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TRANSIENT PHENOMENA IN WAVEGUIDES "

by

Manuel Cerrillo

Abstract

This work deals with the study of the transient phenomena
of electromagnetic waves in hollow metallic cylinders of a general
geometric cross seccion when excited under different initial and
terminal conditions. A semi-infinite waveguide, the cross-sectional
dimensions of which are small in comparison with its length, is ex-
cited at one end, taken as the origin, by an electromagnetic field
of rather arbitrary waveform. The solution given here shows (a)
the distortion of the waves in amplitude and frequency as they
propagate along the waveguide; (b) the speeds, signal and group
velocities, and the time of formation (time in which the internal
fields build up) at the given point of observation, or the spatial
distribution of the fields at a given instant of time; (c) general
methods of solution for complicated waveforms of the incoming
signals; (d) reduction of all transients to a typical one by means
of generating functions. Exact, asymptotic, and graphical solutions
are given as solutions of the transient behavior, and applications
are mnde to some typical cases. To accomplish the above results, it
was necessary to give a detailed and complete discussion of the
motion of electromagnetic waves in systems of cylindrical con-
figurations and the new results were obtained in this connection.
Laplace transformations are used as the basic mathematical tool in
this investigation.

* This report is a slight modification of a thesis of the same
title submitted by the author in partial fulfillment of the
requirements for te Degree of Doctor of Philosophy at the
Massachusettq Institute of Technology, June, 1947.
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INTRODUCTION

0.0 This study will deal with the transient phenomena of elec-

tromagnetic waves inside hollow cylinders of a general geometric

cross section under different initial and terminal conditions.

A general solution will be worked out which is sufficiently

complete to meet all possible cases of initial conditions,

in space and time, appropriate to the analytic character of

this Dirichlet's type problem.

Since in wave guides the propagation constant is a function

of frequency, such a guide behaves like a dispersive medium

and this situation complicates the solution to the transient

problem. For dispersive media, phase, signal and group veloc-

ities have been defined, and it is intended to investigate

their meaning in connection with the present problem.

The solution of the transient problem is of particular in-

terest in connection with the linear accelerator. Electric

charges are injected, with a certain initial velocity, into

a circular wave guide, or series of cavities, in which electro-

magnetic wave pulses of TH type propagate along the axis.

The interrelation of the pulses and charges must be such that

the particles, acted upon by the longitudinal electric field,

suffer a unilateral acceleration in the direction of the wave-

guide axis. Since this particle must be accelerated by the

internal electromagnetic field, it is important to know how

this field propagates as well as the velocity of signal forma-

tions and main energy build-up along the accelerator. In

"���I-------------- - - -- - ---- ·
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order that the charges can acquire very large velocities,

the main bulk of the pulse energy must be propagated at such

speed that the particle is always acted upon by an electric

field of sufficient intensity. Although the velocity of

propagation of electromagnetic disturbances is that of light,

it does not follow that the main body of the pulse will be

formed at the same speed. In general, the precursor of the

first wave is of such small intensity that its effect on the

charge may be negligible.

As an application of this general transient theory numer-

ical examples will be given for specific cases, showing the

distortion of the pulses as they travel along, the form of

the signal at a given cross section, and the surface of equal

phase, when a sinusoidal pulse of definite frequency and

duration is applied at a terminal cross section of the wave

guide.

An attempt will be made to unify, as much as possible,

the mathematical procedure. Laplace transform theory will

be the basic tool.

0-0.1 The main problem solved here can be briefly defined as

a lossless and semi-infinite wave guide, with cross-

sectional demensions small in comparison with its length,

which is excited in one of its modes at a given cross

section taken as the origin. By hypothesisit will be

assumed that the time of formation of the transverse field

is much shorter than the one required for the electro-

magnetic perturbation to reach an internal point P far

I- I
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away from the origin. The requirementsto be obtained

are: a solution for the elementary waves, the speeds

with which the field builds up at the point of observa-

tion, the distortion in amplitude and phase of the origi-

nal waves when they propagate along the cylinder due to

the dispersive action of the guide.

Once the solution for elementary waves is obtained,

solution for other fields of excitation can be found by

a linear superposition of those waves.

The input wave forms of excitation are unlimited ex-

cept for some analytical restriction. From the practical

point of view there are some waves which have a predomi-

nant importance. They are, for example, oscillation-

modulated by pulses of different form and duration, am-

plitude-and frequency-modulated waves, etc. The solution

of the problem must be such that it can cover all the

cases of practical application.

0-0.2 The study of transient phenomena in wave guides is

far more involved than was expected. The principal dif-

ficulties are of mathematical character. .The analytic

process is complicated and delicate to handle. Besides,

it is necessary to deal with a vector field and with a

large number of possible initial conditions of excitation.

At the start, one of the simplest cases of wave-guide

excitation was considered. Serious integration difficul-

ties were encountered. After considerable trouble, one

component of the field was obtained as an asymptotic

series development in the Poincare sense. The solution

�_��___ �^�1_�_111_111___�__l__�l*
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was practically useless because the other components of

the field could not be derived from it,since the opera-

tion of differentiation is forbidden with such series.

Besides, this series solution could not be valid when the

applied frequency was too close to the cut-off frequency

of the guide, which is a case of practical importance.

Now, if the type of initial condition changes, a new

problem arises and it would be necessary to repeat a

litany of mathematical troubles. Then, it was concluded

that to solve any particular cases was not an appropriate

method of attack; it was, therefore, abandoned.

0-0.3 A more general method of tackling this investigation

was needed and it was necessary to go beyond the limita-

tions of the scope of this work} starting the search

from the fundamental aspect of propagation of waves in

cylinders, up to a stage in which satisfactory solutions

of the propagation of waves in hollow cylinders can be

obtained.

This analytic study is, therefore, not limited to

wave guides. A solution will be obtained for the instan-

taneous fields in cylindrical systems or configurations

whose cross-section geometry is not limited to a special

form or to a single set of the walls of the cylinder.

The only restriction is that the field propagates with-

out dissipation. The mathematical method used here is

such that it can be easily extended to the case of dis-

sipation.

---- -- I
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0-0.4 We will start from the set of Maxwell equations in

generalized cylindrical coordinates. The mathematical

tools consistently and systematically used are Laplace's

transformations.

This investigation was conducted as follows:

1. The set of Maxwell equations are subjected
to a Laplace transformation with respect to
the time, by introducing the definition of
a vector space S. These transformed equa-
tions are expressed explicitly in terms of
the initial spatial distribution at t O.

2. The corresponding hypothesis for cylindrical
configuration is introduced into Maxwell's
equation in this S domain.

3. A new vector space R is defined and Maxwellts
equations will be subjected to a new Laplace
transformation with respect to x 3 (x3 being
the longitudinal coordinate along the genera-
tor of the cylinder). This second transfor-
mation introduced the initial condition, as
a function of times at x 3s 0.

4. Here Maxwell's equations are solved and a vector
field is obtained which represents elementary
waves in this space. This field satisfies
boundary conditions at the walls of the
cylinder.

5. The vectors of this field are subjected now
to an inverse Laplace transformation. A
vector field is so obtained, in the S space,
in terms of the initial conditions of all
vectors at x3 0 and t O. This field rep-
resents two independent sets of waves travel-
ing in the positive and negative directions
of x3.

6. This vector field is not necessarily electro-
magnetic for arbitrary initial values, since
under this condition this mathematical field
does not satisfy Maxwellts equations in S
space.

If this mathematical field is to be an elec-
tromagnetic one, the initial conditions are
not all independent. They must satisfy
simple relations. When these relations are

·-LI_---------(---
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introduced in the mathematical field, it will
break up in three independent electromagnetic
fields corresponding to TE, TH, and TEH waves.

7. The next natural step is to transform these
fields from the S domain into the instantaneous
t domain.

a. If there is no dissipation, the TEH system
does not offer any special problem of in-
version. The propagation is merely the
movement of the incoming signal without
distortion and takes place with the speed
of the light in the medium.

b. The inversion of the TE and TH fields is
very difficult to perform. Most of this
work is devoted to this operation.

8. a. A systematic study of the transforms of the
TE and TH waves was made to find the ana-
lytical connection between them. In this
way a considerable reduction was made to
the number of transforms which have to be
inverted.

b. A general survey was made to find a group
of possible practical initial conditions.
This study revealed that one has to deal
with transforms of the type

F(s,J 2 + 2)eksF ' 

where F is the ratio of two polynomials.
This type covered almost all practical
cases of amplitude-modulated signals. In
case of frequency modulation, the trans-
forms are more complicated meromorphic
functions. By means of well-known theorems
the last case can be reduced to expansions
of the first case.

9. Conditions and analytical requirements on
these transforms were investigated to secure
a field which is electromagnetic upon the
inversion into the instantaneous time domain.
This condition proved to be significant.

10. Several methods of inversion were first ried
out. Most of this work was done using the
inverse integral. This inversion in the S
plane proved to be very difficult to obtain
for all these transforms.

__
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11. Complex transformations were introduced. One
simple complex transformation proved suitable
for obtaining the inverse function correspond-
ing to transforms of the type indicated in 9.

At first, the results of the solutions were
uniform convergent series expansions of the
Newmann type. Later, these series were
recognized as Lommel functions of the order
of zero and one.

12. Since Lommelts functions are not tabulated,
except for a few, it was necessary to obtain
an appropriate expansion for the purpose of
numerical computation. This expansion was
made by introducing a new complex transfor-
mation.

13. Analytical expressions were obtained for the
envelope and phase functions of the inverse
functions of the transforms indicated in 9.

14. Study of the meaning of signal, group velocity
and time of signal formation for all trans-
forms of type 9.

15. Numerical computation of the associated
functions.

16. Application to transients in wave guides.

This work is divided into four chapters. The first

covers from articles 1 to 6 in this summary; the second,

articles 7 to 10; the third, article 11; and the fourth,

articles 12 to 16.

0-1.0 We can summarize the results of this investigation as

follows:

1. The TE, TH and TEM fields in cylindrical con-
figurations can be obtained without the intro-
duction of three different potentials.

2. The analytical requirements which are necessary
to satisfy the initial conditions in order to
excite electromagnetic waves in hollow cylinders
are given.

____ __1_11_1__1�__11^__11__1_171_1
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3. The appropriate interpretation of the branch
cuts is given as secondary waves, which vanish
in the permanent state.

4. The inverse functions of transforms of the
type indicated under Art. 9 p. 6 can be ob-
tained in a compact form and in terms of
Lommel's functions.

5. The existence of a generating function which
produces these inverse transforms. In other
words, the reduction of all these functions
to a single one, if appropriate transforma-
tions are introduced.

6. A theorem on inversion was found which proves
useful to compute a family of transforms.

7. Simple approximate formulas were obtained to
compute inverse functions of the above-
mentioned type. If the transient period is
divided into three intervals known as
Precursor, Main Signal Formation and Coda
Regions, appropriate simple expansions are
given for each subinterval.

8. The reduction of the main signal formation
interval, of all transforms, to a generating
function is given. This is closely related
to Cornu's Spiral.

9. Universal curves to construct envelopes and
phase functions are given.

10. By using the above-mentioned universal curves,
a graphical method of construction of the
envelope and phase functions for particular
transforms were obtained. This method saves
a large amount of labor in numerical compu-
tations.

11. The determination of the signal and group
velocities, time of formation and slope of
formation for all these transforms is con-
sidered. An association of these velocities
to the poles of the original transforms are
indicated. Definitions of these concepts in
terms of a generalized variable are given.
The independence of these concepts to the
cross section of the wave guide is shown.

12. The application is made to complicated forms
of wave excitation in hollow tubes.

_ __
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0-2.0 At the time of writing the results of this report,

it was noticed that the Newmann series expansion of the

above transforms corresponded to the functions of

Lommel. This discovery enables one to make a short cut

in the mathematical development of Ch. III. Unfortunate-

ly since this chapter was already written and due to

lack of time it will not be possible to incorporate these

changes.

0-3.0 The mathematical method used in this work can be

readily and easily extended to investigate the case in

which dissipation exists. In this case, two sets of

Maxwell's equations and a set of boundary conditions

will be transformed. The subsequent methods of inver-

sion are almost the same as those indicated here.

In addition, the analytic requirements on the

transforms necessary to excite electromagnetic fields

(see Ch. II) in hollow pipes might be used to work out

the problem of discontinuities inside the guides.
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CHAPTE I

Section 0 - Introduction and method followed in this chapter.

I-0.1 The material presented in this chapter will be limited

to an analytical study, in its basic aspect, of the pro-

pagation of electromagnetic waves in systems of cylin-

drical configuration. The fundamental assumptions used

here are: a. the propagation takes place without dissi-

pation; b. the medium is uniform and isotropic; c. tne

effect, if any, of external charges on the internal

field is negligible. The procedure followed in these

chapters is indicated in the following paragraphs.

I-0.2 Section 1 deals with: Laplace transformation of the

set of Maxwellts equations with respect to the time.

Transformation to the S domain. Introduction in explicit

form of the initial spatial condition at t=0.

I-0.3 Section 2 deals with: A second Laplace transforma-

tion of Maxwelsequations with respect to the axial co-

ordinate when thE equattonsare expressed in cylindrical

generalized coordinates. (Transformation to the R domain.)

Introduction of initial time conditions at X3= O.

Derivation of a general expression of the vector field

and the corresponding differential equations.

I-0.4 Section 3 will comprise: Introduction in the R

domain of the transverse boundary conditions. Yield

solutions for the fields in the form of elementary waves.

These field solutions result from solving a well-known

differential equation of the Poisson type together with

a system of algebraic equations.

I _ _
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I-0.5 Section 4 will be comprised of: A study of the

initial time conditions at X3= 0 only. The first inverse

transformation of the vector fields from the R domain

into the S domain. A study of the general character of

these transformed fields. Separation of the field into

wave components moving along the positive and negative

directions of the longitudinal axis.

I-0.6 Section 5 will be comprised of: A discussion of

the mathematical character of the field in the S domain

and its decomposition into three independent electro-

magnetic fields, corresponding to TE, TH and TEH waves.

I-0.7 Section 6 will be comprised of: An inverse trans-

formation of the instantaneous TEH fields from the S

domain to the time domain. Configurations suitable

for TEH waves. Undistorted propagation in the medium

with the speed of light.

I-0.8 Section 7 will be comprised of: Dispersive character

of the TE and TH fields. Presentation of the problem

of inverse transformation of the instantaneous TE and

TH fields from the S time domain. Analytical relations

between these s transforms and a first reduction and

classification into types.

I-0.9 Section 8 will contain: Analytical survey of the

initial time conditions, their introduction to the S

domain and the resultant structure of s transforms.

Amplitude- and frequency-modulated excitations.

Prototype transforms.

_1_1_1_�__ 1_ __· _ _ � ___



12

I-0.10 Section 9 will contain: Further analytical require-

ments on the s transforms to secure an electromagnetic

field after their inverse transformation into the time

domain. Condition of guide excitation.

I-0.11 Section 10 will contain: Review of the methods

yielding inverse transforms appropriate to the present

problem of wave propagation in cylindrical systems.

(The actual process of carrying out these transforms is

discussed in detail in the following three chapters.)

Section 1 - First Laplace transformation of Maxwell's equations
and the introduction of initial space distribution
at t =0.

I-1.0 Under the assumptions indicated in I-0.1, Maxwellts

equations have the form

V + 1 =O0 ; Vxe =O
--~t >t ~~(1)I1

v- =0 ; v o

.LLAA VV J..L 1 

X= (xl,,x2 ,x3,t) - instantaneous electric
intensity vector

4-v=(xl,X2 ,x 3 ,t) - instantaneous magnetic
intensity vector

g = magnetic permeability

e = electric permittivity

Xn; n=1,2,3; - generalized coordinates of
the point of observation

t = time

MKS system of units

(2)11

Let Y(xl,x2,x 3,t) be a vector such that the following

set of integrals exist.

___

4 - -'k " ^ V
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Fn- 0ne-Stdt; n =1,2,3 (3)I1

in which n(x1,x 2,x 3,t) are its components along the

coordinate axis and s=o -+ i is the complex frequency;

i-=-F. This functional transformation will define a

vector space S. In this sense it is said that the vector

F is the transform of the vector S when

F -ilF1 + i2F 2 + i3 F3 J-- j e-stdt . (4)I1

Then

E(0) r7 (5)11

(t)

I-1.1 Now transform Maxwell's equations. Since t is in-

dependent of the space coordinates, the symbolVis in-

dependent of t. Then

~ t)Vx: V =7 t): V Vx B ;Vi =v - , ,
z(t)Vx VxW(t)E Vx ;

; (t)V.V -H ·

Also -+

5(t)dt -6x14,x2x3,)) sE
(t): -Xl,X 2 ,X 3 ,O0) t- sE

and therefore, Maxwell's equations transform as

V E sH :-(Xl,X2,x 3t)t=o ;

VxE - ssE=-e(XlX 2,X 3, t)t=O ; (6)I1

v-E-O ; VH-O .

The vectors (xl,x2 ,x 3,t) t= and (Xl,x2,x3,t) t=

represent the initial spatial distribution of the field

at t= O. They may or may not be independent, or exist

simultaneously, or be zero.



Section 2 - Laplace transformation with respect to X3 and intro-
duction of initial time conditions at x3 0.

I-2.0 We will now suppose that the geometrical configura-

tion of the system is cylindrical. Let hl, h 2, h3,

designate the metric coefficients. If x 3 is taken as

the distance along the axis of the cylinder from a point

P to a given cross section, which is taken as the origin,

then the geometry of the system is characterized by

h3 =1 (1)I2

h l (xl ,x 2) ; h2 (x l,x 2) ; (independent of 3).

It will be assumed that the propagation takes place

along the x3 axis.

Now, let F =F(xl,x2,x 3,s), a vector and

0=0(Xl,X2,X3,S), a scalar. Under (1)I2, the expres-

sions VxF, VF, V F and V0 have the form

h2 dx2 x3 i2d hl xlJ h 1h ( diX2

h_ F [X21 (h2Fl)t _ (hlF2 dFhib2 x, d2 3x3

V 2F = ilV2 F1 i i2V2F 2 + i3V 2F 3

V 2 F hb[ 1 ( -x n1x2 h 1+., =1,2,3n h h2 i4 h aX x h ] ; 1,2,3

V i a h-2 x + i3 2 x3 J2;X2 ?X3~~~~~~~~~~~~

(2)12

14

-
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I-2.1 A second Laplace transformation with respect to x 3

is now to be introduced, as follows:

F*= 2° F =fe-rX3dx where
x3 4 0 (3) I2

Fn=x Fn Fne'-r3dx3 ; r complex variable. 

Thus a new vector space R is defined. An asterisk is

used to denote these x 3 transforms.

mTI, r,,|,~~, _v49 _ {nTn 45 

X~3([) i~ -[rF - F(O) i- F (o)j x iF1
xn~ ~a~Jszormahzon oi %4j~ ha , r

x3 ( v 1 F)= - (h2F .)+- , (h,F ),+rF~ -F 3 (O)h. ch ?x 

1F h WF h
ex(vY2=hrlh x ;rtt -) -) r Fn-rF (O) ; ,n 1, 23.

'ZOx3)h 4+h2 = i [r - 0 (OgzJ~O)-h \ 9~I~ co-3 i ? xi
since xl,x2,hl and h2 are independent of x 3 . The nota-

tion is further explained by

Fn(O) = Fn(xlX2,X3, ))x3= =Fn(Xlx 2 .O, s)

x3 x3- O Fn(Xlx2,x3 , s)) O (5)I2

0(0)= 0(Xl,x 2 ,X 3,s)x3O--0(xl,x 2,+Os) .

I-2.2 Using the above results, Maxwellts equations

transform as

I - -
- (4I2
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[VxE+sH-=~xlx2X30) ] goes into

1 3 - r - E2 txl X2 ° s)3 - S,3 y l(12 w w- rx s ,,~x1.,xo
h 2 2 2 -

LrE - El (xl,x2,0,, s) 1 ] - H* jt g -gt(Yx~x2 r.,)

_h h2½ [ (h 2E) - X2( ) = - s t ,, ,,

x3 [x H-sFa=- ee(xl,,x 2 ,x3,0)] goes into

1 1 -rH2 -H2(xlx2,,Os - sE-El-F'6(xx2,r,o)

[rH-H 1 (x l -,x2 ,os) a1 2 

hl h\.~1,2 s(xlr0)

x (V-E =O) goes into
3

hl 2 X(hEl)] + - E3 (xl,x2, O.s =

;X (VH -O) goes into
x 3

hlh2 1 (h2Hl)+ (hl(H2) :* rH3 -H3(xl,x 2,O,s)]O0

in which

(Xlx 2r, ) -n(Xl,X 2 , x 3, O) e-r dx3

*n(xI x 2 , r, 0) n (xl, x 2 , x 3 , O) e-rX3dx3

L
Ir --.

� __�

I

r ko) z
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I-2.3 From (6)I2, E1, E, Hl and H2 can be expressed in

terms of the partial space derivation of E3 and H~3

and the group of initial conditions, as follows:

'E = -?3-- a +H(X,x,,, r 7X t3ttxu,2,'] FFcr·xte -s 1E 0

i~SZ~ l~r~aCI 14b1 ~(7)12

if-TI-_Yif3. 1 G,,x3 +r1 x.H,(x ,s)]O [r, suxx 2,r, 

{ f-~se[~ ~Eacvx 2 A)] +H~(x )I

Now, the next step is to determine the values of IE, H3

and their partial space derivatives.

I-2.4 In this paragraph one will derive the differential

equations for and H. In the next section, I-3, we

will find the solutions for these components and their

partial derivatives.

To make a short cut the well-known theorem

V'VKF=V(V.F) - V 2F will be used, in connection with equa-

tions (6)I1, (1)I1 and (2)I2. After some algebraic

mnn L .11 nL +4 ^. V an 5 n + 

khN ax(h2 h2 dx jTih_2 x sh l~-)di2 1 a Z

5= {rEti °) 3 X3=0}=~~h ax ax 2:a

~i~i",~k~ 3I 3 zO 1 .L

(8)I2

�__�___1___ _111 ··̂  I1_II___I__IIY_·lll_�----� I I _II· 1. __I-I _
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The brackets in the second members contain the initial

conditions in space and time. These initial conditions

are not all necessarily independent and may, or may not,

exist, simultaneously. In Section 5, Ch. I, one will

determine their interrelations necessary to insure that

the final fields are electromagnetic (satisfy Maxwell's

equations). In Section 8, Ch. I, a general study will

be made with regard to these initial conditions and it

will be shown how to obtain their respective transforms.

Section 3 - Elementary wave transforms and transverse boundary
conditions.

