A Regression Test of Semiparametric Index Model Specification

by

Diego Rodriguez and Thomas M. Stoker

MIT-CEEPR 92-006WP June 1992
A REGRESSION TEST OF SEMIPARAMETRIC INDEX MODEL SPECIFICATION

Diego Rodriguez and Thomas M. Stoker*

February 1992

(Corrected March 1992)

* Department of Economics, MIT and Sloan School of Management, MIT, respectively. This research was funded by a grant from the MIT Center for Energy and Environmental Policy Research. The authors thank Whitney Newey, James Powell and Jeff Wooldridge for helpful comments.
This paper presents a simple regression test of parametric and semiparametric index models against more general semiparametric and nonparametric alternative models. The test is based on the regression coefficient of the restricted model residuals on the fitted values of the more general model. A goodness-of-fit interpretation is given to the regression coefficient, and the test is based on the squared "t-statistic" for the coefficient, where the variance of the coefficient is adjusted for the use of nonparametric estimators. An asymptotic theory is developed for the situation where kernel estimators are used to estimate unknown regression functions, and the variance adjustment terms are given for this case. The methods are applied to the empirical problem of characterizing environmental effects on housing prices in the Boston Housing data, where a partial index model is found to be preferable to a standard log-linear equation, yet not rejected against general nonparametric regression. Various issues in the asymptotic theory and other features of the test are discussed.
1. Introduction

The purpose of this paper is to propose and illustrate a simple specification test for index models. The test can be used to judge the adequacy of parametric index models; such as a linear model or a probit model, against more general semiparametric or nonparametric models. Alternatively, the test can be used to judge the restrictions of a semiparametric partial index model, against more general semiparametric or nonparametric alternatives. As such, the test is intended as a diagnostic tool to be used in conjunction with empirical estimation of index models. We apply the test to characterize the index structure of environmental effects in the Boston Housing data.

The test is based on the bivariate OLS coefficient of the residuals from the restricted model regressed on the fitted values from the general model. The test statistic is square of the "t-statistic", or the ratio of the slope coefficient to its estimated standard error; which is compared to a $\chi^2(1)$ critical value. The value of the coefficient has a "goodness-of-fit" interpretation, namely as the percentage of variation of the general model that is not accounted for by the restricted model; and the restricted model is rejected when the coefficient is significantly different from zero. The appropriate standard error is estimated by adjusting the standard (heteroskedasticity corrected) estimate for the presence of estimated features of the restricted and general models.

The test is similar in spirit to the test of a linear model against
nonparametric alternatives proposed by Wooldridge (1991) and Yatchew (1988), and related work by Hong and White (1991), Fisher-Ellison (1992) and Eubank and Spiegelman (1990), among others. As discussed by Hong and White (1991), this work is related to tests of moment restrictions as in Bierens (1990) and Lewbel (1991).

Our approach differs from the earlier proposals in that a wide range of restricted and general models are allowed, and that our test is based on an adjustment of the familiar "t-statistic." Our development of the limiting statistical theory of the test is based on index models, although similar tests could be devised for situations where the restricted and general models are nested in the way discussed below. We give the adjustment terms appropriate when kernel regression estimators are used for the unknown functions in estimated (semiparametric and nonparametric) models, and kernel average derivative estimators are used for index model coefficients. While the asymptotic theory is likely to be the same when other kinds of nonparametric estimators are used (Newey 1991), the relevant standard error adjustment terms would need to be derived.

The exposition proceeds as follows. We begin with a brief layout of the models and the test in Section 2. Section 3 applies the test in an analysis of pollution effects on housing prices using the Boston Housing data of Harrison and Rubinfeld (1978a, 1978b) among others. Section 4 gives the asymptotic theory for the test, with proofs placed in Appendix 1, and the variance adjustment terms listed in Appendix 2. Section 5 contains some concluding remarks.

Section 4 also discusses a singularity issue raised by the asymptotic theory of our test. In strict terms, this issue suggests that an extended analysis (beyond that we have given) would recommend using tighter critical values than we have. This would not affect cases where our test statistic
indicates rejection of the restricted model, but could lead to rejections where our method as given fails to reject. We discuss this issue at length at the end of Section 4.3.

2. Basic Layout

2.1 Basic Framework and Index Models

The empirical setting we consider is an analysis of data \((y_i,x_i), i = 1,\ldots,N\), which is assume to be an i.i.d. random sample, where \(y_i\) is a response of interest and \(x_i\) is a \(k\)-vector of predictor variables. For the statistical theory of Section 4, we assume that \(x\) is continuously distributed with density \(f(x)\), where \(f(x)\) vanishes on the boundary of \(x\) values, and is also first differentiable. We assume that the mean of \(y\) exists, and denote the mean regression of \(y\) on \(x\) as \(m(x) = E(y|x)\).

Our interest is in testing index model restrictions on the structure of \(m(x)\). To begin, \(m(x)\) is a single index model if there is a coefficient vector \(\beta\) and a univariate function \(G\) such that

\[
m(x) = G(x^T \beta) \quad \text{a.e.}
\]

Familiar parametric models that are single index models include the standard linear model; \(y = \alpha + x^T \beta + \epsilon\) with \(E(\epsilon|x) = 0\); giving

\[
m(x) = \alpha + x^T \beta
\]

Likewise included is the standard probit model for analyzing binary responses; \(y = 1[\epsilon < \alpha + x^T \beta]\) with \(\epsilon \sim N(0,1)\); giving

\[
m(x) = \Phi(\alpha + x^T \beta)
\]

with \(\Phi(.)\) the cumulative normal distribution function.
A semiparametric single index model is based on

\begin{equation}
(2.4) \quad m(x) = G_1(x^T \beta),
\end{equation}

where G_1 is treated as an unknown, smooth univariate function. Here β can be estimated up to scale, and G_1 can be estimated given the estimate of β. A semiparametric partial index model is based on

\begin{equation}
(2.5) \quad m(x) = G_2(x_1^T \beta_1, x_2)
\end{equation}

where $x = (x_1, x_2)$ is a partition of x into a k_1-k_2 vector x_1, and a k_2 vector x_2, and G_2 is an unknown, smooth function of $k_2 + 1$ arguments. Our test is applicable to testing a restricted index model (for instance (2.4)), against a more general index model (for instance (2.5)).

At the extreme end of generality, we consider the nonparametric regression model

\begin{equation}
(2.6) \quad m(x) = g(x)
\end{equation}

where $g(x)$ is an unknown smooth function of k arguments. Failure to reject a proper index model against the general nonparametric regression constitutes practical acceptance of the proper index model restrictions. Likewise, failure to reject a parametric index model against the nonparametric regression constitutes practical acceptance of the parametric regression restrictions.

Our empirical and theoretical analysis employs kernel estimators for unknown functions in semiparametric and nonparametric regression models, and (kernel) average derivative estimators for index model coefficients. The latter refer to (indirect) instrumental variables estimator of the vector $\delta = \text{E}(m')$, where $m' = \partial m/\partial x$. For model (2.4), the coefficients β are proportional to δ, so we normalize the model by replacing β by δ, as in
(2.7) \[m(x) = G_1(x^T \delta) \]

redefining \(G_1 \) to reflect the scale normalization. Likewise, for the partial index model (2.5), we have that \(\beta_1 \) is proportional to the \(k - k_2 \) subvector \(\delta_1 \) of \(\delta \) (those components associated with \(x_1 \)), and so we normalize (2.5) as

(2.8) \[m(x) = G_2(x_1^T \delta_1, x_2) \]

We denote estimators using hats; \(\hat{\delta} \), \(\hat{G}_1 \), \(\hat{G}_2 \), \(\hat{g} \), etc. One attractive feature of the index model framework is that a single estimate of the average derivative vector \(\delta \) can be used for coefficients in all single and partial index models, replacing the unknown coefficients as in (2.7), (2.8).

We give the formulae for the kernel estimators used in Section 4.1. For clarity of the main ideas, we now give a quick introduction to the ideas of the specification test, and follow it with an empirical application. In the next section, we abstract from various required technical details, such as trimming and higher-order kernel structure, which are covered in detail in Section 4, in order to give a straightforward motivation of the basic ideas.

2.2 Quick Start: The Test and Its Motivation

We introduce the test by considering the problem of testing a (semiparametric) single index model against general (nonparametric) regression structure. In particular, the null hypothesis is that the true regression takes the restricted form

(2.9) \[m(x) = G_1(x^T \delta) \]

The alternative is represented by

(2.10) \[m(x) = g(x) \]
where g(x) obeys the smoothness conditions given in Section 4.2. The methods for applying the test with other restricted and alternative models will be clear from considering this case. Using the data \(\{y_i, x_i\}, i = 1,\ldots,N \), we assume that an estimator \(\hat{\delta} \) of \(\delta \) is computed, that \(G_1 \) is estimated by the kernel regression \(\hat{G}_1 \) of \(y_i \) on \(x_i^{T}\hat{\delta} \), and that \(g \) is estimated by the kernel regression \(\hat{g} \) of \(y_i \) on \(x_i \). Following the results of Härdle and Stoker (1989), these procedures imply the \(\hat{G}_1(x_i^{T}\delta) \) is a consistent (nonparametric) estimator of \(G_1(x_i^{T}\delta) \) in general (i.e. with model (2.10)), so that when (2.9) is valid, \(\hat{G}_1(x_i^{T}\hat{\delta}) \) is a consistent nonparametric estimator of \(G_1(x_i^{T}\delta) \).

The test statistic is computed as follows: for each observation \(i \), form the residual from the restricted model \(y_i - \hat{G}(x_i^{T}\delta) \) and the fitted value from the general model \(g(x_i) \), and perform the bivariate OLS regression

\[
y_i - \hat{G}(x_i^{T}\delta) = \alpha + \gamma \hat{g}(x_i) + u_i, \quad i = 1,\ldots,N.
\]

The test is based on the value of \(\hat{\gamma} \); if large (indicating a significant difference from zero), we reject the single index model against the general regression; otherwise, we fail to reject. In particular, if an estimate of the asymptotic variance of \(\hat{\gamma} \) is denoted \(\sigma_{\gamma} \), then the appropriate "t value" is found as

\[
t = \frac{\hat{\gamma}}{\sqrt{\frac{N}{\sigma_{\gamma}}} \sqrt{\gamma}}.
\]

Our test compares \(t^2 \) to a \(\chi^2(1) \) critical value. We discuss the estimate \(\sigma_{\gamma} \) below, following the motivation.

