in the upper left corner of the mesh while the highest

frequency mode (the 3 2 nd) is in the lower right corner as indicated. Note that the

modal cross-orthogonality meshes include the effect on the original rigid body modes

while the eigenratio plots only summarize the effects on the flexible modes.

For a detailed interpretation of the cross-orthogonality meshes it is necessary to

identify the (i, j) position of the peak or point we are interested in to be able to identify

the modes involved. Recall that the first 10 modes are fundamental suspension modes;

3recall that there are 10 rigid-body or mechanism modes
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they are listed here for reference purposes

1. bounce 0.1 Hz

2. tilt 0.132 Hz

3. xz pendular (d) 0.227 Hz

4. axial pendular 0.2319 Hz

5. xz pendular (p) 0.2331 Hz

6. bus rocking 0.465 Hz

7. double gimbal (p) 0.633 Hz

8. double gimbal (d) 0.659 Hz

9. gimbal (d) 0.811 Hz

10. gimbal (p) 0.815 Hz

For the fundamental flexible modes refer to the flexible mode numbers in Table 5.3

since the order varies depending on the configuration.

General Observations

At a glance, the modal cross-orthogonality meshes reveal that the principal effect

of adding suspension and gravity effects to the 0-g model is to highly couple the

rigid-body eigenspace and introduce slight or important couplings between various

eigenmode pairs. The important couplings tend to occur between adjacent modes as

expected. This is apparent in the modal cross-orthogonality meshes where separate

peaks merge at their midpoint. In the case of very large couplings where modes

essentially switch, the adjacent peaks each shift off the diagonal and form a large

off-diagonal pair. Smaller couplings occasionally occur between non adjacent modes,

including couplings between flexible modes and fundamental suspension modes.

Table 5.3 summarizes the eigenfrequency shifts observed from the 0-g model to

the 1-g model along with the eigenfrequency shifts predicted by the static suspension

stiffening non-dimensional parameters. Non-dimensional parameter predictions for

the 1
"t mode horizontal case were very successful while the vertical mode eigenfre-
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quency shifts were underestimated. This is due to the fact that the static suspension

stiffening effects were derived based on a two point suspension system while the MACE

simplified model has a third suspension spring at the beam midpoint. The additional

vertical suspension spring naturally stiffens the first vertical bending mode as well

as the other symmetric vertical bending modes. Clearly, there is a need to derive

static suspension stiffening non-dimensional parameters which are a function of the

number of attachment points. This is recommended for future work. Table 5.3 also

makes clear the need to have included geometric stiffening and initial deformation

effect contributions. Couplings between 1
"t torsion and 2 nd horizontal bending are

very evident but were not predicted.

Effects on CO: Baseline MACE Model

It is interesting to note that only the eigenfrequencies of the baseline model are

affected and not its eigenmodes. Since the higher suspension frequencies are as high

as one half of the first fundamental resonance of the Baseline it is not surprising to

witness a stiffening of the first three fundamental modes: vertical bending, horizontal

bending, and torsion. The reduced sensitivity of higher modes was well predicted by

the non-dimensional parameter calculation.

Effects on C1: 1 Hz MACE Model

As expected and as predicted the sensitivity of the 1 Hz MACE Model to all gravity

effects increased as the resonances all dropped significantly closer to the suspension

resonances. Again, the fundamental flexible mode eigenfrequencies are the most af-

fected. A new development is the introduction of several modal couplings. The

fundamental flexible mode is now coupled to the suspension gimbal mode, the third

and fourth modes are strongly coupled (i.e. torsion and 2 nd horizontal bending), and

slight couplings exist between various flexible modes and suspension modes. It is not

clear that the initial deformation or geometric stiffening non-dimensional parameters
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would successfully have captured the torsion and 2"d horizontal bending coupling

since the parameters predict a larger coupling between the 1it horizontal bending

and torsion which did not occur. The effect of lumped masses and the participation

of the gimbals substantially differentiate this model from the uniform beam model

used to derive the non-dimensional parameters. This test case has exposed thus, un-

fortunately, the limited applicability of the non-dimensional parameters for complex

structures.

Effects on C2, C3: Rectangular Bus MACE Models

These two cases are the most susceptible to significant eigenfrequency shifts and

modal couplings. This is due to both the softening of bending modes in one plane

of vibration, and the rectangular bus which increases the bus sensitivity to torsion-

bending coupling in the presence of initial deformations and geometric stiffening.

Notice the very strong couplings between torsion and 2
n" horizontal bending again (in

fact in C3 the modes cross-over) and the addition of a very strong coupling of flexible

modes 6 and 7 which in both cases cross-over. For the C2 case this corresponds to an

exchange between 2nd vertical bending and a combined 2 nd torsion and 1"t horizontal

bending. For the C3 case it corresponds to an exchange of 2nd horizontal bending,

and the same 2 nd torsion and 1 st horizontal bending. Note also the couplings between

adjacent higher frequency modes in both cases.

Effects on C4: Out-of-Plane Payload

This case is very interesting in that no modal cross-overs occur but the non-planar

structure has significantly sensitized the structure to gravity effects even at medium

and high frequencies. Strong couplings between adjacent pairs of horizontal and

vertical bending modes are the norm. Frequencies alternately rise and fall except

for the fundamental three flexible frequencies which are stiffened by the fundamental

suspension modes.
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Figure 5-5: Gravity and Suspension Effects on CO:
MACE Model

Baseline Simplified

fOg Bilenratios for flex. modes 15 req. Shifts Normalised by 1/2 hpbw

15

C' -10
5 10 15 5 10 15

orig. flexible mode number orig. flexible mode number

0- g MODAL CROSS-ORTHOGONAITY MESH

low freq. low freq.

~T high freq.

high freq.

Figure 5-6: Gravity and Suspension Effects on Cl: 1 Hz First Flexible Fre-
quency Simplified MACE Model
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Figure 5-8: Gravity and Suspension Effects on C3: Reduced Z-Inertia Rect-
angular Bus Simplified MACE Model
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Figure 5-9: Gravity and Suspension Effects on C4: Simplified MACE Model
with Performance Payload 45 Degrees Out-of-Plane

5.2.7 0-g and 1-g Transfer Functions

Having established the effects of gravity and of a laboratory suspension system on

the eigensystem of the various MACE model parametric variations it is now possible

to examine the nature of these same effects on a measure more directly applicable to

the control of the structure-the key transfer functions.

Using the techniques described in Chapter 4, e.g. Equations (4.1) and (4.3),

a state space model of the 0-g and 1-g MACE structures was developed for each

parametric variation case, making use of the system property matrices and assuming

proportional 1% damping. Appropriate input and output matrices were derived using

eigenmode information at the point of actuation or sensing (see [1] for details). The

results of the computed transfer functions for each case are plotted in Figures 5-

10 to 5-14. The 0-g and 1-g transfer functions are superimposed on each plot (the

0-g transfer function is the solid line and the 1-g transfer function is the dashed line).

The outer performance gimbal is the Oz gimbal on the right in Figure 5-3, while the
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inner performance gimbal is the Ox gimbal on the right. Node 2 is the node next to

the performance gimbal node.

The most important effect in all transfer functions is the addition of suspension

dynamics at low frequency. For the vertical accelerometer suspension bounce and

tilt dynamics are readily apparent, for the horizontal accelerometer suspension bifilar

pendular, transverse pendular, and double-gimbal pendular are readily apparent. The

baseline model is otherwise largely unaffected. For the outer gimbal transfer function

of the 1 Hz model, the first flexible mode pole is shifted upwards due to the suspension

system while the inner gimbal transfer function shows a pole shift in the second flexible

mode. In cases C2 and C3 the first flexible mode is similarly affected but of note are

the very significant changes to the horizontal acceleration transfer functions over a

large frequency spectrum. Clearly, gravity and suspension effects are not limited to

low frequency effects when higher frequency modal couplings are introduced. In case

C4 it is interesting to note that both horizontal and vertical transfer functions are

significantly affected (as one would expect) based on the pervasive coupling introduced

by gravity on the horizontal and vertical dynamics of the system with the out-of-plane

gimbal.

It can be seen in Appendix A.3.2 that the general nature of the observations in this

section on the simplified MACE model also holds true for the MACE Development

Model.
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5.3 MACE Flexible Appendage Experiment

This brief section presents the results of an experiment designed to sensitize the

MACE Development Model to initial deformation effects in a manner realistic to

the ground-based testing of controlled space structures. The motivation here is a

realistic assessment of the nature of initial deformation effects on a suspended flexible

spacecraft. Flexible appendages were attached to the MACE test article in a fashion

representative of solar array models. The flexible appendages were attached to the

test article node above the performance gimbal in a horizontal orientation-forming a T

with the MACE test article as shown in Figure 5-15. -lz The same Minguet graphite-

epoxy composite beams studied in Chapter 2 were selected for this experiment, the

advantage being the known magnitude of the horizontal bending-torsion coupling and

resonant frequency shifts under 1-g loading. From the many beams available two were

selected which had a manufactured curvature very close to that induced by gravity

were it cantilevered. Therefore, by attaching the beams to the MACE test article

with the curvature up it was possible to simulate a 0 g initial deformation and with

the curvature pointing down it was possible to simulate a 2 g or "Full Droop" case.

The magnitude of the tip deflection was approximately 0 mm in the first case and

approximately 20 mm in the second case.

5.3.1 Approach

It was originally attempted to model the flexible appendages in ADINA but, as with

the MATLAB-based model, results were very poor in capturing both the proper

horizontal bending and torsion dynamics of the composite beam. It appears to be

insufficient to model the multi-layer composite beam as a uniform orthotropic plate

element. Given the analysis of Section 2.5 it is valuable nonetheless to perform a

purely experimental test and observe whether a tip deflection of 4% of the appendage

length can have a significant effect on the overall system dynamics. Based on the
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results of Section 2.5 it is expected that the torsional appendage mode at 84 Hz will

couple with the horizontal bending mode at 113 Hz and will shift down to 77 Hz,

or less, while the 113 Hz mode will shift up to 119 Hz or greater. Whether these

effects occur and whether they impact the key MACE Development Model transfer

functions will be determined experimentally.

5.3.2 Experiment Description

As described, simulation of 0 g , i.e. the "No Droop" case, was possible by mounting

the curved appendages such that the gravitational loading corrected the pre-curvature

and straightened the appendages. The "Full Droop" case was obtained by mounting

the beams with the slight curvature pointing downwards such that the gravitational

loading exacerbated the drooping. Photographs of the "No Droop" and "Full Droop"

configurations are reproduced in Figures 5-15 and 5-16.

5.3.3 Results

It was possible to observe the impact of the flexible appendage droop in certain key

transfer functions where a shift in the pole-zero structure was observed in the region of

the original torsional frequency of the flexible appendages. As expected this frequency

dropped when the torsional mode became coupled with horizontal (fore-aft) bending.

This can be seen in both figures 5-17 and 5-18 where a zero-pole pair shift occured

from 65 Hz to 48 Hz. That the original torsional frequency is lower than the expected

84 Hz is thought to be the result of having the two beams end to end about a lumped

mass. The upwards shift in the fore-aft eigenfrequency which coupled with torsion

was not measured given the limited bandwidth of the sensors.
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MACE Flexible Appendage Experiment: No Droop Case

Figure 5-15: Photograph of the MACE Flexible Appendage Experiment: No
Droop Case

MACE Testbed Case Study188
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MACE Flexible ADDendaie ExDeriment: Full DrooD Case

Figure 5-16: Photograph of the MACE Flexible Appendage Experiment:
Full Droop Case

1895.3 MACE Flexible Appendage Experiment
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Chapter 6

Conclusions

6.1 Major Conclusions

Four different fundamental types of linear gravity and suspension effects on the dy-

namics of a controlled flexible spacecraft have been identified along with fundamental

methods for modeling them. These effects,

1. Suspension Effects,

2. Direct Gravity Effects on Structure via Geometric Stiffening,

3. Direct Gravity Effects on Structure via initial deformation Effects, and

4. Direct Gravity Effects on Sensors and Actuators

were studied at length. Finite element modeling techniques have been derived for the

direct gravity effects on the structure and on the structural sensors and actuators. A

technique for modeling the static effects of a suspension system has been presented

and the proper approach to modeling the dynamic suspension influences has been

discussed. It has been found that by augmenting the finite element model of the

structure with the suspension system model before incorporating the direct gravity

effects one is able to comprehensively capture the entire family of linear gravity effects,
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Conclusions

including dynamic suspension effects and couplings between the flexible structure and

the suspension system.

The effects of gravity and of a suspension system on the dynamics of a controlled

flexible structure have been shown to be very important for those low resonant fre-

quency structures which have less than a decade of frequency separation between their

fundamental modes and the suspension fundamental modes. It has been shown that

gravity and suspension effects can degrade system performance and even destabilize

the controlled system.

In general, the greatest impact of gravity and of the suspension system has been

found to be a stiffening of the rigid-body modes and the introduction of couplings

between the suspension system and the flexible test article. The second most impor-

tant effect of gravity and the suspension system on the test article dynamics has been

found to be the introduction of couplings between closely spaced or adjacent modes.

It has been demonstrated that as the eigenmodes couple, the eigenfrequencies sepa-

rate, essentially repelling each other. It has also been found that the sensitivity of the

structure to gravity and suspension perturbations generally drops with the square of

the resonant frequency (except for the coupling of closely spaced modes).

Non-dimensional gravity and suspension effect sensitivity parameters have been

derived for the cases of a clamped-clamped, pinned-pinned, and free-free beam ele-

ment subject to bending, axial and torsional initial stress effects, and for the case of

a free-free beam element subject to static suspension effects.

The fundamental nature of the initial stress stiffening effect has been shown to be

an additive perturbation to the system stiffness matrix, while the fundamental nature

of the initial deformation effect has been shown to be a linear transformation of both

the mass and stiffness matrices. The fundamental nature of the static suspension

effects has been shown to a stiffness boundary condition change.

The technique of projecting the perturbed eigensystem onto the original eigenspace

has been shown to be an excellent technique for rapidly, and compactly, identifying
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the perturbation effects on the original eigenfrequencies and eigenmodes.

This completes the summary of the major thesis conclusions. A number of more

specific conclusions can also be made.

