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Abgtract

This work deals with the study of the transient phenomena
of electromagnetic waves in hollow metallic cylinders of 2 general
geometric cross seccion when excited under different initial and
terminal conditions. A semi-infinite wavegulde, the cross-sectional
dimensions of which are small in comparison with its length, is ex-
cited at one end, taken as the origin, by an electromagnetic field
of rather arbitrary waveform. The solution given here shows (a)
the distortion of the waves in amplitude and frequency as they
propagate along the waveguide; (b) the speeds, signal and group
velocities, and the time of formation (time in which the internal
fields build up) at the given point of observation, or the spatial
distribution of the fields at a given instant of time; (c) general
methods of solution for complicated waveforms of the incoming
aignals; (d) reduction of all transients to a typical one by means
of generating functions. Exact, asymptotic, and graphical solutions
are given as solutions of the translent behavior, and applications
are made to some typical cases. To accomplish the above results, 1t
was necessary to give a detailed and complete discussion of the
motion of electromagnetic waves in systems of cylindrical con-
figurations and the new results were obtained in this connectlion.

- Laplace transformations are used as the basic mathematical tool in

this investigation.

* This report is 2 slight modification of a thesis of the same
title submitted by the author in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy at the
Magsachusetts Institute of Technology, June, 1947.
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INTRODUCTION

0.0 This study will deal with the transient phenomena of elec-
tromagnetic waves inside hollow cylinders of a general geometric
cross section under different initial and terminal conditions.
A general solution will be worked out which 1s sufficiently
complete to meet all possible cases of initial conditionms,
in space and time, appropriate to the analytic character of
this Dirichlet's type problem.

Since in wave guides the propagation constant is a function
of frequency, such a guide behaves like a dispersive medium
and this situation complicates the solution to the transient
problem. For dispersive media, phase, signal and group veloc-
ities have been defined, and it is intended to investigate
their meaning in connection with the present problem.

The solution of the transient problem is of particular in-
terest in connection with the linear accelerator. Electric
charges are injected, with a certain initial velocity, inte
a circular wave guide, or series of cavities, in which electro-
magnetic wave pulses of TH type propagate along the axis.

The interrelation of the pulses and charges must be such that
the particles, acted upon by the longitudinal electric field,
suffer a unilateral acceleration in the direction of the wave-
guide axis. ©Since this particle must be accelerated by the
internal electromagnetic field, it is important to know how
this field propagates as well as the velocity of signal forma-

tions and main energy build-up along the accelerator. 1In
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order that the charges can acquire very large velocities,

the main bulk of the pulse energy must be propagated at such
speed that the particle is always acted upon by an electric
field of sufficient intensity. Although the velocity of
propagation of electromagnetic disturbances is that of light,
it does not follow that the main body of the pulse will be
formed at the same speed. In general, the precursor of the
first wave is of such small intensity that its effect on the
charge may be negligible.

As an application of this general transient theory numer-
ical examples will be given for specific cases, showing the
distortion of the pulses as they travel along, the form of
the signal at a given cross section, and the surface of equal
phase, when a sinusoidal pulse of definite frequency and
duration is applied at a terminal cross section of the wave
guide.

An attempt will be made to unify, as much as possible,
the mathematical procedure. Laplace transform theory will
be the basic tool.

0-0.1 The main problem solved here can be briefly defined as
a lossless and semi-infinite wave guide, with cross-
sectional demensions small in comparison with its length,
which is excited in one of its modes at a given cross
section taken as the origin. By hypothesis,it will be
assumed that the time of formation of the transverse field
is much shorter than the one required for the electro-

magnetic perturbation to reach an internal point P far




3
away from the origin. The requirementsto be obtained
are: a solution for the elementary waves, the speeds
with which the field builds up at the point of observa-
tion, the distortion in amplitude and phase of the origi-
nal waves when they propagate along the cylinder due to
the dispersive action of the guide.

Once the solution for elementary waves is obtained,
solution for other fields of excitation can be found by
a linear superposition of those waves.

The input wave forms of excitation are unlimited ex-
cept for some analytical restriction. From the practical
point of view there are some waves which have a predomi-
nant importance. They are, for example, oscillation-
modulated by pulses of different form and duration, am-
plitude-and frequency-modulated waves, etc. The solution
of the problem must be such that it can cover all the
cases of practical application.

0-0.2 The study of transient phenomena in wave guides is
far more involved “than was expected. The principal dif-
ficulties are of mathematical character. The analytic
process is complicated and delicate to handle. Besides,
it is necessary to deal with a vector field and with a
large number of possible initial conditions of excitation.

At the start, one of the simplest cases of wave-guide
excitation was considered. ©Serious integration difficul-
ties were encountered. After considerable trouble, one
component of the field was obtained as an asymptotic

series development in the Poincaré sense. The solution
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was practically useless because the other components of
the field could not be derived from it, since the opera-
tion of differentiation is forbidden with such series.
Besides, this series solution'could not be valid when the
applied frequency was too close to the cut-off frequency
of the guide, which is a case of practical importance.

Now, if the type of initial condition changes, a new
problem arises and it would be necessary to repeat a
litany of mathematical troubles. Then, it was concluded
that to solve any particular cases was not an appropriate
method of attack; it was, therefore, abandoned.

A more general method of tackling this investigation
was needed and it was necessary to go beyond the limita-
tions of the scope of this ‘Mork, starting the search
from the fundamental aspect of propagation of waves in
cylinders, up to a stage in which satisfactory solutions
of the propagation of waves in hollow cylinders can be
obtained.

This analytic study is, therefore, not limited to
wave guides. A solution will be obtained for the instan-
taneous fields in cylindrical systems or configurations
whose cross-section geometry is not limited to a special
form or to a single set of the walls of the cylinder.

The only restriction is that the field propagates with-
out dissipation. The mathemstical method used here is
such that it can be easily extended to the case of dis-

sipation.
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0-0.4 We will start from the set of Maxwell equations in
generalized cylindrical coordinates. The mathematical
tools consistently and systematically used are Laplace's
transformations.
This investigation was conducted as follows:

l. The set of liaxwell equations are subjected
to a Laplace transformation with respect to
the time, by introducing the definition of
a vector space S. These transformed equa-
tions are expressed explicitly in terms of
the initial spatial distribution at t= 0.

2. The corresponding hypothesis for cylindrical
configuration is introduced into Maxwell's
equation in this S domain.

3. A new vector space R is defined and Maxwell's
equations will be subjected to a new Laplace
transformation with respect to x3 (x3 being
the longitudinal coordinate along the genera-
tor of the cylinder). This second transfor-
mation introauced the initial condition, as
a function of time, at x3=0.

4. Here Maxwell's equations are solved and a vector
field is obtained which represents elementary
waves in this space. This field satisfies
boundary conditions at the walls of the
cylinder.

5« The vectors of this field are subjected now
to an inverse Laplace transformation. A
vector field is so obtained, in the S space,
in terms of the initial conditions of all
vectors at x3=0 and t=0. This field rep-
resents two independent sets of waves travel-
ing in the positive and negative directions
of X3

6. This vector field is not necessarily electro-
magnetic for arbitrary initial values, since
under this condition this mathematical field
does not satisfy Maxwell's eguations in S
space.

If this mathematical field is to be an elec-
tromagnetic one, the initial conditions are
not all independent. They must satisfy
simple relations. When these relations are
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introduced in the mathematical field, it will
break up in three independent electromagnetic
fields corresponding to TE, TH, and TEH waves.

The next natural step is to transform these
fields from the S domain into the instantaneous
t domain.

a. If there is no dissipation, the TEH system
does not offer any special problem of in-
version. The propagation is merely the
movement of the incoming signal without
distortion and takes place with the speed
of the light in the medium.

b. The inversion of the TE and TH fields is
very difficult to perform. Most of this
work is devoted to this operation.

a. A systematic study of the transforms of the
TE and TH waves was made to find the ana-
lytical connection between them. In this
way a considerable reduction was made to
the number of transforms which have to be
inverted.

b. A general survey was made to find a group
of possible practical initial conditions.
This study revealed that one has to deal
with transforms of the type

F(s,Vsz+ cz)e—sz'+ ct

where F is the ratio of two polynomials.
This type covered almost all practical
cases of amplitude-modulated signals. In
case of frequency modulation, the trans-
forms are more complicated meromorphic
functions. By means of well-known theorems
the last case can be reduced to expansions
of the first case.

Conditions and analyticzl requirements on
these transforms were investigated to secure
a field which is electromagnetic upon the
inversion into the instantaneous time domain.
This condition proved to be significant.

Several methods of inversion were first tried
out. Most of this work was done using the
inverse integral. This inversion in the S
plane proved to be very difficult to obtain
for all these transforms.
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12.

13.

14.

15.

16.

7

Complex transformations were introduced. One
simple complex transformation proved suitable
for obtaining the inverse function correspond-
ing to transforms of the type indicated in 9.

At first, the results of the solutions were
uniform convergent series expansions of the
Neumann type. Later, these series were
recognized as Lommel functions of the order
of zero and one.

Since Lommel's functions are not tabulated,
except for a few, it was necessary to obtain
an appropriate expansion for the purpose of
numerical computation. This expansion was
made by introducing a new complex transfor-
mation.

Analytical expressions were obtained for the
envelope and phase functions of the inverse
functions of the transforms indicated in 9.

Study of the meaning of signal, group velocity
and time of signal formation for all trans-
forms of type 9.

Numerical computation of the associated
functions.

Application to transients in wave guldes.

This work is divided into four chapters. The first

covers from articles 1 to 6 in this summary; the second,

articles 7 to 10; the third, article 1ll; and the fourth,

articles 12 to 16.

0-1.0 We can summarize the results of this investigation as

follows:

1.

The TE, TH and TEM fields in cylindrical con-
figurations can be obtained without the intro-
duction of three different potentials.

The analytical requirements which are necessary
to satisfy the initial conditions 1in order to
excite electromagnetic waves in hollow cylinders
are given.




3.

ke

5.

6.

7.

9.

10.

11.

1z2.

The appropriate interpretation of the branch
cuts is givenas secondary waves, which vanish
in the permanent state.

The inverse functions of transforms of the
type indicated under Art. 9 p. 6 can be ob-
tained in a compact form and in terms of
Lommel's functions.

The existence of a generating function which
produces these inverse transforms. In other
words, the reduction of all these functlons
to a single one, if appropriate transforma-
tions are introduced.

A theorem on inversion was found which proves
useful to compute a family of transforms.

Simple approximate formulas were obtained to
compute inverse functions of the above-
mentioned type. If the transient period is
divided into three intervals known as
Precursor, Main Signal Formation and Coda
Regions, appropriate simple expansions are
given for each subinterval.

The reduction of the main signal formation
interval, of all transforms, to a generating
function is given. This is closely related
to Cornu's Spiral.

Universal curves to construct envelopes and
phase functions are given.

By using the above-mentioned universal curves,
a graphical method of construction of the
envelope and phase functions for particular
transforms were obtained. This method saves

a large amount of labor in numerical compu-
tations,

The determination of the signal and group
velocities, time of formation and slope of
formation for all these transforms is con-
sidered. An assoclation of these velocities
to the poles of the original transforms are
indicated. Definitions of these concepts in
terms of a generalized variable are given.
The independence of these concepts to the
cross section of the wave guide is shown.

The application is made to complicated forms
of wave excitation in hollow tubes.
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0-2.0 At the time of writing the results of this report,
it was noticed that the Newmann series expansion of the
above transforms corresponded to the functions of
Lommel. This discovery enables one to make a short cut
in the mathematical development of Ch. IIIf Unfortunate-
ly since this chapter was already written and due to
lack of time it will not be possible to incorporate these
changes.

0-3.0 The mathematical method used in this work can be
readily and easily extended to investigate the case in
which dissipation exists. In this case, two sets of
Maxwell's equations and a set of boundary conditions
will be transformed. The subsequent methods of inver-
sion are almost the same as those indicated here.

In addition, the analytic requirements on the .
transforms necessary to excite electromagnetic fields
(see Ch. II) in hollow pipes might be used to work out
the problem of discontinuities inside the guides.

ACKNOWLEDGMENT

My thanks and deepest appreciation: to Professors
Guillemin and Chu for their valuable guidance of
this investigation; to Professors Stratton, Hazen,
Wiener and Gardner for reviewing this work; to my
distinguished friend, Professor Brillouin, for his
careful checks on some mathematical steps,

* 7This short-cut procedure 1s inserted in Appendix I.
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CHAPTER I

Section 0 - Introduction and method followed in this chapter.

I-0.1 The material presented in this chapter will be limited
to an analytical study, in its basic aspect, of the pro-
pagation of electromagnetic waves in systems of cylin-
drical configuration. The fundamental assumptions used
here are: a. the propagation takes place without dissi-
pation; b. the medium is uniform and isotropic; c. the
effect, if any, of external charges on the internal
field is negligible. The procedure followed in these
chapters 1s indicated in the following paragraphs.

I-0.2 Section 1 deals with: Laplace transformation of the
set of Maxwell's equations with respect to the time.
Transformation to the S domain. Introduction in explicit
form of the initial spatial condition at t=0.

I-0.3 Section 2 deals witht A second Laplace transforma-
tion of Maxwellsequations with respect to the axial co-
ordinate when the equationsare expressed in cylindrical
generalized coordinates. (Transformation to the R domainJ
Introduction of initial time conditions at x3=0.
Derivation of a general expression of the vector field
and the corresponding differential equations.

I-0.4 Section 3 will comprise: Introduction in the R
domain of the transverse boundary conditions. Yield
solutions for the fields in the form of elementary waves.
These field solutions result from solving a well-known
differential equation of the Poisson type together with

a system of algebraic equations.
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I-0.5 Section 4 will be comprised of:t A study of the
initial time conditions at x3=0 only. The first inverse
transformation of the vector fields from the R domain
into the S domain. A study of the general character of
these transformed fields. Separation of the field into
wave components moving along the positive and negative
directions of the longitudinal axis.

I-0.6 Section 5 will be comprised of: A discussion of
the mathematical character of the field in the S domain
and its decomposition into three independent electro-
magnetic fields, corresponding to TE, TH and TEH waves.

I-0.7 Section 6 will be comprised of: An inverse trans-
formation of the instantaneous TEH fields from the 8
domain to the time domain. Configurations suitable
for TEH waves. Undistorted propagation in the medium
with the speed of light.

I-0.8 Section 7 will be comprised of: Dispersive character
of the TE and TH fields. Presentation of the problem
of inverse transformation of the instantaneous TE and
TH fields from the S time domain. Analytical relations
between these s transforms and a first reduction and
classification into types.

I-0.9 Section 8 will contain: Analytical survey of the
initial time conditions, their introduction to the S
domain and the resultant structure of s transforms.
Amplitude- and frequency-modulated excitatioms.

Prototype transforms.




12
I-0.10 Section 9 will contain: Further analytical require-

ments on the s transforms to secure an electromagnetic
field after their inverse transformation into the time
domain. Condition of guide excitation.

I-0.11 Section 10 will contain: Review of the methods
ylelding inverse transforms appropriate to the present
problem of wave propagation in cylindrical systems.

(The actual process of carrying out these transforms is
discussed in detail in the following three chapters.)
Section 1 - First Laplace transformation of Maxwell's equations

and the introduction of initial space distribution
at t=0.

I-1.0 Under the assumptions indicated in I-0.1l, Maxwell's

equations have the form

—». = —
VXE.‘./‘%:O; Vx%—ﬁ%gf'o

= — (111
VVf;O s V=0

in which .

_’
?= E(x1,x5,%3,t) - instantaneous electric
intensity vector

- -
H= (xl’x2’x3’t) - instantaneous magnetic
intensity vector

]

M
€

magnetic permeability > (2)11

electric permittivity

Xp; n=1,2,3; - generalized coordinates of |
the point of observation

t = time

MKS system of units J
—
Let #(x1,x5,X3,t) be a vector such that the following

set of integrals exist.
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anZZDe’Stdt; n=1,2,3 (3)11
in which j%(xl,xz,x3,t) are its components along the
coordinate axis and s=o0+ iw is the complex frequency;
1=7-1. This functional transformation will define a
vector space S. In this sense it is said that the vector

F is the transform of theﬁyector.;?when

F=11F] + 12Fp + 13F3 T/S?e"‘?‘tdt . (4)11
Then
L F
E 3
—.;);2? (5)11
H=)

I-1.1 Now transform Maxwell's equations. ©Since t is in-
dependent of the space coordinates, the symbolVis in-
dependent of t. Then

Z(t)vxf= Vx z‘it)§= VXE ;
a?.’(t)Vx}?;.Z= v x:((t)ic?w H;
L)V EVE 3 L)V-A-VH .
Also =
Zit)%?*=—51x1,x2,x3,0)+-sE
Zzt);?;{:-f’(xl,xz,Xyo)a— sH
and therefore, Maxwell's equations transform as

—
Vx B+ S/IH =/lz(xl,x2 ,x3)t) t=0

we

VXE - seB=-£&(x1,X5,%3,t) ¢ (6)11

we

VvE =0 ; V'H=O .
-—>» —
The vectorsi{(xl,xz,;c3,t)t=o and E(xl:XZ’XB’t)t=O
represent the initial spatial distribution of the field
at t=0. They may or may not be independent, or exist

simultaneously, or be zero.




Section 2 - Laplace transformation with respect to x3 and intro-

duction of initial time conditions at x3=20.

I-2.0 VWe will now suppose that the geometrical configura-
tion of the system is cylindrical. Let hy, hy, hg,
designate the metric coefficients. If x3 1s taken as
the distance along the axis of the cylinder from a point

P to a given cross section, which is taken as the origin,

then the geometry of the system is characterized by

hy = ()12

hy (x31,%2) 5 ho(xy,x3) ; (independent of x3),
It will be assumed that the propagation takes place
along the x3 axis.

Now, let F=F(x3,x3,x3,s), a vector and

#=98(x1,x5,%3,8), a scalar. Under (1)I2, the expres-

sions VxF, V-F, Y°F and V¥ have the form

¥,  om
=4[ 322 B 1M1, 17
VxF 11[h2 Xy xg} 2[;}—3 hy )le tij hlhé[?}a:z(thQ) axz(th])]

po_ 1 JF
Ve -l et s 2

~

V2F = 11V2F) + 1,¥°F, + 1,V°F,

by Fp 2 M arn)] 22F,

2
VP = e n=1.,2
n hlh2[7 (hl Ixy 2x2(112 7%, |  9x3 ? 9253

1 i
| 1
v? hl%% —h;%c%"if)%%

>(2)12
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I-2.1 A second Laplace transformation with respect to Xq

is now to be introduced, as follows:

F J(Fe"rXSdXB where

(3)12
Fm' 2’ F J/F e‘prdXB‘ r = complex variable.
Thus a new vector space R is defined. An asterisk is
used to denote these X3 transforms.
The transformation of (2)I2 yields: ~
i
Z, F=i{L -_.___ —3. - 3
xs(‘?l) 14 h2 I'Fz F(O)}‘i{'F -5 (O) n,h, %thz) ?;2(;(}’11?1;}
2’§(3(V-F)=hlh (h )+ (hiF ) p+rEr —F4(0)
C(4)12

&&a(v Fp)= ‘—j}g—( 'Z(—i—)i' ( }fran bl (0) ‘;‘f‘?’ ) 3n=l,2,3
X3=0
i
Z V85 "g:% h2 ‘g’fﬁz [z - QKO)]

since Xj,X5,h; and hy are independent of x3. The nota-

~

tion is further explained by
Fn(O) = Fn(xl,X2,X3, S))X3=0 = Fn(xl,x2,+0, S)

IF,
7‘§)x3 0 92— Fn(xl»xz»xa:s))x =0 g (5)12

g(0) = ¢(X1,X2,XB, s) xB.-:o:g(x]_,xz’*'o, s)

v

I-2.2 Using the above results, Maxwell's equatlons

transform as
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2@3 VxE+spH=/4ﬁxl,x2,x3,O)] goes into
1
h

2
o8 % 3
by 7%, [rE2 -Ez(xl,xz,o,s) =- S/JH1+/47¢§(xl,x2,r,0)
1 IE*
LrE’{- El(xl,xz,o,s)] '?E 3 :-S/JH§+/4£§(xl,x2,r,O)

1
Hl—h'z—[';%l‘(hzﬁlg) —7,%'2'(1113*{)] =- S/‘H)%*/‘X%Be(xl’xZ’r’o)‘v

Z”CB [VxH -8eE = -¢ f(xl,xz,x3,0)] goes into

IH.

% % %
.}%..2. ?_5[_3 —[rH2 - Hy(%7,%5,0, s)]=SEE1 -eE7(x1,%5,7,0)

9H
[rH'){-Hl(Xl,x 0 S)] - l 7—-‘3- _s&.E;-Eg;(xl,xzyr;O)

hllhz[axl(hzﬂz) 72‘(11 ] seE% -eE%(xy,%,,7,0) .

Z, (V-E =0) goes into
3

hlh?. [3]( (hZEl) + ——_(hlEz)] [I‘E§ -E3 (Xl,Xz, 0, S)] =

Z (¥-H=0) goes into
X3

1 2 3 3* ¢ -
hth[?;;]-:(hzﬂl) + 2%2‘(th2)]+ [I‘HB —H3 (xl’XZ’O’S)]

in which
-rX
E*(xl,xz,r 0)’/éo(xl,x2, X3,0)e" Saxs ,

-rx
%:(xl,xz,r,O)l=/.;(n(xl,x2,x3,O)e 3dx4
o

Y

~

~"

> (6)12
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I-2.3 From (6)I2, Ef, E5, H] and Hj can be expressed in
terms of the partial space derivation of E§ and Hg

and the group of initlal conditions, as follows:

(7) 12

T {s"[r} af *Hixm%’o’s)]“[———*ﬂ; (xpxa»O,sb]w[ %1086, @:»xa»mﬂ}
z}g_%z { NL,‘ Ix, +f£¢&:xe:0, SDJ 4] E'.;::T*E (xi,xz,O,S): -ﬂ[r«@izxpxa,r,o)* SEE’:(xi,xzﬁ;Oﬂ}
x 3H ¥

Hf‘re_]s'% {sa{—lll—-a ;-E-;-i (xl,xa,O,s)] +T 51-11 _X-TH & ,xz,o,s) [ré&l,:ca,r,oﬁ s/i;ifzxvxa,r,o)] }
B i ” {“[q-;,qm (’&9‘2,0:5)] i +Hg(x19c2,0,8) e[ &) ,xa,r,o)-S/:%g(xpxa.r,@]}

Now, the next step is to determine the values of Eg, H;

and their partial space derivatives.

I-2.4 In this paragraph one will derive the differential
equations for E§ and H?. In the next section, I-3, we
will find the solutions for these components and their
partial derivatives.

To make a short cut the well-known theorem
V«VxF=V(V+F) - Y*F will be used, in connection with equa-
tions (6)I1, (1)I1 and (2)I2. After some algebraic

manipulation one gets -

13 R
1)2-112{9;1 (%1}& ;i) 7%, ‘n (h1 ! (e s%ue) Bo=

IE( ’ % Jé‘: 2
] {rmséaﬁz»o,s) sl 5)4)3—0} e {‘Es(&,xg,nCJ)*—‘({%?ﬁL}

h, 3 x
hilhz{)xj. (h 7x, )* 2X2 (1;5‘ g%)} +(r* - s%e )H3=

= {ﬁis(xlpca,O,S) ﬁ’—(’ﬁ{%g—x——?"zzo } ~pie {szﬁw;ﬁﬁé%’xﬁ’%w}

o

f (8)12
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The brackets in the second members contain the initial
conditions in space and time. These initial conditions
are not all necessarily independent and may, or may not,
exist, simultaneously. In Section 5, Ch. I, one will
determine their interrelations necessary to insure that
the final fields are electromagnetic (satisfy Maxwell's
equations). In Section 8, Ch. I, a general study will
be made with regard to these initial conditions and 1t

will be shown how to obtain their respective transforms.

Section 3 ~ Elementary wave transforms and transverse boundary

conditions.

In order to obtain elementary solutions of equations
(8)I2, which satisfy the boundary conditions at the
limiting walls we will write the electric and magnetic

intensities as:

&= Y (x1, %004, (x3, 1)
#n = 0 (%7 ,x0) B (x3,t)

in which the quantities y%,adg, 9, and 47, are functions

n=1, 2, 3 (1)13

of the indicated variables only. These functions will
be determined.

Let us take, in succession, their Laplace transforms

En = ?kn(xlrxg)An(J%, s)
n=1, 2, 3 (2)13
Hp = On(x1,%2)Bp(x3,s)
and

E?; = %n(xlaxz)A?(r, s)

* (3)13
Hn==9n(xl,x2)B§(r,s) .