I-3.0 In order to obtain elementary solutions of equations

(8)I2, which satisfy the boundary conditions at the

limiting walls we will write the electric and magnetic

intensities as:

n(XlX2)" n() n l, 2, 3 W (1)I3
'?E= (xl, X2)On(x3, t)

in which the quantities n, 9n, 9n and2n are functions

of the indicated variables only. These functions will

be determined.

Let us take, in succession, their Laplace transforms

En t(xl X2)An(x 39 s) 1
n=l, 2, 3 (2)I3

Hn = On(Xl,X2)Bn(x3, s)
and

E n n(Xl ,x2 )A*(r, s)

Hn n(l,x2)B(r,s)(3)3



From (2)I3 we get

x J t(x

x3 3= 0n [x 3 Bn(X3, S))X-onB(X3 )( s)-5-x 3= .1~~~~~(0

Notice that A 3)(O,s) and B(O,s) are functions of

s alone.

Now, let us take the Laplace transform of (1)I3

directly with respect to x 3.

n = (n(x1 ,x 2 )n(r, t)
-f*(5)I3

Un = Gn(Xlx2Wn( r V |

from which

Stn )t= O <·tAn( (r, O) 

'T o a= (r,)O) J (6)13

Notice that 4(t)(r,O) and d3t)(r,O) are functions of r

alone.

I-3.1 By using these relations and substituting them in

(8)I2, we attain, after some arrangement of terms,

_p2_ 1 (r 2- sa) A (r, s) + (
A (r S)

3 (7)I3

+ rA,(O0 s)+ A 3 x (O ()]}

and a similar equation for the magnetic vector. p 2

is a separation constant and Vxx )?3 denotes the

Laplacian with respect to the transverse coordinates.

19
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After the proper separation of these equations we

get, finally:
(8)I3

Electric vector intensity Magnetic vector intensity

v2 22 (X ,2 2x)= 0vx 1 ,x 2) 3 +P 2
3 (xl'x 2 ) 0 V +1 , 2 ) Q 20C = 0xl~),x2)*3+ P 3 l'2 ° V(xlx2) +P 3(X1X2) 

A____r,___________ _MI J [rB*(Bos) +[ B' 0) B srB() 0)]
rr _k rk

k 2 s 2 a+p 2 k 2 = se+p 2

I-3.2 In order to obtain an elementary solution for the

x 3 components of the field, in R space, we have to

solve first (8)I3.

A3(r,s) and B(r,s) are already solved in terms of

initial conditions of the field for x 3 = 0 and t= 0.

Notice that these components are functions only of the

initial conditions pertaining to the longitudinal com-

ponents. The initial conditions which appear in the

equations for A(rs) and B(r,s) are not those speci-

fied in the ordinary t space. Rather they are their

s or r transforms. It is easy to derive the transforma-

tion of these initial conditions from the original data.

In Section 8, Ch. I, these transformations will be re-

viewed again and will be illustrated for the way of

computing them from the original data. For the moment

it will be assumed that the transforms of the initial

conditions appearing in the second members of A (r,s)

and B (r,s) are known and therefore that the factors

A3(r,s) and B(r,s) are already determined in the R space.A~(r~s d 3(r

--- I
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I-3.3 The next step is to solve for 3 and 3 from the

differential equations of the Poisson type as well as

to fix the proper values for the separation constant p.

The explicit form of this differential equation de-

pends on the cross-sectional geometry of the guide.

Notice that A(r,s) and B(r,s) are independent of this

cross-sectional form. The separation constant p must

be such that the field satisfies the transverse boundary

conditions at the walls.

In wave guides, primary interest centers in the axial

propagation. If the dimension of the cross section is

small compared with its length, it can be assumed that

the transverse field is already formed. Under this

assumption it is easy to find elementary solutions for

Y3 or 3 ' The equation of the Poisson type referred to

above is the same as the one obtained in the study of

the propagation in the permanent state in wave guides.

This equation has been solved already for some

typical cross sections of wave guides. These computa-

tions are not going to be repeated since they have already

been done. These solutions can be found in several books

on wave guides. A special mention is made of the important

work on this subject of Drs. Chu and Barrow. It will be

assumed, therefore, that 3 , 3 and p2 are already ob-

tained and consider them as known quantities. In Ch. IV

a table of those functions is given for some typical

cross sections.

�_____� ·_ _1_1 1____3___11
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I-3.4 The axial component of the electric and magnetic in-

tensity vector, in the R space, is therefore given by

(9)13

E;(xX,,r,4= [A_)i"A~ 'U

H( 1x)i r2 kz rz -k|

HjG~c~rgS rB.,(O·";6s) + B]r F -C *(
,,,rz r _k r 2-kr

The partial derivatives with respect to x and x 2 are

dE

1 Id

F___ v _

(10)I3

axl

!x2 wI 

Introducing these partial derivatives in (7)I2 and

using (9)I3 we obtain the field solution, in the R

space, of the intensity vectors in terms of the

initial spatial distribution at t= 0 and the initial

time condition at x3 --O. This field propagates along

x 3 axis. Note the Dirichletts character of the solutions.

dHi
x-1

rB (Os)+ 2;(%)s)
L r-k2

a9

2

__
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E-=(1 *3)LrM (rs) -( 3) ssN(r,s)E,(0,s) r -H 2(Q,s)§u 1
hl ax,1 3 h 2 dx2 3 r2 -s2 r2SE

Cl J ~" e s E~ (xt'rX~'0)()5)S23 r ' O r2uXrO
2 2 ?x 3 2 - r 2sr -S/s&

2 hldXe , L(rsh-s i)suN3(rs)+E2 (O,s) 2_ Hl(O,s)- 2 2

e(X r, O ) . lW(xx,r.o)r2_~~2 2 __ 
r2 -s 2 ,& 'r2_s2,su

E*= (r2-s2(, e )3 (r, s) -

-k3 12(r -S X (r, s)2 
c Cc2~~rs

X-)r3 ' s) h+ 2 3''(r,s -' s 2 r E2 (0,s)se 2 r

1 _ __Idt ~ v rt) L (r S)- 
F2 -. 2 ' 2 r 2 -sC

a3~l sM*S)+H2(O 2 r2

rV (XsC£

r2_s2~

-El(O,S) SE r
r2 -sS

t c) 2-43 ( s) - (j

2=( , 1 r4 , (r ) 

~p, x C2 32)c r(r) 
(41 ) 1 S£<3,S_ S *(xX, r}or4 x ,,3;o)

1l) C2 S 3(r, s) - 2 2 _ r2_ 2-s2,E~a~ ~~~~~~~~~ct

H3- 3 (r 2 -s2u&) N(r,s) -

-o3C(r2-Sz ,6g(rs)c2 

in which speed of light in the medium.

-M (r,sS rA3(o, )+A3) (O,s)
(r2-k 2) (-s2 44)

* rB3(0,s)+B (Bf) ( s)
3 2- 2 2 2

(r -k )(r -se )

/ ( r, s)-
j( r,k)+ ( ( rO)

(r 2 -k 2 ) (r 2 _s 2 ,&)

r(r,O)+ ,($t (r,O)

(r2-k ) (r2-s2)
; 4'(rs)

(17I 3

I --- I -

el=��1 hl

C 1
,UF
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(11)13 represents a mathematical field. It is composed

of the superposition of two general and independent

electromagnetic fields corresponding respectively to

initial conditions at x 3 0 and t= O. The first line

in the equation for each vector represents the field

generated for excitation at x 3= 0O while the second line

represents the one generated for the initial spatial

distribution at t= O. To separate them it is only

necessary to equate to zero the initial conditions in-

dicated with Roman letters or the ones indicated with

the script type. A further separation of fields will

be made in Section 5 of this chapter.

Section - First inversion of the field (11)13 with respect
to r . Initial conditions at x 3 = O.

I-4.0 This section will deal with the inversion of the field

from R space into S space. This can be accomplished by

taking an inverse Laplace transformation, with respect

to r, of each of the above components.

I-4.1 It can be observed in (11)I3 that the inversion of

the terms indicated with script type letters, can not be

performed unless the initial conditions at t =0,

<(X1'X2,r,O), &Xl,X2,r,) XlX2, r, 42*(Xlx2r°
)

(xl,x2,rO) and r(xl,x2,r,0) are expressed explicitly

with respect to r. This means that one has to specify

a definite initial spatial distribution. Once a spatial

distribution is specified, it is possible to proceed

with the inversion.

--- --
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The situation is quite different with the initial

conditions at x 3 = 0. The inversion with respect to r

can be performed even if these conditions are not

specified, since they are independent of r. Initial

time conditions at x 3 constitute an important branch of

problems of wave propagation in such systems. Therefore,

this last problem will be dealt with in much of this work.

I-4.2 By simple inspection of (11)I3, and initial condi-

tions at x3 = 0, one can obtain the types of r transforms

which must be inverted. They are:

= r2 R r
R1(r) (r2s )(r2k2 i ; R4(r) r2a 2

(r2(r2-k 2 ) ; Rs(r)= 2 -a2

R ~r 1 2 2 2
3 (r=(r2_s ) (r2_k2); a si or 2

All these transforms behave as l/rr when r -oowith e-- 2

except R 4(r). This means that the inverse functions are

zero at x 3 0 except R 4 which approaches a finite constant.

By the simple and well-known process of inversion, it

is found that

rR (r)p [k sinhkx3 -s sinh s X rR 4 (r) cosh ax3

2rR2(r) - cosh kx3-cosh s] ; rR 5(r) simh ax3

rR3 (r) [ sinhkx3 -Csinh s ];

and the final mathematical field, in the S domain, is

given by

_�__ �_111_1111__1_11_1___I ·---^1_-_11�-�---�
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=5 1 ( ff){

*,2 hxj L

A3(O,s)[k sinh kx3 - sinh +A 3 )(s)[Cosh kx3 -osh x3]} -

sB3(os)[cosh kx3 - coh 3]+B((x(O,) [k sinh kx 3 - c sin hscl }c LZ7 c~~~~01t
+El(O,s) cosh S X3 -E H 2(0,s) sinh SX3

E2=1 h2 A(0,[k sinhkK3- c -h+As3^23 cp2 h2 sX2 C (x 3 ) S " -i [COi[

+ 2 `hi-c(0S)h[o sh kx3 - cosh +B sinhlkx3 - c sinh 3

+E2(0,s) cosh sx +f: H'(O,s) sinh SX3
C O 1C

E3=*3{A 3(,) cosh kx3+A3(x3) (O, s) sinh kx3Ik
(1) I

H1 = 1 ( ) 3(0,s) [k sinh kx 3 - sinh I +B3(3)(Os) [c l kx32 h-( ax, 2 3 (3

+ C-j){sA O sA[cosh k 3 - cosh axp2(2 A0h2s)[sh 3- coah -C

+ Hl(O,s) cosh sX E 2 ( 0,s) sinh c

H2= 1 (1h 2

3 s)[k hx3 - c sinh Sx +
""Q{B 3( S)[ sirh c3-\ c cJ-

+Ax (Os asinh kx3 -
~ [ksih-

B 3(x3)( O ) [cosh x3 - osh

p 2 *3) l )i(xoL s. hrx-
- , ax ) 1 s(O4 s)Lc h kx 3 - c ash j+ 3 ~ (~ s 1 sM nh kx 3 - C s ±LJIC J +

+ H2(0,s) cosh sc3 El(0 ,

H3=G3 IB3(0,s)cos h kx3 B3i3)

s) sinh 3C

1 sinh k 3 }.
k

+

E1
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action 5 - Direct and reflected waves. Independent initial
conditions at x 3 = O. The electromagnetic fields
TH. TE and TEH .

I-5.0 The mathematical field (1)I4 can be decomposed into

two fields: the direct and reflected components. Each

one of these fields can be obtained by using the well-

known trigonometric relations.

cosh kx3 + X3

sinh kx3 = ekX3- e-kX3
2

cosh e + c
c 2

sinh 3= ec 2

in (1)I4. The direct field is composed of the terms

which contain the exponential with negative sign, and

the reflected field is composed of the terms with

positive exponent. After some simple collection of

terms, (1)I4 can be written as

En= End Enr n=l, 3 (1)

H n = Hnd + Hnr

in which the indices d and r mean direct and reflected

components. The field (1)I4 is then formed by a linear

superposition of the direct and the reflected components.

I-5.1 The direct and reflected fields may have independent

existence. In fact

x 3) nd nd
* n=l, 2, 3

(x3)Hnd H nd J

Se

...... . .. . u .l., A. .. l . _ . l _ ....... _, _ _ . ,._ . ..... .....
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or * E

(x3) nr nr

(x3)Hnr = Hnr ,2,

satisfy independently Maxwell's equations in R. In

paragraphs -5.2 and I-5.4 the conditions will be in-

vestigated under which

End n=l, 2, 3
Hnd

and
Enr 1

n-l, 2, 3
Hnr J

satisfy Maxwell's equations in S as independent fields.

I-5.2 The terms direct" and "reflectedn are inappropriate

in the S domain. They are, nevertheless, used because

when the fields, by inversion, are carried over into the

time domain, they represent waves moving in the positive

and negative directions respectively of the x 3 axis.

This character is distinguished in the S domain by the

presence of the exponential function in the transforms.

If, by nature of the problem, the actual propagation

takes place in the positive or negative direction of the

longitudinal axis, then only the direct or the reflected

field respectively is taken. In some cases the presence

of these two fields is required; for example: first, an

infinite wave guide is excited in its middle cross sec-

tion and the energy flows in two directions along the x 3

axis; second, two different sources may exist in the

_
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guide or there may be discontinuities in the cross

section which produce internal reflections, etc.

I-5.3 A simple inspection of (1)I4 reveals two types of

exponents of e: s and x 3 k=:X2 s2p2 2.

The terms associated with the first exponent propagate

wholly with the speed c. For those terms associated with

the second exponent the propagation occurs in a disper-

sive media; although the perturbation moves with the

speed c this does not mean that the main bulk of energy

moves with the same speed. For these terms the concepts

of group and signal velocities and time of signal forma-

tion will be introduced. If Eqs. (1)I4 are looked upon

with physical eyes, they will give the strange appear-

ance that two types of propagation exist simultaneously

for the same initial condition. This circumstance must

not be interpreted to the effect that there is something

wrong with these solutions. They are, in general, correct

solutions from the mathematical point of view. The fact

is that they are not necessarily electromagnetic solutions.

The next paragraph is devoted to investigating the

conditions under which these solutions are electromag-

netic ones.

I-5.4 The vectors E and H, in the S space, are said to be

electromagnetic ones if they satisfy the set of s-

transformed Maxwell's equations.

If we keep all the initial functions in the S domain

arbitrary and independent from each other, then by a

_. �_·__·_IIIIICII__IL�-----_ �---�--� I_____.._ _ __�---I
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simple substitution of (1)I4 into Maxwellts equations

it is revealed that they are not electromagnetic vectors.

The conditions under which (1)I4 are electromagnetic

fields are attained when Maxwellls equations are identi-

cally satisfied.

The equations

Vx E + sH = O and

VxH - sE 0

are satisfied identically by the vectors E and H(l)I4,

for all arbitrary and independent values of the initial

conditions; but the relations

V-E =O and- H =O

are not satisfied unless the initial conditions are

properly related.

The process of substitution is long and requires

tiresome algebraic manipulations, but otherwise is

simple. It is omitted here in order to keep the pre-

sentation compact.

In order to make a systematic discussion of this situ-

ation, three typical cases will be considered.

a. Only A 3 and A are given as independent initial

conditions and B 3 - B3 0.

From (1)I4 it can be seen immediately that

the corresponding field has a TH character.

Under the above assumptions this field is an

electromagnetic one if

__



h 2 dX2

H2 (Os)= ---- 1-h 1 3x1

21 sA 3 (0,s)
P2c

El ( O, s ) = .+(hl 71Z
1 A

A2 3(x3) (O,s)

E2(0, s) = + ( aX) P
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(2)I5

It is clear that case a can be dividedinto two sub-

cases, a1 and a2, defined as

al. A 3 (0,s)#O and A3(x3) (0,s )=

a 2. A 3( 0,s)= 0 and A 3 (x3 )(,s) .

(Notice that it is equivalent to specify A3(x3) or
a transverse component of E.)

b. Only B 3 (0,s) and B3(x3)(0,s) are given independent

initial conditions and A 3 (0,s)= A(x 3) (0,s)= 0.

From (1)I4 it can be seen that the corresponding

field has a TE character. Under the above assump-

tions this field is an electromagnetic one if

h 2 x 2 1

a( p 2 c B 3 (0s)
E2(0,s)= + (hl x3)J

hi 3'i

Hl(0,s)= +-( 3 )
hi x1

y B 3(O,s)

H2(0,s ) = (~ 3_)h2 ')x2 J

(3) I5
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It is clear that case b can be divided into two

subcases, b and b2, defined as

b1. B 3 (O,s)i and B3(x3) ( s ) = O

b 2. B 3 (O,s)=O and B(x3) (O,)

(Notice that it is equivalent to specify B(x3)
or a transverse component of H.)

c. This case corresponds to the assumption:

*( ,s) A(x3)(0,s)-B3(0,s) = B3(x ), 
but the transverse initial conditions are not

necessarily zero. The resultant field has a TEH

character. To be electromagnetic the requirements are

9y(h 2 El(Os)+ -(hlE2(Os)= or

(4)I5

Xl (h 2 Hl (O,s)+ (h 2H 2 (O,s)= 0 .

This case c can be divided in two subcases,

cl and c2, defined as

c1 . El(O,s) or E2(0,s) and Hl(O,s)= H 2 (0,s) 0

c2. Hl(0,s) or H2(0,s) and El(O,s)= E 2 (0,s) O

Case cl will be called electric initial excitation".

Case c2 will be called magnetic initial excitation".

I-5.5 By inserting (2)I5, (3)I5 and (4)I5 in (1)I4, this

mathematical field breaks up into three independent

electromagnetic fields which correspond to TH, TE and TEH

waves. It can be noticed that these fields were obtained

directly without the introduction of three different

potentials.

A summarization of this result is given in Table I for

the direct waves. The proper solutions for the reflected

waves can easily be obtained.

_
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ELEMENTARY ELECTROMAGNETIC WAVES IN THE GENERALIZED
CYLINDER.-S SPACE

CONSERVATIVE SYSTEM PROPAGATION ALONG(+) DIRECTION OF x.3 AXIS
DISPERSIVE PROPAGATION

a._ T.H. WAVES b._T.E.WAVES
INITIAL FIELD VECTBOUND INITIAL FIELD VECTORS BOUND
COND. FIELD VECTORS COND. COND. FIELD VECTORS COND.

_~ E1=-(1 a x' )l .;;. - E,=- egu 2)\ LS B(oS)B SEl-h b ) - s+ ;Tc bx e
z) c-A3(oss)vswi e 0 EZ=+ ( ) w )

OE=(h0 S )Ee I2 XE bX,
10 E:o

E+Aoe ___________________________ o _ _ H,=- + 3bx ,s e- - - bs'

_____a~~~, o
H,0 _=OA ) cPo BO e, X' hx2 o - H=-C ce x10 p4A,(o,s)e x ,,H,= '", '

c.... T.E.H. WAVES.HELECTRIC EXCITATI H= + os)e "

E,=E,(o,s)e 0 E,=+ os)e c s 'o
o NHeEo + s 8 o ,s)e s C

EoE+ ib E _ x 7sc 1XS

or HEg-E ) A( ,(o,s )e . m E3= C 

,, 21 sce 3 ) m+82 o

110 N

c.- T.H. WAVES.

INITIAL ELEGT IC EXCITATIONIBOUND INITIAL X/ i I T-TCOS2 BOUND

(I)~ )e~~~~~~,

_y -C I2 2 v,

0 H,=-tE2(o~s )ec H,= H, (o,s) eo

os '~ - - s

TABLE Nil.

_- __
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TE and TH fields exist in configurations equivalent to

wave guides. TEH fields exist in configurations equiva-

lent to transmission lines and coaxial cables. It is

presumed, but not proved, that TE and TH modes exist in

systems whose cross section is topologically equivalent

to wave guides, and TEH modes in those topologically

equivalent to transmission lines and coaxial cables.

Section 6 - The TEH field and its inversion into the instantane-
ous time domain.

I-6.0 The TEH fields can be transformed back into the time

domain in a simple manner by using the well-known

theorem of inversion.

If f(t) exists as the corresponding inverse transform

of F(s) then
s-oeCS fo for t oC

f((t -) for t OX.

In this case -= c3 -t This means that if f(t) is the
c 0

initial time function applied to the system at X3= O,

then this perturbation reaches a cross section at a

distance x3= a after an interval of time equal to a/c.

The functions f(t) and f(t -) have the same form but

they are only shifted in time.

Applying the above principle to the TEH field, Table I,

the undistorted character of its propagation can be seen

immediately. This problem is simple and the results are

already known. Therefore, no more attention will be

paid to these TEH fields.

_ _
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Section 7 -Diers___e character of he TE and TH fields. The
problem of inversion. Basic anlytical links of
the corresponding transforms.

I-7.0 The inversion of the TE and TH fields constitutes a

difficult mathematical problem. It is difficult because

of the integrals that must be handled and because of

its mathematical instrumentation which is delicate and

involved.

The irrational form of the exponent of e indicates

that these cylinders act as a dispersive medium. The

waves, during their propagation, suffer deformation of

their amplitudes and changes in their frequencies.

Natural modes of propagation and cut-off frequencies

exist. Although the wave precursor moves with the speed

of light in the medium, this velocity tells nothing for

itself. It is necessary to introduce new concepts in

velocity, mainly group and signal velocities, to have a

correct quantitative idea of how the propagation occurs.

In this investigation these velocity concepts are care-

fully studied to see if they make proper sense in

wave guides and mainly to discover how these concepts

are influenced by the form of the incoming waves. This

last aspect is quite delicate and not very well known.

I-7.1 Even in the most simple case of excitation the problem

of inversion is very hard to perform. The difficulties

are of a mathematical character. To solve a particular

problem or to integrate the corresponding expressions

for one field component is not a satisfactory and

��__II1I ·------ l�yl�l�-- --
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practical solution. A mathematical method, rather a

simple one, has to be found such that a fair number of

practical problems can be solved with it.

Most of this work is devoted to obtaining this

method. In Chs. II, III and IV the problem of inversion

is attacked in its different aspects.

Chapter II : General analytic study and the
integration in the s plane.

Chapter III: Introduction of complex transforma-
tions and integration of fundamental
transforms.

Chapter IV : Asymptotic and graphical solutions.

I-7.2 A systematic method of attack will always be followed.

The first natural step is to find the general analytic

relations between the transforms which appear in Table I.

This procedure enables one to find typical transforms

which generate the others. In this way the possible

number of inversions will be reduced. In this section

one will study these relations, which are independent

of the type of initial conditions. Only the parts of

these transforms which are functions of s will be referred

to and the geometric factor or other constants will be

omitted. For strategic reasons only will a prototype

such as the following transform be used

Fo(s) = F(s) k (1)17

in which k = /s2 w2; w2 wp2c2; F(s) is a function of s

which can replace any one of the initial conditions in
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Table I. A rapid inspection of the table reveals that

the following type of transforms are available.

