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ABSTRACT

Time history analysis of multi-degree-of-freedom structures subjected to general dynamic
loading is a convenient and accurate way of representing the dynamic behavior of
structures. It is widely used for determining the earthquake resistance in seismic
engineering. However, the high computational requirement makes it difficult to
implement by simple calculation. Thus, spectrum analysis and other simplified less
accurate procedures are used instead of response history analysis. With the great
improvement in personal computing capability in recent years, response history analysis
with personal computers is now feasible. Furthermore, more complex and realistic
problems such as non-proportional damping and highly damped structures can be
handled. The thesis presents the mathematical formulation in state space that can handle a
shear beam type of structure with arbitrary properties. The implementation of the
mathematical formulation in a program named Motion Lab is described. This program
provides a dynamic simulation environment for rapid prototyping and assessment of
structural response. Key features are the graphical user interface and visual display tools
for time history response. This program is intended to be used primarily as a learning tool
for structural dynamics. It is also useful for preliminary structural design.

Thesis Supervisor: Dr. Jerome J. Connor
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Motivation

Matrix structural dynamic analysis is a complex procedure that involves many matrix

operations and numerical computations. The extent of the complexity makes it difficult or

even impossible to calculate by hand. Thus, the actual problem is either simplified to one

that can be solved by simple computation or people have to resort to dynamic analysis

program to get an accurate result. In the first case, the problem simplified may behaves

far from the original system, thus it may not meet the accuracy requirement. On the other

hand, spending hours to setup a dynamic analysis program such as ADINA or SAP is not

efficient for people who mainly want to experiment with the structure and therefore need

a simple setup procedure. For example, in the preliminary design phase, one needs a tool

with simplified interface and good numerical accuracy that can be set up within minutes

and return the result immediately. One needs to play around with several scenarios and

have the feeling of the actual behavior of the structure within a limited amount of time.

Thus, a structural analysis tool that is simple to use and handles intensive computations is

needed in two major areas. The first area is the preliminary earthquake design of

structures for seismic excitation, the second area is mechanical vibration and structural

dynamics education.



To understand how the tool may improve the preliminary design process, the traditional

design procedure for earthquakes is examined. The procedure is divided into several

steps. First, the structure is discretized into a lumped parameter system. Then the building

code is introduced. From the properties of the structure and the seismicity of the region,

the equivalent static lateral force each floor will take during earthquake is determined.

Most codes also permit dynamic analysis procedures of both response spectrum analysis

(RSA) and response history analysis (RHA). The response history analysis calculates the

time history of the structural response subjected to a given ground acceleration ii, (t). The

response spectrum analysis computes the peak response of the structure during an

earthquake directly from the earthquake response spectrum.

The earthquake design procedures presented above can be improved in several aspects by

applying the tool. First, the building earthquake design code can be verified or even

substituted by the response calculated by the tool. The reason is that the code is only an

approximation and a safety limit to normal structures; it does not take the property of the

entire structure or the equivalent discretized structure into account. For example, only the

fundamental frequency and maximum response properties from the design spectrum chart

are considered to represent a structure and an earthquake impact. The same problem

happens to the response spectrum analysis procedure. The structure peak response varies

with the property of the structure, thus the effect of the summation of peak responses of

several modes is not the real structural response because of the difference in phase lag



between modes. With the complete response analysis procedure built into a standard

computing process, the preliminary design procedure can have a great support.

Other improvements can be made on the design procedure with the tool. First, the

response of general structure with non-proportional damping can be evaluated. The state-

space formulation works with complex modes and frequencies, and thus can deal with

arbitrary damping In addition to accurately predicting the response of a highly damped

structure, the influence of damping on the mode shapes and frequencies can be examined.

Secondly, several earthquake spectrums can be imposed on the structure to get a

complete portrait of the response characteristics of the structure. For example, responses

of the structure to different earthquakes with different frequency contents can be used to

establish an improved estimate of the required rigidity.

The other application area of great potential is education. Textbooks on vibration analysis

and structural dynamics give examples based on proportional damping, because real

quantities are easier to comprehend and compute. However, non-proportional damping is

generally used in buildings. With the help of this analysis tool, a more realistic treatment

of the subject can be presented. Realistic studies of highly damped structures with non-

proportional damping can be carried out.

The main functional requirements and corresponding design parameters for the

simulation environment are listed in Figure 1.1.



Figure 1.1 Functional Requirements and Corresponding Design Parameters of the

Dynamic Simulation Tool

1.2 Review of Previous Work

Previous works related to the implementation of the simulation environment fall into two

categories. One category is research on general formulation and numerical computation

methods in structural dynamics. The other category is computer-aided design and

education system for mechanics.



Research efforts on the application of state-space formulation to structural analysis are

described in [1-3]. The capability of the state-space formulation in the dynamic analysis

of structures has been proved. Also, the basic transformations between real and complex

system have been derived.

On the other hand, two different types of software are developed for computer-aided

design and education. The first are the tools for accurate structural analysis. Software

systems such as ADINA, ANSYS and SAP are out of the scope of the thesis and will not

be discussed. The other types of software for preliminary design and education are still

focused on statics problem. Educational programs for the analysis of simple beams and

trusses are developed in [4][5]. They are all portable on the internet and have a user

friendly interface.

1.3 Organization of the Thesis

Comparing the functional requirements to the previous work, a more general structural

dynamic simulation environment with easy to use interface and short responding time is

needed. The following chapters discuss the underlying theories and the implementation of

the proposed environment.

In the next chapter (Chapter 2), the fundamental state-space formulation is stated, and

then an uncoupled version is derived by solving the associated eigenvalue problem.



Applying the uncoupled complex equations, responses for free and forced vibrations are

generated. After that, modal properties and mode shapes of complex modes are discussed.

Chapter 3 describes the numerical algorithms used in dynamics analysis. A standard

numerical procedure for obtaining the response of a general dynamic system is proposed.

Then, the numerical algorithm for generating complex eigenvalues and eigenvectors of a

general matrix is described. Both frequency domain analysis and direct integration

method are discussed for complex modal analysis.

Chapter 4 focuses on the architecture and implementation of the environment. First, the

design of the objects is discussed. Then, the strategy for optimizing the computations for

dynamic simulation is proposed. Finally, the implementation and the operation of the

system is described.

Chapter 5 discusses the evaluation and testing of the system. Several scenarios are

provided. Interactive process between the program and user is presented. The

eigensystems and response histories are also verified by several MATLAB programs.

Chapter 6 summarizes the research work and proposes some future directions.



Chapter 2

Fundamental Formulation for General Dynamic System

2.1 Introduction to State-space Formulation

The governing equations of motion for a multi-degree-of-freedom mechanical system are

given by

M ii(t) + C u(t) + K u(t) = P(t) (2.1)

where M is the mass matrix, C is the damping matrix, and K is the stiffness matrix.

Vectors u(t), A(t), and ii(t) are the displacement, velocity, and acceleration vectors of the

degrees of freedom in the system. Vector P (t) is the external forcing function as a

function of time t. If P (t) is zero at all time t and u(O), u(0) are given as initial

conditions, (2.1) is often referred to as the free vibration problem. Otherwise, if P (t) is

not zero, the problem is categorized as the forced vibration problem.

Equation 2.1 is recognized as a set of coupled second order differential equations. One

solution strategy is based on applying a linear coordinate transformations to uncouple the

equations. For the undamped (C = 0) and proportional damping1 cases, the uncoupled

equations can be obtained easily by first solving first order eigenvalue problem for the

' If m ,~n are the mth and nth mode-shape vector of the undamped system, and if for the damping matrix

C, the orthogonality holds, i.e., C On = 0 for all m # n, then C is called the proportional damping.



system, and using the mutually orthogonal eigenvectors as the basis functions for the

coordinate transformation. Then, use the solution procedure for second order differential

equation to solve each of the uncoupled equations separately.

However, when dealing with dynamic systems with non-proportional damping,

orthogonal eigenvectors of the real system does not exist. The procedure for uncoupling

the system with proportional damping is not valid. Thus, to obtain an uncoupled set of

equations for the system, one has transform the system to state-space system to reduce the

problem to a first order eigenvalue problem.

The transformation from the real system as shown in Equation 2.1 to the state-space

formulation is performed by considering the velocity vector another unknown variable of

the system. The vector composed of both displacement and velocity vectors of an n-

degree-of-freedom system defines the state of the system thus named the state vector. The

state vector X (t) is arranged in a 2n-dimensional vector of the form

X(t) = i I (2.2)

Similarly, the 2n-dimensional excitation vector F (t) is in the form

F(t)= P(t) (2.3)

Then, the equation of motion of an n-degree-of-freedom linear system can be written in

the state-space form

X(t) = A X(t) + B F(t) (2.4)



Where matrix A and B contain the parameters of the system and have the following form

A = M-K - M'C (2.5)

and

B = [ 0 M (2.6)
0 M-

It is clear that the state-space formulation in Equation 2.4 is similar in structure to the first

order differential equation system. Also, first order eigenvalue solution procedure can be

applied to the state-space formulation, except the system has been turned into a complex

system.

2.2 Eigenproblem of a Nonsymmetric Matrix

As presented by Equation 2.5, the matrix A is a 2n by 2n, nonsymmetric matrix. To solve

the response of Equation 2.4, it is necessary to consider first the following eigenvalue

problem

A V, = 2,iV ,  i = 1,2,...,2n (2.7)

where ki and Vi are the eigenvalues and eigenvectors of A. Because A is not symmetric,

the eigenvalues and eigenvectors are in general both complex, and the eigenvectors are

not mutually orthogonal. Nevertheless, they do satisfy some orthogonality relations. The

eigenvalue problem,



A' W, = AW j = 1,2,...,2n (2.8)

is called adjoint eigenvalue problem. V is often referred to as the right eigenvector and W

is called the left eigenvector. It has been proved [2] that the two sets of eigenvectors

satisfy the biorthogonality property, that is

W T V = 0 i # Aj i, j = 1,2,...,2n (2.9a)

WT V = . Ai = Aj i, j = 1,2,...,2n (2.9b)

where ai is the product of the right and left eigenvectors that possess the same eigenvalue

ki. The length of Wj and Vi can be normalized to unity for obtaining 1 for all ai.