I"’Bol ‘
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From (2)I3 we get

% ]
3x3)x3=07fn7_ Ap(x3,s » =" A(x3)(0:3)
2H : ? (4)13
3 x40 o6, ?_ch; B (x3,s)) =9nB(x3)(O,s)
J

Notice that A(xs)(o’s) and B(x_s)(o,s) are functions of
s alone.
Now, let us take the Laplace transform of (113

directly with respect to X3
% 3
En =Wn(x1,x2)¢4n(r,t)
X .
h = 0,(x1, X )00z, )

from which

(5)13

QE;) - ’VYC%J:(I"JC))’C:O’%%&’C) (r,0)

2t /t=0

PrA
Dt)ts _gnatﬁ*(r ’C))t =0 6’ )(r 0)

Notice that '4(t) (r,0) and /J’(t)(r,o) are functions of r

> (6)13

alone.
By using these relations and substituting them in

(8)I2, we attain, after some arrangement of terms,

s

i rou ot O RPEODE
3 >
> (7)13

+ [rA (0,s)+ AB(x )(O s)] 3(1‘,0)+¢43(t)(1’,0)J}
J

and a similar equation for the magnetic wvector. p2

is a separation constant and V%

h
Xi,xa)V.B denotes the

Laplacian with respect to the transverse coordinates.
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After the proper separation of these equations we

get, finally:

(8)13
Electric vector intensity Magnetic vector intensity
2 2 - 2 2 -
V(xl,xz)‘;@m 7’3(1{1’!2) =0 V(xl,x2)°3+p 03(xl,x‘2) =0

B9 7= [&4’5’) ) #ﬁoﬁ) "A's(x;zgs)] Bgs)= [, 04, O]+ [rE(0,9)+Blyf03)

T2 _K°? r2-k2

K = 82,¢4£+p2 k2= 33454- p?

I-3.2 In order to obtain an elementary solution for the
x3 components of the field, in R space, we have to
solve first (8)I3.

Ag(r,s) and Bg(r,s) are already solved in terms of
initial conditions of the field for x3=0 and t=0.
Notice that these components are functions only of the
initial conditions pertaining to the longitudinal com-
ponents. The initial conditions which appear in the
equations for Ag(r,s) and B;(r,s) are not those speci-
fied in the ordinary t space. Rather they are their
s or r transforms. It is easy to derive the transforma-
tion of these initial conditions from the original data.
In Section 8, Ch. I, these transformations will be re-
viewed again and will be illustrated for the way of
computing them from the original data. For the moment
it will be assumed that the transforms of the initial
conditions appearing in the second members of A?(r,s)
and Bg(r,s) are known and therefore that the factors

Ag(r,s) and Bg(r,s) are already determined in the R spacé.
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I-3.3 The next step is to solve for Vg and 85 from the
differential equations of the Polsson type as well as

to fix the proper values for the separation constant p.

The explicit form of this differential equation de-
pends on the cross-sectional geometry of the guide.
Notice that A§(r,s) and B§(r,s) are independent of this
cross-sectional form. The separation constant p must
be such that the field satisfies the transverse boundary
conditions at the walls.

In wave guides, primery interest centers in the axial
propagation. If the dimension of the cross section is
small compared with its length, it can be assumed that
the transverse fleld is already formed. Under this
assumption it is easy to find elementary solutions for
75 or 63, The equation of the Poisson type referred to
above is the same as the one obtained in the study of
the propagation in the permanent state in wave guides.

This equation has been solved already for some
typical cross sections of wave guides. These computa-
tions are not going to be repeated since they have already
been done. These solutions can be found in several books
on wave gulides. A special mention is made of the important
work on this subject of Drs. Chu and Barrow., It will be
assumed, therefore, that ¥3, 93 and p2 are already ob-
tained and consider them as known quantities. In Ch. IV
a table of those functions is given for some typilcal

cross sectlons.
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1-304

The axial component of the electric and magnetic in-

tensity vector, in the R space, i1s therefore given by

gy [0 K] peoheds

ngxpxaﬂ¥§~<

)

re-k?

.

r? -k?

%(xi)xg)

[I‘B (0,S)+ 3(,(3)(0 )] IIC[Sﬂ (1‘, 3(4,)(1"03

r?-k?

L

r2-k®

e

0 (x,,x,).

. (9)13

~

The partial derivatives with respect to x; and x, are

~

b3

2

..L“

¥
’—l

rA 5(0,9)+ AB(X {0,8) M [s«aé(rﬁ)+o4é2:)(r»°)]

re_k*

\ T B3 ©,9+ B;(\( 3)(0:3) _

?.kz

>

rz_ka

rZ-x?

ﬂe[s@tr,ow;zﬂ<r,o>]]>

~

%
9x1

S8

705
Ixy

axz'J

Introducing these partial derivatives in (7)12 and

using (9)I3 we obtain the field solution, in the R

space, of the intensity vectors in terms of the

initial spatial distribution at t=0 and the initial

time condition at X3=O.

X3 axis.

This field propagates along

(10)13

Note the Dirichlet!s character of the solutions.,
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£ = .L.?fi)rM*(r 9-G __2) Sﬂn*(r,syel(o 1)L O L -
3% E*(x ,XZ,I',O) rXk, (x ,X,I',O)
ML T, N )
Ez" hl 2Xl 3 (hl )S/‘(N (T,S)+E2(O,S)———~—&—+Hl(0,s)s/4——:;é-;; -
(L Z351 3 2("1’5111')0) %{(x »Xp 5750)
( 2“3)‘21‘/?e (9 h 9x ) Susd69-2 2o~ 2132;
E§=}//3(r2—52/4e.)M§(-r,s) -
V55 (rP-s%ue (x5 5)
20
}f{:%?'é)rNB&’ )"'(& X5 )S&M*(I‘,S)i'Hl(O,S) /‘Eﬁ-Ez(O,s)se;—i-::E;é -
91 -EE 144?@39 (l 9?%)——&V¢%QQ sé%l@ﬁp%;%» rE*G&p%gﬂ)
311 c? R S/‘-é s,ue
Hy=( %—;ﬁng(r,s) & ¥, ) se U309+, 3 T - B0y s)se o - )z 3
r*- s%ue ~sue
20 K220 rE* (5% ,,50)
-6 7—3—15 59+ & hl,&ﬁ L sz, 9)- -5 22-2‘5/45 é_:z;

H§"93(r2-s%ae.) N';(r, s) -
-ch;l-i(rz—s"faf—)»@(rﬁ)

in which  e¢®= /_‘1_5 speed of light in the medium .

! 1
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(11)I3 represents a mathematical field. It is composed

of the superposition of two general and independent
electromagnetic fields corresponding respectively to
initial conditions at x3==0 and t=0. The first line
in the equation for each vector represents the field
generated for excitation at Xg= 0, while the second line
represents the one generated for the initial spatial
distribution at t= 0. To separate them it is only
necessary to equate to zero the initial conditions in-
dicated with Roman letters or the ones indicated with
the script type. A further separation of fields will
be made in Section 5 of this chapter.

Section 4 - First inversion of the field (11)I3 with respect

to r. Initial conditions at x3==0.

I-4.0 This section will deal with the inversion of the field
from R space into S space. This can be accomplished by
taking an invefse Laplace transformation, with respect
to r, of each of the above components.

I-4.1 It can be observed in (11)I3 that the inversion of
the terms indicated with script type letters, can not be
performed unless the initial conditions at t=0,
Vg?xl,xz,r,o),yﬂzgxl,xz,r;o), E?(xl,xz,r,o), 52711,x2,r,0)
«Zq?xl,xz,r,o) and‘ﬁg?xl,x2,r,0) are expressed explicitly
with respect to r. This means that one has to specify
a definite initial spatial distribution. Once a spatial
distribution is specified, it is possible to proceed

with the inversion.
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The situation is quite different with the initial
conditions at x3= O. The inversion with respect to r
can be performed even if these conditions are not
specified, since they are independent of r. Initial
time conditions at X constitute an important branch of
problems of wave propagation in such systems. Therefore,
this last problem will be dealt with in much of this work.
I-4.2 By simple inspection of (11)I3, and initial condi-

tlons at Xq= 0, one can obtain the types of r transforms
which must be inverted. They are:

2
- r
R (r) (rz-s%ue)(rz—kz)

. _ r
’ RA(r)— 72_a?

- r
Fa(r) (rz-s%ua)(rz-k

we

1
Re(r)= <5
2) 5(r) r2_g2

2

Ry(r)= a®= s%e or k° .

“weo

1
(r-shee) (r-x?)
All these transforms behave as 1/r’ when r »ocowith =2
except RA(r). This means that the inverse functions are
zero at X3= 0 except R4 which approaches a finite constant.

By the simple and well-known process of inversion, it
is found that |

-l . X -4
Z’rRl(r)= .p.l,,__k sinhka-g. sinh s.g-]; IrRA(r) = cosh axy

-1 r X -1
Z 1Ry(r) = i.)l-é_‘._cosh kx3-cosh s—cﬁ-] ;Z’rR5(r) = l-.a sinh ax,
<

-1 r
erB(r)f. 3 i-sinhk:g --‘Slsinh s 1?] 3

(o

and the final mathematical field, in the S domain, 1is
given by




E=L1 (L %3 {AB(o,s)[k sinh kx3-$ sinh j’gz]+A3'(x 3)(©8)[cosh koxz ~cosh i’gz]} -
-ﬁ%(«%—z-ﬁ—? {8133(0,8)[cosh kx3- cosh Ei?] +BL »©9 [ sinhkx3-c sinhffﬁ.]}

sx sX
+E4(0,8) cosh —6-2 -\/_é? H,(0,s) sinh —c—z

Ezz_l_el_i@){@(o,s)[k sinh oz -2 sin hm}*‘*&@)("’s)[wshkxz-"‘“h -5%3]} *

p2 hp dx 5 c
29
+ fz-(%i_x.f){s%(o,s)[oosh}og cosh _‘.il»fBB(x 3>(o,s)[5 sinhkx3 - ¢ sinh 2(2]} +

+E2(0,s) cosh f%(i +‘[§ H; 0,s) sinh S_:i

E3=#3{A3(0,s) cosh k-xB+A;(x3) (o,s)l-{l- sinh ka}

(1)14

- 1/(1 20 _s SXq ot sX
H] pz(.ﬁiﬁ)lm(o,s)[ksmhk@ S sinn c]*BB(x 3)(o,s)[cosh toxg - cosn 22314 4

o

+ .22.(_1_ afl 4 sAB(O,s)[cosh kx3 - cosh:zz] "A'B(x 3)(O,s)[-k5- sinh kx3 -¢ ijmf—z}]}-»

c
+ Hy(0,s) cosh fgﬁﬁ E;(0,s) sinh E%(i
sX
Ho=-1 (hz %o {B3(O,s)[k sinhlotz - g smh—az]-bB;(XB)(O,s)[cosh ks - cosh .s_)cti]} -

- £ (h an ){SAB(O,S)[oosh kX3 - cosh -s%}-] +A3'(x3)(0,s)[§ sinh kx4 - ¢ ijm_s_:;i]} +

sX SX
+ H,(0,s)cosh —62 4;—%1431(0, s)sinh ——c-}-

H3=93{B3(0,s)cosh kx5 +B§(x3) L sinh th3} .
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Section 5 - Direct and reflected waves. Independent initial
conditions at x3=0. The electromagnetic fields

TH, TE and TEH.

I-5.0 The mathematical field (1)I4 can be decomposed into

two fields: the direct and reflected components. Each
one of these fields can be obtained by using the well-

known trigonometric relations.

kx -Kx
cosh kxj3= e dre 3
2
kx -kx
sinh kx3= e " J-e 3
2
x X3
cosh 3%3 _ e=*+e°®
c 2
X X.
sX 32s -2g
. 3_ec” —-e*“
sinh - 5

in (1)I4. The direct field is composed of the terms
which contain the exponential with negative sign, and
the reflected field is composed of the terms with
positive exponent. After some simple collection of
terms, (1)I4 can be written as

En= End*Enr

Hp=Hpg + Hpp
in which the indices d and r mean direct and reflected

n=1, 2, 3 (1)15

components. The field (1)I4 is then formed by a linear
superposition of the direct and the reflected components.
I-5.1 The direct and reflected fields may have independent

existence. In fact

#*
z(x3) Ena=Ena
% n=1, 2, 3
;{(XB) Hng =Hpg
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I-5.2

or %

Z E _=E
(x3)"nr  “nr

x (=1, 2, 3

z,(XB)Hnr = Hpp
satisfy independently Maxwell'!s equations in R. In
paragraphs I-5.2 and I-5.4 the conditions will be in-

vestigated under which

Eng
n $n=l’ 2,3
H
and nd Z
Enr
>n=1, 2, 3
Hnr |

satisfy Maxwell's equations in S as independent fields.
The terms "direct" and "reflected" are inappropriate
in the S domain. They are, nevertheless, used because
when the fields, by inversion, are carried over into the
time domain, they represent waves moving in the positive
and negative directions respectively of the x3 axis.
This character is distinguished in the S domain by the
presence of the exponential function in the transforms,
If, by nature of the problem, the actual propagation
takes place in the positive or negative direction of the
longitudinal axis, then only the direct or the reflected
field respectively is taken. In some cases the presence
of these two fields 1s required; for example: first, an
infinite wave guide is excited in its middle cross sec-
tion and the energy flows in two directions along the X3

axls; second, two different sources may exist in the
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guide or there may be discontinuities in the cross
section which produce internal reflections, etc.

I-5.3 A simple inspection of (1)I4 reveals two types of
exponents of e: 3%3. s and x3k=§cl m,

The terms associated with the first exponent propagate
wholly with the speed ¢. For those terms associated with
the second exponent the propagation occurs in a disper-
sive media; although the perturbation moves with the
speed ¢ this does not mean that the main bulk of energy
moves with the same spesd. For these terms the concepts
of group and signal velocitles and time of signal forma-
tion will be introduced. If Egs. (1)I are looked upon
with physical eyes, they wlll give the strange appear-
ance that two types of propagation exist simultaneously
for the same initial condition. This circumstance must
not be interpreted to the effect that there is something
wrong with these solutions. They are, in general, correct
solutions from the mathematical point of view. The fact
is that they are not necessarily electromagnétic solutions.

The next paragraph is devoted to investigating the
conditions under which these solutlions are electromag-
netic ones.

I-5.4 The vectors E and H, in the S space, are said to be
electromagnetic ones if they satisfy the set of s-
transformed Maxwell'!s equations.

If we keep all the initial functions in the S domain

arbitrary and independent from each other, then by a
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simple substitution of (1)I4 into Maxwell's equations
it is revealed that they are not electromagnetic vectors.

The conditions under which (1)I4 are electromagnetic
fields are attained when Maxwell!s equations are ldenti-
cally satisfied.

The equations

VXE +suH=0 and

VxH-seE=0
are satisfied identically by the vectors E and H(l)IA,
for all arbitrary and independent values of the initial
conditions; but the relations

V-E=0 and Y-H=0
are not satisfied unless the initial conditions are
properly rélated.

The process of substitution is long and requires
tiresome algebraic manipulations, but otherwise is
simple. It is omitted here in order to keep the pre-
sentation compact.

In order to make a systematic discussion of this situ-
ation, three typical cases will be considered.

a. Only A3 and A% are given as independent initial
conditions and By = B3 =O.

From (1)I4 it can be seen immediately that
the corresponding field has a TH character.
Under the above assumptions this field is an
electromagnetic one if




b.

11(0,9)=+ (& 32D
r—l— sA3(O s)
p<c
H2(0:3)=“(‘l‘ ‘—"2)
| % ’ ()15
El(O,S) +(hl 5}‘(‘%)

1
’ —p—é- A%(XB) (O,S)

£2(0,8)=+ (& T

~

It is clear that case a can be divided into two sub-
cases, a; and ap, defined as

a1. A3(0,s)#0 and Aé(XB)(O,s)-:O

85 A3(O s)=0 and A;(x )(0 s)# 0.

(Notice that it is equivalent to specify A3(x ) or
a transverse component of E.)

Only B3(0,s) and B3(x )(0 s) are given independent
initial conditions and A3(0,s) = A3(x3)(0 s) = 0.

From (1)I4 it can be seen that the corresponding
field has a TE character. Under the above assump-
tions this field is an electromagnetic one if

20 M

E1(0,8)=- (L " ‘a';cf)
>—%— sB3(0,s)

20 pc

E5(0,s)= +($L-——2)
, (3)15
H; (0, s)—-»( By 3x1)
1 B'(O,s)

28 3

HZ(O S)--r-(-h]—‘- -2—)'(2
2 J J
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I-5.5

It 1s clear that case b can be divided into two
subcases, b; and by, defined as

by. B3(0,s)#0 and Bé(XB) (0,s)=0

bz. B3(0,5)=0 and BB'(X y(0,8)#0 .

(Notice that it is equivalent to spec:.fy B!
or a transverse component of H.)

3(x3)

ce This case corresponds to the ass?mption:
= a! —_ = -
A3(0,s)= AB(XB) (0,s)= B5(0,s) = 33(13) (0,s) =0
but the transverse initial conditions are not
necessarily zero. The resultant field has a TEH
character. To be electromagnetic the requirements are

2
7§I(h281(0,o)+ 7%5(hlE2(O,s)= 0 or
(4)1s5

T (g (0,8)+ 52-(nH,(0,9)= 0 .
This case ¢ can be divided in two subcases,
c1 and cp, defined as
¢y, E1(0,s) or E,(0,s) and Hy(0,s)= Hy(0,s) =0
c,. Hy(0,s) or H2(O,s) and El(O,s)=E2(O,s)=O.

2
Case ¢y will be called "electric initial excitation".

Case c, will be called "magnetic initial excitation®.

By inserting (2)I5, (3)I5 and (4)I5 in (1)I4, this
mathematical field breaks up into three independent
electromagnetic fields which correspond to TH, TE and TEH
waves. It can be noticed that these fields were obtained
directly without the introduction of three different
potentials.

A summarization of this result is given in Table I for
the direct waves. The propér solutions for the reflected

waves can easily be obtained,
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ELEMENTARY ELECTROMAGNETIC WAVES IN THE GENERALIZED

CONSERVATIVE SYSTEM

CYLINDER.-S SPACE
PROPAGATION ALONG(+) DIRECTION OF x, AXIS

DISPERSIVE PROPAGATION

a.. T.H. WAVES b..T.E.WAVES
INITIAL BOUND | INITIAL BOUND
GOND. FIELD VEGTORS COND. | COND. FIELD VECTORS GOND. |
> | »8 N
7 | EBmea) | B g |5 (se)| wseos, Vst
=) 1 dY¥s 2cAs03) Shuge R [ (.L 205 )
< Ez"(hgb % ) o Z ¥ hy ox,
c o Er
(@] -%31€2+w2' o $0
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P hyd, “5"-' < _X3 8 T -
ul H3= g ”  |Ha=+0;84 0,5)e EAAEE N“&
—- +(7\L bx') _\2 56"‘\'52*‘% x:.’_ Ei= (Tlfz%%:) pSC e--53v52~+wc f;,
A As( Z5 L 265 (o v B3(0,S) .
< E2=+ hszz r“‘_‘ o7 G Eo= -\, E‘) XN
< - sz' "~ -Q'; l NS’;’ ::'
o Ea’ ‘PB (0 5) m [sa] E3= (o} D“—'
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..an_: . 3 _I,o + W
c.. I.E.H. WAVES.
UNDISTORTED PROPAGATION
( DO NOT EXIST IN WAVE GUIDE )
TR e, ELECTRIC EXCITATION c, MAGNETIC EXCITATION
BOUND JINITIAL BOUND
COND. FIELD VECTORS COND. | COND. FIELD VECTORS COND.
X X
E-E 0)e ©° o E-+ Hy(o,s)e” € ° 2
" ——
« Xa G ~ LX3 &
S, |EcEddos)e ©° 3.& S | P EHo,s)e T ° ;‘Ef\.
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S |H=—/FE0s)e C° :lgl g [H=Hlogse ° ) s
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ur H2=+/ﬁ-—' E,0,8)e © ° ;‘:'_ % H,=H,(o,s)e © S =
o3 o3

TABLE N°ilL.
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TE and TH fields exist in configurations equivalent to
wave guides. TEH fields exist in configurations equiva-
lent to transmission lines and coaxial cables. It is
presumed, but not proved, that TE and TH modes exist in
systems whose cross section is topologically equivalent
to wave guides, and TEH modes in those topologically

equivalent to transmission lines and coaxial cables.

Section 6 -~ The TEH field and its inversion into the instantane-

ous time domain.

I-6.0 The TEH fields can be transformed back into the time

domain in a simple manner by using the well-known
theorem of inversion.

If £(t) exists as the corresponding inverse transform
of F(s) then

-1 _
Z F(s)exs=
) f(t -x) for t>«,

for t<x

In this case a=‘§?==to. This means that if f(t) 1s the
initial time function applied to the system at x3==0,
then this perturbation reaches a cross section at a
distance x3= a after an interval of time equal to a/ec.
The functions f(t) and f(t -«) have the same form but
they are énly shifted in time.

Applying the above principle to the TEH field, Table I,
the undistorted character of its propagation can be seen
immediately. This problem is simple and the results are
already known. Therefore, no more attention will be

paid to these TEH fields.
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Section 7 - Dispersive character of the TE and TH fields., The

problem of inversion. Basic analytical links of
the corresponding transforms.

I-7.0 The inversion of the TE and TH fields constitutes a
difficult mathematical problem. It is difficult because
of the integrals that must be handled and because of
its mathematical instrumentation which is delicate and
involved.

The irrational form of the exponent of e indicates
that these cylinders act as a dispersive medium. The
waves, during their propagation, suffer deformation of
their amplitudes and changes in their frequencies.
Natural modes of propagation and cut-off frequencies
exist. Although the wave precursor moves with the speed
of light in the medium, this velocity tells nothing for
itself. It is necessary to introduce new concepts in
velocity, mainly group and signal velocities, to have a
correct quantitative idea of how the propagation occurs.
In this investigation these velocity concepts are care-
fully studied to see if they make proper sense in
wave guides and mainly to discover how these concepts
are influenced by the form of the incoming waves. This
last aspect 1s quite delicate and not very well known,

I-7.1 Even in the most simple case of excitation the problem
of inversion is very hard to perform. The difficulties
are of a mathematical character. To solve a particular
problem or to integrate the corresponding expressions

for one field component is not a satisfactory and
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practical solution. A mathematical method, rather a
simple one, has to be found such that a fair number of
practical problems can be solved with it.

Most of this work is devoted to obtaining this
method. In Chs. II, III and IV the problem of inversion
is attacked in its different aspects.

Chapter II : General analytic study and the
integration in the s plane.

Chapter III: Introduction of complex transforma-
tions and integration of fundamentel
transforms.

Chapter IV : Asymptotic and graphical solutions.

I-7.2 A systematic method of attack will always be followed.
The first natural step is to find the general analytic
relations between the transforms which appear in Table I.
This procedure enables one to find typical transforms
which generate the others. In this way the possible
number of inversions will be reduced. In this section
one will study these relations, which are independent
of the type of initial conditions. Only the parts of
these transforms which are functions of s will be referred
to and the geometric factor or other constants will be
omitted. For strategic reasons only will a prototype
such as the following transform be used

Fo(s) =F(s) = (1)17

in which k= 524¢U§;c0%==p2c2; F(s) is a function of s

which can replace any one of the initial conditions in
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Table I. A rapid inspection of the table reveals that

the following type of transforms are available.

Fo(s)= F(s) e;:k ]

Fl(S)z SF(S) e.;:k =sFO(s)

Fp(s)= F(s)e™® = -2 F (s) (2)17
F3(s) = sF(s) e"akz-‘S-a%; Fo(s)
F_,+(s) = I"(s)ke"’gk =+ j?%zzz Fo(s) o]

The meaning of (2)I7 is as follows. If one can find the

inverse transform of Fo(s) then, the corresponding in-
verse function of Fl(s), Fz(s), F3(s) and FA(S) can be
obtained by a simple process of differentiation in the
time domain. The above statement, although nice and
simple, can not be utilized in the case when Zf%o(s)
comes out as an asymptotic series expansion in the
Poincare sense, since the term by term differentistion
is not then permitted.

The equations (2)I7 represent the analytic relations
between the s transforms of the different components
of the field vectors. The last statement indicates
that we cannot consider the solution of only one com-
ponent of the field, since sometimes the other cannot
be obtained by differentiation. Most of the time the
inverse transform comes out in the form of an asymptotic

expansiorn.
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Section 8 - The initial conditions expressed in the s domain.

General type of s transforms to be handled.

I-8.0 In

the preceding section, Section 7, the prototype

transforms (1)I7 were obtained. Nothing has been said

so far about F(s), which plays the role of an initial

condition in the s domain. In this section, what may be

the analytic structure of F(s), for a fairly large number

of practical initial conditions will be investigated.

I-8.1 Some simple examples of initisl conditions will

clarify this situation.

1.

3.

Suppose that one specifies only the axial
component of the electric vector as

0 t<0

E’) = TH field
X3-

3)x4=0 ‘%(l-mmwt) t>0

in whjch‘i} is a function only of the transverse
coord1nate< x1 and x2 and is such that it satisfiles
the boundary conditions.

