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Abstract

A microemulsion is a three-component system in which oil and water are solubilized
via an interfacial surfactant monolayer. Depending on the composition and various
external conditions, it exhibits a wide variety of phases with corresponding mesoscopic
scale interfacial structures. For scientific as well as industrial purposes, knowledge of
the relation between the interfacial structure and the phase behavior is crucial but
its quantitative measure is lacking. To identify the relation in a quantitative way,
the natural parameters to be measured are the interfacial curvatures : Gaussian,
mean, and square mean curvatures. A new small-angle neutron scattering (SANS)
data analysis method to extract the interfacial curvatures was developed and applied
to various microemulsions. The method involves the use of a clipped random wave
model with an inverse 8th order polynomial spectral function. The spectral density
function contains three basic length scales : the inter-domain distance, the coherence
length, and the surface roughness parameter. These three length scales are essential
to describe mesoscopic scale interfaces. A series of SANS experiments were performed
at various phase points of isometric and non-isometric microemulsions. Using the de-
veloped model, the three interfacial curvatures at each phase point were determined
for the first time in a practical way. In isometric bicontinuous microemulsions, the
Gaussian curvature is negative and has a parabolic dependence on the surfactant vol-
ume fraction. In non-isometric systems, based on the measured interfacial curvatures,
a characteristic structural transformation was identified. As the water and oil volume
ratio moves away from unity, the bicontinuous structure transforms to a spherical
structure through an intermediate cylindrical structure.
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Chapter 1

Introduction

For thousands of years, humans have benefited from the unique surface activity of

amphiphilic molecules called surfactants. In addition to traditional applications, re-

cently surfactants have been playing prominent roles in emerging new technologies

such as nano-fabrication, microelectronics, and pharmaceutical agents. Due to the

extraordinary physics they exhibit as well as their expanding number of applications,

surfactants have attracted the attention of a broad spectrum of the scientific commu-

nity.

'The achievements made during the last few decades have been remarkable [1, 2,

3, 4, 5, 6]. Full understanding of the beauty of the underlying physics, however, still

requires extensive investigation. One particularly interesting aspect of physics is the

relation between the structure and the phase behavior of three component surfactant

systems called microemulsions[7]. To identify the relation in a quantitative way, we

developed a new method of SANS data analysis and applied it in the study of various

microemulsions. In this introduction, the basic concepts of surfactants physics are

reviewed.

1.1 Amphiphilic Nature of Surfactants

Surfactants are substances with molecular structures consisting of a hydrophilic part

which is soluble in water and a hydrophobic part which is soluble in oil. The hydropho-



bic part is normally a hydrocarbon chain, whereas the hydrophilic part consists of

either an ionic or strongly polar group. The simple amphiphilic nature of surfactants

towards water and oil leads to phenomena which mixtures of simple solute molecules,

water, and oil do not exhibit[8]. At the phase boundaries, an orientating alignment

of the surfactant molecules occurs, placing their hydrophilic part in water and the

hydrophobic part in oil. This results in a change of system properties such as a

dramatic decrease in interfacial tension between water and the adjacent phases, a

change of wetting properties, as well as the formation of electrical double layers at

the interfaces. The self-associated aggregates can exist in a variety of topological

structures.

Since surfactants are primarily applied in aqueous solutions, they are classified

into two categories, ionic and non-ionic, by the type of hydrophilic group present.

Ionic surfactants have hydrophilic groups which, in aqueous solution, dissociate into

a negatively charged ion (anion) and a positively charged ion (cation). When the

surface active properties is carried by anion, the surfactant is called an anionic sur-

factant and when by cation, it is called a cationic surfactant. On the other hand,

non-ionic surfactants do not dissociate into ions and instead its head group makes a

hydrogen bond with water. The solubility of non-ionic surfactants in water is pro-

vided by polar groups such as polyglycol ether groups or polyol groups. Figure 1-1

shows an ionic surfactant, bis (2-ethylhexyl) sulfosuccinate sodium salt, called AOT,

and a non-ionic surfactant, tetraethylene glycol monodecyl ether, called C10E4 . In a

schematic convention, it is customary to call the hydrophilic part the head group and

the hydrophobic part the tail group.

The amphipilicity of surfactants can be tuned by various external conditions such

as temperature, salinity, and pressure[8, 1]. Depending on the relative strength of

affinity toward water and oil, as well as composition, surfactants spontaneously ag-

gregate into various topologically different structures. Figure 1-2 shows the represen-

tative structures of microemulsions for different relative hydrophilic and hydrophobic

strength of surfactants. For simplicity, the ratio of the hydrophilic strength to the

hydrophobic strength, R, is defined in a qualitative sense.
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When R is less than one, surfactants are more soluble in oil and place themselves

in such a way that the surfactant-oil interface has maximum area. The interfacial

membrane, therefore bends toward water, resulting in water-in-oil microemulsions

or reverse micelles. When R is larger than one, the situation is reversed and the

amphiphilic region bends toward oil, giving oil-in-water microemulsions or direct

micelles.[9] According to Winsor[10], however, R is not a fixed value for a given system

but undergoes fluctuations due to the thermal motion of the molecules. Therefore,

the micellar structure fluctuates between the direct and reverse form and the pre-

dominant form depends on the mean value of R. Thus, when R is balanced near

unity at a given temperature, it may be tipped in either direction by small changes

in temperature or composition.

When R = 1, the hydrophile and lipophile tendencies of the surfactant are equi-

librated. This case corresponds especially to systems where equal volumes of oil and

water are solubilized. For such a system, two main types of structures can be consid-

ered : lamellar and bicontinuous. The lamellar structure is formed by more or less

regular arrangement of the surfactant molecules in the form of parallel leaflets allowing

alternate solubilization of oil and water. These lamellar structures are somewhat rigid

and often result in liquid crystals or gels. On the other hand, the bicontinuous struc-

ture, which was first proposed by Scriven[11, 12], exhibits more complex disordered

surfactant interfaces. In this structure, water and oil domains are interpenetrating

through each other. Furthermore the water is connected as a single domain and the

same applies oil. If one follows the interface, at some point the surfactant membrane

closes up to encapsulate the water, and at another point it closes up to encapsulate

the oil.

1.2 Phase Behavior of Microemulsions

The phase behavior of a ternary system of H20-oil-surfactant is determined by the

interplay of the miscibility gaps of the binary systems, water-oil : water-surfactant,

and oil-surfactant [13, 14, 15]. To understand the phase behavior of the ternary



system, it is thus necessary to consider the phase diagram of the three binary systems

which represent the sides of the Gibbs phase prism. Figure 1-3 shows the unfolded

phase triangle with schematic diagrams of the three binary phases. The phase diagram

of each binary system is presented with the Gibbs triangle as base and temperature

as ordinate. The base represents the composition of each binary system. The hatched

area represents the 2 phase region where the mixture is immiscible, and the rest is

the 1 phase region where a solution is formed.

Since water and oil are almost insoluble in each other, their miscibility gap in the

water-oil phase diagram extends into the Gibbs triangle. The critical point of the

miscibility gap lies well above the boiling point of the mixture. The phase diagram

of an oil-surfactant system shows similar behavior to the water-oil system, but with

a much lower critical point which lies close to the melting point of the mixture. Its

critical temperature depends on the chemical nature of both the oil and the surfactant.

The phase diagram of the water-surfactant system, however, shows a rather com-

plicated feature. It consists of two separate miscibility gaps. The lower miscibility gap

lies, in general, below the melting point of the mixture. The existence of the upper

miscibility gap can be explained as follows. Hydrogen bond formation between water

and surfactant molecules leads to complete miscibility between these two components

at ambient temperatures. As the temperature increases, however, these hydrogen

bonds break due to thermal fluctuations and the miscibility gap appears again. For

thermodynamic reasons, the upper miscibility gap shows a closed loop[16].

The lower part of Figure 1-3 shows a schematic Gibbs triangle which represents

the phase behavior of a water-oil-surfactant system at an ambient temperature. As

the concentration of surfactant increases, the mutual solubility of water and oil in-

creases and therefore the miscibility gap shrinks until the two phases merge at the

isothermal critical point, called a plait point. The compositions within the 2 phase re-

gion are connected by tie lines, the slopes of which are determined by the distribution

coefficient of the surfactant between water and oil. The positive slope corresponds to

higher solubility of surfactant in oil than in water, and vice versa.

The Gibbs phase triangle can be determined as a function of temperature. Fig-
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ure 1-4 shows a Gibbs phase prism of a water-oil-nonionic surfactant system. As

the temperature rises, the surfactant is transfered from the water-rich to the oil-rich

phase. At low temperatures, the hydrophilic strength of the head group is stronger

than the hydrophobic strength of the tail group. Therefore, the surfactant is dissolved

mainly in the water-rich phase, resulting in a two phase equilibrium between a lower

microemulsion phase and an excess upper oil phase. The lower microemulsion phase

can be described as a oil-in-water microemulsion in which oil droplets surrounded by

surfactants are dispersed within the major water medium.

As the temperature increases, the imbalance between the hydrophilic and hy-

drophobic strengths of the surfactant is reduced. When the HLB (hydrophilic and

lipophilic balanced) temperature is reached, the hydrophilic and hydrophobic strengths

of the surfactant becomes equal and a 3 phase area, the shaded area in the center,

shows up in the Gibbs triangle. The solution will separate into three phases : an

excess oil layer on top, an excess water layer on the bottom and a microemulsion

layer in the middle, called a middle phase microemulsion. The 3 phase triangle exists

within a limited temperature range only. It will appear at a temperature close to the

lower critical temperature of the binary miscibility gap between water and surfactant,

and will disappear at a temperature close to the upper critical temperature of the

binary miscibility gap between oil and surfactant. Within this temperature range it

will change its position as well as its shape, depending on the effect of temperature

on the shapes of the three miscibility gaps in the binary systems. Therefore, the 3

phase body is characterized by its position on the temperature scale as well as by its

extension within the phase diagram.

The middle phase microemulsions, called bicontinuous microemulsions [11], have

sponge-like structures, in which the oil and water micro-domains are multiply inter-

connected. Since they have a minimum interfacial tension of about 10-4mN/m and

minimum solubilization power, bicontinuous microemulsions are frequently discussed

in the literature[17, 18, 19, 20, 21]. Minimum interfacial tension is always observed

when the bicontinuous microemulsion takes up equal volume fractions of water and

oil. In contrast to the micellar or well-ordered phases, the geometry of bicontinuous



microemulsions cannot be described in simple geometrical terms. The main focus of

this research is to identify its structure in a quantitative way.

When the temperature is higher than the HLB point, the hydrophilic strength

of the head group becomes weaker than the hydrophobic strength of the tail group

due to thermal fluctuation which breaks the hydrogen bonding. Compared to the

low temperature case, the situation is reversed and surfactant is dissolved mainly in

the oil-rich phase, resulting in a two phase equilibrium between an upper water-in-oil

microemulsion phase and a lower excess water phase.

Representing the phase behavior in a multi-dimensional diagram is often compli-

cated, especially when the number of components or the tuning parameters are large.

Therefore it is convenient to project the phase diagram onto a certain plane, keep-

ing other parameters constant. A useful and widely adopted phase plane is given in

Figure 1-5, which shows a vertical cut through the phase prism erected on the center

line of the base, that is, on the line in the Gibbs triangle where the water-oil ratio

is unity. Since the volumes of water and oil is equal on this plane, microemulsions

represented by this plane are called isometric . If looked at from the oil edge of the

prism, one can see the profile of the phase boundaries as having the shape of a fish.

This phase diagram also reveals the upper and lower boundary temperatures of the

3 phase body. The head of the fish represents the minimum surfactant concentration

needed to form aggregate structures and the fish tail, where all the phase boundaries

collapse into a single point, reveals the minimum surfactant concentration needed to

prepare a homogeneous solution (1 phase) of equal volume of water and oil.

Figure 1-6 shows another commonly used phase plane. In this plane, while the

surfactant concentration is kept constant, the water to oil volume ratio is varied.

Therefore, microemulsions whose phase behaviors are represented on this plane are

called non-isometric.
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Chapter 2

Small-Angle Neutron Scattering

A physical description of surfactant solutions requires knowledge of the structures of

surfactant aggregates and the forces which act on them. Structural information can be

obtained only from experiments which measure distances on a scale comparable with

the dimensions of the aggregates. Today, the most promising way to measure distance

in liquids is to use radiation that can penetrate the sample and study its interference

patterns[22, 23, 24, 25, 26, 27]. Neutron and X-rays have been the primary sources for

these scattering experiments. Since the characteristic lengths in surfactant solutions

lie in the mesoscopic scale range (on the order of 100 A) and the wavelength of cold

neutrons used is a few A, useful structural information is contained in the small angle

region of neutron or x-ray scattering. Therefore, in this study, we used small-angle

neutron scattering techniques.

The neutron was discovered by Chadwick in 1932. It has zero charge, a mass of

1.0087 atomic mass unit, a spin of 1/2 and a magnetic moment of -1.9132 nuclear

magnetons[28]. It has a half life of 894 seconds and decays into a proton, an electron

and an anti-neutrino. Due to its useful characteristic wavelength, strong penetration

power, and weak interactions with medium of interest, the neutron has been used

extensively as a probe in condensed matter physics. The theory of neutron scattering

is well known[28, 29]. In this section, the basic principles of neutron scattering and

its application to the study of microemulsion systems are briefly reviewed.



2.1 Coherent and Incoherent Scattering

We first consider scattering by a single atom. A schematic diagram of the neutron

scattering experiment is shown in Figure 2-1. A neutron with wave vector ki, is

directed to the target and scattered into a state with wave vector k,,t. The momentum

transfer to the target sample is hQ where the momentum transfer vector Q is defined

as

Q = in - kot. (2.1)

The basic quantity that is measured is the partial differential cross-section which gives

the fraction of neutrons of incident energy E scattered into an element of solid angle

dQ with an energy between E' and E' + dE'. The partial differential cross-section is

denoted by
(2.2)

dQdE'

and has the dimensions of (area/energy). For our purpose only elastic scattering,

where there is no energy change, is considered. Integrating the partial differential

cross section given in Eq. 2.2 over energy yields the differential cross section, defined

as

da No. of neutrons scattered into a solid angle dQ around Q per unit time
dQ incident neutron flux

(2.3)

In elastic scattering, the scattered wave vector ko,,t has the same magnitude as

the incident wave vector ki ,

2x
k = kinI - Ikout = (2.4)

where A is the wavelength of the neutron. Correspondingly, the magnitude of the

momentum transfer vector Q given in Eq. 2.1 depends only upon the scattering angle

2ksin (2.5)Q = 2k sin-. (2.5)
2
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Figure 2-1: Schematic representation of a scattering experiment
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The incident neutron beam can be described by a plane wave traveling in the +2

direction,

in (i) = ei(ki z - wt) (2.6)

where kin = ki,2 is the wave vector with magnitude given by E = h2k2n/2P = hw.

When this wave hits an atom at the origin, a fraction of it will be scattered and the

scattered wave radiates spherically around the scattering center,

0 (V = b ei(kr-wt) (2.7)

where b is the scattering length of the atom which measures its strength of the inter-

action with neutrons. In general, the scattering length b depends not only on each

atom type but also on each isotope and its spin. If the atom is not at the origin

but at a position Ri, the wave scattered in the direction k,,out will be phase shifted

with respect to the wave scattered in the same direction from the origin. This is well

explained in Figure 2-1. The path difference results in a phase difference equal to

Q - i. Accordingly, the wave scattered by the atom at R is

- ei(kr-wt)
e ()= -ble (2.8)

Summing up the relative phase contributions from all the atoms in the sample, the

total scattered wave is calculated as

ei(kr-wt).9)

where the scattering amplitude f (Q) is defined as

f (Q) = - _ bleiQR. (2.10)

Since radiation detectors are not sensitive to the phase of the incoming radiation,

they measure the power flux instead of the amplitude. According to the definition

given in Eq. 2.3, the differential cross section can be calculated as the square of the



magnitude of the scattering amplitude,

d = f (2.11)
2

S bib, ei R '( ~- ')
ii'

Since what we measure during experiments is the ensemble average of the system,

the differential cross section should be also ensemble averaged,

do-= b b, e( )  
(2.12)

where the bar denotes both isotope and spin-orientation averages and (..) is a thermal

average over all the possible configurations consistent with a given temperature T.