Multiplying both side of Equation 2.7 by Wf and substituting in Equation 2.9, the

equation becomes

WTA V = Ai i o;; i, j = 1,2,...,2n (2.10)

where 8 is the Kronecker delta. Equation 2.10 shows the eigenvectors Wj and Vi are

biorthogonal with respect to the matrix A as well. Using the relationship shown in

Equation 2.10, the uncoupled set of equations is obtained by first assuming the solution

of Equation 2.4 as
2n

X = C Vi qi(t) (2.11)
i=1

or in matrix notation

X=Vq (2.12)

with the initial conditions

X(o) = u(Oi (2.13)
fu(0)l



where V is the right eigenvector serving as a transformation vector from the generalized

coordinate q to the geometric coordinate X, and X(0) is the initial state vector composed

of initial displacement vector u(0) and initial velocity vector u(0). Substituting Equation

2.12 in Equation 2.4 and multiplying both sides by WT, the following equation is

obtained

WT V q = WT AV q + WT B F (2.14)

Inserting Equations 2.9 and 2.10 into Equation 2.14 leads to

a q =a A q + WT B F (2.15)

where

a =diag [a a 2 ... at2n (2.16)

q = [q, q 2  "' q2n] (2.17)

and

A =diag [Al A2  2n] (2.18)

As shown in Equations 2.15 to 2.18, both a and A are complex diagonal matrixes, and

WTB F the product of is a vector, thus Equation 2.15 is decomposed as 2n independent

first order differential equations, with the solution vector q in the complex plane.

2.3 State-space Solution for Free Vibration Problem

The free vibration problem follows from Equation 2.15 by setting F = 0.

l = A q (2.19)



with the initial conditions shown in Equation 2.13. The assumption of q in Equation 2.19

is in the form of Equation 2.20

qi (t) = ci e ' (2.20)

To solve for the coefficients in Equation 2.20, the transformation of the geometric initial

condition X(0) to the generalized coordinate q has to be performed. The transformation is

done by inserting Equations 2.19 and 2.20 into 2.11 at t = 0

2n 2n

X(O)= C V i qi (0) = X Vi ci (2.21)
i=1 i=1

Multiplying WT on both sides of Equation 2.21 and applying Equation 2.9, the following

relationship is obtained

WiTX(0) = WiTVi c, =a ici (2.22)

Thus, the coefficients c can be obtained from dividing both sides of Equation 2.22 by (ai

Ci = WTX(o) (2.23)
a .

Note that for X to be real throughout the time domain, all V i, q i and Xi have to appear in

complex conjugate pairs. Equation 2.21 is rewritten to incorporate the complex conjugate

pairs as follows

y c, +V a =X(0) (2.24)
i=1

where , and c are the complex conjugate vectors of Vi , ci separately. Letting

Vi = ViR +i Vi (2.25a)

ci = CiR +i Cil (2.25b)

and inserting Equations 2.25 into Equation 2.24, leads to the following



n n

V c + V =(i (ViR + i )(ciR +il) +(VR -' )(ciR -i )
i=l i=l (2.26)

=2 (ViRciR -Vc) = X(O)
i=1I

Equation 2.26 can be rewritten in matrix form as follows

cIR

C2R

2. [VR -Vii V2R -V2 ... VnR -Vn]2nx2n C, /  =X(0)2. 1  (2.27)

CnR

-
C

r 2n~l

Equation 2.27 is the alternative formulation for solving the coefficient c when the left

eigenvector Wi in Equation 2.23 is unknown. Substituting q into Equation 2.11 to obtain

the state vector X. The state vector is written as follows

n n

X(t)=IVi qi = yV ci e ' +Vi e e' (2.28)
i=1 i=-1

The imaginary part of Equation 2.28 cancelled out and leaves the real coefficients, which

corresponds to the real displacements and velocities in X.

X(t) = 2 e ~ ' [ (VR ciR -Vi cil) COS t -ViR iI +I ciR) sin,, t] (2.29)
i=1

Notice that the displacement response of the system is stored in the upper n elements, and

the velocity response is stored in the lower n elements in the X vector.



2.4 State-space Solution for Forced Vibration Problem

Two procedures are often applied to evaluate the dynamic response of a multi-degree-of-

freedom structure subjected to arbitrary forcing. The first is the mode superposition

method, which uncouples the equations by making transformation to the generalized

coordinate. The response from each mode is summed up to generate the response of the

entire system. The second procedure is the direct integration method, which converts the

entire system of equations into a difference form and evaluates the response of the system

using a numerical step-by-step integration procedure.

The direct integration method is sometimes more suitable for calculating the response of

a general non-proportional damping system, because the coupled equations need not to be

uncoupled in order to carry out modal analysis. In addition, it is easier to apply direct

integration in a non-linear system with its parameters varying from time to time.

However, for linear systems with moderate degree of freedoms, modal analysis is still

applicable. It is not necessary to calculate all the modal properties and response histories

in modal analysis. Instead, several significant modes are summed up to represent the

response of a structure. Thus, computational cost is minimized even though more effort is

made to uncouple the equations by solving the eigenvalue problem.

Since our primary interest is in implementing the system as an educational tool, the effort

is focused here on the mode superposition method. Modal analysis needs to be performed



in order to obtain the insight of the dynamic modal characteristics. Thus, the effort of the

following sections will be focused on mode superposition method.

2.4.1 Formulation of Forced Vibration Problem in State-space

The first step of the mode superposition method for solving a coupled multi-degree-of-

freedom system is to uncouple the equations, thus the same formulation in Section 2.2

can be applied. Rewrite Equation 2.14 as follows

a i 4i = ai R, q, + WiT B F i = 1,2,...,2n (2.30)

It can be proved that a appear in complex conjugate pairs by simply comparing the

vectors WV and TV V. Notice that the modal forces WTBF/ja appear in complex

conjugate pairs as well. Separate the conjugates and rewrite Equation 2.30 as follows

qi = Ai qi + fi i = 1,2, --- ,n (2.31a)

S= 1 +  i= 1,2,--,n (2.31b)

where

f, = W/iB F / ai i= 1,2,...,n (2.32)

and f is the complex conjugate of f .

It is obvious that only either Equation 2.31a or Equation 2.31b has to be considered

instead of both, because the solution of q comes in complex pairs. However, this does not

make the computation work easier. By separating the real parts and imaginary parts, the

equation number is doubled as before.



Three alternative methods can be applied to solve for Equation 2.31, i.e., time domain

analysis, frequency domain analysis, and direct integration method. Time domain

analysis is performed by first evaluating the impulse response of the system. The forcing

function is then treated as a series of impulse. Summing up the impulse responses at

different time by different forcing magnitude comes to the response history of the system.

Convolution integral is applied for the summing up process. On the other hand, direct

integration method applies numerical integration process to solve for the response of the

system.

Time domain method is not suitable for the area of interest because it needs convolution

integration, which is computationally intensive. Alternative way of carrying out

convolution integral is to treat it as an equivalent frequency method to cut down the

computational cost [6]. Thus, it is more suitable to apply frequency domain method

instead of time domain method. Direct integration is also a suitable method for response

history analysis. The method is a numerical algorithm based on finite difference

formulation. Thus, it belongs to the category of numerical algorithms and will be

discussed in Chapter 3.

Frequency domain analysis is different from the time domain method in that it sums up

the effect of the forcing function in the frequency domain. That is, the forcing function is

represented as a summation of harmonic functions of different frequencies. The



summation is done by first taking the forcing term into Fourier transformation. The

transformation of the forcing term fin Equation 2.31 is represented as follows

F (ico) = fj (t) e-i'dt j = 1,2,- -,n (2.33)

Then, all forcing terms in the frequency domain are combined by the inverse Fourier

transformation to obtain the total response as follows

qi (t) =- F H(io)F (im) e'da j = 1,2,--.,n (2.34)

where Hj(iw) is the complex transfer function and will be derived later in the next section.

2.4.2 Complex Transfer Function in the Frequency Domain

The complex transfer function in the frequency domain transfers the periodic force into

the response of the system. Thus, to obtain the transfer function for the state-space system

presented in Equation 2.31, the response to general periodic functions has to be solved.

Consider a periodic force exerts on a system similar to Equation 2.31 as follows

x = a x + po e'f  (2.35)

Assume the solution for x has the following form

x(t) = xo eit  (2.36)

Substituting x's in Equation 2.35 by x(t) in Equation 2.36 obtains the following

i0 xo e'" = a xo e'O + po e t  (2.37)

xo is obtained from Equation 2.37 as follows



Po
x0 -= (2.38)

iW-a

The transfer function H(ic) is obtained from dividing the response by the excitation force

as follows

H(i) = xo e ' / po e  -- (2.39)
iO -a

Applying the result to the state-space system in Equation 2.31, Hj(ic) is obtained as

follows

1
Hj(io) = j= 1,2,--, n (2.40)

2.4.3 Forced Vibration Response in State-space Formulation

After the frequency domain transfer function is obtained by Equation 2.40, the inverse

Fourier transformation defined by Equation 2.34 is performed to combine the effect

contributed by every harmonic forcing terms. The next step is to transform the complex

state-space vectors back to the geometric coordinates.