Then:

a,z
F(s)=45(0,s) /(l—cos wgt)e” Stdt-——-—-——-——- -
A s (s%w?)
Suppose now that ?—2 is given as
x3)X3=0
2 0 t<0 '
éﬁ%) = TE waves
XB X3=O QB(Xl,Xz) sin th t >0
Then:
w
F(s)=B (O,S) /sin wt e -5t34= 0
s2Hw2
Suppose here that
IE, 0 t=<0
-"*) = TH waves

2x3 x3=0 3}3 sin At sin@t t>0.

Then:
2A(B 4

[s2+ @+2)?[s AN SR

F(s)= A'3(o,.s)=
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This elementary example illustrates the procedure
necessary to obtain the corresponding transforms
of the initial time conditions.
I-8,2 If the initisl time condition is given by an amplitude-
modulated wave, whose time variation elements are given

by the general form
£(t) = m(t) sinwgt ,

let

ZLr(t)=F(s) and

Zm(t) = M(s) is known,
then:

F(s):-éj-‘i—[M(s ~1w) -M(s+ iwo)] in which 1=+-1.

See "Transients in Linear System", Gardner and Barnes,
Vol. I, P. 248.

The modulating function m(t) can have a large variety
of forms. By a proper combination of simple exponential
functions a large variety of modulating functions m(t)
can be obtained. A simple discussion of this subject is
found in the book "Traveling Waves on Transmission Systems",
by Loyal Vivian Bewley, J. Wiley, 1933, Ch. I, P. 16.
The use of exponentials in the construction of envelopes
means that M(s) will be formed as the ratio of two
polynomials in s.

I-8.3 For frequency-modulated forms of excitation, the
corresponding time function has the form

£(t) = X, cos (ot + m sin at)

Q0
=3 Iyn) [cos(w, + neft + (<1)Pcos («, -na)t],

m =constant.
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For practical purposes it is only necessary to use a

finite number of terms. The Laplace transformation of
f(t), for m constant, will be again the sum of rational
fractions of s.

I-8.4 If it is considered that ¥(s) has the form, in general
of the ratio of two polynomials in s, the number of pos-
sible wave forms of excitation becomes unlimited. By a
proper combination of these forms still a larger number
of new forms of initial time functions can be obtained.
See, for example, Gardner and Barnes, P. 338 and follow-
ing pages or any other table of Fourler transforms.

I-8.5 Sometimes the time parts of an initial condition are
expressed as the product of two factors as in I-8.2.

Let this initial time function be expressed as

£(t) = () £5(¢)
and assume that the Laplace transform of each factor is
already known. The theorem of complex convolution allows

us to compute the transform of f(t) as

cti®
2 [f(t)] =Ly [fl(t) x fg(t)] =F(s)= .é.,lﬁfpl(s_w) F,(@)dw .
in which (R~

l’?t)fl(t)r-'Fl(s) and

L) f2(t)=Fyls) .
The use of some theorems allows the computinz F(s)
without performing the above integral in some simple,

but important cases.
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The next two theorems were taken from the book
"Transients in Linear Systems", Gardner and Barnes,
Vol. I, Pgs. 275 - 290.
Theorem I - If f(t) and f,(t) are L-transformable
functions having the X transforms Fy(s) and Fy(s),

Al(S)

respectively, and if F(s)= is a rational

B, (s)
algebraic function having g f%rst—order poles and

no other, then

- - Al(sk) _
F(s) k=1 Bl( - Fo(s - sy)

Theorem II - Let f3(t) and fz(t) be £-transformable

functions having the &£ transforms Fy(s) and Fy(s),
respectively, and let Fy(s) be a rational algebraic
function having n distinct poles sy, s,,***s, with
sp of multiplicity my
Sp of multiplicity m,

n of multiplicity m, .

Subject to the restriction mIbmé+°-~+m qg; then

no Tk ( 1) K M-}
P(s)=2_ 2 %2 £l [6 Fz(s)]

O []
k=1 351 (me-3)°  |gs e

in which
Kkj’(jgl) [d (s- Sk)mkwl(s):]

-1
dSJ = Sk .
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I-8.6

I-8.7

These theorems allow us to investigate further the
analytical structure of F(s) for cases of practical
interest. If the original time function fz(t) is formed
by a linear combination of terms of the form KtPe~*%, then for .
different values of k, n and « then it is clear that F,(s)
is a linear combination of expression‘ sfik“+ and
therefore F(s) is again the ratio of two integer poly-
nomials. If Fp(s) is a meromorphic function, it can be
expanded, if possible, by means of the theorem of
Mittag-Leffler and the result is that F(s) will be ex-
pressed as a series of terms which are rational alge-
braic functions.

In this paragraph we will consider a more complicated
case of the initial time function f(t) when expressed in
terms of Bessel's functions of the first kind or in terms
of series of the Neumann type. This type of excitation
may occur, when the output of a wave guide excites a
second one. The transforms of these functions are ex-
pressed in terms of NEZ::;Eas can be seen from a table
of Laplace transforms. For example see Gardner and
Barnes, P. 352.

An important case of wave guide excitation occurs
when the initial time condition has the form of pulses.

In this case in F(s) factors of the type e Vs will appear.
The presence of such factors does not produce new types

of F(s) but indicates a shift in the time domain.
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Thus let
£(t) =ft.1’?(s,‘m e“km for t > o
Then it is well known that
;(:1;( s,7/s2+1) e"’se‘kmsf(t -) t-F>ec.

I-8.7 As a summary of Section I-8 we can say that for a
rather unlimited type of wave forms of guide excitation
at x3=0, one can consider that

F(s) has the form of the 3?§1Q_gf two

polynomials in s and ¥s2+1

and so F(S(/gg:f e'kvg;:ifshall be written as our
typical transform. This statement should not be inter-
preted to mean that one has proved that all possible
cases of excitation must have the above structure.
Rather it may be said that a practically unlimited
variety of forms of excitation are contained in that
transform structure. Of course, time functions whose
transforms do not have this specific structure can be
found, but these cases are unusual ones and perhaps
of no practical interest.

Section 9 - Further analytical restrictions on F(s.¥s%f1) to
assure electromagnetic solutions in the t domain.

I-9.0 1In Section 5 of this chapter it was found that when
the field corresponding to the vectors in the R domain
were transformed back into the S domain, the transformed
vectors do not necessarily satisfy Maxwell's equations
in the S domain.. Only after some constraints were im-
posed on the initial conditions (Egs. (2)I5, (3)I5 and
(4)I5) was the resultant fileld electromagnetic in the

S domain.
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We now face a similar problem. The elsctromagnetic
field in the S domain must be transformed into the t
domain and we will investigate when this transformed
field is electromagnetic in t in this section.
We will prove that the transformed field is, in

general, not electromagnetic. It will be only if some

restrictions are introduced in the vector components at
t =H-X3/c.

I-9.1 This investigation will be based on two fundamental
theorems on inverse transforms. Although they are
well known, they will be repeated here.

Theorem A: Let f(t,k) be a function of the two
independent variables t and k. It will be assumed that
a.- f(t,k) is at least of class Cj.
bo -
=0 t<k
f(t,k)=
#0 t>k

c. - The function and its time derivative isifﬂ
transformable having respectively

F(s) J/f(t k)e~Stat
G(s)‘/rat [£(t,k)] e Stat
as transforms.

We will prove that

C+loo

fzt)(t,k)==f(*k,k)~b(t-k)+§%§J/;g(s,k)e5tds.

C—-tLoco

To prove the theorem we have

lst From b and ¢ we can write

o«
F(s)=J/}(t,k)e‘Stdt and
/48

(t, k)e‘Stdt .

G(S) (t)
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2nd Integrating by parts one obtains

G(s)=,2’tf;t)(t,k)=f(t,k) e-Sth/e-s"f(t,k)dt

k “k
=-e"K3f (+k)+ sF(s) .
3rd By hypothesis
-1
]

ZG(s) = £(4y(t,k)

and therefore, by the introduction of the singular

unit impulse fu‘r::g_’g;&on/z

4 (t)=1_ [eS%as

2mi g -i®
we get coflv'@ ti®
! I -ks_st 1 st
f(t)(t).. ST f(+k?/:<iw e stz s?(s)e ds
(] Ca-bw
or o rieo
1
£ (£) = - T (rI)aag (£ - 1) ke /% ar (s)o5tas

and the theorem is proved.
Theorem B: Let f(t,k) be a function of the two
independent variables t and k.
By hypothesis we will assume that
a. -f(t,k) is at least of class Cj

b. -
f(t,k)= [0 for t<k

for t=k .

c.- This function and its derivative with respect
to k is o, transformable having respectively

@
F(s,k)=/f(t,k)e"5tdt
° 0
h(s,k)=/fzk)(t,k) e~Stat
Q
as transforms.

Then:

c+ioo

1 ' t
L1tk = £(+k ) (¢ -k)+§%i- F.(k)(s,k)es ds .

C—L
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I-9.2

To prove the theorem we have:
oo
1st F(s,k) =/f(t,k) e-stay

H(s,k) /f (t,k)e-s’cdt .

(u)(s k)= ;%/ £(t,k)eStdt=—e" Skf(+1f)+ st A AN
= -eSKf (tk)+ .1 L(6,K0)dt

3rd From the last equatlon we get o #ico

fk(t,k): + —é%’lzc)’/ SK StdS"’—‘];"/F(k)(s,k)e ds

Co— ¢ (-4

so that finally

Cof Lo
£, (t,K)=1(t, k) o (t-k)rsl /k(s K)eStas  (2)19
and the theorem is proved. §-ce
These theorems will be applied here to find the re-
quired restrictions on the initial transforms. The
following discussion 1s concerned only with the TH and

TE fields, not with the TEH fields. The TH and TE fields

will be considered separately. The matter to be inves-
tigated can be expressed briefly by saying: The vector
fields Table I, for the TH and TE systems respectively
will be transformed back into the t domain. From El’
Ez, E3, Hy, Hy, and Hy we will pass into the t domain
obtaining &, &, &3, #1, #,, #,. The question is:
What conditions shall be imposed on A3(0,s); A;(XB)(O,S);
B3(0,s); B§(x3)(0,s) in order that the last set of
vectors verify the equations:
-
ngfﬂ%-:o; VX%-§§€=0

— e
v-E=0 v-H#=0 .

oo
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Since we have four possible initial conditions we
will investigate them in order.
I-9.3 Take the TH field from Table I, Section I-5.5
Case a. - Initial condition E3(0,s) or its equivalent

A3(0,s).

We consider the vector components, in the t domain,

in accordance with the integral expressions

F '-('ﬁiT') Gl
X
> 1 % 2”1‘/1;3(0 9 Vs2rwE e < Vs Wl gStyg
2=~ -}-1—2- T)xe c, fLoo
cf&w
gB 32”j;/L3(0 s)e"!’rs +lUc. GStds
C oo
1 Ws
% (har G Pe®
Lfi sA3(0,s) /sl Stys
% ) ( ggis) 3 e e
2~ " “h, e, -t
#,=0
81 - Consider first the equation
v-&=0

In cylindrical coordinates we have

V€= 152 (h £t (0 )}+————_o :

If we set X,= k/c and we apply theorem B Section I-9.1

P. 45, we have

C'/‘Lw

-&o(t X3) ﬂo(t—fa)_%z”if/' 0,9 /'Sz"'_wze? 5%+ oStas

t-a
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"
h, 9¥;
%(hagi):- %(-Ef ?—J-cf—_-) G+l
%21 A3(0,3)-/S?——2 9° S+ stds
26 E, ). 2y | P2
axz 172 axz hzi J o~ {®
and therefore "
v-E- 2 2 x b (1 -22)-—1 2 {%‘ or v }211-1 h 696 gt
and remembering that V&%3*Ph@- Q=@

—
_ X X
VE B G2, x (0 -2
This means that in the wave front this equation is

not satisfied unless

X
E3(*‘§‘)x3) =0. (3)19

an. - It can be verified readily that v-4=0 will be
satisfied without any further restriction on 43(0,s).

aze - Consider the two curl equations now. After a
similar substitution and by the appropriate use of
Theorems A and B we get the following results,
which can be checked easzly.

2 (22 ,19-f32f@351!)=0

baj(\«‘;, VB #6224, x,)=0

>

WA
V%E%gz;=0 requires that

P
x
53(1»_&1,;(3): 0
x x
‘pﬁ452§i0 requires that E;Gu?g,xs)-y%%ﬁ;Guéiyx3)= 0

X x
Ei (+ '—‘5 sX5 )*}%74(-*—03 sX3) = 0
7/

A
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Summarizing it can be said that the field created
by the initial condition Y343(0,s) = E3(0,s) will

be electromagnetic in the t domain if

%(Xl,Xz,XB,t)t:"?‘:— 0
"'g(xl:xzsxpt)t=+3'1/52‘—7(:’L(x1’x2’x3’t%=+“-g$0 r (5)19
[}

ape = Now our problem 1is to investigate what must be

the analytical structure of E(0,s), or its equiva-

lent A3(0,s), to fulfill (5)I9. One has to observe

that (5)I9 yields the condition at t=+x3/c; that is

among the initial values of the field vectors. Then

the well-known "theorem of initial value", in the

theory of Laplace transforms, is the natural tool

to be used at this point. An approach to the

"initial value theorem" can be reached as follows.

Let ¢#,(t,k) be a function of the independent variables

t and k and such that it satisfies the conditions in

Theorem A. Its derivative with respect to t will be

indicated by ?gcyﬂt,k) and its transform by #(s,k).
First, from Theorem A the following equation can

be writE?n:

G(s)= l;z;.'@(k,t) e=Stat=- e~Mp (11, k) #sBy(s,k) . (6)19
Second, we will assume that #,(s,k) is our standard

transform

B, (s,k) = F (s,/s%uf ok VEFHE
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in which F,(s,Vs?+w) is the ratio of two poly-
nomials in 8 and Ys2?+w2. Substituting in (6)I9 and

k

multiplying both members by e the following ex-

pression is obtained:

fﬁ,(ﬂ(k t) e=5 () 4t = - P(rkk, k)+ sF(s, VeteaE) ells —Vs%?)
Now let s—, then ¥s%w’—»s and s-vng—i+0 and
F,(s,V s%uf) —=Fp(s,s) which is rational function in §.
Then

/¢(ﬂ(k t) e s Rat= gm(k t)Lme ™Mt = 0 =

? —_¢(+k K)+ LumsFp(s,s)
. é’:: [an(s,s)]=¢(+k,k)=¢(t,k)t“k

when we approach from the right side of t. This is
the proper form of the "initial value theorem" for
the type of transforms we have considered as standard
type.

Since, by hypothesis, Fp(s,s) is the ratio of two
polynomials in s, its behavior for large values of s

will be like

w, %,
sk (S Sg_;:s —? —-g?:-i

in which My, is a constant and ¥" is an integer.
age - Let us apply this theorem to the set of conditioms
(5)19. To satisfy the first one must have
F3(s,1/se+af) = AB(O’ s)
and therefore it is required that
A3(0,s) behaves at least as M3 when s —oco.
s—)co )"?—
age - Let this situation for the last two conditions in

(5)I9 be investigated.

We will prove first that: if A3(0,s), or its
equivalent E3(0,s), is the only initial condition of
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excitation, that is, all others equal zero, then
5;(xl,x2,x3,t%=+%;0
Ei(xl,xz,xB,t2=+ng

e
Suppose that 5} and El at t=v+x3/c were not zero.
Then, since x3 can be any cross section of the
guide it can be x3=0. But at x3==0,E1(0,s) and
E,(0,s) are identically zero, since in the TH sys-
tem these components are proportional to A;(O,s)
which is zero. See conditions (2)15.
Then
Zum 5B (0,5) = 0

Jﬂ}}nsEZ(O,s) =0

S >co

and therefore

1f A;(O,s)= 03

which was to be proved.

As a consequence of the above property and
from (5)I9 we can conclude immediately that if
the field is to be electromagnetic, then
J?i(xl,xz,xy2+§=fé(xl,x2,x3,t) =0 .

am. - Since the tr;nsverse,cdmponents of the field
at t=+x3/c (wave front) must vanish, their cor-
responding transforms must behave properly when
s—reo, From Table I (TH waves excited only by
E53(0,s) we can readily find that this will be
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the case if

8-—)00 S

A3(0,5)~>  r=3

§—»o0 S

which is the required condition of excitation when
E3(0,s) is specified.
1
Case b. - Initial condition E3(y,)(0,s) or its equiva-

lent Aé(xl)(o, s)

Following a method similar to the one indicated in
Case a, it can be found readily that the field in the

t domain will be electromagnetic for all values of X3

and t if
O,s8)—>= r=2
B3 s)(0 )7
or its equivalent, M and N =constants

! N
A (o,s)-vg; rz2

3(x5)

I-9.4 In this paragraph fields of the TE type will be
considered.

As before, two cases will be regarded:

Case a. ~ H3(0,s) or its equivalent B3(0,s) is given.

Case b. -Hé(xs)(o,s) or its equivalent B'3(x3)(0,s) is given.

By a procedure similar to that followed in I-9.3 or by

a comparison of the transforms of the TH and TE fields

in Table I, the conclusion can readily be reached that:

Case a. - H3(Og§2;?£§ or its equivalent B3(O,s)a~£¥
if =3, and
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Case b, - H;(xs)(o,s)—,sl‘)-, or its equivalent
Bg(xz)(o,s),,slr ifr=2.

I-9.5 1In this paragraph the results obtained in Section I-9
will be summarized.
1lst - If the axial components of the field vectors,
€, at x,=0, for TH fields or %} at x3= 0 for TE fields,
are respectively given as initial conditions, these
initial conditions must be such that

EB(O,S) or its equivalent A3(0,s) for TH fields or

S > 8 —> oo
HB(O,S) or its equivalent B3(0,s) for TE fields
S—>»oo S >

must behave as g%:where Y=3. M=constant.

2nd - If the space derivations with respect to X3
of the axial components of the field vectors,
E;(J%) at x3=0 for TH fields or ?Z’;(XB) at Jf3=0 for TE
fields, are respectively given as initial conditions,
their corresponding transforms must be such that

Eé(xs)(o,s) or its egquivalent Aé(xa)(o,s) for TH fields or

Hé(XS)(O,s) or its equivalent Bé(xs)(o,s) for TE fields
must behave as .SE,? where =2, N =constant.

3rd - If A%(x:,,)(O’S) or BB'(X3)(O’S) are respectively
given initial conditions in the S domain, it is equiva-
lent to give the transverse electric components or
respectively the transverse magnetic components of the
field at x3=0.

The justification of the last statement is found in
the last two equations of condition given in (2)I5 and

(3)1I5, Section 5 of this chapter.
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Section 10 -~ Generalitles on the problem of inversion of the
TH and TE fields.

I-10.0 We are confronted now with the problem of the in-
version of the TH and TE fields from the S domain
into the time domain. This is the difficult problem
of this investigation. Chapters II, III and IV are
devoted to this task.

As a result of the basic discussion of Ch. I, 1t
is known that one has to deal with the inversion into

the t space of transforms of the type

F(S,W e
in which F(s,VEZZﬁﬁ is the ratio of two polynomigls
in 8 and Vs2w§. F(s,vg2;:25 is also restricted to
show a definite behavior when s-»co,

It is important to point out that the problem of
this investigation 1s not merely to find the inverse
Laplace transform of a specific function F(s). We
have to find a practical method to obtain the cor-
responding functions in the time domain of a large
family of Laplace transforms of complicated functions
of s. That is why three complete chapters are devoted
to this purpose.

I-10.1 The most natural starting point for the problem of
inversion is the use of a table of Laplace transforms.
Unfortunately, there is practically nothing which
might be of some help. Only a very few are tabulated
and can not be used directly even in the simplest

problem.
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The use of well-known simple theorems on inversion
does not produce anything of any practical value.
The Laplace Resultant or Convolution theorem, has some
theoretical value only for a subtype of our basic
transforms.
This subtype is
Fy(s): —————9-1{5@
in which Fl(s) is the ratio of two polynomials in s.
If, under this assumption, Fl(s) is expanded in par-
tlal fractions and, if the terms of this partial ex-
pansion are considered, then the above transform breaks
up in two types.
__A_k_ e"-‘a- S%w?

S=Sk Ys2+w?

for simple poles

and
Am e~%§ Szf-wg

(=57 Vstrar

Now from the tables

for multiple poles .

x'i'(-sé—ké—g = Ape 5t for t>0
A (x-1)
-1 o
E4 G:'S;W=A@“%E-I§T et5@t  for t»0
: x,
=0 for t<—
Zp-i e-’% v 52 wg_ c
VYs®rw? )
=J°[wc Y2 (.Jgi) 2] for t>-3
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and by the use of the convolution theorem, one obtains,

X
- 3
f—i Ak e_c} s w? =0 for t<—c_
(s- Sk7 Vsihw 4 t
= Skt /. -57F [w 2_(23 2] T

=hye [3 To |0V T2-(22)2|a

23
<

v

r X
=0 for t<-3
[ ¢4

_1); 2
f_l Aﬁx e z S +wc

(567 Joevad

~ e% f (6-1%Le 6w '/Tz—wg}df :

.

The above integral, as well as others which appear in
a similar way, were carefully studied and some expan-
sions were made in series. These series converge,
sometimes, very slowly and give no information about
the intrinsic character of the propagation. The con-
volution method was then abandoned. The results of
this type of integration will not be mentioned here.
I-10.2 The inverse 1ntegral

of’b“

£f(t)= 2ﬂi"/‘F(s)es‘tdt ;3 s=o+jw

Co‘ - -

is the main mathematical tool used to solve this
problem. In the beginning the investigation was con-
ducted in the s plane. Chapter ¥ deals with a systema-
tic study of the analytical properties. In this plane
no valuable results were achieved. Only when some
complex transformations were introduced, were the in-

versions of the prototype transforms obtained. The
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inverse functions came out in terms of compact ex-
pressions of Lommel's functions. The presentation
of this part of the work is given in Ch. III.

Since Lommel's functions are not tabulated and not
very well studied, appropriate expansions were made
in order to perform numerical computations. A genera-
ting function was found for all these inverse trans-
forms and a graphical method was developed to obtain
the envelope and phase functions of the corresponding
wave form. A general discussion was easlily made for
the signal and group velocities in terms of this

generating function. This part is presented in Ch. IV.
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CHAPTER II

Section O - Chapter contents and procedure

II-0.0 Chapter II develops the first analytical steps re-
quired to ébtain the inverse transform functions of
F(s,Y szwg) & 2VsTrwE
under the fundamental assumptions:

1. F(s,#szuog)is the ratio of two polynomials in
s andv¥s?sw?

2. F(s,*/s?a-wg) §M7 for ¥=2 and M= constant.
The mathematical investigation in this chapter will
be less restricted since it will be valid for J=1.

I1-0.1 The discussions of Ch. II shall be confined to the
s plane. Complex transformations will be introduced
afterwards in Chs. III and IV. Not many final results
may be expected from this chapter. Its purpose is to
give a basic systematic discussion about the analytical
properties of this transform in the s plane, in such
a way that all the requirements for the inversion are
properly satisfied. A search will also be made for a
simple starting point for this problem.

IT-0.2 Specific transforms of the standard form can be
worked out easily in the s plane. Since the main idea
is to obtain a method of inversion which is applicable
to most cases, these cases will not be given attention.
The pfesence of the radical in F greatly complicates

the problem in the s plane.
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II-0.3 The readers who are acquainted with the basic
theorems of existence of the inverse Laplace trans-
forms and the techniques of evaluating the correspond-
ing contour integral can omit this chapter. However,
some confusion may arise when certain multivalued com-
plex transformations are introduced. Misinterpretation
of the Riemann surface or transformed contours will not
lead to the desired results. This is the only reason
this chapter is included.

IT-0.4 Section 1 contains: Frequency normalization.
Normalized transforms. Singularities. Fundamental
theorem of existence of the inverse transform. In-
version integral and the Bry contour.

Section 2 contains: Riemann surfaces. Suitable
branch cuts. Riemann surfaces of the exponential
function.

Section 3 containst Abscissa of uniform conver-
gence. Brl and Br, contours. Integration for t<:§?
and t3’%;. Br, contours of integration for different
cuts and specific transforms.

Section 4 contains: Aspect of the inverse trans-
formation integral for some typical transforms and dif-
ferent types of s plane cutting.

Section 5 contains: The branch cuts in the s plane

and their physical interpretation as secondary waves.
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Section 1 - Frequency normalization. Normalized transforms.
Inverse transform integral. Fundamental theorem
and Bry, contour. Singularities.

II-1.0 Let @(s) be a Laplace transform and #(t) its in-

verse Laplace transform; thus

Cotio

p(t)= 571:5 f¢(§)e3tds; s=o+ 1w, cy=0, (1111
in which o i;ozgz’abscissa of uniform convergence and
the contour of integration can be a line between the
points c¢,- 100 and co+1i00 in such a way that all the
singularities of @(s) remain at the left-hand side of
this line. Usually thils contour is a straight line

parallel to the w axis and is sometimes the Brj
(Brownichl) contour of integration.