Fo(s)= F(s) e-kk

Fl(s)= sF(s) -k sFo(s)

F2(s)- F(s) e-Ok = Fo(s ) (2)17

F 3 (s) sF(s) ek=-a Fo(s)

F 4(s F(s) ke - k r+ - F0 (s) 

The meaning of (2)I7 is as follows. If one can find the

inverse transform of F(s) then, the corresponding in-

verse function of Fl(s), F 2 (s), F 3(s) and F4(s) can be

obtained by a simple process of differentiation in the

time domain. The above statement, although nice and

simple, can not be utilized in the case when X F(s)

comes out as an asymptotic series expansion in the

Poincare sense, since the term by term differentiation

is not then permitted.

The equations (2)I7 represent the analytic relations

between the s transforms of the different components

of the field vectors. The last statement indicates

that we cannot consider the solution of only one com-

ponent of the field, since sometimes the other cannot

be obtained by differentiation. Most of the time the

inverse transform comes out in the form of an asymptotic

expansion.

_ I I
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Section 8 - The initial conditions expressed in the s domain.
General type of s transforms to be handled.

I-8.0 In the preceding section, Section 7, the prototype

transforms (1)I7 were obtained. Nothing has been said

so far about F(s), which plays the role of an initial

condition in the s domain. In this section, what may be

the analytic structure of F(s), for a fairly large number

of practical initial conditions will be investigated.

I-8.1 Some simple examples of initial conditions will

clarify this situation.

1. Suppose that one specifies only the axial
component of the electric vector as

0 to -< O

3x3= 0 t3(1- cos ot) to TH field

in which 3 is a function only of the transverse
coordinates xl and x2 and is such that it satisfies
the boundary conditions.

Then:

F(s)=- A3 (,) (l - cos jot) e-tdt= -- -

s(s 2+w2)

2. Suppose now that is given as
3 x3=O

0o t 0
TE waves

)x 3 -=O { 3 (Xl,X 2 ) sin wot t O

Then:

F (s) = B3 (0,s)= sin ot e dt- 2

3. Suppose here that

36 0f t -t 40
x304) 3= TH waves

3X33 = 0 *3 sin At sin t t0.--

Then:

F(s)= A3(0,s) _ 

3 [s 2+ h((3 - z,-B- 2] [ V
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This elementary example illustrates the procedure
necessary to obtain the corresponding transforms
of the initial time conditions.

I-8.2 If the initial time condition is given by an amplitude-

modulated wave, whose time variation elements are given

by the general form

f(t) - m(t) sin wot ,

let
Zf(t)= F(s) and

Zm(t)= M(s) is known)

then:

F(s) = 2[i M(s-i) -i o ) - M(s+ io)] in which i--J.

See "Transients in Linear System", Gardner and Barnes,

Vol. I, P. 28.

The modulating function m(t) can have a large variety

of forms. By a proper combination of simple exponential

functions a large variety of modulating functions m(t)

can be obtained. A simple discussion of this subject is

found in the book "Traveling Waves on Transmission Systems",

by Loyal Vivian Bewley, J. Wiley, 1933, Ch. I, P. 16.

The use of exponentials in the construction of envelopes

means that M(s) will be formed as the ratio of two

polynomials in s.

I-8.3 For frequency-modulated forms of excitation, the

corresponding time function has the form

f(t) = t o cos (ot + m sin at)

= Jn(m) [cos(wo+ nat + (-l)ncos ( o -na)t],
0

m constant.

_XI�-l._l. �._1 1111-��1----1____·�- .-------�
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For practical purposes it is only necessary to use a

finite number of terms. The Laplace transformation of

f(t), for m constant, will be again the sum of rational

fractions of s.

I-8.J+ If it is considered that (s) has the form, in general

of the ratio of two polynomials in s, the number of pos-

sible wave forms of excitation becomes unlimited. By a

proper combination of these forms still a larger number

of new forms of initial time functions can be obtained.

See, for example, Gardner and Barnes, P. 338 and follow-

ing pages or any other table of Fourier transforms.

I-8.5 Sometimes the time parts of an initial condition are

expressed as the product of two factors as in I-8.2.

Let this initial time function be expressed as

f(t)= fl(t)f 2(t)

and assume that the Laplace transform of each factor is

already known. The theorem of complex convolution allows

us to compute the transform of f(t) as

)[ f (t ) ] (t)[fl ( t ) X f(t)] F(s)= F (w) d
in which -ix

it)fl(t)= Fl(s) and

t(t)f2(t) =F2() ·

The use of some theorems allows the computing F(s)

without performing the above integral in some simple,

but important cases.

I _ I
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The next two theorems were taken from the book

"Transients in Linear Systems", Gardner and Barnes,

Vol. I, Pgs. 275 - 280.

Theorem I - If fl(t) and f 2(t) are i-transformable

functions having the ot transforms Fl(s) and F 2(s),

respectively, and if Fl(s)= 1(s) is a rational
B 2 (s)algebraic function having q first-order poles and

no other, then

F(s) = c) F2( s k) k)
k&l Bl(sk)

Theorem II - Let fl(t) and f2(t) be /-transformable

functions having the 2f transforms Fl(s) and F 2(s),

respectively, and let Fl(s) be a rational algebraic

function having n distinct poles sl, s2,"'sn with

sl of multiplicity m1

S2 of multiplicity m 2

sn of multiplicity mn

Subject to the restriction ml+m2+*..+rnn- q; then

F(s)= g (n1) k Kkj k - s-skF(s) = _ (_ )! [ . F2(s)] -

k=1 j.l (ik-j)! ds :s Fss

in which

Kkj' (1 dJ- ( -sk)MkFl( S) 
·). dsJ-1 s= sk .

_.�_1�III_---·····--·1111 L_ �-
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These theorems allow us to investigate further the

analytical structure of F(s) for cases of practical

interest. If the original time function f2(t) is formed

by a linear combination of terms of the form Kte-t, then for.

different values of k, n and X then it is clear that F2(s)

is a linear combination of expression (s+n)k and

therefore F(s) is again the ratio of two integer poly-

nomials. If F2(s) is a meromorphic function, it can be

expanded, if possible, by means of the theorem of

Mittag-Leffler and the result is that F(s) will be ex-

pressed as a series of terms which are rational alge-

braic functions.

I-8.6 In this paragraph we will consider a more complicated

case of the initial time function f(t) when expressed in

terms of Bessel's functions of the first kind or in terms

of series of the Nevmann type. This type of excitation

may occur, when the output of a wave guide excites a

second one. The transforms of these functions are ex-

pressed in terms of -s4a as can be seen from a table

of Laplace transforms. For example see Gardner and

Barnes, P. 352.

I-8.7 An important case of wave guide excitation occurs

when the initial time condition has the form of pulses.

In this case in F(s) factors of the type e s will appear.

The presence of such factors does not produce new types

of F(s) but indicates a shift in the time domain.
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Thus let

f(t): F(ssl)e k1s +l for t c .

Then it is well known that

f(Is, s'+l ) e-VSe- ksf(t -) t-(t c.

I-8.7 As a summary of Section I-8 we can say that for a

rather unlimited type of wave forms of guide excitation

at X 3 = O, one can consider that

F(s) has the form of the ratio of two
polynomials in s and 1Vst-l

and so F(s,sl )e- kVs l shall be written as our

typical transform. This statement should not be inter-

preted to mean that one has proved that all possible

cases of excitation must have the above structure.

Rather it may be said that a practically unlimited

variety of forms of excitation are contained in that

transform structure. Of course, time functions whose

transforms do not have this specific structure can be

found, but these cases are unusual ones and perhaps

of no practical interest.

Section 9 - Further analytical restrictions on F(ss`+iT) to
assure electromagnetic solutions in the t domain.

I-9.0 In Section 5 of this chapter it was found that when

the field corresponding to the vectors in the R domain

were transformed back into the S domain, the transformed

vectors do not necessarily satisfy Maxwell's equations

in the S domain.. Only after some constraints were im-

posed on the initial conditions (Eqs. (2)I5, (3)I5 and

(4)I5) was the resultant field electromagnetic in the

S domain.

___1_�--·�1111_� -_1-�-_-----·----·-�
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We now face a similar problem. The electromagnetic

field in the S domain must be transformed into the t

domain and we will investigate when this transformed

field is electromagnetic in t in this section.

We will prove that the transformed field is, in

general, not electromagnetic. It will be only if some

restrictions are introduced in the vector components at

t-+ x3/c.

I-9.1 This investigation will be based on two fundamental

theorems on inverse transforms. Although they are

well known, they will be repeated here.

Theorem A: Let f(t,k) be a function of the two

independent variables t and k. It will be assumed that

a.- f(t,k) is at least of class C1.

b.-
=0 t< k

f (t,k)= 
#0 t k

c.- The function and its time derivative is t)
transformable having respectively

F(s)= f(t,k)e-Stdt

G(s)= t[f(tk)]e Stdt

as transforms.

We will prove that
c+ L O

flt) (t,k) f(+k,k)"o(t - k)+ i/sF(s,k)eStds.

To prove the theorem we have

Ist From b and c we can write

F(s) f (t,k)e-stdt and

G(s) I (t,k)estdt
=f ( k -tdt

__ ___ �
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2nd Integrating by parts one obtains

G(s)=tf (t(t,k)=f (t,k) ke-St -Stf(t,k)dt

=-eksf (+k) sF(s)

3rd By hypothesis

Z)G(s)= ft)(t,k)

and therefore, by the introduction of the singular

unit impulse functionu

o (t) 1 /eStds2'7i %-io

we get

f(t (tt) - f(+k) e-kSeStds+ sF(s)eStds
;ao ~ co -*oz 

or

f )(t) - - f (+k)uo(t - k)f21J/sF(s) eStds

and the theorem is proved.

Theorem B: Let f(t,k) be a function of the two

independent variables t and k.

By hypothesis we will assume that

a. -f(t,k) is at least of class C1

b. -
f(t,k)= for tk

for t k

c.- This function and its derivative with respect
to k is a(.)transformable having respectively

F(s,k)/f (t,k) e-Stdt

h(s,k)f k)(t,ke) e-Stdt

as transforms.

Then: c +*LC

fk)(tk) = f (+k,k)o(t - ik)(s ,k)e tds
-ebXa

___ ___
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To prove the theorem we have:

1st F(s,k) =jft,k)e-stdt

H(s,k)= f(k)(t,k)e-Stdt .

Fk) (sk)= i f(tk)e-stdt=-e-f (tte ~f(t,k)dt=

-eskf(tk)+ ff (t, k)dt .

3rd From the last equation we get

f'(t,k)=+ f(k) eSkeStds+ 1 ., (sk)eds
2ii 1 (k)

u'co- 1 " co dco-

so that finally

(tk)=f(tk) !fo (t-k)+2i Fk(k)estds (2)I9

and the theorem is proved.

I-9.2 These theorems will be applied here to find the re-

quired restrictions on the initial transforms. The

following discussion is concerned only with the TH and

TE fields, not with the TEH fields. The TH and TE fields

will be considered separately. The matter to be inves-

tigated can be expressed briefly by saying: The vector

field; Table I, for the TH and TE systems respectively

will be transformed back into the t domain. From El,

E 2, E3, H1, H2, and H3 we will pass into the t domain

obtaining 1, d2, 2 3, ' 1, 1Z 3' The question is:

What conditions shall be imposed on A3(0,s); A3(x)(O,s);

B3(0,s); B(x3)(O,s) in order that the last set of

vectors verify the equations:

V_;f =0; Vx-E= 0

I _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-
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Since we have four possible initial conditions we

will investigate them in order.

I-9.3 Take the TH field from Table I, Section I-5.5

Case a. - Initial condition E 3(O,s) or its equivalent

A3(Os).

We consider the vector components, in the t domain,

in accordance with the integral expressions

2- -(I c1I~ 94 2p4 3(°'S) iC estds

4. Ai (2 O s) e e d estds

1 a, p psA 3(O,) 'e~/ ~ e' stds

3

al. - Consider first the equation

V -= 

In cylindrical coordinates we have

57e= he h2 -t + (hh 6) + X3

If we set x=k/c and we apply theorem B Section I-9.1

P. 45, we have

= 3(t,x Pao(Jt -- 3 (0,-c e tds
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a(h2F1)_ =i a ) ?/

-a-& )= ? X)

,0 C. 5 eStds

and therefore

V-E g= t3(+ ^, (t -A)- 2 {<xp3+ P 39

and remembering that V 2 ,~+ o Y/ 3o-

V.~=- (+- x3, (t -Xc-

This means that in the wave front this equation is

not satisfied unless

6(+ = 0 (3)I9

a2 . - It can be verified readily that V.g=O will be

satisfied without any further restriction on A3 (0,s).

a3. - Consider the two curl equations now. After a

similar substitution and by the appropriate use of

Theorems A and B we get the following results,

which can be checked easily.

vo H =O requires that ( x)- ( X3) 

v.K~-70"o requires that 

$3(+ ,X3)= O
~S~t xC

,F,(,x' 3 -x j C( IeX3) (tLIX3)=

fI (+ C3 X3 ) -qXf 3 ,X3) =
C C

0

0

__ _ ��
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Summarizing it can be said that the field created

by the initial condition /3A3(O,s)= E3(0,s) will

be electromagnetic in the t domain if

3 (Xl,X2,X 3, t)X+ X-

$2(X1 ,X 2 ,x 3 ,t) 2 >3l(xlx 2,x3t)= O (5)

1(XIl' 2'X3' t).,, , (lX2X3, t):+.=+ 0

a4. - Now our problem is to investigate what must be

the analytical structure of E3(0,s), or its equiva-

lent A 3(0,s), to fulfill (5)I9. One has to observe

that (5)I9 yields the condition at t=x 3/c; that is

among the initial values of the field vectors. Then

the well-known "theorem of initial value", in the

theory of Laplace transforms, is the natural tool

to be used at this point. An approach to the

"initial value theorem" can be reached as follows.

Let an(t,k) be a function of the independent variables

t and k and such that it satisfies the conditions in

Theorem A. Its derivative with respect to t will be

indicated by n(t)(t,k) and its transform by 0(s,k).

First, from Theorem A the following equation can

be written:

I- ~P. Ce~( e-sk ' S~n(s,k)
G(s)= j' )k,t)e Stdt =- n+kk)+s0n(sk) (6)I9

Second, we will assume that 0n(s,k) is our standard

transform

0n(s, k ) = Fn( sjs 2c9 e -

�__I __
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in which Fn(s,V|si2+) is the ratio of two poly-

nomials in s and Vsz2.z. Substituting in (6)I9 and

multiplying both members by e+Skthe following ex-

pression is obtained:

(t)(k, t) e s (t-k) dt = - (k,k)+ sFn( s) jsFw' )ek(s -Vs )

Now let s-o, then s.UC2H- .Vs and s - s~.a-,O and

Fn(sfiSwc)- Fn(s,s) which is rational function in S.

Then

,7(o)(tk, t) e(ta)dt =-k / (k, t)Le-s(t-k)dt 

=-v(+k,k)+Yt,sFn(s,s)

: [sFn(s, )] =(+k,k)= 9(tfk)t±k

when we approach from the right side of t. This is

the proper form of the "initial value theorem" for

the type of transforms we have considered as standard

type.

Since, by hypothesis, Fn(s,s) is the ratio of two

polynomials in s, its behavior for large values of s

will be like

sFn(s,s) --- s -=

in which M n is a constant and r is an integer.

a5. - Let us apply this theorem to the set of conditions

(5)I9. To satisfy the first one must have

F3 (s,Is%+h)= A 3(0,s) ,

and therefore it is required that

A 3(O,s) behaves at least as ! when s-coo.
S --I'-

a6. - Let this situation for the last two conditions in

(5)I9 be investigated.

We will prove first that: if A3(0,s), or its

equivalent E3(0,s), is the only initial condition of
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excitation, that is, all others equal zero, then

2(lX2, X3 , t) t xO

r(XlX2,X3,t)

Suppose that 2 and 1 at t=+x 3/c were not zero.

Then, since x 3 can be any cross section of the

guide it can be x 3 = 0. But at x 3 = O, E l(O,s) and

E2(0,s) are identically zero, since in the TH sys-

tem these components are proportional to A(O,s)

which is zero. See conditions (2)I5.

Then

Zm. sEl(O,s) O

sE 2 ( O, ) = s

and therefore

if '(O,s)= 0 ;
2 (XlX2,X3, t A3

which was to be proved.

As a consequence of the above property and

from (5)I9 we can conclude immediately that if

the field is to be electromagnetic, then

Ol(xl,X 2 ,X 3,t) 3=(Xl,X2 ,x 3 ,t) = O
t=w

a7. - Since the transverse components of the field

at t=+x3/c (wave front) must vanish, their cor-

responding transforms must behave properly when

s-. From Table I (TH waves excited only by

E 3(O,s) we can readily find that this will be
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the case if

E3(0, s) M - ' 3
Biro sr

A3(O, s) N >,i
s-a Sr

which is the required condition of excitation when

E3 (O,s) is specified.

Case b. - Initial condition E3(x)(O,s) or its equiva-

lent A3(Xm)(0,s)

Following a method similar to the one indicated in

Case a, it can be found readily that the field in the

t domain will be electromagnetic for all values of x 3

and t if

3(x 3)(0, s)

or its equivalent, M and N -constants

A' (O , s)- N )- 2
3(x3) S 

I-9.4 In this paragraph fields of the TE type will be

considered.

As before, two cases will be regarded:

Case a. - H3(0,s) or its equivalent B 3 (0.s) is given.

Case b. -H3(x)(O,s) or its equivalent B )(O,$ is given.

By a procedure similar to that followed in I-9.3 or by

a comparison of the transforms of the TH and TE fields

in Table I, the conclusion can readily be reached that:

Case a. - H3(0,s M or its equivalent B3(0,s) s

if r>3, and

__. _
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Case b. - )3(O ) s3 - or its equivalent

B 3(Os) N if 2.

I-9.5 In this paragraph the results obtained in Section I-9

will be summarized.

1st - If the axial components of the field vectors,

3at x3 0 , for TH fields or3 at x3-= 0 for TE fields,

are respectively given as initial conditions, these

initial conditions must be such that

E3(0,s) or its equivalent A3(0,s) for TH fields or

H 3 (O,s) or its equivalent B3 (0,s) for TE fields
5 -, C 5 - -

must behave as where r-3. M =constant.

2nd - If the space derivations with respect to x 3

of the axial components of the field vectors,

3(x3) at x 3 =0 for TH fields or 33(:) at =0 for TE

fields, are respectively given as initial conditions,

their corresponding transforms must be such that

EI~ (O,s) or its equivalent A(x )(O,s) for TH fields or

H;(x3 O,s) or its equivalent B(x)(O,s) for TE fields

must behave as N where Y> 2. N =constant.

3rd - If A(x)(O,s) or B3(x(O,s) are respectively

given initial conditions in the S domain, it is equiva-

lent to give the transverse electric components or

respectively the transverse magnetic components of the

field at x 3= O.

The justification of the last statement is found in

the last two equations of condition given in (2)I5 and

(3)I5, Section 5 of this chapter.

�___I
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Section 10 - Generalities on the problem of inversion of the
TH and TE fields.

I-10.0 We are confronted now with the problem of the in-

version of the TH and TE fields from the S domain

into the time domain. This is the difficult problem

of this investigation. Chapters II, III and IV are

devoted to this task.

As a result of the basic discussion of Ch. I, it

is known that one has to deal with the inversion into

the t space of transforms of the type

F(s,1 7 ecsa÷W2

in which F(s,s 2+wo) is the ratio of two polynomials

in and s i c. F(s, s/ViT ) is also restricted to

show a definite behavior when s-e.

It is important to point out that the problem of

this investigation is not merely to find the inverse

Laplace transform of a specific function F(s). We

have to find a practical method to obtain the cor-

responding functions in the time domain of a large

family of Laplace transforms of complicated functions

of s. That is why three complete chapters are devoted

to this purpose.

I-10.1 The most natural starting point for the problem of

inversion is the use of a table of Laplace transforms.

Unfortunately, there is practically nothing which

might be of some help. Only a very few are tabulated

and can not be used directly even in the simplest

problem.
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The use of well-known simple theorems on inversion

does not produce anything of any practical value.

The Laplace Resultant or Convolution theorem, has some

theoretical value only for a subtype of our basic

transforms.

This subtype is

F- i(S): _

in which F(s) is the ratio of two polynomials in s.

If, under this assumption, Fl(s) is expanded in par-

tial fractions and, if the terms of this partial ex-

pansion are considered, then the above transform breaks

up in two types.

A -o3~ _
A-k e for simple poles

and k s2
and

c3 e C C.
(sAsg e/SZ for multiple poles .

Now from the tables

-S _k) = AkeSkt for t 

(s-sk AFfX-IL A(JOC-T~ = A C (Cc- JO 1e+s t for t;

y- e s 2

VSet a {
X 3for t<

Jo[ /t2 (X3) 2] for t ,3

���_ill I_ _II__ __ ______ _�__ 1
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and by the use of the convolution theorem, one obtains,

k x -Ak e~ 5= for t< 

s~~~-~~s~k) vrose2+SC %

xx,~ ~ ~ 

X 3

C

(thy - e # ' ol c - dT .
3

d .' A
s -s )

The above integral, as well as others which appear in

a similar way, were carefully studied and some expan-

sions were made in series. These series converge,

sometimes, very slowly and give no information about

the intrinsic character of the propagation. The con-

volution method was then abandoned. The results of

this type of integration will not be mentioned here.

1-10.2 The inverse integral
CO? %,

f (t) - F(s)eStdt ; s=-jw

is the main mathematical tool used to solve this

problem. In the beginning the investigation was con-

ducted in the s plane. Chapter deals with a systema-

tic study of the analytical properties. In this plane

no valuable results were achieved. Only when some

complex transformations were introduced, were the in-

versions of the prototype transforms obtained. The

_ __ �
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inverse functions came out in terms of compact ex-

pressions of Lommelt's functions. The presentation

of this part of the work is given in Ch. III.

Since Lommel's functions are not tabulated and not

very well studied, appropriate expansions were made

in order to perform numerical computations. A genera-

ting function was found for all these inverse trans-

forms and a graphical method was developed to obtain

the envelope and phase functions of the corresponding

wave form. A general discussion was easily made for

the signal and group velocities in terms of this

generating function. This part is presented in Ch. IV.