The differential cross section can be distinguished into two types of scattering

processes known as coherent and incoherent scattering. Without going into detail,

it is clear that the interference pattern can be generated only from the terms where

1 # 1'. Performing the average over isotope and spin-orientation, bib , can be written

as,
__ 12 2

bTbe b +6w' b - ) . (2.13)

Substituting Eq. 2.13 into Eq. 2.12, the cross section becomes the sum of two parts,

oh +d (2.14)
dQcoh dQ incoh

where the coherent cross section is

S cohda K 2 = 5 ei) (2.15)
d coh



and the incoherent cross section is

c = N ( b2 - b2) (2.16)

where N is the total number of atoms in the target. In coherent scattering there is

strong interference between waves scattered from each nucleus. On the other hand, in

incoherent scattering there is no interference at all, and the cross-section is completely

isotropic. Since structural information is contained only in the coherent scattering

cross-section, the incoherent scattering part of the scattering intensity is often re-

moved before further analysis. For our purpose, we only consider coherent scattering

and, if not specified, scattering refers to coherent elastic scattering and the subscript

is dropped.

2.2 Absolute Scattering Intensity

For aggregates of small particles, macromolecules in liquid solution, the scattering

pattern produced can be divided into small-angle scattering and wide-angle scatter-

ing. Wide-angle scattering corresponds to the distance 1, - Rl between neighboring

atoms (1 to 5 A). In liquids, there are very many such distances, which all fluctu-

ate and overlap each other. Their interference pattern reduces to a superposition of

overlapping diffuse rings. Therefore, in the range of scattering vectors Q = 27r/d =

1.2 to 6 A -1 , scattering does not yield much useful information.

Small-angle scattering is produced by mesoscopic or large length scale (10 to 1000

A) heterogeneities in the solution[30, 31] and covers the range of scattering vector

Q = 0.005 to 0.6 A- 1. At this range, the solution can be treated as a continuous

medium, and scattering is controlled by the density of scattering length which is

defined as

P = L6 (R - R) (2.17)

where bl is the coherent scattering length of the particle at -#. The scattering ampli-

tude is then the Fourier transform of the scattering length density in the irradiated



volume V,

f Q p() e d. (2.18)

Inserting Eq. 2.18 into Eq. 2.12 and taking the thermal average, the scattering cross-

section per unit volume, I(Q), can be written as

I (Q= p ) e_ Rd 2 ). (2.19)

I(Q) is also called the absolute scattering intensity. Considering the translational

invariance of the system, the absolute intensity can be reduced to a Fourier transform

of a correlation function for the scattering length density at the origin and r,

I( ) = F (F) e-Qd (2.20)

where the correlation function F (j is defined as

r () = (p* (0)p() . (2.21)

If the sample is isotropic, the correlation function and the absolute intensity do not

depend on the orientation of r' or Q and therefore, the angular variables can be inte-

grated out. In this case, they are related by the one-dimensional Fourier transform,

0 sin ( r2

(Q) = F (r) Qr) 4r2dr. (2.22)=o Q

It can be shown that the average scattering length density contributes only to

the delta function at Q = 0, and the interference patterns are produced only by

the fluctuation of scattering length density. Therefore, it is appropriate to define a

quantity in which the average scattering density is subtracted. A local fluctuation

r (r) is defined as

S(r) = p (r) - (2.23)

where P is the scattering length density averaged over the whole sample. Using the



definition given in Eq. 2.23 and the apparent condition (] (r)) = 0, the absolute

intensity I(Q), except at Q = 0, can be written as follows

S(Q) = 2  FD (r) sin (Qr) 47r2dr  (2.24)
o Qr24)

where FD (r) is defined as

rD (r) = ()) (2.25)

In the study of porous materials, the function FD (r) is commonly called the Debye

correlation function[32]. There are two physical boundary conditions which the Debye

correlation must satisfy : it is normalized to unity at the origin and should converge

to zero at infinity. The mean square fluctuation of local scattering length density (7r2)

is called the invariant. For two component porous systems, it is given as

(7] 2 ) - 0102 (P1 - P2) 2  (2.26)

where q1 and 02 refer to the volume fractions of component 1 and 2, and pi and P2

are the corresponding scattering length densities. Using the normalization condition

of the Debye correlation function, the invariant can also be written as

(p72) = 212 j0 Q21 (Q) dQ, (2.27)

which is a practical way to calculate this quantity. In SANS experiments, the mea-

sured intensities I(Q) always contain a certain amount of error caused by the uncer-

tainty in the absolute intensity calibration. However, when the scattering intensity is

measured over a sufficiently large Q range, the error can be canceled out by dividing

the measured intensity by the invariant calculated according to Eq. 2.27.

2.3 Experimental Setup for SANS

The schematic diagram of the experimental setup for SANS experiments is shown

in Figure 2-2. There are two types of neutron sources for SANS facilities : contin-
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Figure 2-2: Principle of a small-angle neutron scattering facility

uous sources from nuclear research reactors and pulsed spallation sources based on

accelerators. While SANS facilities based on the pulsed spallation sources utilize a

white neutron beam (which contains neutrons of a certain range of wavelength) by

time-of-flight measurements, those based on continuous sources use single wavelength

neutrons. Except for this difference, the underlying principles are the same for both.

Figure 2-2 demonstrates the principle of a SANS facility based on a continuous neu-

tron source. A beam of neutrons with a broad spectrum of wavelengths is guided into

a velocity selector where a mono-energetic neutron beam is prepared. To maintain its

cross sectional size, the mono-energetic neutron beam is collimated through a series

of pin holes before it hits the sample. The scattered neutrons are detected by a two-

dimensional position sensitive detector. At the center of the detector, there is a beam

stop to block the direct neutrons which passed through the sample without scattering.

The scattering angle is determined by the detected position at the detector and the

sample to detector distance. To cover a wider range of scattering angle, the detector

can be moved back and forth parallel to the direction of neutron beam. For a very

small scattering angle, the sample to detector distance can be made as long as 30 m.

All the detected neutron counts are normalized by the beam monitor counts before

data reduction.
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Figure 2-3: 2-dimensional small-angle neutron scattering pattern from a bicontinuous

microemulsion

Figure 2-3 shows a representative two-dimensional scattering pattern of a bicon-

tinuous microemulsion. The uniform ring pattern produced by Bragg scattering tells

us that the bicontinuous microemulsion is an isotropic system. Therefore, the two-

dimensional scattering pattern can be reduced into a meaningful one-dimensional

scattering intensity by circular averaging. Figure 2-4 shows the corresponding ab-

solute intensity I(Q). The peak corresponds to the ring pattern in two-dimensional

intensity. The information contained in this scattering intensity will be fully discussed

in the following chapters. ~ ~ ~ ~.. , : .ny.4 .L
545454XX~~~~~~44~~34'1 5 ,45X, 4 ~ j 45:(4~. 5X4 4 .44444 4444 55

Figue 2-: 2-imenionl smll-agle euton satteing attrn .from a icntnuu
microemulsion

Figue 2- shws areprsenativ twodimnsioal sattrI ing pater of_ a icn

Fgr - 2dimensional ml-ne uto scattering pattern ca erdcdit ennfulone-dbimninal

scattering intensity by circular averaging. Figure 2-4 shows the corresponding ab-

solute intensity (Q). The peak corresponds to the ring pattern in two-dimensional

intensity. The information contained in this scattering intensity will be fully discussed

in the following chapters.
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2.4 Contrast Variation

Neutrons are scattered by the nuclei of the sample and the coherent scattering length

of nuclei depends on the number of particles in a nucleus, in particular on its total spin.

The difference between isotopes of the same element are as large as those between

different elements[33, 34]. This allows the use of isotopic labeling. In particular, the

difference between hydrogen and deuteron is one of the largest that can be obtained

bH = -0.3742 x 10-12 cm and bD = 0.6671 x 10- 12 cm[35].

For small-angle scattering, the quantities of interest are the scattering length

densities p = NAb/v, where NA is Avogadro's number and V is the molar volume.

Figure 2-5 shows the scattering length densities of water, oil, and surfactant. The

deutrated and protonated compounds are very different in the scattering length den-

sity. By properly mixing the two, we can achieve any value of the scattering length

density in a certain range bounded by the values of the pure protonated and the pure

deutrated compounds, thereby allowing us to generate contrast variation within the

sample. Figure 2-6 shows how the scattering length densities of components can be

matched to manifest the different interfaces within the sample. When the scattering

length density of water (or oil) is matched with that of the surfactant, from the neu-

tron's point of view the three component system becomes a pseudo two component

system with interfaces facing oil (or water) and surfactant. This type of scattering

length density matching is called a bulk contrast. On the other hand, if we matched

water and oil, neutrons see only the thin films made of surfactant molecules, a sit-

uation which is called a film contrast. Other than these three extreme cases, we

can produce any intermediate contrast if necessary. This is very powerful technique

to differentiate some regions of the sample from the rest. SANS experiments were

performed for a bicontinuous microemulsion with the three different contrasts and

Figure 2-7 shows the corresponding absolute intensities in which we can clearly see

the variation of I(Q) depending on the contrast.

While the substitution of hydrogen by deuteron produces a good contrast between

water and hydrocarbon or between two hydrocarbons, there are artifacts associated
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with the method[36, 37, 38]. The physical chemistry of deutrated liquids is not

identical to that of protonated ones : the strengths of hydrogen bonds and that of

hydrophobic attractions are slightly changed. For example, a 1 to 2 oC shift in the

temperatures of the phase boundaries is often observed[37]. However, these effects can

be minimized by properly adjusting the experimental conditions such as temperature

or salinity for each sample.
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Chapter 3

Clipped Random Wave Model

The information provided by scattering techniques does not yield an image of the

structures within the sample but rather an image of all its correlations. This is due

to the phase information lost during the detection process. Since we do not have the

full information for reconstructing the structure of the system, we need a model which

is based on physically meaningful assumptions and is consistent with the measured

scattering intensity. Here we introduce a new model developed for SANS intensity

data analysis to extract the structural information of random porous materials in

terms of interfacial curvatures. This model also can be used to reconstruct the three-

dimensional structures of porous materials including microemulsions.

3.1 Scattering from Random Porous Materials

As shown in Chapter 2, the intensity distribution of SANS from an isotropic, dis-

ordered two-component porous material can be calculated generally from a one-

dimensional Fourier transform of the normalized Debye correlation function F(r),

I (Q) = 2) 0  () sin (Qr) 47r 2dr, (3.1)Qr

where the subscript D is dropped for simplicity. Therefore, all the intrinsic properties

of the sample system are contained in the Debye correlation function. Then the role



of a physical model is to provide a proper Debye correlation function which, after

Fourier transform, can be compared with the measured SANS intensities. Before

going into the details of the model, we consider the general properties of the Debye

correlation function.

There are two physical boundary conditions that F(r) must satisfy

F(r=O) = 1 (3.2)

F(r = ) = 0,

which can be easily inferred from the definition of the Debye correlation function

given in Eq. 2.25. The most important property of F(r) for the bulk contrast case

with a sharp boundary between two regions of different scattering length densities

is that it has linear and cubic terms under small r expansion. The corresponding

coefficients contain very important information,

F(r-+ 0) = 1 -clr + cr 3 +

S1- 4 2 r 1 - r2 +--. (3.3)
40,12 V c1

The coefficient of the linear term, c1, is proportional to the specific interface, and the

ratio of the coefficient of the cubic term to that of the linear term has been given by

Kirste and Porod[39] in terms of curvatures as

Cl = H2 )  (K) . (3.4)

The appearance of the surface to volume ratio in the small r expansion of the

Debye correlation function can be understood by the following. We consider a two

component porous system with volume fractions of 01 and 02, and scattering densities

pi and P2. The Deybe correlation function at R is related to the probability that two

random points in the medium separated by a distance R are either in the same phase

or different phases. When R is very small, the probability that the two points are in

different phases is proportional to how much densely the interfaces, which separate



the two phases, are distributed. This explains the surface to volume ratio appearing

in Eq. 3.3.

Since the scattering vector Q is reciprocally related to distance r, the small r

expansion of the Debye correlation function is closely related to the large Q behavior

of I(Q). By integrating Eq. 3.1 by parts, we can obtain a large Q expansion of I(Q),

I(Q) =- 2 ( 8rF (0) 16Fl.. (0) + O (Q-8)) (3.5)

Inserting the first derivative of Eq. 3.3 at r = 0 into Eq. 3.5, we obtain a relation,

lim [I (Q)]Qo (7 2 ()Q-4 (3.6)

This is called Porod's law[40] which is attributed to the existence of a well-defined

internal interface[41, 32, 42, 43] and is widely used to to extract the surface to volume

ratio by fitting the scattering at large Q.

3.2 Models for the Debye Correlation Function

A model which describes the structure of a certain system need to contain charac-

teristic length scales of the system. Therefore the Debye correlation function which

represents a spatial density correlation needs to contain certain characteristic length

scales of the system. Here we briefly review a few representative models of the Debye

correlation function.

The original Debye correlation function [32] proposed for porous materials which

have a completely random pore size distribution is an exponentially decaying function,

FDebye (r) = exp ) (3.7)

where ( is related to the specific interface as

1 _ 1 S\S 1  (~- . (3.8)
4012 V



Considering that most porous materials, such as bicontinuous microemulsions and

Vycor glass, have been found to have a scattering peak at finite Q, the exponentially

decaying form of rDebye (r) with no peak is not quite appropriate. The peak found

experimentally is due to a domain structure which produces short range correlation.

This requires the Debye correlation function to have an oscillatory factor as well as

the exponential decay.

From the phenomenological Landau free energy[44] for microemulsions[45],

F (V) = f [a2 + C1 ( ) + C2 (,A 7) 2 ( d 3  (3.9)

where 0 is an order parameter, Teubner and Strey [46] proposed a two-parameter De-

bye correlation function which yields a single broad scattering peak. In the Teubner-

Strey model, the Debye correlation function is

FTS (r) = exp - i ( r) sin ( 7) (3.10)

where d is the inter-domain distance (water-to-water or oil-to-oil) and ( the coherence

length. The corresponding structure factor is

(Q) = (3.11)

a2 _ 2QQ2 + Q 4

where the constant a and the peak position Qm are given as

a (2 ( (3.12)

Q = (d 2 (3.13)

This two-length scale Teubner-Strey model describes the scattering intensity from

bicontinuous microemulsions fairly well, but shows appreciable deviation from exper-

imental data at high Q. Furthermore, since the model does not involves any process

which realizes the micro-phase separation, its application to the measurement of in-

terfacial curvatures is not valid. The proper form of the Debye correlation function



which agrees with the scattering intensity over the whole Q-range and is suitable for

interfacial curvature measurement is described in the following section.

3.3 Clipped Random Wave Model

To calculate the Debye correlation function for bicontinuous microemulsions, we

adopted the clipped random wave (CRW) model. The CRW model was an idea origi-

nally introduced by Cahn[47] to describe the morphology of spinodally decomposed bi-

nary alloys and was recently implemented for the case of bicontinuous microemulsions[48,

49].

Continuous interfaces can be mathematically modeled by clipping a stochastic

standing wave T (r) at a certain level. In the CRW model, I (r) is constructed from

the superposition of a large number N of cosine waves with random wave vectors, k ,

and random phases qi
T (r)= 2 cos (kir i) , (3.14)

i=1

where /i are uniformly distributed on [0, 2-) and, for an isotropic morphology, the

probability density f () of k. is rotationally symmetric. In another words, the di-

rections of ki are uniformly distributed over solid angle 47.

It can be shown that the random function I (rj given by Eq. 3.14 is a Gaussian

random field [50] with zero mean and spectral function f (k). The Gaussian random

field is a field whose probability density function P (T) is given by the Gaussian

distribution,i.e.