It will be assumed that the reader is acguainted
with the theorems of existence, uniqueness, convergence,
etc. of the inverse integral. Just one basic theorem
will be repeated here without proof: "Let #(s) be an
analytic function of the complex variable s of
order O(Elf) in some half plane R(s)= o, where ¢, and ¥~
are finite constants and ¥>1. Then the inversion
integral along any line ¢=c, where c,>0, converges to
a function ¢(t), which is independent of c, and such
that Z@(t)=@g(s) ."

By hypothesis our transforms satisfy the condition
y>1; (see Section 9, Ch. I, P. 43). The above theorem
shows that the immediate problem of this investigation

is to search for the singularities and the position of 7.
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II-1.1 Before proceeding further with this search, a
normalization of the complex frequency will be introduced
for convenience, Let:
.4=wg=g_+i%=p +1iv (2)111
in which @, =cp; p = separation constant.
The standard transform will become

F(s,vs? +w2)e SVHUE_ b (g /aZs1) e K Vet (3)1I1

Now, suppose that we denote by [T the Br, contour of

integration of the inverse integral with respect to s
and by ) the corresponding transformed contour with

respect to 4, then

Xz 2 Ya
T RO TR AT 5/%@ 1A  quaet; ()11
v
in which
C=w,t=2rtf =2rt
Te

To= cut-off period for the corresponding mode

Ac-=cut—off wave length for the corresponding mode.
In the future only the integral I in terms of the
normalized angular velocity will be considered.

Section 2 - Branch points, branch cuts, the function Vaf+1].

II-2.1 The standard transform has two branch points in the
plane given by

a=*i
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The .« plane is composed of two Riemann surfaces
connected by a branch cut. The cutting of the -«
plane is one of two types: 1lst, by Joining +i and
-1 through the point at infinity or, 2nd, by Jjoin-
ing +i and -i by a line whose points remain at
finite distance from the origin. This latter type
of cutting is justified by the fact that ¥s?+ L-s

when s—->m.

To fulfill the conditions of inversion indicated

in the theorem given in II-1.0, all the points of the

cutting lines must remain at the left of the Bry
contour.

The integration of (4)II1 is difficult to per-
form. The analytical structure of the integrand
changes with the way in which the 4 plane is cut.
Much of the success of the integration depends on
the choice of a proper cut. For this reason,
several cuts are here étudied and their effect on
the form of the integrand will be observed.

Figures 1II and 2II show the selected cuts of

the first and second types.
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II-2.2 The presence of the radical Vo°+1 in the transform

(3)II1 is responsible for its multivalued character.
The branches of the transform are closely related to
the branches of the radical. For this reason the
branches of the radical will be studied with some detail.
Consider the function:

W=u+jv= —vYa?+ 1.
When the variable point.a moves in the .« plane, the
functions u and v change. One passes from one leaf
to the other when the branch cut is crossed. The signs
of u and v may change suddenly from one side of the
cut to the other. This change in signs of u and v is
important. When a contour is followed we have to be
sure to take the correct sign for these functions.
Besides, the knowledge of this sign distribution is a
big help when other complex transformations are intro-
duced, as in Chs. III and IV.

The two sheets of the Riemenn surface, in the .o planhe
will be denoted by JI and JZ[I' The Roman numbers indi-
cate respectively the leaves one and two. This sign
distribution is given in Figs. 311 and 4II corresponding
to the branch cuts indicated in Figs. 1II and 2II.
Although these signs are plotted in the.a plane, they
correspond to the resultant sign of u and v and not tof
andy . A zero indicates the points for which u or v vanish.

The Riemann surfaces r/I and %I were defined in the
way indicated below. This definition is made at the

branch point +i. It is simple to find the corresponding
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expressions for the branch point -i. The signs of u
and v are in accordance with this definition.

The corresponding sign distribution for cut 2IIa is
similar to the one indicated in Fig. 4IIc. These re-
sults will be applied in Section II-4 and also in
Chs. III and IV,

FIG.N° 4T b
LEAF CUT 2 IIb
SIGN OF u SIGN OF v
uwoumps 11" -
ACROSS THEY ]~ o
cuT f- -
+he =
J +++-€————’ -
I + 4+t - -
=
+-—
50 G
4+ —
u JUNPS  — |4
ACROSS THE™
cuT -
=
J —--:ﬂ++++P
z - - ==+ + + +
—+ -
- i g =
4 -
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II-2.3 Poles. The poles of the function F(A«,m are
poles of the transform. Let n be its number and let
them be at dy; k=1, 2,***,n. It is required that all
poles be contained in some half .e plane for which
Reala=p,. In the half plane Reala=p  the function
F(9,/a?+1) must be analytic. See fundamental theorem

in II-1.0.
FIG. N° 4 Ic.
LEAF # CUT 21IC
SIGN OF u SIGN OF v
A -[-v
u JUMPS - v JUMPS _ |_
AGROSS THE + 8 — ACROSS THE — | —
cuT - | CuT -|- :
J + ++ o—— — —p = ——#td= = = =p
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cuT -
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The function F(9,%ae%+1) can be expanded by Laurent
series around its poles. When this expansion is made

the integral breaks up into integrals of the type

A AaT-XYa?+1

k"‘/ L e “* da (2)112
's

271 | (a—ay)*

in which o« is the multiplicity of the pole.

It can happen, and is often the case, that the
points +1 and -i are also poles of the transform. Here
the Laurent expansion contains fraetional powers of «
and the integration of (2)II2 becomes more complicated.
It is very difficult to integrate (2)II2 in the .« plane.
This is so even when F is a function of .4 alone and&=1.
When F=F(4,¥a?+1) then the situation becomes more com-
plicated and it will wot be carried out in this chapter.
One of the objectives of Ch. III is to get rid of this
radical by means of suitable complex transformations.

In Section II-4 some examples of the integral
structure in simple cases of F(4,¥e?+1) and for dif-
ferent ways of cutting the .« plane are given.

Section 3 - Abscissa of uniform convergence. Integration for
t<X. Br2 contour and integration for T>x". Bry

contours for different cuts.

II-3.0 The abscissa of uniform convergence'can be found
‘after all the singularities of the transform have been
located. LetoM be the position of a singularity such
that

Reala A = Real.s

M k
It is evident that for all 4, such that RealA:’Realzﬁw,




€8

the function will be analytic. Therefore,

€coT Realay 3
The equal sign is valid if the Brl contour, in the vi-
cinity of 4y, is deformed by a semicircle leaving <y

at the left. Consider, as an example, the transforms
~K VAR ~K Y42+ K+t .
e . — in which /g and &
4-1Y, 3 " aF+vE 3 T TFT  are real quantities.

The Fig. 5II shows the limiting position of the Brj
contour with a dotted line for each of the above trans-
forms. Any straight line which is parallel to the
imaginary axis and to the right of this limiting con-
tour, yields to the same inverse transformation. A

similar process can be followed for other cases.
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II-3.1 In this section we shall consider the inverse
transform integral
C,-td
I(T,X)=-L [ Fle o+ 16"
RT3 fe 4ico

for T<X, that is ,-1,1<ii and show that
cC c

T-AVa?+1
da

I(T,x)=0 for T<Xx. (1)113
To prove this the well-known process of computing the

integral

s PF (4,/a?T) e Ve g,
G

is followed along the closed contour G,, indicated in

Fig. 6II. Since co>p,, vV Go+iB
the integrénd is analy- I
tic inside and on the 8 ‘18 ’,8
contour and, therefore, ;2‘
the above integral is 1 - PLANE
zero. From this and :
from Fig. €II we may I Co
write: B
L B+ ® WHEN R-» o
Co >Po = ABSCISA OF UNIFORM
CONVERGENCE
corig FIG.N°6 II.
[F.@»,aﬁn NCRIVE [P D) G .,
oL@

Now, let us make R—>o. Since 1t has been assumed
that F(a,Va?+1) behaves as _Si";_; for ¥>1, and by making

A:Re'w’, the following is obtained by a well-known
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theorem of functions;

L
2
Ry . f e
J‘F(A, EDe* e dA-.I_Mfe"(r Pas|sal | (7(:7 ©05F a0
R—=>oe [3

since the exponent -R(X-7)cosgremains negative and
tends to -oo when R—roo. Hence, (1)II3 is proved.

This property is interpreted by saying, that, at
a cross section x3 distance from the origin, no
perturbation arrives for values of the time t«:i} R
in which ¢ is the speed of light in the medium. The
interval Oft<}-?- will be called the silence zone,
(Ch. 1IV).

II-3.2 The contour Brj, that is a straight line from
co—-ooto c,+ 00, has a rather theoretical value. Very
seldom, and only in simple cases, can the integration
be performed along this line. A deformation of this
contour around the singularities of the transform
simplifies the process of integration. To obtain the
integration for €>%, usually the Brj contour to the
left is closed by adding a new contour, [, formed by
a very large semicircle connected with partial con-
tours surrounding the singularities. The whole closed
contour must be so located, that the integrand is
analytic inside and on this contour. Let us call this
closed contour G,. Under the condition above the

integral along G, is zero. Since G, is formed by the
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union of the Brl and Br, contours, the integral along

Bry is equal and of opposite sign to the integral

along Br,.
Coti®
T-KVa®r1 T-xvatel
S2r [P (4,¥aTr 1) ¢*C TV d4=--2—717{fF(4,14:2+—1)e‘” ‘e
G,~Leo I
This procedure is illus-= R—>e
THE INTEGRAND—* o
trated with a particular ALONG THIS SEMI- bV iB
CIRCLE WHEN R0 Coti
example of a transform AND T> K ///*-Q

whose singularities are AAPLANE

indicated in Fig. 7II.

Br,

It is well known that p*:
when R—»o0, the semi- r,
circle at the left and P
the segments ab and gh )
contribute nothing to ™
the integral, if T=>X and ~
F(«,¥e?+1) is of order FIG. N°7T
O(EM?) and ¥=1. This is Co-1B
independent of the tyge B-+o WHEN R—®

of branch cutting selected.

Since this proof is simple and given in all text
books on Laplace transform, it will not be repeated
here.

The integration along the connecting channel, with-
out branch cuts in the inside, 1s clearly equal to zero.

Then the integral along the contour [ reduces to the
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integral around the singularities and to the banks
of the branch cuts. The contour around the singulari-
ties, in the proper direction, is sometimes called the
Br, contour.

II-3.2 Integration around the poles amnd branch points is
easy but along the banks of the branch cuts it is
most difficult to perform. For a given transform
the analytical structure of the integrand along the
sides of the branch cuts changes when the type of
branch cuts is changed. If the cuts are made in such
a way that the conditions of the theorem given in
II-1.0 are not violated, then all the integrals must
yield the same results. Therefore, if the « plane is
cut in several ways, different types of integrals will
be obtained and perhaps one which can be integrated
will be found. 1In this investigation a large variety
of integrals must be dealt with and it is convenient
to consider not only one but several types of branch
cutting.

In Fig. 8II the Br, contours of integration are

considered for some simple typical transforms
o N VaFrL

a- v,

e—k‘/,c?o-:l

Aﬁ%-v%
In Section II-3.2 the analytical expression for the
integral corresponding to different types of branch

cutting is given.
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II-3.4 In this subsection some illustrative examples will
be given showing the change of the analytical form of
the integrand when the type of branch cutting of the
«plane is altered.

One elementary transform was intentionally selected
to shHow, at the same time, how involved the integrand
becomes even in the simplest cases. Our purpose in
this example is merely to illustrate how the selection
of branch cutting affects the corresponding integrals,
but they will not be integrated here.

All simple intermediate steps of algebra will be
omitted and only the final results will be given.

Of course, the sign distribution plots in Figs.
311, 4IIb and AIIc must be used.

Take, for example, the simple transform

-KYs2+4.
¢ ( S) = ..e.._._..__.__.__
4-JV
0o
and write

?(T)= Z,_g(s).
Cut 2IIb. vo>1

":O . farZ<K
- . Y1-v2
?(%) ) ~el(WT ~XViZ-1) _ 2 %L[gcosvu :La.s:lnvt]dv (113
o (+]
+H forr=
g T orT>X
_elBTR-1) %_/—30_» sinhXv1-/% av

- -1




Cut 2ITc. v 51

| =0 T for T<%
) _1/ 'g_.""“ . l_l)o W the (s
P(v) =9L(°t ve-1) _ i‘/( e Je }‘ sin{k‘Jz sinA e((" M}d)\ forz-%(3) 113

7 ]1+v5-2V, cos
o

A=variable of integration. See Fig. 8II.
Cut 1lIlc. 90<1 and vy > 1

=0 for T<Xk 2ve
/1+11+(E) T2y
=ei(v°r—k}’u§-—1l 2 o8 VT = (p+jv°)e-f(t+7< z 7) :3+_12"£L_ dp +
T OO i iaapag P
4 T s
- 1471+(®%) (4)113
S(TY 1 ——é——e') . L (2 -
s £ -4% 1+(——, )
+ %‘—sm%{/ {.z 41,9:+q°9°i sun P 5 c.’{"‘forz;k
in which .4=p+1v; v=1 and p variable of integration.

p

@ (T)

-

It can be seen that in cut 1IIc, the integrals represent
envelopes of cosVT and sinvT respectively. DBesides
the integrand goes to zero very rapidly when %, # and P
increase. It is clearly suitable for numerical integra-
tion, and asymptotic solutions may be obtained easily.

Cut 1IIb. v <1

=0 forl<%#

- )

- Y-S ,/ 2_

P(T) |=e*" V"e“)"r-a;rz-f%—i [vcosvf+ivosinut] dt forTz%
1 []

The corresponding discussion for cut 1lIIa and some curved

(5)I13

cuts will be given in the next subsection.

11-3.5 Branch cutting 1lI1Ia offers the advantage of allow-
ing a rotation of the cut lines around i and -i. We can
look for a possible value of ¥ for which the integrand

becomes simpler and more suggestive.
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It can be proved, after a rather long development
that the real and imaginary parts of the radical can
be written as

u=tvYrR sin ?f.:?tQ

(6)113
v=t VTR cos 2%9-

the corresponding sign
being taken in accord-
ance with Fig. 3II. - PLANE

The meaning of the

above notation is
given in Fig. 9I1I.

The corresponding

integral which yields

- F]
e V0% +1

~ "J‘)o

L1 FIG N°9 X,
is given by

Cut 1IIa. V71 or V;<1

=0 fort<k

- eibT-*¥P3-1 )

(7)1I14

\
for =%

[ -]
e [ irvel? . V0
-L”. < e-kﬁsm( e )x sin KR cos (¥*9) ar
(].-berem 2
©
. ii,(:)rﬂ#) :-i,r‘c'e "-}‘;
A (1*-90 +re 7)

The integral in the above expression represents the

e'kﬁ“"(g'g)x sin#VR cos (3%9.) dr

envelope of the rapidly oscillating functions eiOM?¢ﬁ
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and e-i(vr%Vﬁ. This is a convenient form for numeri-
cal computations. Unfortunately, no particular value
of ¥ makes the integrand simple and suitable.

Nevertheless, the above integral suggests the next
step. Since r, R, 0 and ¥ are available, a cutting
line can be chosen so that the integrand becomes
simpler. The relations (6)II3 are independent of the
form of the cutting line, so that it can be used for
curved branch cuts as well. In this way several curved
branch cuts were carefully investigated. Some of them
work well for only one particular transform but are no
good for the general prototype FCd,fs;:IT.

A careful and almost exhaustive investigation was
performed in the .0 plane in order to obtain a con-
structive solution of the expression

@ (T, x)= L (0,42 + 1) ghro?+L
by considering branch cuts made of straight or curved
lines. Particular solutions for some simple trans-
forms can be obtained. The solutions are series ex-
pansions usually unsuitable for computation. Some-
times the series expansion is not valid when the applied
frequency is very close to the cut-off frequency of
the wave guide; this is a common and very important case
in practice.

The solution of the problem of inversion will be
given in Chs. III and IV with the aid of some complex

transformations.
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Section 4 - Transient formation. Possible interpretation of
the integralls along the banks of the branch cuts.
Secondary transient waves.

II-4.0 It has been shown that the inverse transformation
of a given transform can be obtained by the integra-
tion of the inverse integral along contours which sur-
round the singularities and branch cuts in the .o plane.
These lines of integration are sometimes referred to
as the Brownich's Br2 contours. The object of Section 4
is to make an overall investigation of the integrals
along the branch cuts in order to find the character-
istic behavior of the functlon when time changes.

II-4.1 For clarity the following simple transform will be

used as a beginning:
e~ Ko+

2 2
o +v°

This transform was selected because of its behavior as

g% when s—a». The branch cut 1IIb is used.

It can be found that

4
-A 70?1 * o
L Errpr—= ¢ (T, %)= sin (RF-AVoF-0) - Yo [SIAALDY oo yrap by @x)  (1)114
-4 ]

in which u,(T-%) is the unit step function shifted by %.
The first term inside the bracket will become the

steady state only when T—>oco. The integral, which is
the contribution of the banks of the cut, represents

a transient term. We will make an overall discussion

of 1ts behavior as a function of time. In order to do
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so, let a function be defined as follows:

0 for -oo<y<-1
0(n)={ 2.81gaHVI=0" ror _1=ps1 ¢ (2)114
o
0 for lxv<oo

It will be recalled also that » represents the real
normalized frequency (D=v§t). The above function
will be considered as a continuous frequency spectrum
which exists only inside the band width -1 to +1.

The corresponding time function of (2)II4 can be

found. The Fourler transform of 6(») is:

«(T)=2= /G(u)e dv._/(»)e /Slngf"ta" cos pTdV (3)1I14
o -1

since 9(») is an even function of V.

Since O(D) exists only within a finite band width,
it is expected that a(T) will spread on both sides of
the time origin and will show a rapid monotonic decay
in amplitude as ltl-»oo. Observe that the zero of T
corresponds to the value X of C.

In (1)II4 the integral (3)II4 is multiplied by
u_i(l'-)?). Therefore a((t)u_i(l'-‘k) has a value zero for 7<%k
. In Figs. 10Ila, b and c, the second member and the
complete expressioﬁ for ¢(Z}k) are shown, not the
exact representations but only sketches of the expected
functions. The exact curves are given in Chs. III and

IV.
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II-4.11 The transform selected in this example is of

order 0(%%) when s-—»>o. This means for T=% one must

have
O::¢(+7(,7I’) 9
whence
Y, -YVs - v
Ifs:Ln?i’(opow/o 1) _ 511'11;27!’ u]é a cosr)dy . (4)II4

By this simple method values of a complicated definite
integral are obtained. That (4)II4 is true can be
shown by direct method (Ch. III) but it requires con-
siderable labor.

By using the initial value theorem, some integrals
can be directly evaluated which are in general quite

involved. For example, take (2)II3, (3)II3, (4)II3 and
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(5)II3 and use the property of the corresponding first
member

Q(Z}W%E+i?1+-10 H
then other interesting integrals can be evaluated
easily.

During this investigation a rather large family of
involved integrals is evaluated by this method. The
results are not given here because they are only side
products and have no direct importance for the main
body of the investigation.

II-4.12 Evaluate the corresponding integral around the
branch cut and the branch points.

a. - The contributions to the integral around the
branch points are both zero.

b. - The contribution of the left bank of the cut
is given by

v Yo —x/i-2
R g
+§‘$,-/f rpr— IV (5)114

c. - The contribution of the right bank of the cut
is given by

+4
i #xv/1-02
-.ﬂ%//;‘°tei

2
P24 »s -v2

a . (6)I14

If attention }: paid to the sign of the radical in the
exponent, it is immediately recognizable that it rep-
resents waves moving along the positive and negative
direction of the x5 axis (= 20’%2), These waves move

in a dispersive media and have a Zontinuous freguency
spectrum which exists only within the band -1 and +1 of
the normalized freguency. The above integral can be

looked upon as secondary waves which exist only in the
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transient state condition in the guide and disappear
in the steady state.

A tentative explanation of the existence of these
transient waves can be given as follows:

The term sin(vot‘—xm)u_t(f-k) can be considered as
an incident wave which moves with the speed of light.

The wave front excites the cross sections of the guide
which then reradiate. All these cross sections form a
continuum of sources and the sum of their effects 1s
given by the integrals (7)II4 and (6)II4.

The converzance of the integral (6)I14 when A#—o00
will be discussed fully in the next chapter.

II-4.2 Consider the basic transform of this study

F(4,orr 1) AP+

The inverse transform function is obtained by performing
the corresponding integration around the singularities
and along the banks of the branch cuts. Now take the in-
tegral along the bank; the sign of the radical in the ex-
ponent will change from one bank to the other. Therefore
the secondary waves moving along each direction can be
separated.

The above interpretation of the integrals along the
branch cuts is only a tentative one. What was saild
before does not constitute a proof and still needs a
full discussion of the convergence of the corresponding
integrals. This problem will be treated in the next

chapter.
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CHAPTER IIT

The inverse Laplace transform of the prototype and the

complex transformation Z=. -V.4?+1,

Section 0. - Object of the chapter.

III-0.0 This chapter develops the inverse Laplace trans-
forms of a basic family of transforms which appear in
the propagation of electromagnetic waves 1in systems of
generalized cylindrical configurations. These results
will be directly applied to transient phenomena in wave
guides, excited at a cross section considered as the
origin.

In Ch. I the basic transform was found to be

B(s) = Flo, Va?rl) e K747 +1 (1)III0
in which F is the ratio of two polynomials in .4 and VSE;]:
This transform contains a large number of cases of
practical application. For the study of electromagnetic
waves in cylinders, F(d,vs2+1) is restricted to 0(£L
for = 2 as4—> .

In Ch, II, the problem of the inversion in the 4
plane using different types of branch cutting was con-
sidered. It was discovered that, 1lst, the integrals in
the simplest cases are rather involved and difficult to
compute, and 2nd, the presence of the radical in FCA,fZﬂ?I)
is undesirable, mainly when the branch points 41 and -i

are also poles.,
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In Ch, III a complex transformation, namely
Z=.0-Ys?+1, will be introduced which eliminates the
radical and yields a simple method of obtaining the in-
verse Laplace transform of the prototype. The solu-
tions first obtained were in the form of uniformly
convergent series of the Neumann type. It was found
that these series solutions converge extremely slowly
and are not suitable for numerical computations. In
Ch. IV the problem of the summation of these series
is considered.

During the preparation of this manuscript it be;
came apparent that the above series were Lommel's
functions of order 0 and 1. With this knowledge a
short cut can be taken so that a much more compact pre-
sentation of this chapter 1s made possiblef Neverthe-
less, the original mathematical derivation will be kept
because first, there is little time to make the reguired
changes, and second, Lommel's functions are neither well
known nor well studied and the method presented here is
a simple way of approaching them. Finally, a new inte-
gral representation for this function is given,

Lommel's functions are not tabulated. The corres-
ponding series expansions commonly given converge very
slowly. The object of Ch. IV is to develop the formulas
and processes to compute these functions.

The material presented in this chapter is outlined

in the next paragraphs.

*» See Appendix TI.
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III-0.1 Section 1 will contain: Introduction of the com-
plex transformation Z=.s-vs%+1 in the basic Laplace
transform. Poles and other properties of the G(Z) func-
tion. Partial fraction expansion and decompositicn of
the general transform in subtypes. Derivation of the
fundamental types of integrals.

ITI-0.2 Section 2 will contain: A general discussion of
the contours of integration (47)in the Z plane. The
reciprocal transformation z =4 +78%+] is also studied. An
investigation is conducted in order to find some mapping
properties of the .4 into the Z plane. New and typical
paths of integration in the Z and z planes.

III-0.3 Section 3 will include: The integration of typical
integrals found in Section 1. The solutions given in
this section have the form of series expansion of the
Neuvmann type.

III-0.4 Section 4 will include: The introduction of com-
pact solutions in terms of funcfions of Lommel. Solu-
tions when the poles of the transform are simple ones.

A study of properties of Lommel's functions and different
forms of the solutions. Behavior of the solutions at Z=%
and T—~> o, Introduction of the generating functions of
the inverse transforms. The compact solution for multiple
poles. The concept of the group veloclty and its expres-
sion‘in terms of the poles.

III-0.5 Section 5 will contain: An application of this

theory in computing some useful transforms.
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III-0.6 Section 6 will include: A direct application of
this theory to wave guides with some examples.

Section 1 - The complex transformation Z=<4-¥%%1, Poles and
properties of G(Z). Partial fraction expansion

of G(Z). Derivation of typical integrals.
III-1.0 Let the complex transformation

Z =4 -V62+1 1in which
(1)1111
Z = x+1iy
be introduced. From it one can write
(6-2)%=42 +1 , or
2% - 247 -1=0 .
This is a second-degree equation in Z; call the roots

z' and z". Since the last term is -1,

Z'z"= _1 or
1
Z=-'Z}:r .

