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Part I, Abstract

A piezoelectric transducer operating in the thickness vibration
mode is represented as a six terminal network. The mesh equations, electro-
mechanical impedance matrix and equivalent circuit valid for any general
conditions of loading and frequency are obtained. All properties of the
transducer can thus be determined once the impedance of the loads and the
energy sources are specified.

Part II. Abstract

The electrical driving point impedance and admittance of a
piezoelectric transducer operating in the thickness vibration mode are
derived for all conditions of loading and frequency. Universal curves of
these quantities are included for particular cases of importance.
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I. ELECTROMECHANICAL IMPEDANCE MATRIX

1. Introduction

The use of piezoelectric transducers to produce ultrasonic energy for research

and commercial purposes has increased rapidly in recent years. As a result, a theoreti-

cal analysis of the operation of such elements, which is capable of simplifying the work

of the equipment designer, is extremely desirable. The analysis presented here was under-

taken with this end in view.

Piezoelectric materials have the property of reacting mechanically to an applied

electrical stimulus, and reciprocally, reacting electrically to an applied mechanical

stimulus.1,'2 Such bilateral conversion of electrical to mechanical energy, and vice versa,

is the function performed by the piezoelectric element in its various applications. Hence,

any theoretical conclusions must be in a form equally convenient for use with either

electrical or mechanical systems.

Although piezoelectric crystals are useful when operating in many varied modes,

the mode principally in use for generation of the higher ultrasonic frequencies is that

corresponding to Z-.cut Quartz - the so-called thickness vibration. This mode is charao-

terized by the colinearity of the mechanical strain and electric field intensity vectors.

This is the mode to be considered here.

2. Statement of Problem and Assumptions

Figure 1 illustrates the problem to be considered. The crystal, its physical

constants and geometry, and the loading acoustic media are specified, while the rela-

tions holding among the four mechanical and two electrical parameters are to be determined.

The Rationalized m.k.s. system of units is employed throughout to facilitate the joint use

of mechanical and electrical parameters without the introduction of troublesome multiply-

ing factors.3

To simplify the problem, the following assumptions are made:

i. The crystal is an infinite slab with two plane, parallel

surfaces perpendicular to the direction of propagation

of the resulting acoustic disturbance.

ii. The two plane surfaces are electric equipotentials.

1. W. G. Cady, "Piezoelectricity", McGraw-Hill, New York, 1946. An extremely complete,
well-documented book on electromechanical phenomena in crystals, An excellent
bibliography is included.

2. W. P. Mason, "Electromechanical Transducers and Wave Filters", Van Nostrand,
New York, 1942; p. 195 ff. An equivalent circuit for a piezoelectric transducer
is derived and used in several examples. Derivation of the Piezoelectric Equations
is given in Appendix C.

3. 0. W. Eshbach, "Handbook of Engineering Fundamentals", J. Wiley, New York, 1936.
Contains a useful table of conversion factors for various unit systems, p. 1-130 ff,
and a discussion of existing systems, p. 3-02 ff.
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Figure 1, The piezoelectrical medium terminated by two acous-
tic media and one electrical terminal pair.

iii. The mechanical energy dissipated in the piezoelectric

material is negligible.

iv. The electrical or mechanical stresses either applied

or produced are not sufficient to cause departure from

a linear operating region.

These assumptions are not restrictive when applied to the type of transducer

generally used for ultrasonic applications. In accordance with i, the width of the

crystal must be very much larger than its thickness. In practice, this ratio is fre-

quently as large as 25 or 50 to 1; hence, this assumption is certainly valid. At very

low frequencies, edge effects assume importance since the thickness may be in the order

of the width, and a more elaborate theory is required.

Assumption ii restricts the analysis to widths small compared to the electrical

wave lengths employed. This is certainly always the case except for operation in the micro-

wave region where the wave lengths become comparable to the crystal dimensions,

Assumption iii is not at all restrictive unless the transducer is operating in

a vacuum, in which case, all the mechanical energy is dissipated within the crystal. In

most cases of practical importance, the dissipation in the acoustic material and support-

ing structure greatly exceeds that in the transducer, and no noticeable error is intro-

duced by treating the dissipationless case.

In most cases of importance, iv is not limiting. However, if such a thing as

cavitation is encountered when transmitting into liquids, the mechanical loading becomes

a function of the intensity and cannot be treated as a constant. In such cases, the

present treatment must be considered only as a first order theory which indicates trends

and approximate magnitudes rather than quantitative behaviour.
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3. Procedure

We shall regard the piezoelectric transducer as a circuit element: either

electrical or mechanical depending upon which terminals of the transducer are under

examination. By adopting this viewpoint, it becomes possible to characterize the trans-

ducer completely by an electromechanical impedance matrix relating electrical and mech-

anical currents" to the associated "voltages". More will be said about the definition

of these terms in a later section.4

Since the mode we are considering has two opposing crystal surfaces from which

ultrasonic energy is radiated, to represent this situation we can evidently introduce

four mechanical terminals. To affect the crystal electrically, it is necessary to attach

electrodes to these faces. This also makes it possible to introduce two electrical term-

inals. In this manner, the transducer is considered as a six terminal network and we

seek the "mesh" equations and the electromechanical impedance matrix which describes the

interaction occurring among the variables specified for the respective terminal pairs.