P (T) = exp T) (3.15)

The statistical properties of a Gaussian random field with zero mean is completely

characterized by its two-point correlation function, defined as

g( r, - r1 ) = ( (r) 4 (rl)) (3.16)



and which has a Fourier transform relation with the spectral function f (k),

g( -r)= 4k2jo (k? -i 1r) f (k) dk (3.17)

The density function p (r) of two-component media, each component having uni-

form density, can be considered as a discrete function which has either pl or p2 at j'

depending on the phase (either component 1 or 2). To realize micro-phase separated

two component media, the continuous Gaussian random field T (r is clipped into a

discrete random field ( (r [48, 51, 52, 53, 54]. This clipping process can be described

as

1, whenT' (r) > a (3.18)

0, otherwise

where E) is a step function. a, called the clipping level, is chosen to give the required

volume fractions for the two phases and an interfaces between two material phases is

defined by i (rJ = a. For example, a = 0 corresponds to an isometric(O1 = 02 = 0)

system. The Debye correlation function for the discrete ( (r) is given exactly by

F (r) = (0) (r)) - ()2 (319)

(()- () 2

where (() and (()2 are calculated as [51]

/+oo
- OO P (T)( T)dI

1 1 a (_4 2

= exp dI (3.20)

(( (0)(r)) = o 1((r)) exp 1 - dO (3.21)
-(O)C~27)o 1 cosO

The average value of the clipped Gaussian random field (() and its complement

1 - (() correspond to the volume fractions of the major and minor phases 01 and q2

respectively. Using Eq. 3.21 and (() = q1, the Debye correlation function given in



Eq. 3.19 can be rewritten as

1 cos1(9(r)) a2

F (r)= 1i - I o'g exp I + cos dO (3.22)

For small a, meaning a slight deviation from an isometric case, Eq. 3.22 can be

approximated as

F (r) - - Icos-1 (g (r)) - a 2 tan os- ) (3.23)
27ro1 2 2

where the volume fraction d1 can be approximated as

1 a
01 a - - " (3.24)

2 2

For an isometric system, i.e. 1 = 02 = 0.5 and a = 0, Eq. 3.22 reduces to a very

simple form
2

F (r) = - sin - 1 (g (r)). (3.25)

Considering the complexity of the procedure involved in the CRW model, Eq. 3.25 is

a remarkably simple expression for the Debye correlation function.

3.4 Specific Interface in the CRW Model

The specific interface is one of the most important quantities which describe the

property of the porous material. As shown in section 3.1, traditionally the specific

surface in a two-phase medium with a sharp interface has been determined by applying

the Porod's law [40] to the large Q region of the neutron or x-ray scattering intensities.

In the CRW model, an alternative way of extracting the specific interface, which

utilizes the scattering intensity over the whole Q range, is derived. The small r

expansion of g (r) can be obtained by expanding jo (kr) (setting ri = 0) in Taylor

series,

g(r) = 4wk 2 1 - -k 2 + k 4 4 f (k) dk
10 6 120



- 1 -1k2),2 + I i k4 4 + (3.26)
6 120

where we used the normalization condition of the spectral function f (k), and (k2)

and (k 4 ) denote the 2nd and 4th moment of f (k). Note that this expansion has a

quadratic term followed by a quartic term. Using the result of Eq. 3.26 in Eq. 3.22,

we obtain a small r expansion of the Debye correlation function

F (r -+ 0) = 1 - ep 1 - k2) ( - ) r2

27r 2 2 40 (k2) 72
(3.27)

Comparing this with Eq. 3.3, we obtain the specific interface in a two-phase medium

in terms of the 2nd moment of the spectral function f (k)

\= exp (-I . (3.28)

Considering that the Porod's law is limited by the availability of large Q data and its

statistics, Eq. 3.28 is a very useful expression which utilizes the scattering intensity

over the whole Q range and therefore there is less uncertainty of the determination

of the surface to volume ratio. This relation also implies that one of the basic re-

quirements for the physically acceptable spectral function is that the 2nd moment be

finite.

3.5 Three Basic Length Scales and Spectral Den-

sity Function

The proper application of the CRW model strongly depends on the choice of a phys-

ically meaningful spectral function. A few spectral functions in conjunction with the

CRW model have been suggested [48, 51, 55, 56]. While they show certain prominent

features in the scattering intensity of bicontinuous microemulsions, the information

contained in the spectral functions is limited or their application to the measurement

of all the interfacial curvatures is not valid. In this section, a new form of f (k) which



satisfies the fundamental requirements for a physically meaningful spectral function

is introduced.

First, a natural requirement of f (k) is that when it is used in the CRW model,

it would give an intensity distribution which agrees with SANS data. Second, con-

sidering that, as given in Eq. 3.28, the specific interface which has to be finite is

proportional to (k2), f (k) must have a finite 2nd moment. Third, as it will be

shown in the next section, the average square mean curvature is related to the 4th

moment of f (k) and therefore f (k) also has to have a finite 4th moment.

We choose an inverse 8th-order polynomial containing three parameters a, b, and

c, which are the minimal set for the physical situation under study

bc (a2 + (b+ c)2) 2 / (b + c)27r
f(k) = (. (3.29)

(k2 + C2) 2 (k4+ 2 (b2 - a2) k 2 + (a + b2) 2)

The three parameters are related to the three basic length scales in the interfacial

structures as following,

2w
a = (3.30)

b = (3.31)

c = (3.32)

where d is the inter-domain distance (water-water or oil-oil), the coherence length of

the local order and 6 the surface roughness parameter which describes the roughness

of the surface. The 2nd and the 4th moments of the spectral function f(k) given in

Eq. 3.29 are calculated as

k2)  
- c (a2 + b2 + C2) (333)

S(b + c)

k4  c (a4 + 2a 2b2 + b4 + 4a2bc + 4b3c + 4b2C2 + b3C)
(k4+ c= .v (3.34)

() (b + c)

The form of f(k) given in Eq. 3.29 was determined not only by the requirements



of moment finiteness but also by physical consideration of the measured scattering

intensities. As discussed in section 3.2, the two-parameter Teubner-Strey model agrees

well with the scattering intensities around the peak but deviates appreciably at the

large Q region. Considering that the large Q data corresponds to small length scale

fluctuation, the poor agreement of the Teubner-Strey model which contains only the

large length scales is natural. The small length scale fluctuations occurs naturally in

surfaces with ultra low elastic bending constants such as surfactant monolayers. To

be able to explain the large Q region and correspondingly the small scale fluctuations,

we introduced the new length scale 6 in such a way that the spectral function given in

Eq. 3.29 can produce the correct scattering intensities at the large Q. While typical

values of d and ( are 100's A, those of 6 are 10's A or less.

Figure 3-1 shows the spectral function for a few representative sets of d, , and

6, which explains the physical meaning of the three basic length scales. In Figure 3-

1 a), we can see that changing d while keeping the ratio /d (0.5) and 6 (10 A)

constant shifts the peak position of the spectral function. It is noticeable that for

each distribution of f(k), the overall shapes are all the same. This tells us that d is

a primary length scale which defines the underlying distance scale but not the shape

of the structure. This confirms our interpretation of d as the inter-domain distance.

Figure 3-1 b) shows the effect of varying the ratio /d with constant 6. While

d (200 A) and 6 (10A) are kept constant, /d was increased from 0.25 to 2.0. In

this case, while its position in k does not change, the shape of peak becomes shaper.

This means that the system described by f(k) becomes more ordered. Therefore, the

ratio (/d is called a order parameter and in this context, the interpretation of ( as a

coherence length is clear.

In Figure 3-1 c), the effects of the surface roughness parameter 6 on the large

Q region is clear. In this graph, d (200 A) and ( (100 A) is kept constant. As the

value of 6 changes, only the wing of f(k) at shifts up and down: the smaller 6, the

higher the wing. This clearly confirms our interpretation of 6 as the surface roughness

parameter which describes small length scale surface fluctuations.

Inserting Eq. 3.29 into Eq. 3.16, the corresponding two-point correlation function
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is obtained,

4bc (a2 + (b + c)2) 2

g(r) (b + c) r

x ex (-cr) a2 - b2 + C2  2 +

( (4a2b2 2- V + C2 ) 4c(a 2 +b2) 2 + 2(a2 -b2) C2 +C4

exp (-br) - 8a2b2 + (a2+b2)2 + 2 (a2 - b2) 2 + (2 - b2) C2 + C4 sin (ar)
+ 2ab 4 (4a2b2 (a2 - b2 + C2) 2

ab (a2 - b2 + c2) (ar) (3.35)

(4a2b2 + (a2 - b2 + C2)2)

Inserting Eq. 3.35 into Eq. 3.22 or Eq. 3.25, we can calculate the Debye correlation

function. Once we know the Debye correlation function, we can calculate the absolute

intensity I(Q) by Eq. 3.1 and compare it with the measured scattering intensities.

Using the same parameters used in Figure 3-1, the Debye correlation function

was calculated for isometric systems by Eq. 3.25 and Eq. 3.35. Figure 3-2 shows the

results. This explains the effects of the three basic length scales on the real space

function F(r). The second zero crossing point of F(r) corresponds to the inter-domain

distance d and the first zero crossing point, which is exactly half of the inter-domain

distance, is the distance between the two phases, e.g., water and oil. In Figure 3-2

a), we can see the systematic change of the zero crossings with d.

The oscillation of F (r) is directly related to the local order of the system. For

example, a perfect crystal will generate sinusoidal oscillation with a constant ampli-

tude of unity. Since the system considered here has random disordered structures,

the oscillation of F (r) decays dramatically within a range of less than a single inter-

domain distance. Figure 3-2 a) shows the decay of the oscillatory F (r) as a function
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of the order parameter (/d : the smaller the value of /d, the faster the decay of the

oscillation.

Figure 3-2 c) shows the effects of 6. We can see that the change of F (r) at small r

depends on the value of 6 : the smaller 6, the faster the decay of F (r). In the section

3.1, it was shown that the slope of F (r) in the small r region is directly proportional

to the surface to volume ratio. Therefore, smaller 6 corresponds to larger surface to

volume ratio. This makes sense because in order to distribute more surfaces in a finite

volume, the surfaces have to be more strongly wrinkled resulting in a smaller value

of 6.

3.6 Interfacial Curvatures

In this section, we discuss the mathematical definition of an interface and show how

one can calculate the curvatures of a general interface. We then relate the interfacial

curvatures to the spectral density function defined in the CRW model.

We consider a surface M in a three-dimensional Euclidean space E3 . The surface

can be described by the parametric form x = f (u, v), y = g (u, v), and z = h (u, v),

or by the implicit form F (x, y, z) = 0. For our convenience, here we use the impilicit

representaion.

It is well known that the curvature of a linear object is given by the change of the

tangent as one moves along the arclength of the curve. Similarily, the curvature of a

curve on the surface can be derived from the implicit form of the surface, F (x, y, z) =

0 by considering the change in the normal vector field as one proceeds along the

surface. Realizing that on the surface, where F is a constant, the total derivative of

F is zero, one can show that VF is orthgonal to the surface and thus, the unit normal

vector field U of the surface is given by

=VF (3.36)
IVFI

It is known that the shape of the surface M is described infinitesimally by a certain



Figure 3-3: Principal radii of curvature on a saddle shaped interface

linear operator S called a shape operator[57, 58] defined on each . If ' is a point of

M, then for each tangent vector 7 to M at , the shape operator Sp of M at P is

defined as the directional (along V) gradient of a unit normal vector field U on a

neighborhood of ' in M,

S, (') = -VVU. (3.37)

It can be shown that the shape operator has two eigenvalues called the principal cur-

vatures, 1/Ri and 1/R 2, which are the maximum and minimum of normal curvature

at the point J. The normal curvature 1/R is defined as

1/R = -V,U -U (3.38)

where u' is a unit tangent vector at a point 5 and the sign of the normal curvature

is determined by the choice of the normal vector field U. Figure 3-3 shows the two

principal radii of curvature at a point on a saddle shaped interface separating water

and oil.

The two invariants, the Gaussian and mean curvatures, which are intrinsic proper-



ties of the surface are defined in terms of the shape operator. The Gaussian curvature,

K, is a half of the trace of the shape operator and the mean curvature, H, is the de-

terminant of the shape operator:

K = detS, (3.39)

1
H = -traceS. (3.40)

2

Since the shape operator has two non-zero eigenvalues called principal curvatures, the

Gaussian and mean curvatures can be also given in terms of the principal curvatures

K = (3.41)
R1R2

H = I . (3.42)

A complete knowledge of the Gaussian and mean curvatures at every point on the

surface corresponds to the complete informations about the shape of the surface. A

significant fact about the Gaussian curvature is that it is independent of the choice

of the unit normal vector U. If U is changed to -U, then the sign of both 1/R 1 and

1/R 2 change, so K is unaffected. This is obviously not the case with mean curvature

H, which has the same ambiguity of the sign as the principal curvatures themselves.

Here, we choose the sign convention in such a way that a principal curvature concave

towards water is considered positive. Therefore, in Figure 3-3, R 1 is positive and R2

is negative. The signs of the Gaussian and mean curvatures are crucial information

needed to determine the shape of surfaces. On a saddle shaped surface, the Gaussian

curvature is always negative for every point and the sign of the mean curvature is

determined by the magnitude of R and R 2 . On a surface concave towards water,

both curvatures are positive and on a surface that is concave towards oil, the Gaussian

curvature is positive and the mean curvature is negative.

The Gaussian and mean curvatures can be expressed in terms of the first and

second derivative of F (x, y, z). First, we insert Eq. 3.36 into Eq. 3.37 and second



take a determinant and a trace of the resulting shape operator. From this we find an

expression for the Gaussian curvature:

S[F.zF,F - F 2F z + 2FzFx (FyFyz - FzFy) + Perm] (3.43)

where

M = F+ F + F (3.44)

and the term Perm indicates that one should consider two additional permutations

of each term : (x, y, z) - (z, x, y) and (x, y, z) --+ (y, z, x). The mean curvature is

given by

M3 [Fxx (F + F2) - 2FxFyFxy + Perm]. (3.45)

To understand the overall geometry of a random interface, we need to consider the

statistical average of the curvatures over the whole interface. The average Gaussian

and mean curvatures are defined as

(K) = IR2) (3.46)

(H) 1= (1+ ) (3.47)

where the statistical averages are taken over all points on the interface. According

to the Gauss-Bonnet theorem[57] in differential geometry, the average Gaussian cur-

vature is proportional to the Euler characteristics of the random interface and is a

topological invariant measuring the number of particles minus the number of holes

in the particles. Figure 3-4 shows the average Gaussian curvatures for three different

closed interfaces.

Another important quantity is the average square mean curvature (H 2) which is

defined as

(H2 2 1= + 2 .(3.48)

The average square mean curvature is proportional to the bending energy, and to-

gether with the average Gaussian and meancurvatures, plays a prominent role in the
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Figure 3-4: The Average Gaussian Curvature and the Gauss-Bonnet Theorem

(K) Stot, = 47r (1 - n) where n is the number of holes on a closed surface.

theories of microemulsions [59, 60, 61, 62, 63].

To connect the interfacial curvatures with the random surface in the CRW model,

we consider a random interface T (rj generated by the level set a,

X (F = a (3.49)

where the function T (r is defined by Eq. 3.14. Here, F (i) - a corresponds to F (r)

in the implicit form of a surface. Inserting the first and second derivatives of F (F) -a

into Eq. 3.43 and 3.45, and averaging over the whole interface, we obtain expressions

of (K) and (H) in terms of the clipping level a and the moments of the spectral

function f(k) [51]:

(H) (k2), (3.50)
1 6

(K) 1 k2 (2 - 1), (3.51)

H2 = k2(a 2 +v2) , (3.52)



where
2 6 (k 4) (353)

122 = 1. (3.53)
5 (k2) 2

Inserting (k2) and (k4) given in Eq. 3.33 and 3.34, the interfacial curvatures can be

given in terms of a, b, and c ,i.e. d, and 6, explicitly,

(a2 - 1) c (a2 + b2 + bc)
(K) = (bc(3.54)

6 (b + c)

a c (a2 + b2 + bc)(H)= - (3.55)
2 6 (b + c)

a 2 c (a2 + b2 + bc)
( : 6 (b + c)

a4 (6b + c) + a2 (12b 3 + 26b2c + 14bc 2) + 6b5 + 25b4c + 38b3C2 + 25b 2 C3 + 6bc4

30 (b + c) (a2 + b2 + bc)
(3.56)

Once the three basic length scales and the clipping level a are determined, the average

interfacial curvatures can be calculated using Eq. 3.54, 3.55, and 3.56.