It is known from (1)II1l on one of the roots, that
2'= z2=s-Ys¥1 »
and therefore

f”=—%=A+i;¢I;

adding and subtracting them,
=1(z -1
4 2(Z Z) and

(2)1I11
VAzf-l:—%(Z-t-%) .

This last equation shows that the radical can be expressed

as a rational function of Z.
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III-1.1 The substitution of 4 and Y4%+1 in the basic trans-
form leads to

_X(z+1)
F(2)e glzvz

(3)1111
and notice that F(Z) is now equal to the ratio of two
integral polynomials in Z. Let these polynomials be

called Fy(2) and Fp(2) so that

F(2)= %—%— (4)III1

iII-l 2 The inverse Laplace transform of (1)IIIO is
X F (o, 757 D¢ AL = @(T,%)= ..._ Flo, /s 1) e ¥y (511N
]2 being a contour in the,:fplane, which gilves the
correct solution. It may be, for example, the Brj;
or the Br; contour indicated in Ch. II. If the trans-
formation (1)III1 is introduced, the contour Jgj

transforms into a contour )Q in the Z plane. Then
1
L ENWEED ] 1472
Pz, 2”1/;‘@) 31 oz
z
| EEDEED

=¢Kc;t)==§%§/é(z e zZ , (6)III1
22

in which G @)

G(z) = 1+z 5 F(Z)= -—7—7 (71111

which is also the ratio of two integer polynomials in 2.
In the next section some important properties of the
function G(Z) will be discussed and in Section 3 the

transformed contour z; will be studied.
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III-1.3 Some important properties of the poles of G(Z).

Since G(Z) is an rational function of Z the only
singularities are poles. These poles are the roots of
GD(Z). From (7)III1 and (4)IIIl, the roots of Gp(Z)
are the roots of FD(Z) and possibly Z=0.

Theorem 1. - If F(d,7/4°+1) can be written as

FN(A,‘}}42+1)

Fla,Vo2+1) = 8)III1
-2 Opla, o2+ 1) (®)11
and 4y is not a root of Fy(d,Ys +1), then:
_ [ 2
Ze” TV T (91111
Z:: A, + w},az +1
k k
are simple poles of G(Z); and are such that
z:: X2 =-1 (10)1111

Proof: The factor éf-éiz
1 1 —
dady=2(7 =) =dy,. =
k 2(2 Z) k

_ZR-274p -1
RZ

_(z-70)(2-2)
RZ

, after the transformation

in which

Zk=4k-ﬁ§—+i s and
2o +VaT T 3
by multiplication:
Zex Zg=-1 .
Under the hypothesis of the theorem, G(Z) can be
written as

2
6(2) = — & EIF1(2) 1 (11)III1

T (z-z) (z-2ep(2) 2

thus the theorem 1s completely proved.
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Some simple corollaries of this theorem will be
indicated (¢ lies on d1)

a., If " is real 7, and Z;; are also real.

b. Ifdyx 1s zero then Zxy=-1 and Zﬁ':l.

c. If ' is pure imaginary three cases will be
distinguished.

01. |/0k, >1

C2e. »dkl<'l

Ak' =l .

03.

If ¢y, then: Zx and Zﬁ are purely imaginary.

If cy, then: Zy and Zﬁ are complex and lie

on the unit circle.
If c3, then: Zi::-i and Zp=1,
d. If 4y, -»00 then Zy—~0 and Zx—>00.

Theorem 2. - If F(9,79°%+1) can

Z PLANE

be written as: FIG. 1O
]/ 2
Flo,¥d%]) = FN(J’ 4% +1) Wm - Y
(VA2+1-€‘)OD(4,1’,62+1) S gt
*E R
and if this factor does not oS
appear in the numerator, then: N o
0
Zy=Ap+VAF -1, and 1) \
13)III1
) =4 -V 42 -1
AT 7A >
x
are simple poles of G(Z) such that 2,2,
Z,Zy =1. (14)1111

The proof of this theorem is similar
to the one given for Theorem 1 and

is, therefore, omitted.
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The most important use of this theorem is for,4A=0,
and the roots become
Zy=1 , and
Zy=-1 .
Theorem 3. - If F(v,Ys%+1) can be written as

F(o,¥0%+1)= Fn(o,Vo?+1)
(0 -ay) Op (a2 +1)

and if no cancellation of this factor can be made, then:

Zk'—‘ o"k— )‘Ak +1

(15) 1111

3#* (16)1111
Zk=Akrﬂ§:E
are both roots of G(Z) and have a multiplicity «. Also
Zye X z;= -1 . (171111
Theorem 4. - If F(¢,¥4%+1) can be written as
F(a,75%+ 1) = Fy(o,Va™+1) (18)III1 °

(ﬁ"ﬂ,\ )“ QD(A’J;Z-*—:L)
and a further simplification of the factor is not
possible, then
z}=ay - Vai-1 a .
ZAaAA+VS§f:I 9)III
are both roots of %§Z) and have a multiplicity «.
Here also
Zy x z) = 1. (20)III1
Theorem 5. - For each factor of the form Q”"’k)
or m-,oA) in the denominator of F(J,VSZ—;]T) a
factor 27 will appear in the numerator of F(Z).
This theorem follows immediately.
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An important result is: If F(o,vd%+1l) admits at
least two simple factors such as those indicated above,
then in

=1 1+2°
6(2)=3 2 F(2)

the term Z° in the denominator may be cancelled out.

Theorem 6. - The poles Zﬁ and Z, (or Z, and Z?) can
not coincide.

The last six theorems give the connection between
singularities of F(¢,¥s?+1) and the poles of G(Z). 1In
Section 3 some other properties will be discussed.

III-1.4 Now a substantial simplification of the problem of
the Laplace inversion of the basic transform (1)IIIO
can be made.

Since G(Z) is the ratio of two integer polynomials
in Z, it can be expanded in partial fractions, (finite
number of terms), and a term by term integration can
be performed.

Theorem 7. ~ "The degree of Gp(Z) exceeds that of
Gy(2Z) by & To prove this proceed as follows:

a. - Assume, by hypothesis, that F(o,o?+ 1) 1is of
the order ogfg)rﬁzl.as,a—+oo. This means that
if n is the larger degree of FN04;¢SE:i) then
the degree of Fp(¢,¥s%+1) must be n+r=m.

b. - The largest power of Z in FN(A,VZZIES is n.
When 4P or (Vo2+1)P is expressed in terms of Z




a term of the form Zzig 2N .nd Fy(Z) can be written

as 1 1
FN<Z)= -Z—n- FN(Z) ’

in which F(Z) is an integral polynomial in Z of 2n
degree.

The largest power of o, in FDca;ﬂﬁffi', is m=n+""
When <" or (*+1)P*¥ is expressed in terms of Z

2¢9 0+
a term of the form izzﬁé%r—— is obtained and FD(Z)

can be written as

Fp(2) = s FD(2)

in which Fﬂ is an integral polynomial in Z of

2(m+r) degree.

c. - Consider now G(Z). By (7)III1 the following

expression is obtained.

6(z) = 22z PN(Z) _Cn(2)
2F1(2) Gp(z) *

The difference between the degree of the denomina-

tor and numerator of G(Z) is given by

m-n=2(n+¥) -2n-r=r
and Theorem 7 is proved.
Theorem 8. - This is another simple but useful

theorem concerning the number of poles of G(Z).
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The number of poles of G(Z) is equal to
2m  if =2
2m+l if /=1
in which m is the degree of FD(A,ﬁg;:IS.
The proof of this statement follows immediately from
¢ of the last theorem. For if /=2 the polynomial
Gp(Z) is of the 2m degree. But if-/"=1, the difference
-2 =<1 introduces a new root, Z=0, in the denomina-
tor.
Now the partial fraction expansion of G(Z) can be
written in terms of its poles.
Let the poles at N
Z1 have a multiplicity ay
Z2 have a multiplicity «,
\  (a1)mIl

- —— - — — ) ‘T T —— T — — — D

Zq have a multiplicity dﬁ

with the restriction that Kl+ﬂ§+~--+dq==m.

L

By using the well-known form of the partial fraction ex-

pansion and considering these theorems:

B Ky i Ky 1% =
@)=z J?:_k‘l A Y 32::1 (—Z:-Zi)-é;:;::* 7 Tl (ayma

Zero forr=2

in which the constants

(3-1)
_ 1 o

(3-1)
e (e} (25 mr1

-1 4a7(3-1)

K= [zc(z)] for =1
z=0
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It must be recalled that ZkZ§==il; the (+) or (~) signs
being given in accordance with Theorems 1, 2, 3, gnd 4,

The expression of the inverse transform is found

with these results. 1
~0 for T<X
(T, %)=
¢ (<, q % K4 [ SEPEEd 0 -1
> Y il a-jv1 42
=1 4= Z-Zy) K >k (24)1I1
< k13-l f( ¥ Ko | E-dvi@d) 4z (
z 2 [e =

L & J y

Notice that the terms with (*#) have been omitted. Of

course, the integrals

9 0 K, [FEbEed
k=1 j=1 ZJTiJ (E_Z;)“x‘fl*l dz 7{0 ’ (25)TT 1
. n

but they represent the circuitation around the branch
cut, in the o« plane, in the Riemann surface4461. This
integral does not occur in the value of @(Z,%) and,
therefore, is omitted here. These last integrals rep-
resent waves moving in opposite directions since they
are equivalent to one 1lntegration inan of the .o plane.
In Section 3 the truth of this statement will be checked.
Although the integrals (25)II1 are not needed to
obtain the value of the inverse transform ¢(7,%), they
will be computed. These integrals (25)III 1 generate
Lommel's functions which are very useful in this in-
vestigation. Besides, the mathematical treatment is

far more complete.
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The foregoing can now be summarized.
The problem of the inversion of the basic transform
3 - Y02+1

F(4,V482+1)e , in which F is by hypothesis the ratio
of two polynomials in 4 and V421 and such that F is
of the order 0(£%J,z?:1, has been reduced to the inte-
gration of the simpler integrals:

1 X/, 4
e%(z‘z)"_%(u%) Z-2ria+d) 1 9121(2“%’*5(2"2)

1 (et
T (zozg)< | O T (g OB
- Z- Z
¥ y Iz

in which «=1 is a positive integer. The most important

dz; (26)II 1

-

case isa=1, Apparently there is no analytical differ-
ence between the first and second integrals in (25)0I1l.
Nevertheless, it is convenient to consider them
separately.

Nothing definite has been said about the contour of
integration /,. In Section 2 this r; contour will be
studied. In Sections 3 and 4 of this chapter the writer

will come back to the integration.

Section 2 - Branch cutting. Mapping properties. Contour of
integration §> for typical integrals. Introduction

of the reciprocal transformation and resulting J7
contours.

ITI-2.0 In the course of this chapter, types 1IIb and 2ITb
of branch cutting of the .« plane willl be systematically
used. The sheets ff and of; of the 4 plane will be
adopted as they were defined in Table I of Ch. II.

The sign distribution diagrams given in Figs. 3II, 4I1Ib,c
will be employed.



96

In this section the mapping properties of the intro-
duced complex transformation will be studied as will
the resulting Xé contours of integration for the typical
integrals (24)IIl. The above process is repeated for zees+/s%1."
ITII-2.1 Consider first the type 2IIb of branch cutting and
define the Riemann Surfaces 6& and 6&1 as in Ch. II.
Take first the sheetéfr. The manner in which points
of this surface map in the Z plane will be investigated.
a. - Large semicircle to the left-half plane, sheet .

Let
Z=o-V8%+1 , .
If |s|=1, then
2

52 1) 2=, 1 -1 1 53,1 ;70 ...

when g is very large;
= -V.02 :—._l_
Z=.4-Y62+1 5 °

Take, for the left semicircle,

d= Re:}?, %spﬁﬁg;
Then

;. IP~% and O=T-Z
This result is indicated in Fig. 21T a.

b. - Real axis, negative sice, sheet 6&.

A= -p and
V;?+l is pure real.
~ The sign of the radical must be +. See sign distri-

bution diagram. Then

=-ptVpHl .
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Then for
P=0 Z=1, snd for
|Pl=00 Z =0,
Real axis, positive side, JI sheet
A=+P

-W is pure rezl.
The sign of the radical must be (-).
Then for

=0 Z =-1 and for

Pl=00 Z=0,
These results are indicated in Fig. 2IIIb.
c. - Imaginary axis sheet JI

c1. - Positive part above +i

Ss=1v ;3 Wl>1

Y6%+1 = 1Yv*-1 pure imaginary
z =1(v -W3-1)
When V>0 Z—0,
v=1 Z=1.

Cos ~ Negative part below -1

S=-~1 Wi>1

Y62+ 1= 1731 pure imaginary. The sign is +
from the corresponding sign
diagram, so that

=-i(V—/D—5:T).

When: [Wl->o00 Z-0
Ivi=1 Z=-1.

These results are indicated in Fig. 2III c.
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Cze - Imagina axis between +1 and -i.
Left approach sheet ZI'

A——-il) 'l)lﬁlo

The radical V42+1 =Y1-v2 is pure real. From
the corresponding sign distribution diagram

the following is obtained.

Z= 1 +¥1-v2, since

Z=x+1y .
Then:

x =V1-v®

Y=V,

and therefore
x2+y2=l. Circle of unit radius.
Also when:
V=1 then Z=1 ;
v=0 then Z=+1 ;
=~ then Z=-1 ;
as indicated in Fig. 2III s.

c4e — Imaginary axis between +1 and -i.
Right approach sheet 7.

<=3V
x=u—VLw2 5 Y=V x2+y2=1
and, therefore, when:

v=1 then Z=+1

-

V=0 then Z=-1 3
=-1 then Z=-1 ;
as indicated in Fig. 2III b.
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d. - From the above results it can readily be seen
that the sheet ﬁ& maps in the inside of the unit
circle in the Z plane. Therefore, it can be shown
immediately that &y will mep outside of this unit
circle.

e. - It is important to notice that the contour
around and in the vicinity of the branch cut,

Fig. 2III will map on the unit circle of the Z
plane.

I1I-2.2 In this subsection a typical contour of integra-
tion will be considered. Figure AIila represents a
closed contour, [, , which can be used in connection
with the branch cutting 2IIb. Because of the partial
fraction expansion of the basic transform, the integra-
tion with only one pole can now be considered. Let this
be 4. The closed contour I, contains the Brj and Br,
contours in the 4 plane. Supposing that this contour
lies in the Riemenn surface o], one sees that then I
transforms into Fé in the Z plane, as indicated in
Fig. 4IIIb. This statement can be Justified with the
discussion given in 8ubsection II-2.1. Notice that the
whole contour [y maps in the inside of the unit circle
of the Z plane. Of course, in case of the supposition
that [; lies in ] , the whole contour will map in the
outside of that unit circle.
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FIG. 31L
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It 1s important to notice that Z=0 and Z=oocare es-
sential singularities of the integrand in all three
typical integrals given in (25)IIIl. The essential
singularity Z =0 disappears when z=%, (wave front).

If instead of taking the above type of branch cutting,
1IIb is adopted, the result given in Figs. 5IIIa and
5IIIb will be obtained. After a systematic study of the
mapping properties and if the sign distribution dia-
grams given in Fig. 4 I1 b are considered, then it will
be found that <7 maps on the left half of the Z plane
and-gél maps on the right half of the Z plane. It is
not surprising that in cut 1IIb the Riemann surfaces
do not map inside and outside the unit circle. The
reason for this is in the fact that in each case the
surfaces ﬁ& and d&I are defined in s different way.

ITI-2.3 Suppose, instead of using the complex transforma-
tion (1)III1 the reciprocal transformation

z = _.o+VUo%l (1)Im=2
is chosen., After a discussion similar to the one
given in Section 3 of this chapter, it is found that
the typical integrals in this case are:

Se--ferh

L dz

271 (z-271) %
K K

$6-H-56+D

=3 3% dz &

2mi . (z-2)" (*)Im=2
1 e__‘zf(z-%)“xg(z*%‘)

1M1 z dz

(A J
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FIG.5 I
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Since Zz=-1 it is expected that the new complex trans-
formation z will have the effect of interchanging JI
and %:I‘ This is the case, and the transformation of
the contour [ into the z plane is indicated in
Fig. 6IIL For branch cutting 2IIb, use Fig. 6IIla
for branch cutting 1IIb use Fig. €IIIb .

Notice that the points z=0 and z =00 are essential
singularities of the integrand in (R2)II2. The essential
singularity at z =0 is removed when T=% (wave front).

The contours in Fig. 6III are drawn for the case in
which Iy is purely imaginary. If this is not the case
then it is simple to put the pole in the proper posi-
tion by a simple displacement. (Compare Figs. 4III,
5111 and 6IIL.)

III-2.4 The contour Jy or fz along which (25)II1 or (2)III2
must be taken in order to obtain the correct inverse
Laplace transforms has not been given yet. This goal
is very close since the transformation of [ into the
Z or the z plane has already been given. Contour [
is formed by the union of B:(-l and Br, contours. Con-
sequently, the part of rz or Fz which corresponds to
one of them must now be chosen. By a simple inspection
of Figs. AMI, 5II and 6III one immediately discovers
that it is ¥y or /,. For example, in Fig. 4III /; is
formed by the integration along the unit circle between
E and J and around the pole at Zk’ In Figs. 5IIIDb
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and 6IIIbno integration is made along the whole unit
circle; 72 or I; is along the imaginary axis. Even
in those cases in which the contour /7 or ¥, lies on
the imaginary axis, one can reduce, by elementary
contour deformation, to the integration around the
unit circle and the ecorresponding poles,

After a simple but careful disecussion of the def-
ormation of the ocontours, the Y contours which are going
to be used in this investigation are finally obtained.
They are indicated in Fig. 7III for the Z or the z com-
plex transformations. The elementary steps required to
pass from Figs. AIIL, 5IT, and 6III to the final /'y or Jy
will be omitted in Fig. 7III. It is not hard to prove
their validity.

It is immediately noticeable in Fig. 7III that fz
contours are equivalent to integrating around the es-
sential singularity at Z=0, while J, contours are
equivalent to integrating around the essential singuleri-
ty of the point at infinity.

Figures 7IIc and 7IOd were drawn respectively for
the case in which'Zk! = lzil =1 or Isz = Iz;‘ =1,

Section 3. - Integration sround the poles. Series expansion
of the typical integral and new subtype., nte-

gration of the subtypes and complete solution
of the typical integrals of Section 1.
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III-3.0 Section 3 will be devoted to integrating the

.M
typical integrals

[eigcz-§> +E@z+dy
9>

L [ &
271 (Z_Zk)"‘- dz

(B)1113

1 fe.g(z-%n?a-(uév iz
x
271 n (2-75) J
in which Xi is the contour given already in Figs. 7IIla
and 7Ic.
In the future only the complex transformation
Z=,4-1/;2—+I
will be considered. The reciprocal transformation z

leads us to similar results and is equivalent to working

in the JII plane instead of 1n tfi.

Both integrals given in (1)III3 appear simultaneously,
since it has been proved that Z; and Zﬁ correspond to
one pole,dk in the 4 plane. Besides, they are connected
by the relation

Ze* Zy=-1 .

We will consider three cases.

Case a. - 0<|2Zy|<1l in which case |7¢] -1

Case b. - Oclzkr>l in which caselZﬁLcl

Case c. - lzkr=l in which case|2§|=l
Recall that «a=1 is a positive integer. From Egs.
(24)TI1 xsa. - J+1 in which @, is the multipliéity
of the pole Z, or Zﬁ,

*  see Appendix I
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III-3.1 Consider the integration of the typical integrals
in Case a. Here 0<|Z]<l. The pole Z lies in the out-
side of the unit circle. The contour of integration
is given in Fig. 7IIl=.

The typical integral can be written

/=/ff] s
7§ % ‘e,

unit circle
1lst - It is simple to prove in Case a. that the first
and second integrals of the second member are zero, by
taking a small semicircle of small r and making r—0,
2nd - Now take the third integral of the second member
of (2)II3. Since Zy 1s not a pole in the second integral
of (1)III3, the integration around Z, 1is zero,
3rd - It will be proved that

. 1 eg(z.%)», ‘%_-(u%) . fo for x>1
4 271 (Z-Zy)* 2= 1 1
- )4 K =
29 e:rz.(zk )+ Bz 43 for x=1 (3)m13
If one sets Z -7, =rel®, az -=1re'®e, and then
5o seed) [ e 20 e )
2 Kk 2 [ K [y
I, 2 & T e-i(@-Dgg=& [e-i(“'nz’il]:o
o 27 %*- A -27i(a-1)r%-1

for -1,
independent of the magnitude of r.

But if « =1
2w

A Kize L
BTz (B y) Z(z; %‘k)f 2@z £)
I, = de =e .
2y 27
0
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4th - Introducing the last result one finally obtains:

la
A4,
1 e%(z 2+ L (2+ L) iz T DL+ D
2ni (Z_Z-)k(- < T 271 (Z—Zﬁ)d 4az
(£ unit circle
1 e%(z-—%n%(z*%)gz 1 e%(z-%)f'%’(zw’z) 0 ifa>1} (I3
2mil  (z-z,)* O *rif Az
k Z-Z ) z --1-)+Z(Zfi'~)
9 unit circle et W RTENEH  jram
L v,

ITII-3.2 Consider here Case b in which 0<'Z§I<l.
In this case ZZ: lies in the inside of the unit circle
and Zk lies on the outside. It is then obvious that

one will obtain: q
1 e%‘(z—-%);‘%(u%) gl eg(z-%)+§(z+%)dz+ 0 ifa >1
= =
:arri"2 (2-73) 2ﬂiuni£z.c.§):le e%(z:__i)\»-g(zbfi:) if c=1| (513
>
1 e-g(z—%)ﬁ-;-(z*%) dz--]a- e:gq@-%p-’-z“-(u—;-)
277112 (Z—Zk)“ Cam (Z_Zk)“ az .

unit circle ~J
III-3.3 Consider here Case ¢ in which |7|=|z;|=1.

In this case the contour of Fig. 7IIIc must be used
which has circular dents at Z, and Z;.

The corresponding integrals are gilven as follows:

Ia
1 L-g-(z-%)+2;—(z+-§-){12 1 e%(z—-i—)*-’g(u%) ) 0 ifa>1
<1 - = xr—dZ+

- 27 j;l (Z-Zk)“ 2l (Z"Zk) .g(z;-%»%(z’b%u)

Iz unit circle %.e B « ifa=l

>(6)ITI3

1 e’%(z—%%%(lfé'z-) = 1 [;%(Z"iz‘)+ £(z+1) dz+‘ 0 ifa=1
271 & e Z”iJ ” « 1. %5 A

(220 (2-2y) 1. 5@ R WA

z unit circle 2 i
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I1I-3.4 The following may now be concluded.
"The problem is reduced to the integration around the
unit circle."

For compactness in the notation, the contour along
the unit circle will be indicated by c; when it is
taken in the direction given in Figs. 7IIla and 7IIc.

Cases a and b will be studied first. The following
analysls is based on the assumption that O<'Zk|<l

(Case a). 1If this is not the case, Z, and Zﬁ are

k
interchanged. ©Since it must be integrated around the
unit circle, it is necessary to have

|z} =1
and by the above hypothesis of Case a
Zy

-——(10

Z b4

2
Zy
Consider the expression

(1"‘1)‘«': 1+¢u+§(2‘fo:Q. ul+ . °+°<@“l)@"+§)x ref@yn-l) ul+eee

|<1.

This series 1s absolutely and uniformly convergent

if 0<u<]l,
Then, under the hypothesis of Case a,

- — - - QO n
(2-2p) "= 275 (1-Zhy "= 7=y &exl)ee(xen-1) (2
' Z n=o n! Zk

o0 .
)= (e sxdepensl (2
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which are absolutely and uniformly convergent series so
that term by term integration is Jjustified.

| Then: e

l‘ E(z-£)+E(zed) f %(z—‘-‘z-)+1‘é(z+%)

dz—-21 %ox(ﬂl)"(ﬁn-;);zﬁ e

23}, (2-7F ™40 nl Kk, Z0*° s
ot (@3
-é-;_{c -‘(z;;i);;:{’ )dZ L—D—Z “(«kl) Y (M- p=1) *alc-rnlzn 2(2- )+'§(Z+%)dz
i /
From this last equation it can be observed that the
problem is reduced to the integration of
Sz-4nEad) 1
Im=§lﬁ-‘[e P dZ ; m=n+q
“ > (911 3
¥ iz}'i‘lzn a(z Ink (z+-—)Z .
" N
II1-3.5 The integral I , for m=1, plays an important role
in this investigation. It will first be evaluated.
Since the contour of integration C1 is the unit circle
in the direction indicated in Fig. 7IIa, then one can
write,
Z= eiy and
1 ’;’;‘)@nrso,p '
I,=- ﬁf ag . (191 3

Now, it willﬂ_be proved that
Kcas _ 2
I1=- 7%._‘0/; /@cos(rsin/@)d/@——Jo e 53 (1) I3
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l1st - It will be shown that the integral (10)III3 is
purely real. Take the well-known Fourier series ex-

pansion,

0 (o o]
el sin?o 5 )42 2 T2n() cos np21 glJ2n+ 1@ sin(2n+ D¢

(See for exemple, "Theory of Bessel Functions", Watson,

P. 22.)
Then (10)III3 becomes

- w ar
~I;=+J,@@) -2-]]-',?/ et c0s ﬁ@}‘ ZlJZn(z){ﬁ]" / e %c0s <ngde o+
o n= o

or
+ iglJZn-*l(t) %[eﬂcos?sin@n»»lyw . (12)1113

It is immedistely seen that the integral expressions
between brackets are the Fourier expansion coefficients
of the function e¢fCOS@, Since this is an even function
of @, then

ar
i,];/e*°°s¢sin(2n+ 1)fag=0 ,
o
and consequently, the imaginary part of (10)III 3
vanishes; that is

T
%/efcos¢sin(z‘ sing)d@=0 . (13)mI3
(4

2nd - By a series expansion of the middle member of
(11)TII 3, it follows that

I =-Jo Ve %12,
The intermediate steps of this expansion are omitted
because they can be found, for example, in "Theory of

Bessel Functions", Watson, P. 2l.
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III-3.6 The integrals a

T YT 2k2= /”°°S¢cos (Tsinp)dp

(14)11 3
20
o=fe‘"°°sf” sin(Zsingp)ag

play an important role in this investigation. Take

the first and differentiate it with respect to ¢ and # .