6.2 Minor Conclusions

A beam element geometric stiffness matrix which allows for distributed loads in ad-

dition to concentrated nodal loads has been derived for the Bernoulli-Euler beam but

it has been found that the use of the regular geometric stiffness matrix was sufficient

if one uses consistent nodal loads as opposed to lumped nodal loads.

The role of infinitesimal element or finite element rotations has been identified as

a common factor in the origin of the effects of gravity for both types of direct gravity

effects on a structure, and for the direct gravity effects on sensors and actuators.

For the initial stress effects, the perturbation to the stiffness matrix has been shown

to be a result of infinitesimal element rotations (typically described as non-linear

strains) which were not negligible with respect to the linear strains in the presence

of external loads. The effects of initial deformations of the suspended structure due

to gravity have been shown to be due to rotational transformations of the individual

finite elements, whose reassembly results in a new reference structure. The key to

describing the effects of gravity on structural sensors and actuators has been shown

to be a partitioning of the structural modeshapes into translational components and

rotational components. The non-dimensional, gravity effect sensitivity parameter for

both the accelerometer and the proof-mass actuator, has been found to be the ratio

of the rotational modal component over the translational modal component, weighted

by the ratio of the gravitational acceleration over the product of the element length

and the resonant frequency squared.

The gravity perturbation to the dynamics of the accelerometer and a proof-mass

actuator has been shown to be a positive, or negative, additive perturbation to the
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controlled flexible structure output or control matrix respectively. The sensor grav-

ity effect correction has been shown to improve transfer function predictions for a

horizontally mounted accelerometer on the MACE test article due to the important

rotational contribution of the suspension system at low frequencies.

6.3 Recommendations for Future Research

Given the breadth of material which falls under the topic of gravity and suspen-

sion system effects on controlled flexible structures, it was not possible to bring to

closure all pertinent items which were of interest and which would have enhanced

the thesis. There are four items which were the particular subject of a considerable

amount of work, but successful or succinct results were not obtained in time for their

incorporation into this thesis.

The following items are recommended therefore for further investigation:

* Derivation of non-dimensional parameters for initial deformation effects. To

accomplish this using the eigenprojection technique used for the initial stress

stiffening and static suspension effects would require the identification of sym-

bolic eigenvectors for at least a two-element beam. The perturbation introduced

to the two-element assemblage should be to kink the beam by rotating one el-

ement with respect to the other. Two configurations should be studied here:

a clamped-free beam subject to droop and a pinned-pinned beam subject to

sag. It should be pointed out that there is no guarantee that a solution can be

found to the twelfth-order symbolic characteristic polynomial while solving for

the eigenpairs.

* Derivation of non-dimensional parameters which are a function of the num-

ber of suspension cables or springs for static suspension stiffening effects. In

Chapter 3 non-dimensional parameters were derived for predicting the impor-

tance of stiffening due to the fundamental suspension modes. This analytical
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(symbolic) derivation used a suspension cable at each end of a single beam

element. In Chapter 5 it was found that the vertical plane stiffening effects

were underestimated given the presence of three suspension cables. To derive

non-dimensional parameters for suspended beam configurations with additional

suspension springs it would be necessary to use additional beam elements which

may become a computational obstacle in the case of a general symbolic deriva-

tion.

* General analytical study of dynamic suspension effects. While the different types

of dynamic suspension effects were discussed in this thesis, along with a descrip-

tion of how they should be incorporated into the structural dynamics model,

time did not permit the study of the particular nature of dynamic suspension

effects on suspended beam-like structures. The latter is recommended even

though doing so in a general symbolic manner for various beam configurations

would require considerable effort. The approach recommended here is to assem-

ble a finite-element model with two pinned-free vertical beam elements (with

a cable-like cross-section) attached to the tips of a horizontal free-free beam,

and then to solve for the general symbolic eigenpairs of the system after hav-

ing applied the geometric stiffening effects to capture the dynamic suspension

behavior. The use of symbolic mathematics software is recommended. Given

the order of the system it is not guaranteed that the software will succeed in

its attempt to solve for the general eigenpairs. If an analytic solution cannot

be achieved it is recommended to reduce the number of symbolic system pa-

rameters by numerical substitution until a solution is reached. Every numerical

substitution unfortunately reduces the generality of the solution.

* Examination of additional beam configuration sample problems. In Chapter 2

the initial deformation and geometric stiffening effect modeling approach was

verified by a multi-element, numerical study, (using an original MATLAB-based

finite element program) of a clamped-free horizontal and vertical beam under
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gravitational loads, and comparing the eigenperturbation results to numerical

solutions which had previously been published. Additional numerical analysis

of other "sample problems" (i.e. simple configurations which capture the fun-

damental physics of the various possible effects) would complement well the

general analytical work of this thesis, which focused on a single beam element,

and the ADINA analysis, which focused on variations of the MACE test article.

The study of gravity effects on a higher order pinned-pinned and free-free beam

is recommended.

* Development of a high-order MACE Development Model model with flexible ap-

pendages. The nature of the experimental results of Chapter 5 was predicted

based on the clamped-free beam verification analysis of Chapter 2. A significant

effort to model the flexible appendages under Og and ig was made using both the

author's own finite element program and the ADINA finite element modeling

package. The attempts were unsuccessful due to the difficulty of identifying the

correct homogeneous-beam approximations for the multi-ply composite beam.

While the two dynamic bending behaviors could be properly captured the dy-

namic torsional behavior of the appendage could not. Additional work along

this path is recommended to evaluate ADINA's performance in capturing the

effects of initial deformation. Required is some research into the homogeneous

beam equivalent modeling of a multi-ply laminate.

* Establish how to include the effects of modal couplings in the relationship be-

tween the perturbed eigenfrequencies tA, the original eigenfrequencies OAi, and

the sensitivity matrix elements 9Ij. The relationship between the perturbed

eigenfrequencies and the eigenprojection sensitivity matrix terms was identified

but it is not clear if the expression captures the effect of modal couplings or is

limited to pure frequency perturbations.

The following research items are less pertinent to the general thrust of the thesis
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but are recommended as potential areas for broadening the scope of this work:

* Further generalize the beam element, and the beam element loads, used in the

gravity and suspension effects study. Repeat the analysis while allowing for a

non-homogeneous beam, with shear degrees of freedom (i.e. Timoshenko beam),

subject to axial loads which are not directed through the centroid, and shear

forces and moments which are not do not pass through the shear center. A

higher order torsional interpolation could also be used to refine the study of

torsion effects by adding a twist slope degree of freedom at the beam tips.

* Repeat the analysis while focusing on an element type other than a beam ele-

ment. A plate element would be the next logical step followed by a further

generalization to the shell element. This topic is of potential engineering value

particularly with respect to the study of gravity and suspension effects on large

surface area structures such as large flexible antennas, synthetic aperture radar

or large solar arrays.

* Study the effect of higher-order pneumatic-electric suspension device dynamics.

In the present study, the MACE pneumatic-electric suspension devices were

modeled as soft vertical springs whose stiffness is always proportional to the

off-loaded test article mass because of the test article leveling procedure used in

the iterative modeling. This modeling approach mimics the real procedure of

leveling the structure by tuning the pressures in the air plenums. In reality, an

electric stiffness exists in parallel to the pneumatic stiffness and operates using

displacement feedback of the suspension carriage. Ideally, the electric stiffness

does not interfere with the proportional stiffness tuning as it simply represents

an offset which is smaller than the required stiffness, however, the dynamics of

the electric stiffness control circuit are potentially non-negligible.

* Investigate the effect of neglecting to update the mass matrix in the presence of

initial deformations. Presently, the ADINA finite element modeling software
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does not update the mass matrix when initial deformations of the structure

occur in the non-linear gravity effect analysis. To desensitize the mass matrix

to initial deformation effects the mass matrix is of the lumped mass type. This

deficiency in ADINA is not of capital importance to the MACE test program

due to the negligible initial deformations of the test article when it is not fitted

with flexible appendages. Nonetheless, it would be valuable to quantify when

this effect becomes significant.

Investigate the modeling of suspension system damping effects. Since the damp-

ing inherent in a structure is typically incorporated into a model based on test

measurements rather than by an a priori calculation it would be extremely valu-

able to derive modeling techniques which can accurately predict the damping

imparted to the structure's flexible modes by the suspension system. Alter-

natively, experimental techniques could be designed to attempt to identify the

damping contributed by the suspension system. This problem is definitely of a

doctoral dissertation calibre.
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Appendix A

Gravity Effect Modeling with

ADINA

This appendix briefly describes the procedure for modeling the the direct effects of

gravity and of a laboratory suspension system on the dynamics of a structure using the

ADINA non-linear finite element modeling software [31]. An outline of the procedure

is given, general advice and comments are provided to assist those individuals who

are developing models of suspended structures in a gravity field, and sample ADINA

input runstreams are provided.

A.1 General Procedure

To capture gravity and suspension effects in an ADINA model of a suspended struc-

ture a minimum of two input files are required. The first to perform a large displace-

ment non-linear analysis which computes the initial deformations of the structure

subject to geometric stiffening effects, and the second to compute the eigensolution

for the structure about the deformed reference in global coordinates. A third initial

input file can be used to solve for the reaction forces of the overdetermined system (as

described in Section 5.2.5) for the purposes of tuning the suspension system stiffnesses

or cable lengths.
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The non-linear analyses use a dummy time variable to increment the loading and

compute a stable deformed equilibrium at each step. Geometric stiffness refinements

are performed at every step (if desired). Bias torques must be added at any free

rotary mechanisms to offset the gravity induced torque. The bias torque can easily

be weighted by the same time function used to weight the mass proportional loading.

Damping must be added to the suspension springs and to any mechanisms to stabi-

lize the large displacement analysis. The concentrated dampers are ignored by the

eigensolution step.

The general steps are thus as follows:

1. Develop regular model of unsuspended structure: (Og input file).

2. Add finite element description of suspension system using beam elements for

the cables, and truss elements or discrete spring elements for the springs.

3. Constrain springs and perform non-linear large displacement analysis to com-

pute reaction forces at the spring attachment points: (lg_ddO input file).

4. Determine suspension spring stiffness from the previous step which will yield

an approximately level structure.

5. Update suspension spring stiffnesses and unconstrain springs before performing

a second large displacement analysis with geometric stiffness refinements to

compute the system property matrices of the deformed structure': (lg_ddl

input file).

6. Compute the eigensolution by performing a non-linear large displacement anal-

ysis (lg_dd2 input file) for the deformed stiffened structure computed in the

previous step. This is achieved by running this input file immediately after

the previous one (lg_ddl input file) and by having set this input file to have a

1ADINA does not update mass matrix so the use of a lumped mass matrix is recommended to
desensitize the mass matrix to initial deformations.
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start time equal to the final time of the 1g_ddl input file. This is commonly

referred to as a restart analysis and requires that appropriate flags be set in to

two sequential input files to allow for the restart.

A.2 Recommendations

As when performing any non-linear analysis start with as simple a relevant model

as possible before attempting to obtain the "final" answer. By gradually adding

complexity to the model when convergence becomes difficult the culprit elements of

the model are not hidden.

If convergence difficulties arise one can try to ramp up the load weighting function

more slowly and if difficulties still persist the convergence tolerances can be iteratively

reduced. The final solution should be closely examined in this case and compared with

previous solutions to verify its legitimacy. Another trick is to increase the damping on

the mechanisms or the soft suspension springs. Furthermore, by relating the problem

equation numbers ADINA to appropriate degrees of freedom one can usually identify

where the model is poorly conditioned.

Note that while the computation of reaction forces (in 1g_dd0) could be a linear

analysis it is recommended to use the non-linear iterative solution approach in ADINA

(with geometric stiffness refinements) to obtain results which are more compatible

with the subsequent non-linear analysis.

Initially model suspension cables as a single beam element, which captures the

fundamental stiffening effects of the suspension system, before increasing the number

of elements to capture the suspension cable "violin" modes.

A.3 Sample ADINA-IN Runstreams

There are two types of input files in ADINA, a formatted data deck and an un-

formatted ADINA-IN input file which must be pre-processed. Use of the latter is
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recommended as it optimizes the node numbering. Examples of both techniques

are presented here. In the first subsection we have the four ADINA runstreams de-

scribed above to develop 0-g and 1-g models of the baseline simplified MACE model

described at length in Section 5.2. The second subsection contains a higher order

ADINA-IN model (the ddl input file) as an example of a non-linear ADINA-IN input

file for a more complex structure. An ADINA mesh plot is provided to show the

discretization the MACE DM model.