3.7 Simulation of Three-Dimensional Structures

The CRW model is very powerful not only because it allows us to estimate the in-

terfacial curvatures but also because it permits us to simulate the three-dimensional

structure of systems under investigation using corresponding estimated spectral func-

tions. The procedure for the simulation of three-dimensional structures is essentially

built in the CRW model[56, 53].

Once we determine the spectral function of the system from SANS intensities, the

Gaussian random field T (r) given in Eq. 3.14 can be generated. It should be noticed

that in this process, we introduce a random phase Oi which is uniformly distributed

over [0, 27r). In fact, by this way we approximate the lost phase information of the

structure during SANS experiments. Since the systems we are studying are known to



Figure 3-5: 3D simulation of a bicontinuous microemulsion. d = 200A, ( = 100A,
and 6 = 20A. The size of box is 480 x 480 x 480A 3.
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Figure 3-7: Effect of 6 on the roughness of interface. a) 6 = 2 and b) 6 = 16A1. In
both cases, d = 200A and ( = 100A. The size of boxes is 240 x 240 x 240 A3 .



be very disordered, the assumption of random phase is a good approximation. Using

Eq. 3.18, the Gaussian random field T (r) is then clipped into a discrete random field

( (r). Following the points where the discrete random field change its value, we can

identify the interfaces between water and oil.

One example of a three dimensional simulation of a bicontinuous microemulsion

using the CRW model is shown in Figure 3-5. In this simulation, representative

values of the three length scales which are used, are the same order of magnitude as

the values determined from SANS experiments : d = 200A, ( = 100A, and 6 = 20A.

The surfaces are colored in bright and dark shades. The bright side of the surface

faces oil and the dark side water. In fact, the surfaces are all connected, i.e. a single

surface, resulting in a true bicontinuous structure.

To visually illustrate the physical meaning of the three basic length scales, a few

test simulations were performed. Figure 3-6 describes the meaning of d and the effects

of the order parameter (/d on the structure. The brighter part is oil and the darker

part is water. First of all we can clearly see that the local order rapidly disappears as

we move radially from one point. If we average the radial correlation functions in all

direction it becomes the Debye correlation function. Therefore, the Debye correlations

for this kind of structure decay rapidly as it was shown in Figure 3-2. As the order

parameter changes from 0.25 to 1.0, the structure becomes less disordered.

Figure 3-7 shows the effects of 6 on the roughness of surface. The front part of the

images were removed to see the interfaces more clearly. While the large scale struc-

tures are the same in both cases, the roughness of the surface is changed dramatically

by 6. This clearly verifies our definition of the surface roughness parameter 6.



Chapter 4

Isometric Microemulsions

Two component systems with symmetric volume fractions 1 = 2 are called isometric

systems. As was discussed in Chapter 1, the bicontinuous structure favors isometric

composition. For this reason, research on the bicontinuous structure is often made

with isometric compositions. In this chapter, SANS measurements of the interfa-

cial curvatures in isometric microemulsions made of an ionic surfactant called AOT

(sodium-bis-ethylhexylsulpho-succinate), water and decane[64, 65] are presented.

4.1 Phase Behavior of Isometric AOT/water/H-

decane System

The three component system of AOT/water/H-decane can easily form microemul-

sions in the vicinity of room temperature at a wide range of compositions[66, 67]. It

has been shown, however, that the pure ternary system forms a water-in-oil droplet

microemulsion only at room temperature because of the preferential curvature of the

surfactant film toward water [68]. Thus the pure ternary system normally does not

form a bicontinuous structure. In order to realize a bicontinuous structure in this

system one needs to add small amounts of salt [69, 70], which means that one can

control the hydrophilicity of the ionic surfactant with salt[67, 71]. For simplicity ,

the phase prism of an isometric microemulsion system is often projected onto the
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Figure 4-1: Phase diagram of isometric AOT/D 20/decane system

temperature-surfactant volume fraction plane. In the case of the AOT based mi-

croemulsion system, however, one can also represent the phase diagram equally well

in the salinity-surfactant volume fraction plane if one chooses a temperature close

to but above the HLB (hydrophilic-lipophilic balanced) temperature of the system.

The physical reason for this is that the spontaneous curvature of the AOT monolayer

at the oil-water interface can be varied continuously by either changing temperature

at fixed salinity or by changing salinity at fixed temperature. The hydrophilicity of

an AOT molecule increases with increasing temperature but diminishes upon higher

salinity.

Figure 4-1 shows the phase diagram of an isometric AOT/D 20(NaC1)/H-decane



system in the salinity-surfactant volume fraction plane at a temperature of 45 C.

The phase diagram was prepared for bulk contrast SANS experiments in which we

match the scattering length density of decane with that of the hydrocarbon tail of

AOT. From the neutron scattering point of view, we reduce the three-component

system into a two- component system by contrast matching. The volume fraction of

D20 plus the head group of AOT was maintained at 0.5 for all surfactant volume

fractions, i.e. 01 = qD 2 0 + /qs = 0.5 and 02 = Odecane + (1 - /) Os - 0.5. 3 is

the volume fraction of head group in AOT and was taken to be 0.1064 [56]. In this

regard, the contrast matched AOT/D 20/decane system is a pseudo two-component

isometric system.

For small surfactant volume fractions, less than 0.04, and low salinity, the system

shows a 2 phase with an excess oil layer on top and an oil-in-water microemulsion at

bottom. As salinity increases, the system goes through a three phase region, where a

middle-phase microemulsion is in coexistence with an excess oil layer on top and an

excess water layer on bottom, and at high salinity it transforms to a phase with an

excess water layer on bottom and a water-in-oil microemulsion on top. For surfactant

volume fractions larger than 0.035, as salinity increases, the system transforms from

2 phase to 2 phase through a 1 phase intermediate region. In the lower part of the

1 phase channel, one finds a region of lamellar phase, the salinity interval which it

spans increases with increasing volume fraction of AOT. It should be noted from

this phase diagram that the microstructure of the microemulsion inverts from an oil-

in-water structure at low salinity to a water-in-oil structure at high salinity at fixed

composition. It is thus expected that somewhere in the middle of the one phase region

there should exist a series of disordered bicontinuous microemulsions with zero mean

curvature[72]. In the phase diagram, we indicate by solid circles the locii where the

zero mean curvature microemulsions may be found.



4.2 SANS Experiments

In SANS measurements, a suitable mixture of H-decane (94.99 wt%) and D-decane

(5.01 wt%) was used to match the scattering length density of decane with that of

the hydrocarbon tail of AOT (-0.1845 x 1010 cm-2). H-decane (purity > 98 %),

D-decane(purity > 98 %) and AOT (purity > 99 %) were purchased from Fluka and

D2 0 (purity > 99.9 %) from Cambridge Isotope and used as purchased.

The SANS measurements were performed at 45 'C for the points indicated as

solid circles in the phase diagram. The points along the boundary between the one-

phase and the lamellar phase are to measure the average Gaussian curvature and the

average square mean curvature as a function of surfactant volume fraction. Since

the average mean curvature of the lamellar phase is known to be zero, the average

mean curvature at the points close to the lamellar phase are expected to be very close

to zero. The points at with different salinity are to measure the average Gaussian

curvature and the average square mean curvature.

The small-angle neutron diffractometer(SAND) at IPNS in Argonne National Lab-

oratory was used in the measurements. The SAND uses a spallation neutron source

generated by a 500 MeV H-accelerator. After moderation we have a pulse of white

neutron beam with an effective wave length range from 1 to 14 A. In SAND, all these

neutrons are utilized by encoding their individual time-of-flight and their scattering

angles are determined by their detected position on a 2D area detector. The 2D area

detector has an active area of 40 x 40 cm2 and the sample to detector distance is 2

m. This configuration allows a maximum scattering angle of about 9'. The reliable

Q-range covered in the measurements were from 0.004 to 0.4 A-1. The liquid samples

were contained in a flat quartz cell with a 1 mm path length. The temperature of the

sample was set by a circulating water bath to an accuracy of 0.1 'C. Measured inten-

sities were corrected for background and empty cell contributions and normalized by

a reference scattering intensity of 1 mm water at room temperature.



4.3 Data Analysis and Discussion

The scattering intensity in absolute scale obtained after the standard data normaliza-

tion procedure contains about 10 % of uncertainty in calibration using 1 mm water.

This may cause an unnecessary uncertainty in the determination of parameters d, ,

and 6. This uncertainty factor, however, can be eliminated by normalizing the scat-

tering intensity by the invariant calculated according to Eq. 2.27. In the calculation of

the invariant, the interval of integration was divided into three parts, 0 < Q < Qmin,

Qmin < Q < Qmax, and Qmax < Q where Qmin and Qmax are the minimum and maxi-

mum values of Q in the measurements. In the range, Qmin < Q < Qmax , the measured

intensity was used for I(Q). In the range,0 < Q < Qmin , it was assumed that I(Q)

is constant at I (Qmin,). Porod's law was assumed for the Q-range,Qmax < Q.

Figure 4-2 shows a representative SANS intensity of an isometric bicontinuous

microemulsion. The flat tail at large Q in Figure 4-2 a) is background due to inco-

herent scattering. Since the structural information of the sample is contained only in

coherent scattering, the background scattering has to be removed from the scattering

intensity. To determine the background scattering correctly, the SANS measurement

has to cover the Q-region large enough to see the flat background scattering. Figure 4-

2 b) shows the intensities after background correction. This intensity is characterized

by a broad peak at Q = 0.03 A- 1 , a Q-4 power law decay at large Q and the transition

of decay power from -n (n > 4) to -4 around Qtrans. In fact all these features are

related to the three basics length scales. The position of the peak is related to the

inter-domain distance d as 27/Qax and the width AQ is inversely proportional to

the coherence length (. The transition to Porod's region is controlled by the surface

roughness parameter 6.

Figure 4-3 a) shows the scattering intensities measured at a series of points close

to the 1 phase and lamellar phase boundary. We can clearly see that, as the surfactant

volume fraction increases, the peak position shifts to higher Q and the peak becomes

sharper. The physical meaning of this systematic change as a function of surfactant

volume becomes clear after analyzing them with the CRW model.
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Table 4.1: The fitted parameters of isometric AOT/D 20/decane system

Os d 6 (/d (K) (H 2 ) (S/V)RWM (S/V)POrod bgd (r72)
A) (A) (A) 10A-2) 10-4 A-2) 10- 2 1) 10-21 (-1) (1021 m-4)

0.05 1025.0 90.6 58.5 0.088 -0.353 1.62 0.535 0.399 0.385 2.59
0.08 477.1 83.5 21.4 0.175 -1.165 6.35 0.972 0.913 0.384 1.31
0.11 293.7 89.3 11.0 0.304 -2.382 16.78 1.39 1.25 0.393 1.09
0.14 209.1 80.9 9.12 0.387 -3.610 21.65 1.71 1.70 0.382 0.93
0.17 159.5 74.3 6.54 0.466 -5.809 37.67 2.17 2.19 0.352 0.93
0.20 126.5 68.5 4.78 0.542 -8.943 64.85 2.69 2.56 0.321 0.90



In Figure 4-3 b), c) and d), three representative SANS intensities at 0, = 0.11,

0.14 and 0.20 are compared with the theoretical fits using Eq. 3.35 and 3.25 in

Eq. 3.1. The circles are experimental data and the solid lines are theoretical fits.

These show a good agreement of the CRW model with the experimental data. The

fitted parameters d, , and 6 are listed in Table 4.1. Using Eq. 3.30, 3.31, and 3.32,

a, b, and c were converted into the inter-domain distance d, the coherence length (,

and the surface persistence length 6. The variation of d, (, and 6 as a function of

surfactant volume fraction are shown in Figure 4-4. As the surfactant volume fraction

increases d and 6 decrease rapidly while ( decreases slowly. This is because as the

number of surfactant molecules increase, more surfaces are created per unit volume

and therefore the inter-domain size d should decrease. The ratio /d is a measure of

the local order. Considering that the ratio /d increases with the surfactant volume

fraction, the bicontinuous microemulsion is most disordered at the fish tail, which

is the point of the smallest surfactant volume fraction in the 1 phase region, and

becomes more ordered as the surfactant volume fraction increases.

The average Gaussian and square mean curvatures are calculated by using Eq. 3.54

and Eq. 3.56 respectively with a = 0. In this case, the average mean curvature in this

isometric case is zero. Figure 4-5 shows the average Gaussian curvature as a function

of s. Here we should notice that (K) is negative in every point measured in this

experiment. From this we can infer that the interfacial structure of the microemulsion

under study is dominated by the saddle shape interface where the Gaussian curvature

is negative. From the distribution of (K) as a function of ¢, we can clearly see the

parabolic dependence. This parabolic dependence can be explained by the following

arguments. For an isometric case, a = 0, thus the specific interface given in Eq. 3.28

reduces to

=k 2). (4.1)

If all the surfactant molecules reside at the interfaces, it can be shown that (add one

more line to derive this)

- -(4.2)
V A
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where A is the effective chain length of the surfactant. Since the average Gaussian

curvature in an isometric system is proportional to (k2) by Eq. 3.52, using Eq. 4.1

and 4.2 with Eq. 3.52, we obtain a scaling relation

After determining A independently from Porod's law, the scaled Gaussian curvature,

A 2 (K), is displayed against the scaling relationship given above. The A of AOT

used in this graph is 8 A which is an average value obtained from the six data points.

It is remarkable that the experimental results and the theoretical expectation show

a good agreement. This tells us that the interfacial curvature measurements from

SANS intensity using the CRW model is a consistent and reliable procedure.

Using Eq. 4.1, the specific interfaces were calculated and, after multiplication by
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A, compared with those estimated by Porod's law. As we can see in Figure 4-6, both

agree each other very well. This can be considered as another evidence of the validity

of our method for extracting the interfacial curvatures. Since the Porod's law uses

only large Q data, when the large Q data is poor in statistics or insufficient, the

specific interface estimated by the Porod's law often contains large uncertainties. In

this sense, the specific interface measurement using the CRW model which uses the

SANS intensity over the whole Q range is suggested as an alternative to the Porod's

law.

Figure 4-7 shows the average square mean curvature (H 2) calculated by Eq. 3.56

and plotted as a function of ,. While, according to Gauss-Bonnet theorem, (K) is a

topological invariant only related to the number of holes per unit interfacial area, (H 2)

is the fluctuation of the mean curvature and thus related to the persistence length of

the interface. In the limiting case where the parameter c is much larger than a and



b, which is often the case of disordered bicontinuous microemulsions, it can be shown

that (H 2) is reduced to (-2/5). Points are also shown for (5-2/5). Both agree fairly

well and this confirms the physical meaning of the third length scale, 6, as a surface

roughness parameter.

4.4 Two- and Three-Dimensional Simulations

Using the parameters determined from SANS experiments, we generated a series

of three dimensional structures. For visual simplicity, cross sections of those im-

ages are presented in Figure 4-8. As we can see clearly, as the surfactant volume

fraction increases, the inter-domain distance increases correspondingly. Also, the sys-

tem becomes less disordered. One full three-dimensional simulation of an isometric

AOT/D 20/decane system at 0, = 0.08 is shown in Figure 4-9. As we can see here

the surfaces are all connected and therefore the structure is bicontinuous. We should

also notice that there are many holes within the structure and the interfaces are domi-

nated by saddle points. This consistent with the negative average Gaussian curvature

measured.
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Chapter 5

Non-Isometric Microemulsions

The two component porous materials of asymmetric compositions, /1 - 02, are called

non-isometric systems. Since many of the porous materials in widespread use are

non-isometric, it is important to be able to characterize their interfacial structures.