The transform is similar to what has been done in the free vibration response analysis in

Section 2.3. From the free vibration analysis, V i and q i have to appear in conjugate pairs

in order to keep the response in the real axis. Rewrite Equation 2.11 to accommodate

conjugate pairs as follows

n

X(t)= V qi (t) + (t) (2.41)
iH1



Notice that the eigenvectors in the forced vibration problem are the same used in the free

vibration problem because the eigenproblem is the same. Thus, apply Equation 2.25a

directly in Equation 2.41 and separate the real and imaginary parts for q i as follows

qi(t) = qiR(t) +i qil(t) (2.42)

Inserting in Equation 2.42 into Equation 2.41 obtains the following

X(t) = 2- [VRiR (t)- Vil q(t) (2.43)
i=1

The state vector X(t) in Equation 2.41 contains all complex modes of the system, thus it

is an exact solution for the state-space system. However, it is not efficient to incorporate

all modes in modal analysis. Only the combination of several basic modes is enough for

moderate accuracy. The mode superposition theory has been developed very well for

systems with proportional damping [7]. However, very few discussions have been

focused on the dynamic systems with non-proportional damping. Thus the next section

will emphasis on the modal properties and the mode superposition of the state-space

systems.

2.5 Modal properties of Dynamic Systems with Coupled Damping

Consider the eigenvalue problem of state-space formulation in Equation 2.4 with F = 0.

The eigenvalues can be obtained by letting

X(t) = Ve - 't (2.44)



and taking the determinant as follows

det(A + 1 2 n 2n ) = M-K -M-C n 0 (2.45)- WK - MC + 
(.

Multiplying out the determinant obtains the following

221 - 2M 1 C + M 1K = 0 (2.46)

Define X = -io as a complex frequency term to incorporate the damping effect and

rewrite Equation 2.46 as follows

-w 2 M+iowC+K=0 (2.47)

The eigenvalues can be obtained by solving Equation 2.46 as a quadratic eigenvalue

problem and assuming zj is the j-th eigenvector of it. Notice that zj is not the eigenvector

of the state-space system described by Equation 2.7. In fact, z and z* are not mutually

orthogonal, thus the matrices in Equation 2.47 will not be uncoupled by z. However, z is

still valuable in the discussion of complex modal properties.

To obtain further information of complex modal properties, first multiply zj and its

Hermitian zj* on the left hand side of Equation 2.47

z -(- 2 M + iC+ K ) z, = 0 (2.48)

Notice that the procedure is not the procedure for diagonalizing the system as provided in

Equation 2.14, and z vectors are not mutually orthogonal. The procedure in Equation 2.48

is merely for determining the modal properties of the system. Multiplying out zj and zj*

into the bracket obtains the following



- 02 07 + iol7 + 1K = 0 (2.49)

where

/p, = z* M zj > 0 (2.50a)

1j = z * C zj 0 (2.50b)

Kj = z* K z, 2 0 (2.50c)

The above terms are all real and non-negative because M is positive definite and C, K are

positive semi-definite. Define the Rayleigh quotients b and r as follows

b 1 j 2 0 (2.51a)
2 j

2 > 0 (2.51b)

Substituting b and r in Equation 2.46 obtains the following

-a2 + 2ibW + r 2 = 0 (2.52)

The solution of Equation 2.52 is

o= ib± r2 - b E  (2.53)

Substitute Equation 2.52 by letting b = joj and r = a4,

o= ijo o I l j (2.54)

where :j and wj are defined as the modal damping coefficient and modal frequency of

the j-th mode. Comparing Equation 2.51 to the modal formulation of proportional

damping, i j and o j are identical to the modal damping and frequency defined in

proportional damping structures. On the other hand, the definition is still valid for non-



proportional damping case. Recall that the eigenvalue X = -ico; substituting X in Equation

2.54 obtains the following

A= + io)j 1 - (2.55)

The real term of the right hand side in Equation 2.55 represents an exponentially decay

term of the state vector X in Equation 2.44, which is controlled by the modal damping

term jwi On the other hand, the imaginary term stands for the oscillation term in X,

which is controlled by the damped modal frequency wj, 1-. Figure 2.1 shows this

relationship in the complex plane. For the case j < 0, the system is unstable because the

response is always amplified by the positive exponential term. When j = 0, the system is

undamped because no exponential decay term appears. When 0 < j < 1, the system is

underdamped because both exponential decay and oscillation term appear. When j 2 1,

the system is overdamped, and only exponential decay term left.

Figure 2.1 Plot of X in complex plane

Unstable

Sj<o

j =o



Mode superposition in state-space can be further simplified with the discussion of X.

From Equation 2.55, X appears in complex conjugate pair, and each pair share the same

modal damping and modal frequency. Thus, the modes with conjugate pair of

eigenvalues have the same properties of dynamic response in the real plane. The only

difference they have is the difference in sign of the imaginary oscillation term. The

eigenvectors associated with the conjugate pair of eigenvalues have to form conjugate

pair in order to produce real state vectors in Equation 2.44 for any time t. Thus, the

complex oscillation term cancelled out each other if the effect of the two conjugate

responses are combined together. From the above discussion, the dynamic properties of

the two conjugate terms are the same, thus the combined effect of response can be treated

as a modal response for the system.

Modal analysis is made on the forced vibration response by introducing this concept in

Section 2.4.3. From Equation 2.44, the complex conjugate pairs of V and q are identical

to the conjugate eigenvalues and eigenvectors mentioned previously. They share the same

dynamic properties and can be combined together to represent one modal contribution for

the system. Thus, the approximate response can be represented by taking the partial sum

of Equation 2.43 as follows

t) = 2[VqiRiR(t)-Vl qi(t)] , l m n (2.56)
i=1

where X is the sum of responses from lower m modes if the eigenvalues and eigenvectors

were presorted with the modal frequency to at increasing order. In addition, the same



procedure can be applied to the analysis of free vibration response by changing the upper

limit of the sum of Equation 2.29 to m.

The procedure above is not suitable for all types of analysis. Generally speaking, if the

modal frequencies of the modes included in the summation cover the frequency spectrum

of the excitation, and the need for response accuracy is not very high, it is acceptable to

have only a combination of first several modes. For the example of earthquake, the

frequency content is not very high (usually lower than 30 Hz), thus usually five modes

are enough to represent the response to an earthquake.

If only the responses of several modes are desired, the computation effort can be further

reduced in uncoupling the equations. If first m out of n modes are to be computed, then m

right and left eigenvectors are needed to decompose the system. The computation speed

is greatly improved by reducing the eigenvalue problem for non-symmetric matrices.



Chapter 3

Numerical Methods for General Dynamic System

3.1 Numerical Procedure for the Analysis of General Dynamic Systems

The fundamental formulation derived in Chapter 2 is implemented in the numerical

algorithms provided in this chapter. The implementation is divided into four major steps.

First, the real system parameters are reorganized to form the equivalent state-space

formulation. Then the state-space system is transformed into generalized coordinates in

complex plane in order to obtain the uncoupled modal system. Then each uncoupled

modal system is solved by either direct integration method or frequency domain analysis.

The response in each mode is then transform back to real coordinate and sum up to get

the total response of the system. The steps are presented below in Figure 3.1.

Form State-
space
Formulation

Perform Obtain
Modal [ Solution to
De- Each Modal
composition System

Back Trans-
formation to
Real
Coordinate

Figure 3.1 Procedure for the Analysis of General Dynamic Systems



Table 3.1 Requirement for Numerical Methods in the Analysis Procedure

Table 3.1 shows the numerical methods required in each step of the procedure. The first

step corresponds to the state-space formulations in Section 2.1. As shown in Equation 2.2

to 2.6, the inverse of the mass matrix have to be computed, then several matrix

multiplication is needed to form matrix A and the forcing term. After the elements in

Equation 2.4 are formed, the system is transformed into uncoupled modal equations in

step 2. In order to uncouple the system, procedure for complex eigenproblem in Section

2.2 is performed to obtain the modal system described in Equation 2.15. Thus, complex

eigenproblem solver is needed in this step. The solution to each modal equation is

obtained after the system is uncoupled into its modal formulation. In this step, either



direct integration or discrete Fourier transformation is performed to obtain the response

of arbitrary excitation. If free vibration problem is considered, step 3 will not be

performed. Instead, linear equation solver in step 4 is performed to obtain the solution to

the initial value problem. Then, in both of the response cases, i.e., both forced and free

response, complex modal effects are combined to produce the real response history of the

system as presented in Section 2.5.

The next sections provide the numerical procedures applied for the analysis. Because the

matrix operations and matrix inversion is easier to implement, thus, focus of the

following section will be on the complex eigenproblem solver, discrete Fourier

transformation and direct integration.

3.2 Numerical Methods for Complex Eigenproblem

The numerical procedure for solving complex eigenproblem is rather difficult compare to

its conceptual formulation. Moreover, the eigenvalue of the nonsymmetric matrices are

often sensitive to small changes and are even defective. Thus, it is impossible to

guarantee an accurate solution to such a problem as is to symmetric eigenproblem [8].

The solution procedure of nonsymmetric eigenproblem is divided into four major steps as

shown in Figure 3.2. The first step is balancing, which helps preventing the sensitive

problem in the following step. The second step is the reduction procedure to upper



Hessenberg form. Gaussian elimination with pivoting is introduced to eliminate the lower

triangular elements except for the off-diagonal elements. Then, the QR algorithm for real

Hessenberg matrices is applied to find the complex conjugate eigenvalues of the matrix.

After all the eigenvalues are obtained, several eigenvalues needed proceed with inverse

iteration procedure to obtain their corresponding right and left eigenvectors. Descriptions

of the procedures are provided in Sections 3.2.1 to 3.2.3.