A.3.1 Sample ADINA Data Deck Sequence for Simplified

MACE Model
ZERO g: Baseline 3d Bernoulli-Euler model of MACE test article

C ------------------- -------
C Author: D. A. Rey
C Date: Oct. 7, 1991
C File: mace'0g.inp
C
C 3d, NON-LINEAR DYNAMIC ADINA ANALYSIS
C
C This is the only data deck required for the Og model.
C
C Note that the 2nd double gimbal joint is FREE at 45 for this dynamic analysis.
C
C --------------------------
C 678-1-2345678-2-2345678-3-2345678-4-2345678-6-2345678-6-2345678-7-2348678-8
C
C 1 - STRUCTURAL CONTROL CARD
C col. 5: total number of nodes
C col. 15,20: 0, number of non-linear element groups
C col. 25: 1 for initial exec. mode
C col. 30: NSTEPS - number of steps for incremental analysis
C col. 40: delta t
C col. 50: TSTART
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2346678-8
C % % % % % %

130000000 1 0 1 1 1. 0. 0 0 0 0 0 0
C
C
C 2 - STRUCTURAL CONTROL CARD
C
C col. 20: 2 input and solution data saved to porthole
C col. 59,60: 2,1 for stiffness matrices in output stream
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C % % %%

0 0 0 0 0 0 0 0 0
C
C
C 3 - LOAD CONTROL CARD ** NO LOADS *** LEAVE BLANK
C
C col. 40: 1 for lumped mass proportional loading
C col. 74: 1 for reaction force calculations
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-T-2345678-8
C IDGRAV NCES IREFOR
C % % %

0 0 0 0 0 0 0 0 0 0 8 1 0 0
C
C
C 4 - MASS AND DAMPING CONTROL CARD
C
C col. 5: 0 for static analysis, 1 for lumped, 2 for consistent mass
C col. 10: IDAMP 1 for lumped damping present
C col. 15: 1 for lumped masses present
C col. 20: IDAMPN 1 for concentrated dampers present
C % % %

1 0 1 0
C 111 1 0 0
C
C
C 5 - EIGENVALUE SOLUTION CARD

1 1 32 32 0
C
C 6 - TIME INTEGRATION METHOD CONTROL CARD

0 0 0 0 0 0 0
C
C 7 - INCREMENTAL SOLUTION STRATEGY CONTROL CARD F FOR NONLINEAR CC
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C
C 8 - PRINT OUT DIRECTIVES CONTROL CARD
C col. 40: 1 for mass and stiffness matrix print-out to .mx (linear only)

0 0 0 0 0 0 0 1
C
C 9 - PORTHOLE CREATION CONTROL CARD

1 0 0 0 0 0 0 0 0
C
C
C - TIME FUNCTION CONTROL CARDS (IV)

C
C - NODAL DATA CARDS

1 0 0 0 0 0 0 -0.679289 0.1707107 0.0
2 -2 -2 -2 0 -2 0 -0.750000 0.1 0.0
3 0 0 0 0 0 0 -0.760000 0.1 0.0
4 0 0 0 0 0 0 -0.750000 0.0 0.0
5 0 0 0 0 0 0 -0.375000 0.0 0.0
6 0 0 0 0 0 0 0.0 0.0 0.0
7 0 0 0 0 0 0 0.0 -0.1 0.0
8 0 0 0 0 0 0 0.375000 0.0 0.0
9 0 0 0 0 0 0 0.750000 0.0 0.0

10 0 0 0 0 0 0 0.760000 0.1 0.0
11 -2 -2 -2 0 -2 0 0.7560000 0.1 0.0
12 0 0 0 0 0 0 0.820711 0.1707107 0.0

C reference node
13 1 1 1 1 1 1 1.0 1.0 0.0

C
C 678-1-2346678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C
C Constraint Equations (page V.24)

8 0
1 2 1 1
3 1
2 2 2 1
3 2
3 2 3 13 3

C 4 2 4 1
C 3 4

4 2 5 1
3 5

C 6 2 6 1
C 3 6

5 11 1 1
10 1
6 11 2 1

10 2
7 11 3 1

10 3
8 11 5 1

10 5
C
C Concentrated Mass Data (VI.1)
C
C payload

1 0 2.3 2.3 2.3 2.7e-2 2.7e-2 2.7e-2
C two super-imposed gimbal motors

2 0 1.35 1.35 1.35 1.5e-2 1.5e-2 1.6e-2
3 0 1.35 1.35 1.35 1.5e-2 1.5e-2 1.e-2

C nodes
4 0 1.50 1.50 1.50 7.2e-3 7.2e-3 7.2e-3
5 0 1.50 1.50 1.50 7.2e-3 7.2e-3 7.2e-3
6 0 1.50 1.60 1.50 7.2e-3 7.2e-3 7.2e-3

C torque wheel assembly
7 0 6.50 6.50 6.60 le-2 le-2 le-2

C nodes
8 0 1.50 1.50 1.50 7.2e-3 7.2e-3 7.2e-3
9 0 1.50 1.50 1.50 7.2e-3 7.2e-3 7.2e-3

C two super-imposed gimbal motors
10 0 1.35 1.35 1.35 1.6e-2 1.6e-2 1.5e-2
11 0 1.35 1.36 1.36 1.5e-2 1.8e-2 1.6e-2

C payload
12 0 2.3 2.3 2.3 2.7e-2 2.7e-2 2.7e-2

C final node flag
13 0 0.0 0.0 0.0 0.0 0.0 0.0

C
C Concentrated Nodal Dampers (VI.2)
C 678-1-2345678-2-2345678-3-284567-4-2345678-5-2345678-6-2345678-7-2345675-8
C 16 0 0.0 0.0 0.0 0.0 0.0 5.0
C 17 0 0.0 0.0 0.0 0.0 0.0 0.0
C
C - INITIAL CONDITIONS CONTROL CARD

00 0 0 0
C
C
C ---------------
C - BEAM ELEMENT GROUP CONTROL CARD (XIV)
C col. 12: 2 for non-linear beam element
C col. 20: 0 for 2D action, 1 for 3D action (in non-linear analysis)
C col. 28: 1 for rect. section, 2 for pipe section (in non-linear analysis)
C col. 52: -1 for element nodal force and moment print-out
C col. 64: number of different property sets
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2346678-6-2345678-7-2345678-
C % % % % % % % % %

4 9 0 0 1 0 0 2
C
C - LINEAR BEAM MATERIAL PROPERTY CARD 1 (LEXAN)
C note: lexan stiffness tuned to capture collar stiffening effect
C # E v rho
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0 % % % % %
1 3.3575e9 .37 1200. 1

C
C - SECTION PROPERTY CARD
C Ir Is It A
C % % % %

2.8e-8 1.4e-8 1.4e-8 2.25e-4 0 0
C
C
C - LINEAR BEAM MATERIAL PROPERTY CARD 2 (RIGID)
C % % % % %

2 3.3575e11 .33 120. 1
C
C - SECTION PROPERTY CARD
C % % % %

2.8e-8 1.4e-8 1.4e-8 2.25e-4 0 0
C
C
C - ELEMENT DATA CARDS

1 1 2 13 2 0 0 0 0 0 0
2 3 4 13 2 0 0 0 0 0 0
3 4 5 13 1 0 0 0 0 0 0
4 5 6 13 1 0 0 0 0 0 0
5 6 7 13 2 0 0 0 0 0 0
6 6 8 13 1 0 0 0 0 0 0
7 8 9 13 1 0 0 0 0 0 0
8 9 10 13 2 0 0 0 0 0 0
9 11 12 13 2 0 0 0 0 0 0

C
C
C - EIGENVALUE SOLUTION CARD
C col. 10: 0 for NO rigid body modes present
C col. 30: optional cut-off frequency (250 * 2pi = 1570.7963)
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C % % %

100 1 -10.0 1570.7963
C
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C
STOP

ONE g: 3d B.E. MACE model with suspension system, pre-def. and Kg
C------------------------------------------
C Author: D. A. Rey
C Date: Oct. 8, 1991
C File: mace'lg'ddO.inp
C
C 3d, NON-LINEAR DYNAMIC ADINA ANALYSIS
C
C *** DATA DECK 0, based on data deck 1 to compute the exact reaction ***
C *** forces using constrained suspension carriage points. ***

Identical to the 1Ig'ddl.inp file which follows except for
the single CCC-ddO comment line regarding the spring constraints.

ONE g: 3d B.E. MACE model with suspension system, pre-def. and Kg
C------------------------------------------
C Author: D. A. Rey
C Date: Oct. 9, 1991
C File: mace'lg'ddl.inp
C
C 3d, NON-LINEAR DYNAMIC ADINA ANALYSIS
C
C Data deck -1- for staticllarge deflection analysis with appropriate
C flags for restarting an eigenanalysis using final M,K,(Kg).
C Resultant deflections are calculated.
C
C Note that suspension stiffnesses are (mass proportional) tuned to
C yield the desired 0.1 Hz bounce frequency and a level suspended structure.
C
C Nodal damping used here to damp out bounce.
C --------------------------
C
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C
C 1 - STRUCTURAL CONTROL CARD
C col. 5: total number of nodes
C col. 15,20: number of linear element groups, 0
C col. 25: 1 for initial exec. mode
C col. 30: NSTEPS - number of steps for incremental analysis
C col. 40: delta t
C col. 60: TSTART
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C % % % % % %

190000000 0 2 1 45 1. 0. 0 0 0 0 0 0
C
C
C 2 - STRUCTURAL CONTROL CARD
C
C col. 20: 2 input and solution data saved to porthole
C col. 59,60: 2,1 for stiffness matrices in output stream
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C % % %%

C
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C
C 3 - LOAD CONTROL CARD
C
C col. 5: number of concentrated load cards
C col. 40: 1 for lumped mass proportional loading
C col. 74: 1 for reaction force calculations
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C NLOAD IDGRAV NCES IREFOR
C % % % %

4 0 0 0 0 0 0 1 0 0 8 1 0 01
C
C
C 4 - MASS AND DAMPING CONTROL CARD
C
C col. 5: 0 for static analysis, 1 for lumped, 2 for consistent mass
C col. 10: IDAMP 1 for lumped damping present
C col. 15: 1 for lumped masses present
C col. 20: IDAMPN 1 for concentrated dampers present
C % % % %

1 1 1 1 0 0
C
C
C 5 - EIGENVALUE SOLUTION CARD

0 0 0 00
C 1 1 30 30 0
C
C
C 6 - TIME INTEGRATION METHOD CONTROL CARD

0 2 0.5 0.25 0 0 0 0 0
C
C
C 7 - INCREMENTAL SOLUTION STRATEGY CONTROL CARD ** FOR NONLINEAR "*
C
C col. 5: 0 for manual time stepping
C col. 10: 3 for full Newton interation with line search
C col. 16: 1 for last iteration data print-out, 2 for all iterations
C col. 17: 1 for EF convergence criterion
C col. 20: max. number of iterations per step
C
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C % % %% % % %

0 -3 1 12115 0 0 0 0 0 50 so
C
C
C 8 - PRINT OUT DIRECTIVES CONTROL CARD
C col. 40: 1 for printout of M,K; (only if analysis is LINEAR)
C 678-1-2348678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-

1 1 1 1 0 0 0
C 0 0 0 0 0 0 0 1
C
C
C 9 - PORTHOLE CREATION CONTROL CARD
C 1 0 0 0 0 0 0 0 0
C
c
C - BLOCK DEFINITION CARDS (111.2)
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-
C ISREFB - stiffness reformation

1 45 1
C IEQITB - equilibrium time steps

1 45 1
C IPRIB - print-out time steps

1 45 1
C IPNODE - nodal quantities print-out

1 19 1
C INODB - porthole nodal responses saving intervals
C 1 30 15
C IELMB - porthole element responses saving intervals
C 1 30 15
C
C
C - TIME FUNCTION CONTROL CARDS (IV)
C

1 4
1 4 0

C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C rigid suspension time function
C 0 0 3 0.95 4 1 15 1
C soft suspension time function

0 0 24 0.95 27 1 45 1
C
C
C - NODAL DATA CARDS
C

1 0 0 0 0 0 0-0.679289 0.1707107 0.0
2 -2 -2 -2 0 -2 0 -0.750000 0.1 0.0
3 0 0 0 0 0 0-0.750000 0.1 0.0
4 0 0 0 0 0 0 -0.750000 0.0 0.0
5 0 0 0 0 0 0 -0.375000 0.0 0.0
6 0 0 0 0 0 0 0.0 0.0 0.0

C torque wheel assembly
7 0 0 0 0 0 0 0.0 -0.1 0.0
8 0 0 0 0 0 0 0.375000 0.0 0.0
9 0 0 0 0 0 0 0.750000 0.0 0.0

10 0 0 0 0 0 0 0.750000 0.1 0.0
11 -2 -2 -2 0 -2 0 0.750000 0.1 0.0
12 0 0 0 0 0 0 0.820711 0.1707107 0.0

C reference node
13 1 1 1 1 1 1 1.0 1.0 0.0

C suspension carriage attachment points
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14 1 0 1 1 1 1 -0.750000 -4.6 0.0
15 1 0 1 1 1 1 0.0 -4.6 0.0
16 1 0 1 1 1 1 0.750000 -4.6 0.0

C ceiling pneumatic "spring" attach points
17 1 1 1 1 1 1 -0.750000 -9.176 0.0
18 1 1 1 1 1 1 0.0 -9.176 0.0
19 1 1 1 1 1 1 0.750000 -9.176 0.0

C
CCC-ddO ****** for the dd0 input file:
C Input lines 14,15, and 16 above should constrain the suspension carriages
C in the y (vertical) direction with a 1 in the second column.
C
C 678-1-2345678-2-2345678-3-2345678-4-2345878-5-23456?8-6-2345678-7-2345678-8
C
C Constraint Equations (page V.24)

8 0
C gimbals - both double-axis free: Ox, Os

1 2 1 1
3 1
2221
3 2
32 3 1
3 3
4 2 5 1
3 5
6 11 1 1

10 1
6 11 2 1

10 2
7 11 3 1

10 3
8 11 5 1

10 5
C
C
C Concentrated Mass Data (VI.1)
C
C payload

1 0 2.3 2.3 2.3 2.7e-2 2.7e-2 2.7e-2
C two super-imposed gimbal motors

2 0 1.35 1.35 1.35 1.Se-2 1.5e-2 1.5e-2
3 0 1.35 1.35 1.35 1.5e-2 1.5e-2 1.6e-2

C nodes
4 0 1.50 1.50 1.50 7.2e-3 7.2e-3 7.2e-3
5 0 1.50 1.50 1.50 7.2e-3 7.2e-3 7.2e-3
6 0 1.50 1.50 1.50 7.2e-3 7.2e-3 7.2e-3

C torque wheel assembly
7 0 7.00 7.00 7.00 le-2 le-2 le-2

C nodes
8 0 1.50 1.50 1.50 7.2e-3 7.2e-3 7.2e-3
9 0 1.50 1.50 1.50 7.2e-3 7.2e-3 7.2e-3

C two super-imposed gimbal motors
10 0 1.35 1.35 1.35 1.5e-2 1.5e-2 1.5e-2
11 0 1.36 1.35 1.35 1.5e-2 1.5e-2 1.Se-2

C payload
12 0 2.3 2.3 2.3 2.7e-2 2.7e-2 2.7e-2

C final node flag
19 0 0.0 0.0 0.0 0.0 0.0 0.0

C
C Concentrated Nodal Dampers (VI.2)
C 678-1-2345678-2-2345678-3-2845678-4-2345678-5-2345678-6-2345678-7-2345678-8