Microemulsions can be prepared in such a way that the volume fractions of the watery

and oily regions are not equal[73], which are called non-isometric microemulsions.

Depending on the asymmetry of the composition, temperature and so on, the systems

show various phase behavior with corresponding characteristic internal structures. In

this chapter, SANS studies of two non-isometric microemulsions are presented. The

first one is a non-ionic microemulsion made of C1oE4/D 20/H-octane and the second

one is an ionic microemulsion made of AOT/D 20(NaCl)/H-decane. Using the CRW

model with a non-zero clipping level a, the SANS intensities at various points in

the 1 phase channel were analyzed to extract the average interfacial curvatures and

identify the interfacial structures[74]. The 3D simulations were generated to confirm

the structures inferred from the curvature information and provide further insights.



5.1 Phase Behavior of Non-Isometric Microemul-

sions

Figure 5-1 shows the phase diagram of non-isometric C1oE4 /D 20/H-octane system

on a T - A0 1 plane. C10 E4 (Fluka, > 97 %), D2 0 (Cambridge Isotope Laboratory,

> 99.9 %), and H-octane (Fluka, > 99.5 %) were used. In this phase diagram, the

surfactant volume fraction was kept constant at 0.13. The volume fraction of the

watery region which includes water and the head group of the surfactant is denoted

by 01 and that of the oily region which includes oil and the tail of the surfactant by

S= Ow + s5  (5.1)

02 = o + (1 - )$ 8  (5.2)

where / is the volume fraction of the head group in a surfactant molecule. The degree

of non-isometry, A0 1, which measures how far away the system is from isometry

(01 = 02 = 0.5), is defined as

A01 = 01 - 0.5 (5.3)

where a positive A0 1 means a water-rich composition and a negative A01 an oil-rich

composition. In the non-isometric C1oE4/D 20/H-octane system, the phase behavior

is rather symmetric about A0 1 = 0. This is caused by the well balanced sizes of

the head and tail groups of the surfactant C10 E4 as well as their balanced soulibility

in water and oil. This effect becomes clear if we consider the asymmetric phase

diagram of an ionic microemulsion made of AOT/D 20(NaC1)/H-decane where AOT

is a surfactant molecule with a much smaller head than its tail. When it is isometric

or close to isometric, the non-ionic microemulsion goes through a rather simple phase

transitions with temperature as following,

2 phase -+ 1 phase - 2 phase.



When it is very oil-rich or very water-rich, however, the phase transitions take more

steps including a lamellar phase between the two 1 phases,

2 phase -± 1 phase -+ L, phase -- 1 phase - 2 phase.

Figure 5-2 shows phase diagram of non-isometric AOT/D 20(NaCl=0.4 wt%)/H-

decane system on a T - A0 1 plane. AOT(Fluka, > 99 %), D2 0 (Cambridge Isotope

Laboratory, > 99.9 %), and H-decane (Fluka, > 98 %) were used. While the volume

fraction of AOT was maintained at 0.112, the volume fractions of water and oil were

varied. The salinity in water was 0.4 wt %. When A4 1 is very negative, as the

temperature increases, the microemulsion goes through a series of phase transition as

shown,

2 phase -+ 1 phase -+ 2 phase.

However, when A0 1 is positive, the phase transitions as temperature increases goes

through a Lamellar phase,

2 phase -+ 1 phase -+ La phase - 1 phase -+ 2 phase.

While the non-ionic microemulsion exhibits a phase behavior symmetric about A0 1,

the ionic microemulsion shows a asymmetric phase behavior. This difference in the

phase behavior may be caused by the difference in the symmetry of the head and

tail group of surfactant molecules. While the non-ionic surfactant has a symetric

head and tail in size as well as the amphiphilicity, the ionic surfactant has a non-

symetric head and tail (a very small head compared to its tail). In the non-ionic

microemulsion the 2 phase is located at the lower temperature region with the 2 phase

at the higher temperature region but in the ionic microemulsion, their locations are

reversed. This is due to the opposite temperature dependence of the hydrophilicity

(or hydrophobicity) of non-ionic and ionic surfactants. As the temperature increases,

the non-ionic surfactant becomes less hydrophilic while the ionic surfactant becomes

more hydrophilic.
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5.2 SANS Experiments

We are interested in the structural transformation within the 1 phase region as the

microemulsions move away from isometry. For this purpose, a series of SANS ex-

periments were performed to measure the average Gaussian, mean, and square mean

curvatures. The points where the SANS intensities were measured are denoted by

solid circles in Figure 5-1 and 5-2. In the ionic microemulsion, only the oil rich

region where the 1 phase region has a wide temperature gap was investigated. In the

non-ionic microemulsion, however, both the water-rich and oil-rich regions were ex-

plored. The samples for this set of experiments were prepared in such a way that we

realize the pseudo two component systems in a similar way as the isometric systems

discussed in Chapter 4. In the ionic system, the temperature was maintained at 45

'C for all the samples and in the non-ionic case, the temperature was changed for

each sample as indicated in the phase diagram. For both systems, the SANS experi-

ments were performed at the small-angle neutron diffractometer(SAND) at IPNS in

Argonne National Laboratory. The configuration of SAND was the same as described

in Chapter 4.

5.3 Three Length Scales and Interfacial Curva-

tures

5.3.1 Non-Isometric Non-Ionic Microemulsions

The SANS intensities of non-isometric C1oE4/D 20/octane system without background

correction are shown in Figure 5-3 a) and b) where a) shows A0 1 < 0 (oil-rich side)

and b) A0 1 > 0 (water-rich side). It is interesting to note that as A01 moves away

from zero, the scattering intensities vary in a symmetric way about A0t = 0. As the

system moves away from A0 1 = 0 in both positive and negative directions, the peak

positions of the intensities shift toward large Q. The intensities at large Q where the

Porod's law is applied, however, overlap each other. Since the specific interfacial area



is proportional to the coefficient of Porod's law decay, the specific interfacial areas in

all the samples studied here are about the same. This is natural because we kept the

volume faction of surfactants (which constitute the interfacial monolayer) same in all

the samples. The effect of the surfactant volume fraction on the specific interfacial

area becomes more clear if we compare the scattering intensities in Fig 5-3 with those

in Fig. 4-3 where the scattering intensities at Porod's regime increase with s.

Now the question is how the non-isometric microemulsions with similar specific

interfacial areas evolve in structure with the degree of non-isometry. For this purpose

we analyzed the SANS intensities of the non-isometric microemulsions by the CRW

model with a non-zero clipping level a. Using Eq. 3.20 and (() = 1, the volume

fraction of watery region $1 can be expressed in terms of a as following,

S 1 - erf . (5.4)

The clipping level a of each sample is determined by this relation. In this analysis,

we use the spectral density function f(k) given in Eq. 3.29. For the Debye correlation

function, we used the full integral form given in Eq. 3.22 rather than the simple

expression given in Eq. 3.25 which was used for the isometric system.

The SANS intensities were analyzed using the CRW model and the representative

plots comparing the SANS experiments (symbols) and the CRW model (solid lines)

are presented in Figure 5-4. It is clearly seen that the model agrees with the exper-

iments very well as it does in the isometric case. Using the parameters a, b, and c

acquired in this analysis, the average Gaussian, mean, and square mean curvatures

are calculated by Eq. 3.54, 3.55, and 3.56. All the fitted and calculated values are

listed in Table 5.1.

Figure 5-5 a) shows d, (, and /d as a function of A01. As A0 1 moves away from

zero, d decreases from 260 A to about 150 A in a symmetric fashion. Similarly ( also

decreases from 125 A to 40 (at A0 1 = -0.35) and to 65 A (at A0 1 = 0.35), more

rapidly in the oil-rich direction than in the water-rich direction. The local orderness

(/d is determined by these two parameters. While (/d decreases from 0.45 to 0.25
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A0 Texp a d 6 5/d (K) (H) (H) (S/V) bgd (l)
(0C) (A) (A) (A) (10- 4 A- 2 ) 10-4 - 1 ) (10- 4A- 2 ) (10- 2A- 1 ) cm - 1  (102 1Cm-4

-0.355 29 1.058 135.3 26.2 11.8 0.194 0.939 263.0 37.4 1.300 0.650 0.388
-0.335 29 0.9741 149.6 37.1 12.6 0.248 -0.294 206.9 25.2 1.343 0.700 0.450
-0.285 28 0.7892 184.0 64.2 15.4 0.349 -1.227 126.2 12.0 1.189 0.670 0.611
-0.235 27 0.6280 218.8 84.4 14.9 0.386 -1.511 87.91 10.0 1.168 0.650 0.802
-0.185 26 0.4817 241.5 101.4 13.9 0.420 -1.673 63.00 9.8 1.183 0.610 1.016
-0.135 25 0.3451 260.6 111.1 13.4 0.426 -1.744 43.04 9.8 1.194 0.520 1.146
-0.085 24 0.2147 256.7 119.7 11.7 0.466 -2.006 27.59 12.0 1.276 0.520 1.280
-0.035 23 0.08784 275.3 124.7 11.3 0.453 -1.959 10.94 12.7 1.260 0.476 1.393

0.00 22 0.0000 257.6 124.1 10.4 0.482 -2.203 0.00 14.5 1.336 0.440 1.498
0.035 21 -0.0878 270.0 125.2 10.6 0.464 -2.076 -11.26 14.5 1.297 0.437 1.445
0.085 20 -0.2147 259.5 120.8 11.9 0.465 -1.952 -27.22 11.5 1.258 0.384 1.363
0.135 19 -0.3451 241.4 111.3 14.5 0.461 -1.793 -43.63 8.3 1.210 0.330 1.294
0.185 18 -0.4817 221.1 104.6 15.9 0.473 -1.665 -62.87 7.4 1.181 0.302 1.213
0.235 17 -0.6280 192.3 95.2 18.9 0.495 -1.460 -86.40 6.4 1.148 0.254 1.069
0.285 16 -0.7892 165.7 89.5 20.9 0.540 -1.078 -118.2 6.9 1.115 0.223 0.893
0.335 15 -0.9741 139.6 78.6 21.8 0.563 -0.185 -164.1 8.8 1.065 0.202 0.759
0.355 14 -1.058 131.5 65.2 20.7 0.495 0.493 -190.5 11.4 1.045 0.184 0.661

Table 5.1: The fitted parameters of non-isometric Co0E4/D 20/octane system



in the oil-rich direction, it increases to 0.56 in the water-rich direction. Considering

that /d is far less than 1 in all cases, the systems have very disordered interfacial

structures. The surface roughness parameter 6 is shown in Figure 5-5 b). The 6

increases in both the oil-rich and water-rich directions, from 10 A to 15 A in the

oil-rich direction and from 10 A to 22 A in the water-rich direction. Considering that

6 is proportional to the surface persistence length, we can infer that the interface in

the water-rich region is more smooth and rigid. This is consistent with the fact that

(/d in the water-rich region is larger than that in the oil-rich region.

The average Gaussian curvature as a function of A0 1 is shown in Figure 5-6 a).

The solid circles are the measured values and the solid line is a theory predicted by

the CRW model which is given as

(K) = e1)2 (5.5)

where A is an effective chain length of a surfactant molecule. This relation is obtained

from Eq. 3.28, Eq. 3.52, and Eq. 4.2. In this plot we used an average value of A mea-

sured by an independent analysis of the SANS intensities by the Porod's law at large

Q region. As A01 moves away from zero, meaning that the system becomes more

non-isometric, the average Gaussian curvature (K) becomes less negative and even-

tually change its sign to positive. As discussed in Chapter 3, the Gaussian curvature

is negative at saddle shaped interfaces and positive at concave or convex interfaces.

According to Gauss-Bonnet theorem, when averaged over a whole closed surface, (K)

is proportional to the number of holes per unit surface area. The (K) is positive

when there is no hole on the surface, zero when there is only one hole, negative when

more than one hole. For smooth surfaces, it requires more saddle shaped interfaces

to have more holes per unit area. The negative average Gaussian curvature around

isometric composition, therefore, means that the interfacial structure is dominated

by saddle points with many interpenetrating holes. (K) change its sign from negative

to positive at around A0 1 = 0.34. Since positive average Gaussian curvature means

isolated interfaces with no holes such as spheres, we can infer that as the system be-
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comes more non-isometric, there is a structural transformation from a bicontinuous

disordered structure to an isolated structure presumably in spherical shape.

Figure 5-6 b) shows the average mean curvature (H) as a function of A01. The

solid circles are the measured values and the solid line is a theory predicted by the

CRW model given as
3

(H) = 4 e2 /2 (5.6)

where an average A was used in the plot. When A0 1 is zero (H) is also zero which

means that there is no preferred direction to which the interfaces tend to bend. When

A01 is negative, (H) is positive and when A0 1 is positive, (H) is negative. The

negative (H) corresponds to the interfaces bending toward water and the positive

(H) toward oil. Therefore, there is a structural inversion across the isometric point .

Figure 5-7 a) shows the average square mean curvature (H 2) as a function of

A0 1. As A0 1 becomes more negative, the average square mean curvature decrease

until about A01 = -0.25 and then increase. This minimum of the square mean

curvature tells us that there is a certain structural transformation occurring around

the minimum. In Chapter 4, when (H) = 0, i(H 2 ) was interpreted as the root mean

square fluctuation of (H) about zero and related to the persistence length of interface.

Here, the non-zero (H) makes it difficult to directly relate (H 2) to the persistence

length. However, the root mean square fluctuation of (H) defined as /(H 2) - (H)2

can be interpreted similarly. Here, however, the fluctuation is about the residual (H)

rather than zero. In this interpretation, we can relate (H 2) - (H)2 to the surface

roughness parameter 6 as following,

V(H2) - (H)2 - . (5.7)

As shown in Figure 5-7 b), (H 2) - (H)2 agrees with 6-1/V' reasonably well. This

confirms the physical meaning of 6 again.
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5.3.2 Non-Isometric Ionic Microemulsions

The SANS intensities of non-isometric AOT/D 20(NaCl = 0.4 wt %)/decane system

are given in Figure 5-8. As shown in Figure 5-2, this system shows an asymmet-

ric phase behavior about Al 1 = 0. We therefore performed SANS measurements

only for the region where A0l is negative and there is enough gap for the existence

of a 1 phase. The scattering intensities show a similar trend as the non-isometric

CloE 4/D 20/octane system with negative A01.

Figure 5-9 shows the data analysis using the CRW model. The solid lines are the

CRW model and the various symbols the SANS intensities. The average Gaussian,

mean, and square mean curvatures are calculated using the parameters obtained in

this analysis. All the fitted parameters and average interfacial curvatures are listed

in Table 5.2.

The inter-domain distance d, the coherence length (, and the order parameters

(/d are given in Figure 5-10 a). As A0 1 becomes more negative, i.e. more non-

isometric with oil-rich composition, d decreases from 239.0 A (at A0 1 = 0) to 78

A (at A0 1 = -0.4) and ( also decreases from 83.0 A (at A0 1 = 0) to 33 A (at

A01 = -0.4). The behavior of d and ( in this system is very similar to those in the

CloE 4/D 20/octane system. The parameter (/d ,however, increases, from 0.35 to 0.44

as A0 1 becomes more negative while (/d in the C1oE4/D 20/octane system decreases.

The small bump at A01 = 0.35 is rather puzzling. In fact this corresponds to the

point where the transition to an isolated structure occurs and may be understood

in that context. Figure 5-10 b) shows the surface roughness parameter 6. As the

system becomes more non-isometric, 6 increases (from 9.6 A to 18.5 A) as it does in

the C10E4/D 20/octane system.