On "omnibus" grounds, basing a test on \(\hat{\gamma} \) is sensible because if (2.9) is the true model, \(y - G_1(x^{T}\delta) \) is uncorrelated with any function of \(x \). Provided that \(\hat{G}_1(x^{T}\hat{\delta}) \) is an accurate estimator of \(G_1(x^{T}\delta) \), then \(y - \hat{G}_1(x^{T}\hat{\delta}) \) should be approximately uncorrelated with \(\hat{g}(x) \), which is what is being checked. More
formally, suppose $G(x^T \delta) = E(y|x^T \delta)$ denotes the consistent limit of $\hat{G}_1(x^T \delta)$.

Consider the linear regression equation that holds if the true functions G and g were known:

$$
(2.13) \quad y - G(x^T \delta) = \alpha + \gamma g(x) + u
$$

where the parameter γ is defined via OLS projection, as

$$
(2.14) \quad \gamma = \frac{E([g(x)-E(g)][y - G(x^T \delta)])}{E[g(x)-E(g)]^2}.
$$

Here u is uncorrelated with $g(x)$ by definition. Equation (2.11) is just the sample analog of the equation (2.13). Obviously, $\gamma = 0$ when $g(x) = G(x^T \delta)$, reflecting the lack of correlation discussed above.

The value of γ is also easy to characterize under the alternative, when $g(x) \neq G(x^T \delta)$. In particular, from the law of iterated expectations, we have that

$$
(2.15) \quad G(x^T \delta) = E[y|x^T \delta] = E[g(x)|x^T \delta].
$$

Consequently,

$$
(2.16) \quad g(x) = E[g(x)|x^T \delta] + (g(x) - E[g(x)|x^T \delta])

- G(x^T \delta) + U(x)
$$

where $U(x) = g(x) - E[g(x)|x^T \delta]$ has mean 0 conditional on $x^T \delta$. Therefore

$$
(2.17) \quad \gamma = \frac{E[U(x)^2]}{E[g(x)-E(g)]^2} > 0
$$

when $g(x)$ differs from $G(x^T \delta)$ on a set of positive probability. Therefore, γ is the percentage of (structural) variance of the true regression not accounted for by the restricted model. The statistic $\hat{\gamma}$ is an empirical
measure of this "goodness of fit" value. The key feature of this motivation is that the restricted regression is the expectation of the general regression conditional on the index argument(s) of the restricted model. This "nesting" is easily verified for comparing semiparametric index models (any coefficients in the general model must also be coefficients of the restricted model), and is assured by using kernel estimators for unknown functions and average derivative estimators for coefficients as above. 4

We now describe how we measure the variance of γ. If the parameters δ and the functions G and g were known, then the variance of $\hat{\gamma}$ would be consistently measured by the standard (White) heteroskedasticity consistent variance estimator. Our approach is to add adjustments to the standard term, to account for the presence of the estimates $\hat{\delta}$, \hat{G} and \hat{g}. In particular, σ_γ is the sample variance of

$$s^{-1}_g (\bar{g}(x_i) - \bar{g}) u_i + r_{a_i} - l_{a_i})$$

(2.18)

where \bar{g} and s^2 are the sample average and sample variance of $\hat{g}(x_i)$ respectively, and $u_i = y_i - G_1(x_i^T \hat{\delta}) - \hat{\gamma} [g(x_i) - \bar{g}]$ is the estimated residual. The term r_{a_i} is the adjustment for the estimation of $g(x_i)$ (the "right-hand" function), and the term l_{a_i} is the adjustment for the estimation of $G(x_i^T \delta)$ (the "left-hand" function). These terms are spelled out in Section 4 and Appendix 2, as well as their formal justification. It should be noted that the standard (White) variance statistic is given by (2.17) with $r_{a}(x_i)$ and $l_{a}(x_i)$ omitted. Moreover, in the next section, we show the difference between the properly adjusted estimates as well as the unadjusted (White) estimates for each test performed.

With this motivation, we now turn to an empirical example.
3. **Index Structure of the Boston Housing Data**

We illustrate the test by studying the index structure of the Boston Housing data of Harrison and Rubinfeld (1978a,b). The focus of this study is on measuring environmental effects on housing prices, for the purpose of measuring the dollar-value benefits of lower air pollution levels. The method of analysis is to estimate a standard log-linear hedonic price equation. All nonparametric estimation uses kernel regression estimators, and testing is performed on a "trimmed" sample, that omits the 5% of the observations that displayed smallest estimated density values.

This data and the log-linear price equation has been extensively studied elsewhere, for instance, in the work of Belsley, Kuh and Welsch (1980) on regression diagnostics, among others. There is no particularly persuasive theoretical reason for choosing the log-linear form for the housing price equation; however, the amount of previous study of this equation makes it a good base case. Our initial expectation was that our study of the index structure of the data would give some confirmation to the log-linear model.

We adopt the definitions of the observed variables in Harrison and Rubinfeld (1978a, 1978b). For notation, \(y_i \) denotes the log of price of house \(i \), and \(x_i \) denotes the vector of nine predictor variables that Harrison and Rubinfeld found to be statistically significant in their analysis. The data consists of 506 observations on the variables depicted in Table 3.1. As mentioned above, the earlier work produced a linear equation between \(y \) and \(x \); of the form

\[
y = \ln p = \alpha + x^T \beta + \epsilon
\]

(3.1)

The coefficients \(\beta \) summarize the proportional impacts of changes in \(x \) on housing prices. Table 3.2 contains the OLS estimates of these coefficients.

Our interest is in studying whether the linear model, or a more general
index model, is a statistically adequate representation of the true regression
\(m(x) = E(y|x) \) of log-prices on the predictor variables.\(^6\) We begin this by
looking at a direct estimate of the average proportional impacts of changes in
\(x \) on housing prices, or the average derivative \(\delta = E[m'(x)] \). When the true
model is linear as in (3.1), then \(m(x) = \alpha + x^T \beta \), with \(\delta = \beta \). Moreover, as
discussed above, (the appropriate components of) the average derivative \(\delta \)
represent the coefficients in semiparametric index and partial index models,
so that our estimates can be used for coefficients of all such index
specifications. In any case, we can regard the vector \(\delta \) as giving generalized
values of typical effects of the predictors on log housing prices. Our
estimates are given in Table 3.2.\(^7\)

We see that the basic difference between the OLS coefficient estimates
\(\hat{\beta} \) and the average derivative estimates \(\hat{\delta} \) are minor. The Wald test that the
differences are zero is based on the statistic

\[
W = N (\hat{\delta} - \hat{\beta})^T \hat{V}_{\delta-\beta}^{-1} (\hat{\delta} - \hat{\beta})
\]

where \(\hat{V}_{\delta-\beta} \) is the consistent estimator of the asymptotic variance of \(\hat{\delta} - \hat{\beta} \)
given by the sample variance of its influence representation. Here \(W = 13.44 \),
which fails to reject for significance levels less that 15%.\(^8\)

The largest qualitative difference in the coefficient estimates occurs
for the coefficient of \(B \), or the race effect. This effect is strongly
positive in the OLS estimates but negative and negligible in the average
derivative estimates. From the consistency of average derivative estimates
for coefficients of the single index model

\[
m(x) = G_1(x^T \delta)
\]

the difference in the \(B \) coefficient is interpretable as potential
nonlinearity in the function \(G_1 \). We investigate this by computing and
plotting the estimate of G_1 obtained by nonparametric regression of y_i on $x_i^{T} \hat{\delta}$, shown in Figure 3.1. This function appears as two lines with a shift (flat) in the center. Therefore, the positive OLS coefficient for B can be interpreted as resulting from forcing these two line segments together, by assuming that the overall model is linear.

To see whether this difference is statistically important, we apply our regression test to the linear model versus the single index model. All of our testing results are summarized in Table 3.3. Both the estimate $\hat{\gamma}$ and the "t-statistic" for testing the linear model against the single index model are quite small, so the linear model is not rejected. Therefore, the linear model (with the large race effect) and the single index model (with the negligible race effect but nonlinear function G_1) are statistically equivalent descriptions. Choice between these models rests on which has the more sensible interpretation; we would be inclined to use the single index model, but this is a purely subjective choice.

To see whether the linear model and/or the single index model stand up to further generalization, we compute the nonparametric regression of y on x, fitting the "model"

\[
(3.4) \quad m(x) = g(x)
\]

The nine-dimensional curve $g(x)$ is difficult to plot and interpret, and so we mainly use it as the base case for the specification testing.

Again from Table 3.3, we see that the regression test rejects both the linear model and the single index model against the general regression. The estimates $\hat{\gamma}$ of the percentage of variance not accounted for by these models relative to general regression are 17.1% and 23.1%, which are each significantly different from zero. Therefore, the restrictions of the single index model are too strong, and we must look further for a model that
adequately captures the systematic variation between log price y and predictors x.

Our approach for this is to consider partial index models of increasing generality. In particular, we begin by estimating partial index models with one variable excluded from the index, so that the impact of the excluded variable is treated flexibly. This is computationally simple, since the average derivative estimates can be used as the coefficients for the variables remaining in the index. At any rate, the best model emerging from this estimation is

$$E(y|x) = G_2(x_1, x_{-1}'\delta_{-1})$$

where $x_{-1} = (x_2, \ldots, x_9)$ is the vector of all characteristics except for $x_1 =$ NOXSQ, the pollution variable, and $\delta_{-1} = (\delta_2, \ldots, \delta_9)$ is the vector of average derivatives of the characteristics in the index. The function G_2 is a two dimensional function, and permits a general impact of the pollution variable x_1. In Table 3.3, we refer to this model as PARTIAL1.