2 0 0.0 0.0 0.0 3.0 0.0 3.0
11 0 0.0 0.0 0.0 3.0 0.0 3.0
14 0 0.0 9.0 0.0 0.0 0.0 0.0
15 0 0.0 9.0 0.0 0.0 0.0 0.0
16 0 0.0 9.0 0.0 0.0 0.0 0.0
19 0 0.0 0.0 0.0 0.0 0.0 0.0

C
o - INITIAL CONDITIONS CONTROL CARD

0 0 0 0 0
C
C -- - ---------- ----
C - TRUSS ELEMENT GROUP CONTROL CARD (XI)
C col. 4: 1 for truss
C col. 8: number of elements in group
C col. 12: 2 for large displ. small strain
C col. 20: 0 for general 3d truss
C col. 26: max # of nodes per element (def. 2)
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345676-8
C % % % % %

1 682 0 2 4
C
C - TRUSS MATERIAL AND SECTION PROPERTY CARDS spring 1 (XI)
C Area rho
C# % %

1 1 0
C
C E
C %

12.3784
C
C - TRUSS MATERIAL AND SECTION PROPERTY CARD spring 2 (XI)
C Area rho
C # % %

2 1 0
19.4663

C
C - TRUSS MATERIAL AND SECTION PROPERTY CARD spring 3 (XI)
C Area rho
C# % %
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3 1 0
13.1361

C
C - TRUSS MATERIAL AND SECTION PROPERTY CARD stiff rods (XI)
C Area rho
C # % %

4 1 0
1e7

C
C - TRUSS ELEMENT DATA CARDS
C col. 10: number of nodes per element
C col. 15: 1 print elemental stresses and forces
C col. 20: material property set number
C col. 35: initial axial strain
C 678-1-2346678-2-2345678-3-2346678-4-2345678-5-2346678-6-2346678-7-2346678-8
C col. 5: global node number of point 1
C col. 10: global node number of point 2, etc...
C
C rigid rods: carriage to test article
C # % %%

1 2 1 4
C % %

4 14
C
C # % % %

2 2 1 4
6 15

C
C # % % %

3 2 1 4
9 16

C
C tuned suspension pneumatic springs

# % % % %
4 2 1 1

C % %

14 17
C
C # % % %%

6 2 1 2
15 18

C
C # % % %

6 2 1 3
16 19

C
C ---- ------------ ---
C - BEAM ELEMENT GROUP CONTROL CARD (XIV)
C col. 12: 2 for non-linear beam element
C col. 20: 0 for 2D action, 1 for 3D action (in non-linear analysis)
C col. 28: 1 for rect. section, 2 for pipe section (in non-linear analysis)
C col. 62: -1 for element nodal force and moment print-out
C col. 64: number of different property sets
C 678-1-2345678-2-2346678-3-2345678-4-2345678-5-2346678-6-2345678-7-2346678-8
C %% %% % % % %

4 9 2 0 1 0 2 0 2
C
C - NON-LINEAR BEAM MATERIAL AND SECTION PROPERTY CARDS 1 (LEXAN)
c
C Ishear rho eta
C % % % %

1 0 1200. 1
C
C E v DO DI
C % % % %

3.3576e9 0.37 0.0264 0.019
C
C - NON-LINEAR BEAM MATERIAL AND SECTION PROPERTY CARDS 2 (RIGID)
C
C Ishear rho eta
C % % % %

2 0 120. 1
C
C E v DO DI
C % % % %
3.357e11 0.37 0.0254 0.019

C
C
C - BEAM ELEMENT DATA CARDS

1 1 2 13 2 0 0 0 0 0 0
2 3 4 13 2 0 0 0 0 0 0
3 4 5 13 1 0 0 0 0 0 0
4 5 6 13 1 0 0 0 0 0 0
5 6 7 13 2 0 0 0 0 0 0
6 6 8 13 1 0 0 0 0 0 0
7 8 9 13 1 0 0 0 0 0 0
8 9 10 13 2 0 0 0 0 0 0
9 11 12 13 2 0 0 0 0 0 0

C
C
C
C - APPLIED LOADS DATA CARDS (XXXII)
C
C - CONCENTRATED LOAD DATA
C col. 5: concentrated load node number
C col. 10: direction number (6 = Z rotation)
C col. 16: time function number
C col. 26: magnitude (-mglcosO = -(2.3)(9.8)(0.1)(0.707) = -1.6936)
C 678-1-2345678-2-2346678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C % % % %
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2 6 1 -1.5936
3 6 1 1.5936

10 6 1 1.5936
11 6 1 -1.5936

C
C - MASS PROPORTIONAL LOAD DATA
C col. 45: gravitational constant (or multiple thereof)
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2345678-8
C % x y %

1 0 1 0 9.8
C
C
C - EBIGENVALUB SOLUTION CARD
C 100 1 -10.0 0
C
C 678-1-2345678-2-2345678-3-2345678-4-2346678-5-2345678-6-2345678-7-2345678-8
C
STOP

ONE g: 3d B.E. MACE Model with Suspension System, Pre-def. and Kg
C -- -----------------------
C Author: D. A. Rey
C Date: Oct. 9, 1991
C File: mace'lgdd2.inp
C
C 3d, NON-LINEAR DYNAMIC ADINA ANALYSIS
C
C Data deck -2-, for eigenanalysis using final M, K+Kg from mace'lg'ddl.inp
C fortran output files; (deformed and stressed reference structure).
C
C Note that suspension stiffnesses are (mass proportional) tuned to
C yield the CORRECT 0.1 Hs bounce frequency and a level suspended structure.
C
C Note that both double gimbal joints are FREE at 45 for this dynamic analysis.
C
C Nodal damping was initially used to damp out bounce and payload swing.
C
C No loading required for this eigensolution.
C ---------------------------
C

Identical to the preceding 1Ig'ddl.inp input file except for the
following two differences concerning the start time and the eigensolution.

C 1 - STRUCTURAL CONTROL CARD
C col. 5: total number of nodes
C col. 15,20: 0, number of non-linear element groups
C col. 25: 2 for restart mode
C col. 30: NSTEPS - number of steps for incremental analysis
C col. 40: delta t
C col. 50: TSTART
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2346678-8
C % % % % % %

190000000 0 2 2 0 0. 45. 0 0 0 0 0 0
C
C

C
C - BIGENVALUE SOLUTION CARD (XXXIII)
C col. 10: 0 for NO rigid body modes present
C col. 30: optional cut-off frequency
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-234567-8
C %

100 1 -10.0 1500.
C
C 678-1-2345678-2-2345678-3-2345678-4-2345678-5-2345678-6-2345678-7-2346678-8
C
STOP

A.3.2 Sample ADINA-IN Input File for MACE DM Model

This subsection lists the ddl ADINA-IN input file for the MACE Development Model.

An ADINA mesh of the MACE DM test article follows the ADINA-IN listing along

with a sample overlay of 0-g model, 1-g model and experimental data transfer func-

tions. It was found in general that the impact of gravity and suspension effects on

the MACE DM was very similar to those obtained for the Baseline Simplified MACE
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Model. Incorporation of gravity and suspension effects has proven itself to be crucial

to the low frequency modeling of the MACE DM test article.

* ONE g: 3d B.E. MACE Dev Model with suspension system, pre-def. and Kg

* Authors: R.M. Glaese and D. A. Rey
* Date: Jan 14, 1992
* File: macedm1'g'ddl.in

* 3d, NON-LINEAR DYNAMIC ADINA-IN ANALYSIS

* ADINA-IN input file -1- for static/large deflection analysis with
* appropriate flags for restarting an eigenanalysis using final M,K,(Kg).
* Resultant deflections are calculated.

* This is the model of the MACE Development Model currently being used in
* preliminary ID experiments

* This model includes the torque wheel assembly, one double-axis
" gimbal, and all sensors.

FILEUNITS LIST=8
* LOG=7 ECHO=?

* DATABASE SCRATCH

FBPRO GRAM ADINA

CONTROL NONINTERACTIVE ECHOPRINT=YES ERRORLIMIT=5 ERRORACTION=STOP

HEADING 'ONE g: 3d B.E. MACE Dev Model with suspension system, pre-def. and Kg'

MASTER REACTIONS=YES MODEX=EXECUTE NSTEP=35 DT=1. TSTART=0.

ANALYSIS TYPE=DYNAMIC MASSMATRIX=LUMPED ETA=1

KINEMATICS DISPLACEMENTS=LARGE

*FREQUENCIES SUBSPACE-ITERATION NEIG=40 NMODE=40 IRBM=1 RBMSH=0.0 INTERVAL=0

TOLERANCES TYPE=EF RNORM=50 RMNORM=50 PRINT=2 ITEMAX=30

STIFFNESS-STEPS 0 35 1

PRINTOUT IPDATA=0 IOUTPT=1 IDC=1 IVC=0 IAC=0

PRINTSTEPS

PORTHOLE VOLUME=MINIMUM NPUTSV=O JDC=0 JVC=0 JAC=0 JTC=0 SAVEDEFAULT=NO

TIMEFUNCTION 1 IFLIB=1
0 0
6 0.1
7 0.1498
8 0.2353
9 0.3689

10 0.5
11 0.6321
12 0.8647
13 0.9502
14 0.9817
15 0.9933
16 0.9975
17 0.9991
18 0.9997
19 0.9999
20 1.0000
35 1.0000

SYSTEM 0
COORDINATES

ENTRIES NODE X Y S
1 0.0 0.0 0.0
2 0.03175 0.0 0.0
3 0.06350 0.0 0.0
4 0.10807 0.0 0.0
5 0.21933 0.0 0.0
6 0.22568 0.0 0.0
7 0.383693 0.0 0.0
8 0.38150 0.0 0.0
9 0.41325 0.0 0.0

10 0.44500 0.0 0.0
11 0.48957 0.0 0.0
12 0.60083 0.0 0.0
13 0.60718 0.0 0.0
14 0.71843 0.0 0.0
15 0.76300 0.0 0.0
16 0.79475 0.0 0.0
17 0.82650 0.0 0.0
18 0.87107 0.0 0.0
19 0.98233 0.0 0.0
20 0.98868 0.0 0.0
21 1.09993 0.0 0.0
22 1.14450 0.0 0.0
23 1.17625 0.0 0.0
24 1.20800 0.0 0.0
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25 1.25257 0.0 0.0
26 1.36383 0.0 0.0
27 1.37018 0.0 0.0
28 1.48143 0.0 0.0
29 1.52600 0.0 0.0
30 1.65775 0.0 0.0
31 1.58950 0.0 0.0

* Attachment Points
32 0.03175 0.08100 0.0
33 0.79475 0.08100 0.0
34 1.55775 0.08100 0.0

* Torque Wheel Assembly nodes
35 0.79475 0.07433 0.0
36 0.79475 0.10974 -0.09052
37 0.87314 0.10974 0.04526
38 0.71636 0.10974 0.04526
39 0.79475 0.15038 -0.14800
40 0.92292 0.15038 0.07400
41 0.66658 0.15038 0.07400
42 0.79475 0.15038 -0.14800
43 0.92292 0.15038 0.07400
44 0.66658 0.15038 0.07400
45 0.79475 0.09958 -0.14800
46 0.92292 0.09958 0.07400
47 0.66658 0.09958 0.07400

* Gimbal nodes
48 1.47775 -0.12315 0.0
49 1.55775 -0.11330 0.0
50 1.55775 -0.11430 0.0
51 1.55775 -0.11430 0.0
52 1.54329 -0.11420 -0.00315
53 1.55775 -0.11330 0.0
54 1.65775 -0.11430 0.0
55 1.55775 -0.11430 0.0
56 1.55775 -0.14158 0.00151

* Payload Can
57 1.55775 -0.28575 0.0

* Dummy Gimbal
58 0.03175 -0.06350 0.0

* Rate Gyro beneath Torque Wheel Assembly
59 0.79475 -0.06985 0.0

* Accelerometer Triax at Node 4
60 0.40918 0.06553 -0.00407

* Accelerometer Triax at Node 2
61 1.17218 0.06553 -0.00407

* reference node
62 1.0 1.0 0.0

* suspension carriage attachment points
63 0.03175 4.6 0.0
64 0.79475 4.6 0.0
65 1.55775 4.6 0.0

* ceiling pneumatic "spring" attach points
66 0.03175 9.176 0.0
67 0.79475 9.176 0.0
68 1.55775 9.176 0.0

MASSES NODES
* Concentrated Mass Data
* Elements with Nodal Mass Descriptions

3 0.11137 0.11137 0.11137 3.36e-5 3.22e-5 3.22e-5
4 0.05549 0.05549 0.0549 8.61e-6 4.32e-6 4.32e-6
7 0.05549 0.05549 0.05549 8.61e-6 4.32e-6 4.32e-6
8 0.11137 0.11137 0.11137 3.36e-5 3.22e-5 3.22e-5

10 0.11137 0.11137 0.11137 3.36e-5 3.22e-5 3.22e-5
11 0.05649 0.05549 0.05549 8.61e-6 4.32e-6 4.32e-6
14 0.05549 49 0.05 559 0.05549 8.61e-6 4.32e-6 4.32e-6
16 0.11137 0.11137 0.11137 3.86e-5 3.22e-5 3.22e-5
17 0.11137 0.11137 0.11137 3.36e-5 3.22e-5 3.22e-5
18 0.0 0.05549 0.05849 0.05549 8.61e-6 4.382-6 4.32e-6
21 0.05549 0.05549 0.05549 8.61e-6 4.32e-6 4.32e-6
22 0.11137 0.11137 0.11137 3.36e-5 3.22e-5 3.22e-5
24 0.11137 0.11137 0.11137 3.36e-5 3.22e-5 3.22e-5
25 0.05549 0.05549 0.05549 8.61e-6 4.32e-6 4.32e-6
28 0.05549 0.05549 0.05549 8.61e-6 4.32e-6 4.32e-6
29 0.11137 0.11137 0.11137 3.36e-5 3.22e-5 3.22e-5

* Nodal Mass Representation of Nodes
2 0.27050 0.27050 0.27050 3.04e-4 3.04e-4 3.04e-4
9 0.27050 0.27050 0.27050 3.04e-4 3.04e-4 3.04e-4

16 0.27050 0.27050 0.27050 3.04e-4 3.04e-4 3.04e-4
23 0.27050 0.27050 0.27050 3.04e-4 3.04e-4 3.04e-4
30 0.27050 0.27050 0.27050 3.04e-4 3.04e-4 3.04e-4

* Lumped Mass and Inertia of TWA Base
35 1.70030 1.70030 1.70030 2.61e-3 4.47e-3 2.68e-3

* Lumped Mass and Inertia of TWA Motors
36 0.77080 0.77080 0.77080 6.67e-4 3.38e-4 6.67e-4
37 0.77080 0.77080 0.77080 6.67e-4 6.67e-4 3.38e-4
38 0.77080 0.77080 0.77080 6.67e-4 6.67e-4 3.38e-4

* Lumped Mass and Inertia of TWA Inertia Wheels
42 1.09726 1.09726 1.09726 2.69e-3 5.28e-3 2.69e-3
43 1.09726 1.09726 1.09726 2.69e-3 2.69e-3 5.28e-3
44 1.09726 1.09726 1.09726 2.69e-3 2.69e-3 5.28e-3

* Full Mass and Inertia Matrix for One Gimbal Stage(Base,Inner,Outer)
* Note: These inertias are the principal inertias and are referenced
* to skew axes.