(K) , (H) and (H 2) are shown in Figure 5-11. The overall behavior of the average

interfacial curvatures is very similar to those in the C10oE 4/D 20/octane system. This

tells us that the structural evolution in the 1 phase region (oil-rich side) with A01 is

about same in both the ionic and non-ionic microemulsions.
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Table 5.2: The fitted parameters of non-isometric AOT/D 20/decane system

AA1 a d 6 /d (K) (H) (H ) (S/V), (S/V) 2  bgd (T/ )

(A) (A) (A) (10-4_ - 2 )  4 (10 - 4 1) 1 - 2  (10-2 -1) (10-2-1) cm - 1 )  (10 2 1cm - 4

0.00 0.0000 238.9 82.9 9.6 0.347 -3.123 0.00 20.58 1.591 1.574 0.494 1.196
-0.05 0.1257 231.5 81.4 10.2 0.351 -3.028 19.54 18.08 1.567 1.574 0.520 1.174
-0.10 0.2533 221.4 77.5 11.8 0.350 -2.791 38.77 14.43 1.506 1.519 0.565 1.108
-0.15 0.3853 206.4 75.8 12.5 0.367 -2.617 59.86 13.09 1.465 1.490 0.575 1.032
-0.20 0.5245 183.2 70.2 15.2 0.383 -2.299 82.78 10.34 1.397 1.461 0.620 0.937
-0.25 0.6745 153.8 62.6 18.3 0.407 -1.965 113.5 9.52 1.362 1.416 0.635 0.841
-0.30 0.8416 125.3 55.7 18.4 0.444 -1.390 162.7 12.08 1.379 1.441 0.637 0.633
-0.35 1.0363 106.3 42.1 15.4 0.396 0.500 239.8 21.01 1.375 1.399 0.640 0.551
-0.40 1.2815 76.6 33.2 16.5 0.433 6.762 368.3 35.03 1.283 1.576 0.650 0.333



250 . . .. . . 0.6
a) d

200
/d 0.5

150

0 0.4 2

100

0.3
50

0 ... ....... ............... 0.2
-0.4 -0.3 -0.2 -0.1 0

AO 1

b) 25

20

15

10

5

-0.4 -0.3 -0.2 -0.1 0

AO 1

Figure 5-10: Three length scales and local order parameter in non-isometric AOT/
D20/ decane system. a) d, and (/d, and b) 6.



-0.4 -0.3 -0.2

A0'

400

350

300

250

200

150

100

50

0

-0.4 -0.3 -0.2

A0 1

-0.4 -0.3 -0.2 -0.1 0

c)

Figure 5-11: The interfacial curavtures of non-isometric AOT/D 20/decane system.
a) average Gaussian, b) average mean, and c) average square mean curvatures.

<K>measured

S (a2 I)a 2
8 ~

*

-0.1 0

r 1

111111'IIIIIIIIIII' II I I
-0.1 0

0 <H2> measured



5.4 Structural Transformations in Non-Isometric

Microemulsions

The average interfacial curvatures in non-isometric microemulsions presented in sec-

tion 5.3 provided us insights on the structural transformations in a quantitative way.

In this section, a series of 3-dimensional simulations of the non-isometric microemul-

sions are presented and discussed. In these simulations, the experimentally measured

parameters d, , and 6 in Table 5.1 were used. These simulations will confirm our

quantitative understanding of the structures and provide further insights in a qual-

itative way. It was shown that the non-isometric AOT/D 20/decane system with

negative A0 1 shows similar behavior in terms of the average interfacial curvatures

to those of the non-isometric C10E4/D 20/octane system. In this section, therefore,

only the 3 dimensional simulations of the non-isometric C1oE4/D 20/octane system

are discussed.

In Figure 5-6 b), it was shown that (H) changes its sign at A0 1 = 0. This was

interpreted as a structural inversion from the interfaces bending toward water (when

A0 1 < 0) to the interfaces bending toward oil (when A01 > 0). Figure 5-12 shows

the 3D simulations made for A01 = -0.185, 0, and 0.185 (solid squares in the phase

diagram). The corresponding (H)'s are -63.00 x 10- 4 A- 1, 0 A-1 and 62.87 x 10-4A - 1

and (K)'s -1.673 x 10-2A- 2 , -2.203 x 10-4A - 2, and -1.665 x 10-2 -2 respectively.

While (H) changes its sign at A0 1 = 0, (K) is negative in all three cases. In the

3D simulations, the dark side corresponds to the surface facing the water region and

the bright side the surface facing the oil region. The simulation at A 1 = 0 shows

a bicontinuous structure which consists of a interface with no preferred direction

to bend. However, at A0 1 = -0.185, the simulation shows an interfacial structure

which bends toward water and, at A01 = 0.185, toward oil. These clearly confirms

our interpretation of (H). Another thing to notice in these simulations is that all

the structures are bicontinuous and dominated by saddle shaped interfaces, which is

consistent with negative (K).
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In the previous section it was shown that as the system becomes more non-

isometric, (H) becomes more positive or more negative and (K) less negative. The

behavior of (H) is interpreted as the stronger tendency to bend toward oil or water

respectively and that of (K) as the lesser dominance of the saddle shaped interfaces

in the interfacial structures. Figure 5-13 shows the simulations at A0 1 = -0.285 and

0.285. To show the path of the water region more clearly, the simulation at A0 1 = 0

is shown in two different boxes, one with part of the interface removed and another

without. It is interesting to notice that the water region at A0 1 = -0.285 and the

oil region at A0 1 = 0.285 are connected through rather cylindrical shape passages in

each case. In a diagrammatic description, the interfacial structures in these systems

are a network of cylindrical pipes , which is consistent with the measured average

interfacial curvatures.

When A0 1 is -0.335 or 0.335, (K) is positive, which means that the correspond-

ing interfacial structures are dominated by isolated surfaces without holes. The 3D

simulations at these points are shown in Figure 5-14, which confirms our interpreta-

tions.

Summarizing the results of the average interfacial curvatures and the correspond-

ing 3D simulations, the structural transformations in non-isometric microemulsions

are described in a pictorial diagram shown in Figure 5-15. The isometric microemul-

sion in 1 phase region takes a balanced disordered bicontinuous structure in which

the saddle shaped interfaces are dominant. Once the system becomes non-isometric,

the interfaces bend toward either oil or water depending on the compositions. When

JA011 is around 2.5, the interfacial structure takes the form of a network connected

through cylindrical pipes. With further increase of JA¢11 above 0.35, it becomes

isolated globular surfaces.
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Chapter 6

Conclusions

Microemulsions exhibit a wide variety of phases with corresponding mesoscopic scale

interfacial structures. While the relation between the interfacial structure and the

phase behavior are very important for industrial as well as scientific purposes, the

complexity of the interfacial structures has been a huddle in identifying the relation

in a quantitative way. For a quantitative description complex random interfaces,

the natural parameters to be measured are the interfacial curvatures : the Gaussian,

mean, and square mean curvatures. Here we studied the relation in both isometric and

non-isometric microemulsion systems by measuring the interfacial curvatures with the

SANS techniques.

To extract the interfacial curvatures from SANS intensities, we developed a new

SANS data analysis method. The method involves the use of a clipped random wave

model, in which all crucial informations of the interfacial structures are contained in

a spectral function. We introduced an inverse 8th order polynomial spectral function

which contains three basic length scales : the inter-domain distance, the coherence

length, and the surface roughness parameter. These three length scales are essential

to describe mesoscopic scale random interfaces and have definite correlations with

characteristic features of SANS intensities from bicontinuous microemulsions. The

inter-domain distance and the coherence length explain the position and the width of

a peak in the SANS intensity. The surface roughness parameter, a newly introduced

length scale, corresponds to the large Q behavior of the SANS intensity, relating it to
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the local fluctuation of interfaces. This appropriate description of the local wrinkling

of the interfaces permits correct estimation of the surface to volume ratio which is

one of the most crucial informations in porous materials.

A series of SANS experiments were performed at various phase points of isometric

and non-isometric microemulsions. Using the developed model, the three interfacial

curvatures at each phase points were determined for the first time in a practical way.

In isometric bicontinuous microemulsions, the Gaussian curvature is negative and

has a parabolic dependence on the surfactant volume fraction. The negative Gaussian

curvature means that the structures are dominated by saddle shaped interfaces and

have many holes. Using the measured three length scales, a series of three-dimensional

simulations were generated and used to support our interpretation of the measured

curvatures. The curvatures and the simulations are consistent with each other.

In non-isometric systems, as the water and oil composition becomes more asym-

metric, the interfacial curvatures show very systematic behaviors : the Gaussian

curvature becomes less negative and eventually changes its sign to positive, the mean

curvature changes its sign at the isometric composition, and the square mean cur-

vature has a minimum around A4 1 = 0.25. Based on these results, a characteristic

structural transformation was identified. As water and oil volume ratio moves away

from unity, a bicontinuous structure transforms to a spherical structure through a

cylindrical structure.

The discovery of the structural transformations as a function of phase behavior

is an important step for the full understanding of the physics of microemulsions and

their industrial applications. The further study to find the correlations between the

measured interfacial curvatures and the physical properties of the surfactant mono-

layers will be very useful in this context. The developed SANS data analysis for

curvature measurements, which can also be applied for the small-angle x-ray scatter-

ing data, will provide a quantitative tool in revealing complex interfacial structures

of various porous materials which are often puzzling to describe in simple terms.

103



Bibliography

[1] Micelles, Membranes, Microemulsions, and Monolayers. Spinger-Verlag, New

York, 1993. edited by W. M. Gelbart, A. Ben-Shaul, and D. Roux.

[2] Surfactants in Solution. Plenum Press, New York and London, 1984. edited by

M. Bothorel.

[3] Microemulsion Systems. Marcel Dekker, Inc.,

edited by H. L. Rosano and M. Clausse.

[4] Structue and Dynamics of Strongly Interacting

Aggregates in Solution. Kluwer,Dordrecht, 1992.

Huang, and P. Tartaglia.

New York and London, 1987.

Colloids and Superamolecular

edited by S. H. Chen and J. S.

[5] The Structure and Conformation of Amphiphilic Membranes. Springer-Verlag,

Berlin, 1992. edited by R. Lipowsky, D. Richter, and K. Kremer.

[6] The Structure and Conformation of Amphiphilic Membranes. Springer-Verlag,

Berlin, 1992. edited by R. Lipowsky, D. Richter, and K. Kremer.

[7] G. Gompper and M. Schick. Self-Assembling Amphiphilic Systems. Academic,

New York, 1994.

[8] Physics of Amphiphilic Layers. Springer-Verlag, New York, 1987. edited by J.

Meunier and D. Langevin and N. Boccara.

[9] A. M. Cazabat, C. Langevin, J. Meunier, and A. Pouchelon. Adv. Colloid Inter-

face Sci., 16:175, 1982.

104



[10] P. A. Winsor. Solvent Properties of Amphiphilic Compounds. Butterworth Sci-

entific Publications, London, 1954.

[11] L. E. Scriven. Nature, 123:263, 1976.

[12] L. E. Scriven. in Micellization, Solubilization, and Microemulsions, volume 2.

Plenum Press, New York, 1977. edited K. L. Mittal.

[13] M. Kahlweit and R. Strey. Angew. Chem. Int. Ed. Engl., 24:654, 1985.

[14] M. Kahlweit and R. Strey. Microemulsion Systems, page 1, 1987. edited by H.

L. Rosano and M. Clausse.

[15] C. U. Herrmann, G. Klar, and M. Kahlweit. Microemulsions, page 1, 1981. edited

by I. D. Robb.

[16] R. E. Goldstein and J. S. Walker. J. Chem. Phys., 78:1492, 1983.

[17] D. Andelman, M. Cates, D. Roux, and S. A. Safran. J. Chem. Phys., 87:7229,

1987.

[18] L. Golubovic and T. C. Lubensky. Phys. Rev. A, 41:43, 1990.

[19] M. E. Cates, D. Roux, D. Andelman, S. T. Miller, and S. A. Safran. Europhys.

Lett., 5:733, 1988.

[20] S. H. Chen, S. L. Chang, R. Strey, and P. Thiyagarajan. J. Phys.:Condens.

Matter, 3:F91, 1991.

[21] H. Wennerstrom and U. Olsson. Langmuir, 9:365, 1993.

[22] M. Lagues, R. Ober, and C. Taupin. J. Phys. Lett., 39:487, 1978.

[23] D. J. Cebula, R. M. Ottewill, J. Ralston, and P. N. Pusey. J. Chem. Soc. Faraday

Trans. 1, 77:2585, 1981.

[24] D. Guest, L. Auvary, and D. Langevin. J. Phys. Lett., 46:1055, 1985.

105



[25] M. Kotlarchyk, S. H. Chen, J. S. Huang, and M. W. Kim. Phys. Rev. Lett.,

53:941, 1984.

[26] A. De Geyer and J. Tabony. J. Chem. Phys. Lett., 113:83, 1985.

[27] E. W. Kaler, H. T. Davis, and L. E. Scriven. J. Phys. Chem., 79:5685, 1983.

[28] S. W. Loversey. Theory of Neutron Scattering from Condensed Matter : Vol. I

and II. Clarendon Press, Oxford, 1984.

[29] A. Forderaro. The Elements of Neutron Interaction Theory. MIT press, Cam-

bridge, 1971.

[30] A. Guinier and G. Fournet. Small-Angle Scattering of X-Rays. Wiley, New York,

1955.

[31] 0. Glatter and 0. Kratky. Small-Angle Scattering of X-Rays. Academic, New

York, 1982.

[32] P. Debye, H. R. Anderson, and H. Brumberger. J. Appl. Phys., 28:679, 1957.

[33] G. E. Bacon. Neurton Difrraction. Clarendon Press, Oxford, 1975.

[34] B. Jacrot. Rep. Prog. Phys., 39:911, 1976.

[35] V. F. Sears. Neutron News, 3:26, 1992.

[36] N. J. Chang and E.W. Kaler. J. Chem. Phys., 89:2996, 1985.

[37] R. Strey, J. Winkler, and L. Magid. J. Chem. Phys., 95:7502, 1991.

[38] V. Degiorgio, R. Piazza, M. Corti, and C. Minero. J. Chem. Phys., 82:1025,

1985.

[39] Von R. Kirste and G. Porod. Kolloid-Z Z f. Polym., 184:1, 1962.

[40] G. Porod. in Small Angle X-ray Scattering. Academic, New York, 1982. edited

by O. Glatter and 0. Kratky.

106



[41] P. Debye and A. M. Bueche. J. Appl. Phys., 20:518, 1949.

[42] G. Porod. Kooloid Z., 124:83, 1951.

[43] L. Auvary, J. P. Cotten, R. Ober, and C. Taupin. J. Phys. Chem., 88:4586, 1984.

[44] L. D. Landau and E. M. Lifschitz. Statistical Physics. 3rd Edition, Pergamon,

New York, 1980.

[45] G. Gompper and M. Schick. Phys. Rev. Lett., 62:1647, 1989.

[46] M. Teubner and R. Strey. J. Chem. Phys., 87:3195, 1987.

[47] J. W. Cahn. J. Chem. Phys., 42:93, 1965.

[48] N. F. Berk. Phys. Rev. Lett., 14(5):1, 1987.

[49] N. F. Berk. Phys. Rev. A, 44(8):5069, 1991.

[50] R. J. Adler. The Geometry of Random Fields. Chichester, 1981.

[51] M. Teubner. Europhys. Lett, 14(5):403, 1991.

[52] P. Pieruschka and S. A. Safran. Europhys. Lett., 22:625, 1993.

[53] S. H. Chen and S. M. Choi. J. Appl. Crystallogr., 30:755, 1997.

[54] S. H. Chen and S. M. Choi. Physica A, 236:38, 1997.

[55] P. Pieruschka and S. Marcelija. J. de Phys II, 2:235, 1992.

[56] S. H. Chen, D. D. Lee, and S. L. Chang. J. Mol. Structure, 296:259, 1993.

[57] 0. Barrett. Elementary Differential Geometry. Academic Press, 1966.

[58] M. Spivak. A Comprehensive Introduction to Differential Geometry. Perish,

Berkeley, 1979.

[59] W. Helfrich. Z. Naturforsch A, 33:305, 1978.

[60] P. G. De Gennes and C. Taupin. J. Phys. Chem., 86:2294, 1982.

107



[61] J. Jouffroy, P. Levinson, and P.G. De Gennes. J. Phys. (Paris), 43:1241, 1982.