We see that the single index model is rejected against model PARTIAL1. The graph of the function \hat{G}_2 in Figure 3.2 reveals some variation in the pollution effect, that is not consistent with the single index model (the "slices" of G_2 for different values of x_1 have varying shapes). The model PARTIAL1 is rejected against the general regression, failing to account for an estimated 7.2% of the variation of the general regression. As such, we proceed to a next level of generalization, namely dropping two variables from the index.

Here, we find that the best model treating two variables flexibly is

$$E(y|x) = G_3(y|x_1, x_9, x_{-19}'\delta_{-19})$$
which permits flexible effects of the pollution variable \(x_1 = \text{NOXSQ} \) and the "lower status" variable \(x_9 = \text{LSTAT} \). The function \(G_3 \) is a three dimensional function, with the estimated model is referred to as PARTIAL2 in in Table 3.3

From Table 3.3, we see that the model PARTIAL2 gives a fairly parsimonious statistical depiction of the data. In particular, the estimate \(\hat{\gamma} \) of the variation of the general regression not accounted for by PARTIAL2 is a modest 1.16%, which is not significantly different at levels of significance lower than 3%. We likewise note that each more restricted index model we consider is rejected against PARTIAL2.

The three dimensional estimated function \(\hat{G}_3 \) of PARTIAL2 is somewhat more difficult to depict than \(\hat{G}_1 \) and \(\hat{G}_2 \) of the more restricted index models. Partial depictions are given in Figure 3.3, by plotting \(\hat{G}_3 \) holding \(x_9 \) constant at its mean, the lower status variable, (Figure 3.3a), and by plotting \(\hat{G}_3 \) holding the partial index \(x_{-19} = \text{LSTAT} \) constant at its mean (Figure 3.3b). The clearest difference between this model and the more restricted ones is the strong nonlinearity in the effect of \(x_1 \) the pollution variable, over ranges of \(x_9 \), the lower status variable. In particular, the marginal pollution effect is flat or slightly positive for low "lower status" values, and strongly negative for high "lower status" values. One interpretation of our testing results is that this nonlinearity is sufficiently strong to dictate a completely flexible treatment of both pollution and lower status effects on housing prices.

We close out this discussion by pointing our the effects of the nonparametric adjustments on the variances of the test coefficient \(\hat{\gamma} \). In Table 3.4, we include different estimates of the variance of \(\hat{\gamma} \) for the tests summarized in Table 3.3. The first column gives the standard OLS variance estimates, which neglect heteroskedasticity as well as the fact that estimated parameters and functions are used. The second column gives the (White)
heteroskedasticity-consistent estimates, which likewise neglect that estimated functions are employed. Finally, the third column gives the variance estimates adjusted for the presence of estimated parameters and functions. Except for the test of PARTIAL2 against general regression, the adjustments for heteroskedasticity increase the variance estimates. In all cases, the adjustment for the use of estimated coefficients and functions increase the variance values. We will make reference to this feature when discussing issues with the limiting distributional theory below.

4. Technical Analysis of the Test Statistics

In this section, we give the explicit formulation of the estimators and test statistics, and summarize the theoretical results. Foundational theory and proofs are given in the Appendix. We focus on the cases where the restricted and general models involve nonparametric estimation, and where kernel estimators are used for unknown regression functions. The cases where the restricted model is parametric are straightforward to incorporate, as addressed in the remarks of Section 4.3.

4.1 Estimation Formulae

Each of our comparisons involve nested index models, for which we enhance our notation as follows. Suppose that vector x of predictors is partitioned into $x = (x_{01}, x_{02}, x_1)$. In line with our treatment above, the symbol G is associated with the restricted model, and the symbol g is associated with the general model, as follows. The restricted model states that the regression $m(x) = E(y|x)$ is determined by d_1 arguments $z_1 = (x_{01}^T \delta_{01} + x_{02}^T \delta_{02}, x_1) = (x_0^T \delta_0, x_1)$, namely that $E(y|x) = E(y|z_1) = G(z_1)$. The general model states that the regression $m(x)$ is determined by d_0 arguments $z_0 = (x_{01}^T \delta_{01}, x_{02}, x_1)$, $d_0 > d_1$, namely that $E(y|x) = E(y|z_0) = g(z_0)$. In the following, the notation
g' refers to the partial derivative of \(g(x_{01}^T \delta_0, x_{02}, x_1) \) with respect to its index argument \(x_{01}^T \delta_0 \), and \(G' \) is likewise the partial derivative of \(G(x_0^T \delta_0, x_1) \) with regard to its index argument \(x_0^T \delta_0 \).

For estimating the density \(f(x) \) of \(x \), we use the kernel density estimator

\[
\hat{f}(x) = N^{-1} h_f^{-k} \sum_{j=1}^{N} K_f \left(\frac{x - x_j}{h_f} \right),
\]

where \(h_f \) is the bandwidth value and \(K_f \) is the kernel density that gives weights for local averages. One use of this estimator is to trim the sample for analysis, whereby we drop the observations with low estimated density. In particular, we drop observations with \(\hat{I}_i = 1[\hat{f}(x_i) > b] = 0 \), where \(b \) is a constant. The results of Section 3 had \(b \) set so that \(\hat{I}_i = 0 \) for 5% of the observations. Our asymptotic results likewise take \(b \) as a fixed constant.

To measure the average derivatives (and therefore all index model coefficients), we use the "indirect slope" estimator of Stoker (1991, 1992). This estimator is based on the density estimator \(\hat{f}(x) \) of (4.1) as follows. Form the estimated "translation score" \(\hat{\ell}(x_i) = - \hat{f}'(x_i)/\hat{f}(x_i) \) for each observation \(x_i \). Take \(\hat{\delta} \) as the instrumental variables estimator of the coefficients of \(y_i \) regressed on \(x_i \), using \(\hat{\ell}(x_i) \hat{I}_i \) as the instrumental variable. Specifically, set

\[
\hat{\delta} = [\sum_i \hat{\ell}(x_i) \hat{I}_i (x_i - \bar{x})^T \hat{\delta} - \sum_i \hat{\ell}(x_i) \hat{I}_i (y_i - \bar{y})].
\]

See Stoker (1992) among others for explanation and motivation of this estimator.

The asymptotic results only require that we have an estimator \(\hat{\delta}_0 = (\hat{\delta}_{01}, \hat{\delta}_{02}) \) of the coefficients that obeys

\[
\sqrt{N}(\hat{\delta}_0 - \delta_0) = N^{-1/2} \sum \delta_0(y_i, x_i) + o_P(1)
\]
and therefore is \sqrt{N} asymptotically normal. Denote the subvector of r_{00} corresponding to r_{01} as r_{001}. The components of the estimator (4.2) have $r_{00}(y,x) = m'_0(x) - \delta_0 + [y - m(x)]\ell_0(x)$, where $m'_0 = \partial m/\partial x_0$, and $\ell_0(x) = -\delta \ln f/\delta x_0$, as derived in Härdle and Stoker (1989) and Stoker (1991).

Nonparametric estimators of unknown regression functions are summarized as follows. The function G of the restricted model is estimated by \hat{G}, the d_1 dimensional kernel regression of y on $z_1 = (x_0^T, x_1)$, using kernel function K_1 and bandwidth h_1, or

\begin{equation}
\hat{G}(z) = \hat{F}_1(z)^{-1} \left(N^{-1} h_1 \cdot d_1 \sum_{j=1}^{N} K_1 \left(\frac{z - \hat{z}_1}{h_1} \right) y_j \right),
\end{equation}

where

\begin{equation}
\hat{F}_1(z) = \left(N^{-1} h_1 \cdot d_1 \sum_{j=1}^{N} K_1 \left(\frac{z - \hat{z}_1}{h_1} \right) \right).
\end{equation}

The function g of the general model is estimated by \hat{g}, the d_0 dimensional kernel regression of y on $z_0 = (x_0^T, x_{02}, x_1)$, using kernel function K_0 and bandwidth h_0, or

\begin{equation}
\hat{g}(z) = \hat{F}_0(z)^{-1} \left(N^{-1} h_0 \cdot d_0 \sum_{j=1}^{N} K_0 \left(\frac{z - \hat{z}_{01}}{h_0} \right) y_j \right),
\end{equation}

where

\begin{equation}
\hat{F}_0(z) = \left(N^{-1} h_0 \cdot d_0 \sum_{j=1}^{N} K_0 \left(\frac{z - \hat{z}_{01}}{h_0} \right) \right).
\end{equation}

While these formulae are somewhat daunting, they are directly computed from the data, given bandwidth values and specifications of the kernel.
functions. The same is true of the adjustment terms required for the variance of our t-statistic. Because of their size, we give the formulae for these adjustment terms in Appendix 2.

4.2 Summary of the Test and Asymptotic Results

We now formally introduce the test, in order to present the asymptotic results as well as the ideas on which precision measurement is based. To keep the presentation compact, subscript "i" denotes evaluation of relevant terms at \((y, x) = (y_i, x_i)\); for instance, \(g_i\) denotes \(g\) evaluated at \(z_{0i}\), \(G_i\) denotes \(G\) evaluated at \(z_{1i}\), and \(I_i\) is the trim indicator that is 1 if \(f(x_i) > b\), and 0 otherwise, as above.

With trimming incorporated, our test is based on the coefficient \(\gamma\) of the regression

\[(4.8) \quad (y_i - G_i)I_i = \alpha I_i + \gamma g_i I_i + u_i\]

Letting

\[(4.9) \quad s^2 = N^{-1} \sum (\hat{g}_i - \hat{g})^2 I_i; \quad \hat{g} = N^{-1} \sum \hat{g}_i I_i\]

denote the sample variance and mean of \(\hat{g}_i I_i\), we have that the coefficient \(\gamma\) is

\[(4.10) \quad \gamma = \frac{1}{s^2} N^{-1} \sum (\hat{g}_i - \hat{g})(y_i - G_i)I_i\]

In line with of the discussion of Section 2, this regression procedure amounts to fitting a sample analog of the equation

\[(4.11) \quad (y_i - G_i)I_i = \gamma [g_i - E(gI)]I_i + u_i\]

where the parameter \(\gamma\) is defined via OLS projection as
Consequently, γ is the percentage of variation of g not accounted for by G, over the untrimmed part of the population. Moreover, $\gamma = 0$ if and only if $g = G$ a.s. for x such that $f(x) > b$.