48 2.99182 2.99182 2.99182 9.4269e-3 2.5266e-2 2.7566e-2
52 2.92271 2.92271 2.92271 1.1876e-2 5.1450e-3 1.3503e-2
56 1.06162 1.06162 1.06162 3.4409e-3 1.2802e-3 2.9162e-3

* Payload Can and Rate Gyro
57 1.29798 1.29798 1.29798 1.96e-3 2.07e-3 1.96e-3

* Dummy MACE Gimbal Element Construction
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88 7.09984 7.09984 7.09984 5.82e-3 2.97e-2 2.90e-2
* Rate Gyro beneath Torque Wheel Assembly

59 1.07100 1.07100 1.07100 1.11e-3 7.88e-4 6.96e-4
* Accel Triax on Node 4

60 0.72968 0.72968 0.72968 2.67e-4 7.78e-5 2.67e-4
* Accel Triax on Node 2

61 0.66060 0.66060 0.66060 2.74e-4 8.00e-5 2.74e-4

DAMPERS NODES
* Concentrated Nodal Dampers (VI.2)
* Gimbals

51 0.0 0.0 0.0 3.0 0.0 0.0
55 0.0 0.0 0.0 0.0 0.0 3.0

Suspension carriages
63 0.0 13.0 0.0 0.0 0.0 0.0
64 0.0 13.0 0.0 0.0 0.0 0.0
65 0.0 13.0 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 4.0 0.0 0.0
16 0.0 0.0 0.0 4.0 0.0 0.0
30 0.0 0.0 0.0 4.0 0.0 0.0

SKEWSYSTEMS EULERANGLES

1 -54.789833 0.0 0.0
2 26.242265 81.084306 -44.291621
3 92.823587 49.841972 -157.70733
4 90.0 20.998152 -90.0
5 -89.314583 90.209326 -90.567411
6 -0.1316743 0.0 0.0

NSKEWS NODES

39 1
40 2
41 3
42 1
43 2
44 3
48 4
52 5
86 6

MATERIAL 1 ELASTIC E=2.3E9 NU=0.37 DENSITY=1189.77
(LEXAN)

MATERIAL 2 ELASTIC E=69.0E9 NU=0.33 DENSITY=0.0
* (ALUMINUM)

MATERIAL 3 ELASTIC E=69.0E10 NU=0.33 DENSITY=0.0
(RIGID)

MATERIAL 4 ELASTIC E=57.2130 NU=0.0 DENSITY=0.0
(SPRING 1)

MATERIAL 5 ELASTIC E=83.0270 NU=0.0 DENSITY=0.0
(SPRING 2)

MATERIAL 6 ELASTIC E=63.3390 NU=0.0 DENSITY=0.0
(SPRING 3)

MATERIAL 7 ELASTIC E=1E7 NU=0.0 DENSITY=0.0
* (STIFF RODS)

EGROUP 1 TRUSS SUBTYPE=GENERAL DISPLACEMENTS=LARGE MATERIAL=4
ENODES
ENTRIES EL NI N2
1 63 66
EDATA
ENTRIES BL AREA PRINT
1 1 NO

EGROUP 2 TRUSS SUBTYPE=GENERAL DISPLACEMENTS=LARGE MATERIAL=5
ENODES
ENTRIES EL N1 N2
1 64 67
EDATA
ENTRIES EL AREA PRINT
1 1 NO

EGROUP 3 TRUSS SUBTYPE=GENERAL DISPLACEMENTS=LARGE MATERIAL=6
ENODES
ENTRIES EL Ni N2
1 65 68
EDATA
ENTRIES EL AREA PRINT
1 1 NO

EGROUP 4 TRUSS SUBTYPE=GENERAL DISPLACEMENTS=LARGE MATERIAL=7
ENODES
ENTRIES EL N1 N2
1 32 63
2 33 64
3 34 65
EDATA
ENTRIES EL AREA PRINT
1 1 NO
21NO
3 1 NO
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EGROUP 5 BEAM SUBTYPE=DIM3 MATERIAL=1
SECTION 1 SHAPB=PIPE H1=0.0254 H2=0.01905 SC=0 TC=0
ENODES

' Element Construction of the Struts
1 62 4 5
2 62 5 6
3 62 6 7
4 62 11 12
5 82 12 13
6 62 13 14
7 62 18 19
8 62 19 20
9 62 20 21
10 62 25 26
11 62 26 27
12 62 27 28
EDATA
ENTRIES EL SECTION PRINT
1 1 NO
2 1 NO
3 1 NO
4 1 NO
5 1 NO
6 1 NO
7 1 NO
81 NO
9 1 NO

10 1 NO
11 1 NO
12 1 NO

EGROUP 6 BEAM SUBTYPE=DIM3 MATERIAL=2
SECTION I SHAPE=PIPE HI=0.04447 H2=0.01864 SC=0 TC=0
ENODES

* Elemental Construction of the Collar Assemblies
1 62 3 4
2 62 7 8
3 62 10 11
4 62 14 15
5 62 17 18
6 62 21 22
7 62 24 25
8 62 28 29
EDATA
ENTRIES EL SECTION PRINT
11 NO
2 1 NO
3 1 NO
4 1 NO
5 1 NO
6 1 NO
7 1 NO
81 NO

EGROUP 7 BEAM SUBTYPE=DIM3 MATERIAL=3
SECTION 1 SHAPE=PIPE H1=0.0254 H2=0.01905 SC=0 TC=0
ENODES

* Elemental Representation of Nodes (Rigid)
1 62 1 2
2 62 2 3
3 62 8 9
4 62 9 10
5 62 15 16
6 62 16 17
7 62 22 23
8 62 23 24
9 62 29 30
10 62 30 31

Elemental Representation of Attachment Plates (Rigid)
11 62 2 32
12 62 16 33
13 62 30 34

* Elemental Representation of TWA components (Rigid)
14 62 16 35
15 62 35 36
16 62 35 37
17 62 35 38
18 62 36 39
19 62 37 40
20 62 38 41
21 62 42 45
22 62 43 46
23 62 44 47

Elemental Representation of one Gimbal Stage (Rigid)
24 62 30 48
25 62 48 49
26 62 49 50
27 62 51 52
28 62 52 53
29 62 53 54
30 62 55 56

Payload Can and Rate Gyro (Rigid)
31 62 56 67

Dummy MACE Gimbal Element Construction (Rigid)
32 62 2 58

* Rate Gyro beneath Torque Wheel Assembly (Rigid)
33 62 16 59

* Accel Triax on Node 4 (Rigid)
34 62 9 60

* Accel Triax on Node 2 (Rigid)
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35 62 23 61
EDATA
ENTRIES EL SECTION PRINT
1 1 NO
2 1 NO
3 1 NO
4 1 NO
5 1 NO
6 1 NO
7 1 NO
8 1 NO
9 1 NO
10 1 NO
11 1 NO
12 1 NO
13 1 NO
14 1 NO
15 1 NO
16 1 NO
17 1 NO
18 1 NO
19 1 NO
20 1 NO
21 1 NO
22 1 NO
23 1 NO
24 1 NO
25 1 NO
26 1 NO
27 1 NO
28 1 NO
29 1 NO
30 1 NO
31 1 NO
32 1 NO
33 1 NO
34 1 NO
35 1 NO

LOADS MASSPROPORTIONAL 0 -1 0 9.807

*LOADS CONCENTRATED NODES
* 50 4 -.07456742937

51 4 .07456742937
* 54 6 .4144672254
* 55 6 -.4144672254

BOUNDARIES IDOF=111111 NODES
62 66 67 68

BOUNDARIES IDOF=101111 NODES
63 64 65

CONSTRAINTS OPTION=1

42 1 39 1
42 2 39 2
42 3 39 3
42 4 39 4
42 6 39 6
43 1 40 1
43 2 40 2
43 3 40 3
43 4 40 4
43 5 40 5
44 1 41 1
44 2 41 2
44 3 41 3
44 4 41 4
44 5 41 5
61 1 50 1
51 2 50 2
51 3 50 3
51 5 50 5
51 6 50 6
55 1 54 1
55 2 54 2
55 3 64 3
55 4 54 4
55 6 54 6

ADINA

END
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B.E. MACE Dev. Model suspension system, pre-def.

Figure A-1: MACE Development Model ADINA Mesh
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Figure A-2: Example of Transfer Function Improvement due to Incorpora-
tion of Gravity and Suspension Effects
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Appendix B

MATLAB-based Finite Element

Model with Kg, Kgd, and Initial

Deformation Effects

This appendix contains the three most important MATLAB command files and func-

tion files used in Chapter 2 to study the effect of gravity on a cantilevered beam

for comparison with the results of Minguet and Dugundji [30]. The main MATLAB

command file is called fembeamq.m and is best described by the flowchart of Fig-

ure 2-8. It calls two other MATLAB routines: the first is minguet.m which simply

initializes the beam properties, and the second is beamkmkgq.m which computes

the elemental mass, stiffness, geometric stiffness, and distributed geometric stiffness

matrices for a beam element.

215
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B.1 MATLAB Finite Element Model Macro

% fembeamq.m

% MATLAB macro to compute global mass and stiffness matrices of a
% clamped-free beam subject to gravitational loading and initial
% deformations. Geometric stiffness effects are included. Non-linear
, iterations are performed to compute the initial static deformation.

% Eigensolutions are computed for system without gravity loading, and
% with and without Kg or initial deformation effects for comparison
% purposes.

% author: Daniel A. Rey date: July 01, 1991
% version: 4.0 revised: Sept. 22, 1992

% initialization
% -------------------------------------------------------
clear
format short e

% load minguet parameter values for bending load test
% - - - - - - - - - ------- ' "" " --- - - - -- - - - - -- - - - -- - - - -
minguet;
nele = input('Number of elements: ')
h = 1 / nele; % uniform element lengths
Ct = 6; % rect. section (for Kgd)
const=[EIy,EIz,EA,GIp,Ip,ECw,m,h,A,Iy,Iz,Ct];
clear EIy EIz EA GIp Ip ECw A Iy Iz Ct

/ establish reference node co-ordinates and single element co-ordinates
% -------------------------------------------------------
Xref = [0 0 1]';
X = zeros(3,2);

% establish initial ref structure co-ordinates [u, v, w, thetax,_y,_z]
% -------------------------------------------------------
Xo = zeros(1:(6*(nele+1)),1);
for i = 1:nele

j = i*6;
Xo((j+1):(j+6),1) = [(i*h) 0 0 0 0 0]';

end
Xo

% initialize deformed state vectors
%-------------------------------------------------------
Xo_KGQ = Xo;
Xo_NOKG = Xo;

% initialize the deflection convergence measure
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---------------------------------------

delta = 99;
tol = le-5;
nuncdof = (nele * 6) + 6;
ndof = nele * 6; % for cant.-free
iterate = input('Perform non-linear iterations y/n (1/0)? ');
if min(size(iterate)) == 0, iterate=0O;end
q-track =[];

% initialize lumped, consistent and cons/dist'd nodal load vectors
---------------------------------------

Qe_l = zeros(12,nele);
Qec = zeros(12,nele);
Qe_d = zeros(12,nele);

% establish internal nodal load matrices for all elements of a
% cantilevered hor. beam in g field
% -------------------------------------------------------
gs= 0 ;gc = 9.8;
magn = input('scale gravity loading by: ')
gs = gs * magn;gc = gc * magn;
g = [gs,gc];

Fxa = 0; Fxb = 0;
Fya = 0; Fyb = 0;
Mxa = 0; Mxb= 0;
Mza = 0; Mzb= 0;

% lumped translational forcing
% -----------------------------
for n = 1:nele

Fza = m*gc*l - m*gc*h*(n-0.5);
Fzb = -Fza;
Mya = 0;
Myb = 0;
Qe-l(:,n)=[Fxa, Fya, Fza, Mxa, Mya, Mza, Fxb, Fyb, Fzb, Mxb, Myb, Mzb]';

end
% consistantly lumped nodal loads
S--------------------------------
for n = 1:nele

Fza = m*gc*l - m*gc*h*(n-0.5);
Fzb = -Fza;
Mya = m*gc*(h'2/12 - (((nele+1-n)^2*h^2)/2));
Myb = -Mya-(Fza*h);
Qe-c(:,n)=[Fxa, Fya, Fza, Mxa, Mya, Mza, Fxb, Fyb, Fzb, Mxb, Myb, Mzb]';

end
% consistantly lumped nodal loads with dist'd forcing allowed
% ----------------------------------------------
for n = 1:nele

Fza = m*gc*l - m*gc*h*(n-1);
Fzb = -Fza + m*gc*h;
Mya = -(m*gc*((nele+1-n)*h)^2)/2;
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Myb = -Mya-(Fza*h) + (m*gc*h^2)/2;
Qed(:,n)=[Fxa, Fya, Fza, Mxa, Mya, Mza, Fxb, Fyb, Fzb, Mxb, Myb, Mzb]';

end
clear Fxa Fya Fza Mxa Mya Mza Fxb Fyb Fzb Mxb Myb Mzb

% MAIN LOOP: test for convergence and iterate if necessary

loopcount = 0;
% echo on %debug tool
while delta > tol
loop-count = loopcount + 1