One gets,
27

T;——J 'Yzo %= —-- 76cc’s¢)sin¢s:l.n(rsm¢)d¢

0
% 1 amr :
sy Jo'v Ta—ka=+§7f/e”°°s¢cos gcos(Tsing)dg .
]

By adding, substracting and using a well-known property

of the Bessel functions, the following equations are
obtained.

z-x % an
(FT*z) JLV72~1’2=-§]—‘77 ek°°s¢cos(¢+5’sinf)df

<]

(K'Ht) 2 J_ Tz'a rE=- lf*cosycos(—ﬁfrsinp)dg

Secondly, take the partial derivatives of (15)TI3with
respect to T and A, By adding the results correspond-
ing to tne first and subtracting those corresponding to

the second equation the following is obtained.

z.”g) Jth ~kE= gy L /*cos;pcos @+ sing)a@

amr
rn:) J NT2-#2= 4 2/ @708 o5 (-prTsing)d @

(»
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Third: by continuing this process after P successive

operations the following equations are found forP integer.

(1) (r—‘k)z%ov = -—f eXCOSP o5 (pP+Tsing) dp
N (16) 111 3
(-2) (Z‘ X/)ZJP T2 %2, 1 7(cos¢cos(pp+rsin¢)dp
The above generalization can be Justified directly
by using the method of finite induction. That is: 1if
(16)II3 is true for p, then it will be true for p+1.
This has already been shown for P=1, Take the partial

derivatives of the first with respect to @ and %,

1/?2 xz ] d YT E %2
Z+"<) 0z | { 'Fzﬁ'*z% TEE = f toos‘”sinpsinﬁom csing)dg
B_ VTLR2
GO (i %—;;,(—:*"’#W‘"-ka}ﬂ %;rf"""s“’oosmosawwsﬁn@w

By adding the above eguation in accordance with one

recursion formula of the Bessel functions, one gets

Pel, ~_
1) (r *)2 -{D’z"' ""‘" em:os ¢cos[(P+1 )¢+Z‘sln¢]d¢
and therefore the result holds for all values of p.
The second egquation of (14)II 3 can be Justified in
the same manner.
Fourth: From the second integral of (14)III3 it can
be found that
e
0 =fe"’°°sﬁsin(zp%rsin¢) dg (17) 1 3
(-]

for all values of P.
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II1I-3.7 Integrals (16)II3and (17)III3 are the key to the
solution in this research. The typical integrals
(1) I3 can be expressed in terms of them. Since these
integrals are to be taken along the unit circle, one
can write
Z=e3¢
and, therefore, by considering (17)III3, the following

expressions are obtained.
amr ar

I 2117 / tcose iE-mqu-rsmw] d@ = 2l” f X COS&, cos[-m@singld@

*» _ 1 fcos¢ i[ng+Tsingl 1 ?/Tcos¢’
In—l—"z"i[ ¢ € ag= -5 / & cosE)¢+Zsin¢J] dg.

By (16)III3it can be seen that

-(ma) g
T(n+ar1) ™ -(-1) (1 )— _( +a) (T)
* nol- (18)1113
k1 =-(-D2&d25 (1) }
in which
0=%X=1 and T=V7z%-%?
and finally, the solution of the integrals (1)III3
(Case a. |Z,)<1; §Z§\>l), is given by
1 “‘(z-lh’“(v—) 0  -trelyg(as1)- (kan-1) 1 _goE 0 for&>1
27| (Z2-Z)% <37--Z(-D K nl g) I (T 2, g,
) J/ Zk l+ “('H’(-i) ef(z 2)+§(Z+z)
Z foroc=1
(\ Q9mmz3
E(z-I Kz+d) nﬂ
__]__ eB\CTZ/N 2V T2 "“10:("(*1);‘(“4'11-& 2
LB, (gER 9 Z D Zﬁnn(n % I,

in which O-— and T=Yc2-#2,
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Section 4 - Inverse transforms in terms of Lommel Functions.
Solutions for simple poles. Generating functions.
Conditions at =% and at Z—>0 . Group velocity.
Phase velocity. Solution for poles of higher
multipljcity.

ITI-4.0 At the end of Section 1, the inverse Laplace trans-
form @¢(T,#) was expressed in terms of three types of
integrals: see Eqs. (24)IIIl, (25)III1 and (26)IIIl. At
the end of Section 3 these integrals were evaluated and
their values were given in Eq. (19)III2 From the formal
point of view, the problem of finding the required in-
verse Laplace transformation was solved.

Nevertheless, these formal solutions came out in the
form of uniformly convergent series expansions of the
Neumann type, which have a rather involved structure
and are difficult to both handle and discuss. The
obJect of Section 4 1s to obtain compact solutions for
these series, which are suitable for a complete discus-
sion.

III-4.1 The case of simple poles in G(2), that is «=1,
will be considered first in this investigation. This
case has a fundamental character because:

1st - A solution for the case of poles with multi-

plicity «>1 can be easily derived from it.
2nd - This 1s quite a common case in practical
applications.

Under the fundamental assumption that «=1, it can

be seen that:




From (21)II 1l

= =0 _ =
%2

0(1 3

From (22)TI1l

m

¢
G(z)= Zl TZ_—‘;—J

From (23)III1
)} ;
Z=

K= {(z-zk)a(z

From (24)IOI 1
0

°° T
k=l

*
* Z

k

Ty

m for =1
+ >
1 0 for >1

*= L(2-79a(z
2 K {(z zk)G(?)}Z
1= {ze(z)}z

A(Z)

r*:'Td

% 3

-
=

0

@(F,W)“
0

Ko

PIg dz;

jeA(Z)
Z
&

From (25)IIL 1 consider the integral

LA [0
k=1 27 Z~Zy dz
Iz

Finally, from (19)III 3 one obtains,

3’

1/2_{\;}_ dZ = -
_2wif Z-Z
Iy K

Z

271 7-
2

1 ]ﬂ(z)
ML
C

Z
4

zo(~1)°'“z (Lg) 3. (T)s+ €2 (21

m-.l 0

dZ=+ ZO( F(nrh) (1+ 9) Jn,,l(T)

az = -J,(T)
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()T 4

()1 4

(3)1I 4

¢ (4) IO 4

(5)I 4

~

> (6)III 4




The notation used in the above equations is

8(2)=%(z -2 H(z+ 1)
A(Zy) = %(Zk - -zll'{-) + g(zk*’ 2-];)

A(Z0) = g(z;--_,,‘:lﬁu 7’2('(Zk+211'{')

T =Vc2-#%
o=%

and also to be introduced is
K
I:iz_k complex quantity

3*

=X
. TZ’;E complex quantity

t
T=27rﬁ,—; 5 Tc=-f]-; 3 fo=cut-off frequency

A, ) f\c-:: cut-off frequency

~

v

(7) T 4

ITI-4.2 In this subsection the integral solutions (6) III %

will be expressed in terms of compact expressions

involving Lommel functions.




From the first, take the expression.

1
pRE ) P7p0)E; iD= 2 (DI BTy ()

-N -
for n =o0dd integer"zzi ( ) I (T)+

for n=even integer+j[:i“n€(2k)'nJ o(T) =
n=0

= i {(ZP"%ﬂk) (2P* 1)(.1.) L

p=0 -(2p+
[0.0]

~2P {1c52P
+PE=:01 G50 T 15(T)

_+%0( l)? Qk (ZP 1) 1)(T)

D HCHIEORENC
= Vo (€2, D+ v (€2, T)
in which
V@, m, V(2,1

are the Lommel V functions of order zero and one.

-~
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(8) T4

For

more information on Lommel functions see the next sub-

section and "Theory of Bessel Functions", Watson,

Pgs. 537-550.

From the second integral in (6)IIT4 one obtains _

Z(-»l)""zL 1.(L=9 ) J (1)= Z(-D (Q-f‘-)m (1) =
?"‘Ihg n+l 7 ) dn(T)=

= (nmedi, m - gym-

(ap+ Q 2p+1,
-5 P 0 - ke

+ f._% 1P (Qﬁ)z" Tpp (T)=

=y (.Q ,) -3 (T) - 101(9’;,'.@ )

C (9) 014
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in which 056, T) and U;€%,T) are the Lommel U functions

of order zero and one. (See Subsection III-4.3.)

*
With the aid of this result one can write

A(Z)
é%_{g—zk = ‘[ O({?k T)+1V10 T)] +eA(Zk)

A2 12x] <1
.2_311;.. %@ az =[UOCQ§,T) - 3o (1)) -1, €%, )
r 12| > 1

L (10) III 5

v

It can be concluded that the typical integrals can be

expressed in terms of Lommel functions.

A further dis-

cussion of these solutions will be made in the next

Subsection III-4.3

I1I-4,2 Lommel functions are defined by the uniformly -

convergent series

U, €2, 1) = S ( -nmdhmramg (1)

m=0 n+2m( |

@ =3 LB o (n)
m=0 J

v The U and V functions are connected by

Un@2,T) - V_paz €2,T) = cos *__ -.._.

n+l@ T) Vn*l@ T)-—- sin(Q+——-%"-)J

a6, 1) #0522, ) = €75, (1)

VD(Q,T)wmz(Q,T) = (? "nJ_n(T)

V(T = (- 1)”1)n »T)

(11) 1T 4

(12)1II 4

(13)TI 4

(L4)I0T 4

It is not hard to prove these properties, and the proof

is given in the reference mentioned earlier.

* See Appendix I,
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These relations allow the following expressions to be

written n

A(Z
21:];'1 T%—Zk)) az = - [Vo(-Qk,T) + iVl@k’T)]'F eA(Zk) =
%2

=[00&e ™) - To(D)] - 10, €%, 1) § (15)m 4
=-[0,0, ™) + 101y, 7)) 5

l2d <1
and
A(Z) g
T '-(-3-:7-@- az = - [0, €%, 1) + 10, €, )]
% =[0, @, T) - To(T)] - 1U7 63, T)
=-[vo@,m + 1v; @, )+ () (16) I 4
1z > 1 .

By simple observation of (15)III 4 and (16)III 4 itucan
be seen that the two integrals bear complete resemblance
to each other. Thinking in terms of the variable <4, one
can notice that the first integral (15)III4, is connected
withzf[ (Riemann surface Jé[) and the second, (16)II1 4,
with @in the o plane.

For compactness in the notation, write

YT = VoQ,T) + 1V (Q,T)

UQ,1) = 0,2, T) + 10, €2, T) (17) III 4

and they will be referred to as Transient Generating

Functions.
With the aid of these new generating functions, the
inverse Laplace transform of the basic transform will

be given by
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;f_’:I«‘(A,‘/A 2,06 gz, %)

y>1 o1
=u_(T-%) s e 220 _J1Q, 1) - 0 - ﬁnKk?((Qk,T)- 0 (18) III 4
r=1 ]‘31

For simple poles of F

qi(r—k)=1nﬂj step function
Therefore, the problem of inversion from the 4 domain
into the ¢ domain is completely solved for the case of
simple poles of F. For the solution in case of multi-
plicity greater than one see Subsection III-4.9.

III-4.4 In this subsection the behavior of the generating
functions ¥ (§2,T) and Z(E4T) at T=%, (wave front) will
be investigated. & |
The simplest way to evaluate this function at T=%

is by means of the integral

1 (o2 Lwi@+Z)

A(Zy)
- dz=e JE2,T) .
ZE' (T2 k

Now, when T=% then A(Z)=%Z and the essentizl singular-
ity at Z=0 disappears. Therefore, for =%, the above
integrand is analytic inside and on the contour 75.
Since the integral along Jg must ?anish, then

*Z
%@(’T)Z% ‘7(= K

QT __Z0 -
It can be shown that
3# xz¥
= k
f(nk, T)t'zx e

2apn 0. | o4

e (19) 1T 4
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As a consequence:
0 when /7>1
(e, %)= (21)II 4
e K, when =1
Equations (21)III+4 corroborate the statement given in
Ch. I about the behavior of the function F(d,VQEZEE
when 64— .

It has been said previously in Ch. I, Section 9,
that the solution of the vector field, in the t domain,
is electromagnetic if F(A,ygizjg_;;+0(£%); Y>1l. It can
be concluded, therefore, that the propagation of the TE
and TH fields in hollow cylinders is such that the wave
front (T=%) vanishes.

III-4.5 In this subsection the behavior of7&@1k,T) and
Uy, T) when T—>o0 will be investigated. (Permanent
state.) Take first VDGQK,T) and prove that

V@, T) g0 (22)II1 4
for a2ll values of n, independently of17k.

No simple and direct analysis of this situation can
be made by means of the series which define the Lommel
functions. The same happens with the other formules al-
ready given. If one of the integral representations of

these functions %& used, then the proof is simple.

1Qyn
V,(2,T)= 2;1/(2 1) 5 e%e-,%?é%’s (23)0OI 4
1+1@)

in which t is a positive real variable. Since T>K,
then YT?-%~ is always real and T->o with T—>o00, and the
integrand goes to zero for all values of n and{l. Therefore,

Vn(ﬂ,T) —0

T —ros
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for all values of n andJf2, only if T>%.

Since this is independent of[),

2 ," 0
"ol Wi (24)III 4
vn((lk’ T) —-?0 .

CT—>co

By considering the above results as well as (15)III 4

and (16)III4 it can be concluded that

1}«)k,T) —0
T >
LO,r) et B (23)1IL 4
T—ro
L F (0 ,76°+1) o H7oHl oz, %) —*% KkeA (Z) }
when4 -0 e k=1 .

and therefore, the well-known solutions for the permanent

state are obtained.
Also, as an extension
3
‘ﬂ(zk, T =7 oA
7 O*
((lk’ T%__) a:)—’ e

Next the concept of group velocity of waves repre-

(2) (26)1m 4

III-4.6
sented by the generating functions 7& and ﬁwill be
introduced. In order to do so, go back to the 4 plane:

P(Tyx)= ﬁjF(AﬂA%l)é*’ﬁ”da . (27)III 4

.8
y 4
In accordance with Brillouin, the complex group velocity

is defined by

a%(AZ‘-ﬁAhl =0 (28) 111 4
from which 1
_F) A1 ¢tF

B iR s

N
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The above expression is called the normalized group
velocity, that is, the ratio of the group velocity Cg
to the velocity of light ¢. To check, write

X x
_2”')?%_(_{:3')3,?3

g " ¢ T c¢
2FTc

As an extension of the above concept, the expression

1
. zf +1
= =& = _ T = - (30)11T 4
& k T o 2 _1
k"Zk Zk-

will be called the group velocity corresponding to the

pole at dy or Z,.
Two simple, but important, theorems will be given:
Theorem A - "The poles Z, and Z; have equal but
opposite complex group velocity."
The theorem follows from
BB = -1 -
Theorem B - "If Z, (conjugate of Z) is also a pole,
then Z, and Z, have the same
complex group velocity."
' The generating functions a4@y,T) and P, ,T) are closely
associated with the pole at Z, (see Eqs. (15)I1 4,
(16)1T 4 and (17)OI 4.) In the future Vg Will be referred
to as thie group velocity of the waves represented by
these generating functions. The next theorem is of
primary importance.
Theorem C - "The values of the generating functions

at the time corresponding to the arrival




128
with group velocity are given by

Z?(Qk}?k) and
fmkrﬂk) M (31)m 1&

The proof is simple: since Tzl)k, then

X JrR_%2
17y ¢e-%
&y ol
t/g Zﬁ-—l

and the theorem 1s proved.

Now, the values of the generating functions /4 and'f
x
T
corresponding pole will be found,

when the ratio is equal to the group velocity of the

From (12)III 4 and (13)III4, when(l =T,
Uo(T,T) = Vo(T,T) = 2 [75(T) + cos 1

U3 (T,T)= -V;(T,T)= % sin T S (32) 1 4

U,(T,T) = .12, Jo(T) -!2-. cos T

so that:

Z(T,T) -.-Z'((Okﬁk) =

‘ﬁ(T,T) =mk’ﬂk)=‘" 1 JO(T) + 1 e-iT (33)T 4

N

To make the proper interpretation of these results, the
permanent state term eA(Zk) corresponding to the pole
Z) will be considered. Since T=f), from (7)I 4
A(Z)= E (L K(zpr L) = T(gfZF - L [22E) = —a7 (24)0O1 4
(Z)= 5 (2 zk)* 3¢ k*zk) > Gl E% % =

since, for the group velocity

125, =/58 . (35)I 4
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Then the prermanent state term, corresponding to the
pole Zy, becomes at group velocity time

e~ 1T | (36) I1I 4
From (33)III4 and (36)III4 the following theorem is
obtained: "The generating function corresponding to
the pole 7, has, at the time corresponding to the arrival
with group velocity, a value which is equal to one half
the permanent state plus (or minus) one half the Bessel
function of order zero." At large distances from the
origin of excitatlion of the wave guide, the value of T
corresponding to the group velocity becomes lzrge. In
this case Jo(T) can be neglected and then it can be said:
"At large distances from the origin of excitation and
at the time corresponding to the group velocity, the
generating functions have a magnitude approximately
equal to one half of the permanent state.'

The equivalent relations for the (*) function can be
derived. The results are quite similar to those ob-
tained in this section.

I11-4.7 In this subsection the concept of phase velocity
will be introduced.

The complex phase velocity is obtained from (27)III4
when

4T -%¥sP41= 0 (37) I 4

The ratio given by

?) = Vph= =

ph V221 (38)1II 4
will define the normalized phase velocity, that is, the

ratio of the actual phase velocity to the velocity of light.




130

For the pole at Zk, the corresponding phase velocity

has the form

* 2§ -1
’r')ph == 22 +1 . (39)1I 4

The next three theorems follow:

"For the same pole Zk, the corresponding group and
phase velocities are reciprocal.”

"The phase Velocities corresponding to the poles
Zy and Z; are equal but opposite in sign."

"If Z, is also a pole of G(Z), then the poles Z

and Z, have phase velocities which are equal."

Now, the way in which the variablesl7k and T are
related will be studied, that is,at the time correspond-
ing to the phase veloclity.

From (7)III4 and (39)III4,

RZy
0 =5=%X_ = (1 .k
K™ Iz, T 10 D) L(Z+1) o
40) 100 4
T=Y72x2=1v/1 -§-=z—z—“2{—
z2+1
from which
Z
.Qk) = -1-1-‘- T) (41)III 4
ph ph .
Then:

"4t the planes of equal phase, the variablesflk and
T are proportional."
It was not possible to obtain exact expressions which

give the values of the generating functions corresponding
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to the phase velocity value of (;). Asymptotic ex-
pressions can be derived for large values of T; see
Ch. IV,

III-4.8 The signal veloecity and the time of formation of
the generating functions 22 and ﬁ wlll be discussed in
Ch. IV.

I11-4.9 To close Section 4, the solution of the inverse
transforms when there are poles with multiplicity
greater than one will be given.

In this case the typical integrals are:
1 [ A(2) 1 [ eA(2)

2T /(Z-Zk)“ az= 577 (Z‘ijr daz for a>1 (42)III 4
z

1
since the integration vanishes around the pole.

Integral (42)III4 can be expressed in terms of the

derivatives of the function)i/, since

1 [ @D
2L (z-z f 2= @101 72, @D
1

Now it can be shown that: (see™essel's Functions",

7 @Q,T) . (43)TII 4

Watson, P. 539)

2 v _ Th2
Zmuk Vn=Vps * k) Vh-1 (44) 111 4

from which

2
- 1y,41(L)2
My o= 3156V

2 y.=1 1
By 1= 3N @,




so that
g Ly + 1v,)+ 32?2 '
a0, 2/ 25) (Vg + V) (45) I 4
By (14)IIL4

Ly
Vo= Vo +J3(T); V_3=-Vi+ 5 J,(T)

and therefore,

979/ 2121 (QK T)‘}’7 [T J‘O(T)-iJl(T)]} (46) I 4

and finally

A(Z)
2]];:1- Zk)z _iT {(Q X )‘}(Qk,T) _{QkJO(T) iJl(T)]} (47) III 4

=- %,/;E—.*%ﬂk{ ka T)- [ £ 7o(T)- H(T)]} (48) 1L 4
It can be noticed that this integral can be expressed
in terms of the generating function‘fﬂ By continuing
this process of differentiation, the values of the
integral (43)III4 can be obtained, and therefore, the
whole problem of the inversion is completely solved.
The computatiomsof some transforms are given in Section 6.
Section 7 will be devoted to the application of this
theory to wave guildes.

Section 5 - Computation of the inverse Laplace transform of
some useful transforms. General solution of the

inverse Laplace transform.
ITII-5.C This section is devoted to illustrating the method

of inversion developed in this chapter. Some simple
. and common transforms will be considered. They will

satisfy the condition that F must be of the order Jiq =1
s

when 4—>00. One has to recall that #= 2 for those

transforms which find application in wave guides. This
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last condition will be required in Section 6, in which
this theory is applied to some specific examples of
wave propagation in wave guides.
ITI-5.1 The steps required to obtain

Z-1p (4024 1) € ¥VaFH1 (1) 111 5
will be summarized in which F(4,/s % 1) 1s the ratio of
two polynomiels in 4 and V62 + 1. Besides FCA;JZQIE)”>(AL);

d-r0 47
with ¥=1,
The procedure must be as follows:
1st - Use the complex transformation
Z= g -VoRe1 (2)III5
and set
023z 5 1=+ D . (3)m1s

2nd - Substitute the above expressions in F(o,V02+l)
and so obtain F(Z).
3rd - Find the function

6(z)=4% l—‘é—%—?- (F(2) (4) 1 5

which is the ratio of two polynomials in Z. The
corresponding degree of this polynomial was already
discussed in Section 1. If m is the degree of the
denominator of the polynomial in F(d)ﬂ;z:i), then,
the degree of the polynomial in the denominator of
G(Z) is

2dm+1 if ¥=1

(5)1II 5

2m if ry>1.

(See the theorem in Section 1 of this chapter.)
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m
G(z)= =

4th - Find the poles of G(Z). Recall Theorem 1
Section 1. 1If .4y is a pole of FCd;sz:z', then

Zy=d1 ~ 421

Zk*“’k”m’ so that (6)III 5

ZyZp = -1
are poles of G(Z).

If pole 4y has a multipliclty «, then Zjy and Z;
have the same multiplicity. (See other theorems
in Section 1 of this chapter.)
5th - In what follows always suppose that
ndlZﬁl =1

2 =1 .

The asterisk in (6)III5 must be associated with the

a (7115

poles of G(Z) in accordance with the convention
given in (7)III5. This is always possible.

6th - Expand G(Z) in partial fractions. Use the
notation given in Section 3 of this chapter. For
the convenience of the reader the following expres-

silons will be repeated.

K 3 rKo
x x - for =1
f ki .3 5.% -———K-%":-—r* z (8)III 5
1 J='l (Z..Z T‘;J"'l k=1 jzl (Z-ZPK&F
Kk C 0 for )>1
in which ;
1 [_ad-1 Ly 1
Kieq = Z-Z G(z
kT -D0 Ldzl’-l( W O )_ 77, .
* 1 [ ad-1 oo - (9)II 5
K .= - > -
k3~ TI-D)T |71 4% kG(Z)‘ 27 :

K,= [2 a(2)] o
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and
Z, has a multiplicity xl

Zo has a multiplicity «,

o emm e e em em wn we e s e e

Z has a multiplicity & (10) 11 5

Zq has a multiplicity ah

such that :xl + Ayt -+¢xk+ . .+uq =m.