Part of
the

Matrix Reduce to QR Eigen- Inverse
Balancing [- Upper Algorithm values Iteration for

Hessenberg for EZ > Eigenvectors
Form Eigenvalues

Figure 3.2 Procedures for Finding Eigenvalues and Eigenvectors for nonsymmetric

matrix

3.2.1 Matrix Balancing and Reduction to Upper Hessenberg Form

Matrix balancing provides a good way to deal with sensitivity with rounding errors and

machine accuracy for nonsymmetric matrix. Based on the fact that the errors produced by

the system are generally proportional to the Euclidean norm of the matrix, the idea of

matrix balancing is to use similarity transformations to obtain a matrix with equal norm

in corresponding rows and columns to their pivot elements, thus reduce the norm of the



matrix. The reason why similarity transformations are applied is to keep the original

eigenvalues of the matrix.

The algorithm of balancing comes from Osborne in [8]. It first calculates the row and

column norms of the matrix, then calculates the transformation matrix that balances the

norm of rows and columns. In order not to worsen the accuracy by the transformations,

the elements in the transformation are selected powers of machine radix base.

Notice that if all the eigenvectors are desired, or the inverse iteration is not applied to find

the eigenvectors, the similarity transformations have to be kept track of. Because the

multiplication of all the similarity transformations made to produce the eigenvalues is the

matrix of eigenvectors.

After the balancing procedure is done, the matrix is reduced to upper Hessenberg form.

The reason why nonsymmetric matrix can not be directly reduced to diagonal matrix is

that the matrix is not symmetrical, the similarity transformation applied on the matrix to

cancel out some part of the matrix will not cancel out the symmetric part of it. If one

wants to cancel out the other part when one part has become zeros before, then usually

the part that has become zero will grow back again because of the transformation. Thus,

the upper Hessenberg matrix looks like the following in Figure 3.3 has to be the

intermediate state of the solution process. Then different kind of procedure is introduced

to search for eigenvalues of the system.



Non-zero
Lower Off-

diagonal -

Elements

Non-zero Upper
Triangular Elem

Zeros

Figure 3.3 Elements of Upper Hessenberg Matrix

The transformation of the matrix into its upper Hessenberg form can be achieved by any

methods for reducing symmetric matrix to its tridiagonal form. Thus, Givens method,

Householder transformation and Gaussian elimination with pivoting are all qualified for

the transformation.

The most efficient method among all is Gaussian elimination with pivoting. The reason

why Gaussian elimination has to be performed with pivoting is that Gaussian elimination

itself is not a similarity transformation. To make the transformation a similarity

transformation, column exchanges have to come with corresponding row changes in the

transformation of finding pivot element. The procedure of Gaussian elimination with

pivoting is as follows:

,nts



1. For stage i of the procedure, the absolute value of the elements below the diagonal

elements of the ith column are compared with the diagonal elements, assume the

largest element is i+r.

2. Interchange rows i+1 and i+r, also interchange column i+1 and i+r for similarity

transformation.

3. For row k greater than i+ 1, subtract ak,i/ai+1,i times row i+ 1 from row k. Also add

ak,i/ai+1,i times column k to column i+ 1 for similarity transformation.

3.2.2 The QR Algorithm for Real Hessenberg Matrix

The QR algorithm of real Hessenberg matrix is adapted from the QR algorithm for

tridiagonal matrix. The idea of QR algorithm is based on the fact that any real matrix A

can be decomposed by the Householder transformation to the form

A = Q R (3.1)

while keeping its eigenvalues unchanged. The Q matrix in Equation 3.1 is orthogonal and

R is upper triangular, assume the next step of Equation 3.1 is

A1 =R-Q=Q'-A-Q

A, = Q1 -R, (3.2)

A 2 = R, Q = Q'l -A 1 Q1

From Equation 3.2, As can be found by repeating the process s times. An important

theorem is applied in Equation 3.2 providing a connection of the transform to the solution

of eigenvectors. The theorem is stated as follows



If A has eigenvalues of different absolute value IA.1, then As approaches the upper

triangular form as s - o. The eigenvalues appear on the diagonal in decreasing order of

absolute magnitude.

Thus, keep doing the QR decomposition and multiply them in the reverse manner will

make the target matrix approaches its eigenvalues. Another useful information in the

process of proving the theorem is that the lower-diagonal terms will vanish at the order as

follows

a oc( (3.3)

where i>j for lower triangular elements. Equation 3.3 points out a pitfall of the algorithm,

that is, if the ith eigenvalue is very close to jth eigenvalue, the convergence may be slow

even if the steps s is large. Thus, shifting is introduced to accelerate the convergence rate.

Introduce the following equation

A, -k,I = Q, R,
(3.4)

As+ = R, -Qs +kI = QT -A, -Q,

with all eigenvalues shifted by Ai -ks. The ratio of eigenvalues in Equation 3.3 becomes

a 1ij oc: - s (3.5)

Thus, the procedure can have a better convergence rate if ks is chosen close to A.



Another method named implicit shift similar to the shift procedure is developed to

prevent the loss of accuracy of small eigenvalues from subtracting operation. The

difference between the implicit shift and shift is that the shift is embedded in the

transformation matrices instead of directly subtract one of the eigenvalues from the A

matrix. The detailed proof of implicit shift can be found from [6] and [8].

The QR algorithm for real Hessenberg matrix is slightly different from the above QR

algorithm. This is because complex eigenvalues are expected instead of real eigenvalues.

There may exist 2x2 isolated diagonal elements represent complex pairs of eigenvalues.

To incorporate this situation, two steps of QR algorithm are combined together using

implicit shift to obtain 2x2 diagonals.

Combining two steps of the QR algorithm with shifts in Equation 3.4, Equation 3.6 is

obtained

A, sQT = QT -As+2  (3.6)

Comparing Equation 3.6 to the form of implicit shift as follows

A, .~ . = jT .H (3.7)

From the theorem of implicit shift, if the first column of QT and -' are the same, then

matrix Q' and TW are the same and As+2 is equal to H. Thus, the strategy is to find the

first row of Q that matches the first row of Q, insert Equation 3.7 into Equation 3.6 to

obtain As+2 for the next iteration.



The matrix Q is constructed by a multiplication of series of Householder matrix Pn-, Pn-2

to PI, where P, determines the first row of Q. From the formulation of Householder

transformation and the formulation of double shifts, P, is determined as follows

P = I- 2wl wT (3.8)

where

(P + s,)/+ s,

q, /1 s1

2ww =T r,/s 1  I [1 ql/(p, s,) r/(p ±s1) 0 .. 0] (3.9)

0

0

and

p, = (ann - a l)(an-.,1 - aj) - an-1,a,n, + a2a21

q, = a21 [a22 - a, - (an - a11,,) - (a_, - a,,)]

r, = a 21a 32  
(3.10)

S= p2 + q2 + r2

Pn-1 to P2 are obtained by the same manner. For example, substitute all, a12, a21 and a32 by

a22, a23, a32 and a43 obtains p2, q2, r2 and s2. Let the normalized pl, q, and r, occupy the

2,3,4 row of the w2 vector, substitute in Equation 3.8 to obtain P2. The detailed derivation

of how to come up with the formulation can also be found from [6] and [8].

The criterion for testing if any eigenvalue has been found is on the test of subdiagonal

elements. If the dimension of the matrix is n and if a,,.I is negligible, then a real

eigenvalue is found on an,n. Else, if an-2,n-1 is negligible, then there are two real



eigenvalues or two conjugate complex eigenvalues on the 2x2, anl,n_1 to an,n diagonal

block. Iterate until all the diagonal blocks are found and the corresponding eigenvalues

are obtained from the diagonal blocks.

3.2.3 Inverse Iteration for Eigenvectors

After all the eigenvalues are found from QR algorithm for Hessenberg matrix, some

selected eigenvalues are thrown into the inverse iteration procedure to obtain their

corresponding eigenvectors. In the case of vibration analysis, usually only the response of

first five modes are desired. Thus the eigenvalues are first sorted by their absolute value,

then first five conjugate pairs of eigenvalues are selected to proceed with inverse

iteration.

The idea of inverse iteration comes from the following equation

(A- - I) -y = b (3.11)

where X is close to one of the eigenvalue X of A, b is a random vector and y is the

solution to the equation. The solution y will be close to the eigenvector of k, if X is close

enough to it. Thus, the strategy is to iterate for Equation 3.11 by repeatedly replace b by y

and solve for the new y. The result of y will be closer and closer to the desired

eigenvector.

Notice that if over half of the eigenvectors are desired, recording all the similarity

transformation is faster than inverse iteration. Another issue of the inverse iteration



method is its convergence and accuracy. Because it is an iterative method and the matrix

can be defective or has close eigenvectors, good convergence often relies on good initial

guess. In addition, because the exact eigenvalues and eigenvectors are not known, when

to stop at a reasonable accuracy, or say, making large improvement from the original

vector is a big problem. Generally speaking, the strategy is, for large initial growth of lyl,

the good guess of initial vector is obtained. If lyl does not grow fast enough, then try

another initial vector. After a few iterations, if b does not change much, then the vector is

assumed converging, else, recalculate the eigenvalue by Equation 3.12

1 (3.12)
Z k+1= k +k

bky

The criteria presented above ought to be suitable for most of the normal cases. For the

defected matrix or closed eigenvectors, some other tricks are provided to deal with the

problem. There are discussions about the convergence and accuracy of the method (see

[6] and [8]) that provide some answers to those questions.