As is the case with pure electrical networks, we must first obtain the equa-

tions relating "voltages" and "currents" at the six terminals. Prom this set of three

"mesh" equations, the impedance matrix can be defined and thenceforth used for design

purposes. We shall see that all properties of the transducer can be determined from a

knowledge of this matrix and the boundary conditions at the terminals.

The impedance matrix is developed in accordance with the following procedure:

i. Maxwell s Equations and the constitutive relations

satisfied by the piezoelectric crystal are intro-

duced to obtain the equations satisfied by the eleo-

trical parameters.

ii. The Piezoelectric Equations which describe the inter-

relation between the electrical and mechanical var-

iables for piezoelectric materials are used to develop

preliminary mesh equations in conjunction with the

results of i.

iii. Newton's First Law is used to derive the wave equation

satisfied by the mechanical displacement. After inte-

gration, the result is employed to obtain the final

mesh equations in the desired form.

iv. The impedance matrix follows directly from the mesh

equations by proper definition of the operational

process involved.

3.1 Introduction of Maxwell's EQuations. In the Rationalized m.k.s. system of units,

Maxwellls Equations are5

4. M. F. Gardner and J. L. Barnes, "Transients in Linear Systems", J. Wiley, New York,
1942. Chapter II contains a discussion of the equations of electrical and mechanical
systems both alone and in combination.

5. J. A. Stratton, "Electromagnetic Theory", McGraw-Hill, New York, 1941. Chapter I.
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V x E + = 0at

VxH- = J
t

V. D = p

V. B = 0

The constitutive relations for piezoelectric materials operating in the mode considered

here are

B = 

Dx = xe(Zx- d x )

(ie)

(if)

D = E
Y yy

D = E
z z z

Where the symbols

E

B

H

D

J

P

C

d

i

represent the following quantities:

= Electric field intensity - volt/meter

= Flux density - weber/sq. meter

= Magnetic field intensity - ampere-turn/meter

= Dielectric displacement - coulomb/sq. meter

= Current density -- ampere/sq. meter

= Charge density -- coulomb/cubic meter

= Permeability - henry/meter

= Inductive capacity - farad/meter

= Piezoelectric constant - volt/meter

= Mecmanical displacement - meter

It is to be understood that all variables are functions of both space and time until

proved otherwise.

In view of our original assumption of equipotential, parallel, plane surfaces,

infinite in extent, it is evident that Ey = Ez = 0, and 6Ex/6Y = =Ex/az = O. From (g)

and (h), we find that Dy = Dz = 0 and by expanding Vx E into its rectangular components,

it is clear also that Vx = O. From the former condition and (lc) we obtain

6D

ax =P (2a)

while the latter and (la) result in

a = 0
at

(2b)
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From this result and (le), it follows that B and H are independent of time. We

know from physical considerations that if a time varying voltage is applied to the electri-

cal terminals, , D, and J must also vary with t in the same way. We found above that H,

and therefore V x H is independent of t; hence from (lb) we see that V x H = 0. Since both

Vx H and V H are zero, H itself must be a constant vector; and if no external sources

of B are present., we are free to impose the conditions that

B= H = 0 . (3)

The charge density, p, appearing in (lo) is real charge density as opposed to

polarization charge density, usually denoted by p. As the crystal is a dielectric, p is

zero except on the surfaces, whereas pi is certainly not necessarily zero. Thus, within

the crystal we find that

OD
x = (2c)

6x 0;

hence D is independent of position - varying only with time. This is an important result

and will be used in a later section.

We found above that VxE = 0 and By = E = 0. This permits us to set

E = -
x v

in the usual manner, where c is a scalar potential function. Using the definition of

voltage difference,

T2

V3 d,

it is immediately evident that

V3 = -J dx. (4)
/2

This result will be needed in the later development of the mesh equations.

By choosing the time variation of the impressed voltage to be ejwt in the usual

manner, it is clear that the time derivatives of all the variables are simply the

variables multiplied by w. We found that V x H 0, hence (lb) becomes

oD
J 
x - at

Remembering that I = J A, we finally arrive at the expression for current

I3 = -JwAD , (5)

which is also required for the derivation of the mesh equations. It is no longer

necessary to continue the use of subscripts since we found a variation only with t and

x - y and z are no longer of concern.



The above detailed discussion of perhaps perfectly obvious facts, has been

included for the sake of completeness and rigor. It should be noted that an important

result of the above discussion is that no electromagnetic radiation is generated by the

transducer since Poynting's vector, x H, is zero. This is a direct consequence of the

assumptions concerning the shape of the crystal and the electrode arrangement, and only

applies when these assumed conditions are valid.

3.2. ormulation of the Mesh Equations. The behaviour of the piezoelectric medium for
6

the mode considered here is described by the Piezoelectric Equations

-P = a + dD (6a)

= d + bD . (6b)

These correspond to the equivalent equations for normal elastic dielectric materials 7 ' 8

YP (l o1 = a a' (6)~1 l + a - 2 Ox ax

3= D = b'D (6d

where:

P Pressure - newton/sq. meter

a = Stress to strain ratio for infinite slab

with D = 0 -- newton/sq. meter

= Mechanical displacement - meter

d = Piezoelectric constant - newton/coulomb or volt/meter

D = Dielectric displacement - coulomb/sq. meter

E = Electric field intensity - volt/meter

b = Electric intensity to dielectric displacement ratio

with Of/ax = 0 - meter/farad

(reciprocal of inductive capacity)

Y = Young's modulus -- newton/sq. meter

c = Poissonts ratio - dimensionless.