�_____1___11 11__
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CHAPTER II

Section 0 - Chapter contents and procedure

II-0.0 Chapter II develops the first analytical steps re-

quired to obtain the inverse transform functions of

F (s , A J Z 2 s7W' rF
C

under the fundamental assumptions:

1. F(s,s I )is the ratio of two polynomials in
s andis2+ d

2. F(s, 52%) 2 M for Yr2 and M= constant.

The mathematical investigation in this chapter will

be less restricted since it will be valid for ro 1.
II-0.1 The discussions of Ch. II shall be confined to the

s plane. Complex transformations will be introduced

afterwards in Chs. III and IV. Not many final results

may be expected from this chapter. Its purpose is to

give a basic systematic discussion about the analytical

properties of this transform in the s plane, in such

a way that all the requirements for the inversion are

properly satisfied. A search will also be made for a

simple starting point for this problem.

II-0.2 Specific transforms of the standard form can be

worked out easily in the s plane. Since the main idea

is to obtain a method of inversion which is applicable

to most cases, these cases will not be given attention.

The presence of the radical in F greatly complicates

the problem in the s plane.

''
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II-0.3 The readers who are acquainted with the basic

theorems of existence of the inverse Laplace trans-

forms and the techniques of evaluating the correspond-

ing contour integral can omit this chapter. However,

some confusion may arise when certain multivalued com-

plex transformations are introduced. Misinterpretation

of the Riemann surface or transformed contours will not

lead to the desired results. This is the only reason

this chapter is included.

II-0.4 Section 1 contains: Frequency normalization.

Normalized transforms. Singularities. Fundamental

theorem of existence of the inverse transform. In-

version integral and the Brl contour.

Section 2 contains: Riemann surfaces. Suitable

branch cuts. Riemann surfaces of the exponential

function.

Section 3 contains: Abscissa of uniform conver-

gence. Brl and Br2 contours. Integration for t x
c

and t>.. Br2 contours of integration for different
C

cuts and specific transforms.

Section 4 contains: Aspect of the inverse trans-

formation integral for some typical transforms and dif-

ferent types of s plane cutting.

Section 5 contains: The branch cuts in the s plane

and their physical interpretation as secondary waves.

_1_ _11_1_·__1_11_�__1__1__��11 -1_�_�_-



60

Section 1 - Frequency normalization. Normalized transforms.
Inverse transform integral. Fundamental theorem
and Bri contour. Singularities.

II-1.0 Let (s) be a Laplace transform and (t) its in-

verse Laplace transform; thus

coi~ co
(t)- 1i (s)eStds; s=r+i., c0o - ()I1

c o - .co
in which o- is the abscissa of uniform convergence and

the contour of integration can be a line between the

points co - ioo and co+ ioo in such a way that all the

singularities of (s) remain at the left-hand side of

this line. Usually this contour is a straight line

parallel to the w axis and is sometimes the Br1

(Brownichl) contour of integration.

It will be assumed that the reader is acquainted

with the theorems of existence, uniqueness, convergence,

etc. of the inverse integral. Just one basic theorem

will be repeated here without proof: "Let (s) be an

analytic function of the complex variable s of

order 0( 1) in some half plane R(s)-- , where a-o and r

are finite constants and bCl. Then the inversion

integral along any line -=c o where co>o converges to

a function 9'(t), which is independent of co and such

that Ž°9(t)=0(s) ."

By hypothesis our transforms satisfy the condition

r-l; (see Section 9, Ch. I, P. 43). The above theorem

shows that the immediate problem of this investigation

is to search for the singularities and the position of c.
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II-1.1 Before proceeding further with this search, a

normalization of the complex frequency will be introduced

for convenience. Let:

S = + - id (2)II1

in which c= cp; p separation constant.

The standard transform will become

F(s,V ) e 52e F(, -2+o ) e -4 (3)II1

Now, suppose that we denote by F the Br1 contour of

integration of the inverse integral with respect to s

and by r the corresponding transformed contour with

respect to-A, then

2 ergs a1;3) es t ;S rf (4si2+i) er da-= o ; (4) II1

in which

-t- ct 2 tfc= 2ct
Tc

cc f3
f3

Tc= cut-off period for the corresponding mode

AC =cut-off wave length for the corresponding mode.

In the future only the integral I in terms of the

normalized angular velocity will be considered.

Section 2 - Branch points, branch cuts, the function VZ*.

II-2.1 The standard transform has two branch points in the

plane given by

4-± i

�.-.-------n�-- I
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The AL plane is composed of two Riemann surfaces

connected by a branch cut. The cutting of the -A

plane is one of two types: 1st, by oining +i and

-i through the point at infinity or, 2nd, by Join-

ing +i and -i by a line whose points remain at

finite distance from the origin. This latter type

of cutting is Justified by the fact that Js2- s

when s -. oo .

To fulfill the conditions of inversion indicated

in the theorem given in II-1.0, all the points of the

cutting lines must remain at the left of the Br1

contour.

The integration of (4)II1 is difficult to per-

form. The analytical structure of the integrand

changes with the way in which the X plane is cut.

Much of the success of the integration depends on

the choice of a proper cut. For this reason,

several cuts are here studied and their effect on

the form of the integrand will be observed.

Figures 1II and 2II show the selected cuts of

the first and second types.
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II-2.2 The presence of the radical %1 in the transform

(3)II1 is responsible for its multivalued character.

The branches of the transform are closely related to

the branches of the radical. For this reason the

branches of the radical will be studied with some detail.

Consider the function:

W=u+jv= -_1'&i.

When the variable point A moves in the a plane, the

functions u and v change. One passes from one leaf

to the other when the branch cut is crossed. The signs

of u and v may change suddenly from one side of the

cut to the other. This change in signs of u and v is

important. When a contour is followed we have to be

sure to take the correct sign for these functions.

Besides, the knowledge of this sign distribution is a

big help when other complex transformations are intro-

duced, as in Chs. III and IV.

The two sheets of the Riemann surface, in the ,4plane

will be denoted by 0I and4II. The Roman numbers indi-

cate respectively the leaves one and two. This sign

distribution is given in Figs. 3II and 4II corresponding

to the branch cuts indicated in Figs. 1II and 2II.

Although these signs are plotted in the, plane, they

correspond to the resultant sign of u and v and not toe

and) . A zero indicates the points for which u or v vanish.

The Riemann surfaces JI and I were defined in the

way indicated below. This definition is made at the

branch point i. It is simple to find the corresponding
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expressions for the branch point -i. The signs of u

and v are in accordance with this definition.

The corresponding sign distribution for cut 2IIa is

similar to the one indicated in Fig. IIc. These re-

sults will be applied in Section II-4 and also in

Chs. III and IV.
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II-2.3 Poles. The poles of the function F(4,+l) are

poles of the transform. Let n be its number and let

them be at4k; k=l, 2, *.,',n. It is required that all

poles be contained in some half A plane for which

ReaLpo. In the half plane Real4Zpo the function

F(4,-T-T) must be analytic. See fundamental theorem

in II-1.O.

FIG. N° 4Ic
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The function F(, 1~+) can be expanded by Laurent

series around its poles. When this expansion is made

the integral breaks up into integrals of the type

271 k) me dAd (2)II2

in which is the multiplicity of the pole.

It can happen, and is often the case, that the

points +i and -i are also poles of the transform. Here

the Laurent expansion contains fractional powers of c

and the integration of (2)II2 becomes more complicated.

It is very difficult to integrate (2)II2 in the - plane.

This is so even when F is a function of>> alone and--=l.

When F= F(A,V A2) then the situation becomes more com-

plicated and it will ot be carried out in this chapter.

One of the objectives of Ch. III is to get rid of this

radical by means of suitable complex transformations.

In Section II-4 some examples of the integral

structure in simple cases of F(,4,iT ) and for dif-

ferent ways of cutting the 4 plane are given.

Section 3 - Abscissa of uniform convergence. Integration for
r<. Br2 contour and integration for > . Br2
contours for different cuts.

II-3.0 The abscissa of uniform convergence can be found

after all the singularities of the transform have been

located. Let z M be the position of a singularity such

that

Reala >!_ Realdk

It is evident that for all , such that Real4-Real4,
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the function will be analytic. Therefore,

C 0 Real-4 A ;

The equal sign is valid if the Brl contour, in the vi-

cinity of-4 M, is deformed by a semicircle leaving- M

at the left. Consider, as an example, the transforms

e .e e e__ in which 0o and '
-J o ; -X+20 ' ; ¥.2, are real quantities.

The Fig. 5II shows the limiting position of the Brl

contour with a dotted line for each of the above trans-

forms. Any straight line which is parallel to the

imaginary axis and to the right of this limiting con-

tour, yields to the same inverse transformation. A

similar process can be followed for other cases.
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II-3.1 In this section we shall consider the inverse

transform integral

I(,xq)=1 .) / "r¥-.? .); e

for ' X, that is t x23 and show that
Tc c

I (,X) 0 for Z'X. (1)II3

To prove this the well-known process of computing the

integral

is followed along the closed contour G

is followed along the closed contour G, indicated in

Fig. 6II. Since co>PO,

the integrand is analy-

tic inside and on the

contour and, therefore,

the above integral is

zero. From this and

from Fig. 6II we may

write:

FIG. N 6 .
004-L(3 d~Z _X-~-L~+F~a,2 e d-l2

F, +1di) e d 4 ( ) e d.

Now, let us make R-1 o. Since it has been assumed

that F(G, i) behaves as M6 for >'l, and by making

4=Rejq the following is obtained by a well-known

WHEN R - oo

OF UNIFORM
rI~ 1

I- II -- C .--- -



70

theorem of functions;

|T-l t ( 4 , M RX df ---P
J' V

since the exponent -RK-V cosfremains negative and

tends to -co when R-voo. Hence, (1)II3 is proved.

This property is interpreted by saying, that, at

a cross section x 3 distance from the origin, no

perturbation arrives for values of the time t~ ,

in which c is the speed of light in the medium. The

interval O 5to x 3 will be called the silence zone,
c

(Ch. IV).

II-3.2 The contour Brl, that is a straight line from

co - ooto Co+ oo, has a rather theoretical value. Very

seldom, and only in simple cases, can the integration

be performed along this line. A deformation of this

contour around the singularities of the transform

simplifies the process of integration. To obtain the

integration for tZ', usually the Br1 contour to the

left is closed by adding a new contour, Fr formed by

a very large semicircle connected with partial con-

tours surrounding the singularities. The whole closed

contour must be so located, that the integrand is

analytic inside and on this contour. Let us call this

closed contour Gr. Under the condition above the

integral along Gr is zero. Since Gr is formed by the

__
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union of the Brl and Br2 contours, the integral along

Brl is equal and of opposite sign to the integral

along Br2.

1 ( ' T 4r-X.i d l2 1__ rX / ( x4
_V ,. da= - e j,

This procedure is illus-
THE INTEGRAND -' o

trated with a particular AL
CII

example of a transform Al

whose singularities are

indicated in Fig. 7II.

It is well known that

when R-oo, the semi-

circle at the left and

the segments ab and gh

contribute nothing to

the integral, if rXX and

F(&,4 2 ,+l) is of order

O(M-) and r1l. This is

independent of the type B-Po WHEN R-'X

of branch cutting selected.

Since this proof is simple and given in all text

books on Laplace transform, it will not be repeated

here.

The integration along the connecting channel, with-

out branch cuts in the inside, is clearly equal to zero.

Then the integral along the contour r reduces to the

,NI

3. No 71E

E
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integral around the singularities and to the banks

of the branch cuts. The contour around the singulari-

ties, in the proper direction, is sometimes called the

Br2 contour.

II-3.3 Integration around the poles and branch points is

easy but along the banks of the branch cuts it is

most difficult to perform. For a given transform

the analytical structure of the integrand along the

sides of the branch cuts changes when the type of

branch cuts is changed. If the cuts are made in such

a way that the conditions of the theorem given in

II-1.0 are not violated, then all the integrals must

yield the same results. Therefore, if the . plane is

cut in several ways, different types of integrals will

be obtained and perhaps one which can be integrated

will be found. In this investigation a large variety

of integrals must be dealt with and it is convenient

to consider not only one but several types of branch

cutting.

In Fig. 8II the Br2 contours of integration are

considered for some simple typical transforms

e

4- pree

In Section II-3.3 the analytical expression for the

integral corresponding to different types of branch

cutting is given.

I___ _ _
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II-3.4 In this subsection some illustrative examples will

be given showing the change of the analytical form of

the integrand when the type of branch cutting of the

~zplane is altered.

One elementary transform was intentionally selected

to show, at the same time, how involved the integrand

becomes even in the simplest cases. Our purpose in

this example is merely to illustrate how the selection

of branch cutting affects the corresponding integrals,

but they will not be integrated here.

All simple intermediate steps of algebra will be

omitted and only the final results will be given.

Of course, the sign distribution plots in Figs.

3II, 4IIb and 4IIc must be used.

Take, for example, the simple transform

0(s)= e-JV
0

and write

ut 2b. (S)-

Cut 2IIb. )O> 1

V(C) (=ei-0iVXV _ i 2iOs-nh VcC + i isinV]dl)} (2)II3

l i ~'e sinhX F1|- dV-,0 T1- Vzfr~z=d ~ ~LI,-3 ·2

C_ I
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Cut 2IIc. 0o 1

for r<E7

9(~) {e(4- -) - J_~ )o i i e(}dA forlTe(3)II 3

A-variable of integration. See Fig. 8II.

Cut lIIc. o -l and 0 > 1

=0 for t< k

P() =_e,(- -A4*i) 2 Os

+ sin

in which 4A=+i); 0=-1 and variable of integration.

It can be seen that in cut lIIc, the integrals represent

envelopes of cos and sin respectively. Besides

the integrand goes to zero very rapidly when A, k andp

increase. It is clearly suitable for numerical integra-

tion, and asymptotic solutions may be obtained easily.

Cut lIIb. Do 1

=0 as formt 

ioFr te 2+sink taos O+ i~osin rd forin r (5)II35(r) j=e 0e -0 cosgt+iOosind dC for>7*

The corresponding discussion for cut lIIa and some curved

cuts will be given in the next subsection.

II-3.5 Branch cutting lIIa offers the advantage of allow-

ing a rotation of the cut lines around i and -i. We can

look for a possible value of * for which the integrand

becomes simpler and more suggestive.

(4)II3
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It can be proved, after a rather long development

that the real and imaginary parts of the radical can

be written as

u =i-i sin +
2

v--R - cos +Q
2

the corresponding sign

being taken in accord-

ance with Fig. 3II.

The meaning of the

above notation is

given in Fig. 9II.

The corresponding

integral which yields

_i- ,/ 

WNE

____e-^r FIG N ° 9
A -Jo

is given by

Cut lIIa. Pool or PL)<l

=0 for -<.

for l

I TkLs() X sintr it avio drs
e=-veo oft e dr 

The integral in the above expression represents the

envelope of the rapidly oscillating functions ei(r+*)

(7) II4

(6) 13

9 (C)

I _

I

, 7*
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and e- i(Vr+1 ). This is a convenient form for numeri-

cal computations. Unfortunately, no particular value

of 3 makes the integrand simple and suitable.

Nevertheless, the above integral suggests the next

step. Since r, R, and%-are available, a cutting

line can be chosen so that the integrand becomes

simpler. The relations (6)113 are independent of the

form of the cutting line, so that it can be used for

curved branch cuts as well. In this way several curved

branch cuts were carefully investigated. Some of them

work well for only one particular transform but are no

good for the general prototype F(,2l+).

A careful and almost exhaustive investigation was

performed in the 4 plane in order to obtain a con-

structive solution of the expression

by considering branch cuts made of straight or curved

lines. Particular solutions for some simple trans-

forms can be obtained. The solutions are series ex-

pansions usually unsuitable for computation. Some-

times the series expansion is not valid when the applied

frequency is very close to the cut-off frequency of

the wave guide; this is a common and very important case

in practice.

The solution of the problem of inversion will be

given in Chs. III and IV with the aid of some complex

transformations.

___�___�IUI�� __ II
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tction 4 - Transient formation. Possible interpretation of
the integrals along the banks of the branch cuts.
Secondary transient waves.

II-4.0 It has been shown that the inverse transformation

of a given transform can be obtained by the integra-

tion of the inverse integral along contours which sur-

round the singularities and branch cuts in the X plane.

These lines of integration are sometimes referred to

as the Brownichts Br2 contours. The object of Section

is to make an overall investigation of the integrals

along the branch cuts in order to find the character-

istic behavior of the function when time changes.

II-4.1 For clarity the following simple transform will be

used as a beginning:

e

This transform was selected because of its behavior as

M when s-Co. The branch cut lIIb is used.
s-

4

It can be found that

;2° t ' 6 t-i
A *2 i4 ?P--=P( .- )

~-$-:-o

f1

- f_ _ ithWz costrd u (r-)JF l 4)- -i

in which 1(C-*) is the unit step function shifted by k.

The first term inside the bracket will become the

steady state only when C-eoo. The integral, which is

the contribution of the banks of the cut, represents

a transient term. We will make an overall discussion

of its behavior as a function of time. In order to do

(1)II4

C I

Si
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so, let a function be defined as follows:

0 for -ooci<-1l

(p) 2 sinhk/i1--/T for -l-sl ' (2)114
·j: - .

0 for 1- oo

It will be recalled also that represents the real

normalized frequency (= ). The above function

will be considered as a continuous frequency spectrum

which exists only inside the band width -1 to +1.

The corresponding time function of (2)II4 can be

found. The Fourier transform of G(P) is:

e ti II4((T) )e, d=l/ eo d d=+__ sihpi cos PTd) (3) 114

since (p) is an even function of L.

Since (p) exists only within a finite band width,

it is expected that a(T) will spread on both sides of

the time origin and will show a rapid monotonic decay

in amplitude as Itl-oo. Observe that the zero of T

corresponds to the value ( of U.

In (1)II4 the integral (3)II4 is multiplied by

u (U-k). Therefore (t)u (Ct-k) has a value zero for t-'.

In Figs. lOIIa, b and c, the second member and the

complete expression for ~(-,k) are shown, not the

exact representations but only sketches of the expected

functions. The exact curves are given in Chs. III and

IV
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II-4.11 The transform selected in this example is of

order 0(^) when s-oo. This means for Z-=* one must

have
O = (+ ,')

whence

7sink(@o -oa-1= j sinhkyIi) 7 cos(P*)did . (4) II4

By this simple method values of a complicated definite

integral are obtained. That (4)II4 is true can be

shown by direct method (Ch. III) but it requires con-

siderable labor.

By using the initial value theorem, some integrals

can be directly evaluated which are in general quite

involved. For example, take (2)II3, (3)II3, (4)II3 and

80
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(5)II3 and use the property of the corresponding first

member

t([,* =1+ iO ;

then other interesting integrals can be evaluated

easily.

During this investigation a rather large family of

involved integrals is evaluated by this method. The

results are not given here because they are only side

products and have no direct importance for the main

body of the investigation.

II-4.12 Evaluate the corresponding integral around the

branch cut and the branch points.

a. - The contributions to the integral around the
branch points are both zero.

b. - The contribution of the left bank of the cut
is given by

+ 2r _ a d (5) I4

c. - The contribution of the right bank of the cut
is given by

2- e de . (6) II4

If attention is paid to the sign of the radical in the

exponent, it is immediately recognizable that it rep-

resents waves moving along the positive and negative

direction of the x 3 axis (K= 2 72) . These waves move

in a dispersive media and have a continuous frequency

spectrum which exists only within the band -1 and *1 of

the normalized frequency. The above integral can be

looked upon as secondary waves which exist only in the

_I_________I__I__IIII CI - __
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transient state condition in the guide and disappear

in the steady state.

A tentative explanation of the existence of these

transient waves can be given as follows:

The term sin( 0 -X po-t)u (-~) can be considered as

an incident wave which moves with the speed of light.

The wave front excites the cross sections of the guide

which then reradiate. All these cross sections form a

continuum of sources and the b:um of their effects is

given by the integrals ()II4 and (6)II4.

The convergsnce of the integral (6)II4 when *-.oo

will be discussed fully in the next chapter.

II-4.2 Consider the basic transform of this study

F(A, )e

The inverse transform function is obtained by performing

the corresponding integration around the singularities

and along the banks of the branch cuts. Now take the in-

tegral along the bank; the sign of the radical in the ex-

ponent will change from one bank to the other. Therefore

the secondary waves moving along each direction can be

separated.

The above interpretation of the integrals along the

branch cuts is only a tentative one. What was said

before does not constitute a proof and still needs a

full discussion of the convergence of the corresponding

integrals. This problem will be treated in the next

chapter.

_ _
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CHAPTER III

The inverse Laplace transform of the prototype and the

complex transformation Z= -. Y

Section 0. - ObJect of the chapter.

III-O.O This chapter develops the inverse Laplace trans-

forms of a basic family of transforms which appear in

the propagation of electromagnetic waves in systems of

generalized cylindrical configurations. These results

will be directly applied to transient phenomena in wave

guides, excited at a cross section considered as the

origin.

In Ch. I the basic transform was found to be

+(s)= F(,l G)ek i (1) IIIo

in which F is the ratio of two polynomials in X and VYZ.
This transform contains a large number of cases of

practical application. For the study of electromagnetic

waves in cylinders, F(d,r2i1) is restricted to O(s)

forr 2 asd-o o.

In Ch. II, the problem of the inversion in the X

plane using different types of branch cutting was con-

sidered. It was discovered that, 1st, the integrals in

the simplest cases are rather involved and difficult to

compute, and 2nd, the presence of the radical in F,ad2+l)

is undesirable, mainly when the branch points +i and -i

are also poles.

--�-�-�--� ��1_--------·111 ----1.-�_�_�_
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In Ch. III a complex transformation, namely

Z = -iT, will be introduced which eliminates the

radical and yields a simple method of obtaining the in-

verse Laplace transform of the prototype. The solu-

tions first obtained were in the form of uniformly

convergent series of the Neumann type. It was found

that these series solutions converge extremely slowly

and are not suitable for numerical computations. In

Ch. IV the problem of the summation of these series

is considered.

During the preparation of this manuscript it be-

came apparent that the above series were Lommel's

functions of order 0 and 1. With this knowledge a

short cut can be taken so that a much more compact pre-

sentation of this chapter is made possible. Neverthe-

less, the original mathematical derivation will be kept

because first, there is little time to make the required

changes, and second, Lommel's functions are neither well

known nor well studied and the method presented here is

a simple way of approaching them. Finally, a new inte-

gral representation for this function is given.

Lommelts functions are not tabulated. The corres-

ponding series expansions commonly given converge very

slowly. The object of Ch. IV is to develop the formulas

and processes to compute these functions.

The material presented in this chapter is outlined

in the next paragraphs.

* See Appendix I.
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III-0.1 Section 1 will contain: Introduction of the com-

plex transformation Z-a j +l in the basic Laplace

transform. Poles and other properties of the G(Z) func-

tion. Partial fraction expansion and decomposition of

the general transform in subtypes. Derivation of the

fundamental types of integrals.