6th - To obtain

P(e,%) =L IF (o0l +1) e’kﬁa"1 (11) I 5

use only the terms without asterisks. The contribu-

tion of the terms with asterisks must not be added
since they represent the contribution of the integra-

tion around the branch cut in the Riemann surface JP

II°
This statement is easily proved.
7th - Write the following expression as
=06 [ gy |
z Sy -5t Yo B Ky (12)mmI 5
k=1 j=1 (Z_Zk)“x".)‘ kz]KZ—Zk) k=1 J=1(Z-Zk)°c"‘—3—1
For each term of the form
Ky« .
—k write Kyq eA(Zk)-:p(ﬂk,T) = Ky ﬂ(n-k,'l‘) (13)TII 5
Z-Zy k k
For each term of the form
K (xy=1)
ki . 1 P)
——1 write -} T 14) 01
(27, 5% k3 @ T 9z, (5D 7@en  (Gom s
For the term of the form (J4=1)
K, .
— write -Jo(T) * (15)1I1 5

Then, the inverse Laplace transform is given by
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Z-1F (0 Ya Rr1)e TV4H

1 A(Z )
P(T,k) =u_y (r-X){lglKk“k [e K —70/@1(, T)] - N
n «k—l K'k “K"“— r 1
) 5 2 %1 0 z
= E’:—l (mk_:j) ] azk«_ K-j ﬁmk, T)"‘ KOJO(T) r= ]_J (lé)m 5
o -
=u_4 (T-%) 4~ kglKkakﬂ(Qk, T) -
m ﬁ:‘l K Kp—* 0 r>1 r
_ k3 Ky -

ITI-5.2
is

The derivatives of Z{2,T) can be computed as in
Subsection III-4.9.
In the computation of the inverse transforms, it
convenient to use the following properties:
1st -
Vo(-L,T) = V4(Q,T)
v1(n,T)= -v;(,T)
0,(-1,T)=10,(,T)
U1 (=0, T) = -0, (Q,T) .]

'

(18)1II 5

2nd - The arguments!lk and T of the Lommel functions

have the value

T =72 2
a, = (19)1115
1Zk .

Notice that T is always positive and real, since T>%,
{1, is, in general, a complex quantity. It is real
only when Zp is pure imaginary, in which case

Zk= i‘Zk‘ or = -i‘Zk\
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and therefore,
3rd - WhenZorXchange in value, then the complex
argumentllk represents a moving point in the Z
plane. For a given pole Zy, the lines described by
the variable pointllk are straight lines through
the origin. This property can be visualized by
writing

Zie= 2] o™ &
in which|Zy| and @i are constant quantities.

Then

0, -=% -1@-F) 20) III

ITI-5.3 In this subsection some simple and useful inverse

transforms will be computed.

1st e Yo%1
=St - ;:I;;— H vo:>1.

a. Notice that /=1.

b. FCo)=‘A_1U then,ol==ivo is a root
o)

from which
7, =1(V, -7 2 _1)
o) o
Z;f=i(\)o+w/\7§-l) .

Notice that

2] <1 and |z3)>1.

C. 2
G(Z)= 1+Z
(2% - 24,2-1)
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#*
Ky==-1; K;=1; Ky=1
Q. — T K
. Vo";‘)o":L
= T(2, - L)X 1 L2 _1
A(Z7) 2(21 Zl)+ 2(214- Zl)= 1Ty, - be-1 .
Finally N

~K93%41
€ e WS T (T -

o (21)TII 5

= u_fc- W){W(- —/c?- K2 +3(T2- 2)}

For the values of the generating functions 'f/andzﬂ(

see Eq. (18)1114.
Ny
2nd -

(o~ jvo)VA 21

Here ¥=2 - Ko-'-' 0

a(z) = - 2
72-21v_Z-1

_ 2
Z,= 1(vy -Vvg -1)

|z4)<1

e

* 2 3t
Zy = i(\)oﬂ/uo—l) 3 ]21\71

Ki= =1 ;Ki:-. 1

1= g-l 79 g-l

e—-?h/42+1
(0-3Vy)Vo<+1

o Xt

=u_l (Z'—‘k) i [ L(Vot H———) f _

2 1 V—m

=+u_; (T-%)

L7
v v?»-/—l

in which u_1(C-%) is the unit step function shifted
to T:*.
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e—ﬂ 6% 44
3rd - Z—eee— Y >1
Ea— A?+92 e}

One has: =2 ;KO_'-— 0; #41= iuo; by =~1 1)

7121 (Vo-T2-1) 5 120 <15 Zy=-1(v,-V3-1);|Z)<1
% . 3% 3* "
Zl.—.l(voﬂlug-l); 1Z11>15 Zo=-1(Vgty v§+l); |Z,\>1

2(2)1-1

G(z)=
2, 2
[22-21v,2-1] [2%+21v,2-1]
K =-—_-._-i { = _._..i R T S SN |
1= gyt Rttt Mt mavg Bt

8(2))=1(Tuy-1V0E-1) 5 A(Zy)=-1(Tv -1<1/u2 1)
_le..._f_:le.__; ﬂ2=+ T'K_ ; T'—‘]/Z’Z-—‘Ig

e~ 2_
Vy=5-1 Ve-W2-1

and finally

X Kvls241 '
Ef'l _e_——--—=u (z' _ﬁ)x ..;L_.. i &F T-K
2.2 -1 sin(v z-45-D-L| P —---~-———-—)‘T-=T>(+ Rl
» P ""IJO VO o "74)8" _ 1/2 l’)
(23)1r5
_u__]_(r—-‘K)x—-— sin(v, ‘c—‘/d —1)-V1(-—~ £ »T) be
Lo~ V2—l
In a similar way one can obtain:
g KV0Z+1
Lth - =& 3 ¥,>1 and =1
(0-1V,) V4241
» 27y TRV
-1 Y T-AVV2-1)
L = =u_y (E-K)x—=2% S - -—--—~-“~,'f)+J(T) RHIIS

(6-1v NWs2+1 w/,;2 1 W2-1
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m e.w (6244
5th - y.>1 ¥r=1
(02+v2) ’

[21
=u_1(r-“’){Jo(T)+ o [cos(v T E-1)+ 7, ( ———

Yo W 1
_‘I(-./Azti
6th -1 =€
A2+v2)v 2 1
(z'-‘la
b A sin(\? "C‘—7<'1/ )+Vl( ,T) when 1)°>1
1/v§ -1 W2 1
= L
7th -1 —8 =
(62+v2)Ve*+1
)
u_l(r-k) {
= =" ) _cos (v T-kv2-1)+V (—E2K_ mb p 51
/ - o o} o I <?
vo V%-J- VO- Vg-l
—#0% A
8th -l T T
N

—u_p (E=K)4cos (vF-1hZ 1) v (=L m)} v _>1

v -W2-1

o

(25)111 5

(26)mI 5

(27)T01 5

(28)11 5
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Section 6 - The transient phenomena in wave guides. Formation
of envelopes with elementary wave forms and with
some orthogonal polynomial. FExample of the transient
field in wave guides.

1II-6.0 In Ch. I, Sections & and 9, it was shown that the
solution of the transient phenomena in wave guides was
closely associated with the solution of the inverse
Laplace transform of the prototype transform

F(A;{ZZZ;i)e-tJZE:T
with the restrictions given in the above-mentioned
sections. Now, since the solution of the corresponding
Laplace transformation was already obtained and given
in equations (16)III5 and (17)III5, it can be concluded
that the problem of finding the transient response of
a wave is solved, when th2 excitation of the guide is
such that it leads to a function of the type of F(s,V.a?+1).

It was also shown in Ch. I that the function FCA;¢25:13
can cover a practically unlimited number of cases of
excitation. Therefore, the solutions already obtained
have a general character.

The object of this section is to indicate the inter-
mediate steps for passing from the inverse transform to
the solution of the components of the electromagnetic
vector. The reguired relations between them are given
in Table I, Ch. I. It will be convenient to consult
Sections 8 and 9 of Ch. I in which some important re-

lations are given.
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III-6.1 It is convenient to give a brief summary of the
present situation. _
1lst - Inside wave guides two fundamental types of
wave, TE and TH, can be excited.
2nd - In the case of TE waves at x3=<3, the component
;%5 or the space derivative of2e5 with respect to X3
can be prescribed (see Table I, Ch. I). If (éﬁéa
is prescribed as an initial condition, 1t is equivg-
lent to specifying the transverse components of the
magnetic field. See Egs. (3)I5 on P. 31.
2rd - In the case of TH waves at x3= 0, E} or ;gﬁ
can be prescribed. If this derivative is given gs
the initial condition, it is equivalent to specifying
the transverse components of the electric field.
See Eq. (2)I5, P. 31.
4th - In Section 8, Paragraph I-8.1, the manner of
obtaining the corresponding initial condition in the
S domain was indicated. In the same section, some
theorems and methods are given which facilitate this
purpose.
5th - In Section I-3.1, Egs. (8)I3, the differential
equations which yield the functions ﬂ% or 03 will be
found as will the separation constant p. . The solu-
tions of these equations are well known for typlcal
cross sections of the wave guides. The solutions
can be found in any text book on wave guides and are

omitted in this investigation.
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6tk - The Laplace transforms given in Table I, Ch. I,
are functions of the complex frequency s. The trans-
forms considered in this chapter are given in terms
of the normalized complex freqguency

A=-§; 3 @=PC . (see p. 19)

It is necessary therefore to use the relations
- -l‘é]/ 2,2 -1 - 1/ 2
SftlF(s,V32+wg e S““.c_.wgct F (s ,1/«6?4-1)9* AT+l (1)1x 6

7th - The solution of a transient problem is now

easlly obtained by using the inverse Laplace trans-
forms in the manner indicated.
The manipulation of a transient problem will become
simpler by using some of the additional theorems or methods
given in the following subsections,.

ITII-6.1 Once an initial condition is given, 1t must be trans-
formed from the t domain into the S domain. This initial
condition is a function of time which oscillates rapidly
and in general changes in amplitude or phase. In such
cases, it is convenient to express this time function
as a product of two factors. One of these factors gives
the amplitude of th2s oscillations and the other corresponds
to the period of the oscilletions. The first factor
alone represents the envelope of the oscillation. When
this seperation into factors is possible, then the
Laplace trensform corresponding to each of these factors
can be found. The Laplace transform of the whole signal

can be obtained by complex convolution. If one of these
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factors has a transform which is equal to the ratio of
two polynomials in s, then the complete Laplace trans-
form can be computed by means of the theorems given
in Section 1-8.5, P. 41, Ch. I.

‘In the case of simple wave forms of excitation, the
Laplace transform of the incoming signal can be found
directly without much labor. When this initial time
function represents complicated wave forms, then some
difficulties may arise, mainly when the initial condi-
tion is given in the form of a graph, which is often
the case. It is, therefore, convenient to develop a
wactical and simple method which yields the reguired
transforms of rather complicated wave forms of excitation.

In what follows use will be made of the notation

£(t) = m(t)g(t) (2)IIT 6
in which m(t) represents ths envelope function and g(t)
indicates the corresponding highly oscillating function.

III-6.2 Attention will be confined to the envelope func-
tion m(t). Complicated wave envelopes can be obtained
by compounding elementary wave forms. By elementary
forms the meaning 1is

Infinite rectangular

Simple exponential

Uniformly rising front

Sinusoidal

Damped sinusoidal

Difference of two exponential .

All these elementary forms can be reproduced by giving
particular values to the paramenter a,b,A,B of the two
exponentials

pe=8ty ge~Pt | (3)11I6é
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Another family of simple wave forms can be contained in
ATt (4)1I1 6
by giving suitable values to the parameters A,n, X,
Figure 8IITa illustrates some examples of the composi-
tion of elementary wave forms for producing more com-
plicated forms. Immediately it can be visualized that
an unlimited number of complicated wave forms can be
synthesized., It is evident that complicated envelopes
can be approximated and, in the case of graphs, simple
analytic expressions for the curves which represent the
envelope function can be produced. The expansion of
the envelope function in terms of these elementary forms
yield transforms which are the ratio of two polynomials
in s.
I11-6.3 The application of the above method to the analysis
of waves presupposes two things:
lst - That the type and position of the elementary
wave components can be recognized by inspection.
2nd - That the proper values of parameters a,b,A,B
in (3)I116 or A,x,n in (4)IIIé can be computed,
without much labor, in each elementary wave.
If this is not the case, then the above method is worth-
less and one has to introduce orthogonal polynomials.
The object of this Subsection III-6.3 1is to expand the
envelope function in orthogonal polynomials which are

suitable to the solution of the problem. The orthogonal
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polynomial must be selected by considering two things:
lst - That the given envelope with a few of the

elements of the expansion can be approximated.

2nd - That the terms of the expansion lead to trans-

forms which can be containad in the prototype

F(g,V0°+1).

In all practical cases, these two conditions can be
satisfled with ease. When the envelope function re-
peats at equal intervals of time, then the Fourier
series approximation is indicated. When the correspond-
ing envelope function has an accentuated monotonic
character as represents a pulse, then the Laguerre
polynomials can be used. In the case of frequency modu-
lation, it is convenient to use expansions of the
Nevmann type.

In Fig. 8IIIb, an AM pulse of guration of is shown,
The amplitude of the oscillation follows an envelope
which has a pronounced monotonic character. The enve-
lope function m(t) can be expanded in a series of
Laguerre polynomials as follows

m(t) = e—%t{aoLo(cx t) + ajlq @ t)+erra L (&t)+e -}

t

(5)I1I6

)3

= e

(0 0]
> anLn(OCt)
n=0

in which the Laguerre polynomial of the order n ic

definad by,”

* See, for example, "Methoden Der Mathematischen Physik",
Courrant and Hilbert, Volumen I, P. 79. A slightly
modified definition was used which is more suitable for
this oroblem.
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_1 &%t an
(0= 15 T 3m

x=constant.

(the="Y), (6)1116

These polynomials form a complete system of orthogonal

functions, and they have the property

@

,[e"“th(cct)Lm(at) dt=0 for m#n S

./ec:(th(o(t)dt'; 1 for m=n .
Theocoefficients in the expansior (5)III6 are determined by
fe%m(t)z.n(oct)dt . (8)TI6
Since m(t) is the envelope of 2 pulse of duration d, then
a - /i-%’:m(t)nn(«t)dt : (9)I 6
The exglicit expressions of the first Laguerre poly-
nomials as they are defined in (6)III6 are

Lo(xt)= L s L (at):——l—(- 3¢3 3 &*t° - 3«t +1)
0 Vo 2 Vo _asz__,, (10)111 6

b (50 = - et - 15 1 60= 8 2202 )

2

_ 1 a2t

Lg(“t)—ﬁ( 5 - 2at +1)

and they satisfy the recursion formulas

Lpep ®t) -@n+l - act) Ly («th 0L, _; (at)= 0 (11)III 6

In the case m(t) given by a graph, the values of a,

can be computed by the approximate formula
-aka
Z‘ e Tm(kA)Ln(ockA) (12)1116

in which A=—g— and V= number of parts in which the

interval & is divided.
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Once the coefficients a&g,°**,a,,*** are computed the
corresponding Laplace transform of m(t) can be com-

puted as follows:
o9 _«t
I[m(t)]= Zoanfe 2 Ly(xt)=
=§a 2 _(2s-)D
0

Dy (2s+)B¥1

(13)Imx 6

J
since it can be proved without difficulty that

LT L (xt)= 2 (25=@D0. (14)1I16

oC (25+m)n+1
Once the Laplace transform of m(t) is computed, then
the Laplace transform of the complete initial signal
can be obtained by means of the theorems given in
Section 8, Ch. I.

This method of approximation with Laguerre poly-
nomials is recommended when the function m(t) has only
one maximum, in which case one or two terms of the ex-
pansion give enough accuracy from the practical point
of view.

Other types of orthogonal functions can be used in
a similer manner,

ITI-6.. If the input function has an envelope m(t) which
repeats itself at equal intervals of t, then a Fourier
expansion is convenient, with the further requirement
m(t) =0 for t<0. Then

0
n(t)=< o ®
2 _ap cos mft +§i—bn sin nt 7/'-‘28“ (15)mI 6
0
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In the case of input pulses of duration&, which
shows a few oscillations in the envelope m(t), then a

Fourier expansion can also be used &as

0 t<O0
® ®
m(t)= Zancos nd’t+Zl'bnsin nkt 0<t<d (16)1IT 6
0
0 =0

(See Fig. 8IIIc.)
The coefficients are determined by the well-known
formulas when m(t) is given in an analytical or graphi-

cal form. The Laplace transform of m(t) is given by

08} (¢ )
Zn(t)=u(s)=S a —5S . Sp. _VIn__ (17)II16
% N g2 n2272+% N2 ny2

for the semi-infinite envelope

Zm(t) = M(s)= ian ——5— —_—2_(1-e SJ')+Zb

+n

27]2 nW(le ).(18)1116
In practical cases, only a few terms are required to
obtain a good approximation.

Once M(s) is computed, the transform of the whole in-
put signal can be obtained by the method given in Section

8 of Ch. I. The factor e-S¢ simply means a time shift.

III-6.5 In this subsection, one specific example of the

instantaneous propagation of the electromagnetic field
inside the wave guide will be worked out.

Suppose that, at x3;=0, the partial derivative of‘é}
with respect to x5 is specified. (This assumption is
equivalent to specifying a transverse component of the

electric tield. (See Egs. (3)I5, Ch. I.)
alz’)

T ..u l(t)vgsinco t . (19)1I16
3'/x
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yé is a function of the transverse coordinates of the
wave guide. It must satisfy the differential equation

2 2
=0 20)III 6
V(xl,x2)¢3+p 3}3 (20)

(See Eq. (8)I1, P. 20, Ch. I.) For the moment,the form
of the cross section of the wave guide is not specified.
It will simply be assumed that 7% and p are so deter-
mined that the boundary conditions are satisfied.

The corresponding Laplace transform of the initial

condition 1is given by

z| 283 - % _ Yo 1

[2x3 X,=0 'W3 82 + w? ny,¢2+ VR We (21)111 6
3 o o

in which

w
V=2 =2
o m and A-— w [
c c

The function A;(O,s) is obtained from (R1)IIIé.
(See Table I, Ch. I and also Egs. (1)I3, Section 3, Ch. I.)
w

O

82+Ldg (22)TI6

A;(o,s)=

From Table I, Ch. I, the corresponding values of the
electric and magnetic components of the field can be
picked up.

In order to obtain the instantaneous field in the t

domain, the following inverse transforms must be found.

=X 2 el
For E, and Ej; N SEHE op 1 ghsEed
2 "3 2 2, 02
wess <+ Ve
e_’éz\,squ@- e ¥ a8+ 1

For Eq or > (23)III6

H
(sR+uwR)Ys2w? (0203021
~ X35 2 -
For H] and Hy; se & Y5 Z+w? or .se X A2+i_
b
(524\08) s 24w (024v2)\a% 1
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except for constants of geometrical factors which are
independent of s.

The inversa Laplace transforms of (23)IIIé are given
in (23)1115, (26)III5 and (27)III5 of Section 5. The

)

field vectors have the expressions

fl +(h12 )
l(r-)\') 1 {Sln(VO'C'— W -1)—Vl[ ,Vt =k l
f2=+ .l..a_%) V v
29%3
&'3- -—-i—u_l(r-‘k) {—cos(vor t\/ o-1+7g [———-———75--, 52—7(2}
pV2-1 -Yve-1 |
. (24) 111 6
__(1L %
>u_(T-H)——2— {sin(v kWG l)+Vl[——§—'-'—K—-
1 2% peYg-1 VoW1
o=y 7w
%3 =

in which: xl,xz,XB::cylindrical coordinates;
h.,h, ,h,=1,metric coefficients; y -‘-:—' = 277"—1-3-
1772773 o “e Te’
A= 27T'X2; p= separation constant (see p, 19),
c

&

By simple inspection of (24)III6é it can be observed
that: "At equal cut-off frequency values and at equal
applied frequency, the time propagation of the electro-
magnetic field inside wave guides is independent of the
geometry of the cross section. The form of the cross
section produces only geometrical factors, independent
of the time, which only changes the value of the final

vectors." A generalization of this principle can be
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made by inspection of Table I, Ch. I.

In the solutions
(24)1116 a definite
cross section of the FIG.N° O IL
gulde has not been R -7
specified. Let us :
specify the cross ot o -

v/ I’
section. Take for lp -

example, a rectangular

wave guide whose di- =7, —=
g o Yo- _qJ Y=z,
mensions are indicated
in Fig. 9I1I.
The value of‘#3 is given by

% =E' gin Il ¢y o4y OT
xo Yo v

E; =constant X (25)1116

and
p?= (W2, (@m)?
Xg Yo
J
in which m and n are integers.

In order to introduce the standard notation employed

in some texts on wave guides, set

E’ E'c
éf" constant

O oo 3=ef = Yeo3-c? (@2 (10)?]

\ (26)11 6

J
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%- +%os(;‘;'x) sing-lrlg-'y) )
L & PmD ot (0402 D) ¥, Oy D w6 =5)

b
sin%- x) cos %Ey)
o

53 =Z‘;s in(;%”;-x) sin%”&) J‘cos (VOT-WWOZ—I) -Vo(ﬂk, T)} u_y (@-%)

7fl= ;—sin(m”'x) cos (yz'yi (7)1 6
Xo

3 E;,ﬁ"—zg{s in(V&- / Vzo-l) -V @y, T)o u 1 (@-%)
P

732-+ cos (—'x)sln( )

%320 ~

The transient for other i1nitial conditions and different

cross sections can be computed in a similar manner.
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CHAPTER IV

The asymptotic solutions. Envelopes and phase-generating
functions. Master curves and graphical methods of solution.
Group and signal velocities. Time, distance, and slope of
signal formation.

Section 0 - Object and contents of this chapter.(*)

Iv-0.0 The formal and compact solutions obtained in the
last chapter are not suitable for numerical computation
for the following reasons.

1lst - Few Lommel functions are tabulated and they do
not.cover these cases,

2nd - The series expansions which serve as defini-
tions of the Lommel functions, although absolute and
uniformly convergent, are not suitable for numerical
work because they converge very slowly.

3rd - It is rather difficult to visualize through
them the wave forms they represent, except for par-
ticular values of the corresponding arguments L and T.
4th - The Lommel functions represent highly oscilla-
tory functions. 1In practice it is much better to

deal with the corresponding envelope and phase func-
tions of these oscillations.

5Sth - Although it is rather simple to define the group
and phase velocity of these generating functions, it
is not easy to find the corresponding expression of

the signal velocity and the time of signal formation.

() A complete and detalled discussion of the method and pro-
cedure of integration used in this chapter will be found in a
future report (No. 55) of RLE, where the general theory of
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The object of this chapter is to find a type of solu-
tion which is very well adapted for numerical work and
is such that the above handicaps are avoided.

The solutions given in this chapter not only are
useful for numerical computation but provide simple
methods for the discussion of the signal, phase and
group velocities and are also appropriate for develop-
ing graphical methods of solution.

It is of primary importance to obtain asymptotic
solutions which hold good when the applied frequency is
close to the cut-off frequency of the excited mode. |
All the asymptotic solutions given here are obtained
by the saddle-point method of integration.

IV-0.l In Section 1 a new complex transformation is in-
troduced from which asymptotic solutions can be easily
derived., This transformation removes the possibility
of having a pole at the branch points, so that the
solutions hold good when the applied freguencies lie
in this branch point .

IV-0.2 In Section 2, the appropriate intervals of the
variables for the different type of solutions are pre-
sented. They are: ©Silenced Region, Precursory Region,
Main Formation Region,and the Coda Region.

IV-0.2 In Section 3, the appropriate solutions for the

Precursory and Coda Regions are given.

asymptotic solutions of integrals of the typeJ; F(s)ew(s)ds is
given. The reader is also referred to the papeg "Uber die
Fortpflanzung von Signalen in Dispergierenden Systemen", Hans
Georg Bearwald, Annalen der Physik, 5 folge Band 6, p.295.
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IV-0.4 1In Section 4, the appropriate solutlions for the
moving signal formation region, are given. Two cases
are considered.

1lst - The corresponding formation per pole when
the pole is on the imaginary axis of the .o plane.
2nd - The corresponding formation per pole when
the pole lies outside the imaginary axis of the
plane.

IV-0.5 In Section 5, the expressions for the envelope and
phase-generating functions are obtained. By means of a
functional transformation all transients can be expressed
in terms of a master. The definitions of the signal
and group velocity and the time or distance of formation
are given in terms of a new variable.

IV-0.6 1In Section 6, the graphical methods of transient
computation in the main signal formation region zre
given.

IV-0.7 1In Section 7, the way to connect the solutions in

these four regions is shown.

Section 1 - The complex transformation = sinhﬁ, Mapping
properties. Contour transformation lines of

steepest descent.

IV-1.C The transformation
s=sinh &
in which (VIv1
E= nil
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leads to a simple procedure for obtaining approximate
solutions of the inverse transform of the prototype
Laplace transform

Fla,/sR+1)e ¥Va=+1 | (2)Iv1
The solutions obtained converge very rapidly or they
will have a compact form. The solutionsobtained by
this transformation are so close to the true solutions
given in Ch. III, that there is no practical difference
between them. The expressions for the envelope and
phase functions of the corresponding wave forms will
be given by simple and illuminating mathematical ex-—

pressions.