% perform assembly process for unconstrained simple beam
KglobNKG = zeros(nundofnundof)---------------------------------------
Kglob_NOKG = zeros(n-uncdof,nuncdof);
Kglob_LKGQ = zeros(nuncdof,nuncdof);
Kglob-KGQ = zeros(n-uncdof,n-uncdof);
KglobDKGQ = zeros(nuncdof,nuncdof);

Mglob_NOKG = zeros(nuncdof,n_uncdof);
Mglob = zeros(nuncdof,nuncdof);

QglobNOKG = zeros(n_uncdof, );
Qglob = zeros(nuncdof,1);

% element-by-element sub-loop
% ----------------------------

for i = 1:6:nele*6
j = i+11;

% solutions for different loading types
% --------------------------------------

X(:,1) = XoKGQ(i:i+2,1); % def'd xl nodal u,v,w co-ord.
X(:,2) = XoKGQ(i+6:i+8,1); % def'd x2 nodal u,v,w co-ord.
if i==l

[Ke,Me,Kgl,Kg,dKg,TQec] = ...
beamkmkgq(const,X,Xref,Qel(:,i),Qe_c(:,i),Qed(:,i),g);

Qglob(i:j,l) = TQec(:,1);
else

jj=(i+5)/6;
[Ke,Me,Kgl,Kg,dKg,TQec] = ...
beam_kmkgq(const,X,Xref,Qel(:,jj),Qe.c(:,jj),Qe_d(:,jj),g);

Qglob(i:j,l) = Qglob(i:j,l) + TQec;
end
Kglob.LKGQ(i:j,i:j) = KglobLKGQ(i:j,i:j) + Ke + Kgl;
KglobKGQ(i:j,i:j) = Kglob.KGQ(i:j,i:j) + Ke + Kg;
Kglob.DKGQ(i:j,i:j) = KglobDKGQ(i:j,i:j) + Ke + dKg;
Mglob(i:j,i:j) = Mglob(i:j,i:j) + Me;

% solution for no Kg reformation



XNOKG(:,) = oNOKG(i:i+2,1); no Kg ded x------------------------------- nodal uv, co-ord.
X_NOKG(:,2) = XoNOKG(i:i+2,1); % no Kg def'd x2 nodal u,v,w co-ord.
X-NOKGC:,2) = Xo-NOKG(i+6:i+8,1); % no Kg def'd x2 nodal u,v,w co-ord.
if i==1

[Ke,Me,Kgl,Kg,dKg,TQec] =
beamkmkgq(const,XNOKG,Xref,Qel(:,i),Qe.c(:,i),Qed(:,i),g);
Qglob.NOKG(i:j,1) = Qglob.NOKG(i:j,1) + TQe.c(:,i);

else
jj=(i+5)/6;
[Ke,Me,Kgl,Kg,dKg,TQec) = ...
beamkmkgq(const,XNOKG,Xref,Qel(:,jj),Qec(:,jj),Qed(:,jj),g);
QglobNOKG(i:j,1) = Qglob.NOKG(i:j,1) + Tqec;

end
Kglob.NOKG(i:j,i:j) = Kglob.NOKG(i:j,i:j) + Ke;
Mglob_NOKG(i:j,i:j) = Mglob.NOKG(i:j,i:j) + Me;

end

% apply constraints
% ------------------
KglobNOKG = KglobNOKG(7:nuncdof,7:n_uncdof);
KglobLKGQ = KglobLKGQ(7:nuncdof,7:nuncdof);
KglobKGQ = KglobKGQ(7:nuncdof,7:nuncdof);
KglobDKGQ = KglobDKGQ(7:nuncdof,7:nuncdof);

Mglob.NOKG = MglobNOKG(7:nuncdof,7:nuncdof);
Mglob = Mglob(7:nuncdof,7:nuncdof);

% store NoKG & NoQ solution, also store the No Q update solution
% i.e. solution for unaltered stiffness matrix and solution for the
% linear, single Kg update of K (without iterative displacement
% based transformations of elemental matrices and loading).
% - - ------ -- -- -- -- -- - -- -- -- -- - -- -- -- -- - -- -- -- -- -

if loop-count == 1
KglobalO = KglobNOKG; MglobalO0 = MglobNOKG; % unperturbed
Kglob.NOQ = KglobKGQ; Mglob_NOQ = Mglob; % no pre-def.

end

% no need to subtract reaction forces given the following few lines...
% for a cantilever-free beam
% -------------------------------------------------------

Qglob = Qglob(7:n_uncdof,1);
QglobNOKG = QglobNOKG(7:n-uncdof,1);
Xo-cons = Xo(7:n-uncdof,1);

% static solutions for constrained degrees-of-freedom
LKGcons = cons + (inv(KglobLK---------------------------------------) glob);

XoLKGQcons = Xo-cons + (inv(KglobLKGq) * Qglob);
XoKGQcons = Xocons + (inv(KglobKGQ) * Qglob);
XoNODKG_cons = Xo-cons + (inv(KglobDNOKG) * Qglob);
Xo-NOKG-cons = Xo-cons + Cinv(Kglob-NOKG) * Qglob-NOKG);
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Xo_KGQ = [zeros(1,6), XoKGQcons']';
XoDKGQ = [zeros(1,6), XoDKGQcons']';
Xo_NOKG = [zeros(1,6), XoNOKGcons']';

% form deflection vector and save pertinent data
% -------------------------------------------------------
i = size(XoKGQ);
qnew = zeros(max(i)/2,1);
qnew.NOKG = zeros(max(i)/2,1);
if loopcount == 1

qprev = 0 * qnew;
Meundef=Me; Keundef= Ke; Kgundef=Kg;

end
if loopcount == 2

Meoneiter=Me; Ke_oneiter= Ke; Kgoneiter=Kg;
end
for i = I:nele+l

j = (6*i)-5;
qnew(3*i-2:3*i,1) = XoKGQ(j:(j+2),I) - Xo(j:(j+2),1);
qnew.NOKG(3*i-2:3*i,1) = XoNOKG(j:(j+2),1) - Xo(j:(j+2),1);

end
% qnew,qnew.NOKG,qprev

qtrack = [qtrack, qnew]
delta = max(abs(qnew - qprev))
if loop.count -= 2
elseif iterate -= i, delta = 0 % exit for linear analysis

end

% force one update of sys. matrices for static redef. case
if loopcount == 1
delta =99;

end
qprev = qnew;

end
% echo off

% eigensolution for different cases
% 0) no q, no Kg, linear KglobalO
% 1) q only, non-linear (static redefinition) KglobNOKG
7 2) Kg only, non-linear (no transformations) KglobNOQ
% 3) Kgl and q, non-linear KglobLKGQ
% 4) Kg and q, non-linear KglobKGQ
% 5) dKg and q, non-linear KglobDKGQ

% 0) KglobalO: no stress stiffening or pre-deformation effects

[phiO,lamO) = eig((inv(Mglobal_0)*KglobalO),'nobalance');
[phiO0,lam_0O = order(phi.0,lam.0);
Hzfr_O = diag(sqrt(lam_0) / (2*pi));

%pause



% 1) Kglob.NOKG: static redefinition only (based on (K(q))^-1)

[phiNOKG,lamNOKG] = eig((inv(MglobNOKG)*KglobNOKG),'nobalance');
[phiNOKG,lamNOKG] = order(phiNOKG,lamNOKG);
HzfrNOKG = diag(sqrt(lamNOKG) / (2*pi));
%pause

% 2) KglobNOQ: Kg only (no transformation due to static redefinition)

[phi.NOQ,lamNOQ] = eig((inv(MglobNOQ)*Kglob.NOQ),'nobalance');
[phi.NOQ,lamNOQ] = order(phiNOQ,lamNOQ);
Hzfr_NOQ = diag(sqrt(lamNOQ) / (2*pi));

%pause

% 3) Kglob.LKGQ: Combined lumped force Kg and static redef. based on (K + Kg)^-i

[phi.LKGQ,lam.LKGQ] = eig((inv(Mglob)*KglobLKGQ),'nobalance');
[phiLKGQ,lamLKGQ] = order(phiLKGQ,lamLKGQ);
HzfrLKGQ = diag(sqrt(lamLKGQ) / (2*pi));
%pause

% 4) KglobKGQ: Combined Kg and static redefinition based on (K + Kg)^-i

[phi_KGQ,lamKGQ] = eig((inv(Mglob)*KglobKGQ),'nobalance');
[phi.KGQ,lamKGQ] = order(phi.KGQ,lamKGQ);
HzfrKGQ = diag(sqrt(lamKGQ) / (2*pi));

%pause

% 5) Kglob.DKGQ: Combined dist'd Kg and static redef. based on (K + Kg)^-i

[phi.DKGQ,lamDKGQ] = eig((inv(Mglob)*KglobDKGQ),'nobalance');
[phi.DKGQ,lamDKGQ] = order(phiDKGQ,lamDKGQ);
Hzfr_DKGQ = diag(sqrt(lamDKGQ) / (2*pi));
pause

% verify mass and stiffness orthogonality
% ------------------------------------------------------
verflag = input('Perform routine verification plots (y/n)? (1/0)')
if min(size(verflag)) == 0, verflag=0O; end
if verflag == 1, verify-fq; end

% data dump and mode plots for different solutions
,---------------------------------------

disp('type: diary filename');
keyboard
nele,magn
if loopcount > 1

Me_undef,Meoneiter,Me
Ke_undef,Ke-oneiter,Ke
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Kg.undef,Kg-oneiter,Kg
else

Meundef,Me
Keundef,Ke
Kgundef,Kg

end

q.track

Qec

interactive-flag = 0;

af = 1;ab=6;
if nele > 1
af = max(size(HzfrKGQ));
ab = af - 9;
end

[phiO0,lamO0] = order(phi0,lam0);
HzfrO = diag(sqrt(lam.0) / (2*pi));

disp('Lowest eigenfrequencies for no reformation case: ');
HzfrO(ab:af, 1)
columnsshown=sprintf(' %g to %g',ab,af);
columnsshown
col = input('Enter a 3xi vector of first flap/tors/fore-aft ev col pos: ');
if min(size(col)) == 0, col=[nele*6,nele*6-2,nele*6-4]; end
casl = sprintf('%g-g gravity loading',magn);
cas2 = 'NO Kg correction and NO static redefinition.';
phi = phi.0; Hzfreq = HzfrO;
plmode; keyboard

disp('Lowest eigenfrequencies for static redef. case: ');
Hzfr.NOKG(ab:af,1)
columnsshown=sprintf(' %g to %g' ,ab,af);
columns-shown
col = input('Enter a 3x1 vector of first flap/tors/fore-aft ev col pos: ');
if min(size(col)) == 0, col=[nele*6,nele*6-2,nele*6-4]; end
casl = sprintf('g-g gravity loading',magn);
cas2 = 'No Kg correction, only static redefinition';
phi = phi.NOKG; Hzfreq = HzfrNOKG;
plmode; keyboard

disp('Lowest eigenfrequencies for Kg only case: ');
HzfrNOQ(ab:af, )
columns_shown=sprintf(' %g to %g',ab,af);
columnsshown
col = input('Enter a 3xi vector of first flap/tors/fore-aft ev col pos: ');
if min(size(col)) == 0, col=[nele*6,nele*6-2,nele*6-4]; end
casi = sprintf(',g-g gravity loading',magn);
cas2 = 'No static redefinition, only consistant Kg';



phi = phiNOQ; Hzfreq = HzfrNOQ;
plmode; keyboard

disp('Lowest eigenfrequencies for static redef. + lumped KG case: ');
HzfrLKGQ(ab:af,1)
columnsshown
col = input('Enter a 3x1 vector of first flap/tors/fore-aft ev col pos: ');
if min(size(col)) == 0, col=[nele*6,nele*6-2,nele*6-4]; end
casi = sprintf('%g-g gravity loading',magn);
cas2 = 'with lumped force Kg correction';
phi = phiLKGQ; Hzfreq = Hzfr_LKGQ;
plmode; keyboard

disp('Lowest eigenfrequencies for static redef. + consistant KG case: ');
HzfrKGQ (ab:af,1)
columnsshown
col = input('Enter a 3x1 vector of first flap/tors/fore-aft ev col pos: ');
if min(size(col)) == 0, col=[nele*6,nele*6-2,nele*6-4]; end
casi = sprintf('Yg-g gravity loading',magn);
cas2 = 'with consistant lumped force Kg correction';
phi = phiKGQ; Hzfreq = HzfrKGQ;
plmode; keyboard

disp('Lowest eigenfrequencies for static redef. + distributed KG case: ');
HzfrDKGQ(ab:af,1)
columnsshown
col = input('Enter a 3xi vector of first flap/tors/fore-aft ev col pos: ');
if min(size(col)) == 0, col=[nele*6,nele*6-2,nele*6-4]; end
casi = sprintf('%g-g gravity loading',magn);
cas2 = 'with distributed force Kg correction';
phi = phiDKGQ; Hzfreq = HzfrDKGQ;
plmode
diary off

clear i ii interactive.flag j jj loopcount m n ab af ans casi cas2 col
clear columnsshown const delta iterate str verflag

disp(")
disp('----------------------------- END OF RUN -------------------------- ')
disp(")
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B.2 MATLAB Beam M, K, Kg, Kgd Finite Ele-

ment Function

% beamkmkgq.m

% MATLAB function called by fembeamq.m to compute the elemental M, K,
% and Kg matrices for a beam element with known nodal positions xl and x2.
% Automatically performs transformation of M, K, and Kg into global
% coordinates. Kg matrices are computed for the three cases of plain lumped
X forces, consistent lumped forces, and consistent lumped forces with
% distributed loads.

% Uses direct input of homogeneous beam properties in vector 'const'.

