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Abstract

An electrodeless method of measurin, electron attachment and ambipolar
diffusion in gases has been developed. An r-f field is used to break down a gas
in a glass bottle inside a cavity resonant at 3000 Mc. This field is applied for
1000 microseconds,then turned off for 4000 microseconds. The electrons produced
in the discharge then diffuse or attach depending on the gas used. If a small
c-w field is applied to the cavity, the free electrons will oscillate without
having their energy distribution disturbed. The electron oscillation causes a
shift of the resonant frequency of the cavity proportional to the number of free
electrons. Therefore by measuring the frequency shift in the cavity as a func-
tion of time,the change of electron density due to the various removal processes
is determined.
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A MICROWAVE METHOD OF STUDYIG TRANSIENT PHENOMENA IN IOIZED GASES

Over a period of years the processes of electron attachment and electron and

ionic diffusion in gases have been investigated in many experiments. All methods,

however,suffered from one principal disadvantage: metal surfaces were present in the

measuring apparatus causing difficulty in maintaining high purity of gases and in some

cases leading to undesired interaction between the metal electrodes and the charged

particles. Also, in attachment measurements, the minimum electric field used confined

measurements to medium and high electron energies.

By making use of recent developments in microwave techniques, a method has

been developed for measuring electron attachment and ambipolar diffusion at thermal

energies without the presence of electrodes in the gas. With this method a high degree

of purity can be maintained. For attachment measurements the range of electron energies

may be extended from the previous lower limit of about 0.2 ev to thermal energies

(-0.04 ev). For diffusion measurements this method gives some of the first data on the

relatively uninvestigated subject of ambipolar diffusion1.

1. Theory and Experimental Method

If a gas-filled glass bottle is placed in a cavity resonant at 3000 Me and ions

and electrons are generated in the gas by a high-intensity r-f field, the properties of

the cavity will be altered. At microwave frequencies the effect of the massive ions is

negligible as compared to that of the electrons. Free electrons will oscillate in an

applied r-f field, their motion being out of phase, drawing no power from the field,

until they collide with a gas atom or ion. The electron orbit during collision has an

in-phase component withdrawing, on the average, sufficient energy from the field to

supply the energy lost in the collision. Therefore the electrons in the cavity have a

complex conductivity, or, whose real component, r , is due to the in-phase motion

during collision and whose imaginary component, ci, is due to the out-of-phase oscilla-

tion plus the out-of-phase component of the collision motion.

At thermal energies the energy distribution, f, of these electrons is very

nearly Maxwelli an:

f = Ae(1)

where A, as will be shown later, is proportional to the electron density, is the

energy of the electrons, k is Boltzmann's constant, and T is the absolute temperature.

As has been shown by W. P. Allis, private communication, the complex con-

ductivity of the medium may be written as:

2 A -u i
c 2 2 . (2)

1. Ambipolar diffusion is discussed in Sec. 3.2.
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where £ = mean free path; e and m are electronic charge and mass, respectively; and
22

2 = m w2£ , w being the applied radian frequency; c2 represents the energy at which
an electron makes collisions with gas atoms on the average at the same frequency as

that of the applied r-f field. It defines a transition energy between energies at

which an electron makes many oscillations in the applied field per collision with a

gas atom and energies at which the electron makes many collisions per oscillation.

Since the integration of Eq. (2) is not readily performed, let us consider

a region where 2>)>e that is, a low pressure or low electron energy region1. Making

the approximation:
1 -1 (1

E2 + ¢ (2 (2

and considering only the imaginary part of the integral:

i 3 a m2kE So T (e - 'ks de. ( )

By separation and simplification, the integrals are reduced to the form of gamma

functions. Therefore:

2 m2 2 2 2
2

A similar result is obtained for ar:
r

l= 2 ( )2 (1 a (5)Qr-- 3 -- ~ -- (1- 2m C2 2 2

The value of A may be obtained as follows: If the velocity distribution is Maxwellian,

and the velocities are spherically symmetrical, we may write n, the electron density,

as:

n = f (v) 4 v dv=J Ae k 4Tr v dv. (6)

This integral may be reduced to the form of a gamma function. Therefore:

/
n = (2r -) A (7)

Therefore, both or and ai are proportional to the electron density within

the cavity. They simplify to the expressions:

MW ma [1- ~2 t2 (8)

1. For helium, pressures up to 50 mm satisfy this condition for thermal electrons.
Experimental measurements rarely exceed pressures of 20 mm.
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cr 3 m 21 2 . n (9)

It can be shown that ao acts to lower the of the cavity while the shift of resonant

frequency is proportional to 1i. In lumped constant analogy, the cavity would be
considered as a parallel RLC tank circuit, with ar represented as an added shunt re-
sistance and ai a shunt inductance.