6. Mason: o. cit., p. 202, formulae 6.32. This set is converted to apply to the
thickness vibration by changing the y subscripts to x. Displacement is introduced
rather than charge from the relation Q = 1/4 (Disp.), and the two sets become
similar in form ut not in units. This conversion is made if a = y/10, d = 3 . 104D
and b = 36w . 10/k. Masont 3 values for the coefficients for different crystals
can be used above if these changes are made.

7. G. Joos, "Theoretical Physics Stechert. New York, 1934, p. 165 (with e22 = e3 = 0,

P - P and Y = E).

8. Stratton: op. cit., p. 10 ff.
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3.2.1. Mechanical Mesh Equations. From the first Piezoelectric Equation, (6a) and (5),

we have

P1 = a d I (7a)

-P = a a J- _ I (7b)2 ax JwA 3

where the subscript 1 refers to x = - $/2, and 2 to x A/2. In order to combine both

mechanical and electrical variables in one equation, it is frequently convenient to

consider velocity as the analogue of current, and force the analogue of voltage. It

should be noted that this choice is not unique; other analogues are perfectly permis-
9

sable9. We shall follow this procedure here: but since pressure and not force is the

parameter of interest, it is convenient to consider velocity analogous to current density,

or surface area times velocity analogous to current.

In order to put (7a,b) in proper form, it is necessary to find the relation

between </bx and e since the latter is the desired variable. This can be done by inte-

gration of the wave equation which expresses as a function of x and t. By application

of Newton's First Law to a small volume element of density p - kg/m3 - as shown in

Fig. 2, we can write

_ __

d P(x

P(x+dx)

,dy
x dx xidx

Figure 2. Forces acting on small volume element.

tpdxdydz a = [P(x) - P(x + dx dydz.

Since

P(x + dx) = P(x) + +. d- +
ox

we find, after neglecting higher order terms,

P 2 = - x

Upon differentiation of (6a) and introduction in the above, we obtain

=- +d

9. 2Gardner and Barnes, op. cit. p. 60 ff.

9. Gardner and Barnes, op. cit. p. 60 ff.
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Recalling from (2c) that D is independent of x, we finally obtain the simple wave equation

ax2 02 t 2 '

where

C = (8b)

is the velocity of propagation of the elastic wave in the piezoelectric medium.

Assuming a time variation of the form e t in accordance with an earlier

discussion, this integrates simply, and we have

= ~fj · n jk x eJXIe jWt (9)

where

k = X 
2

w = angular frequency--- radian/sec.

X = wavelength - meter.

This form of solution represents the mechanical displacement as the superposition of two

traveling waves; one propagating in the positive x direction, and the other propagating

in the negative x direction.

Upon differentiation, we find

A - = Jk+ JI + Ye eit (lOa)

tox jkE : + YeijeWt , (0lob)

where

o = M,~
2

Y = I 

and

and .e J iQ + Y _jaj nWt (11a)

i2 4J.'+ [J-Q + YeJ9ed . (lib)

Solving for C+ in (Ila), and substituting this in (lOa), we obtain

-8-



z [y3i + .H (12a)
ox = 4 -yJ + sj

In a similar manner, by using (11b) and lCb), we have

(1b)

Recalling the fact that

tanhx = 
X -z

e +8

if we define

Y = e2 , (13)

the above equations take the simple form

$'x tanh(*- _ :(14a)

2x ' Stanh(*+ J) (14b)

These two latter equations can now be substituted in(7a,b) to give the proper
forms of mesh equations which describe the transducer from the mechanical terminals. By
so doing, we obtain finally

P 1 - P tanh(4- J) Ai + A I (15a)

P2 = - tanh(*+ jQ) 2 i - I (15b)

where we have included the relation = c2 . 1 p . These equations have

the desired form, but an expression for 1 in terms of the mechanical boundary conditions
is required in order to make them more readily usable.

If the ratio of pressure to particle velocity is defined as acoustic impedance 0,
the boundary conditions at x = - 1/2 and x = /2 are specified by stating the acoustic
impedances of the loading media. These are determining characteristics of materials, and
in general, are both complex and functions of frequency. It should be noted, that the
acoustic impedance for a wave traveling in the negative direction in a given medium equals
the negative of the impedance for a wave traveling in the positive direction. This is
simply seen physically from the fact that at a particular point of reference, the pressure
is the same for both waves, but the velocities have opposite signs.