We require the following basic assumptions

Assumption 1: The fourth moments of (y,x) exist.

Assumption 2R: For F_0 the density of z_0, we have that $E(y^4|z_0)F_0(z_0)$ and F_0 are bounded, $(g - G)I$ is continuously bounded a.e., and $[g - G]F_0$ and F_0 are continuously differentiable of order $P_0 > d_0$.

Assumption 2L: For F_1 the density of z_1, we have that $E(y^4|z_1)F_1(z_1)$ and F_1 are bounded, GI is continuously bounded a.e., and GF_1 and F_1 are continuously differentiable of order $P_1 > d_1$.

Assumption 3R: The kernel K_0 has bounded support, is Lipschitz, $\int K_0(u) \, du = 1$, and is of order $P_0 > d_0$.

Assumption 3L: The kernel K_1 has bounded support, is Lipschitz, $\int K_1(u) \, du = 1$, and is of order $P_1 > d_1$.

Assumption 4: For f the density of x, fl is continuously bounded a.e., f is continuously differentiable of order $P_f > k$. The kernel K_f has bounded support, $\int K_f(u) \, du = 1$, and is of order $P_f > k$.

11
Our approach to characterizing the limiting distribution of \(\hat{\gamma} \) is to establish the following decomposition:

\[
\sqrt{N}(\hat{\gamma} - \gamma) = \sqrt{N}(\tilde{\gamma} - \gamma) + \text{RA}_N - \text{LA}_N + o_p(1)
\]

where \(\tilde{\gamma} \) is the "estimator" based on known functions;

\[
\tilde{\gamma} = \frac{1}{N} \sum_s \left[g_i - E(gI) \right] (y_i - G_i) I_i
\]

with

\[
S_g = N^{-1} \sum_s \left[g_i - E(gI) \right]^2 I_i.
\]

an estimator of the (trimmed) variance \(\sigma_g = E([g - E(gI)]^2) \). The remaining terms are the adjustments for using estimates on both sides of the regression equation: first,

\[
\text{RA}_N = \frac{1}{\sigma_g} N^{-1/2} \sum_s \left(\hat{g}_i - g_i \right) (y_i - G_i) I_i
\]

is the adjustment for nonparametric estimation of the "right hand side", or predictor variable, and second,

\[
\text{LA}_N = \frac{1}{\sigma_g} N^{-1/2} \sum_s \left(G_i - g_i \right) [g_i - E(gI)] I_i
\]

is the adjustment for nonparametric estimation of the "left-hand-side", or dependent variable, of the original regression. Standard limit theory applies to the "estimator" \(\tilde{\gamma} \) of (4.14); with \(u = (y - G)I - \gamma(g - E(gI)) \), we have that
so our conditions imply that \(\hat{\gamma} \) is asymptotically normal.

Therefore, the characterization of the limiting distribution of \(\hat{\gamma} \) requires studying the adjustment terms, and establishing (4.13). The adjustment terms are characterized through

Lemma E: Given Assumptions 1, 2R and 3R suppose (a) \(N \to \infty, h_0 \to 0; \)
\[2d_0^1 = (1 + \ln N) \to \infty \]
(b) \(Nh_0^0/(\ln N) \to \infty \) and (c) \(Nh_0^0 \to 0. \) Let
\[
 r_{g_i} = [g_i - G_i](y_i - g_i)^{I_i}
\]
\[
 r_{R_i} = r_{g_i} + B_0 r_{d_0}(y_i, x_i)^{I_i}
\]
where \(B_0 = [B_{01}, 0] \) and
\[
 B_{01} = \mathbb{E}(g'[\mathbb{E}(y-G)x_0|z_0] - (g-G)\mathbb{E}(x_0|z_1) + (g'-G')\mathbb{E}(y_0|z_1) - g\mathbb{E}(x_0|z_1)).
\]
Then we have that
\[
 R_{A_N} = \frac{1}{\sigma_g} N^{-1/2} \sum r_{R_i} + o_p(1).
\]
(In the case where \(d_0 = k \), where \(g(x) = \mathbb{E}(y|x) \) involves no estimated coefficients, we set \(B_0 = 0. \))

Lemma L: Given Assumptions 1, 2L and 3L, suppose (a) \(N \to \infty, h_0 \to 0; \)
\[2d_1^1 = (1 + \ln N) \to \infty \]
(b) \(Nh_1^1/(\ln N) \to \infty \) and (c) \(Nh_1^1 \to 0. \) Let
\[
 r_{G_i} = [G_i - \mathbb{E}(y)](y_i - G_i)^{I_i}
\]
\[
 r_{L_i} = r_{G_i} + B_1 r_{d_0}(y_i, x_i)^{I_i}
\]
where $B_1 = E(G' [E((y+g)x_0 | z_1) - 2 G E[x_0 | z_1])]$. Then we have that

$$\Lambda_N = \frac{1}{\sigma_g} N^{-1/2} \sum r_{Li} + o_p(1).$$

The relation (4.13) is then shown as part of the proof of the Theorem 1.

Theorem 1: Suppose that Assumptions 1, 2R, 2L, 3R, 3L and 4 are valid, and assume the bandwidth conditions of Lemmas R and L. Suppose further that

(a) $N \to \infty$, $h_f \to 0; N h_f / (\ln N) \to \infty$ and $N h_f h_0 h_1 / (\ln N)^3 \to \infty$, (b) $N h_f h_0 h_1 / (\ln N)^3 \to \infty$, (c) $N h_f h_0 / (\ln N)^3 \to \infty$, (d) $N h_f h_1 / (\ln N)^3 \to \infty$ and (d)

$N h_f h_1 / (\ln N)^2 \to \infty$. Define

$$r_{\gamma i} = [g_i - E(g_l)] u_i I_{i} + r_{R i} - r_{Li}$$

$$= [g_i - E(g_l)] u_i I_{i} + [g_i - G_i] (y_i - g_i) - [G_i - E(y)](y_i - G_i)$$

$$+ [B_0 - B_1] r_{00} (y_i, x_i)$$

We then have that

$$\frac{\hat{\sigma}}{\sigma} = \frac{1}{\sigma_g} N^{-1/2} \sum r_{\gamma i} = o_p(1)$$

so that $\sqrt{N} (\gamma - \gamma) \to N(0, \sigma_\gamma^2)$, where $\sigma_\gamma = \sigma_g^{-2} \text{Var} (r_{\gamma i})$. Further, the estimator $\hat{\sigma}_\gamma$ given in Appendix 2 is a consistent estimator of σ_γ.

Consequently, Theorem 1 gives the conditions under which $\hat{\gamma}$ is asymptotically normal, so that the squared "t-statistic" has a limiting $\chi^2(1)$ distribution.
4.3 Related Remarks

A. Testing Parametric Regression Models

When the restricted regression model is parametric, as with our tests of the linear model in Section 3, the test is modified in a straightforward way. In particular, suppose that the restricted model is \(m(x) = \Gamma(x, \beta) \), and that we wish to test it against a general nonparametric regression, \(m(x) = g(x) \) above. Suppose further that we have a \(\sqrt{N} \) asymptotically normal estimator \(\hat{\beta} \) of the parameters of the restricted model, wherein

\[
\sqrt{N}(\hat{\beta} - \beta) = N^{-1/2} \sum r_{\beta}(y_i, x_i) + o_p(1)
\]

(where \(\beta = \text{plim} \, \hat{\beta} \) if the restricted model is not true).

The specification test is applicable as above, namely by computing the OLS regression coefficient \(\gamma \) of

\[
y_i - \Gamma(x_i, \hat{\beta}) = \hat{\alpha} + \hat{\gamma} g(x_i) + u_i, \quad i = 1, \ldots, N.
\]

Testing is based on whether \(\gamma = 0 \), which is likewise tested by the square of the "t-statistic." The only complication (actually simplification) is that the asymptotic variance of \(\hat{\gamma} \) must reflect the fact that the estimator \(\hat{\beta} \) is used. The only change to the above development is that the "left" adjustment only contains the influence of \(\hat{\beta} \), with the "right" adjustment left unaffected.

In particular, here we have

\[
LA_N = \frac{1}{\sigma^2 g} N^{-1/2} \sum \{ \Gamma(x_i, \hat{\beta}) - \Gamma(x_i, \beta) \}[g_i - E(gI)]I_i.
\]

This term is analyzed in an entirely standard fashion, namely we have...
\[
(4.22) \quad L_{A_N} = \frac{1}{\sigma} E(\partial \Gamma(x_1, \beta)/\partial \beta [g_1 - E(gI)]I_1) \sqrt{N}(\hat{\beta} - \beta) + o_p(1).
\]

If \(\hat{r}_\beta(y_i, x_i) \) is a (uniformly) consistent estimator of the influence \(r_\beta(y_i, x_i) \), then the relevant estimate for the influence term of the left hand adjustment is

\[
(4.23) \quad l_{A_i} = (N^{-1} \sum \partial \Gamma(x_1, \hat{\beta})/\partial \beta [g_1 - \hat{g}]I_1) \hat{r}_\beta(y_i, x_i).
\]

We then estimate the asymptotic variance of \(\gamma \) by the sample variance of (2.18). This method was applied for the test statistics involving the linear model of Section 3.

\textbf{B. Issues of Practical Implementation}

As is now standard, our asymptotic results above have assumed the use of higher order kernels for nonparametric estimation. It is also well known that such kernels, with giving positive and negative local weighting, do not give good estimator performance in small samples. Consequently, for our estimation of Section 3, we have used positive kernels throughout. In particular, each kernel function is the product of biweight kernels: for estimation of a d dimensional function, we used

\[
(4.24) \quad K(u_1, \ldots, u_d) = \Pi k(u_j)
\]

where \(k(u_j) \) is given as
We have likewise used these kernel functions in the variance adjustment formulae.