The calculations of r and ci for the high pressure or high energy case,where
¢)>¢2 have also been done and the results are given below2; however, they do not
apply to this experiment. A simple derivation involving the arplication of Newton's
law to a free electron gas in which collisions are neglected gives a result for i:

2

ei nm * (10)

Therefore the term [2 K in Eq. (8) represents the correction of this simple

theory for the effect of ollisions. However, at thermal energies at pressures of the

order of 10 mm,the correction term is only of the order of 10 9 thus totally negligible.
In the 10-mm pressure range this makes i independent of electron energy over a range of

0 - 10 ev.

Let us relate these derivations to the physical problem. Consider a resonant

cavity containing a glass bottle into which gas samples are introduced. If electrons

are produced in the gas, they will change the cavity's resonant frequency and lower its

Q in proportion to the electron density. By choosing suitable gas pressures and

electron energies the decrease in Q can be made negligible compared to the resonant
frequency shift of the cavity$ .

If a large number of electrons is initially produced in the gas inside the

glass bottle, they will disappear with time principally on account of ambipolar

diffusion, attachment (cf. Sec. 3), or volume recombination. Experimental data for

the particular gases investigated in this experiment indicate that recombination is
too slight to be an effective removal process. The time effect of these electrons

will be to produce a large initial frequency shift in the cavity which will diminish

with time as the electron density decreases. Therefore to study these transient

processes it is sufficient to observe the resonant frequency shift of the cavity as

.a function of time.

1. See J. C. Slater, Rev. Mod. Phys. 18, 441 (1946).

2. If c >>E2

r (me 2~ (1 - )n

o 3= --- () (1 - 2 -)n

3. In the actual experiment the wall losses of the avity are so large and a- so small
compared to (see Eqs. (8) and (9), o/o1n 0 ) that only at large frequency
shifts is the decrease in cavity response noticeable; that is, the Q of the cavity
is primarily determined by the constant wall losses.

-3-
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2. Experimental Arrangement

It has been pointed out that i exceeds or by a factor of 104 , that is, that

the frequency shift produced by electrons in a cavity is more easily detected, es-

pecially for low electron densities, than any attenuation of a transmitted signal

which they might produce. Over a small frequency range the electrons produce a

frequency shift proportional to their density [see Eq. (8)]. Also, so long as the

condition 2 >>e (the low pressure, low energy case) is valid, this frequency shift

is independent of electron energies up to 10 3ev. Of course, as soon as we deal with

higher electron energies at a given pressure the condition might fail and the inte-

gral (3) would have to be solved for a new set of conditions. This is important

since in helium typical pressures used experimentally are of the order of 10 mm. For

thermal energy electrons in helium = 2 at about 100 mm so that the condition

E2 >>e is valid at 10 mm pressure; however, for 20-ev electrons such as are produced

in a discharge in helium, e = c2 at about 5 mm so that a transition solution must be

used. Present investigations deal with measurements at thermal energies only. A

simple calculation shows that the energy of electrons in helium will go from 20 ev

to 0.04 ev, on account of elastic collisions in about 50 sec for pressures of the

order of millimeters. Therefore if one waits 50 jjsec after a discharge in helium

has been terminated, the electrons remaining may be considered to be at thermal

energy, so that the conditions leading to Eq. (8) are satisfied.

A block diagram of the apparatus used to measure the change of electron

density with time is shown in Fig. 1.

PULSED TM CAVITY OSCILLOSCOPE
WITH 

0 YLINDRICAL WITH CALIBRATED
TIMAGNETRON GLASS BOTTLE INSIDE TIME SWEEPTO INITIATE

UAV I T

WAVEMETER
(FREQUENCY

MEASUREMENT)

Figure 1. Simplified block diagram of apparatus.

A discharge i~ initiated in the gas-filled glass bottle for 1000 psec by the
1

pulsed magnetron, then turned off for 4000 tsec. During this off time, observations are

made. A small c-w signal from the Mcally tube is used as the low-level probe signal.

The cavity has a characteristic resonant frequency which is increased in proportion to

the density of free electrons within the cavity. If we consider the cavity in the

absence of free electrons, a probe signal whose frequency is set to the resonant fre-

-4-

1. The discharge is maintained for this relatively long time in order to permit equil-
brium conditions in the discharge to be reached.
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quency of the empty" cavity, foe' will undergo maximum transmission through the cavity.