'0. P. M. Morse, "tibration and Sound", McGraw-Hill, New York, 1936, p. 191 ff.
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With this understood, the mechanical boundary conditions are imposed by

stating

P1

= 1 (16b)

Employing (15a) and (16a), we find

-41i1 -potanh(- jO) C+ Jwi 3

and similarly from (15b) and (16b)

2 =-petanh( + J )C 2 I 3

Reverting to the original exponential form for tanh x and the defining relation for V',

(13), these become

= YeP Y e (17a)

2 -2 e + J ej 2 (i)A 

By introducing the expressions for 41 and e2 from (11a) and (llb) respectively, the two

equations can be manipulated to solve for Y in terms of the boundary impedances and the

constants of the crystal. The resulting expression is

+ )e + I)e (18)

where

PC
1 pc

Finally, from the expression fortr, (13), we obtain

- 1 f {{ 1 · + J + ( 2 - l)ej e r (19)

Having determined the value of ' for any general conditions of loading, equations
(15a,b) are complete. All the quantities are known with the exception of the variables

P, A , and I. These, however, are ust the quantities of interest, so that the remaining

-10-

_~~~~~~~~~~~~~~~~~~~



mesh equation describing the transducer from the electrical terminals must be derived.

This will then give three equations and three unknowns from which the quantities of inter-

est may be obtained.

3.2.2. Electrical Mesh Euations. By integrating the second Piezoelectric Equation, (6b),

with respect to x between the limits - /2 and l/2 and then introducing(4), we find

-V dS a dx + b Ddx.

A/2 6/2

Recalling that D is independent of x, this becomes

- V3 d( 2 - Cl) +(20)

where the subscripts have the same meaning as before.

Since i = JwC, Eq. (20) assumes the desired form

V 3 jo E1 ~AC,-(21)
3 Jp 1 jWOp 2 + aE 3

where

i b&

CE is recognized as simply the electrostatic capacity of the parallel plate capacitor

formed by the equipotential surfaces of the transducer separated by the dielectric

material. Op is defined here as the piezoelectric capacity of the transducer. This is

done simply as a matter of convenience since it is so similar to C. This completes the

derivation of the three mesh equations. We now proceed with the definition of the imped-

ance matrix and a brief discussion of its use.

3.3. Electromechanical Impedance Matrix. The mesh equations obtained above are repeated

here for convenience.

P1 = - a tanh(* -..j) AC + I (15a)jwO 3
.

P2 .. tanh P ) 2 jwO 3 (15b)

v3 = 4 l 4 2 3 ' (21)

These were obtained for the polarity conditions shown in pig. 3. Here all arrows point in

the positive direction. The lack of symmetry made evident by the signs in (21) can be

rectified by reversing the positive direction of i2. This is shown in Fig. 4 where the

symbol v has replaced i to eliminate confusion. That is, v1 = t. but v2 = - 2'

-11-
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AC, --- D- Ai,

P2Pi

V3

Figure 3. Six terminal network with original positive polarities.

We see by inspection of Fig. 4 that the six terminal network is now completely

symmetric: all currents are taken positive when feeding into the network at the partie-

ular terminals shown. The revised mesh equations now become

1 -h (22a)A tanh( + J A) Av + I3 (22a)

P A tanh("+ J SR 2 + 1 (2Zb)

3 = ICp Avl + po A w 3 (22c)

These can be written in matrix form if the usual rules of matrix multiplication are

Av2

Figure 4. Six terminal network with revised positive polarities.

followed1 1 . rom (22a,b,c) we can immediately write the matrix equation

11. E. A. Guillemin, "Communication Networks' Vol. II, J. Wiley, 1935, Chap. IV. The
Application of matrix algebra to network analysis and the concept of an impedance
matrix is discussed in considerable detail.

-12-



we c £1x AV (23)
where the electromechanical impedance matrix [] becomes

[z] =

E tanh(- + j M c) 0-Aa j o

0 Ec tanh( + j 2) 1i
A c2 NO 1

I _i1
jUcp jwcp JNR

(24)

This matrix is seen to possess some very special properties. Since Z13 = Z31'

and Z23 = Z32, the transducer obeys the Reciprocity Theorem if the proper precautions are

taken as to the equality of the internal impedances of any power generating and indicating

apparatus introduced12. This, of course, must always be the case when applying reciprocity

tests.

We also see that Z13 = Z23 and Z31 Z32. This implies that the mechanical

terminal pairs are equivalent so far as the electrical terminals are concerned. This is,

of course, obvious on physical grounds alone. If it were not so clearly substantiated

by the theory, we would be correct in regarding the latter with suspicion - to put it

mildlyl

The third point of interest is that Z12 = Z - 0. This states that the veloo-

ity of one crystal face has no effect on the pressure at the other face. Only the current

flowing into the electrical terminals and the velocity of the surface in question affects

this pressure.

Finally, we recognize that the only impedance elements comprising the matrix

which are not only functions of frequency, but also of acoustic loading once the crystal

type and geometry are specified, are the two mechanical self-impedances, Zl and Z2 2.

These are functions of loading since is determined by the acoustic media at the two

surfaces, If it were not for this complicating factor, the piezoelectric transducer

would be a simpler element with which to work both theoretically and experimentally, since

the remaining self- and mutual-impedances assume simple forms.