3.3 Algorithm for Fast Fourier Transformation

As mentioned in Section 2.4.1, Fourier transformation is carried out by integration back

and forth from time domain to frequency domain. The response analysis of general

dynamic calculates the transfer function as mentioned in Section 2.4.2, multiply it to the

corresponding frequency domain excitation to produce a response. The procedure is

presented in Equation 2.33 and 2.34.



Because the input for the system is discrete-time earthquake signals, plus the algorithm

for digital computer has to deal with discrete time data, thus the equations have to turn

into their discrete form. For Equation 2.31, approximate the integration to finite bounds

and rewrite as follows

1 N-I -. 2,nm
Fjn fj(tm)e N n = 0, 1, 2..,N -1 (3.13)

n2 m=0

where tm=m At and o=2rtn/NAt. Equation 2.32 can also be rewritten as follows in discrete

form
N-i .2;nm

qjm =  Hn F e N m =0,1, 2 ...,N -1 (3.14)
n=O

Equation 3.13 together with Equation 3.14 forms a complete discrete Fourier transform

pair for mode j.

Looking into the two discrete equations, we can observe that the computation is an O(N2)

process. That means if there are thousands of sampled data, which is normal for seismic

analysis, the effort used in carrying the computations is exorbitant. However, by

reevaluate the exponential terms in the two equations, the process can be reduced to O(N

log2N).

The reduction proposed by Danielson and Lanczos in 1942 is called Danielson-Lanczos

Lemma. The lemma showed that a discrete Fourier transform of length N can be rewritten

as the sum of two discrete Fourier transforms each of length N/2. Each subset contains

either even numbered data or odd numbered data. The proof of the lemma can be



accomplished by separating the even and odd numbered points. (Details of the proof and

the theory of fast Fourier transformation can be found on [6] and [9].) Furthermore, if N

is an integer power of 2, the lemma can be further applied, then the four subsets will have

four combination of input data, i.e., even-even, even-odd, odd-even, odd-odd. Continue

this process until the data have been subdivided all the way down to transforms of length

1. The transformation of length one is a combination of even and odd data.

The strategy here is to compute all the possible one-point transform we need. However,

the question of this strategy is how to figure out which one-point transformation

corresponds to which output. The answer is provided by looking at the pattern of even

and odd data combinations in the one-point transformation. For the discrete

transformation in Equation 3.13, the way to figure out which m corresponding to which n

is to take the bit reversal of the binary value of n. The example of the data ordering for an

eight-point Fourier transformation is in Figure 3.4.

o 000 000 0
1 001 001 1
2 010 I 010 2

n 3 011 011 3 Corresponding m
4 100 >100 4
5 101 101 5
6 110 110 6
7 111 P 11 7

Figure 3.4 Data Ordering for an Eight-point Fourier Transformation



Previous procedure is the basic algorithm of fast Fourier transformation(FFT) proposed

by Cooley and Tukey. Notice that this algorithm is for the data length of integer power 2.

There are other algorithms dealing with some small power of 2 as a basis of the

transformation, for example, 4 (base-4 FFT) and 8 (base-8 FFT). They are also provided

in [6] and [9].

There exist problems in the basic FFT algorithm. The first is concerned with the input

data. It is very often that the length of the input data set is not equal the integer power of

2. The second is rather a physics problem. If the response of excitation of the system has

not died out after the length of FFT, the response near the beginning will be influenced by

the end excitation. This is because when the infinite integral is cut into a finite summation

form, it is assumed that the excitation is a periodic function. This procedure is valid

because our interest is only in a finite period instead of infinite. Thus, although the

excitation has been turned into periodic function and the response of it is also periodic,

we neglect it and treat it as zero because it is out of the range of our interest. However,

problem comes in when there is not enough time for the response of the previous period

of excitation to die out and a new one comes in. This is called the wrap-around effect.

There is one simple solution to these problems, which is zero padding. For the first case

where the data is not the integer power of 2, padding zeros at the end of input data set to

form a complete set with length integer power of 2. For the second case, padding zeros at

the end of input data set so that the response dies out before a new period starts. The



length of padding should be determined by the larger one of the previous two padding

cases. Combine the two requirements for zero padding, a criteria comes up as follows

The original length plus the padding length should be the larger length of integer-power-

of-two than the length for the response to die out.

To find the padding length meeting this criteria, the length for the response to die out has

to be determined first. Equation 3.15 shows the relationship between the decay rate of

free response to the number of cycles and the damping ratio.

v _ 2m/'In = 2 m (3.15)

where n and m are the number of cycles, v is the peak response in the cycle and is the

damping ratio. If the desired percentage of decay is 90%, then from equation 3.15, the

number of cycle m to die out is as follows

m = In 10 - (3.16)

where the modal damping ratio 4 can be obtained from the modal analysis of the general

dynamic system as presented in Section 2.5. The time interval requires to damp out the

response is thus mAt, where At is the time step of the discrete system. Thus, if the original

time duration is ti, then the total padding time tp needed is as follows

tp = 2 ceil(log 2 (ti+mAt) ) - t i  (3.17)

where function ceil(x) rounds x to the nearest integer towards infinity.



The application of FFT in the response of general dynamic system is through Equation

3.13 and 3.14. First, select several modes of interest, throw the data from the eigensystem

solver into the FFT algorithm for each mode. Then, multiply the frequency domain

transfer functions to each of the corresponding frequency content. Then, do inverse FFT

back to the time domain and sum up the response from each mode.

3.4 Algorithm for Direct Integration

Direct integration method is a step-by-step approach that divides the loading and

response history into a series of time intervals or "steps". Each of the steps is treated as an

independent analysis problem thus only the initial conditions from the previous time step

are taken into account. There are generally two kinds of direct integration methods, that

is, explicit integration method and implicit integration method. Explicit integration

method takes the equilibrium condition at current time step, whereas the implicit

integration method takes the equilibrium condition at the next time step. The explicit

integration is easier to formulate, and the computation for each time step is less.

However, the convergence of the explicit integration method is conditional. Generally

speaking, the time interval in the explicit integration method has to be small enough to

meet the convergence criteria. For the response history analysis, the time history is

usually larger than 15 seconds, and the minimum time interval is limited by the time



interval of recorded earthquake signal. Thus, the explicit integration method is not

suitable for the analysis.

On the other hand, one of the implicit integration method proposed by Newmark

provided an unconditionally stable scheme. The method named Newmark method is

based on the following assumption on the displacement and velocity in the next time step

t
+A

t = + [(1 - ) iU+6 "t+t] At (3.18)

+U=tU+tAt + [(- - a) T + a '+tU] At 2  (3.19)
2

where 'U, '0 and 'T are the displacement, velocity and acceleration at time t, and t+AU,

r+A~J and '+At0 are the displacement, velocity and acceleration at time t+At. c and 6 are

the control parameters for stability and accuracy. When a = 0.25 and 6 = 0.5, the method

becomes unconditionally stable.

In addition to Equation 3.18 and 3.19, the equilibrium equation is taken at time t+At in

Equation 3.20

M '+Aj + C ' t~ U + K 'At U = '+AtF (3.20)

Thus three equations, Equation 3.18 to 3.20, are able to solve for three unknowns, the

displacement, velocity and acceleration of time t+At. The following procedure is provided

as the algorithm of the Newmark method



1. Initialize 'U, 0U and 0U from the initial conditions. Check if the initial conditions

satisfy the equations of motion at time 0.

2. Select time step At and parameters a and 8. Calculate the following constants:

1 6 1 1
ao = aa 2 - a 3 = -1;

aAt2  aAt aAt 2a

S At 1
a4  -- a= ( )-2; a6=At(1-5); a =SAt;

a 2 2a

3. For given mass matrix M, damping matrix C, and stiffness matrix K, cal

effective stiffness matrix K.

K = aoM + a1 C + K

4. Decompose K.

5. For each time step:

a. Calculate the effective load:

t+a =t+AtF + M(ao'U + a2 tUJ + a3 tU) + C(at U + a4 tJ + as'U)

b. Solve for the displacement matrix at time t+At

c. Calculate accelerations and velocities at time t+At for the next time step.

c. Calculate accelerations and velocities at time t+At for the next time step.

(3.21)

culate the

(3.22)

(3.23)

(3.24)

The procedure can be applied to modal analysis as an alternative method to fast Fourier

transformation. For the modal system described in Equation 2.31, the procedure is

simplified into a one dimensional problem. After assigning M = 0, C = 1, and K =i, the

response is obtained by simply iterating through the procedure.



Chapter 4

Architecture and Implementation of the Dynamic

Simulation Tool

4.1 Object-oriented Approach for System Design

The object-oriented approach for design is characterized by organizing and structuring a

system by defining several entities, their relations and the functions they perform. The

entities mentioned previously are called objects. Everything in the real world can be

defined as object as long as the relation and functions are well defined. For example, a

car can be defined as an object. It has several properties such as year, make and mileage.

It also has several functions such as start, turn and stop. It has many objects on it such as

wheels, windshield and seats.

The reason the object-oriented approach is applied in developing the tool instead of

traditional programming and design style is presented as the following:

1. The object-oriented approach represents the entities of the real world without

distorting or decomposing them: For a simulation tool for seismic analysis, the

structures and their associated properties are very complex. If the tool is designed in

non object-oriented way, the properties will not associate with the structures, instead,



they appear whenever the computation or demonstration needs them. This way obeys

human's way of thinking. In addition, it will cause the program very hard to develop

and maintain.

2. Easy to develop and test new application: The new application is done by specifying

the interaction between its objects. Thus, like the real world, different parts (or

objects) can be developed separately, or simply use product develop previously or

from other developer. The testing is also similar to the case of the real world. Each

object is tested separately instead of having them in a big main program and do

testing together. Thus, the problem is uncoupled into independent objects.