All probe signals having other frequencies will undergo reduced transmission.

If the probe signal is set to a higher frequency than foe' this signal will

undergo maximum transmission through the cavity at the time at which the residual density

of electrons remaining from the discharge and the cavity constants give a resulting

resonant frequency, f, equal to that of the probe signal. The time of maximum trans-

mission is measured by means of the calibrated time sweep of the oscilloscope. The ori-

gin of time measurements is the end of the magnetron pulse, when the discharge is termi-

nated.

By varying the probe signal frequency in steps and measuring the time of

maximum transmission corresponding to each frequency, one obtains a frequency shift

versus time curve. This curve completely characterizes the change of electron density

with time due to the various removal processes.

3. Physical Considerations of Attachment and Diffusion

3.1. Attachment. A few gases, principally oxygen, S02, H20 vapor, and NO2, exhibit the

property of attachment. If electrons are produced in these gases there is a certain

probability that on collision with a gas atom or molecule the electron will be captured

to form a negative ion. This probability is known as the attachment probability, h, and

may be expressed as the inverse of the average number of collisions with gas atoms per

attaching collision. It is usually quite small, of the order of 10-3 attachments/colli-

sion or less.

Let us analyze the process of the removal of free electrons from the gas

due to attachment. If we assume that the electrons have a Maxwellian energy distribution

fo = Ae /ksee Eq. (l)],which is a ustifiable ssumption at thermal energy, the

electron density in a volume element between v and v + dv of velocity space is:

dn = Ae T 4 v dv. (11)

In this element, the rate of removal due to attachment is:

d(- ) = Ae k4 v dv () h

where is the electronic meemn free path. If h is assumod to be independent of energy,

the total rate of removal of electrons is:

c

dn_ h A kT
-t 4n A 4T v e dv (13)

a

using = 1/2 m v2 , the integral can be redaced to the form of the gmmua function.

Therefore

dtn = h () (142.
dt Z 2 (14)

-5-
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Using the value of A derived in Eq. (7), we obtain

'~j 2h 2_ t _d2 - at (15)

Integrating:

-T
n = n e (16)

whereT', the time constant of this exponential process, is given by:

L /Tr m '
2h 2 (17)

We shall make use of this derivation in the section on experimental results.

3.2. Ambipolar Diffusion. The process of diffusion of electrons in the presence of a

nearly equal number of positive ions takes place in a manner known as ambipolar, in

which, on the average, an electron cannot diffuse out without taking along a positive

ion; therefore, ambipolar diffusion is much slower than electron diffusion.

The migration of bodies due to a concentration gradient is expressed

by:

~D -- - D n- _ D(ln n) (18)
n

where vD is the average drift velocity; n is the particle density; and D the diffusion

constant. For ambipolar diffusion we must also consider the mobility of the particles.

The average velocity produced by an applied field E is:

v = E (19)

where A = mobility constant.

If we denote by N the positive ion density and by n the electron density:

v+ = - D v ln N + As 1

r = } Equations governing diffusion. (20)
v_ = - D_ vln n - _ E

where v+ and v are positive ion and electron average drift velocities, respec-

tively,

D+ and D are positive ion and electron diffusion constants, respectively,

Lt and ML are positive ion and electron mobilities, respectively.

In the steady state of ambipolar diffusion v+ = v so that when there is no field

applied eternlly, E is the field set up by the system of positive ions and electrons

to maintain ambipolar diffusion, i.e. v+ = v = v.

Observing thatN-n in a gas discharge we solve q. (20) eliminating E:

[1= + v ln n (21)

v = - D vln n
or a (22)

where D , the abipolar diffusion constant is:

-6-
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a +, -+ (3)

This expression may be simplified for the case of a Maxwellian distribu-

tion of energies. From kinetic theoryI we find that

- *+ e (24)
D D+ kT

where k is Boltzmann's constant, e the electronic charge and T is the temperature of

the electrons and the ions (at thermal energy T+=T_). Since the mobility of the

electrons greatly exceeds that of the positive ions,

L . L (25)

and D 2k 

The positive ion mobility p+ can be evaluated only aproximately, but by using the type

of derivation applied to electron mobilities where mion C Matom, its order of magnitude

is given by: 

~L'+ 3 Mk (26)

where i is the positive ion mean free path and Mf is its mass.

Then
4 f ' [k .