In the particular case of symmetric loading, we see from (19) that ~ = J 2

Since tanh 2 + -ot we obtain the impedance matrixS , we obtain the impedance matrix

12. Guillemin: loc. cit. Vol. 1, p. 152. This is also an excellent reference for those
unfamiliar with methods of network analysis.
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[z -

E2 cots A)J1 2cu t

0

-JC-

0 _1_
jop

p
JAcot )

1
iwop _Jw0z

(25)

which is only a function of frequency once the crystal is specified. Thusthe design of

systems using symmetrical acoustic loading is much simpler than the corresponding asym-

metrical system,

By inspection of the general Z matrix, an equivalent circuit for the transducer

which is valid for any operating conditions can immediately be determined. This is shown

in Fig. 5.

Pi

I
jWCp

At- 2

F-o
I

ia CP

I3

Figure 5. Six terminal equivalent circuit valid for
any general terminating condition,

4. Conclusions

The electromechanical impedance matrix, mesh equations or equivalent circuit

obtained above can be used to determine the operating characteristics of the transducer

for any general conditions of driving or loading, regardless of the terminals in

question. The procedure is identical to that used in connection with pure electrical

networks whose impedance matrix is specified.

Once the boundary conditions satisfied by the respective terminal pairs are

stated in terms of the actual values of loading impedances or energy sources, suf-

ficient information is introduced to permit the solution of the set of linear equations

for the unknown parameters. Due to the simple form of our final equations, these solu-

-14-
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tions can be obtained by those familiar with any of the simple techniques for solving a

set of three linear equations. Of course, more sophisticated methods can also be applied

in which the matrix is used directly without use of the mesh equations. The methods for

solution of such a set of linear equations are numerous and varied, and hence, are beyond

the scope of this paper. It is intended that the forms given be suitable for solution by

all these methods the choice is left entirely to the reader.

As an example of the use of the above theory for the solution of a design

problem, the properties of a piezoelectric transducer driven electrically and loaded

acoustically in any arbitrary manner are investigated in Part IL General formulae of

driving point impedance and acoustic power output are developed, and curves of these

quantities for particular values of loading are plotted as functions of frequency.

-15-
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II. ELECTRICAL DRIVING POINT IMPE0DACE AND ADI4ITTANCE

1. Introduction

In Part I of this paper, we saw that a piezoelectric transducer can be

represented by a six terminal network. The mesh equations, electromechanical impedance

matrix and equivalent circuit for a crystal operating in the thickness vibration mode

were derived. Here, we shall apply these results to determine the electrical driving

point impedance and admittance for such a transducer when loaded by any two arbitrary

acoustic media. This problem is of fundamental importance to the designer who is faced

with the task of developing electrical apparatus capable of properly exciting the

piezoelectric crystal when loaded by specified media.

2. Smmetrical Acoustic Loading

In order to illustrate the method we shall use later for the general problem

without becoming overburdened with algebraic manipulation, we shall consider first the

case of symmetrical acoustic loading. By use of Eq. (16) and the further relations intro-

duced above, i 1 = vl and C2 = - v2 , we specify the boundary conditions existing at the

mechanical terminals in the general case by letting

Or (26a)

and

2 v 2 (26b)
2

Of course, for the symmetrical case, 1 = 32' so we can omit subscripts and merely write

= _Z ME (27)

This now applies to either of the two mechanical terminal pairs.

By inspection of the impedance matrix for symmetrical loading given by (25) plus

the additional conditions introduced by (27), the equivalent circuit presented in Fig. 5

becomes that shown in Fig. 6.

The method by which the minus sign in (27) is introduced in this circuit

deserves particular comment. The pressure, P, has been considered a positive quantity in

all the preceding work when the stress applied to a crystal face produces compression

with the electrical terminals open-circuited, i.e., 3 = O. Hence, P denotes a pressure

"rise"t completely analogous to a voltage "rise" introduced when discussing a source of

electromotive force.

In this sense, the arrows at the terminals of the circuit of Fig. 5 indicate

-16-
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A

Figure 6. Two terminal equivalent circuit including
two symmetric mechanical terminations.

directions of pressure and voltage rises. If we choose to keep both the same positive

directions for current flow in the respective meshes as above and positive values for the

terminating impedances, (27) shows that P is negative. Thus, the directions of pressure

rises at the two mechanical terminal pairs must be opposite to those indicated in Fig. 5;

or the pressure "drops" must be in the arrow directions. By following the velocity mesh

currents in Fig. 6, it will be seen that this is indeed the case.

With this clearly in mind, it is evident that the complete solution of the sym-

metrical transducer problem can be obtained from an analysis of the relatively simple

three mesh circuit of Fig. 6. Using the method of determinants and Cramerrs rule 3, we

finA

3 =

-PCot+i 0 0
-JA cott + A 0

JA A

i cot + 0

wop jwCp 3

P* cott + A O W

es-a cotI + Jwp

L iCp j0p jlWc

.I l- I

13. E. A. Guillemin, "Communication Networks", Vol. I, Wiley, New York, 1935, p. 147 ff.
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where 5 as before.

Since the electrical driving point impedance of this symmetrical case is
Zs = V3/I3 ohms, we have from (28)

coto + AJ (JA coto + ) + cO + )
AJ cA o ... c o t +

A 

or

Z = L + 2 1
w Cp P cot

where

pc
Although is dimensionless, we shall refer to it as the normalized load impedance.