3. Easy for re-use or make extension of existing software: Because each entity is defined

as an object, once the function or attribute of the entity is changed, the change can be

made within the object. If the attribute is changed in traditional structured program,

much more effort will be made at modifying each section and function of the

program. In addition, if a new entity is created and used in the program, the object-

orient approach is to just define its relationship with others as well as its function.

Then, the new entity can be immediately adopted by the program group. However, in

structured programming, it is possible that the entire program has to be changed in

order to fit in the new entity.

4. Easy to create high quality interactive man-machine interface: The external events are

easier to be represented in the object-orient approach. For example, the reaction of a



mouse-click on an icon can be bind to an object that needs to react to this event,

instead of the old style to explicitly check it in every loop of the process.

Thus, for the dynamic simulation environment for seismic analysis, the optimum

development strategy is to introduce the object oriented approach. First, create all the

engineering structure objects and define their properties. Also, create a numerical system

object to represent the structure elements. Then create functions belong to the numerical

system to produce the solution to excitations. Finally, bind the objects to the graphical

user interface for reacting to the events. The previous procedures are the methodology for

developing the dynamic environment for seismic analysis and will be presented in

Section 4,2 to 4.4.

4.2 Fundamental Class Hierarchy of the Dynamic Environment

The first step of implementing the dynamic simulation environment in the object-oriented

approach is to analyze and design the system, that is, to specify the objects in the system

and their relationships. Imagine the dynamic simulation environment for seismic analysis

is a laboratory named Motion Lab, then the equipment and facilities needed to run the lab

are the objects needed in the environment. As shown in Figure 4.1, to construct a Motion

Lab needs four components in the real world. First, there should be several structures to

be tested for the response of different kinds of excitations. Secondly, there should be

different kinds of excitations to exert on the structure. Thirdly, there should be a modal



system analyzer to calculate and analyze the response of the structure. In addition, there

should be a user interface to display the analyzed result to the people experimenting with

the structures.

Motion Lab

Excitations General Structure Modal System User Interface
Analyzer

Figure 4.1 Static model for Motion Lab

The four objects have their associated objects as well. Excitations are classified as initial

displacements and/or velocities, and general forcing functions. The structures are

classified by its dynamic behavior. Shear structure stands for the kind of structure whose

shear force between its floors or structural elements dominate the behavior of it, and its

bending moment is negligible. On the other hand, bending structure stands for the kind of

structure whose bending moment in its structural elements dominant the behavior of it,

and its shear force is negligible. Generally speaking, the behavior of high-rise buildings is

more similar to bending structure and the low-rise buildings are like shear structures.

Figure 4.2 shows the static model of the excitation and general structure objects.



Figure 4.2 Static model for the Excitation and General Structure

The modal system analyzer is a dynamic response simulator using the numerical

procedures provided in Chapter 3. All the functions needed for modal analysis of a

general dynamic system, including eigenproblem solver, linear equations solver, fast

Fourier transformation and direct integration procedures are provided in the analyzer.

Figure 4.3 shows the static model for the modal system analyzer.

Figure 4.3 Static model for the Modal System Analyzer



The user interface is for the user to communicate with the environment and for the

environment to display result to the user. For this purpose, the user interface is divided

into two main functions: input and output. For the input function, three objects are

created to accept three types of input event. First, structure properties such as mass,

damping, and stiffness are obtained from users through the structural property frame.

Second, The system properties such as display control, system parameters are obtained

from the system attribute frame. The demo button frame is in charge of the starting signal

of the response simulation.

Figure 4.4 Static model for the User Interface

On the other hand, the simulation output of the system to the user is through the response

display frame. Several node and link objects compose of a simple representation of a

structural system is displayed through the frame.



4.3 Optimization of Computation in the Event Driven Programming

As stated in Section 1.1, part of the functional requirements for the environment is to

provide immediate output with moderate accuracy. Thus, the amount of computation

should be reasonable, or somehow, there is a way to obtain immediate response after

input all the parameters of the system.

The response time problem can be alleviated by several strategies. From the scope of the

environment provided in Chapter 1, the tool is for preliminary design or education, thus

the degree of freedoms should not be too many. Usually less than 50 degrees of freedom

is acceptable for this purpose. However, limited degrees of freedom does not make the

response fast enough. Although the numerical procedure provided in Chapter 3 is known

as the optimal procedure in computation, it still takes more than seconds to produce an

output.

Thus, different perspective have to be proposed as a strategy to the problem. We know

that the system is for preliminary design and education, people usually input their idea

directly into the computer instead of read system parameters from file. Thus, it may take

minutes to translate its idea and experimenting with the tool. The basic idea of the

strategy is that if the computation can be somehow embedded in or parallel to the

interactive input process between the environment an the user, then the immediate

response is obtained. The idea is presented in Figure 4.5.



Computation Process (Heavy computation Requirement)

Idle 1"s step computation 2nd step computation

.* _ -- _. - / ___

Data enough for Data enough for Data enough for
1"s step 2nd step 3rd step
computation computation computation

Interactive Input Process (Low computation Requirement)

Figure 4.5 The idea of parallel computation for the input and computation processes

The strategy is based on the fact that the interactive input process requires less

computation. Assume the numerical computation can be broken into smaller sub-

processes and each sub-process only needs part of the parameters of the system. To

implement the strategy, the numerical procedure provided in Chapter 3 is examined to see

if it is divisible into smaller sections.

According to Table 3.1, there are four divisible steps in the numerical procedure: form

state-space formulation, perform modal decomposition, obtain solution to each modal

system, and back transformation to real coordinate. Though they can be performed as

separate units, their sequence could not be changed. Next, look into the computation cost

of the four steps. Most of the computation is spent in solving the eigenvalue problem,

which is the procedure for modal decomposition. The second is the fast Fourier

transformation for solving the modal equations. The first and the last steps cost very little



computation. The first, which forms the state-space formulation, is the step for putting the

input structure properties into the corresponding place in the state-space matrices. The

last step is a transformation from complex to real coordinates. Thus the parallel strategy

does not need to apply on these two steps.

Next, the interactive input process is examined to see which input is needed for the modal

decomposition and the solution process to modal equations. Up to the step of modal

decomposition, all the parameters of the system is needed including the degrees of

freedom, the distribution of mass, stiffness, and damping of the structure system. To

proceed the step of solving individual modal equations, the forcing data and the system

setting have to be obtained. Thus, the precedence relationship of the two processes are in

Figure 4.6.

The idea of having multiple processes running in the same program group is called

threads. Threads are widely used in the application programming. Thus, the

implementation of the processes in Figure 4.6 is available for almost all programming

languages.



Idle

Input Structure
Parameters

Computation Thread (High Priority)

Eigenproblem Eigenproblem
Solver Thread Starts Solver Thread Ends

FFT Thread Starts FFT Thread Ends

I /
/ /

Setup System Parameters, Load
Earthquake Force or Setup Initial
Conditions

User Interface Thread (Medium Priority)

Figure 4.6 Precedence diagram of user interface and computation threads

Another strategy for optimize the computation performance is concerned with the

accuracy. In the eigenproblem solver, the machine precision is highly demanded in order

not to worsen the sensitivity problem. Thus, double precision floating point arrays are

applied for the solver. In the fast Fourier transformation problem, the precision

requirement is not that much as in the eigenproblem solver. The reason is that the

earthquake forcing provided is only single precision and the output precision is accuracy

enough with single precision value. Thus, apply single precision matrix operation in the

fast Fourier transformation procedure is a better choice for both accuracy and

computation cost considerations.



4.4 The Implementation of the Dynamic Simulation Environment

The tool named Motion Lab is implemented in JAVA programming language. The reason

of selecting JAVA as the programming language is its advantage of platform portability.

The program is mainly divided into two kinds of objects, one is the numerical objects for

dynamics simulation, and the other is the user interface objects. Because Java is not very

suitable for computationally intensive usage, thus no previous works has been done to

implement the numerical methods for dynamic usage. Thus, the implementation of

numerical object group have to start from scratch. From the algorithms provided in

Chapter 3, non-symmetric matrix eigenproblem solver, fast Fourier transformation, and

linear equation solver are built for the tool.

On the other hand, the user interface objects are built to provide connection between

users and the numerical objects for dynamics. As presented in Figure 4.4, the user

interface of the tool contains four major components: structural property frame, system

attribute frame, response display frame, and demo button frame. Figure 4.7 shows the

user interface of Motion Lab on the Netscape browser.
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Figure 4.7 User interface of Motion Lab on Netscape browser

The four components each provides a main function in Section 4.2. To understand how

the function of each component works, the detailed operations of each frame are provided

as follows.

The system attribute frame is for collecting and displaying the information of the entire

system. Several individual functions are provided in the frame. The functions including

system parameters setup, degrees-of-freedom setup, mode/DOF attribute display, initial

condition switch, and general force setup. The system parameter function starts when the



Set System Environment button is pressed. Figure 4.8 shows the system parameter dialog

box pops up after the button is pressed.

Figure 4.8 System parameter setting dialog box

The first item in the dialog box is for the displacement unit setting. Notice that the unit

used for the system is SI unit and the displacement unit is meter per pixel for the dynamic

simulation and display purpose. The user can adjust suitable screen display unit for the

simulation.

The next item is the maximum response line input field. It is an useful tool when the user

experiments with different structural properties to get the optimum response. It draws two

lines at the distance corresponding to the input on both sides of the structure. Thus, users

can have the idea when response goes out of limit during the simulation.



The next is a mode superposition choice list. The user can specify the combination of

several desired modal response by selecting them in the choice. The information of

selected modes is then sent to the numerical analyzer for mode superposition.

The rest components are the simulation time, response plot unit and the degrees of

freedom to display. The item of simulation time lets the user specify the length of

simulation. The response plot unit setting and degrees of freedom setting let the user set

the response of each pixel and the degrees of freedom desired on the response display

dialog.