III-0.2 Section 2 will contain: A general discussion of

the contours of integration ()in the Z plane. The

reciprocal transformation z * is also studied. An

investigation is conducted in order to find some mapping

properties of the A into the Z plane. New and typical

paths of integration in the Z and z planes.

III-0.3 Section 3 will include: The integration of typical

integrals found in Section 1. The solutions given in

this section have the form of series expansion of the

Neumann type.

III-0.4 Section 4 will include: The introduction of com-

pact solutions in terms of functions of Lommel. Solu-

tions when the poles of the transform are simple ones.

A study of properties of Lommel's functions and different

forms of the solutions. Behavior of the solutions at C=*

and b-r o. Introduction of the generating functions of

the inverse transforms. The compact solution for multiple

poles. The concept of the group velocity and its expres-

sion in terms of the poles.

III-0.5 Section 5 will contain: An application of this

theory in computing some useful transforms.

____II �
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III-0.6 Section 6 will include: A direct application of

this theory to wave guides with some examples.

Section 1 - The complex transformation Z=--i., Poles and
properties of G(Z). Partial fraction expansion
of G(Z). Derivation of typical integrals.

III-1.0 Let the complex transformation

Z= s - ti in which
(1) III1

Z- x+iy

be introduced. From it one can write

(Z _ Z)2 =z2 *l , or

Z 2 - 24Z -= 0

This is a second-degree equation in Z; call the roots

Z' and Z. Since the last term is -1,

Z'Z"= -1 or

Z" 1

It is known from (1)II1 on one of the roots, that

Z =- Z =_4 - ,

and therefore

Z =- 1 = 2+ ;

adding and subtracting them,

- 1( - 1) and

(2)III1
Vr2+ = - (Z + 1) 

2 Z

This last equation shows that the radical can be expressed

as a rational function of Z.

)1 �_
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III-1.1 The substitution of M and /42,1 in the basic trans-

form leads to

F(Z)e - (z+ (3) III1

and notice that F(Z) is now equal to the ratio of two

integral polynomials in Z. Let these polynomials be

called FN(Z) and FD(Z) so that

F(Z) = FN(Z)4) 1
FD (Z)

III-1.2 The inverse Laplace transform of (1)IIIO is

1 fe = ( ) l F(4 ,l i) er4 d, (5) III1

). being a contour in the A plane, which gives the

correct solution. It may be, for example, the Br1

or the Br2 contour indicated in Ch. II. If the trans-

formation (1)III1 is introduced, the contour J4

transforms into a contour t in the Z plane. Then

(Z)e 2 dZ =

i ( )- JUG(Z)e eZ dZ , (6)III1

in which
2 GN(Z)

G(Z) - + z 2 F (z) GD(Z) (7)II11

which is also the ratio of two integer polynomials in Z.

In the next section some important properties of the

function G(Z) will be discussed and in Section 3 the

transformed contour r will be studied.
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III-1.3 Some important properties of the poles of G(Z).

Since G(Z) is an ational function of Z the only

singularities are poles. These poles are the roots of

GD(Z). From (7)III1 and (4)III1, the roots of GD(Z)

are the roots of FD(Z) and possibly Z= 0.

Theorem 1. - If F(4,V4l) can be written as

FN(4,YJi)F (d +1) = Fj (MJ l) (8)III1
( -k) OD(- ,',4 4)

andd k is not a root of FN(,,1 i), then:

Zk =dk-~ k+1
Zk = Ok ~ (9)III1

7Z- k + Ik + 1

are simple poles of G(Z); and are such that

Z x Zk = -1 (10) III1

Proof: The factor --j:

4 dk= 2(Z - 1) -dk=

Z2 - 2Z -1
2Z

_(Z-Zk)(Z-zD
2Z , after the transformation

in which

Zk= k-k 1 , and

by multiplication:

ZkX Z=-1 .

Under the hypothesis of the theorem, G(Z) can be

written as

G(Z)= (1+ Z2 )F 1 (z) 1 (11)III1
(Z -Zk (Z - *)OD M

thus the theorem is completely proved.
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Some simple corollaries of this theorem will be

indicated (k lies on jI):

a. If we is real Zk and Zk are also real.

b. If 4k is zero then Zk= - 1 and Z =1.

c. If zk is pure imaginary three cases will be
distinguished.

C23. k'.l

C3- kl =1-

If cl, then: Zk and Z are purely imaginary.

If c2 , then: Zk and Z are complex and lie
on the unit circle.

If c3, then: = -i and Zk = i.

d. Iffwkw-oo then Zk-O and Zk- 0o.

Theorem 2. - If F(,Z ,I+l) can

be written as: FIG. I 

and if this factor does not

appear in the numerator, then:

Z2 = A* ,-l and l (13) III1

are simple poles of G(Z) such that

ZA z = 1 (14) III1

The proof of this theorem is similar

to the one given for Theorem 1 and

is, therefore, omitted.

Z Z&--I

'LANE

-- -- -

F ( , Vg-V FN('O.,Y'+l) r 
rI
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The most important use of this theorem is for =-0,

and the roots become

Z = i , and

ZA -i

Theorem 3. - If F(4, -V21) can be written as

w[., v"A4.~_ __ FN(J i) 4 r

('d 4k). iD(i,o o )i

and if no cancellation of this factor can be made,

Zk = k- 1/k + 1 t

Zk= k+ 1

are both roots of G(Z) and have a multiplicity a.

Zk x = -1 .

Theorem . - If F(,V7i-) can be written as

F(,4 2j-i) 

' -r -r
,L) ) L.L.L 

then:

(16) III1

Also

(17)III1

FN(A,414'+')

(iZ7+I- -A )D eD(4 i;')

and a further simplification of the factor is not

possible, then

ZA=d4A - Av

ZA '4A + -4S7 1 (19)III1

are both roots of G(Z) and have a multiplicity .

Here also

Zx ZA= 1.

Theorem 5. - For each factor of the form (-4 k)

or (aP+l-a ) in the denominator of F(o,Z,1) a

factor 2Z will appear in the numerator of F(Z).

(20)III1

This theorem follows immediately.
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An important result is: If F(4,,1iJ) admits at

least two simple factors such as those indicated above,

then in

G(Z) 12 - F(Z)

the term 2 in the denominator may be cancelled out.

Theorem 6. - The poles Z and Zk (or ZA and Z) can

not coincide.

The last six theorems give the connection between

singularities of F(4,rA24-.i) and the poles of G(Z). In

Section 3 some other properties will be discussed.

III-1.4 Now a substantial simplification of the problem of

the Laplace inversion of the basic transform (1)IIIO

can be made.

Since G(Z) is the ratio of two integer polynomials

in Z, it can be expanded in partial fractions, (finite

number of terms), and a term by term integration can

be performed.

Theorem 7. - "The degree of GD(Z) exceeds that of

GN(Z) by '." To prove this proceed as follows:

a. - Assume, by hypothesis, that F(-,1 42+ 1) is of

the order O(f) r 1 as --,oo. This means that

if n is the larger degree of FN(, - 'i) then

the degree of FD(4,1*F i) must be n+r= m.

b. - The largest power of Z in FN(4,/+Tl) is n.

When An or (2a+1)n is expressed in terms of Z
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a term of the form (ZJ 2n and FN(Z) can be written
z

as
FN(Z )= 1 

in which F(Z) is an integral polynomial in Z of 2n

degree.

The largest power of 4, in FD(4,VYi), is m= n.

When4 ~n, or ('2 ) n+ is expressed in terms of Z

a term of the form n obtained and FD(Z)

can be written as

FD(Z) 1 FD(Z)

in which FD is an integral polynomial in Z of

2(mer) degree.

Then:

F(Z)= ZFN(Z)
F (Z)

c. - Consider now G(Z). By (7)III1 the following

expression is obtained.

G(Z)= Z(Z)= GN

2F (Z) %(Z)

The difference between the degree of the denomina-

tor and numerator of G(Z) is given by

m - n =2(n+r) -2n -r=-

and Theorem 7 is proved.

Theorem 8. - This is another simple but useful

theorem concerning the number of poles of G(Z).

I



93

The number of poles of G(Z) is equal to

2m if r 2

2m+1 if r= 1

in which m is the degree of FD(d,+i).

The proof of this statement follows immediately from

c of the last theorem. For if o -2 the polynomial

GD(Z) is of the 2m degree. But if r-l, the difference

r-2=-l introduces a new root, Z =0-O, in the denomina-

tor.

Now the partial fraction expansion of

written in terms of its poles.

T r _.L Ad'I - ' -- -A

G(Z) can be

Z1 have a multiplicity 1

Z2 have a multiplicity (2 (21)I

Zq have a multiplicity c(q

with the restriction that cl a2+' * *+a = m.

By using the well-known form of the partial fraction ex-

pansion and considering these theorems:
q K K q r 0

rG(Z) -r-----jb;- I£..m. for (=l((k Jl jl(Z-Zek-; kpt j- (z za l (22) I1
Zero for 2

in which the constants

II 1

r 1

Z=Zk

cz) z kliZ:Z (23) II 1

Ko= G(Z)] for =l1



It must be recalled that ZkZk -+1; the (+) or (-) signs

being given in accordance with Theorems 1, 2, 3, and 4.

The expression of the inverse transform is found

with these results.

Fo

(24) I1[ 1

Notice that the terms with (*) have been omitted. Of

course, the integrals

q q

kxl l
dZ , (25)i 1

but they represent the circuitation around the branch

cut, in the plane, in the Riemann surface4II. This

integral does not occur in the value of 9(C,*) and,

therefore, is omitted here. These last integrals rep-

resent waves moving in opposite directions since they

are equivalent to one integration in Ii of the a plane.

In Section 3 the truth of this statement will be checked.

Although the integrals (25)JI I are not needed to

obtain the value of the inverse transform (5,), they

will be computed. These integrals (25)III1 generate

Lommelts functions which are very useful in this in-

vestigation. Besides, the mathematical treatment is

far more complete.

94

CP (r*)=I
q q I

c-

; J

(Z* i~ 7- 
.Zj 
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The foregoing can now be summarized.

The problem of the inversion of the basic transform

F(-4,i) e- , in which F is by hypothesis the ratio

of two polynomials in 4 and -ve and such that F is

of the order O(M) , 1, has been reduced to the inte-

gration of the simpler integrals:

e-z (4) 1rez(Z-4 4 Z+l) 1 Xi _ _z

in which 21l is a positive integer. The most important

case is m=l. Apparently there is no analytical differ-

ence between the first and second integrals in (25)LI 1.

Nevertheless, it is convenient to consider them

separately.

Nothing definite has been said about the contour of

integration K. In Section 2 this 'Z contour will be

studied. In Sections 3 and 4 of this chapter the writer

will come back to the integration.

Section 2 - Branch cutting. Map in Drop erties. Contour of
integration 4( for typical integrals. Introduction
of the reciprocal transformation and resulting rL
contours.

III-2.0 In the course of this chapter, types lIIb and 2IIb

of branch cutting of the X plane will be systematically

used. The sheets tI and I of the d plane will be

adopted as they were defined in Table I of Ch. II.

The sign distribution diagrams given in Figs. 3II, 4IIb,c

will be employed.
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In this section the mapping properties of the intro-

duced complex transformation will be studied as will

the resulting rz contours of integration for the typical

integrals (24)DIL. The above process is repeated for z.a+ i1.

III-2.1 Consider first the type 2IIb of branch cutting and

define the Riemann Surfaces I and II as in Ch. II.

Take first the sheet I. The manner in which points

of this surface map in the Z plane will be investigated.

a. -Large semicircle to the left-half lane. sheet .

Let

Z =. -VE-i;-1

If 1m1=l, then

(d24+) 2-l 2 1+ 3 1 -1 1 ...

when WI is very large;

Z=J -s1/+1 _ 1 .

Take, for the left semicircle,

=ReJ, 9 f c ;
2 2

Then

Z =re jQ - R_
R

.. r l and Q=r- 

This result is indicated in Fig. 2111 a.

b. -Real axis, negative sid, sheet I

d =-p and

1 is pure real.

The sign of the radical must be +-. See sign distri-

bution diagram. Then

Z-- pt pl .

_ II
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Then for

P= 0 Z=1 , and for

IPl=oo Z=O.

Real axis, positive side, I sheet

d- +PI

- +1 is pure real.

The sign of the radical must be (-).

Then for

f=O Z =-l and for

PI= o ZO.

These results are indicated in Fig. 2b.

c. - Imaginary axis sheet-I

C 1 . - Positive part above +i

A= i ; IdV1l

4A i = i f Zf pure imaginary

z = i( - 7IZ)
When -oo Z-O,

P=1 Z i.

c2 Negative part below -i

X= -i 11 >1

,ir pure imaginary. The sign is +
from the corresponding sign
diagram, so that

Z =-i( -¢v-)

When: ka-zoo Z-O
1 =1 Z =-i

These results are indicated in Fig. 211I c.

� _I
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3 . Imaginar axis between i andi.
Left approach sheet__

=d ij |I) 1 .

The radical Z+l =)1- 2 is pure real. From

the corresponding sign distribution diagram

the following is obtained.

Z = i +1- a , since

Z=x + iy

Then:

Y= ,

and therefore

x 2 +y 2_ 1. Circle of unit radius.

Also when:

V=i then Zi ;

V= O then Z +1 ;

v = -i then Z =-i ;

as indicated in Fig. 3 a.

C4. - Imaginar axis between +i and -i.
Right approach sheejt6 I.

x~- ~ P,* ; x2 y2=1

and, therefore, when:

= =l then Z+i ;

0 - O then Z=-1 ;

= -1 then Z= -i ;

as indicated in Fig. 3II b.
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d. - From the above results it can readily be seen

that the sheet I maps in the inside of the unit

circle in the Z plane. Therefore, it can be shown

immediately that 7II will map outside of this unit

circle.

e. - It is important to notice that the contour

around and in the vicinity of the branch cut,

Fig. 2111 will map on the unit circle of the Z

plane.

III-2.2 In this subsection a typical contour of integra-

tion will be considered. Figure 4JYIa represents a

closed contour, , which can be used in connection

with the branch cutting 2IIb. Because of the partial

fraction expansion of the basic transform, the integra-

tion with only one pole can now be considered. Let this

be k The closed contour [; Contains the Br1 and Br2

contours in the plane. Supposing that this contour

lies in the Riemann surface d, one sees that then r

transforms into rZ in the Z plane, as indicated in

Fig. 4Ib. This statement can be ustified with the

discussion given in Subsection II-2.1. Notice that the

whole contour rI maps in the inside of the unit circle

of the Z plane. Of course, in case of the supposition

that [G lies in.iI, the whole contour will map in the

outside of that unit circle.
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FIG. 3.

- I
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FIG. 4
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It is important to notice that ZO and Zooare es-

sential singularities of the integrand in all three

typical integrals given in (25)III1. The essential

singularity Z-0 disappears when r- A, (wave front).

If instead of taking the above type of branch cutting,

lIIb is adopted, the result given in Figs. 5Ta and

5Itb will be obtained. After a systematic study of the

mapping properties and if the sign distribution dia-

grams given in Fig. 4 II b are considered, then it will

be found that -dI maps on the left half of the Z plane

and dII maps on the right half of the Z plane. It is

not surprising that in cut lIIb the Riemann surfaces

do not map inside and outside the unit circle. The

reason for this is in the fact that in each case the

surfaces I and I are defined in a different way.

III-2.3 Suppose, instead of using the complex transforma-

tion (1)III1 the reciprocal transformation

z =A+t (1)m2

is chosen. After a discussion similar to the one

given in Section 3 of this chapter, it is found that

the typical integrals in this case are:

1 _ e ' ) _- ( +_ el

1 le4~z~z .. dz
1 e! 

2rir (Z-Zk Vc 2)z (2

I e2 - )
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FIG. 5
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Since Zz=-l it is expected that the new complex trans-

formation z will have the effect of interchanging d'I

and 6II. This is the case, and the transformation of

the contour into the z plane is indicated in

Fig. 6IIL For branch cutting 2IIb, use Fig. 6Ia;

for branch cutting lIIb use Fig. 61 b.

Notice that the points z= and z =oo are essential

singularities of the integrand in (2)II2. The essential

singularity at z =0 is removed when =; (wave front).

The contours in Fig. 6111 are drawn for the case in

which Ok is purely imaginary. If this is not the case

then it is simple to put the pole in the proper posi-

tion by a simple displacement. (Compare Figs. 4IUI,

5III and 6.)

III-2.4 The contour YZ or (z along which (25)IIE1 or (2)III2

must be taken in order to obtain the correct inverse

Laplace transforms has not been given yet. This goal

is very close since the transformation of r into the

Z or the z plane has already been given. Contour r4

is formed by the union of Br1 and Br2 contours. Con-

sequently, the part of rz or Fz which corresponds to

one of them must now be chosen. By a simple inspection

of Figs. 411, 5II and 617 one immediately discovers

that it is r or Kz. For example, in Fig. 4m rZ is

formed by the integration along the unit circle between

E and J and around the pole at Zk. In Figs. I5Tb

___ _
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and 6bno integration is made along the whole unit

circle; r or z is along the imaginary axis. Even

in those cases in which the contour Z or 3z lies on

the imaginary axis, one can reduce, by elementary

contour deformation, to the integration around the

unit circle and the corresponding poles.

After a simple but careful discussion of the def-

ormation of the contours, the contours which are going

to be used in this investigation are finally obtained.

They are indicated in Fig. 7Mfl for the Z or the z com-

plex transformations. The elementary steps required to

pass from Figs. 411,; 5, and 611 to the final rZ or z

will be omitted in Fig. 71I1. It is not hard to prove

their validity.

It is immediately noticeable in Fig. 731 that 

contours are equivalent to integrating around the es-

sential singularity at Z O0, while z contours are

equivalent to integrating around the essential singulari-

ty of the point at infinity.

Figures 7c and 7Id were drawn respectively for

the case in whichlZk = I1 = 1 or z = I1l =1.

Section 3. - In egration around the poles. Series expansion
of the typical integral and new subtype _nte-
gration of the subtypes and complete solution
of the typical integrals of Section 1.
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FIG. 7M
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III-3.0 Section 3 will be devoted to integrating the

typical integrals

*~ rz - -L,+2- (Z+ 1
we dZ

2rJi (Z-Zk) , 

2 ri . (z .. z:) dZ 

in which rZ is the contour given already in Figs. 7a

and 7Ic.

In the future only the complex transformation

will be considered. The reciprocal transformation z

leads us to similar results and is equivalent to working

in the WII plane instead of in JI

Both integrals given in (1)II3 appear simultaneously,

since it has been proved that Zk and Z correspond to

one pole4 k in the plane. Besides, they are connected

by the relation

Zk Z=-1 .

We will consider three cases.

Case a. - 0<lZkl-1 in which case I1Z l1

Case b. - 0IZk|ll in which case I Zkl

Case c. - fZkI=l in which case ZkI=l

Recall that zl1 is a positive integer. From Eqs.

(24)m1 czk - j + 1 in which k is the multiplicity

of the pole Zk or 2.

See Appendix I

_ 
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III-3.1 Consider the integration of the typical integrals

in Case a. Here 0<lZkl l. The pole Z lies in the out-

side of the unit circle. The contour of integration

is given in Fig. 7IIa

The typical integral can be written

~I-1· i ·Sz-. unit lir t Xe

lst - It is simple to prove in Case a. that the first

and second integrals of the second member are zero, by

taking a small semicircle of small r and making r--O.

2nd - Now take the third integral of the second member

of (2)3113. Since Zk is not a pole in the second integral

of (1) II3, the integration around Zk is zero.

3rd - It will be proved that

1e~ (z-i z) +t f(z + f for 'x
I Zk ~/ (Z-Zk)~ ' dz= 

Zef l zk eZ k. +Zfor )=l

If one sets Z -Z k = rei , dZ =ireiede, and then

R (Zk F t) 2 2 I e2(Z

z e f2 rr1 JO -2eAi( -l)r Z1 2
I"k 2r_ ~1

for l1,

independent of the magnitude of r.

But if oc =1

Zk Zk 2ff X Z '
I9 8=e z -,,, sr 0
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4th - Introducing the last result one finally obtains:

1 Fge 2-(Z z) '' Z + ' )
I = (___ __Z

-2Ti (zic

unit circle

dZ

Z- 1 ea ) d'-(Z1
dZ FriJ (Z-Zk)a: u-

tz

0

ea Z

ifccL (II3

if =

111-3.2 Consider here Case b in which OlZ1.l.

In this case Zi lies in the inside of the unit circle

and Zk lies on the outside. It is then obvious that

one will obtain:

(2 Z y Z
e(Z_2 {) +ta

I24)

1 e ( ( Z+ )dZ= 2i (Z- )
unit circle ,+

(z- )O(Z 1
i zZ 

Iri1 (Z-Zkdoc

0

e 2 k Z) 2< Zk

dZ .

if c '1l

if a=1 (5)I3

1 Ct(z- ) + A ( + 1)
d=1 ffZ 

2fi/ (z-Zk) 
unit circle

III-3.3 Consider here Case c in which Zk=Zi=l.

In this case the contour of Fig. 7c must be used

which has circular dents at Zk and .

The corresponding integrals are given as follows:

1 2(Z-A) +8L(z+ A)

. 2 Z=_n2ffi (Z A
4i

01 r (z- )+Z4+ Z)
If>

if a>1

Z )
k if OL=i

(6)m13
if -Zl

a k* Z) ifa =-1
unit circle

1
2rr:

2 a ' Z 

'k

(Z-Zk)

0

(Z-zk)

-- T7,r/

4
I

A
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III-3.4 The following may now be concluded.

"The problem is reduced to the integration around the

unit circle."t

For compactness in the notation, the contour along

the unit circle will be indicated by cl when it is

taken in the direction given in Figs. 7IIa and 7Ic.

Cases a and b will be studied first. The following

analysis is based on the assumption that O<lZklcl

(Case a). If this is not the case, Zk and 4 are

interchanged. Since it must be integrated around the

unit circle, it is necessary to have

lz =1

and by the above hypothesis of Case a

Zk l; 1

Consider the expression

(1-u) -l+ u + u2 ..+ (+l)) 1+2) (l+ n-l) un+..
21 U n!

This series is absolutely and uniformly convergent

if OUs,l.

Then, under the hypothesis of Case a,

(Z-zk) = Z((1- ) Z '=:foc n= n Z 2
Z n i- Zk

c z2 :~znI - Zn

57)mII 3

__ __� _�__� __

.1
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which are absolutely and uniformly convergent series so

that term by term integration is justified.

Then:

J(z - ) +1 t(Ztz)

dz 2niz °.. f lJze dZ
2iri Zk Jn,Z~.% ~

From this last equation it can be observed that the

problem is reduced to the integration of

Im 2 i m dZ ; m=n+ol

I* 1 f {n(z ' (._z+ I

III-3.5 The integral Im, for m =l, plays an important role

in this investigation. It will first be evaluated.