By comparison of the Piezoelectric Equations, (6),with those for a two-mesh
electrical network, further simplification can be achieved. or a two-mesh electrical

network, the mesh equations can be written in the form14

V1 = Zll 1 + 21 2 I2

V2 = Z2 1 11 + Z2 2 2 

In the analysis of such systems, it is usually convenient to define

quantity, , known as the "coupling coefficient", by the relationl5

K2 = Z12 Z21
Zll Z22

Equations (6)have the sane form as those above, and here,

a dimensionless coupling coefficient. In this instance,

2 b .
ab 

too, it is

we obtain

the dimensionless

convenient to define

(30)

If we recall from (21) that Cp = and = , and from (8b), that C = a we findd P'E 

K2 0 0 2
2 w

0ppc

Substitution of this result in (29) gives finally

-18-

(29)

(a1)

14. Guillemin: loc. cit., Vol. II, p. 135.

15. A lower case letter is usually used, but to avoid confusion with k appearing in
(9), the upper case will be used throughout.



Z X 1I- e&ts =JwO, coto + jt (32)

This is the driving point impedance for any conditions of frequency and sm-

metrical loading consistent with our original assumptions. Although we used the network

of Fig. 6 to find first 3 and then Z, it should be realized that the remaining mesh

currents and then the power dissipated by the real parts of the loading impedances oa

similarly be obtained in a straightforward manner. In this way, it is a simple matter to

determine the acoustic power output in each load as a function of frequency once the

electrical driving source is specified. We shall see later that this is also the case for

the general problem of unsymmetrical loading.

3. General Acoustic Loading

In this section, we shall determine the driving point impedance and admittance

for the general transducer problem following the procedure used in the simpler case of

symmetrical loading. The boundary conditions are given by (26 a,b), and after intro-

ducing these in the circuit of Fig. 5, we obtain that shown in Fig. 7.

A
3 2
A

Figure 7. Two terminal equivalent circuit including
two asymmetric mechanical terminations.

Writing the equation for I3 in determinant form as before, we have

-19-



Pa tanh(- + ) + .A A

o

JWCp

0 0

2A tanh(+ j) + 0

1 _
jwOs 3

Solving this determinantal equation for the ratio V3/I3 gives the result

Z I J2Q (33a)

where

tanh + ) + 2 tanh(- + jO) +i] (b)

for applications in which the crystal and acoustic loads are specified, the

solution is now complete since all the parameters entering in the above expression for Z

are known. However, we wish here to investigate the behaviour of this impedance as we

vary the parameters; so, unfortunately, a considerable amount of algebra is necessary in

order to convert (33) to a more useful form. Our goal is to obtain expressions for the

real and imaginary parts of Z in terms of the system parameters: crystal constants,

normalized load impedances and frequency.

Recalling the results of (12) and (14), we have

tanh(*+ J) Ye J * J' (34a)

tanh(-. + ) = e (34b)

while from (18),

(35)

-20-
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Substitution of (35) in (34a) and (34b), respectively, leads to

92 +; c0924 + Jsin2Q
tanh(* + JO) c2 cos - 1 + JC5sin2Q

tanh(- + jQ) = 202+ jsin2
cos2Q - 1 + C2sin2Q 

(36a)

(36b)

Using these results for substitution in (33b), we have

2(cos2 - 1) + J( 1 + ) sin2Q

( + 2)0cos2 + (1 + C 2)n2 * (37)

Rationalization of this expression to obtain real and imaginary parts results

in

S = S1
+ JS2 (38a)

where

[ 1 + SCj ](l - sec24) + (1 + C1,C)tan 22]

[t 1 ]+ Q2+ + C t 1 2 ]2 tan 2 2Q
(38b)

Ian#1 E t + C2
2 2(1 + CtlC 2)(sec2 - I

S2 + 1C 2 tan22
2 + 2 + El + C, C21 2t an22

· (38c)

If we now consider the driving point

X in series, from (33a) and (38), we

impedance as comprising a resistance

find

R and reactance

Z = R + JX

2

R 'S2

= H E '

(39a)

(39b)

(39c)

Although these are the expressions for which we have been looking, they can be

improved insofar as their applicability to a large range of design problems is concerned.

We shall see later that a crystal which is symmetrically vacuum loaded, C1 = 2 = 0, has

its first "resonance" for = 2. Since the quantity X from

the condition that X2= 2 * we have.
0

k = 2 . (40a)

-21-
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In other words, for the frequency at which this first resonance occurs, we arbitrarily

let the thickness of the crystal, , equal ko/2. Since the velocity of propagation within

the crystal, c, is a constant of the piezoelectric material, we are able to define the

quantity, wo, by the equation

o = 2nc (40b)o 0

Finally, by defining the dimensionless parameter, 8, by

6 = , (40c)
w A'0

we obtain from above

= 8s . (40d)2

Upon introducing these relations in the expressions for the impedance, (40), we

obtain the final results:

Z = R + JX (41a)

where

2 + Sect + (I + tt)tan 8IT] 
R =- ------ ["1 -J El 2 (41b)

4 2 woC t I + 2+ E+ llc2 ]tan 2 8 J

and

8 2 >w00 tangnTr( 1 +t 2 ) 2 + (1 + t 1 2 )(secin - 1)1 (4?