% author: E. Balmes and D. A. Rey
% date: July 1991

% revised: Aug. 10, 1992

function [ke,m,kgl,kg,dkg,tqe]=beam.kmkg(const,x,xref,qelump,qeconc,qedist,g)

% x is 6xi column vector of [xi x2]'
% xref is 3xi column vector of Euref, vref, wref]'

EIy=const(1,1); EIz=const(1,2); EA=const(1,3); GIp=const(1,4);
Ip=const(1,5); ECw=const(1,6); m=const(1,7); h=const(1,8);
A=const(1,9); Iy=const(1,10); Iz=const(1,11); Ct=const(1,12);

% determine transformation matrix and deformed element length h
%, ---- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

w = xref - x(:,1);
w = w /sqrt(w'*w);
u = x(:,2) - X(:,1);
h = sqrt(u'*u);
% note that the above h is probably different from the undeformed h
u=u/h;
W1 = w - u*U'*W;
wl = wi / sqrt(wl'*wi);
v = [wl(2)*u(3)-wl(3)*u(2);...

wi(3)*u(1)-wi(1)*u(3); ...
wl(1)*u(2)-wl(2)*u(1)] ;

v = v / sqrt(v'*v);
c = [u v wi];
T = [ c' zeros(3) zeros(3) zeros(3)

zeros(3) c' zeros(3) zeros(3)
zeros(3) zeros(3) c' zeros(3)
zeros(3) zeros(3) zeros(3) c' ];

%diag(T)'
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% pause
XT
if max(T) > 1, disp('STOP unless you intended to include deformations')
end

% untransformed elemental matrix definitions for 12 dof beam element
% dof: Ux, Uy, Uz, Ox, Oy, Oz (where x is neutral axis)
% -------------------------------------------------------
Ke=zeros(12,12); Kg=zeros(12,12); Me=zeros(12,12); Min=zeros(12,12);
dKg=zeros(12,12); Kgl=zeros(12,12);

Ke(i,7) = - EA / h;
Ke(2,6) = 6 * EIz / (h^2);
Ke(2,8) = -12 * EIz / (h^3);
Ke(2,12) = 6 * EIz / (h^2);
Ke(3,5) = -6 * Ely / (h^2);
Ke(3,9) = -12 * Ely / (h^3);
Ke(3,11) = -6 * Ely / (h^2);
Ke(4,10) = -6/5*GIp / h + 12*ECw/ (h^3);
Ke(5,9) = 6 * Ely / (h^2);
Ke(5,11) = 2 * Ely / h;
Ke(6,8) = -6 * EIz / (h^2);
Ke(6,12) = 2 * EIz / h;
Ke(8,12) = -6 * EIz / (h^2);
Ke(9,11) = 6 * EIy / (h-2);
Ke = Ke + Ke';
Ke(1,1) = EA / h;
Ke(2,2) = 12 * EIz / (h^3);
Ke(3,3) = 12 * EIy/ (h^3);
Ke(4,4) = 6/5*GIp / h + 12*ECw/ (h^3);
Ke(5,5) = 4 * EIy / h;
Ke(6,6) = 4 * EIz / h;
Ke(7,7) = Ke(1,1);
Ke(8,8) = Ke(2,2);
Ke(9,9) = Ke(3,3);
Ke(10,10) = Ke(4,4);
Ke(11,11) = Ke(5,5);
Ke(12,12) = Ke(6,6);
% positive definicy correction
% Ke = Ke + (eye(12)*1e-5*min(min(Ke)));

% Kg with plain lumped forces

qe=(T' * qelump)';
Fxa=qe(i,1);Fya=qe(1,2);Fza=qe(1,3);Mxa=qe(1,4);Mya=qe(1,5);Mza=qe(1,6);
Fxb=qe(i,7);Fyb=qe(1,8);Fzb=qe(1,9) ;Mxb=qe(1,10);Myb=qe(1,11);Mzb=qe(1,12);
gs=g(1,1);gc=g(1,2);

Kgl(1,2) = (Mza + Mzb) / (h^2);
Kgl(1,3) = -(Mya + Myb) / (h^2);
Kgl(1,8) = -(Mza + Mzb) / (h^2);
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Kgl(1,9) = (Mya + Myb) / (h^2);
% Kgl(2,4) = 1.1*Mya/ h - Myb/ (10*h);
Kgl(2,4) = Mya/ h;
Kgl(2,5) = Mxb/ h;
Kgl(2,6) = Fxb/1O;
Kgl(2,7) = -Kgl(1,2);
Kgl(2,8) = -6*Fxb/ (5*h);

% Kgl(2,10) = -Mya/ (10*h) + 1.1*Myb/ h;
Kgl(2,10) = Myb/ h;
Kgl(2,11) = -Mxb/ h;
Kgl(2,12) = Fxb/1O;

% Kgl(3,4) = 1.1*Mza/h - Mzb/ (1O*h);
Kgl(3,4) = Mza/h;
Kgl(3,5) = -Fxb/1O;
Kgl(3,6) = Mxb/h;
Kgl(3,7) = -Kgl(1,3);
Kgl(3,9) = -6/5*Fxb/h;

% Kgl(3,10) = -Mza/(10*h) + 1.1*Mzb/h;
Kgl(3,10) = Mzb/h;
Kgl(3,11) = -Fxb/1O;
Kgl(3,12) = -Mxb/h;

% Kgl(4,5) = Mza/10O + Mzb/5;
Kgl(4,5) = Mza/6 + Mzb/6;

% Kgl(4,6) = -Mya/10O - Myb/5;
Kgl(4,6) = -Mya/6 - Myb/6;

% Kgl(4,8) = -1.1*Mya/ h + Myb/ (10*h);
Kgl(4,8) = -Mya/ h;

% Kgl(4,9) = -1.1*Mza/ h + Mzb/ (1O*h);
Kgl(4,9) = -Mza/ h;
Kgl(4,10) = - 6/5*Fxb*Ip/A / h;

% Kgl(4,11) = - Mza/5 - Mzb/10;
Kgl(4,11) = - Mza/6 - Mzb/6;

% Kgl(4,12) = Mya/5 + Myb/10;
Kgl(4,12) = Mya/6 + Myb/6;
Kgl(5,8) = -Mxb/h;
Kgl(5,9) = Fxb/10;

% Kgl(5,10) = -Mza/10 - Mzb/5;
Kgl(5,10) = -Mza/6 - Mzb/6;
Kgl(5,11) = -Fxb*h/30;
Kgl(5,12) = Mxb/2;
Kgl(6,8) = -Fxb/1O;
Kgl(6,9) = -Mxb/h;

% Kgl(6,10) = Mya/10 + Myb/5;
Kgl(6,10) = Mya/6 + Myb/6;
Kgl(6,11) = -Mxb/2;
Kgl(6,12) = -Fxb*h/30;
Kgl(7,8) = (Mza - Mzb) / (h^2);
Kgl(7,9) = -(Mya + Myb) / (h^2);

% Kgl(8,10) = Mya/(10*h) - 1.1*Myb/h;
Kgl(8,10) = -Myb/h;
Kgl(8,11) = Mxb/h;
Kgl(8,12) = -Fxb/ 10;
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% Kgl(9,10) = Mza/(10*h) - 1.1*Mzb/h;
Kgl(9,10) = -Mzb/h;
Kgl(9,11) = Fxb/1O;
Kgl(9,12) = Mxb/h;

% Kgl(10,11) = Mza/5 + Mzb/1O;
Kgl(10,11) = Mza/6 + Mzb/6;

% Kgl(lO,12) = -Mya/5 - Myb/1O;
Kgl(10,12) = -Mya/6 - Myb/6;
Kgl = Kgl + Kgl';
Kgl(2,2) = 6/5*Fxb/h;
Kgl(3,3) = Kgl(2,2);
Kgl(4,4) = Fxb*Ip/(A*h);
Kg1(5,5) = 2*Fxb * h/15;
Kgl(6,6) = Kgl(5,5);
Kgl(8,8) = Kgl(2,2);
Kgl(9,9) = Kgl(2,2);
Kgl(1O,1O) = Kgl(4,4);
Kgl(11,11) = Kgl(5,5);
Kgl(12,12) = Kgl(5,5);

% Kg with consistant lumped forces
% ---------------------------------
qe=(T' * qeconc)'; tqe=qe';
Fxa=qe(i,l);Fya=qe(1,2);Fza=qe(1,3);Mxa=qe(1,4);Mya=qe(1,5);Mza=qe(1,6);
Fxb=qe(1i,7);Fyb=qe(1,8);Fzb=qe(1,9);Mxb=qe(1,10);Myb=qe(1,11);Mzb=qe(1,12);
gs=g(1,1);gc=g(1,2);

Kg(1,2) = (Mza + Mzb) / (h'2);
Kg(1,3) = -(Mya + Myb) / (h^2);
Kg(1,8) = -(Mza + Mzb) / (h^2);
Kg(1,9) = (Mya + Myb) / (h^2);

% Kg(2,4) = 1.l*Mya/ h - Myb/ (10*h);
Kg(2,4) = Mya/ h;
Kg(2,5) = Mxb/ h;
Kg(2,6) = Fxb/1O;
Kg(2,7) = -Kg(1,2);
Kg(2,8) = -6*Fxb/ (5*h);

% Kg(2,10) = -Mya/ (10*h) + 1.1*Myb/ h;
Kg(2,10) = Myb/ h;
Kg(2,11) = -Mxb/ h;
Kg(2,12) = Fxb/1O;
% Kg(3,4) = 1.1*Mza/h - Mzb/ (10*h);

Kg(3,4) = Mza/h;
Kg(3,5) = -Fxb/1O;
Kg(3,6) = Mxb/h;
Kg(3,7) = -Kg(1,3);
Kg(3,9) = -6/5*Fxb/h;

% Kg(3,10) = -Mza/(1O*h) + 1.1*Mzb/h;
Kg(3,iO) = Mzb/h;

Kg(3,11) = -Fxb/1O;
Kg(3,12) = -Mxb/h;

% Kg(4,5) = Mza/iO + Mzb/5;
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Kg(4,5) = Mza/6 + Mzb/6;
% Kg(4,6) = -Mya/10 - Myb/5;

Kg(4,6) = -Mya/6 - Myb/6;
% Kg(4,8) = -l.1*Mya/ h + Myb/ (1O*h);

Kg(4,8) = -Mya/ h;
% Kg(4,9) = -1.1*Mza/ h + Mzb/ (10*h);

Kg(4,9) = -Mza/ h;
Kg(4,10) = - 6/5*Fxb*Ip/A / h;

% Kg(4,11) = - Mza/5 - Mzb/10;
Kg(4,11) = - Mza/6 - Mzb/6;

% Kg(4,12) = Mya/5 + Myb/1O;
Kg(4,12) = Mya/6 + Myb/6;

Kg(5,8) = -Mxb/h;
Kg(5,9) = Fxb/10;

% Kg(5,10) = -Mza/10 - Mzb/5;
Kg(5,10) = -Mza/6 - Mzb/6;
Kg(5,11) = -Fxb*h/30;
Kg(5,12) = Mxb/2;
Kg(6,8) = -Fxb/10;
Kg(6,9) = -Mxb/h;

X Kg(6,10) = Mya/10 + Myb/5;
Kg(6,10) = Mya/6 + Myb/6;
Kg(6,11) = -Mxb/2;
Kg(6,12) = -Fxb*h/30;
Kg(7,8) = (Mza - Mzb) / (h^2);
Kg(7,9) = -(Mya + Myb) / (h-2);
% Kg(8,10) = Mya/(10*h) - 1.1*Myb/h;
Kg(8,10) = -Myb/h;
Kg(8,11) = Mxb/h;
Kg(8,12) = -Fxb/ 10;

% Kg(9,10) = Mza/(10*h) - 1.1*Mzb/h;
Kg(9,10) = -Mzb/h;
Kg(9,11) = Fxb/10;
Kg(9,12) = Mxb/h;
% Kg(1O,11) = Mza/5 + Mzb/10;
Kg(10,11) = Mza/6 + Mzb/6;

% Kg(10,12) = -Mya/5 - Myb/lO;
Kg(10,12) = -Mya/6 - Myb/6;
Kg = Kg + Kg';
Kg(2,2) = 6/5*Fxb/h;
Kg(3,3) = Kg(2,2);
Kg(4,4) = Fxb*Ip/(A*h);
Kg(5,5) = 2*Fxb * h/15;
Kg(6,6) = Kg(5,5);
Kg(8,8) = Kg(2,2);
Kg(9,9) = Kg(2,2);
Kg(10,10) = Kg(4,4);
Kg(11,11) = Kg(5,5);
Kg(12,12) = Kg(5,5);

% Kg with distributed loads
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% --------------------------
qe=(T' * qedist)';
Fxa=qe(1, 1);Fya=qe(1,2);Fza=qe(1,3);Mxa=qe(1,4);Mya=qe(1,5);Mza=qe(1,6);
Fxb=qe(1,7);Fyb=qe(1,8);Fzb=qe(1,9);Mxb=qe(1,10);Myb=qe(1,11);Mzb=qe(1,12);

gs=g(1,1);gc=g(1,2);

dKg(1,2) = (Mza + Mzb) / (h^2);
dKg(1,3) = -(Mya + Myb) / (h^2);
dKg(1,5) = + m*h*gc/12;
dKg(1,8) = -dKg(1,2);
dKg(1,9) = -dKg(1,3);
dKg(1,11) = -dKg(1,5);
dKg(2,4) = Mya/ h - m*h*gc/10;
dKg(2,5) = Ct*Mxb/(6*h);
dKg(2,6) = Fxb/1O;
dKg(2,7) = -dKg(1,2);
dKg(2,8) = -6*Fxb/ (5*h) + 3*m*gs/5;
dKg(2,10) = Myb/ h - m*h*gc/10;
dKg(2,11) = -dKg(2,5);
dKg(2,12) = Fxb/1O;
dKg(3,4) = Mza/h;
dKg(3,5) = -dKg(2,6);
dKg(3,6) = dKg(2,5);
dKg(3,7) = -dKg(1,3);
dKg(3,9) = dKg(2,8);
dKg(3,10) = Mzb/h;
dKg(3,11) = -dKg(2,12);
dKg(3,12) = -dKg(2,5);
dKg(4,5) = (Mza + Mzb)/6;
dKg(4,6) = -(Mya + Myb)/6 + 7*m*h^2*gc/60;
dKg(4,8) = -dKg(2,4);
dKg(4,9) = -dKg(3,4);
dKg(4,10) = -Fxb*Ip/(A*h) + Ip*m*gs/(2*A);
dKg(4,11) = -dKg(4,5);
dKg(4,12) = (Mya + Myb)/6 - m*h^2*gc/20;
dKg(5,7) = -dKg(1,5);
dKg(5,8) = -dKg(2,5);
dKg(5,9) = dKg(2,6);
dKg(5,10) = -dKg(4,5);
dKg(5,11) = -Fxb*h/30 + m*h^2*gs/60;
dKg(5,12) = dKg(2,5)*h/2;
dKg(6,8) = -dKg(2,6);
dKg(6,9) = -dKg(2,5);
dKg(6,10) = (Mya + Myb)/60 + m*h-2*gc/20;
dKg(6,11) = -dKg(5,12);
dKg(6,12) = dKg(5,11);
dKg(7,8) = dKg(1,2);
dKg(7,9) = dKg(1,3);
dKg(7,11) = dKg(1,5);
dKg(8,10) = -Myb/h + m*h*gc/10;
dKg(8,11) = dKg(2,5);
dKg(8,12) = -dKg(9,11);
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dKg(9,10) = -Mzb/h;
dKg(9,11) = Fxb/10 - m*h*gs/10;
dKg(9,12) = dKg(2,5);
dKg(1O,11) = dKg(4,5);
dKg(10,12) = -(Mya + Myb)/6 - 7*m*h^2*gc/60;
dKg = dKg + dKg';
dKg(2,2) = 6/5*Fxb/h - 3*m*gs/5;
dKg(3,3) = dKg(2,2);
dKg(4,4) = Fxb*Ip/(A*h) - Ip*m*gs/(2*A) ;
dKg(5,5) = 2*Fxb * h/15 - m*h^2*gs/10;
dKg(6,6) = dKg(5,5);
dKg(8,8) = dKg(2,2);
dKg(9,9) = dKg(3,3);
dKg(10,10) = dKg(4,4);
dKg(11,11) = 2*Fxb * h/15 - m*h^2*gs/30;
dKg(12,12) = dKg(11,11);