Since the contour of integration C 1 is the unit circle

in the direction indicated in Fig. 7Ia, then one can

write,

Z e i 9 and

Ii=- l~J/e* p do.

Now, it will be proved that

-I1= leX 6foos(zsin)dO=--JO
7fL OV''F.~~~

(8)m 3

(9)II 3

(lo) 3

(r)IIm3

Wi Z-Zkf~+
iR

r (eZ- '( 1
2rri , X)+ z?- z

2 Ir (Z-k O
--



114

1st - It will be shown that the integral (10)III3 is

purely real. Take the well-known Fourier series ex-

pansion.
00 oo00

e sin = JoVE) + 2 n J2( ) cos 2n+2i 1 J2n l(r) sin(2n+ l)q
n=l n-l

(See for example, "Theory of Bessel Functions", Watson,

P. 22.)

Then (10) 113 becomes

~-I140 Jo() W{ e 0ooson J2n(7) Cos7cos 2n d}t

L2,Wj° ~d

(12) i 3

It is immediately seen that the integral expressions

between brackets are the Fourier expansion coefficients

of the function eCOSP. Since this is an even function

of i, then

a7eiC°s sin(2n + 1) d O ,

and consequently, the imaginary part of (10)I 3

vanishes; that is

1jcs4sin(Z- sinp) d (13) m 3

2nd - By a series expansion of the middle member of

(11)II 3, it follows that

Il= -Jo v a-.

The intermediate steps of this expansion are omitted

because they can be found, for example, in "Theory of

Bessel Functions", Watson, P. 21.
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III-3.6 The integrals

J° -V2.reeT CO os (sinodq (

(14) m 3
27r

o0 fecos9 sin(C sin)dp d

play an important role in this investigation. Take

the first and differentiate it with respect to C and 7 .

One gets,
2 7r

z-tZ 12= ekos 'si sin (sin) df

1-'~ ~ Jo~Z-~a2 _ 2/D e~aCoS co s(sin9)d .

By adding, substracting and using a well-known property

of the Bessel functions, the following equations are

obtained.

(=) J __-2 ~ 1LeI COSV cos (Usinf)dF

(r-k 2j*ra J T 1= - r~Ccos(-rsin)d I
Secondly, take the partial derivatives of (15)I I3with

respect to and . By adding the results correspond-

ing to the first and subtracting those corresponding to

the second equation the following is obtained.

' r+ v~ ~ "2-- + 2CO 1Fcos e +- sin ) d(

(i') _ 2- ' 2- + 2Xe cos (-P+rsin)d .
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Third: by continuing this process after P successive

operations the following equations are found for? integer.

P 17

C(-1) -V 7e i lIe(ccc 9'cos(p*+rsin() dd
(16)I 3

The above generalization can be ustified directly

by using the method of finite induction. That is: if

(16)u3 is true forp, then it will be true for p- I.

This has already been shown for p 1. Take the partial

derivatives of the first with respect to -and7t.

By adding the above equation in accordance with one

recursion formula of the Bessel functions, one gets

(-P+1 2 · 2 = * COS cos[(P+ )+rsin&] 

and therefore the result holds for all values ofp.

The second equation of (16)t 3 can be Justified in

the same manner.

Fourth: From the second integral of (14)r 3 it can

be found that
e9r

0 =ecosPSsin (_ pt- sin v) d (17) m 3

for all values of P.

____ s~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--
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III-3.7 Integrals (16)1113 and (17)III3 are the key to the

solution in this research. The typical integrals

(1)I7I3 can be expressed in terms of them. Since these

integrals are to be taken along the unit circle, one

can ite

Z = ej

and, therefore, by considering (17)EII, the following

expressions are obtained.

2tr 2r
tm+l-_2 ei dV= - c Scos-asin c dP

i- c- e sC° ei c n~+ rsin -d ~f-cos+os 8 O+F-sin] dq.

By (16)II3 it can be seen that

1+0 ()

In1- w - () Jn(T)

in which

0=·* 1 and T tk 2-

and finally, the solution of the integrals (1)Im3

(Case a. IZkl-L; Izj|'l), is given by

:1~! (Z- 0 z-:) k n -l--- 1) T or -t, 

JFz - (-1) k :i -(.,-i)+ e(z-=)+7R(z)
k~~~~~~~~~~~~~ D= r O4= 

(19Em 3

X (Z- 1 ,ni 1 c1 (Z PE~ &Z(Z) 00 htq+1

. J 7 -- dI- (-( _ nt Zkr ( t* n=O 1, 17 0 o in(T)

in which = and T=Iz/-sX .
C

(18)II3

.--1___1---- . , . _ I I _ I - _ I I 
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Section 4 - Inverse transforms in terms of Lommel Functions.
Solutions for simple poles. Generating functions.
Conditions at =7 and at -'oo. Group velocity.
Phase velocity. Solution for poles of higher
multiplic ty.

III-4.O At the end of Section 1, the inverse Laplace trans-

form (,rP) was expressed in terms of three types of

integrals: see Eqs. (24)II1, (25)IEIland (26)II1. At

the end of Section 3 these integrals were evaluated and

their values were given in Eq. (19)[I. From the formal

point of view, the problem of finding the required in-

verse Laplace transformation was solved.

Nevertheless, these formal solutions came out in the

form of uniformly convergent series expansions of the

Neunann type, which have a rather involved structure

end are difficult to both handle and discuss. The

object of Section 4 is to obtain compact solutions for

these series, which are suitable for a complete discus-

sion.

III-4.1 The case of simple poles in G(Z), that is c= 1,

will be considered first in this investigation. This

case has a fundamental character because:

1st - A solution for the case of poles with multi-

plicity c>l can be easily derived from it.

2nd - This is quite a common case in practical

applications.

Under the fundamental assumption that =1, it can

be seen that:
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From (21)III 1

q= m 

From (22) III 1

m
G(Z)= -

1

k
(Z-Zk)

for Fr1

for b' 1 } (2)11m4

(3) m 4

From (24) :11 1

;t7'=~~~-C (4)E
o

i ZU
L

From (25)EI 1 consider the integral

Mk ~Z~ ~; dZ.

alt

Finally,r from (19)1I1 3 one obtains,

1 ,eA(Z)
2Tv- Z -

1 e (Z)277.i/ Z--%'"z

OD

dZ= -
n=O

dZ=+ E
n=O

Jn (T)+ eA(Zk)

+1 1 - )I
-1z( 1+ (

1+1
Jn+,(T)

2- dZ=-JO (T)

From (23)III 1

7k- (Z-Zk) G(z)Z I

(5) L 4

(6)I 4

_ �_1�11� 11 �_

(1) M 4 '0C1 o = 0( 2= C 3=· * =Oa 1 ;

(Z-7~) G (Z

7ro G () Z=

k)"~ 1+ 8 9i

1 0ZZg
L.
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The notation used in the above equations is
Is. -- -

2 Z 2 Z

A(LZk Zk Zk 2 Zk

T(Z) : + 1)

7 T = ' I P 

T-t T 71 * - f_ -lst-re frnllvn>~~
LC L , IC - - .,

&= 2A ; Ac= cut-off frequency

and also to be introduced is

k iZk complex quantity

= --- complex quantity

(7)n14

III-4.2 In this subsection the integral solutions (6) II 4

will be expressed in terms of compact expressions

involving Lommel functions.

·I- ) -��

I
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From the first, take the expression.

00 -200 1
J n(Tk = (-1)n'nrl- J (T) = (-) n n (T

n=O k 1J - n=O

for n =odd integer n.i T -n

for n even integer+- i - n ) _n(T) 
n=O

=.=,('pflk (2p+
o~~n T Y2+ S> (8)M4

9-- % 

A 

+T_:£2P(Qky2PJ (T)

+ (-1)) (2) )?pJ (T)
P=O T F

Vo (Qk, T)+ iV (k, T)

in which

Vo (DkT), V1 (,, T)

are the Lommel V functions of order zero and one. For

more information on Lommel functions see the next sub-

section and "Theory of Bessel Functions", Watson,

Pgs. 537-550.

From the second integral in (6)Mlh4 one obtains
00 00

S (_l)n ll i ,, 1-0~Jn-+l(T ) ($l im m~m(T) =

= ~ (-1) mim k m(T) - Jo(T)=

=- P T)P2 .p(T) - Jo(T)+

+ i P) PJ2p (T)=
p=o T

=Uo(, T) - (T - 1 (, T)

(9)m4

__ 111____ 1� I_ __ I
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in which 0 ok,T) and U*k,T) are the Lommel U functions

of order zero and one. (See Subsection III-4.3.)

With the aid of this result one can write

/e(Z d g[VO (lo T) iVl (k, T)] + eA (Zk)

2n1 dZ 0 okjT) - Jo (T)]- - , PkT)
(lo) Em 5

It can be concluded that the typical integrals can be

expressed in terms of Lommel functions. A further dis-

cussion of these solutions will be made in the next

Subsection III-4.3.

III-4.3 Lommel functions are defined by the uniformly

convergent series
00

U n (,T): E (l)m(QI)n+2mJ+ (T)
m=O T n2m

Vn(Q,T)= (-1)m 2 m)-n- 2 m(T)
m=O J

The U and V functions are connected by

Un ,. T) - Vn+2 (Q. T) - co s - -

Un+lpT) -n+lpT) sin(2Q T 2 2 2
J

Un, T)Un+z(2,T)= - nJn(T)

Vn(Q,T)+Vnt+2(,T) = (-nJ_n(T)T

(11) I 4

(12) III 4

(13)nr 4

Vn(•,T) = (-1) nUn(,Q T ) (14) 11 4

It is not hard to prove these properties, and the proof

is given in the reference mentioned earlier.

See Appendix I.



123

These relations allow the following expressions to be

written

21i _k dZ=- [VO(k,T) + iVl k,T)] eA(Zk) 

=[UO 2k, T) -JO(T)1 -iUl (k, T) (15)m4

-[U2 (Qk ,T) + iU1 Pk,T)] ;

and IZk 1

1 r A (Z)

127Ti/ 1Z dZ= - iUk,T) + iul T)]=
2izU * T) - Jo (T) - Ul P T)

[V- O( T) + iVl ( T)]+ eAZk) ; (16) m 4

lz: > .

By simple observation of (15)III4 and (16)Iii4 it can

be seen that the two integrals bear complete resemblance

to each other. Thinking in terms of the variable 4, one

can notice that the first integral (15)III4, is connected

with I (Riemann surface ) and the second, (16)III4,

with I in the aplane.

For compactness in the notation, write

r(xn,T)= v (, T) + iV1(, T)1

,(Q,T) = U 2 (Q, T) + iTl Q,T) (17) 4

and they will be referred to as Transient Generating

Functions.

With the aid of these new generating functions, the

inverse Laplace ransform of the basic transform will

be given by
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F(A e62i- ek- I+

u(k-k) Kekt A(Zk) 1 0 (18) II ) K e JT) k k ) (T

For simple poles of F
uil(--7)= unit step function

Therefore, the problem of inversion from the domain

into the domain is completely solved for the case of

simple poles of F. For the solution in case of multi-

plicity greater than one see Subsection III-4.9.

III-4.4 In this subsection the behavior of the generating

functions'(Q,T) and '(f?,T) at -=W, (wave front) will

be investigated.

The simplest way to evaluate this function at Zr

is by means of the integral

r1 e + -z * ) A(Zk)

4. -zY I2- dZ U e -~ k T) .
Now, when T=1 then A(Z)=-Z and the essential singular-

ity at Z=0O disappears. Therefore, for r=t, the above

integrand is analytic inside and on the contour r-j.

Since the integral along JZ must vanish, then

rT) =e Zk
.- = 'k (19) EH .4

t(Q, T) =- .T) =0Q~ (l9) 4
It can be shown that

-'(k;, T) - e k

jhgT)~~~ *=0 .(20) 4
t= 0
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As a consequence:

O when r?- 
{(wh,n })= (21) I 4

C K 0 when - 1

Equations (21)III-4 corroborate the statement given in

Ch. I about the behavior of the function F( ,d 2+1)

when d--, o .

It has been said previously in Ch. I, Section 9,

that the solution of the vector field, in the t domain,

is electromagnetic if F(4,V2+l) -o(sl); r 1. It can
-4--POD S-r

be concluded, therefore, that the propagation of the TE

and TH fields in hollow cylinders is such that the wave

front (=TK) vanishes.

III-4.5 In this subsection the behavior of (2k,T) and

Z(f)k,T) when o--oo will be investigated. (Permanent

state.) Take first Vn(k,T) and prove that

Vn (fk, T) TO--' 0 (22) III 4

for all values of n, independently of 2
k .

No simple and direct analysis of this situation can

be made by means of the series which define the Lommel

functions. The same happens with the other formulas al-

ready given. If one of the integral representations of

these functions is used, then the proof is simple.
0*

+ 2 dt
Vn(2,'T)= 2 L e e t (23) fI 4

27i )
co 4t

in which t is a positive real variable. Since 'r>,

then 22 is always real and T--oo with -- oo, and the

integrand goes to zero for all values of n andf2. Therefore,

Vn(fnT) -,WO
Bea



for all values of n andl2, only if t'7Y.

Since this is independent offl,

Vn(0k, T) -- , |
Vn(t2k, T) 0o .
v,(Z,T) -

(2) m 4

By considering the above results as well as (15)III4

and (16)III4 it can be concluded that

(25)m :4
t/(k,j T) °o

(k T) .. e A (Z k )

1 -JM z~r2)i:m A(k
-f F (.,J)e =5('-,) -D= _ Kke ( Z k)

when A -c k 1

and therefore, the well-known solutions for the permanent

state are obtained.

Also, as an extension

III-4.6
.1 (26) 4

Next the concept of group velocity of waves repre-

sented by the generating functions and Zfwill be

introduced. In order to do so, go back to the 4 plane:

p(r,*)= JF ( 2+i1) e ;d 64 . (27) II 4

In accordance with Brillouin, the complex group velocity

is defined by

(28)In 4d (i-,dr ) _O

from which

g ZVg 1 Z - z
z

(29) III 4

126

'-I �� ��__�
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The above expression is called the normalized group

velocity, that is, the ratio of the group velocity cg

to the velocity of light c. To check, write

= .= g - i
g 2t c c 

Tc

As an extension of the above concept, the expression

Zk+ Z 2 1
- . . Z - - (30)1114

will be called the group velocity corresponding to the

pole at- k or Zk.

Two simple, but important, theorems will be given:

Theorem A - The poles Zk and have equal but

opposite complex group velocity."

The theorem follows from

= - .

Theorem B - "If k (conjugate of Zk) is also a pole,

then Zk and Zk have the same

complex group velocity."

The generating functions Z(k,T) andf~(k,T) are closely

associated with the pole at Zk (see Eqs. (15)I 4,

(16)111 4 and (17)I11 4.) In the future gk will be referred

to as the group velocity of the waves represented by

these generating functions. The next theorem is of

primary importance.

Theorem C - "The values of the generating functions

at the time corresponding to the arrival

�� �__ILII-�-l�-__ll__ ____I__.__ �_.I·_I _� 111�



with group velocity are given by

Z (~k(k) and]

,(.k,Ok) , ,1) III 

The proof is simple: since Tk, then

iZk

f) Zi+l

Z~÷l

and the theorem is proved.

Now, the values of the generating functions ' andt

when the ratio l- is equal to the group velocity of the

corresponding pole will be found.

From (12)III4 and (13)III4, whenilk=T,

Uo(T, T)= Vo(T,T)= ½L[Jo(T)+ cos T

U1 (T,T)= -V 1 (T,T)- 1 sin T
2

T 2 (T,T): = Jo(T) - cos T

(32) 4

so that:

l(TT) = 4'(2k;k) 1 Jo(T) - 1 e - iT
2 2

(T, T)= k k) 1 Jo (T)+ 1 e-iT (33)4
)2 J2(T) 

To make the proper interpretation of these results, the

permanent state term eA(Zk) corresponding to the pole

Zk will be considered. Since T12k, from (7)111I 4

A (Zk)- (Zk- )t(Zk 1) = T (ZL - 1_- -iT (34) I I I 4
2 Zk 2 Zk 2 Y C-+')V Zkv ---

since, for the group velocity

Zk --. (35) 4

128
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Then the permanent state term, corresponding to the

pole Zk, becomes at group velocity time

-iT (36)III 4

From (33)III4 and (36)III4 the following theorem is

obtained: "The generating function corresponding to

the pole Zk has, at the time corresponding to the arrival

with group velocity, a value which is equal to one half

the permanent state plus (or minus) one half the Bessel

function of order zero.," At large distances from the

origin of excitation of the wave guide, the value of T

corresponding to the group velocity becomes large. In

this case J(T) can be neglected and then it can be said:

"At large distances from the origin of excitation and

at the time corresponding to the group velocity, the

generating functions have a magnitude approximately

equal to one half of the permanent state."

The equivalent relations for the (*) function can be

derived. The results are quite similar to those ob-

tained in this section.

III-4.7 In this subsection the concept of phase velocity

will be introduced.

The complex phase velocity is obtained from (27)III4

when

The ratio given= 

The ratio given by

(37) 4I 4

7)ph- ph =41 (38) 4

will define the normalized phase velocity, that is, the

ratio of the actual phase velocity to the velocity of light.

----- -
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For the pole at Zk, the corresponding phase velocity

has the form

(39):III 4

The next three theorems follow:

"For the same pole Zk, the corresponding group and

phase velocities are reciprocal."

"The phase velocities corresponding to the poles

Zk and Zk are equal but opposite in sign."

"If Zk is also a pole of G(Z), then the poles Zk

and Zk have phase velocities which are equal.

Now, the way in which the variables 2 k and T are

related will be studied, that is, at the time correspond-

ing to the phase velocity.

From (7)III4 and (39)III4,

ak iZk ik ) i( l) , , 

T= :=r2 2.=: 
Zr+l

from which

[lk)ph T) ph .

Then:

k4u) iLl 4

(41) III 4

?"At the planes of equal phase, the variables2 k and

T are proportional."

It was not possible to obtain exact expressions which

give the values of the generating functions corresponding

�

rr r
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to the phase velocity value of (X). Asymptotic ex-

pressions can be derived for large values of T; see

Ch. IV.

III-4.8 The signal velocity and the time of formation of

the generating functions and will be discussed in

Ch. IV.

III-4.9 To close Section 4, the solution of the inverse

transforms when there are poles with multiplicity

greater than one will be given.

In this case the typical integrals are:

1 f eA(Z) 1 eA(Z)
2zit(Z-Zk)a dZ= i. dZ for oa1 (42) I 4

q
since the integration vanishes around the pole.

Integral (42)III4 can be expressed in terms of the

derivatives of the function f, since

1 f eA(Z) (1 -l)_217i[( ZZk. dZ = - Z(l) kT) · (43)III 4

Now it can be shown that: (seenBesselts Functions",

Watson, P. 539)

k V n+l 2Vn- (44) III4

from which

V 1 ) 2

�-1__111_1-·--_ -- � _I_



so that

k 2 12 () 2(vl iv0 )

By (14) III 4

V2 = -V + J0 (T); V 1
= -l T - l(T)

(45) m 14

and therefore,

- iT T2Il jJ(T 1'L
1zk 2Zk 4Ek ST 3(T) -iJ(Td

and finally

jeA - d iT 18k T' k ' Jo T, - l]

24 . T T - aTk Jo( T)- iJl(T)

(46) III 4

(47) I 4

(48) III 4

It can be noticed that this integral can be expressed

in terms of the generating functionS . By continuing

this process of differentiation, the values of the

integral (43)III4 can be obtained, and therefore, the

whole problem of the inversion is completely solved.

The computationsof some transforms are given in Section 6.

Section 7 will be devoted to the application of this

theory to wave guides.

Section 5 - Computation of the inverse Laplace transform of
some useful transforms. General solution of the
inverse Laplace transform.

III-5.0 This section is devoted to illustrating the method

of inversion developed in this chapter. Some simple

and common transforms will be considered. They will

satisfy the condition that F must be of the order sx; r tl

when T4-oo. One has to recall that t 2 for those

transf.orms which find application in wave guides. This

132
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last condition will be required in Section 6, in which

this theory is applied to some specific examples of

wave propagation in wave guides.

III-5.1 The steps required to obtain

4~F( ')e E (1)III 5

will be summarized in which F(4,172i+) is the ratio of

two polynomials in 4 and 2 + 1. Besides F(, ) ();

with y 1.

The procedure must be as follows:

1st Use the complex transformation

Z-= -V ~2"i (2) III 5

and set

2(Z 1 +2s 1= (z 1) (3) III 5

2nd - Substitute the above expressions in F(4 ,+1)

and so obtain F(Z).

3rd - Find the function

(4)1I- 5

which is the ratio of two polynomials in Z. The

corresponding degree of this polynomial was already

discussed in Section 1. If m is the degree of the

denominator of the polynomial in F(4,V +1 ), then,

the degree of the polynomial in the denominator of

G(Z) is

2m + 1 if = 1
(5)III 5

2m if ,> 1.

(See the theorem in Section 1 of this chapter.)

_-__ _

G(Z) = 1(F (Z)



4th - Find the poles of G(Z). Recall Theorem 1

Section 1. If Ak is a pole of F(,/(d?2), then

Zip M k - ki

i =dke z ~ so that i(6):

ZkZk = -1

are poles of G(Z).

If pole 4k has a multiplicity c, then Zk and Zk

have the same multiplicity. (See other theorems

in Section 1 of this chapter.)

th - In what follows always suppose that

and z1 1 | (7)
1Zkl _1 .

The asterisk in (6)1115 must be associated with the

poles of G(Z) in accordance with the convention

given in (7)III5. This is always possible.

6t - Expand G(Z) in partial fractions. Use the

notation given in Section 3 of this chapter. For

the convenience of the reader the following expres-

sions will be repeated.

m Sk K I cc k ( z° for =l

k=1 J=1 (Z-zkl z--1 (z-4 o for 1}
J -'Ii (

t.fo I=

kj=d -1 _ (Z-Zk) G(Z Z

1 IdJ-1 -k
Kl' (-dZJ-l (z= *

K o= [z G(Z)J]z

Eml 5

III5

III 5

134

(9) m 5
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and
Z1 has a multiplicity 1

Z 2 has a multiplicity 2

Zk has a multiplicity Ock (10) III 5

Zq has a multiplicity aq

such that 5 + 2+*Ck+' *- qm.

6th - To obtain

,(r,~) -i1 F 4, 2j1) et' +(11) m 5

use only the terms without asterisks. The contribu-

tion of the terms with asterisks must not be added

since they represent the contribution of the integra-

tion around the branch cut in the Riemann surface II

This statement is easily proved.