D 3-41/T' i (27)

For the experiment considered here the gas bottle is cylindrical and therefore we

must solve the diffusion equation for cylindrical coordinates; r, , z:

1 nt (28)

a

By separating variables we obtain the elementary solutions:

t

-n e sin L + B cos( z)] z sin (mg) + D cos (mO

\Jm( 7( (L)r + m D I)r)] (29)

wheret is the time constant of the diffusion process; A, B, C, D, E, F are constants;

k and m are integers; and L is the length. Since the differential equation is a

homogeneous and linear equation, any sum of these solutions is also a solution.

Let us assume that the electron density goes to zero at the walls,

r = R, Z = 0, and Z = L. Depending on the initial distribution of electrons and

positive ions, the process mv be a mixture of exponentials whose time constants, 'p

are given by the zeroes of the Bessel functions:

J kr 2 R) = yO (30)

-7-

1. L. B. Loeb, "Fundamental Processes of Electrical Discharges in Gases", John Wiley,
New York, 1939, p. 166.
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Note:

N , the Neumann functions are eliminated because all are infinite at the

origin and thus cannot be used to represent an actual electron density in-

side a cylindrical container.

If proper precautions are taken, a discharge can be obtained inside the cyl-

inder whose density distribution appears to be J in form radially, half-sine in form

axially, and symmetrical tangentially. Referring to Eq. (29) we then have k = 1, m = O.

This yields only one time constant, that given by the first J root

j 1 _()2 = 2.405 (31)

which makes observation of the process relatively simple.

4. Exeriental Results

4.1 Helium. Most of the development of the experimental method has been done with helium

as the test gas. Since electrons were expected to diffuse ambipolarly in helium (which is

a relatively slow process) it offered a means of accurate study of the linearity of fre-

quency shift and electron density predicted by Eq. (8).

The time constant of a diffusion process should increase in proportion to

the gas pressure. We see from Eq. (31) that for a given container the product Da ris con-

stant. From Eq. (27) D is proportional to the ionic mean free path or 1/p. xperiment-

ally this was found to be true over an investigated range of 1 to 10 mm pressure. As the

gas fillings were made purer by better vacuum technique and by out-gassing the walls of

the glass bottle, the diffusion process became slower and slower until a termlin1 value

of 450 sec/mm of gas pressure rFvS obtained for r/p. This pure gas case is shown in

Fig. 2.

If Eq. (27) is evaluated for helium and the value of D8 obtained is substituted

in Eq. (31) along with the dimensions o the glass bottle, we find that

7 - 315 usec/mm of pressure.
P

This theoretical result is about 30 per cent less than the exrrerimental value. Qualita-

tively this is explained by the fact that the true value of g+ is srmaller than that given by

Eq. (26) which is at best an approximation. Therefore the calculated value of D is too
a

large and too fast a diffusion is redicted.

By using the value of /p = 450 sec/mm obtained experimentally, D mayv be evalu-

ated by Eq. (31). The result is
D = 710 cm2/sec at 1 nun ressure.
a

4.2. Oxgen. On the basis of the behavior of oxygen at higher energies and the results

of !largenau, Mcillan, Dearnley, and Pearsall for thermal ener~g, it was expected that

oxygen would attach with a probability of the order of h = 10- 4 attachments/collision.

In the present investigation ogen has been studied in some detail. The

data are not good enough to enable us to classify orgen's behavior, but it is clear

1. Phys. Rev., 70 349 (1946)
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Figure 2. Ambipolar diffusion in helium.
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that unlike previous results the cleanup of electrons in oxygen is slow at thermal

energies. Whether this slow cleanup is due to a low attachment probability (10-6 to

10-7 attachments/collision), or is due to diffusion or recombination, or some combina-

tion of these processes is not at present clear. It is planned to investigate oxygen

in greater detail,

5. Summary

The range of electron densities which can be observed by this method can

be estimated. A simple calculation in which the effects of collisions of the electrons

in the gas are neglected gives an equation for the resonant frequency shift of the

cavity for a given electron density:

2c () (V ) (K) n (32)

where w is the applied radian frequency; e and m are the charge and mass of the electron,

respectively; c is the permittivity of free space; VI is the volume of the gas-filled

bottle and V the volume of the cavity; n is the electron density; K is a number account-

ing for the non-uniform E field within the cavity, and its value lie between 0.2 and 0.4.

The maximum detectable frequency shift at 3000 Mc is at resent about 100 Mc.

The minimum is about 0.1 Mc. These values correspond to initial concentrations of the

order of 10 electrons/cc and a minimum detectable density of about 107 electrons/cc.

Therefore this method is supplementary to that of Margenau and his associates, since

it is sensitive to smaller electron densities.

1. Phys. Rev.70,349 (1946).
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