Since there is no developed theory for optimal bandwidth choice for the purpose of our specification test, we chose bandwidth values using Generalized Cross Validation (GCV) of Craven and Wahba (1979). For instance, to estimate the general regression \(m(x) \), let \(Y \) denote the vector of observations \((y_i) \) and \(M_h \) denote the vector of values \((m(x_i)) \) computed with bandwidth \(h \). Consider the weight matrix \(W_h \) defined from

\[
(4.26) \quad M_h = W_h Y
\]

The GCV bandwidth is the value of \(h \) that minimizes

\[
(4.27) \quad \frac{N^{-1}|(I - W_h)Y|^2}{[N^{-1} \text{Tr}(I - W_h)]^2}
\]

We also standardized the predictor data for the nonparametric estimation.

This method of bandwidth choice was used for simplicity. However, it is unlikely that this method applied in increasingly large samples will give the bandwidth conditions of Theorem 1 above. In particular, those conditions require pointwise bias to vanish faster than pointwise variance, which is not implied by GCV bandwidths chosen for each sample size.

As indicated above, we have incorporated the trimming indicator, dropping the 5% of data values with lowest estimated density values. In practical terms, this drops observations with isolated predictor values, such as remote outliers. Moreover, since the regression estimators involve dividing by estimated density, dropping observations with small estimated density likely avoids erratic behavior in the nonparametric estimates.
C. The Singularity Issue

While we have departed from the conditions for the asymptotic theory as outlined above, there is a further issue with using Theorem 1 as a foundation for our test procedure. In particular, the asymptotic distribution of \(\sqrt{N}(\hat{\gamma} - \gamma) \) displays a singularity under the null hypothesis that the restricted model is valid. Formally, with reference to Theorem 1, if \(G = g \) a.e., then the influence function \(r_{\gamma i} = 0 \) for all \(i \). Therefore, under the null hypothesis, Theorem 1 shows that \(\sqrt{N}(\hat{\gamma} - 0) = o_p(1) \), or that \(\hat{\gamma} \) converges to the true value 0 at rate faster than \(\sqrt{N} \). This issue seems endemic to specification tests involving nonparametric estimation, and is discussed in Yatchew (1988) and Wooldridge (1990), among others.

We have presented the procedure we utilized above, and so we now discuss the implications of this issue for our method, as well as possible justifications. One implication is that our results where rejection is indicated should not be affected. In particular, the t-statistic (2.12) should have the leading factor \(\sqrt{N} \) replaced by a larger power of \(N \), or equivalently, we should choose smaller critical values for the test. While there is also a question of the normality of the test statistic under the null hypothesis, the main implication for our results of Section 3 would be to open the possibility that model PARTIAL2 should be rejected against the general regression with this modification. The estimate \(\hat{\gamma} = .0116 \) of the percentage of variance of the general regression not accounted for by the model PARTIAL2 is unaffected, however it could be significantly different from zero when the critical values are tightened.

The singularity problem appears to arise because the nonparametric estimators "overfit" the response \(y_i \), leaving too little variation in the limit. The peculiarity of this feature is illustrated by noting that the
OLS coefficient $\hat{\gamma}$ of the regression (4.11), which involves the true functions, does not exhibit the same singularity in its asymptotic normal distribution. The variation of this regression is canceled out by the use of nonparametric estimation.

Several (somewhat artificial) theoretical justifications for our method could be devised. One would be to note that \sqrt{N} asymptotic normality of $\hat{\gamma}$ would hold under the null if independent noise were added to the residuals for performing the test; namely draw η_i for each i, independently of x_i, and perform the regression (4.8) with $(y_i - \hat{G}(x_i \delta) + \eta_i)I_i$ as the dependent variable. Our method of measuring the variance of γ would be consistent in this case as well. We have not stressed this idea because the variance of η_i could be chosen to be extremely small, and therefore one would not expect that this method would make any difference to the testing results. An alternative method follows Yatchew (1988), whereby we could split the sample, carrying our estimation of the parameters and functions using one part of the data set, and carrying out the specification test using the other part. It would be of interest to see if this method caused dramatically different results with large data sets - the latter a necessity since equal sample splitting drops the effective sample size in half for nonparametric estimation and specification testing.

Our view of the most promising justification for our method would arise from asymptotic theory that is sensitive to the amount of smoothing carried out in the statistical analysis. In particular, such a theory would be based on fixed or slowly shrinking bandwidth values, and would be in line with Wooldridge's (1990) results for his test of a linear model against a nonparametric (polynomial) alternative model. While we have not developed such a theory, some features appear sufficiently apparent to mention them as conjectures. For instance, such a theory would deal with variability of the
statistics, and not be fully "nonparametric". In particular, all function estimates would centered around their consistent limits, which would be biased representations of the true functions. However, such a theory could give a better approximation to the distribution of $\hat{\gamma}$ in samples of moderate size. In this regard, the U-statistic structure of the basic estimators would not be affected, and the variance adjustments we have proposed would lead to consistent estimation of the variance of $\hat{\gamma}$. Consequently, since $\hat{\gamma}$ is a reasonable reflection of the sample correlation between the restricted model residuals and the general model fitted values, one should conclude that the restricted model is adequate if 0 is in the appropriate confidence interval.

It should also be noted that the adjustments for nonparametric estimation exhibited in Table 3.4 are not in line with what one would expect from the standard theory, and could be consistent with fixed bandwidth approximation. In particular, the singularity under the null hypothesis implies that our adjustments for nonparametric estimation should cancel out the residual variation (standard White term), with the estimated influence (2.18) a uniformly consistent estimator of the zero function. However, as we pointed out in Table 3.4 of Section 3, adjustment for nonparametric estimation does not reduce the estimated variance of $\hat{\gamma}$, but rather increases it over the standard heteroskedasticity consistent estimate.

Consequently, we have taken a practical stance, applying the test without a complete standard distributional theory under the null hypothesis. While rejections by the statistic are valid within the context of the singularity, more research is definitely called for to either justify or suggest adjustments for our method of setting critical values for our statistic under the null hypothesis.
5. Conclusion

In this paper we have presented a simple specification test for assessing the appropriate index model in an empirical application. The index model framework gives a generalization of linear models that may be informative for applications where there is no theoretical reasons for specifying a particular functional form. Our application to measuring environmental effects from housing prices had this feature, and we have tried to illustrate the index models can give an enhanced depiction of the data relationships over standard linear modeling. We have used our test to check to the adequacy of a parametric (linear) model versus nonparametric regression, and it seems natural that the test will be useful in other (nested) testing problems.

We have focused on the use of nonparametric kernel estimators. While the adjustment terms listed in Section 2 involve large formulae, they are computed directly from the data and do not involve more complicated computation than required for the kernel estimators themselves. We also have developed a standard asymptotic theory for using kernel estimators; but from the results of Newey (1991), it is natural to conjecture that the same distributional results would be obtained when other nonparametric estimators are used, such as truncated polynomials or other series expansions. We have raised the singularity issue for tests using nonparametric estimators, and discuss various ways our basic method might be further justified.

We do want to stress one feature of our method that we find appealing relative to alternative testing procedures. In particular, focusing on the single coefficient $\hat{\gamma}$ is valuable because of its goodness of fit interpretation. This likely led to overly complicated technical analysis, such as the precise analysis of the adjustments required to account for nonparametric estimation. But in our view, the value of focusing on an
interpretable statistic is the immediate practical sense it gives for which models "fit" the data and which do not. For instance, the model PARTIAL2 accounts for an estimated $1 - \gamma = .9884$ of the variation of the general regression, which is strong support for the notion that the model PARTIAL2 captures the systematic features of the log housing price regression in the Boston Housing data, especially relative to the more restricted models. As such, we find our method more appealing on practical grounds than specification tests that just take on an uninterpretable "accept or reject" posture without further giving useful information.
Appendix 1: Impact of Estimated Regression and Proofs of Results

The structure of the terms that adjust for estimated functions and parameters are quite similar, so we present generic results which specialize to Lemmas L and R above. For this section, refine the notation slightly for any partial index model: suppose that \(x \) is partitioned as \(x = (x_0, x_1) \), with \(x_1 \) a \(d \times 1 \) vector, \(d \leq k \), and \(z \) denotes the \(d \) vector of predictors for a partial index model, namely \(z = (x_0^T \delta_0, x_1) \). Thus, the notation can range from the case of a single index model, where \(d = 1 \) and \(z = x^T \delta \), to the general regression case where \(d = k \), where without loss of generality we set \(z = x \) (and ignore the adjustment term for the estimation of \(\delta_0 \) below).

Further, let \(x_2 \) denote a \(k - d \) subvector of \(x_0 \), where the remaining component of \(x_0 \) has a positive coefficient \(\delta_1 \). The transformation

\[(z, x_2) = r(x)\]

is linear and nonsingular with (constant) Jacobian \(\delta_1 \), so that the Jacobian of \(r^{-1} \) is \(1/\delta_1 \). Below, we need to consider several functions of \(x \) as functions of \((z, x_2) \). To keep this compact, we use a "*" to signify this simply: for a function \(a(y, x) \), we have

\[a^*(y, z, x_2) = a(y, r^{-1}(z, x_2))\]

We will mention this explicitly when necessary for clarity.