Iv-1l.1 The transformation (1) has a multivalued character.

The .4 plane must be composed of an infinite number of
leaves which map in horizontal strips of the & plane.
These strips of the & plane repeat periodically along
the direction of the imaginary Z axis. A new cut
must be introduced in the 4 plane to connect these
leaves. This new cut shall be so placed that it does
not violate the conditions for the Laplace inversion.
Besides, this new cut must not interfere with the
contours of integration already studied.

At this point it is necessary to recall that the
plane was already composed of two Riemann sﬁrfaces.
The introduction of the new transformation reguires an
infinite number of sheets, which means that the primitive

Riemann surfaces d& and'd;I must each break up into a -
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manifold of an infinite number of leaves. These
manifolds will be denoted respectively by QQM and‘ﬂEIM.

The new cut is as indicated, for example, in Fig. 1lIVa,
The leaves of each manifold must be connected by this
new cut. The manifolds themselves must be connected
by the old cut, which joins the points +1 and -i.

The following 1s very important. The integration
along the bank of the new cut does not cancel out as

before. That is: The true inverse transform must not

contain this new contribution.

IV-1.2 The new Riemann surfaces as well as the manifolds
must be defined, in such a way, that the definitions
are consistent with those already given in Ch. II.
a. - The leaves of each infinite manifold must be
defined with respect to the branch point at £=0.
The leaf of index zero, whiech will be used most,
will be defined by
-T=Q<T., (3)wvi1
The general sheet is given by
(M-1)T= @< (M+1)T (4)Iv1
where M is an even integer.
b. - To define each manifold one uses the expression
ts2+1= cosh & (5)Iv1
In Ch. II the sign distribution was studied

of the function

w=u +1v = -Va2+1 (6)1IV1
and therefore,

u=- coshpcosy
(7M1ivl
= - sinhpsinZ .
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Now, in order to have a definition of the manifolds
which is consistent with the definitions adopted in
(1)II2 of Ch. I, » and & must be chosen in such a way
that (7)IV1 has the sign distribution of Fig. 3IIa.

IV-1.2 Once the manifolds d&M and 77M are properly de-
fined then it is easy to show that:

lst - The manifoldzf M maps into the right half of
the £ plane.

2nd - The manlfold.dEIM maps into the left half of
the £ plane.

3rd - Each sheet of the oM manifold will map into
a horizontal strip of the right half & plane.

4th - Each sheet of theaf M manifold will map into
a horizontal strip o the left half Z plane.

This situation is indicated in Figs. 1IVb,c,d.

Since the transformation (1)IV1 is very well known,
further details of its mapping properties will not be
given.

IV-1.4 In this subsection, the transformation of the in-
tegral which furnishes the inverse Laplace transform of
the prototype will be studied. After elementary alge-

braic manipulations, one obtains

771 F(AJA )T g 2iifﬂ(z) TR E-8)ar (g)1v1
in which ‘é

H(E) = F(§) cosh& (9)1IVv1




161

-~y

% indicates the appropriate contour of
integration in the § plane

T =Vt2-x2; as before [ (10)1IV1
x _ . I T
Z =ctgh £; sinh & = =

IV-1.41 It is at once clear that Eg is a saddle point of
the exponent of @ in the second integral (8)IVli. Due
to the multivaluedcharacter of the transformation, an
infinite number of saddle points are distributed in
the & plane.

The saddle points corresponding to the manifolds d&M
and f71M are respectively given by
zs .—.Ln(.rf{l;-)% + 1(-’25 +M7); for JIM

L (11)1v1
Ls=LnER)2 4 i(gum; for S11M .

The corresponding position of these saddle points is
given in Fig. 1IV.

IV-1.42 In this subsection the exponent

W=1T cosh ({-&5) (12)Iv1
will be considered. The corresponding sign distribu-
tion regions for the real and imaginary part of this
exponent, are given in Figs. 1IVf and 1IVg.

IV-1.43 The corresponding lines of steepest descent through
the saddle points are indicated in Fig. 2IVa. These
lines repeat periodically for the different sheets of
the manifold J}M. In the above-mentioned figure the
strip of JQM was chosen for the particular value M=0,

It is interesting to notice the form of this line
in the 4 plane. See Fig. 2IVb.
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Iv-1.t Without loss of generality, the strip M=0 can be

selected in the right half Eplane to obtain the imverse

transformation. This is due to the fact that the trans-

formation has a periodic character in the direction of

the 4 axis. 1In the rest of this work, the strip M=0

of chM will be consistently used.

Suppose now that <y is a pole of F(s V0%+l). The

point transforms into .the & plane as
sinh&, =4

~or, by using the notation of the last chapter,
& =1, 1_

if 4, 1s in the M sheet of the J7M manifold

and
&y =Ly |Zy) +1(p + M)

if Ay is in the M sheet c¢f the manifold JEM.

For M=0 and on JIM cne has
Ep=L, —x_
sc that
=L, L . = .
In the above equation

3
=2y - Ai-l' = (Zk\e"¢ .

(13)1vl

(14)1v1

(15)1v1

(16)1V1

(17)1v1

(18)1vi

The Fig. 2IVc illustrates the corresponding position

of the poles of H(Z) for different positions of the 4

pole in dfiM; M=0,
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Section 2 - Principal subintervals or regions in the transient

solutions.

Iv-2.0 The saddle-point method of integration will be used
to obtaln the asymptotic solution corresponding to the
inversion of our prototype transform. It is not pos-
sible to obtain one single asymptotic solution which
holds good in the complete interval of variation of T
and X', that is

ocrcm}
T X
O<«<k< 00
In order to obtain appropriate asymptotic solutions
four regions will be defined.

1st - Silence region: This region is given by the

interval 0<7T<#%*. As was shown in Ch. II, the in-
verse transform is equal to zero. This property
Justifies the name given to this first region.

2nd - Precursory region: This region is given by

the interval

+AX=T<T
sig

in which zéig means the corresponding normalized
time for the arrival with signal velocity.
3rd - Main signal formation regiomt This region
can be defined as follows: Suppose that among the
m poles &y, there is one, smyE#,'which has the
property

1220 <1Z2p *»5 |21l 51 Zp4a )5t 012l ,
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Then, the main signal rormation region will be

defined by the interval

1+1Z2¢)| 2
z-s:I.g <T<X 1-|Zq| p)
4Ath - The Coda region will be defined by
1Y~l;tlE£LE<=T<:oo.
1-|2¢l 2
The Justification of selection of these intervals will
be found in the discussion of each case. In this

region the transient terms vanish rapidly.

IVv-2.1 Inside the main signal formation region there are

the times of arrival with group velocity of each pole.
This statement 1s Justified if the definition is re-
called of the group velocity of a particular pole which
was given in Ch., III. That is

‘%k=”§vk= l-Pleli

1-12|

At the instant when the saddle point coincides with a
given pole, then the arrival with group velocity is
obtained corresponding to this particular pole. If
the given pole lies on the horizontal lines in/2
or -iM/2 in the & plane, then the saddle point touches
the pole for real values of the time. If the given
pole lies on the outside of the above lines, then the
instant of group velocity corresponding to this pole is
obtained approximately when the line of steepest de-
scent touches the pole. This is illustrated in
Figs. 2IVe,g.
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IV-2.2 As is shown in Fig. 1IVe, there are two saddle
points in the strip M=0. These saddle points are
conjugate ones. They are given by
i
— +& o
gs Ln(z———-_ )2 + 1-2-

= 4 (l)IVZ
= z Y m
Eé Ln(r::)z"ii

When the time changes, the saddle points move along

the horizontal line as in/2 and -in/2. At the beginning
of the transient, the saddle points are at +oo. When
the permanent state is reached, then the saddle points
coincide with i7/2 and -in/2. It can, therefore, be
said that in the saddle-point method of integration,

the contour Jé changes its position with the time.

- ‘Section 3 - The asymptotic solutions for the precursory and

coda regions. The corresponding envelope and phase
functions.

Iv-3.0 The contour of integration which must be used for
the precursory region is indicated in Fig. 2IVd. Here
all the poles lie to the left of the saddle points.
Since most of the value of the integral is given by the
integration in the vicinity of these saddle points,
the contribution of the rest of the contour can be
neglected. In what follows all the intermediate steps
will be omitted in the process of integration and only
the final result will be given. The computations are
rather long but not hard to obtain. The method is
only valid for /' Z 2.
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IV-3.1 The asymptotic solution of the inverse Laplace

transform in the precursory region is given by

L-1p (s, 5241) e ™5 o (7,0 = —1; JUN2 sin(T Z1o,) (1)1v3
rT
2
in which

t‘
M=Real T VI

glV(Zs) B I (Z) ,,,_.[H]I(E)_,H (2) -
{H(gs)’z.ATZ +2‘4~6-8T4* b ZTS 2'4'6?T3 j o

N=Im
and

1
=L (ZK)z I
Es Ln(rrx) +12

Jgog=d (3)1V3

and
aNE )= &H) |
° df,N)g=g,

The asymptotic series given in (2)IV3 converges very

(4)1v3

rapidly for large values of . In almost all cases of
practical application the first term H(Es) is enough
to obtain a high degree of approximation.

From (1)IV3 it is clear that the corresponding

envelope function is given by

= Y2 fuP? (5)1v3
T
and the phase function 1s given by
0s=tg™t & (6)1V3

Iv-3.2 The contour of integration which must be used to
obtain the asymptotic solution for the coda region is
given in the Fig. 2IVe. The contribution around each
pole must be added here.

Similarly, for the coda region, one obtains
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of'lF(A,J-A_zi—_l) e—‘f(-\f,éi+i.
m
=@f 7+ =~ iT.cosh (&,.~& 2 A
9(z,%) 1:Z=1Rke osh (8 al}%}m%ﬂ 51n.(T+Os+%') (7)IV3
in which

m= total number of poles of H(&y)
Rk==residue of H at each pole k
Ey is given by (16)IV1.
The other letters have the same meaning as in IV-3.1.

Section 4 - The asymptotic solutions valid in the main signal
formation per pole. Envelope and phase functions.

IV-4.0 When the saddle point enters in the interval cor-
responding to the main signzl formation region, the
amplitude of the oscillations increases suddenly and
the signal represented by the transform begins to form.
In this region the oscillations acquire almost the
final wvalues.,

The classical method of the saddle-point integration
fails to render adequate values for the inversion inte-
gral. It was necessary in this investigation to develop
a method of integration suitable for this region. This
can be done by making a further elementary transforma-
tion such that the exponent of the second integral in
(8)IV1l can be conveniently split., The saddle-point
method of integration is then applied to the new
exponent.

To be precise, tnis method is rather connected with
the poles of H(Z) and not the whole wave formation. In

what follows the formation of the signal in the vicinity
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of a pole will be discussed. A pair of conjugate poles
can be associated in such avway that they render a simple
expression for the wave formation in its vicinity.

This method of integration is delicate to handle and
requires rather involved algebraic developments. For
this reason, many intermediate steps of computation will
be omitted and attention will be concentrated on the
main idea of this method.

IV-4.1 Let &_Dbe a pole of H(§) and Ry its residue. H(E)
can be expanded in a Laurent series., In the neighbor-
hood of Ek, the function H(§) behaves as

H(E) =~ _5 . (1) 14
Also it can be proved that in the vicinity of the
saddle point

eiT cosh (6-&g) 1T cosh ukxeﬂ[-———ﬁ-wk(z Zi)) (2)IV4
in which
Uk = Zk— ZS . (3)1Iv4
In the vicinity of the pole fk the integral has the form
TI' o210 2]
iT cosh u +iTuyret
T R, e k
—;,%;/n(&)el osh(G-Zo)gp Bt / = aGe)(4) 1V4
¥ Ir; re
s in which 5;:wmc of zn
E-§ =rel® | (5)1V4

It is not hard to show that the sign distribution of
the new exponent under the integral sign is given by the
Fig. 3IVa. If é—k is also a pole of H(§), then the cor-
responding sign distribution dlagram of the new exponent
is given by the Fig. 3IVb. The modified mnew contour of

integration is indicated also in the same figures.

v
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After a painfully long process of integration the
results can be obtailned.
In the main signal formation region, the required
inverse transform is given by
Z -1 (4, a2 4T) e K001
'—ek‘;‘lakeiﬂ? cosh uk)%{[l+c(vk)+s(vk)] +i[C(vk) -s(vk)]} (6)1V4

in which
T = YT2-%2
Ry =residue of H(i) at pole &

i
‘ we= Sy -ES=L lzk! (§;§)2}~i(¢k—%) complex

T 1
Vi = F{Ln[lzk| (r,.f)] -1(9y -%)} complex
C(v ) = Fresnel C function

Y

(7 IV,

S(vk) Fresnel S function
F(v ) -C(vk)+ iS(v ) /e 2vay
Ty =0, -1J,4k2+l- |Zk|e‘¢k' m = number of poles.

\J

The envelope and phase functions will be introduced

as follows:
m, -1 l[u C(vi) + 8(w) [+ 1[C(vi) -8 (vy)]
in whichs

) - \nk‘m a3 (9)IV4

te ¥ = fear 1T,

eié(vk)’{k(vk) eib(vk) (8)IV4

So that finally, for the main signal formation region
the asymptotic solution is (Fz2).
m
Z-15( A’ﬁ2 +1) TS g:—-lﬁk’l’(vk) el[T cosh uyx + Q(vk)] (10)IV4

Note that if Sy is pure imaginary and |oy|> 1 then ug
and vy are real quantities (see (7)IVi.
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Section 5 - The envelope and phase generating function. Group
and signal velocities. Time and space of signal
formation.

IV-5.0 The solution given in (10)IV4 is the sumation of
waves corresponding to each pole of H(Z). The function
I, given in (8)IV2.produces the transient envelope and
the transient phase function per pole, during the main
signal formation region. It can be proved that

~ @lT cosh uk:=eA(Zk) (1)IV5
and, therefore, @(vk) represents the phase deviation
from the permanent one, during the transient state of
the waves inside the guide. If one lets T»wm, then
V—>00 and it can be shown that
C(vk)—’l
S(vk)—»l

when V00

so that

Q(vk)ka;zgo

II(vy) —1 .
Vk—-ﬂx)

This means that the solution (10)IV4 goes into the
permanent state.

Since the function II(vk) produces the envelope and
the phase functions per pole, it will be called the
"Generating function". The object of this section is
to study this function with some detail.

Iv-5.1 Consider first the case when the corresponding pole
in the o plane 1is pure imaginary and Poki’l' In this

case @y = 1-27' and
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vk"\,—_ { o 1,———92 S i:g)a (2)1Vs

is real. In this case C(vk) and S(v,) are also real

and one can writes

& >-_.fo 5+C(v)] % [0.5+5(v)] ?

(3)1v5
. fo.s+c(vy)] -[0.5+5(v)]

tan §(v
[0.5 + c(vk)] +[0.5+8(w)]

Both functions,'Q(vk) and @(vk) can be computed
graphically by means of Cornu's spiral as is indicated
in ﬁig. 31IVec.

IV-5.2 A similar graphical procedure of computation can

be followed when Vi is a complex quantity. In this

case, a new spiral can be formed as indicated in Fig. 3IVd.

The form of this spiral changes with the value of the
difference ¢h-—%} This spiral must be applied when
the poles,dk lie outside the imaginary axis of the .o
plane.

IV-5.3 Here the concept of group velocity of a given pole
will be introduced. It was proved in Ch. III that the

group velocity of a pole can be defined by the condition

from which
<+K i
Zy = i(-f:ﬁz)f | (5)IV5

so that (_:g'_};/?c}'i

12
and consequently, at group velocity

Vi =1/—-‘r"¥r{1‘n1' 1o~ 5 }"i({’k" %)‘J;I* (7)1V5

=1 (6)IV5




and one obtains the important theorem:
"Let‘dk be a pole in the imaginary axis of the .9 plane
and such that joy}>1l. Then:

a. - The group velocity is characterized by vk==0;

b. - The generating envelope function has the value %;

c. - The generating phase function has the value Q.,"
The theorem follows from the fact that C(0)=0 and
s(0) = 0.

In the case of a pole.dk which lies outside the
imaginary axis, it can be said:
"Let‘ok be a pole outside the imaginary axis of the
plane. Then: The group velocity is characterized by
the instant at which the saddle polnts occur at the
minimum distance from the pole 5&, in the & plane."

IV-5.4 In this section the slope of formation of the envelope

of a given pole will be considered at the instant of
group velocity.

Consider first the case 4,= iVy and |Vy(~1l. By
a simple process of differentiation it can be found that

?L'IY_(_"_K_)_) = .1 .
g Jy=0 2

This means "that the tangent to the envelope function
at v, =0 touches the axis Vi at a point gkz'-l, when,dk
is purely imaginary."

The following important theorem is also true.
"The tangent to the envelope function at vi=0 touches

the line Y{vy) =1 at v =+1, when gy is purely imaginery."
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Now the definition of signal velocity, valid when
4y is purely imaginary, will be introduced.

"The signal velocity of a pole 4y, when,dk is purely
imaginary, is characterized by vk==~1."

The interval -1=v, =1 will be defined as "interval
of formation of the signal", corresponding to a pure
imaginary pole,

IV-5.5 The definition of signal velocity and interval of
formation corresponding to a complex pole.dk can be
obtained, in a similar way, by computing the derivative

d‘lf(vk))

dvy Vh‘hg

IV-5.5 It is now possible to give a definition of the signal
velocity and interval of formation of a multipole wave.
"The signal velocity of the complete signal is equal to
the largest signal velocity of its poles.™
"The interval of formation of the complete signal may be
defined as the interval between signal velocity of the
wave and the velocity at which the last pole component
is formed.®

Section 6 - Graphical method for the construction of ¥(vy) and
®(vyi) for pure imaginary poles., Main signal
formation region.

IV-6.0 It is rather simple to construct graphlcally the
envelope ¥(vy) and phase §(vy) corresponding to a given
pure imaginary pole, for the region in which the signal
is formed. The object of Section 6 is to describe this

method of construction.




174

IV-6.1 The spiral which generates the ehvelope and phase

functions for a pole of the type Ak==ivk; |Vk\71 is
given in the Fig. 4AIV.

The envelope function Y(vy) is given as a function
of vy in Fig. 5IV. The points cormesponding to the group
and signal velocity as well as signal formation interval
are indicated in this figure.

Figure 6IV shows the variation of the phase function

#(vy) as a function of wy.

IV-6.2 In the practical application of this theory it is

necessary to deal with two principal problems:
Problem At At a fixed cross section x5 (or 7C=211.§J’.)
the problem is to know how the signal if formed ag
a function of t (orz = Wﬁ%)‘
Problem B: At a fixed instant t (or r=21r7r1=.) the
problem is to know the distribution of the sggnal
inside the wave guide, when X (or7&=2ﬂ%§) changes.,
The separation of these problems can be accomplished by
considering %« =constant and T variable for Problem A
or z =constant and X variable in Problem B.
Figure 7IV furnishes a family of curves

V.

k= v(_,ff?-) H ;3. =constant

c c
for different values of the parameter vk. To apply

these curves in a concrete case the procedure is as
follows: L.Take the curve which corresponds to the given

X
value of vy. 2. Multiply the abscissa by the constant .7\3.
<
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3. Multiply the ordinates by the factor f;l, The result
C

is the corresponding function vk(%L) for §3==constant

c
and Y= constant,
X3 t
Figure 8IV gives the family of curves Vk(A )3 L constant
c c
for different values of the parameter ¥, . To apply

k
these curves to & particular case, proceed as follows:

1. Take the curve which corresponds to the given value
of W, 2. Multiply the abséissa by the factor .T.’E.

c
3. Multiply the ordinate by the factor /JL.

c
The result is the corresponding function vk(§i) for

c

_Tt_ =constant and vk,—. constant.

c
Problem A: Figure 9IV indicates the graphical process

by means of which one time envelope can be obtained
from the master envelope given in Fig. 51IV.
Figure 14IVa illustrates one example of how to
obtain graphically the corresponding phase function
in terms of the variable ‘T%
Problem B: Figure 1l0IV indicates the graphical process
by means of which one space envelope can be obtained
from the master envelope function given in Fige 51V,
IV-6.3 The effect of- the pole frequency on the formstion
of the signal can be studied with ease by means of this
graphical method of construction. Figures 111V, 121V,
and 13IV give the corresponding time envelopes for
¥ =1.1, 1.5, 2,0 at distances .’_;2=1o, 100, 1000. It

c
can be noticed how the frequency controls the shape of

the signals.
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IV-6.4 Figure 15IV shows a family of curves which give
the time of formation of time envelopes (Problem A)
at different frequencies and at different distances from
the origin.
Figure 161V shows a family of curves which give the
distance of formation for space envelopes (Problem B)
at different time of the penetration of the wave front.

Section 7 - Complete formation of transient wave

Iv-7.0 In this section it will be shown how to combine
the different asymptotic solutions in order to obtain
the complete construction of the formation of a signal.

Iv-7.1] A convenient method to follow can be indicated as:

1lst ~ Take the function F(A;V§§:15 of the cor-
responding transform. Substitute A:Sinhcg;

/6241 = cosh t.i and from

H(E&)=F(&) cosh&.

2nd - Find the poles Gfk) of H and the correspond-
ing residues.

2rd - Compute the signal and group velocity for
each pole. Determine the wave signal velocity.
4th - Compute the signal in the precursory region
by using formula (1)IV3. Stop the computation
around the signal velocity of the complete wave.
5th - By graphical or analytical methods find the
main formation of each pole and obtain the in-
stantaneous oscillations for each pole.

Place the solution for each pole in accordance
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with the corresponding group velocity and sum up
the results as indicated in Eq. (6)IV4.

It must be carefully noted that the envelope of

the complete signal is not necessarily eqgual to the

sum of the partial envelopes which correspond to

each separate pole.
6th - After the signal is formed, correct the final
envelope by means of the transitory term given in
Eq. (7)IV3. In the coda region the signal is
practically formed.
IV-7.2 Figure 17IV shows the above procedure in the forma-
tion of a complete signal. In the construction of the

figure the function

21 .e-ﬂ{z?ﬁ
(42 +92)VoR41
is used. This transform corresponds to the.i; vector in

the example given in the last section of Ch. III.

Figure 18IV shows the corresponding time envelope
(Problem A), and Fig. 19IV shows the corresponding space
envelope (Problem B). The rapid instantaneous oscilla-
tions are not shown in the figures. More comments are
not added as these figures are self-explanatory.

Iv-7.2 Experiments were conducted by David Winter in the
Research Laboratory of Electronics in order to verify
correctness of the theoretical results obtained in this
investigation. The description of these experiments will
be found in Winter's reportﬁon this subject. Only in-
cluded here are some Qf the oscillograms which show the

comolete agreement of the experimental with the predicted

L3
results.(See Quarterly Progress Report, April 15, 1947, p. 84)
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APPENDIX I

The integrals (1)III3, page 110, can be evaluated directly
without the necessity of serles expansions, as it is done in the
text, For a reader who 1s acquainted with the functions of Lommel,
the following short-cut 1s preferable:

Take first: oc=1.
a, If Z,=0, then go back to the .4 plane, It can be written

A(2Z) AT - X J4te 2
S s 45, TR
Y

‘/Ai + 1
Z L
. -1 1
in which A(z)-g(z 7))+ &£ (z+3) (2)AI
since it 1s well known that (see also the text)
-1 Jai+ 1
X e . I, /T X? (3)AT
,/424- 1
b, If o<|zk1<1, then introduce the complex transformation
w = =X u = complex (4)A1
2Z
(2) 1
A u-Tn
4n 10}
s L az = 4 da
then: 521 éTz—]-g) P J (&+1 u.k) 2 (5)AI
Y ¥ 2
Z u
where =i X 5 Q= ?';;" ) (6)AI
k

The corresponding contour of integration 1is indicated in the
figure, Notice that this contour is a slight modification of ?fz
given in Fig. 7 III b,

Now, consider the Gllbert integral representation of the Lommel's
U function, See "Theory of Bessel Functions" Watson, page 548,
Equation 1,

(1 n__&)l) eu-ﬁ

- 1 o 4u AT
UD (Qk,m) - ( AL ‘df_ . (7)
1+'—'2‘)
Yu 4u
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U PLANE

4% cl‘

- fo)
A
74 MUST BE EQUIVALENT | ESSENTIAL
TO CIRCLE OF RADIUS 1:-2& SINGULARITY

Filg. 7 IITI b

It follows I1mmediately that

Z-17

1 A(2)
v, (Q,,7)+1 Ul(Qk,T) - JB_T az (8)ar
¥

Z
which 1s the result given in (15)III4 on page 124,

¢c. For 1<|zy|, a similar procedure can be followed by
using the inverse function of (4)AI as a new variable.

Take second: J¥s1.

This 1s the general case and will not be considered here
since the procedure glven in the text is the simplest one,