Me(1,7) = 1/6;
Me(2,6) = 11*h/210;
Me(2,8) = 9/70;
Me(2,12) = -13*h/420;
Me(3,5) = -11*h/210;
Me(3,9) = 9/70;
Me(3,11) = 13*h/420;
Me(4,10) = Ip/(6*A);
Me(5,9) = -13*h/420;
Me(5,11) = -h*h/140; %subs 140 for 420...
Me(6,8) = 13*h/420;
Me(6,12) = -h*h/140;
Me(8,12) = -11*h/210;
Me(9,11) = 11*h/210;
Me = Me + Me';

Me(1,1) = 1/3;
Me(2,2) = 13/35;
Me(3,3) = 13/35;
Me(4,4) = Ip/(3*A);
Me(5,5) = h^2/105;
Me(6,6) = h^2/105;

Me(7,7) = 1/3;
Me(8,8) = 13/35;
Me(9,9) = 13/35;
Me(10,10) = Ip/(3*A);
Me(11,11) = h^2/105;
Me(12,12) = h^2/105;
Me = m*h * Me;

% -------------------------------------------------------
% mass matrix rotational inertia correction terms
% (omitted for the time being)
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skip=; if skip==O,
Min(2,6) =
Min(2,8) =
Min(2,12) =
Min(3,5) =
Min(3,9) =
Min(3,11) =
Min(4,10) =
Min(5,9) =
Min(5,11) =
Min(6,8) =
Min(6,12) =
Min(8,12) =
Min(9,11) =
Min = Min +

Iz/(1O*A*h);
- 6*Iz/(5*A*h^2);
Iz/(lO*A*h);

-Iy/(1O*A*h);
- 6*Iy/(6*A*h^2);

- Iy/(1O*A*h);
0;
Iy/(lO*A*h);
- Iy/(30*A);
- Iz/(lO*Ah);
- Iz/(30*A);
- Iz/(lO*A*h);

Iy/(10*A*h);
Min';

Min(2,2) = 6*Iz/(5*A*h*h);
Min(3,3) = 6*Iy/(5*A*h*h);
Min(4,4) = 0;
Min(5,5) = 2*Iy/(15*A);
Min(6,6) = 2*Iz/(15*A);
Min(8,8) = 6*Iz/(5*A*h*h);
Min(9,9) = 6*Iy/(5*A*h*h);
Min(10,10) = 0;
Min(l1,11) = 2*Iy/(15*A);
Min(12,12) = 2*Iz/(15*A);
Min = m*h * Min;
Me = Me + Min;
end

% transform elemental matrices
-----------------------------------

ke = T' * Ke * T;
m = T' * Me * T;
kgl = T' * Kgl * T;
kg = T' * Kg * T;
dkg = T' * dKg * T;

S----------------------- eof
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B.3 MATLAB Minguet Beam Initialization Macro

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% minguet.m

% MATLAB macro to initialize homogeneous beam properties based on the
% Minguet PhD thesis composite beam.

% author: Daniel A. Rey
% date: May, 1991
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%XX%%%%%%%X
echo on

g = 9.8; %m/s^2

EIz = 276; %Nm^2
EIy = 0.707; %Nm^2

Iz = 3.353E-9; %m^4
Iy = 8.27E-12; %m^4

m = 0.0683; %kg/m
1 = 0.56; %m
A = 0.03 * 1.49E-3; %m^2

GIp = 0.183; %Nm^2
EA = EIz / Iz * A; %N

%Ip = 5.13E-6; %kg/m given????
%Ip = 3.36E-9; %m^4 calculated
%Ip = 3.0E-9; m^4 original tuned
Ip = 4.05E-9; %m^4 second tuned Ip

ECw = 0;
echo off



Appendix C

Guidelines for Designing Simple

Spring Suspension Systems

This appendix contains the details of how to select off-the-shelf extensional springs

for the purposes of suspending a flexible spacecraft model. Given that the extensional

springs are specified by length, pre-tension and unit stiffness, the selection process

can be cumbersome if one truly wants to optimize the springs selected. Both sections

of this Appendix present simple step-by-step instructions for identifying the optimal

spring lengths and types based on criteria of lowest possible bounce mode or maximum

possible surge mode.

C.1 Minimizing the Bounce Mode Frequency

C.1.1 Applicability

This appendix is a good introduction to spring selection but is only applicable to

those test-beds which are to suspend very low-frequency test articles and for which

corruption of higher frequency measurements due to spring surge modes is a lesser

concern. If the higher frequency surge mode effects are a greater concern than achiev-

ing as low a bounce frequency as possible, see the second section of this Appendix
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entitled "Mazimizing Surge Mode Frequencies subject to Bounce Mode and Safety

Constraints".

C.1.2 Introduction

Given that coil springs, extensional and torsional, are typically pre-tensioned and are

specified by the supplier in terms of unit length stiffness, i.e. in lbs/in or N m/m,

some care must be exercised in their selection.

The free variables in selecting off-the-shelf springs are the outside coil diameter,

wire diameter, and spring length. The first two must typically be selected from a dis-

crete set of available products while the spring length can be cut to measure. Uniquely

related to the coil and wire diameter specification pairs are the more convenient initial

tension and unit stiffness descriptors.

To reduce the perturbation to the test article dynamics, a frequency separation

between the suspension system resonances and the test article resonances of one half

to a full order of magnitude is desirable. Further, if the objective of the suspension

system is to simulate free-free boundary conditions, it is necessary for this frequency

separation to be provided from below, i.e. the suspension resonant frequency must

be less than the test article fundamental.

This first section of Appendix A describes the selection of the optimal spring where

it is assumed that the optimal spring is the spring with the lowest allowable stiffness

given a known maximum deformed length and load.

C.1.3 Background

Ideally, one would select the softest possible linear or non-linear spring (spring with

pre-tension) given a known load range and deformed length range. If the pre-tension

in the spring can be arbitrarily selected, the problem is resolved, as this would make it

possible to select an arbitrarily small spring stiffness. However, such a simple spring

selection procedure is not possible, as one cannot arbitrarily select the pre-tension in
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the spring. Physically, the initial tension T, is subject to an upper-bound which is

related to the spring constant. A second problem is that the maximum deformation

length, Xdma., is undetermined since it depends on the undeformed spring length

which is not known a priori. The practical pre-tension maximum is roughly equal to

the product of the total spring stiffness and the undeformed spring length, i.e.:

To < kU/l, * X,

T, < KT * x,

(C.1)

(C.2)

C.1.4 Spring Selection

To overcome these problems the selection of the optimal spring is best accomplished in

terms of the difference between ku and T,, and in terms of the total available length,

1.

Rewriting the static equilibrium equation,

Fo = To + KTxS (C.3)

ku - To =Fo4 fb(1 e) - 1

where

l = ,+ 6 + xE

KT = ku/x,

and where KT has been written in terms of the desired suspension frequency,

47r2 2 Fo
4 - fbKr- g

(C.4)

(C.5)
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The first step is thus the determination of the lowest feasible suspension fre-

quency. From Equation C.1 and Equation C.4 it is clear that for k. > To

f > - (C.6)

Thus the bounce frequency of a simple spring mass system will always be greater

than its pendular frequency.

The second step, having selected a feasible suspension bounce frequency based

on Equation C.6, is to substitute all known left-hand side values in Equation C.4 to

obtain an equation of the following form, where a and P are real numbers:

k, - To = a - Pe, (C.7)

The third step is to scan the spring supplier data sheet to select a spring with

k, - To as close to a as possible, but not greater than a, and to solve for the resulting

corrector wire length, e~. This so-called corrector wire is only required in cases such as

a multiple suspension point system where the total suspension length at each attach

point is critical. The wire is placed in series with the spring and should have a length

adjusting mechanism such as a turnbuckle.

The fourth step is to verify that the maximum expected load is less than the yield

load of the selected spring, and that the initial pre-tension is less than the minimum

expected load. If these tests are unsuccessful then attempt to select a heavier spring,

even if this means a greater wire length and retry step four. If no spring options are

feasible return to step two and select a slightly higher resonant frequency.

The fifth step is simply calculating the undeformed spring length,

K, (C.8)
KTAll information required to place the spring order is now known, i.e. k

All information required to place the spring order is now known, i.e. ku, T, and z,.
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The sixth step consists of calculating the spring surge eigenfrequencies to evalu-

ate whether or not they will in fact be a concern. Hopefully the first surge eigenfre-

quency will be sufficiently high such that the undeformed spring length need not be

reduced. As detailed in Appendix C.2 the ith surge frequency is given by:

i 3.kx, (C.9)

C.1.5 Nomenclature

fb = desired suspension bounce frequency

(f,); = i'th surge mode eigenfrequency

Fo = downward directed point load at spring tip

g = gravitational acceleration constant

ku = unit spring stiffness

KT = total spring stiffness

1 = total suspension length

i, = spring mass density

To = initial pre-tension in spring

x, = undeformed spring length

x5 = change in spring length when loaded

e = corrector wire length

[Hz]

[Hz]

[N]

[N/kg]

[N -m/m]

[N/m]

[m]

[kglm]

[N]

[m]

[m]

[m]

C.2 Maximizing Surge Mode Frequencies

C.2.1 Approach

The fundamental approach adopted here is to raise the first surge resonant frequency

as high as possible and to keep the bounce mode at or below a maximum frequency

determined by the test article first resonance. This approach of maximimizing the
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first surge mode frequency is recommended based on the fact that the surge modes

are very lightly damped and linearly spaced in the frequency domain which precludes

any attempt to place them below the first test article resonance. The bounce mode

frequency on the other hand should be kept one decade to half of a decade below the

first test article flexible mode for separation reasons and to approximate the desired

free-free boundary condition.

C.2.2 Background

As pointed out by Blackwood [73], the surge mode eigenfrequencies are trivial to

predict and are given by the equation for the eigenfrequencies of a pinned-pinned

rod:

(f) = i (C.10)

where

(fS,) = i'th surge mode eigenfrequency [Hz]

k, = unit spring stiffness [in - lb/in]

x, = undeformed spring length [in]

ft = spring mass density [slugs/in]

For reference purposes the conversion from the manufacturer specified weight per

foot, w, to p is:
w 

(C.1l)
386.4

The bounce mode resonance, fb, is given by,

1 k. g
fb 1 g (C.12)27r x., Fo

where

fb = bounce mode eigenfrequency [Hz]
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Fo = nominal load on spring [lb]

g = gravitational acceleration [in/s 2]

C.2.3 Methodology

Given a desired bounce frequency, fb, and a known nominal load, Fo, it is possible to

solve for the spring length in Equation C.12 and by substitution into Equation C.10

identify i kI as the figure of merit for surge spring selection; i.e. the p k, product is

the only free parameter in the resulting surge mode frequency expression:

27r2Ff2 3
(fs) 27r 2, 3 (C.13)

Step 1

Choose the extensional spring with the smallest possible unit stiffness and unit mass

product, (i.e p k, or w ku), subject to the requirement that the nominal load be

greater than the spring pre-tension and less than the maximum safe load, i.e.

Ta
7To < Fo < m (C.14)

77

where

To = initial pre-tension in spring [lb]

Fo = nominal load on spring [lb]

77 = safety factor [lb]
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Step 2

Verify that the nominal unit extension does not exceed the safe maximum unit ex-

tension,

(C.15)S< Smax

where

m,,a = safe maximum extension per unit spring length

If this test is not passed return to step 1 and choose the next best spring.

Step 3

Determine the (as of yet implicit) undeformed spring length, x,, which was prescribed

by the desired bounce frequency, fb:

k,g
x, = 47r2Ff

IZb

and verify that the undeformed spring length, z,, represents at least 10 spring coils:

S> 10 (C.17)
dw-

where

d, = spring wire diameter [in]

If this final test is passed, the optimal off-the-shelf spring has been selected, (where

optimality is as defined in the Approach). If necessary increase the undeformed spring

length such that the above test is passed, (which will reduce both the surge mode and

bounce mode eigenfrequencies), and proceed thru to step 4 to determine whether the

resulting spring performance is satisfactory.

[in/in]
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Step 4

Having selected the spring number in steps 1 and 2 and the undeformed spring length

in step 3, calculate the resulting surge mode frequencies using Equation C.10.

Step 5

Order spring by specifying spring number and desired length.
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