The next function of the system attribute frame is the setup for the degrees of freedom of

the system. After the user input the degrees of freedom desired and presses the "Set

Floors/DOFs" button, a structure composed of nodes and links corresponding to the

desired degrees of freedom is displayed on the response display frame. This should be the

first procedure of the input process because all of the system settings are related to the

degrees of freedom of the system.

The next function is the Mode/DOF attribute display panel. The panel provides the

quantitative output of every modes and degrees of freedom. As shown in Figure 4.9, the

panel is composed of two main areas. The upper area is for the user to input desired

modes or degrees of freedom to display and lower area is for display the system

parameters of the desired modes or degrees of freedoms. The user can first select the

desired modes or degrees of freedoms to display in the upper-center list, then press "show



modes" or "show DOFs" to get the information displayed on the lower text panel. The

associated mode properties includes eigenvalue and corresponding eigenvector of the

mode, and modal damping and frequency of the mode. The DOF properties include mass,

stiffness, and damping of the DOF, and maximum displacement and shear during

excitation.

Figure 4.9 Mode/DOF attribute display panel



The next function is the initial condition choice list. There are two alternative items; one

is displacements and the other is velocity. When displacement is selected from the choice

list, the mode is in initial displacement input. The user can input interactively by drag-

and-drop the nodes displayed on the response display frame. The original color of the

nodes are red, while the selected nodes are highlighted with light green. Thus the user can

first select the nodes he/she wants to setup for initial displacement, then drag the

highlighted nodes and drop them to desired place. The mechanism for setting up the

initial velocity condition is analogous to the setup procedure for displacement condition.

First, select the velocity form the initial condition choice list. Select several nodes form

the response display frame, then drag and drop them to the desired place. The difference

is that when drag the nodes in the velocity setup mode, red arrows show up to represent

the velocity initial condition instead of directly moving the nodes.

The next function is the excitation type selecting function. Different types of earthquakes

and periodic functions can be selected from the list. The excitation data is transferred

from the web server to the user through the internet.

The above are the functions of the system attribute frame. The next is the structure

property frame for collecting properties of the structure components. As shown in Figure

4.7, there are three input text fields corresponding to three structure component

properties: mass, damping and stiffness. The mass is associated with the node of the

structure and the stiffness and damping are associated with the link. Thus, the input

process of the structure properties is according to the above rule. For assigning the



masses to the nodes, first input the desired mass on the text field for mass. Then, click on

the nodes on the response display frame, the nodes selected will turn into light green after

being selected. Click on the "OK" button on the upper right corner of the system attribute

frame. The masses that have been assigned values will turn into dark gray. The process is

the same for the input of stiffness and damping.

The next to introduce is the response display frame. There are two functions for the

response display frame. The first is the function for interactively input the properties of

the structure. After the degrees of freedom is determined, the nodes and links of the

structure are drawn on the frame. The user can interactively input the initial conditions or

the component properties of the structure by clicking on the desired nodes and links. The

second function is the dynamic display function. After the system setting is completed

and the demo button is pressed, the animation of the structure response is drawn on the

response display panel.

The last is the demo button frame on the lower right corner of the user interface. There

are two buttons on the frame, one is for activating the forced response demo, and the

other is for the free response demo. The two functions will not respond if the setting of

the system have not yet finished.



The above is the functions of all the components of the user interface. The functions

provided above provide a complete environment for the simulation of a general dynamic

system. The following figure shows the suggested operation of Motion Lab.

Input degrees of freedom of
the structure

Setup mass, damping,
stiffness for each structure
component

Click on "Set System
Environment" to set up the
system parameters

Free vibration problem Forced vibration problem

Select the type of initial Click on "Set General
condition to input. Drag and Force" to set the excitation
drop nodes to setup initial
conditions

Click on "Response to
Click on "Response to ICs" General Forces" to start
to start demo demo

Click on "See Mode/DOF
attribute" to see the
numerical output

Figure 4.10 Suggested operation of Motion Lab

Notice that the procedure presented in Figure 4.10 is not the absolute procedure for the

system. The sequence of setting up structure component, system attribute and

forcing/initial conditions can be changed, but the optimal procedure is still the procedure

suggested in Figure 4.10 for the consideration of optimization in computing.



Chapter 5

Testing Examples

5.1 Testing Example for Single-Degree-of-Freedom Structure

The first example is a single-degree-of-freedom structure. As shown in Figure 5.1, the

structure can be transformed to an equivalent system on the right hand side of the figure.

The mass is 100kg, the lateral stiffness is 5000 N/m, and the damping is 100 N-s/m.

Figure 5.1 The single-degree-of-freedom structure

The natural frequency and the damping ratio are obtained in Equation 5.1a and 5.1b.

According to Equation 2.2 to 2.5, the matrices represent the state-space system is formed

in Equation 5.2a and 5.2b.

c= 100Ns/m

k=5000 Nm=100kg

k=5000 N/m



S= = 00---- = 7.071068 rad / s (5.1a)
rmn V 1OO
c 100

S= = 0.0707 (5.b)
2mw, 2- 100.7.071068

[o 1 o 1]
-k/m -c /m - 50 -1]

X=u] (5.2b)

The next procedure is to solve for the eigenproblem for the state-space system. Feeding

matrix A into Matlab, the eigenvector and eigenvalue matrices V and A are obtained in

Equation 5.3a and 5.3b.

V =[0.1397 - 0.0099i 0.1397 + 0.0099i

0.9901i - 0.9901i (5.3a)

S= - 0.5 + 7.0534i 0 (5.3b)
0 - 0.5 - 7.0534i

Next, apply the north-south component of El Centro earthquake shown in Figure 5.2 to

the single-degree-of-freedom structure and calculate its response. The response is

obtained by the convolution of the impulse response of the system and the earthquake

force.

The convolution process is written in a Matlab script. The result of the convolution is

shown in Figure 5.3. The top frame of the figure shows the impulse response of the

structure system, the center frame shows the earthquake force in N, and the bottom figure



shows the response of the system. In addition, from the output of the Matlab script, the

maximum response is 0.887m at t=5.94sec.

Figure 5.2 North-south component of El Centro earthquake
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process follows the procedure provided in Section 4.3. First, setup the degrees of freedom

of the structure. The response display frame comes out the structure shown in Figure 5.4.

Then, select all the structure components and setup using the same mass, damping and

stiffness as in the above example. Then, setup the system attributes as shown in Figure

5.5. Select El Centro earthquake as the excitation in Figure 5.6. Then, press the

"Response to General Forces" and the demo comes out immediately.
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Figure 5.4 Setting up degrees of freedom of the structure
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Figure 5.5 System attribute setting

Figure 5.6 Select El Centro as the Excitation

The response plot is in Figure 5.7 and a time step of the demo is in Figure 5.8. Press "See

Mode/DOF attribute shown in Figure 5.9 to dump the numerical result, and verify with

the result obtained from convolution integral.



Figure 5.7 Response plot from Motion Lab

Figure 5.8 Response demo at t=6.08sec



mode or DOF number and click See
model
Elgenvalue: -0.5-7.053367989832942i
Modal Damping: 0.07071067811865475
Modal freq.: 7.0710678118654755
Eigen Vector:
0-1:0000000000000108+0.141067359796658851

1.0

DOF 1
Mass: 100.0
Stiffness: 5000.0
Damping: 100.0
Max. Displacement: 0.0881668
at t= 5.92
Max. Shear Force:440.83401560783386
at t=5.92

Figure 5.9 Numerical Mode/DOF attribute form Motion Lab

ode or DOF.



The comparison is made for the convolution integral and the result form Motion Lab. As

shown in Table 5.1, except for 0.5% difference in maximum response, the other results

are the same.

to Eigenvalue Eigenvector Max. t at Dmax

Displacement

Dmax

Result 7.071 7.07% -0.5-0.70534i [0.1397+ 0.0887m 5.92sec

from con- rad/s 0.0099i;

volution -0.9901i ]

Result 7.071 7.07% -0.5-0.70534i [-0.01+ 0.0882m 5.92sec

form rad/s 0.14107i;

Motion 1.0]

Lab

Error (%) 0 0 0 0 0.5% 0

Table 5.1 Comparison between the results from convolution integral and Motion

Lab

Notice the normalization of the two eigenvectors in the table are different. Same result is

obtained if the first eigenvector is normalized by dividing its second row.



5.2 Testing Example for Five-Degree-of-Freedom Structure

The following testing example is a five-degree-of-freedom shear structure. The properties

of the components are divided into two layers thus make the structure damping non-

proportional.

Figure 5.10 shows the mass, stiffness and damping properties of the structure. The five

lumped masses of the structure are 200kg. The lateral damping and stiffness parameters

are formed by two layers. In the lower two degrees of freedom, the lateral stiffness and

damping is 8000N/m and 100N-s/m. In the upper three degrees of freedom, the lateral

stiffness and damping is 10000N/m and 300N.s/m.

Figure 5.10 Properties of the five-degree-of-freedom structure

k= 10000N/m
c=300N-s/m

k= 10000N/m
c=300N.s/m

k= 10000N/m
c=300N.s/m

k=8000N/m
c= 100Ns/m

k=8000N/m
c=100N.s/m



The mass, damping and stiffness matrices are presented in Equation 5.4a, b and c. The

eigenvalue and eigenvector matrices of the corresponding state-space system are

presented in Equation 5.5a to 5.5f.