[62] B. Widom. J. Chem. Phys., 81:1030, 1984.

[63] S. A. Safran, D. Roux, M. E. Cates, and D. Andelman. Phys. Rev. Lett., 57:491,

1986.

[64] S. M. Choi and S. H. Chen. Prog. Colloid Poly. Sci., 106:14, 1997.

[65] S. M. Choi, S. H. Chen, T. Sottmann, and R. Strey. Physica B. in print.

[66] H. Kuniedat and K. Shinoda. J. Colloid. Interface Sci., 75:601, 1980.

[67] M. Kahlweit, R. Strey, R. Schomacker, and D. Haase. Langmuir, 5:305, 1989.

[68] S. H. Chen, T. L. Lin, and Huang Lin. Physics of Complex and Supermolecular

Fluids, page 285, 1987. Edited by S. A. Safran and N. A. Clark.

[69] S. H. Chen, S. L. Chang, and R. Strey. J. Appl. Crystallogr., 24:721, 1991.

[70] S. H. Chen, S. L. Chang, and R. Strey. J. Chem. Phys., 92:2294, 1988.

[71] M. Kahlweit, R. Strey, P. Firman, D. Haase, J. Jen, and R. Schomacker. Lang-

muir, 4:409, 1988.

[72] D. D. Lee and S. H. Chen. Phys. Rev. Lett., 73:106, 1994.

[73] S. H. Chen, S. L. Chang, and R. Strey. J. Chem. Phys., 93:1907, 1990.

[74] S. M. Choi and S. H. Chen. Phys. Rev. E. in preparation.

108



Appendix A

Least Square Data Fitting

Program

ccCccccccccccccccCCCCCCCCCCCCCCCCCCCCC ccccccccccCCCCCCCCCCCCCCCCCCCCC

c
c SANSCURV.f

c

c A Small-Angle Neutron Scattering Data Analysis Program

c to extract the interfacial curvatures :

c the average Gaussian curvature

c the average Mean curvature

c the average Square mean curvature

c in Microemulsion Systems to

c

c Sung-Min Choi

c

c Department of Nucelar Engineering

c Massachusetts Institute of Technology

c 1996 - 1998

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 20

c Main Program

109



cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

implicit none

character*20 fileinput(3), LAB, file output, state, xsec_model

character*50 junk

real*8 ave, fave

real*8 reso, ftemp

integer pnumber, i,estart(3), enumber, imax, imequ

integer iprint, resyn, nfold, sets, ii 30

real*8 prm, step, bound, oldchi, sig

real*8 edat(3,4,200),rl,r2,rll,rl2,rlam,dlam,rdet

common/general/estart, enumber(3), prm(200), bound(2,200), imax

common/resofl/reso(3,200,200) ,rl,r2,rll ,rl2,rlam,dlam,rdet,resyn

common/resof2/sig(3,200),nfold

common/QQQ/ave(200), fave(200), imequ, iprint, sets

c

c

open(unit=5,file= 'parameter input ',status= ' old')

rewind(unit=5) 40

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c Laboratory where the data was taken

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

read(5,1201) LAB

print *,'LAB : ',LAB

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

3333 read(5,1201) state

if(state.eq.' stop') go to 4444

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c Number of data sets to be analyzed 50

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

read(5,*) sets

do 170 i=1,sets

read(5,1201) file_input(i)

read(5,*) estart(i)

read(5,*) enumber(i)

170 continue
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1201 format(a20)

read(5,1201) file output

C 60

c

open(unit=10,file= 'test', status= 'unknown')

rewind(unit=10)

do 190 ii=l,sets

open(unit=7,file=file-input(ii), status=' old')

rewind(unit=7)

if(estart(ii).eq.1) go to 117

do 2 i=1,estart(ii)-I

read(7,1202) junk

2 continue 70

1202 format(a50)

117 do 3 i=l1, enumber(ii)

read(7,*) edat(ii,l,i), edat(ii,2,i), edat(ii,3,i)

if(LAB.eq.' ORNL') then

edat(ii,l,i) = edat(ii,l,i)/10.

endif

write(10,1023) edat(ii,l,i),edat(ii,2,i),edat(ii,3,i)

3 continue

close(unit=7)

190 continue so

close(unit=10)

c

c

read(5,1201) xsec_model

print *,xsec_model

read(5,*) pnumber

do 1 i=1,pnumber

read(5,*) prm(i), bound(1,i), bound(2,i)

1 continue

90

read(5,*) step

read(5,*) ftemp

read(5,*) imequ
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read(5,*) imax

read(5,*) iprint

read(5,*) resyn

c

c

c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 100

19 call anneal (edatft emp, pnumb er, step, oldchi, state, xsec-model)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c

open (unit= 7,file=file-outputstatus= I unknown')

rewind(unit--7)

write(7,*) LAB

write(7,*) xsec-model

write(7,1023) oldchi

write(7,*) I I

do 20 i=1,pnumber 110

write(7,1023) prm(i),ave(i),fave(i)

20 continue

1023 format(U15.6)

close(unit=7)

c

go to 3333

4444 close(unit=5)

stop

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 120

c END OF MAIN PROGRAM

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccecccccccccccccccccccccccccccccccccccccc

c Functions and Subroutines
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cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

real*8 function xsec(Q, prm, xsec_model)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c The cross-section for each model.

c

c

implicit none

character*20 xsec model 140

real*8 prm(200), Q, dsld, pi

real*8 thy, d, AA, BB, Z

real*8 a,b,c,alpha,sigma,V1 ,xl,xu,xxl,xxu,dx,xn,msld,bgd

real*8 cs,cw,co,ds,dw,do,bgds,dsld2

real*8 t,px,Vw,ps,xsecm,eta2

real*8 funcg,ss,sssum

external funcg, ftnGauss, ftnDint

integer n,i

c

c 150

pi = 3.141592653

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Choi and Chen Model for microemulsion

c

c S. M. Choi and S. H. Chen, Progr. Colloid Poly. 106:14 (1997)

c S. H. Chen and S. M. Choi, J. Appl. Crystallogr. 30:755 (1997)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

c Fitting function 160

c

c I(Q) = <n^2> Int(0,oo) F(r) sin(Qr)/Qr 4 Pi r^2 dr + background

c

c where <n^2> = V1*V2(rhol-rho2)^2

c When alpha=0
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c F(r) = 2/Pi arcsin(g(r)) : Debye correlation function

c When alpha =/ 0 (small alpha expansion)

c F(r) = 1-1/(2 pi V1(1-V1) {acos(g(r))-alpha^2 tan(acos(g(r))/2)}

c

c g(r) = from f(k) -l/k^8

c

c g(0) = 1: asymptotic

c g(oo)= 0

c

c msld = <n^2>

c bgd = background

c xl = lower limit of integration = 0

c xu = upper limit of integration = oo,

c in practice xu is determined by the shape of the integrand

c xn = number of intervals for integration

if(xsec_model .eq. 'gauscur') then

a = prm(1)

b = prm(2)

c = prm(3)

alpha = prm(4)

V1 = prm(5)

sigma = prm(6)

msld = prm(7)

bgd = prm(8)

xl = prm(9)

xu = prm(10)

xn = prm(11)

if (Q .le. 0.01) then

xn = 1 * xn

elseif (Q .le. 0.05) then

xn = 1 * xn

elseif (Q .le. 0.1) then

xn = 1 * xn

else

xn = 5 * xn
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endif

dx = (xu-xl)/xn

n = int(xn)

xxl=O

xxu=dx

sssum=O

call qgaus(funcg,Q,a,b,c,alpha,V1,xxl,xxu,ss) 210

sssum=sssum+ss

do 1212 i = 1,n

xxl=xxl+dx

xxu=xxu+dx

call qgaus(funcg,Q,a,b,c,alpha,V1,xxl,xxu,ss)

sssum=sssum+ss

1212 continue

220

xsec = msld * sssum *exp(-sigma**2.*Q**2.) + bgd

return

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Film Contrast

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

elseif(xsec_model .eq. 'gausFs') then 230

a = prm(1)

b = prm(2)

c = prm(3)

msld = prm(4)

bgd = prm(5)

xl = prm(6)

xu = prm(7)
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xn = prm(8)

if (Q .le. 0.01) then

xn = 0.05 * xn 240

elseif (Q .le. 0.05) then

xn = 0.1 * xn

elseif (Q .le. 0.1) then

xn = 0.5 * xn

else

xn = xn

endif

dx = (xu-xl)/xn

n = int(xn) 250

xxl=O

xxu=dx

sssum=0

call qgaus(funcg,Q,a,b,c,alpha,xxl,xxu,ss)

sssum=sssum+ss

do 1215 i = 1,n

xxl=xxl+dx 260

xxu=xxu+dx

call qgaus(funcg,Q,a,b,c,alpha,xxl,xxu,ss)

sssum=sssum+ss

1215 continue

xsec = msld * sssum + bgd

c print *, ' OK'

return

270

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Partial Structure of Microemulstion System

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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elseif(xsec_model.eq. 'parstrXww') then

c cw=S/V at Water-Surfactant interface

cw=prm(1)

c dw= water penetration depth

dw=prm(2)

bgd=prm(3) 280

eta2= prm(4)

c Vw=water volume fraction

Vw=prm(5)

xsec = eta2/Vw/(1-Vw)*2.*pi*cw*exp(-dw**2.*Q**2.)/Q**4.+bgd

return

elseif(xsec_model.eq. 'parstrXoo ') then

co=prm(1)

do=prm(2) 290

xsec = le-4*2.*pi*co*exp(-do**2.*Q**2.)/Q**4.

return

elseif(xsec_model.eq. 'parstrXss') then

cs=prm(1)

ds=prm(2)

bgds=prm(3)

dsld2=prm(4) 300

ps=prm(5)

xsec = dsld2*2.*pi*ps**2./cs*exp(-ds**2.*Q**2./2./pi)/Q**2. + bgds

return

elseif(xsec_model .eq. 'parstrIss') then

t = prm(1)

Z = prm(2)

bgd = prm(3)
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eta2 = prm(4) 310

ps prm(5)

px atan(Q*t/(Z+I))
xsecm= ('-(Cos(px))**(Z-I)*cos(Z*px))

xsec = 4.*pi/(l-ps)*eta2*Z/(Z+I)/t*xsecm/Q**4+bgd

return

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Teubner & Strey Model

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 320

c

elseif(xsec-mo del. eq. I teubnerstrey 1) then

d = 2 * pi / prm(l)

thy I/prm(2)

dsld prm(3)

bgd prm(4)

AA (I./thy**2.+(2.*pi/d)**2.)**2.

BB 2.*(l./thy**2.-(2.*pi/d)**2.) 330

xsec = 8.*pi*dsld/(AA+BB*Q**2.+Q**4.)/thy+bgd

return

endif

print *,'Wrong Xsec Type!

xsec -- 1.00

return

end 340

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine qgaus(funcgQabcalphaVlxlxuss)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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c Numerical Integration using Gaussian quadrature method

C

real*8 Q,a,b,c,alpha,V1,xl,xu,ss 350

real*8 x,w,xm, xr, ddx,s

real*8 funcg

external funcg

dimension X(48) ,W(48)

data X /0.0162767448496029D0, .0488129851360497D0,

&.0812974954644255D0,0. 1 136958501 106659D0,0. 145973714654896D0,

&0. 1780968823676186D0,0.2100313104605672D0,0.241743156163840D0,

&0.2731988125910491D0,0.3043649443544963D0,0.3352085228926254D0,

&0.3656968614723136D0,0.3957976498289086D0,0.4254789884073005D0, 360

&0.4547094221677430D0,0.4843579739205963D0,0.5116941771546676D0,

&0.5393881083243574DO005665104185613971D0,0.5930323647775720D0,

&0.61892584012 54685D0,0.6441634037849671D0,0.6687183100439161DO,

&0.6925645366421715D0,0.7156768123489676D0,0. 7380306437444001D0,

&0. 759602341 1766474D0,0. 7803690438674332D0,0.8003087441391408D0,

&0.8194003107379316D0,0.8376235112281871D0,0.8549590334346014D0,

&0.8713885059092965D0,0.8868945174024204D0,0.9014606353158523D0,

&0.9150714231208980D0,0.9277124567223086D0,0.9393703397527552D0,

&0.9500327177844376DO009596882914487425D0.9683268284632642D0,

&0.9759391745851364D0,0.9825172635630146D0,0.9880541263296237D0, 370

&0.9925439003237626D0,0.9959818429872092D0,0.9983643758631816D0,

&0.9996895038832307D0/

data W /0.0325506144923631D0,0.0325161187138688D0,

&0.0324471637140642DO000323438225685759D0,0.0322062047940302D0,

&.0320344562319926D0,00.03182875889441 1ODO,0.0315893307707271D0,

&0.0313164255968613D,0.0310103325863138D,0.0306713761236691D,

&O.0302999154208275D0,70.0298963441363283D0,0.0294610899581679D0,

&0.0289946141505552D0,0.0284974110650853D0,0.0279700076168483D0,

&0.0274129627260292D0,0.0268268667255917D0,0.0262123407356724D0, 380

&0.0255700360053493DO,0.0249006332224836D0,0.0242048417923646D0,I
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&0.0234833990859262D0,0.0227370696583293D0,0.0219666444387443D0,

&0.0211729398921912D0,0.0203567971543333DO,0.0195190811401450D0,

&0.0186606796274114DO,0.0177825023160452DO,0.0168854798642451DO,

&0.0159705629025622D,0.0150387210269949DO,0.0140909417723148DO,

&0.0131282295669615D0,0.0121516046710883D0,0.0111621020998384D0,

&0.0101607705350084D,0.0091486712307833DO,0.0081268769256987DO,

&0.0070964707911538DO,0.0060585455042359DO,0.0050142027429275DO,

&0.0039645543384446D0,0.0029107318179349D*0,0.0018539607889469D0,

&0.0007967920655520D0/ 390

xm = 0.5*(xu+xl)

xr = 0.5*(xu-xl)

ss = 0.0

do 11 j = 1,48

ddx = xr*x(j)

s=funcg(Q,a,b,c,alpha,V1,xm+ddx)+funcg(Q,a,b,c,alpha,V1,xm-ddx)

ss=ss+w(j)*s 400

11 continue

ss = xr*ss

return

end

ccccccccCCccccccccccccccCccccccccccccc cccccccccccc

subroutine qgaus0(ftnDint,alpha,yl,yu,sss)

ccccccccccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 410

c

c Numerical integration using Gaussian quadrature method

c

real*8 alpha,yl,yu,sss

real*8 y,w,ym, yr, ddy,s

real*8 ftnDint
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external ftnDint

dimension y(48),W(48)

420

data y /O.0162767448496029D0, O.0488129851360497D0,

&O.0812974954644255D0,O. 1136958501106659D0,O. 145973714654896D0,

&0. 1780968823676186D0.2100313104605672D0.241743156163840D0,

&O.2731988125910491D0.3043649443544963D0O.3352085228926254D,

&.3656968614723136DO03957976498289086D0.4254789884073005D0,

&O.4547094221677430D0.4843579739205963D0.51 16941771546676D0,

&O.5393881083243574D0.5665104185613971D0.5930323647775720D0,

&.6189258401254685DO0.6441634037849671D0.6687183100439161ID0,

&.6925645366421715D0,O. 7156768123489676D0,O. 7380306437444001D0,

&O.759602341 1766474D0.7803690438674332D0O.8003087441391408D0, 430

&O.8194003107379316DO0.8376235112281871DO08549590334346014D0,

&O.8713885059092965D0.8868945174024204D0.9014606353158523D0,

&.9150714231208980DO0.9277124567223086D0.9393703397527552D0,

&.9500327177844376D0.9596882914487425D0.9683268284632642D0,

&O.9759391745851364D0.9825172635630146D0.9880541263296237D0,

&.9925439003237626D0.9959818429872092D0.9983643758631816D0,

&.9996895038832307D0/

data W /O.0325506144923631D0O.0325161187138688D0,

&O.0324471637140642D0.0323438225685759D0.0322062047940302D0, 440

&O.0320344562319926DO0.03182875889441 10D0.0315893307707271D0,

&O.0313164255968613D0.0310103325863138D0.0306713761236691D0,

&.0302999154208275D0.0298963441363283D0.0294610899581679D0,

&O.0289946141505552D0O.02849741 10650853D0O.0279700076168483D0,

&O.0274129627260292D0.0268268667255917D0.0262123407356724D0,

&O.0255700360053493D0.0249006332224836D0.0242048417923646D0,

&.0234833990859262D0.0227370696583293D0.0219666444387443D0,

&O.021 1729398921912DO0.0203567971543333D0019519081 1401450D0,

&O.01866067962741 14DO0.01 77825023160452D0.0 168854798642451ID0,

&0.01 59705629025622D0.0150387210269949D0.0140909417723148D0, 450

&.0131282295669615DO0,.0121516046710883D0.1 1 1621020998384D0,

&0101607705350084D0.0091486712307833D0.0081268769256987D0,

&O.007096470791 1538DO0.0060585455042359D0O.0050142027429275D0,
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&0.0039645543384446D0,0.0029107318179349D0,0.0018539607889469D0,