7th - Write the following expression as

k Kk; = Kkck E k_ Xkj (12) I

k=l J= 1 (Z-Zk)' - - k=l(Z-zk) k=l j=1 (Z-Zk) -;-l

For each term of the form

Kk write KkkeA(Z ( f(1k,T)} Kk6kZ(flkT) (13)
Z-Zk k

5

For each term of the form

Kki~ ~1 P(k-1 )

(Z-k)~X_ 1 write -Kkj (C aZk(k) (2k,T) (14) TII 5

For the term of the form ( = 1)

Z write -Jo(T) . (15) m 5

Then, the inverse Laplace transform is given by

5
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a(UW) = U_ (-)Kk [eA(Zk) -g2k T)] -

k --1 k

u1 (t*--i) {- Kkg'(Qkk T ) -mklk-'1 Kk 3 Lk; k fok=l iL dzk~l (RoJo(T)= U-1(-~) Z K (ok, T) -L k-1 k

k=l J- (mkJ)1 dZkckj C -IoJo (T )

' 1

'= 1

The derivatives of (k,T) can be computed as in

Subsection III-4. 9.

III-5.2 In the computation of the inverse transforms,

is convenient to use the following properties:

1st -

Vo(-h, T) = VO(n, T)

v 1 (-n, T) = -V 1 , T)

U2(-Qn,T) - U2,(CT)

u 1 (-n, T) = -U 1 (n, T) .

(18) III 5

2nd - The argumentsf2k and T of the Lommel functions

have the value

T _-iZ-2
_ k _ -Z

iZk ·

(19) III 5

Notice that T is always positive and real, since Z>k.

1 k is, in general, a complex quantity. It is real

only when Zk is pure imaginary, in which case

Zk=iZk l or=-ilzkl

(16) I 5

(17) I 5

it
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and therefore,

k = -r or I -t

3rd - When or- change in value, then the complex

argumentlnk represents a moving point in the Z

plane. For a given pole Zk, the lines described by

the variable point lk are straight lines through

the origin. This property can be visualized by

writing

Zk = Zkle jik

in whichlZkI and k are constant quantities.

Then

n t seik 2 o (20)III 5

III-5.3 In this subsection some simple and useful inverse

transforms will be computed.

1st eiv ; > 1.

a. Notice that =1.

b. F>()= 1 then 1 l it o0 is a root

0from whichZ- = i() 0 +/ -1 )
= i ( l 0 1)

Notice that

IZI < 1 and IZll'1.

C.

G(Z)= 1z2
(z 2 - 2 Z-1)

I II_�



.K o = -1 ;

A(Zl) = (Z

VIl nn 1Ir

K 1 = 1 ; K 1= 1

1.zi

(21) II 5

f (JZ--~23
*.2 ) }

For the values

see Eq. (18)III
eX~~Z

JA IU -

of the generating functions and f

4.

2+1 ; Vo1

Here T=2 Ko 0

2

Zl= i(Vo

Z 2 -2iV Z-1
0 1) ; jZ1je.J

i K1=, 3 10

e -

(A-i 9Jo)4+1

i - , 1 k- r-X T

1 vo-- T)

1 ( v 2-_10 0 0

in which u_l(a-74 is the unit step function shifted

to Z':-.
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4-j LP
4--k3 27

:. -1

a - C 7~
k V~~-

- + I2z +
r 2" -&IL) 2 _ 1

A-

0 41, 6 c- I YIFILy ( -C- -/,,' -IC 2--X+, "sc
= j C--7_k j0 

·- 1t-3 4(· - Zk2 T )~

(A - J vo)

z*= i(l) +VV 2 _)
1 0 0

Ki -
JV--2 _,V

IU,1uT-

+u_, (t-'k)

P9 jl --
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3rd - e m1
22 

One has: (=2 ;Ko=O; 1= i- 2 =-io

zl=-i( ol-); lzl l; 2=-(o-21); IZ2.e

ZZ (vlll; z =-i(0 +o+l); IZ2*>1

2
G(Z) - 0

[Z -_2ioZ-1] [Z2+2i oZ-1]

2== i K1= - 2-; K2=+ 2i

A (Zl)= i ( '0 -- ); A (Z2)= -i (r)o-2- 1)

_l_-- _. n2=+ T =t 2_I
a odi l2 L 

and finally

-1 i k~-~ r-'
p42 2 2

0 V 19-

= ul(= -) ~(~or_~o, ~_~)_v~( -2o ,VlA) .LL1

In a similar way one can obtain:

4th Le/ ; ) 1 and r--

(a-±o) If

-1 e= u_ 1

(4-ivo)t 2+1
AI--V0;)+A T)} (24)I 5
0,~~

v



( 21 2)
0

~-- (T/+ o7-A) , J (T)+o Cos (%r_$o )+Vo( -

6th _ l ) e

0

{ sin ( )o'_-1 2_)+Vl ( r-d' ,T)1 when 0 >>l (26) 5

4 2+ 2)i
0

8th - -1 e
d2 2

=uAl(r-K){cos ( 1) 0[-l>-K ) -V 0 (28) II 50o > 1
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; Qo>1

, 0 e-2 
O

r-l

(25)III 5

U-1(t-*

0

uj (r-) 1

,V0-z-i _
vo 1 (27) 1I 5

i_�U�I7 t - -1 e
..--,........

C O v;U AvP-1i o(6 .2 _ T

%
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Section 6 - The transient phenomena in wave guides. Formatio
of envelopes with elementary wave forms and with
some orthogonal polynomial. Example of the transient
field in wave guides.

III-6.0 In Ch. I, Sections 8 and 9, it was shown that the

solution of the transient phenomena in wave guides was

closely associated with the solution of the inverse

Laplace transform of the prototype transform

with the restrictions given in the above-mentioned

sections. Now, since the solution of the corresponding

Laplace transformation was already obtained and given

in equations (16)III5 and (17)III5, it can be concluded

that the problem of finding the transient response of

a wave is solved, when the excitation of the guide is

such that it leads to a function of the type of F(, 2+1).

It was also shown in Ch. I that the function F(A, d2+)

can cover a practically unlimited number of cases of

excitation. Therefore, the solutions already obtained

have a general character.

The object of this section is to indicate the inter-

mediate steps for passing from the inverse transform to

the solution of the components of the electromagnetic

vector. The required relations between them are given

in Table I, Ch. I. It will be convenient to consult

Sections 8 and 9 of Ch. I in which some important re-

lations are given.



142

III-6.1 It is convenient to give a brief summary of the

present situation.

1st - Inside wave guides two fundamental types of

wave, TE and TH,can be excited.

2nd - In the case of TE waves at x 3= 0, the component

*3 or the space derivative ofA'f3 with respect to x 3

can be prescribed (see Table I, Ch. I). If (x 3))

is prescribed as an initial condition, it is equiva-

lent to specifying the transverse components of the

magnetic field. See Eqs. (3)I5 on P. 31.

r - In the case of TH waves at x3- O, e3 or i

can be prescribed. If this derivative is given as

the initial condition, it is equivalent to specifying

the transverse components of the electric field.

See Eq. (2)I5, P. 31.

4th - In Section 8, Paragraph I-8.1, the manner of

obtaining the corresponding initial condition in the

S domain was indicated. In the same section, some

theorems and methods are given which facilitate this

purpose.

5th - In Section I-3.1, Eqs. (8)I3, the differential

equations which yield the functions ~3 or G3 will be

found as will the separation constant p. The solu-

tions of these equations are well known for typical

cross sections of the wave guides. The solutions

can be found in any text book on wave guides and are

omitted in this investigation.
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6th - The Laplace transforms given in Table I, Ch. I,

are functions of the complex frequency s. The trans-

forms considered in this chapter are given in terms

of the normalized complex frequency

= c=pc.(See p. 19)

It is necessary therefore to use the relations

F, ~ ~-c t F( , ) . (1) 6

7th - The solution of a transient problem is now

easily obtained by using the inverse Laplace trans-

forms in the manner indicated.

The manipulation of a transient problem will become

simpler by using some of the additional theorems or methods

given in the following subsections.

III-6.1 Once an initial condition is given, it must be trans-

formed from the t domain into the S domain. This initial

condition is a function of time which oscillates rapidly

and in general changes in amplitude or phase. In such

cases, it is convenient to express this time function

as a product of two factors. One of these factors gives

the amplitude of the oscillations and the other corresponds

to the period of the oscillations. The first factor

alone represents the envelope of the oscillation. When

this separation into factors is possible, then the

Laplace transform corresponding to each of these factors

can be found. The Laplace transform of the whole signal

can be obtained by complex convolution. If one of these
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factors has a transform which is equal to the ratio of

two polynomials in s, then the complete Laplace trans-

form can be computed by means of the theorems given

in Section -8.5, P. 41, Ch. I.

In the case of simple wave forms of excitation, the

Laplace transform of the incoming signal can be found

directly without much labor. When this initial time

function represents complicated wave forms, then some

difficulties may arise, mainly when the initial condi-

tion is given in the form of a graph, which is often

the case. It is, therefore, convenient to develop a

practical and simple method which yields the required

transforms of rather complicated wave forms of excitation.

In what follows use will be made of the notation

f(t) - m(t)g(t) (2)III6

in which m(t) represents the envelope function and g(t)

indicates the corresponding highly oscillating function.

III-6.2 Attention will be confined to the envelope func-

tion m(t). Complicated wave envelopes can be obtained

by compounding elementary wave forms. By elementary

forms the meaning is

Infinite rectangular
Simple exponential
Uniformly rising front
Sinusoidal
Damped sinusoidal
Difference of two exponential .

All these elementary forms can be reproduced by giving

particular values to the paramenter a,b,A,B of the two

exponentials

Ae -a t + Be-bt (3)II 6

_I _ _ _ _
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Another family of simple wave forms can be contained in

Atnezt (4) III6

by giving suitable values to the parameters A,n,OC.

Figure 8IIIa illustrates some examples of the composi-

tion of elementary wave forms for producing more com-

plicated forms. Immediately it can be visualized that

an unlimited number of complicated wave forms can be

synthesized. It is evident that complicated envelopes

can be approximated and, in the case of graphs, simple

analytic expressions for the curves which represent the

envelope function can be produced. The expansion of

the envelope function in terms of these elementary forms

yield transforms which are the ratio of two polynomials

in s.

III-6.3 The application of the above method to the analysis

of waves presupposes two things:

lst - That the type and position of the elementary

wave components can be recognized by inspection.

2nd - That the proper values of parameters a,b,A,B

in (3)III6 or A,c,n in (4)III6 can be computed,

without much labor, in each elementary wave.

If this is not the case, then the above method is worth-

less and one has to introduce orthogonal polynomials.

The object of this Subsection III-6.3 is to expand the

envelope function in orthogonal polynomials which are

suitable to the solution of the problem. The orthogonal
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FIG. N 8 

sl _
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polynomial must be selected by considering two things:

1st - That the given envelope with a few of the

elements of the expansion can be approximated.

2nd - That the terms of the expansion lead to trans-

forms which can be contained in the prototype

In all practical cases, these two conditions can be

satisfied with ease. When the envelope function re-

peats at equal intervals of time, then the Fourier

series approximation is indicated. When the correspond-

ing envelope function has an accentuated monotonic

character as represents a pulse, then the Laguerre

polynomials can be used. In the case of frequency modu-

lation, it is convenient to use expansions of the

Neumann type.

In Fig. IIIb, an AM pulse of duration J is shown.

The amplitude of the oscillation follows an envelope

which has a pronounced monotonic character. The enve-

lope function m(t) can be expanded in a series of

Laguerre polynomials as follows

oct o=et 00e
e 2 Y2 aniLn(Oct)

n=O

in which the Laguerre polynomial of the order n is

defined by,*

* See, for example, "Methoden Der Mathematischen Physik",
Courrant and Hilbert, Volumen I, P. 79. A slightly
modified definition was used which is more suitable for
this problem.



Ln(at)= 1n e d (t n ) J n -FOC~ dtn
(6)III6

A= constant.

These polynomials form a complete system of orthogonal

functions, and they have the property

fe-/tLn(t)Lm(at)dt= 0 for mn 
I 0 (7)z 6

/-tL2(ot)dt = 1 for m= n

The coefficients in the expansior (5)III6 are determined by

an =e fm(t)Ln(ot) dt . (8)III 6

Since m(t) is the envelope of a pulse of duration , then

an=je m(t)Ln(ot)dt . (9)II6

The explicit expressions of the first Laguerre poly-

nomials as they are defined in (6)III6 are

Lo (t) = 1 L 3(oLt)= -(- +2 3 t - 3t 1)
(10)III(+tl - 2 t3

L1 (Ot) = - 1); L 4(a)1 3 t3+3c2tctK

L 2 (cxt): ~(t- 2at + 1)

and they satisfy the recursion formulas

Ln+l (at) -( n+l - �t Ln(t)+ n 2 Ln_l (at)= 0 (11) 11 6

In the case m(t) given by a graph, the values of an

can be computed by the approximate formula

k=P -) kA
an= E ke 2. m(kA)Ln(CkA) (12)1116

in which A=y- - and d)=number of parts in which the

interval s is divided.

148
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Once the coefficients a,''',an, are computed the

corresponding Laplace transform of m(t) can be com-

puted as follows:

OD ct(t)= ;_an e Ln(t) 1 (1

Oan 2- (2s-X) n

O nan (2s+o) n 1

since it can be proved without difficulty that

Se t Ln(Xt)= (2s+)nl 14

Once the Laplace transform of m(t) is computed, then

the Laplace transform of the complete initial signal

can be obtained by means of the theorems given in

Section 8, Ch. I.

This method of approximation with Laguerre poly-

nomials is recommended when the function m(t) has only

one maximum, in which case one or two terms of the ex-

pansion give enough accuracy from the practical point

of view.

Other types of orthogonal functions can be used in

a similar manner.

III-6.4 If the input function has an envelope m(t) which

repeats itself at equal intervals of t, then a Fourier

expansion is convenient, with the further requirement

m(t) =O for t0. Then

3)mE 6

)III 6

0
mWt= Go OD

Za n cs nt +rb nsin nt
0 1

for t O
2_J

(15) 6

-- -

]p
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In the case of input pulses of duration6 which

shows a few oscillations in the envelope m(t), then a

Fourier expansion can also be use as

O o D

me(t)= ancos nPt+ibnsin nt 0 -t (16) III 6
0 1

(See Fig. 8IIIc.)

The coefficients are determined by the well-known

formulas when m(t) is given in an analytical or graphi-

cal form. The Laplace transform of m(t) is given by

;m(t) = M(s) = Da + b 'n (17) III 6
s2+n2 z22 n1 s2 +n2z 2

for the semi-infinite envelope

m(t) = M(s) = 2 (l-e )+b n 2 n (l-eS). (18)II6
0 s2+ n 2 s 2 + n 2

In practical cases, only a few terms are required to

obtain a good approximation.

Once M(s) is computed, the transform of the whole in-

put signal can be obtained by the method given in Section

8 of Ch. I. The factor e-s& simply means a time shift.

III-6.5 In this subsection, one specific example of the

instantaneous propagation of the electromagnetic field

inside the wave guide will be worked out.

Suppose that, at x 3 - 0, the partial derivative of 3

with respect to x 3 is specified. (This assumption is

equivalent to specifying a transverse component of the

electric t ield. (See Eqs. (3)I5, Ch. I.)

3 = O=u-1 (t)V3sin wt (19) III 6
Xx3_ o
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*3 is a function of the transverse coordinates of the

wave guide. It must satisfy the differential equation

IVx2 )*3+ p2k o 0 (20)II 6

(See Eq. (8)I1, P. 20, Ch. I.) For the moment,the form

of the cross section of the wave guide is not specified.

It will simply be assumed that ~3 and p are so deter-

mined that the boundary conditions are satisfied.

The corresponding Laplace transform of the initial

condition is given by

[ dL'3 ] =2 3 ° = 3 1 (21)I 6
3 + W2 d2+ wc

X3x3=0 O O

in which

o s0o= - and 4 .
c C

The function (O,s) is obtained from (21)III6.

(See Table I, Ch. I and also Eqs. (1)I3, Section 3, Ch. I.)

A' s)= WO
A3(0,s)- 2+ 2 (22)1I 6

O

From Table I, Ch. I, the corresponding values of the

electric and magnetic components of the field can be

picked up.

In order to obtain the instantaneous field in the t

domain, the following inverse transforms must be found.

For E1 and E 2; 2 2e or 21 2
For e Is ______2 p2

o o

For E 3 ; s2or e (23) III6

soe _ ·" _ _ or ne
For H1 and H2; s _ _ _

(2u2) s 2+j2 (A2+VJ2

�11_1�-----·11�-�
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except for constants of geometrical factors which are

independent of s.

The inverse Laplace transforms of (23)III6 are given

in (23)III5, (26)III5 and (27)III5 of Section 5. The

f'1 &ri ran+vtra ham + nrqaIor a

- 2 x 

_ .3 u 1(r-) {-Co (,

0

s. ·1 -`k) -?°

x3- -o

24) m2 6

in which: xl ,x 2,x 3 = cylindrical coordinates;

hl,h2,h3 = lmetric coefficients; v =-; Z-= 2r ;

2- 27r ; p= separation constant (see p. 19).
c

By simple inspection of (24)III6 it can be observed

that: "At equal cut-off frequency values and at equal

applied frequency, the time propagation of the electro-

magnetic field inside wave guides is independent of the

geometry of the cross section. The form of the cross

section produces only geometrical factors, independent

of the time, which only changes the value of the final

vectors." A generalization of this principle can be

__
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made by inspection of Table I, Ch. I.

In the solutions

(24)III6 a definite

F.. IO
cross section o tne

guide has not been

specified. Let us

specify the cross

section. Take for

example, a rectangular

wave guide whose di-

O r

mensions are indicated

in Fig. 9III.

The value of &3 is given by

r- -,X sin m x sin Z y
3 o xo Y O

3=constant

and2 () 2 () 2

Xo Yo

(25) III 6

in which m and n are integers.

In order to introduce the standard notation employed

in some texts on wave guides, set

constant

0 -

mn-2 C O o+k )J(3 = 40 _,j J 2 2c 2 [(a .2+ m,2MP n 0 c 0 o L 

(26) I 6

--- -- ._I
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l=cOSr x ) sinnyrrXO f
sin 7W'o7 ) -Vlak, Tiu)(t )

P

2=+ sin Fox) cos y)

3 = oS in (ax) sin (y) cos (9-Y( _ -4l) -Vo (lk, T) U_1 (r--)

z-M -ysin(Mrx)cos (;y)I
Yo Xo 

2 -Tsin( o -TO Ao1) -v1 2k, T) u(- )

72+ ,CXo_ ) s inye)=~tPLCos(rx)sin rXO 7)
;9 X00TX

3 -0

The transient for other initial conditions and different

cro3s sections can be computed in a similar manner.

(27) II 6

1
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CHAPTER IV

The asymptotic solutions. Envelopes and phase-generating

functions. Master curves and graphical methods of solution.

Group and signal velocities. Time, distance and slope of

signal formation.

Section 0 - Object and contents of this chapter (

IV-0.0 The formal and compact solutions obtained in the

last chapter are not suitable for numerical computation

for the following reasons.

lst - Few Lommel functions are tabulated and they do

not cover these cases.

2nd - The series expansions which serve as defini-

tions of the Lommel functions, although absolute and

uniformly convergent, are not suitable for numerical

work because they converge very slowly.

3rd - It is rather difficult to visualize through

them the wave forms they represent, except for par-

ticular values of the corresponding argumentsSL and T.

4th - The Lommel functions represent highly oscilla-

tory functions. In practice it is much better to

deal with the corresponding envelope and phase func-

tions of these oscillations.

5th - Although it is rather simple to define the group

and phase velocity of these generating functions, it

is not easy to find the corresponding expression of

the signal velocity and the time of signal formation.

(*) A complete and detailed discussion of the method and pro-
cedure of integration used in this chapter will be found in a
future report (No. 55) of RLE, where the general theory of

. ~ ~ ~ " . _ &I
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The object of this chapter is to find a type of solu-

tion which is very well adapted for numerical work and

is such that the above handicaps are avoided.

The solutions given in this chapter not only are

useful for numerical computation but provide simple

methods for the discussion of the signal, phase and

group velocities and are also appropriate for develop-

ing graphical methods of solution.

It is of primary importance to obtain asymptotic

solutions which hold good when the applied frequency is

close to the cut-off frequency of the excited mode.

All the asymptotic solutions given here are obtained

by the saddle-point method of integration.

IV-O.1 In Section 1 a new complex transformation is in-

troduced from which asymptotic solutions can be easily

derived. This transformation removes the possibility

of having a pole at the branch points, so that the

solutions hold good when the applied frequencies lie

in this branch point .

IV-0.2 In Section 2, the appropriate intervals of the

variables for the different type of solutions are pre-

sented. They are: Silenced Region, Precursory Region,

Main Formation Regionsand the Coda Region.

IV-0.3 In Section 3, the appropriate solutions for the

Precursory and Coda Regions are given.

asymptotic solutions of integrals of the typeh F(s)eW(8)ds is
given. The reader is also referred to the papeg "Uber die
Fortpflanzung von Signalen in Dispergierenden Systemen", Hans
Georg Bearwald, Annalen der Physik, 5 folge Band 6, p.295.

___
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IV-O.4 In Section , the appropriate solutions for the

moving signal formation region, are given. Two cases

are considered.

1st - The corresponding formation per pole when

the pole is on the imaginary axis of the X plane.

2nd - The corresponding formation per pole when

the pole lies outside the imaginary axis of the

plane.

IV-0.5 In Section 5, the expressions for the envelope and

phase-generating functions are obtained. By means of a

functional transformation all transients can be expressed

in terms of a master. The definitions of the signal

and group velocity and the time or distance of formation

are given in terms of a new variable.

IV-0.6 In Section 6, the graphical methods of transient

computation in the main signal formation region are

given.

IV-0.7 In Section 7, the way to connect the solutions in

these four regions is shown.

Section 1 - The complex transformation X' sinh 5. Mappinz
properties. Contour transformation lines of
steepest descent.

IV-1.C The transformation

X -sinh

in which (1)IV 1

t= li-

__ -
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leads to a simple procedure for obtaining approximate

solutions of the inverse transform of the prototype

Laplace transform

F(~d,~2e)~ - ~ · (2)IV 1

The solutions obtained converge very rapidly or they

will have a compact form. The solutionsobtained by

this transformation are so close to the true solutions

given in Ch. III, that there is no practical difference

between them. The expressions for the envelope and

phase functions of the corresponding wave forms will

be given by simple and illuminating mathematical ex-

pressions.

IV-1.1 The transformation (1) has a multivalued character.

The 4 plane must be composed of an infinite number of

leaves which map in horizontal strips of the 4 plane.