[200

K =

V, -

200

200

200

200

200

-100

16000

- 8000

- 100

400

- 300

- 300

600

- 300

- 8000

18000

- 10000

- 0.0002 + 0.0122i

0.0123 - 0.0290i

- 0.0270 + 0.0402i

0.0263 - 0.0340i

- 0.0108 + 0.0132i

- 0.1584 - 0.0338i

0.3470 + 0.2335i

- 0.4568 - 0.4547i

0.3774 + 0.4290i

-0.1452 - 0.1738i

- 300

600

- 300

- 10000

20000

-10000

(5.4a)

- 300
300

- 10000

20000

-10000

(5.4b)

-10000

20000

(5.4c)

;V 2 = V (5.5a)



V 3 =

V 5 =

V 7 =

- 0.0354 + 0.0237i

0.0502 -0.0152i

- 0.0121 - 0.0098i

- 0.0422 + 0.0175i

0.0293 -0.0076i

- 0.2143 - 0.4294i

0.0981 + 0.5829i

0.1263 -0.1211i

- 0. 1354 - 0.4969i

0.0436 + 0.3386i

- 0.0748 + 0.0113i

0.0015 + 0.0125i

0.0573 -0.0154i

0.0246 - 0.0125i

- 0.0454 + 0.0128i

- 0.0353 - 0.6744i

-0.1125 + 0.0024i

0.0868 + 0.5225i

0.0900 + 0.2297i

- 0.0746 - 0.4146i

-0.0112- 0.0838i

-0.0180 -0.0995i

-0.0112 -0.0480i

0.0038 + 0.0342i

0.0156 + 0.0944i

0.4785 - 0.0299i

0.5704 - 0.0624i

0.2759 - 0.0442i

-0. 1947 + 0.0077i

- 0.5406 + 0.0509i

V 4 = V3

V 6 = V 5

; V = V 7

(5.5b)

(5.5c)

(5.5d)



0.0781 - 0.0385i

0.1493 - 0.0737i

0.1951 - 0.0983i

0.2275 - 0.1158i

0.2442 - 0.1249i

0.0694 + 0.1467i

0.1328 + 0.2806i

0.1773 + 0.3667i

0.2089 + 0.4275i

0.2253 + 0.4591i

; VI0 = V9

A = diag [ - 2.5273 +13.0533i,

-1.4266-11.1751i,

- 0.3963 + 5.6586i,

- 0.0304 -1.8642i ]

- 2.5273 -13.0533i,

-0.8694 + 8.8851i,

- 0.3963 - 5.6586i,

-1.4266 +11.1751i,

- 0.8694- 8.8851i,

-0.0304 + 1.8642i,

To verify the dynamic response to earthquakes, a MATLAB script based on direct

integration method is written. El Centro earthquake is read in the program as an

excitation to the five-degree-of freedom structure. The response plot is in Figure 5.11.

V9
(5.5e)

(5.5f)
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Figure 5.11 El Centro response for the five-degree-of-freedom structure

Next, the structure is tested by Motion Lab. Setup the structure in two different property

layers shown in Figure 5.12.
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Figure 5.12 Setting up the five-degree-of-freedom structure

After the structure properties is setup, select El Centro as the excitation. The response

plot shown in Figure 5.13 is created after the demo starts. As can be observed from the

demo, the response from the first mode dominates the response of the structure.
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Figure 5.13 Response plot of the five-degree-of-freedom structure

The numerical output of the structure is obtained from the Mode/DOF display dialog box

shown in Figure 5.14 to Figure 5.18.



DOF 1
Mass: 200.0
Stiffness: 8000.0
Damping; 100.0
Max. Displacement:O 0.12780564
at t=8.059999
Max. Shear Force: 1022.4450826644897
at t=8.:059999

model
Eigenvalue: -0.030374564570060048-1.86415287849600621
Modal Damping: 0.016291868316640225
Modal freq.: 1.864400324119733
Eigen Vector:
-2.838292770157357E-4 +0.170209807505738861
-6.80247168076847E-4+0. 3256272397915831i
-0.004472752999827942+0.4271747527810344i
-0.0072622218996976585+0.499059873881413761
-0.008738395990319302+0.53629430641618581
0.31730572380077715-0.004640947624787799i
0.607039618585857204-0.008622700904358184i
0.7964549029423857-0.004637351731613687i
0.9305444872659073-0.0016208345049363634i
1.0+4.7783450955230664E- 17i
Left Eigen Vector:

Figure 5.14 Numerical attribute of the first mode and DOF



DOF 2
Mass: 200.0
Stiffness: 8000.0
Damping: 100.0
Max. Displacement: 0.2431923
at t=8.099999
Max. Shear Force:934 .0556859970093
at t=8.139999

mode2
Eigenvalue: -0.39628283585882473-5.6585735405392891
Modal Damping: 0.06986117691312574
Modal freq.: 5.672432864273288
Eigen Vector:
-0.003466323284703079+0.147259286693931121
-0.012315910753767815+0.17586047240193221
-0.010257980067385208+0.08522924960701691
3.868099380856432E-5-0.05988338216324667i
0.00914595877984497-0.166577125615106541
0.8346511477062328-0.03874188251584611 i
1.0
0.4863410381375706+0.024270645856293533i
-0.3388698504408712+0.023511877256378752i
-0.9462133019466571 +0.014258575373468828i
Left Eigen Vector:

Figure 5.15 Numerical attribute of the second mode and DOF



Select the mode or DOF number and click
DOF 3
Mass: 200.0
Stiffness: 10000.0
Damping: 300.0
Max. Displacement: 0.31202218
at t=8.12
Max. Shear Force: 845.2707529067993
at t=4.92

)de or DOF.

mode3
Eigenvalue: -0.8694496332874588-8 .885137418987163i
Modal Damping: 0.0973892188668257
Modal freq.: 8.927575797444094
Eigen Vector:
-0.01090880896185827+0.11148002482570521
-0.018617398547638647-0.001249694459131663i
0.018302667118987738-0.08593475357531181i
0.01 66361 96570246023-0.0373901697595207i
-0.015475026616799755+0.0681367842163253i
1.0
0.005083183338907497+0.16650469086903286i
-0.7794553417982019-0:.0879057725034829i
-0.34668113143986995-0.11530602326994968i
0.6188594472670441+0.07825623600247719i

Figure 5.16 Numerical attribute of the third mode and DOF



Select the mode or
DOF 4

DF number and click See Mode or DOF

Mass: 200.0
Stiffness: :10000.0
Damping: 300.0
Max. Displacement: 0.3858724
at t=5.0
Max. Shear Force: 750.7076859474182
at t=4.98

mode4
Eigenvalue: -1.4265744572877903-11.175111963202786i
Modal Damping: 0.1266287791207585
Modal freq.: 11.265799664129661
Eigen Vector:
0.029595192619771008-0.06570578367711592i
-0.01 1240105708958201+0.088049690735835851
-0.0 19676781864886757-0.01 742047015912946i
0.01 7351486565597325-0.07536038170500098i
-0.004525694241646243+0.05106398647505602i
-0.7764892350716023-0.2369953984086514i
1.0
-0.1 6660531006979304+0.244741838178575921
-0.8669138906734977-0.08639760946675662i
0.5771020059528917-0.02227143893099521i

Figure 5.17 Numerical attribute of the fourth mode and DOF



DOF 5
Mass: 200.0
Stiffness: 10000.0
Damping: 300.0
Max. Displacement: 0.4303882
at t=5.0
Max. Shear Force:445.1581835746765
at t=5.0

mode5
Eigenvalue: -2.5273185089958705-13.0532771394999241
Modal Damping: 0.19008554163094574
Modal freq.: 13.29569038923908
Eigen Vector:
-0.013077738436598941+0.013649903493529458i
0.01819395461367664-0.04529364650408123i
-0.014296778585101559+0.073841034443836471
0.00832031317920381-0.06615702519116129i
-0.0026274096095074565+0.0263011061721690441
0.2112275836351972+0.1362096904255193i
-0.6372124387231841-0.12301926068621657i
1.0
-0.884594066043445+0.05859252045005436i
0.34995592887766225-0.03217496664419518i
Left Eigen Vector:

Figure 5.18 Numerical attribute of the fifth mode and DOF



The modal properties from both MATLAB and Motion Lab are the same. Table 5.2

shows the comparison of the maximum displacements obtained from the two approaches.

DOF 1 DOF 2 DOF 3 DOF 4 DOF 5

From Direct 0.1279m 0.2434m 0.3123m 0.3860m 0.4306m

Integration

From 0.1278m 0.2432m 0.3120m 0.3859m 0.4304m

Motion Lab

Error % 0% 0% 0% 0% 0%

Table 5.2 Comparison between results from direct integration and Motion Lab

The result shows the difference between the two approaches is within 10-3. Thus Motion

Lab meets the accuracy requirement of the system.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

With the great improvement in personal computing capability, the level of engineering

computation tool has moved from hand calculation to high performance computing.

However, the methodology for the engineering computation does not move on with the

speed of evolution in computing capability. The computations perform on personal

computers are similar to what engineers did on calculators because the computers are

treated as calculators with better computing power.

On the other hand, this thesis presents a different approach to the engineering

computation. Friendly user interface supported by optimized numerical procedures, the

tool demonstrates a new standard for engineering computation. It shows the ability of

immediate response with a good accuracy. In addition, it handles the seismic response of

a structure with arbitrary properties by modal analysis. User can actually "feel" the modal

properties provided by the dynamic simulation, instead of dealing with meaningless

complex numbers.



6.2 Future Work

Future work can be proceeded in two areas. The first area is to extend the ability of the

environment to the structure control problem. With the control forces built in the tool,

active structural control can be simulated.

The second area is the automatic seismic design of structures. Motion based design

methodology [12] can be introduced for design. Optimal design can be obtained by

iterating on the response of the structure subject to constraints on several response

parameters and/or material attributes.
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