The driving point admittance is obtained very easily from these results. Since

the admittance, Y, is the sum of a conductance and susceptance B in parallel, we have

Y = G + JB . (42a)

By definition, Y = 1 ; thus, from (41a) and(42a) it follows immediately that

G a (42)
R2 + H

and

B = x (42c)
R 2+X2

-22-



Equations (41) and (42) are the general relations valid for all conditions of

loading and frequency. The crystal constants, K, w and OE , are only dependent upon the

type of piezoelectric material used and its dimensions; whereas, the normalized load

impedances, 1 and C2' are determined by the choice of crystal and the loading media. It

must be remembered that in general is complex, although in the majority of ultrasonic

applications, can be considered real.

The two representations of the transducer driving its acoustic loads as elec-

trical circuit elements are shown in Fig. 8. The series form is useful when the source

of electrical energy has a high internal impedance, while the shunt form is useful for

a source having a low internal impedance. These two limiting cases are usually approx-

imated by constant current and constant voltage sources, respectively,

Op

Y r
Z.

Figure 8. a. Two terminal series equivalent circuit.
b. Two terminal shunt equivalent circuit.

4. Particular Cases of Acoustic Loading

In order to increase the utility of the foregoing analysis, in this section,

curves of the four quantities R, X, G, and B are presented as functions of frequency for

a variety of loading conditions. Some of these conditions have been chosen since they

frequently arise in actual ultrasonic applications, and hence are of practical importance,

while others were chosen to indicate the behaviour of the transducer when loaded by cer-

tain idealized media.

The latter, although not of practical use in a quantitative sense, are impor-

tant in that they increase our understanding of the operation of the transducer. Fre-

quently, such information indicates what can and cannot be expected from a particular

choice of conditions, and hence is of use in separating reasonable from unreasonable

applications.

In an attempt to make these results applicable to all cases in which the

thickness vibration mode is employed, the common factor, K
2 /4o1C E, is not included in the

calculated values. This factor, which is wholly dependent upon the crystal used, is

introduced after the values are taken from the curves; thus, many of the curves are

applicable to any crystal chosen. For the same reason, the values of the circuit elements
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are plotted against the dimensionless parameter 8, rather than frequency, thus permitting

use of the curves for any frequency region. More will be said concerning the universality

of each set of curves in the discussion to follow.

4.1. esistanee versus Frequency. (of. Figs. 9-13) If the factor 2 2 /ol is removed

from the right side of (41b), we obtain the dimensionless expression

¶R1 5 1 {Bt1 + C seeTr + ( + 1t2)taU2ts]tR --- - _ 2 11, ·r,7E- · · · · · ~··zh ,,t~zanl (43)

It is this expression which is plotted as a function of 6 for various assumed values of

t1 and 2. Although the ordinates and abscissae of the resulting curves are dimensionless,

it is convenient to refer to them as resistance and frequency, respectively.

By inspection of (43), several points of interest are evident. First, we see

that the term on the right is entirely free from all explicit crystal constants - although

they are present implicitly in the values of corresponding to various loading media. 1 6

Hence, the curves of resistance versus frequency are truly universal if applied for loads

having the Cis which are specified.

Secondly, we notice that the value of the bracketed term is periodic, having a

period along the frequency axis of 2. As a result, in order to have complete information

concerning its behaviour for any value of 8, we need only compute values in the interval

o 6 L 2.

Finally, we see that the quantity 1/82 is a modulating function for the periodic

term. The complete behavior of the resistance for any frequency can thus be obtained if

its values for any one period are given. In accordance with this, all the resistance

curves but one are plotted for the frequency interval of most general interst --

0 e 8 2. The one exception has been plotted for values of 6 up to 9.5 merely as an

illustrative example to show the variation of resistance as the crystal is driven at fre-

quencies higher than its fundamental.

From Fig. 8a, it is evident that the total acoustic power output, if we assume

a constant current generator, is proportional to R. For this limiting case, we can obtain

the bandwidth of the transducer by measuring the width of the curves between half-ampli-

tude points. This will vary somewhat according to the harmonic considered due to the

1/62 factor.

A measure of the bandwidth is important for pulsed operation of the transducer

since it is a determining factor of the minimum pulse width that can properly be trans-

mitted. The bandwidth for any actual electrical source is readily obtained from these

plots of R and Fig. 8a by first finding the current as a function of frequency, and then

obtaining the product 12 R, again as a function of frequency. The width between half-

power points of the resulting function is the desired bandwidth figure.

It should be noticed, that numerical values.of are given on the curves in

addition to the corresponding media: the latter are enclosed in parentheses. These

16. A. B. Wood, "A Textbook of Sound",Bell, London, 1944, pp. 562-63. All values of
acoustic impedance used here have been taken from this source.
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latter captions only apply when the transducer is Qartz. They have been included for

added convenience since Quartz is generally used for high frequency work.

At this point, it would be desirable to discuss in detail the many interesting

features of the curves and their relations to one another; however, in the interests of

brevity, this must grudgingly be omitted. An attempt has been made to include enough

material on the curves, themselves, to make them self-explanatory after a careful perusal,

A summary of the most important features is included in the Conclusions.