These strips of the plane repeat periodically along

the direction of the imaginary Z axis. A new cut

must be introduced in the M plane to connect these

leaves. This new cut shall be so placed that it does

not violate the conditions for the Laplace inversion.

Besides, this new cut must not interfere with the

contours of integration already studied.

At this point it is necessary to recall that the

plane was already composed of two Riemann surfaces.

The introduction of the new transformation requires an

infinite number of sheets, which means that the primitive

Riemann surfaces I and I must each break up into a -

Is
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manifold of an infinite number of leaves. These

manifolds will be denoted respectively by J4M andIIM.

The new cut is as indicated, for example, in Fig. lIVa.

The leaves of each manifold must be connected by this

new cut. The manifolds themselves ust be connected

by the old cut, which joins the points i and -i.

The following is very important. The integration

along the bank of the new cut does not cancel out as

before. That is: The true inverse transform must not

contain this new contribution.

IV-1.2 The new Riemann surfaces as well as the manifolds

must be defined, in such a way, that the definitions

are consistent with those already given in Ch. II.

a. - The leaves of each infinite manifold must be
defined with respect to the branch point at =0.
The leaf of index zero, which will be used most,
will be defined by

- f7r Fo -w. (3)IV 1

The general sheet is given by

(M-)7w- o (M+1)v (4)IV 1

where M is an even integer.

b. - To define each manifold one uses the expression

+±-41i cosh (5)IV 1

In Ch. II the sign distribution was studied

of the function

w u + iv = - (6) IV 1
and therefore,

u =- coshi cos ()
(7) IVnhsin1

v = - sinh 9 sin .

____._ _II I __
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Now, in order to have a definition of the manifolds

which is consistent with the definitions adopted in

(1)II2 of Ch. I, and must be chosen in such a way

that (7)IV1 has the sign distribution of Fig. 3IIa.

IV-1.3 Once the manifolds d M and 1 IM are properly de-

fined then it is easy to show that:

1st - The manifold -I M maps into the right half of
the , plane.

2nd - The manifold SIM maps into the left half of
the plane.

3rd - Each sheet of the -IM manifold will map into
a horizontal strip of the-right half 9 plane.

th - Each sheet of the JT M manifold will map into
a horizontal strip o the left half plane.

This situation is indicated in Figs. lIVb, c,d.

Since the transformation (1)IV1 is very well known,

further details of its mapping properties will not be

given.

IV-1.4 In this subsection, the transformation of the in-

tegral which furnishes the inverse Laplace transform of

the prototype will be studied. After elementary alge-

braic manipulations, one obtains

F(,,2)e.T- '2+ d21 = iH() eiT cosh ( s)d (8) IV 1

in which

H()= F() cosh (9)IV1
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indicates the appropriate contour of
integration in the 4 plane

T = r 2- 2; as before (10)

= _ctgh Es; sinh s =- t

IV-1.41 It is at once clear that 4s is a saddle point of

the exponent of e in the second integral (8)IV1. Due

to the multivaluedcharacter of the transformation, an

infinite number of saddle points are distributed in

the plane.

The saddle points corresponding to the manifolds eIM

and IIM are respectively given by

L + i2 +r); for M(11)

-s 2M ; for ~I M

IV 1

IV 1

The corresponding position of these saddle points is

given in Fig. lIV.

IV-1.42 In this subsection the exponent

W iT cosh (40-s) (12)IV 1

will be considered. The corresponding sign distribu-

tion regions for the real and imaginary part of this

exponent, are given in Figs. lIVf and lIVg.

IV-1.43 The corresponding lines of steepest descent through

the saddle points are indicated in Fig. 2IVa. These

lines repeat periodically for the different sheets of

the manifold JIM. In the above-mentioned figure the

strip of JiM was chosen for the particular value M =0.

It is interesting to notice the form of this line

in the plane. See Fig. 2IVb.
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IV-l.5 Without loss of generality, the strip M=- O can be

selected in the right half 4 plane to obtain the ierse

transformation. This is due to the fact that the trans-

formation has a periodic character in the direction of

the 4' axis. In the rest of this work, the strip M=O

of JIM will be consistently used.

Suppose now that 4 k is a pole of F,41). The

point transforms into the plane as

SinLk = k (13)IV1

or, by using the notation of the last chapter,

fk=Ln lz1 4i('P+Mr) (14)Ivl

if k is in the M sheet of the Ji M manifold

and

i k Ln I Zk +e+Mt) (15) IV 

if Ak is in the M sheet of the manifold 4IM.

For M=O and on IM one has

4k = Ln 1 -ir

so that

(16) I 1

k Ln Z ; k ' (17)IV 1

In the above equation

Zk=4k -ik * 1 = Zkl e 

The Fig. 2IVc illustrates the corresponding position

of the poles of H(4) for different positions of the A k

pole in M'Id; M-O.
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Section 2 - Princiipal subintervals or regions in the transient
solutions.

IV-2.0 The saddle-point method of integration will be used

to obtain the asymptotic solution corresponding to the

inversion of our prototype transform. It is not pos-

sible to obtain one single asymptotic solution which

holds good in the complete interval of variation of r

and t, that is

O0 ~c 00)
0 - ~ oo

In order to obtain appropriate asymptotic solutions

four regions will be defined.

1st - Silence region: This region is given by the

interval O - Z~. As was shown in Ch. II, the in-

verse transform is equal to zero. This property

Justifies the name given to this first region.

2nd - Precursory region: This region is given by

the interval

sig

in which sig means the corresponding normalized

time for the arrival with signal velocity.

3rd - Main signal formation region: This region

can be defined as follows: Suppose that among the

m poles 4k, there is one, say t, which has the

property

IZfl lZlW' * *iZf-ll, I Zf+ll" tZm .

Il·._.l·--._l--X_.I-__ _--__I-��l�llll�-U-l11_1 I _ ·I
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Then, the main signal ormation region will be

defined by the interval

ig1 zfl2

4th - The Cqda region will be defined by

1 + Izf 2

1 - IZfl 2
The ustification of selection of these intervals will

be found in the discussion of each case. In this

region the transient terms vanish rapidly.

IV-2.1 Inside the main signal formation region there are

the times of arrival with group velocity of each pole,

This statement is ustified if the definition is re-

called of the group velocity of a particular pole which

was given in Ch. III. That is

1+jZk12

gk Vk 1- Zkl 2

At the instant when the saddle point coincides with a

given pole, then the arrival with group velocity is

obtained corresponding to this particular pole. If

the given pole lies on the horizontal lines i/2

or -iT/2 in the plane, then the saddle point touches

the pole for real values of the time. If the given

pole lies on the outside of the above lines, then the

instant of group velocity corresponding to this pole is

obtained approximately when the line of steepest de-

scent touches the pole. This is illustrated in

Figs. 2IVe,g.

1 _ _ _ _
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IV-2.2 As is shown in Fig. live, there are two saddle

points in the strip M=0. These saddle points are

conjugate ones. They are given by

=L t )2 + i

%s - 2 (1)IV2

When the time changes, the saddle points move along

the horizontal line as i/2 and -im/2. At the beginning

of the transient, the saddle points are at +oo. When

the permanent state is reached, then the saddle points

coincide with irr/2 and -irT/2. It can, therefore, be

said that in the saddle-point method of integration,

the contour At changes its position with the time.

Section 3 - The asymptotic solutions for the precursory and
coda regions. The corresponding envelope and phase
functions.

IV-3.0 The contour of integration which must be used for

the precursory region is indicated in Fig. 2IVd. Here

all the poles lie to the left of the saddle points.

Since most of the value of the integral is given by the

integration in the vicinity of these saddle points,

the contribution of the rest of the contour can be

neglected. In what follows all the intermediate steps

will be omitted in the process of integration and only

the final result will be given. The computations are

rather long but not hard to obtain. The method is

only valid for to 2.

------- - _ _ I I _ I
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IV-3.1 The asymptotic solution of the inverse Laplace

transform in the precursory region is given by

~-l(~ 21r ( ,~) 1 2 N2 sin(T+ s

in which

H1V(s)HVI (ts)+. TE1% .HHVI ()1} (2)IV3{H( )-H" ( + *(+) ii 2T 2+. (2)IV32.T2 24.6.T4 2 246.T3

and .
~s = Ln (r-t)Z + i2

gt as= N (3)IV3

andN )= dNH) (4)

The asymptotic series given in (2)IV3 converges very

rapidly for large values of a. In almost all cases of

practical application the first term H(ts) is enough

to obtain a high degree of approximation.

From (1)IV3 it is clear that the corresponding

envelope function is given by

gff -, _ ~M4 ()IV3

and the phase function is given by

Gs = tg-1 N (6)IV3

IV-3.2 The contour of integration which must be used to

obtain the asymptotic solution for the coda region is

given in the Fig. 2IVe. The contribution around each

pole must be added here.

Similarly, for the coda region, one obtains
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=¢(rT k) = RkeiT cash (&K- .)+ Ji M2+N2 sin. (T+g2s+N (7)IV3

in which

m= total number of poles of H(2k)

Rk= residue of H at each pole k

tk is given by (16)IV1.

The other letters have the same meaning as in IV-3.1.

SectionA - The asymptotic solutions valid in the main signal
formation per pole. Envelope and phase functions.

IV-4.O When the saddle point enters in the interval cor-

responding to the main signal formation region, the

amplitude of the oscillations increases suddenly and

the signal represented by the transform begins to form.

In this region the oscillations acquire almost the

final values.

The classical method of the saddle-point integration

fails to render adequate values for the inversion inte-

gral. It was necessary in this investigation to develop

a method of integration suitable for this region. This

can be done by making a further elementary transforma-

tion such that the exponent of the second integral in

(8)IV1 can be conveniently split. The saddle-point

method of integration is then applied to the new

exponent.

To be precise, this method is rather connected with

the poles of H(4) and not the whole wave formation. In

what follows the formation of the signal in the vicinity
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of a pole will be discussed. A pair of conjugate poles

can be associated in such a way that they render a simple

expression for the wave formation in its vicinity.

This method of integration is delicate to handle and

requires rather involved algebraic developments. For

this reason, many intermediate steps of computation will

be omitted and attention will be concentrated on the

main idea of this method.

IV-4.1 Letk be a pole of H(S) and Rk its residue. H(f)

can be expanded in a Laurent series. In the neighbor-

hood of lk, the function H(~) behaves as

(t-) x- R .(1)IV%4

Also it can be proved that in the vicinity of the

saddle point

eiT cosh (4- s),eiT cosh Uk eiT[(z uk(-4_k) (2)IV4

in which

uk= a k- . (3)Iv4

In the vicinity of the pole k the integral has the form

2iH eiT sh(t)d_ RkeiT cosh e T d(rere)(4)IVe

in which

4( fk = reio (5)IV4

It is not hard to show that the sign distribution of

the new exponent under the integral sign is given by the

Fig. 3IVa. If k is also a pole of H(), then the cor-

responding sign distribution diagram of the new exponent

is given by the Fig. 3IVb. The modified new contour of

integration is indicated also in the same figures.

_I_
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After a painfully long process of integration the

results can be obtained.

In the main signal formation region, the required

inverse transform is given by

k--lF (, 2in1) ewhichZk~~ke l 'h [l+C(vk) +S (vk) ]+i[C(Vk)-S(v k

in which

Rk= residue of H(t) at pole 4k

Uk = k - s = L X ik) complex

k= r r 1 /-l k - comp ex
Vk5 _V n k I -r)]-l k '2) complex

C(vk) = Fresnel C function

S(vk)= Fresnel S function

F(vk)= C(vk)+ iS(vk)= e vdv

Zk =k -Vkil+1 = IZk e'k; m number of poles.

(7)IV4

The envelope and phase functions will be introduced

as follows:

nIk 1i [l* C (Vk)+ S(Vk)]+i[C(Vk) -S(Vk)]Ie i(Vk)% jj vk)ei(vk)g

in which:

Im III (9)IV4
tg (vk)= Real ITk

J
So that finally, for the main signal formation region

the asymptotic solution is ( r 2).

-1F(,,/ 2+ ) e-"k -Rk(Vk ) eiT cosh uk + 1(vk)] (10) IY
k is pure imaginary and =l 1 then uk

Note that if Ak is pure imaginary and l4kl' 1 then uk

and vk are real quantities (see (7)IV4.

�___1^1_1_ __ �1_1 _

,, ·L T � I · · \� · I II I· \
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Section 5 - The envelope and phase eneratin function. Group
and signal velocities. Time and space of signal
formation.

IV-5.0 The solution given in (10)IV4 is the sumation of

waves corresponding to each pole of H(&). The function

Ilk given in (8)IV2.produces the transient envelope and

the transient phase function per pole, during the main

signal formation region. It can be proved that

eiT cosh uk =eA(Zk) (1)IV5

and, therefore, (Vk) represents the phase deviation

from the permanent one, during the transient state of

the waves inside the guide. If one lets T-oco, then

Vk -oo and it can be shown that

C(vk) 1 whewhen Vk-,oo
S(vk) vlk'0

so that

(vk) 0
Vk-CO

II(vk) k .
Vk-o00

This means that the solution (10)IV4 goes into the

permanent state.

Since the function I(vk) produces the envelope and

the phase functions per pole, it will be called the

"Generating function". The object of this section is

to study this function with some detail.

IV-5.1 Consider first the case when the corresponding pole

in the plane is pure imaginary and [4kI71l. In this

caseOk = and

I__ _� _ _ _ _
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V J4 (k } (2)IV5

is real. In this case C(vk) and S(Vk) are also real

and one can write 

I (V) _- i[0. 5 + C (vk) 2+ [O5 S (vk)]2

tan m(vk) O0.5+c(vk)]4 -[0.5+-S(vl (3)IV5
to.5 + C(vk)] + [.5 S(vk)]

Both functions, *(vk) and (vk) can be computed

graphically by means of Cornuts spiral as is indicated

in Fig. 3IVc.

IV-5.2 A similar graphical procedure of computation can

be followed when vk is a complex quantity. In this

case, a new spiral can be formed as indicated in Fig. 3IVd.

The form of this spiral changes with the value of the

difference Oj -2. This spiral must be applied when

the poles 4 k lie outside the imaginary axis of the X

plane.

IV-5.3 Here the concept of group velocity of a given pole

will be introduced. It was proved in Ch. III that the

group velocity of a pole can be defined by the condition

nk= T (4) IV5

from which

Zk = -i (r~~ts) (5)IV5

so that (T+.K)
, 1 (6)IV5

and consequently, at group velocity

vkTL1- I(-2)-k r (7)IV5
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and one obtains the important theorem:

"'Let 4k be a pole in the imaginary axis of the X plane

and such that IAki l. Then:

a. - The group velocity is characterized by vk =O;

b. - The generating envelope function has the value ;

c. - The generating phase function has the value O."

The theorem follows from the fact that C(O)= 0 and

S(O) = O.

In the case of a pole 4 k which lies outside the

imaginary axis, it can be said:

"Let dk be a pole outside the imaginary axis of the

plane. Then: The group velocity is characterized by

the instant at which the saddle points occur at the

minimum distance from the pole K, in the e plane."

IV-5.4 In this section the slope of formation of the envelope

of a given pole will be considered at the instant of

group velocity.

Consider first the case ok= ik and lVkOl. By

a simple process of differentiation it can be found that

9(Vk) - 1

vk k=O 2

This means 1"that the tangent to the envelope function

at k= O touches the axis vk at a point vk= -1, when mk

is purely maginary."

The following important theorem is also true.

"The tangent to the envelope function at k= 0O touches

the line (vk) = 1 at vk--+l, when 4 k is purely imaginary."

I·I ___ I _
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Now the definition of signal velocity, valid when

Ak is purely imaginary, will be introduced.

"The signal velocity of a pole Ak, when k is purely

imaginary, is characterized by vk- -1."

The interval -1 Vk 1 will be defined as interval

of formation of the signal", corresponding to a pure

imaginary pole.

IV-5.5 The definition of signal velocity and interval of

formation corresponding to a complex pole x4k can be

obtained, in a similar way, by computing the derivative

d*(vk)A

dvk .vas

IV-5.6 It is now possible to give a definition of the signal

velocity and interval of formation of a multipole wave.

"TThe signal velocity of the complete signal is equal to

the largest signal velocity of its poles."

"The interval of formation of the complete signal may be

defined as the interval between signal velocity of the

wave and the velocity at which the last pole component

is formed."

Section 6 - Graphical method for the construction of (Vk) and
(Vk)' for pure imaginary poles. Main signal

formation region.

IV-6.0 It is rather simple to construct graphically the

envelope (vk) and phase (vk) corresponding to a given

pure imaginary pole, for the region in which the signal

is formed. The object of Section 6 is to describe this

method of construction.
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IV-6.1 The spiral which generates the envelope and phase

functions for a pole of the type k = ik; (LkKl is

given in the Fig. 4IV.

The envelope function i(vk) is given as a function

of vk in Fig. 5IV. The points corresponding to the group

and signal velocity as well as signal formation interval

are indicated in this figure.

Figure 6IV shows the variation of the phase function

0(vk) as a function of vk.

IV-6.2 In the practical application of this theory it is

necessary to deal with two principal problems:

Problem A: At a fixed cross section x3 (or -2c )

the problem is to know how the signal if formed as

a function of t (or Z= 2 t).
Tc

Problem B: At a fixed instant t (or 2't- t ) the
Tc

problem is to know the distribution of the signal

inside the wave guide, when x3 (or =2fft) changes.
Tc

The separation of these problems can be accomplished by

considering t constant and rvariable for Problem A

or z=-constant and Wt variable in Problem B.

Figure 7IV furnishes a family of curves

V V(t); 2- =constant

for different values of the parameter k' To apply

these curves in a concrete case the procedure is as

follows: LTake the curve which corresponds to the given

value of k. 2. Multiply the abscissa by the constant x3.
A¢'

.·
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3. Multiply the ordinates by the factor 4i. The result

is the corresponding function Vk(t ) for I= constant
c Ac

and k = constant.

Figure 8IV gives the family of curves vk( ); # constant

for different values of the parameter S0k. To apply

these curves to a particular case, proceed as follows:

1. Take the curve which corresponds to the given value

of k . 2. Multiply the absdissa by the factor t
Tc

3. Multiply the ordinate by the factor t.

The result is the corresponding function vk(A) for

t =constant and k= constant.
Tc

Problem A: Figure 9IV indicates the graphical process

by means of which one time envelope can be obtained

from the master envelope given in Fig. 5IV.

Figure 14IVa illustrates one example of how to

obtain graphically the corresponding phase function

in terms of the variable T-.

Problem B: Figure 10IV indicates the graphical process

by means of which one space envelope can be obtained

from the master envelope function given in Fig* 5IV.

IV-6.3 The effect of the pole frequency on the forms tion

of the signal can be studied with ease by means of this

graphical method of construction. Figures llIV, 12IV,

and 13IV give the corresponding time envelopes for

k =l1.1, 1.5, 2.0 at distances x3 =10, 100, 1000. It
AC

can be noticed how the frequency controls the shape of

the signals.

··_ _1·1____1__�1____1___ -
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IV-6.4 Figure 15IV shows a family of curves which give

the time of formation of time envelopes (Problem A)

at different frequencies and at different distances from

the origin.

Figure 16IV shows a family of curves which give the

distance of formation for space envelopes (Problem B)

at different time of the penetration of the wave front.

Section 7 - Complete formation of transient wave

IV-7.O In this section it will be shown how to combine

the different asymptotic solutions in order to obtain

the complete construction of the formation of a signal.

IV-7.] A convenient method to follow can be indicated as:

1st - Take the function F(4d,V ) of the cor-

responding transform. Substitute -sinh ;

Tc1 =cosh and from

H(4)=F(4) cosh .

2nd - Find the poles (k) of H and the correspond-

ing residues.

qrd - Compute the signal and group velocity for

each pole. Determine the wave signal velocity.

4th - Compute the signal in the precursory region

by using formula (1)IV3. Stop the computation

around the signal velocity of the complete wave.

5th - By graphical or analytical methods find the

main formation of each pole and obtain the in-

stantaneous oscillations for each pole.

Place the solution for each pole in accordance

:i-- I



177

with the corresponding group velocity and sum up

the results as indicated in Eq. (6)IV4.

It must be carefully noted that the envelope of

the complete signal is not necessarily equal to the

sum of the partial envelopes which correspond to

each separate pole.

6th - After the signal is formed, correct the final

envelope by means of the transitory term given in

Eq. (7)IV3. In the coda region the signal is

practically formed.

IV-7.2 Figure 17IV shows the above procedure in the forma-

tion of a complete signal. In the construction of the

figure the function

f-z e
(X2+ -;2_4

is used. This transform corresponds to the 3 vector in

the example given in the last section of Ch. III.

9igure 18IV shows the corresponding time envelope

(Problem A), and Fig. 19IV shows the corresponding space

envelope (Problem B). The rapid instantaneous oscilla-

tions are not shown in the figures. More comments are

not added as these figures are self-explanatory.

IV-7.3 Experiments were conducted by David Winter in the

Research Laboratory of Electronics in order to verify

correctness of the theoretical results obtained in this

investigation. The description of these experiments will

be found in Winterts report on this subject. Only in-

cluded here are some f the oscillograms which show the

complete agreement of the experimental with the predicted

results.(See Quarterly Progress Report, April 15, 1947, p. 84)

----__I 11_ _ 
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FIG.. N? IV.
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APPENDIX I

The integrals (1)III3, page 110, can be evaluated directly
without the necessity of series expansions, as it is done in the
text. For a reader who is acquainted with the functions of Lommel,
the following short-cut is preferable:

Take first: o =1.

a. If Zk=0, then go back to the 4 plane. It can be written

Ar (Z) d; -
2aiJ z 2nTi TZJ; (I )AI

z IA
in which A(Z):4(Z-) + 4 (Z+ ) (2)AI

since it is well known that (see also the text)

_1 -X+ = Jo1- tXt (3)AI

b. If O<kl<l, then introduce the complex transformation

_ _ -C u =complex (4)AI
2Z

T2

then: 2n ,. dZ = _k i k da (5)AI
the nZi 2u

where T=-X ; tk (6)AI
iZk

The corresponding contour of integration is indicated in the
figure. Notice that this contour is a slight modification of Yz
given in Fig. 7 III b.

Now, consider the Gilbert integral representation of the Lommel's
U function. See "Theory of Bessel Functions" Watson, page 548,
Equation 1.

e T2

6 4U d (7)AI
tl

U (kIT)= i
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It follows immediately that

A (Z)
u(knk ) 2i z z (8)AI

which is the result given in (15)III4 on page 124.

c. For l<lzkl, a similar procedure can be followed by
using the inverse function of (4)AI as a new variable.

Take second: z 1.

This is the general case and will not be considered here
since the procedure given in the text is the simplest one.
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