We will focus on adjustment terms that arise from the estimation of the regression function \(M(z) = E(y|z) \). Recall that the marginal density of \(x \) is \(f(x) \), and the joint density of \(y \) and \(x \) is \(q(y|x)f(x) \). The regression of \(y \) on \(z \) is written explicitly as

\[M(z) = C(z)/F(z)\]
where \(C(z) \) is

\[
C(z) = \delta_1^{-1} \int y_q^* (z, x_2) f^* (z, x_2) \, dx_2 = \delta_1^{-1} \int m^* (z, x_2) f^* (z, x_2) \, dx_2
\]

and \(F(z) \) is the marginal distribution of \(z \); namely

\[
F(z) = \delta_1^{-1} \int f^* (z, x_2) \, dx_2.
\]

All the adjustment terms that we consider are based on kernel estimation of \(M(z) = \mathbb{E}(y | z) \). Let \(\hat{z}_i = (x_{0i}^T \delta_0, x_{i1}) \) denote the \(i \)th observation of the predictor based on estimated index coefficients, and \(z_i = (x_{0i}^T \delta_0, x_{i1}) \) denote the analogous vector based on the true coefficient values. The kernel estimator used in estimation is \(\hat{M}(z) \), computed using \(\hat{z}_i, y_i \), namely

\[
\hat{M}(z) = \frac{\hat{C}(z)}{\hat{F}(z)}
\]

where

\[
\hat{C}(z) = N^{-1} h^{-d} \sum_{j=1}^{N} K \left(\frac{z - \hat{z}_i}{h} \right) y_j
\]

where \(K \) is a kernel function, \(h \) is a bandwidth parameter that must be set for estimation, and

\[
\hat{F}(z) = N^{-1} h^{-d} \sum_{j=1}^{N} K \left(\frac{z - \hat{z}_i}{h} \right)
\]

Finally we will need to make reference to the kernel estimator that would be computed if the coefficients \(\delta_0 \) were known, namely

\[
\tilde{M}(z) = \tilde{C}(z)/\tilde{F}(z)
\]

where
Each adjustment term takes the following form:

\[(A.1) \quad A = N^{-1/2} \sum \left[\hat{M}(z_i) - M(z_i) \right] a(y_i, x_i) I_i \]

where \(a(y, x)\) has mean 0 and finite variance. We first split this into variation due to the estimation of \(\delta_0\), and due to the estimation of \(M\):

\[A = A_\delta + A_M\]

where

\[A_\delta = N^{-1/2} \sum \left[\hat{M}(z_i) - \bar{M}(z_i) \right] a(y_i, x_i) I_i\]

\[A_M = N^{-1/2} \sum \left[\bar{M}(z_i) - M(z_i) \right] a(y_i, x_i) I_i\]

Again, recall that for \(k = d\), we set \(A_\delta = 0\).

First, consider the adjustment for nonparametric estimation, or \(A_M\). This is analyzed by linearizing \(\bar{M}\) in terms of its numerator and denominator, analyzing its U-statistic structure to show asymptotic normality, and analyzing its bias separately, along the lines of Härdle and Stoker (1989). Fortunately, some recent unifying theory is applicable. Let

\[\mathcal{M}(z) = E[a(y, x)I|z]\]
Begin with the following generic assumption:

Assumption A1: We assume that

1) \(E(y^4) < \infty \),

2) \(E(y^4 | z) F(z) \) and \(F(z) \) are bounded,

3) \(E[a(y,x)^2 I] < \infty \)

4) The kernel \(K \) has bounded support, is Lipschitz, \(\int K(u) \, du = 1 \), and is of order \(P > d \).

5) \(\mathcal{A}(z) F(z) \) and \(F(z) \) are continuously differentiable of order at least \(P \),

6) There exists a compact set \(\mathcal{A} \) such that \(\mathcal{A}(z) = 0 \) for \(z \in \mathbb{R}^d / \mathcal{A} \)

7) \(\mathcal{A}(z) \) is continuously bounded a.e.

The adjustment for nonparametric estimation, \(A_M \), is characterized by applying Theorem 3.4 of Newey (1992).

Lemma 1: Given Assumption A1, if \(N h^{2d}/(\ln N) \to \infty \) and \(N h^{2P} \to 0 \), then

\[
A_M = N^{-1/2} \sum r_{A M i} + o_p(1),
\]

where \(r_{A M i} = \mathcal{A}(z_i) [y_i - M(z_i)] \), and \(A_M \to \mathcal{N}[0, E(r_{A M i} r_{A M i}^T)] \).

The adjustment for using estimated coefficients is characterized directly as follows. Recall that

\[
\sqrt{N}(\hat{\delta}_0 - \delta_0) = N^{-1/2} \sum r_{t0} (y_i, x_i) + o_p(1)
\]

Let
\[\mathcal{B} = \mathbb{E}(\partial M/\partial z_1(z)[E(ax_0|z) - M(z)E(x_0|z)] + \partial M/\partial z_1(z)[E(yx_0|z) - M(z)E(x_0|z)]) \]

then we have

Lemma 2: Given Assumption A1, if \(Nh^{d+2}/(\ln N) \to \infty \) and \(h \to 0 \), then

\[A_{\delta} = \mathcal{B} \sqrt{N}(\delta_0 - \delta_0) + o_p(1), \]

\[= N^{-1/2} \sum \mathcal{B} r_{\delta_{00}}(y_{i1},x_{i1}) + o_p(1) . \]

Proof: Denote the kernel regression as a function of \(x_i \) and \(\delta \) as

\[M^+(x_i;\delta) = \left[\sum_{i=1}^{N} \kappa \left(\frac{(x_{0i} - x_{1i})^T \delta}{h}; \frac{x_{1i} - x_{1i}}{h} \right) \right]^{-1} \left[\sum_{i=1}^{N} \kappa \left(\frac{(x_{0i} - x_{1i})^T \delta}{h}; \frac{x_{1i} - x_{1i}}{h} \right) y_j \right] \]

By the Mean Value Theorem, we have that

\[A_{\delta} = (N^{-1} \sum [\partial M^+(x_i;\delta)/\partial \delta] \ a(y_{i1},x_{i1}) \ I_i \ \sqrt{N}(\delta_0 - \delta_0)) \]

where \(\delta_{i1}, i=1,\ldots,N \) lies on the line segment between \(\delta_0 \) and \(\delta_0 \). Therefore, if

\[\mathcal{B}_N = N^{-1} \sum [\partial M^+(x_i;\delta)/\partial \delta] \ a(y_{i1},x_{i1}) \ I_i \]

and we can characterize \(\text{plim} \ \mathcal{B}_N = \mathcal{B} \), then we will have

\[A_{\delta} = \mathcal{B} \sqrt{N}(\delta_0 - \delta_0) + o_p(1) \]

We have
\[
\frac{\partial M^+(x_i; \delta)}{\partial \delta_0} = S_K(x_i; \delta)^{-1} \sum_{j=1}^{N} \frac{x_{0j} - x_{0j}}{h} \kappa \left(\frac{(x_{0j} - x_{0j})^T \delta}{h}, \frac{x_{1j} - x_{1j}}{h} \right) y_j
\]

\[
- M^+(x_i; \delta) S_K(x_i; \delta)^{-1} \sum_{j=1}^{N} \frac{x_{0j} - x_{0j}}{h} \kappa \left(\frac{(x_{0j} - x_{0j})^T \delta}{h}, \frac{x_{1j} - x_{1j}}{h} \right) y_j
\]

\[
= x_{0i} (M^+)'(x_i; \delta)
\]

\[
- S_K(x_i; \delta)^{-1} \sum_{j=1}^{N} \frac{1}{h} \kappa \left(\frac{(x_{0j} - x_{0j})^T \delta}{h}, \frac{x_{1j} - x_{1j}}{h} \right) x_{0j} y_j
\]

\[
+ M^+(x_i; \delta) S_K(x_i; \delta)^{-1} \sum_{j=1}^{N} \frac{1}{h} \kappa \left(\frac{(x_{0j} - x_{0j})^T \delta}{h}, \frac{x_{1j} - x_{1j}}{h} \right) x_{0j}
\]

where " \'(\) " denotes differentiation with regard to the index, or first argument. Under our conditions, as \(h \to 0 \) and \(\delta \to \delta_0 \), these terms estimate

\[
\frac{\partial M(x_i; \delta)}{\partial \delta_0} = x_{0i} M_1'(z_i) - [F(z_i)]^{-1}[\delta[E(x_0y|z_i)F(z_i)]/\delta z_1]
\]

\[
+ M(z_i)[F(z_i)]^{-1}[\delta[E(x_0|z_i)F(z_i)]/\delta z_1]
\]

\[
= x_{0i} M_1'(z_i) - [E_1'(x_0y|z_i) - M(z_i)E_1'(x_0|z_i)]
\]

\[
- [E(x_0y|z_i) - M(z_i)E(x_0|z_i)][F(z_i)]^{-1}F_1'(z_i)
\]

Since \(x \) can be regarded as bounded because of trimming on small positive density, then uniform convergence follows as in Newey (1992), since \(Nh^{d+2}/(\ln N) \to \alpha \) as \(h \to 0 \) and \(\delta_0 - \delta_0 \to \alpha (1) \). Therefore

\[
\mathcal{B} = E(a(y,x)[x_0 M_1'(z) - [E_1'(x_0y|z) - M(z)E_1'(x_0|z)]
\]

\[
- [E(x_0y|z) - M(z)E(x_0|z)][F(z)]^{-1}F_1'(z))]
\]

\[
- E(M_1'(z)[E(ax_0|z) - \mathcal{M}(z)E(x_0|z)]
\]

35
\[I_1'(z) \{ E(yx_0 | z) - M(z)E(x_0 | z) \} \]

giving the characterization of \(A_\delta \) above.

Consequently, we conclude that

Lemma 3: If \(Nh^{2d}/(ln N) \to \infty \) and \(Nh^{2P} \to 0 \), then

\[
A = B \sqrt{N} (\delta_0 - \delta^*) + N^{-1/2} \sum r_{AMi} + o_p(1),
\]

\[
- N^{-1/2} \sum B r_\delta(y_i, x_i) + N^{-1/2} \sum r_{AMi} + o_p(1)
\]

\[
- N^{-1/2} \sum r_{Ai} + o_p(1)
\]

where \(r_{Ai} = B r_\delta(y_i, x_i) + r_{AMi} \)

Applying Theorem 1 to \(RA_N \) and \(LA_N \) yields Lemmata R and L.

Estimation of asymptotic variance is accomplished by using an estimate of the influence terms for the adjustment factors, with the consistency of this procedure verified by an argument similar to that in Härde and Stoker (1989).