4.2. Reactance versus Frequency. (cf. Figs. 14-18) If we convert (41c) to dimensionless

form, we obtain

nuCX - n na(Cl + CZ2* * + (1 c+ )(secr ~i-. (44)

2K2 51 + Y2 + I + tta tan2 28K2

The first term on the right side of this equation is similar to that discussed above in

that it is independent of the crystal used, it has a period of 2, and it includes the

1/82 modulating function. Here, however, we have an additional term wich does depend

upon the choice of crystal since it includes the coupling coefficient, E.

Referring to the reactance curves, we see that the latter term is a hyperbola

around which the variations produced by the periodic term occur. These variations from

the true hyperbola can be applied universally even though the hyperbola, itself, will

have different values due to the presence of K. These curves have been computed taking

K = 0.10 which is the value for Quartz; for other crystals, it is a simple matter to

superimpose the periodic variations shown here upon the proper hyperbola.

The variations of the reactance curves for t2 = 2.83 x 10'5 (Air) are extremely

sharp in all the cases plotted except that for which t1 = 1.00 (Quartz), but do not

become infinite. Although values of the reactance functions are given for values of 8

very close to the peaks, these are not to be taken as the maxima since the calculations

were made for increments in 8 of .001. If smaller increments had been used, larger

values for the maxima would have been found. Differentiation to obtain the exact values

of 8 corresponding to these maxima lead to complicated transcendental equations. The

time needed for solution of these equations could not be Justified in view of the pur-

pose for which the curves are intended; thus, the values are given merely to indicate

the order of magnitudes of the peaks of the reactance functions.

4.3. Conductance versus Frequency. (of. Figs. 19-22) By use of Eq. (42b) and the

dimensionless resistance and reactance expressions, (43) and (44) respectively, it is

clear that we have all the information necessary for plotting curves of GowC/2K

against 8. The question of universality becomes complicated in this case since both R

and X appear. Although clear-cut conclusions cannot be made, several general observa-

tions may be of value to the designer.

Inspection of the R and X curves shows that X2 is very much larger than R2

throughout most of the frequency range, exclusive of the resonance regions, for the major-

tty of loading conditions. We, therefore, obtain the expression
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G H

which is valid when 8 is removed from the resonances. Here, X follows a true hyperbola

which was shown above to be dependent upon the crystal chosen. In these regions then, the

conductance curves are not universal as to magnitudes, although the contours can be

applied quite generally.

For the regions of resonance, the above approximation no longer holds because

we can no longer neglect R2. Under these conditions, the variations in the X hyperbolae

and the values of R become the determining factors. Since both of these quantities were

shown to be independent of the piezoelectric material, the conductance curves near

resonance are more universally applicable than for other frequency domains. The latter

statement becomes more nearly true for lighter loads - smaller values of t - since,

in these cases, the values for the variations of X completely overshadow those for the

parent hyperbolae.

If more exact values of conductance are needed for a transducer other than

Quartz, they can be obtained in a straightforward manner from the universal resistance

and the corrected reactance curves. For most design problems, however, this procedure

will not be necessary because the curves presented here will be found sufficiently

accurate.

From Fig. b, we recognize that the total acoustic power output, assuming a

constant voltage source, is proportional to G. Thus, as discussed above in connection

with the curves of R and a constant current source, we can obtain useful information con-

cerning the bandwidth of the transducer when driving various loading media. By consider-

ing the curves of resistance and conductance as acoustic power output for the two electri-

cal sources mentioned, we can appreciate the extreme importance of the internal source

impedance and can estimate the behaviour to expect with sources other than these two

limiting cases.

4.4. Suscentance versus Frequencv. (cf. Figs. 23-26) From (42c), it follows that for

regions other than resonance where we can neglect R2, we have

B - X

Near resonance R2 must again be included, and the final result is that the B curves are

straight lines with variations appearing at the resonances. The remarks concerning

universality of the susceptance curves are entirely similar to those given above in the

discussion of the conductance; hence, we shall not discuss this further here.

5. Oonclusions

The impedance and admittance curves plotted as functions of frequency present

us with much information concerning the operating characteristics of piezoelectric trans-

ducers under varied conditions of loading and frequency. Although most of the details
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have been left to the actual curves, a listing of the important trends should be of

considerable value in assisting us to comprehend the behaviour of such elements. or

detailed verifications of the items listed, reference to the curves and equations is

required.

i. Bandwidth increases when the load impedance increases. In most

cases this increase continues for load impedances greater than

that of the crystal.

ii. Loading of both crystal surfaces leads to greater bandwidths than

are obtained by keeping one surface unloaded.

iii. Maximum power output at resonance for a given driving source varies

inversely to transducer bandwidth: power output decreases for an

increase in bandwidth, and vice versa.

iv. Operation at very low frequencies requires heavy loading of both

surfaces and a source with a high internal impedance.

v. Loading by materials having impedances greater than that of the

transducer leads to doubly-peaked resonance curves analogous to

those obtained with overcoupled electrical circuits.

vi. With a high internal impedance source, the resonance frequencies

decrease with an increase in loading; but with a low internal

impedance source, the resonance frequencies remain very nearly

constant.

vii. With a high internal impedance source, the power output varies

inversely to the square of the order of the harmonic of the funda-

mental frequency. With a low internal impedance source and light

loading, this is also roughly the case; but with heavy loading,

the power output is very nearly independent of the order of the

harmonic.
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