&0.0007967920655520D0/

ym = 0. 5 *(yu+yl)

yr = 0. 5 *(yu-yl)

sss = 0.0 460

do 17 j = 1,48

ddy = yr*y(j)

s=ftnDint(alpha,ym+ddy)+ftnDint(alpha,ym-ddy)

sss=sss+w(j)*s

17 continue

sss = yr*sss

return 470

end

cccccccccccccccccccccccccccccccccccccccccccCCccccccccccccccccccccccccccc

real*8 function funcg(Q,a,b,c,alpha,Vl,r)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c

c

c I(Q) = <n^2> Int(0,oo) F(r) sin(Qr)/Qr 4 Pi r^2 dr + background

c

c where <n^2> 480

c F(r) : Debye correlation function

c g(r) : two-point correlation function

c g(0)= 1 : asymptotic

c g(oo)= 0

c

c xl = lower limit of integration = 0

c xu = upper limit of integration = oo,

c in practice xu is determined by the shape of the integrand

c
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implicit none

real*8 QabcalphaVlr

real*8 glg2,g3,g4,g5,g6,g7,gF

real*8 pi

real*8 ylyusss

real*8 ftnGaussftnDinterf

external ftnGaussftnDinterf

pi = 3.141592653

500

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c g(r) by Choi & Chen, from f(k) - 1/k-8

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

gl=4*b*c*(a**2+(b+c)**2)**2/(b+c)/r

g2=(a**2-b**2+c**2)/(4*a**2*b**2+(a**2-b**2+c**2)**2)**2

g3=r/(4*c*((a**2+b**2)**2+2*(a**2-b**2)*C**2+c**4))

g4=(-8*a**2*b**2+(a**2+b**2)**2+2*(a**2-b**2)*C**2+c**4)*sin(a*r)

g5=4*(4*a**2*b**2+(a**2-b**2+c**2)**2)**2

g6=-a*b*(a**2-b**2+c**2)*cos(a*r)

g7=(4*a**2*b**2+(a**2-b**2+c**2)**2)**2 510

g=gl*(exp(-c*r)*(g2+g3)+exp(-b*r)/a/b*(g4/g5+g6/g7))

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C Debye Correlation Functions

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

520

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Film contrast

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C F1 = l./sqrt(l-(I-Vs**2.)**2.*g**2.)
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c F2 = 1./sqrt(1-(1-Vs**2.)** 2 .)

c F = (F1-1.)/(F2-1.)

c

530

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c Bulk Contrast:Alpha =/ 0 , Small Alpha Expansion

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCccccccccccccccccccccccccccccc

c V1=1./2.- (alpha- (alpha**3.)/6)/sqrt(2.*pi)

c V1=1./2.- (alpha)/sqrt(2.*pi)

c F1=1./(2.*pi*Vl*(1.-V1))

c F2=acos(g)

c F3=alpha**2.*tan(acos(g)/2.)

c F4=alpha**4./4.* (tan(acos(g)/2.)+ 1./3.*(tan(acos(g)/2.))**3.)

c F=1-Fl*(F2-F3+F4) 540

c

c F=1-Fl*(F2-F3)

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c Bulk Contrast: General, No approximation

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

C

c NOTE : alpha could be negative value

c

550

yl=0.0

yu=acos(g)

call qgaus0(ftnDint,alpha,yl,yu,sss)

F=1-1/(2*pi*Vl*(1-V1))*sss

c

c bulk contrast:alpha=0

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 560

c F = 2/pi*asin(g)
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

funcg = F*sin(Q*r)/(Q*r)*4*pi*r**2

return

end

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

real*8 function ftnGauss(alpha,x)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c

c Gaussian distribution exp(-x^2)

c

implicit none

real*8 alpha,x

ftnGauss=exp(-x**2.)

return

end

ccccCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

real*8 function ftnDint(alpha,x)

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C

c Integrand for the integration for a Debye correlation function

c in non-isometric microemulsions

implicit none

real*8 alpha,x

ftnDint=exp(-alpha**2/ (1+cos(x)))

return

125



end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 600

real*8 function func(prm, Q, j, xsec_model, ii)

CCCCccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

implicit none

character*20 xsec model

integer j,resyn,nfold, ii

real*8 prm(200), sum, reso, Q, xsec

real*8 rl,r2,rll,rl2,rlam,dlam,rdet, sig

common/resofl/reso(3,200,200),rl,r2,rll ,rl2,rlam,dlam,rdet ,resyn

common/resof2/sig(3,200),nfold 610

1 sum = xsec(Q, prm, xsec_model)

2 func = sum

return

end

c

c The Anneal Method to get the optimal fit of some functional data

c to experimental data. 620

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine anneal(edat,ftemp,pnumber,step,oldchi,state,xsec_model)

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

C

C

implicit none

external func, ran3

character*20 state,xsecmodel

integer i, ii, accept, reject, estart(3), enumber, pnumber

integer j, iloop, idum, imax, imequ, equ, iprint, sets 630

integer etotal

real*8 edat(3,4,200), prm, fdat(200),temp, step, oldchi, ran3

real*8 chisqu, edge, func, chiave, outchi, IQ
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real*8 limit, sumchi, delchi, sumchi2, chidvi

real*8 bound,thy,thyplum,dbound,p,ftemp

real*8 ave, fave, outsum, avesum(200), favesum(200),chimin

real*8 xsec

common/general/estart, enumber(3), prm(200), bound(2,200), imax

common/QQQ/ave(200), fave(200), imequ, iprint, sets

640

C

c assign initial values

ccccccccccccccccccccccCCCC

print *,state

do 10 i=1, 200

fdat(i) = 0.

avesum(i) = 0.

favesum(i) = 0.

ave(i) = 0.d0 650

fave(i) = 0.d0

10 continue

open(unit =20,file=' FIRST. fit ',status=' unknown')

rewind(unit=20)

c

c First chisqu

c

etotal = 0

do 260 ii=l,sets 660

etotal = etotal+enumber(ii)

260 continue

oldchi = O.dO

chimin = 1.d10

do 250 ii=l,sets

do 231 i=1, enumber(ii)

fdat(i) = xsec(edat(ii,1,i), prm, xsecmodel)

write(20,1023) edat(ii,l,i), fdat(i)

oldchi = oldchi+
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+ ((fdat(i) -edat(ii,2,i)) /edat(ii,3,i))**2. 670

231 continue

250 continue

close(unit=20)

oldchi = oldchi/float(etotal)

print *, 'First Chiqu = ', oldchi

open(unit=8,file= ' SANS. fit ',status= 'old')

rewind(unit=8) 6so0

write(8,*) iloop

write(8,1023) oldchi

write(8,1023) outsum

write(8,1023) sumchi

write(8,1023) sumchi2

write(8,*) accept

write(8,*) reject

write(8,1023) temp

write(8,1023) step

write(8,*) equ 690

write(8,*) iprint

write(8,*) pnumber

write(8,*) sets

write(8,1023) prm(pnumber+1)

write(8,*) ' '

do 219 i=l1,pnumber

write(8,2023) prm(i),

+ avesum(i) ,favesum(i)

219 continue

2023 format(3e15.4) 700

write(8,*) ' '

do 289 ii=1,sets

do 229 i=l,enumber(ii)

IQ = xsec(edat(ii,l,i), prm, xsec_model)

write(8,1023) edat(ii,l,i),IQ
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229 continue

289 continue

close(unit=8)

print *, 'done' 710

limit = 1.e-6

iloop = 0

edge = 0.

accept = 0

reject = 0

idum = -100

chiave = 1.e30

outchi = 1.e30 720

sumchi = 0.

sumchi2 = 0.

equ = 0

outsum = 0.

if(state.eq. ' continue' ) then

open(unit=8,file= ' SANS. fit' ,status= 'unknown')

rewind(unit=8)

read(8,*) iloop

read(8,*) oldchi

read(8,*) outsum 730

read(8,*) sumchi

read(8,*) sumchi2

read(8,*) accept

read(8,*) reject

read(8,*) temp

read(8,*) step

read(8,*) equ

read(8,*) iprint

read(8,*) pnumber

read(8,*) sets 740

read(8,*) prm(pnumber+1)
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do 12 i=1, pnumber

read(8,*) prm(i), avesum(i),

+ favesum(i)

12 continue

close(unit=8)

endif

open(unit=7, file=' intave. fit',status='unknown')

rewind(unit=7)

open(unit=9, file=' intprm. fit ',status= 'unknown') 750

rewind(unit=9)

cccccc

c

c outer loop of all parameters

c

1000 iloop = iloop+1

temp = oldchi*ftemp

print * , iloop

C 760

c inner loop of individual parameter

c

do 100 j=1, pnumber

c

c update prm(j)

c

p = prm(j)

dbound = bound(2,j)-bound(1,j)

if(dbound.eq.0.) go to 100 770

thy = ran3(idum)

thyplum = 2.*thy-1.

prm(j) = prm(j)+thyplum*step*prm(j)

if(prm(j).lt.bound(1,j)) then

prm(j) = prm(j)+

* dbound*float(int((bound(1,j) -prm(j))/dbound) + 1)

endif
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if(prm(j).gt.bound(2,j)) then

prm(j) = prm(j)-

* dbound*float(int((prm(j) -bound(2,j))/dbound) + 1) 780

endif

c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c Calculate Chi-Square of the Current Parameter Set

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

chisqu = 0.

do 270 ii=1,sets

do 20 i=l1, enumber(ii)

fdat(i) = func(prm, edat(ii,l,i), i, xsec model, ii)

chisqu = chisqu+ 790

+ ((fdat(i)-edat(ii,2,i))/edat(ii,3,i))**2.

20 continue

270 continue

chisqu = chisqu/float(etotal)

print *, 'chisqu = ', chisqu

print *, '

print *, ' a = ', prm(1)

print *, ' b = ', prm(2)

print *, ' c = ', prm(3)

print *, ' alpha = ', prm(4) 800

print *, ' V1 = ', prm(5)

print *, ' sigma = ', prm(6)

print *, ' eta2 = ', prm(7)

print *, ' bgd = ', prm(8)

print *, '

edge = ran3(idum)

delchi = chisqu-oldchi

c

c 810

if(delchi.le.0.) then

accept = accept+l1

oldchi = chisqu
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else

if(exp(-delchi/temp).gt.edge) then

accept = accept+l

oldchi = chisqu

else

reject = reject+l1

prm(j) = p 820

endif

endif

avesum(j) = avesum(j)+prm(j)

favesum(j) = favesum(j)+prm(j)

outsum = outsum+oldchi

sumchi = sumchi+oldchi

sumchi2 = sumchi2+oldchi**2.

100 continue

cccccc

830

if(((float(iloop) /float (iprint))

+ -int(float(iloop)/float(iprint))).eq.0.) then

print *, 'OK'

if(oldchi.le.chimin) then

print*,' OK'

chimin = oldchi

do 200 i=1,pnumber

ave(i) = avesum(i)/float(iprint)

fave(i) = favesum(i)/float(iloop)

200 continue 840

outchi = outsum/float(iloop*pnumber)

chiave = sumchi/float (iprint*pnumber)

chidvi = sumchi2/float (iprint*pnumber) - chiave**2.

2000 open(unit =8,file= ' SANS. f it' ,status= ' old')

rewind(unit=8)

write(8,*) iloop

write(8,1023) oldchi

write(8,1023) outsum
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write(8,1023) sumchi 850

write(8,1023) sumchi2

write(8,*) accept

write(8,*) reject

write(8,1023) temp

write(8,1023) step

write(8,*) equ

write(8,*) iprint

write(8,*) pnumber

write(8,*) sets

write(8,1023) prm(pnumber+l) 860so

write(8,*) '

do 21 i=l,pnumber

write(8,1023) prm(i),

+ avesum(i),favesum(i)

21 continue

1023 format(3e15.4)

write(8,*) ' '

do 280 ii=l,sets

do 22 i=l,enumber(ii)

IQ = func(prm, edat(ii,l,i), i, xsec_model, ii) 870

write(8,1023) edat(ii,l,i),IQ

22 continue

280 continue

close(unit=8)

endif

sumchi = O.dO

sumchi2 = O.dO

do 30 i=l,pnumber

avesum(i) = O.dO

30 continue 880

write(7,1024) iloop, chiave,chidvi,outchi

write(9,1025) (prm(i),i=1,7)

1024 format(111,3el 1.3)

1025 format(7ell11.3)

endif
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CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

c Check Convergence

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

if(equ.ge.1) then

if(iloop.ge.(10.*iprint).and. 890

+ abs(outchi-chiave)/outchi.le.limit) then

print *,'Out by Deviation'

go to 9999

endif

if(oldchi.le.0.5) then

print *,'Out by Chi Square'

go to 9999

endif

if(iloop.eq.imax) then

print *,'Out by Steps' 900

go to 9999

endif

else

if(iloop.eq.imequ) then

iloop = 0

equ = 1

accept = 0

reject = 0

sumchi = O.dO

sumchi2 = O.dO 910

outsum = O.dO

do 25 i=1,pnumber

avesum(i) = O.dO

favesum(i)= O.dO

25 continue

close(unit=7)

close(unit=9)

open (unit =7,file= ' intave .f it ',status= 'unknown')

rewind(unit= 7)

open(unit=9, file= ' intprm. fit ',status= 'unknown') 920

rewind(unit=9)
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endif

endif

cccccc

go to 1000

CCCCCC

C

9999 close(unit=7)

close(unit=9)

return 930

end

cccCCCCCCCCCCCCCCCCCcccCCCccCccCCCCCCCccccCCCCCCccccccc

function ran3(idum)

CCcCCCCcCCCCCCCCCCCCcccCccCCcccccCCC ccccccccccccCCCCCCCcc

C

c Generate random numbers

c

integer idum

integer mbig,mseed,mz 940

real*8 ran3

real fac

parameter (mbig= 1000000000,mseed= 161803398,mz=0,fac= 1./mbig)

integer i,iff,ii,inext,inextp,k

integer mj,mk,ma(55)

save iff,inext,inextp,ma

data iff /0/

if(idum.lt.0.or.iff.eq.0)then

iff= 1

mj =mseed-iabs(idum) 950

mj=mod(mj,mbig)

ma(55)=mj

mk=l

do 11 i=1,54

ii=mod(21*i,55)

ma(ii)=mk

mk=mj-mk
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if(mk.lt.MZ)mk=mk+mbig

mj=ma(ii)

11 continue 960

do 13 k=1,4

do 12 i=1,55

ma(i)=ma(i)-ma(1+mod(i+30,55))

if(ma(i) .lt.MZ)ma(i)=ma(i)+mbig

12 continue

13 continue

inext=O

inextp=31

idum=l

endif 970

inext=inext+l

if(inext.eq.56)inext=1

inextp=inextp+l

if(inextp.eq.56)inextp=1

mj=ma(inext)-ma(inextp)

if(mj.lt.MZ)mj=mj+mbig

ma(inext) =mj

ran3=mj*fac

return

end 980
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