With regard to the generic adjustment term (A.1), the matrix \(B \) is consistently estimated by evaluating the expression for \(B_N \) above at \(\delta^* \) and the bandwidth used for estimation. The influence term \(r_{AMi} \) is estimated from the U-statistic structure of \(A_M \), which would be used in a direct proof of Lemma 1 above. In particular, we have that

\[
A_M = N^{1/2} [U_1 - U_2] + o_p(1)
\]

where
\[U_1 = \left(\frac{N}{2} \right)^{-1} \sum_{i=1}^{N} \sum_{j=i+1}^{N} p_{lij} \]

with

\[p_{lij} = \frac{1}{2} h^{-d} K \left(\frac{z_i - z_j}{h} \right) \left(\frac{a(y_i, x_i) y_j I_i}{F(z_i)} + \frac{a(y_j, x_j) y_i I_j}{F(z_j)} \right) \]

and

\[U_2 = \left(\frac{N}{2} \right)^{-1} \sum_{i=1}^{N} \sum_{j=i+1}^{N} p_{2ij} \]

where

\[p_{2ij} = \frac{1}{2} h^{-d} K \left(\frac{z_i - z_j}{h} \right) \left(\frac{a(y_i, x_i) M(z_i) I_i}{F(z_i)} + \frac{a(y_j, x_j) M(z_j) I_j}{F(z_j)} \right) \]

If \(p_{lij} \) and \(p_{2ij} \) denote the above expressions evaluated at \(\hat{\delta}, \hat{M}, \hat{F}, \hat{I} \) and the bandwidth used for estimation, then the influence term \(r_{AM_i} \) is estimated by

\[r_{AM_i} = N^{-1} \sum_j (\hat{p}_{lij} - \hat{p}_{2ij}) I_i. \]

Carrying out these manipulations for the "right" adjustment \(R_{AN} \), and the "left" adjustment \(L_{AN} \) give the estimators presented in Appendix 2.

Therefore, the remainder of the proof of Theorem 1 rests on the validity of

\[\sqrt{N} (\hat{\gamma} - \gamma) = R_{AN} - L_{AN} + o_p(1) \]

This equation is demonstrated by verifying two features: namely that trimming with regard to the estimated density gives the same results as trimming with regard to the true density; and that the equation can be linearized into the adjustment terms above.

The first piece requires showing that the estimated trimming index \(\hat{I}_i = \)
1[\hat{f}(x_i) > b] can be replaced by $I_1 = 1[f(x_i) > b]$ in the terms

$$N^{-1/2} \sum (\hat{g}_i - g)(y_i - G_i)I_i$$

$$N^{-1} \sum (\hat{g}_i - g)^2 I_i$$

that comprise I, without affecting their asymptotic distribution. This feature follows from a term-by-term analysis which we highlight below. In particular, we have that

$$N^{-1/2} \sum (\hat{g}_i - g)(y_i - G_i)(I_i - I_1) = N^{-1/2} \sum (\hat{g}_i - g_i)(y_i - G_i)(I_i - I_1)$$

$$- N^{-1/2} \sum (\hat{g}_i - g_i)(G_i - G_i)(I_i - I_1) - N^{-1/2} \sum (g_i - E(gI))(G_i - G_i)(I_i - I_1)$$

$$+ N^{-1/2} \sum (g_i - E(gI))(y_i - G_i)(I_i - I_1) - N^{-1/2} \sum (g - E(gI))(y_i - G_i)(I_i - I_1)$$

$$+ N^{-1/2} \sum (\hat{g}_i - g_i)(G_i - G_i)(I_i - I_1)$$

and

$$N^{-1} \sum (\hat{g}_i - g)^2 (I_i - I_1) = N^{-1} \sum (\hat{g}_i - g_i)^2 (I_i - I_1) + N^{-1} \sum (g - E(gI))^2 (I_i - I_1)$$

$$+ N^{-1} \sum (g_i - E(gI))^2 (I_i - I_1) - 2 N^{-1} \sum (g_i - E(gI))(g_i - E(gI))(I_i - I_1)$$

$$- 2N^{-1} \sum (\hat{g}_i - g_i)(g_i - E(gI))(I_i - I_1) + 2 N^{-1} \sum (\hat{g}_i - g_i)(g - E(gI))(I_i - I_1)$$

Each of the terms in these expression can be shown to be $o_p(1)$ by a similar method, which we outline as follows. Begin by noting that that our assumptions implies uniform convergence of $\hat{f}(x)$ to $f(x)$ (when $f(x) > \epsilon > 0$), so that with high probability

$$f(x) - c_N < \hat{f}(x) < f(x) + c_N$$

where $c_N = \psi [(N\text{hf}/k\ln N)^{-1/2}]$, ψ a constant. If $I = 1[b - c_N < f(x) \leq b + c_N]$,

38
note that
\[
\text{Prob}(\hat{I} - I \text{ nonzero}) = E[(\hat{I} - I)^2] \leq E(\hat{I}) - E[I] \geq \psi \left[(Nh_f^k / \ln N)^{-1/2} \right].
\]
Further, let \(N_I = \sum (\hat{I}_1 - I_1)^2 \) denote the number of nonzero terms in each of the terms above.

To illustrate how the terms are analyzed, consider the first term of the first expression, for which we have

\[
N^{-1} E[(\hat{g}_i - g_i)(\hat{y}_i - G_i)(\hat{I}_i - I_i)]^2 \\
\leq N \left[\text{Prob}(\hat{I}_i - I_i \text{ nonzero}) \right] \left[\sup |\hat{g}_i - g_i| \right]^2 \left[\sum |(\hat{y}_i - G_i)(\hat{I}_i - I_i)| / N_I \right]^2 + o_p(1) \\
\leq O(N (Nh_f^k / \ln N)^{-1/2} (Nh_0^k / \ln N)^{-1}) = O([N h_f^k h_0^d]^{-1/2} (\ln N)^{3/2}) \\
= o(1)
\]
given our bandwidth conditions. Similarly, the third term of the second expression is

\[
N^{-2} E[(\hat{g}_i - E(gI))^2(\hat{I}_i - I_i)]^2 - (N_I/N)^2 E[\sum(\hat{g}_i - E(gI))^2(\hat{I}_i - I_i)/N_I]^2 \\
= O((Nh_f^k / \ln N)^{-1}) = o(1)
\]
and so forth. All the other terms are treated similarly.

Finally, with trimming based on the true density, the linearization is shown by uniformity arguments analogous to those used above. Denote the sample variance based on trimming with the true density as

\[
\hat{S}_{gI}^2 = N^{-1} \sum (\hat{g}_i - g)^2 I_1.
\]
It is easy to show that \(\text{plim} \hat{S}_{gI}^2 = \sigma_g^2 \), so
\[
\sqrt{N} \left(\hat{\gamma} - \hat{\gamma} \right) = \frac{1}{S_{g1}^{\hat{g}}} N^{-1/2} \left(\sum (\hat{g}_i - g)(y_1 - \hat{G}_1)I_1 - \sum [g_i - E(g)](y_1 - G_i)I_1 \right) \\
+ \frac{S_g - S_{g1}^{\hat{g}}}{S_g S_{g1}^{\hat{g}}} \left(N^{-1/2} \sum [g_i - E(g)](y_1 - G_i)I_1 \right) \\
- \frac{1}{\sigma_g} N^{-1/2} \left(\sum (\hat{g}_i - g)(y_1 - \hat{G}_1)I_1 - \sum [g_i - E(g)](y_1 - G_i)I_1 \right) \\
+ o_p(1)
\]

so we focus on the overall adjustment term

\[
\text{ADJ}_N = N^{-1/2} \left(\sum (\hat{g}_i - g)(y_1 - \hat{G}_1)I_1 - \sum [g_i - E(g)](y_1 - G_i)I_1 \right)
\]

Some tedious arithmetic gives that

\[
\text{ADJ}_N = N^{-1/2} \sum (\hat{g}_i - g_i)(y_1 - G_i)I_1 - N^{-1/2} \sum [g_i - E(g)](\hat{G}_i - G_i)I_1 \\
- T_{1N} + T_{2N} + T_{3N}
\]

where

\[
T_{1N} = [g - E(g)] N^{-1/2} \sum (y_1 - G_i)I_i
\]

\[
T_{2N} = N^{-1/2} \left(g - E(g) \right) (G - \bar{G}) \sum I_i
\]

\[
T_{3N} = N^{-1/2} \sum (\hat{g}_i - g_i)(G_i - \hat{G}_i)I_i
\]
Moreover, by the methods used above, it is easy to verify that each T is $o_p(1)$. For instance, for T_{3N}, we have

$$|T_{3N}| = N^{1/2} \sup \{ |(\hat{g}_i - g_i)I_1| \} \sup \{ |(\hat{C}_i - C_i)I_1| \}$$

$$= o_p[N^{-1/2} h_0^{-d_0/2} h_1^{-d_1/2} \ln N] = o_p(1)$$

since $Nh_0^{-d_0} h_1^{-d_1}/(\ln N)^2 \to \infty$. The other terms follow similarly. Thus, we have that

$$ADJ_N = RA_N - LA_N + o_p(1)$$

which completes the proof of the Theorem.

QED
Appendix 2: Variance Adjustment Terms

Recall that we use subscript "i" to compactly denote evaluation of relevant terms at \((y, x) = (y_i, x_i) \); for instance, \(g_i \) denotes \(g \) evaluated at \(z_{0i}, G_i \) denotes \(G \) evaluated at \(z_{1i} \), and \(I_i \) is the trim indicator that is 1 if \(f(x_i) > b \), and 0 otherwise, as above.

To account for the estimation of \(\delta \) (or a subvector), we use the "slope" influence estimator discussed in Stoker (1992), namely

\[
\hat{r}_\delta(y_i, x_i) = \left[N^{-1} \sum_i l_i I_i (x_i - \bar{x})^T \right]^{-1}
\]

\[
\left[l_i I_i \hat{v}_i + N^{-1} h_f^{-k} \sum_{j=1}^N \left[h_f^{-1} \kappa_f \left(\frac{x_i - x_j}{h_f} \right) - \kappa_f \left(\frac{x_i - x_j}{h_f} \right) \hat{t}_j \right] \frac{1}{f_j} \right]
\]

where \(\hat{v}_i = (y_i - \bar{y}) - (x_i - \bar{x})^T \hat{\delta} \) is an estimated residual. The asymptotic covariance matrix of \(\hat{\delta} \) is estimated as the sample variance of \(\hat{r}_\delta(y_i, x_i) \).

The adjustment terms are given as follows. The "right-hand" adjustment is

\[
r_{r1} = \hat{r}_{g1} + B_0 \hat{r}_{\delta 0}(y_i, x_i)
\]

where \(\hat{r}_{\delta 0} \) refers to the subvector of \(\hat{r}_{\delta 0} \) corresponding to the coefficients of the more general (right hand) regression function, and where

\[
\hat{r}_{g1} =
\sum_{j=1}^N \left(\kappa_0 \left(\frac{z_{01} - \hat{z}_{01}}{h_0} \right) \left(\frac{(y_i - G_i) \hat{y}_j I_i}{F_{0i}} + \frac{(y_j - G_j) \hat{y}_i I_j}{F_{0j}} \right) \right)
\]

\[
\kappa_0 \left(\frac{z_{01} - \hat{z}_{01}}{h_0} \right) \left(\frac{(y_i - G_i) \hat{g}_j I_i}{F_{0i}} + \frac{(y_j - G_j) \hat{g}_i I_j}{F_{0j}} \right)
\]

42
Recall $B_0 = 0$ if m does not have an index variable as an argument, otherwise

$$B_0 = N^{-1} \sum \hat{D}_0 \left(y_i - \hat{G}_i \right) \hat{I}_i$$

where K_0' denotes the derivative of K_0 with regard to its index argument, and

$$\hat{D}_0 = s_{0K(x_i)}^{-1} \sum_{j=1}^{N} \frac{x_{0i} - x_{0j}}{h_0} K_0' \left(\left(\frac{x_{0i} - x_{0j}}{h_0} \right)^T I_0 = \frac{x_{1i} - x_{1j}}{h_0} \right) y_j$$

$$- \frac{\hat{z}_i}{s_{0K(x_i)}^{-1}} \sum_{j=1}^{N} \frac{x_{0i} - x_{0j}}{h_0} K_0' \left(\left(\frac{x_{0i} - x_{0j}}{h_0} \right)^T I_0 = \frac{x_{1i} - x_{1j}}{h_0} \right)$$

Finally, the "left hand" adjustment is

$$l_{a_i} = \hat{r}_{G_i} + B_1 \hat{r}_{\delta 01}(y_i, x_i)$$

where

$$\hat{r}_{G_i} = h_{d_1}^{-1} \sum_{j=1}^{N} K_1 \left(\frac{z_i - z_j}{h_1} \right) \left(\frac{(\hat{g}_i - \hat{g})y_{i1} \hat{I}_i}{F_{1i}} + \frac{(\hat{g}_j - \hat{g})y_{j1} \hat{I}_j}{F_{1j}} \right)$$

$$- \frac{\hat{z}_i}{h_1} K_1 \left(\frac{z_i - z_j}{h_1} \right) \left(\frac{(\hat{g}_i - \hat{g})G(z_i) \hat{I}_i}{F_{1i}} + \frac{(\hat{g}_j - \hat{g})G(z_j) \hat{I}_j}{F_{1j}} \right)$$

$$B_1 = N^{-1} \sum \hat{D}_1 \left(\hat{g}_i - \hat{g} \right) \hat{I}_i$$

and where K_1' denotes the derivative of K_1 with regard to its index argument.
\[
\hat{D}_1 = S_1 K(x_1)^{-1} \sum_{j=1}^{N} \frac{x_{0i} - x_{0j}}{h_1} K_1 \left(\frac{(x_{0i} - x_{0j})^T \delta}{h_1} ; \frac{x_{1i} - x_{1j}}{h_1} \right) y_j
\]

\[
- G_1 S_1 K(x_1)^{-1} \sum_{j=1}^{N} \frac{x_{0i} - x_{0j}}{h_1} K_1 \left(\frac{(x_{0i} - x_{0j})^T \delta}{h_1} ; \frac{x_{1i} - x_{1j}}{h_1} \right)
\]

\[
S_1 K(x_1) = \left[\sum_{j=1}^{N} K_1 \left(\frac{(x_{0i} - x_{0j})^T \delta}{h_1} ; \frac{x_{1i} - x_{1j}}{h_1} \right) \right]
\]

With these assignments, the asymptotic variance of \(\hat{\gamma} \) is estimated as the sample covariance \(\hat{\sigma}_\gamma \) of

\[
\hat{\gamma}_i = S_1^{-1} \left([g_i - g] \hat{u}_1 + r_1 - l_1 \right) \hat{I}_1
\]

and so the variance of \(\hat{\gamma} \) is estimated by \(\hat{\sigma}_\gamma / N \).
Notes

1 We could likewise apply our test using other kinds of index models as either the restricted model (null) or the general model (alternative), such as the multiple index model \(m(x) = G(x_1^T \beta_1, x_2^T \beta_2) \). The key requirement for our development is that the restricted model is nested in the more general model, as discussed in Section 4.2.

3 We include the constant term to permit minor differences in the mean of the fitted values of the restricted and general models.

4 This "goodness of fit" interpretation may not apply for parametric model-semiparametric model comparisons where estimation methods are used for the restricted and unrestricted models. For example, when the null hypothesis is a linear model, the mean of \(y \) conditional on the index \(x^T \beta \) will be nonlinear under general alternatives, so that the relevant analog of (2.15) will not hold.

5 A brief description of the issues is given in Stoker(1992), as well as a brief discussion of the results discussed below.

6 We do not take account of the jointness of the hypotheses to be tested. It would be useful to develop Bonferoni critical values or a Scheffe S-method for the tests involved with characterizing index structure.

7 These are "indirect slope" estimates in the parlance of Stoker (1992). Details on estimation are discussed in Section 4.
8 Strictly speaking, this is a test of the equality of the average derivative
$\delta = E(m')$ and the limit of the OLS coefficient $\beta = [\text{Var}(x)]^{-1}\text{Cov}(x, y)$, which
must coincide when the model is linear.

9 In terms of the fact that the linear model appears to explain more
variation than the single index model, it is worth noting that the $\hat{\gamma}$
values are estimates that are not constrained to decrease for less
restrictive models, and, as noted before, that the variance interpretation of
$\hat{\gamma}$ is not strictly correct for testing the linear model against a general
alterative.

10 The specifications used in Section 3 are discussed in Section 4.3 below.

11 A kernel K is of order P if $\int K(u)du = 1$, and "moments" $\int u^\alpha K(u)du = 0$
when $\sum \alpha_j < P$; $\int u^\alpha K(u)du = 0$ when $\sum \alpha_j = P$.

12 However, convergence to these consistent limits (under fixed bandwidths) is
at rate \sqrt{N}, with uniformity following from standard results, so much of this
kind of theory would be simpler than the shrinking bandwidth theory of Section
4.2.

13 As discussed in Appendix 1, our variance adjustments are directly suggested
by the U-statistic structure of RA_N and LA_N. It is likely that these
adjustments also arise from the general variance estimation formulae of Newey
(1992), however we have not verified this.
References

TABLE 3.1: VARIABLE SPECIFICATION IN THE BOSTON HOUSING DATA

<table>
<thead>
<tr>
<th>$y = \ln p$</th>
<th>LMV</th>
<th>log of home value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td>NOXSQ</td>
<td>nitrogen oxide concentration</td>
</tr>
<tr>
<td>x_2</td>
<td>CRIM</td>
<td>crime rate</td>
</tr>
<tr>
<td>x_3</td>
<td>RMSQ</td>
<td>number of rooms squared</td>
</tr>
<tr>
<td>x_4</td>
<td>DIS</td>
<td>distance to employment centers</td>
</tr>
<tr>
<td>x_5</td>
<td>RAD</td>
<td>accessibility to radial highways</td>
</tr>
<tr>
<td>x_6</td>
<td>TAX</td>
<td>tax rate</td>
</tr>
<tr>
<td>x_7</td>
<td>PTRATIO</td>
<td>pupil teacher ratio</td>
</tr>
<tr>
<td>x_8</td>
<td>B</td>
<td>$(B_k - .63)^2$, where B_k is proportion of black residents in neighborhood</td>
</tr>
<tr>
<td>x_9</td>
<td>LSTAT</td>
<td>log of proportion of residents of lower status</td>
</tr>
</tbody>
</table>
TABLE 3.2: COEFFICIENT ESTIMATES FOR THE HOUSING PRICE EQUATION

\begin{tabular}{|c|l|c|c|}
\hline
y = ln p & LMV & Average Derivatives & OLS \\
\hline
 & & $\hat{\delta}$ & $\hat{\beta}$ \\
\hline
x_1 & NOXSQ & -.0034 & -.0060 \\
 & & (.0035) & (.0011) \\
x_2 & CRIM & -.0256 & -.0120 \\
 & & (.0056) & (.0012) \\
x_3 & RMSQ & .0106 & .0068 \\
 & & (.0025) & (.0012) \\
x_4 & DIS & -.0746 & -.1995 \\
 & & (.0504) & (.0265) \\
x_5 & RAD & .0669 & .0977 \\
 & & (.0468) & (.0183) \\
x_6 & TAX & -.0009 & -.00045 \\
 & & (.0003) & (.00011) \\
x_7 & PTRATIO & -.0175 & -.0320 \\
 & & (.0152) & (.0047) \\
x_8 & B & -.0526 & .3770 \\
 & & (7.514) & (.1033) \\
x_9 & LSTAT & -.2583 & -.3650 \\
 & & (.0370) & (.0225) \\
\hline
\end{tabular}

(Standard Errors in Parentheses)

WALD TEST OF $\delta - \beta$: $W = 13.44$, $\text{Prob}(\chi^2(9) > 13.44) = .143$
TABLE 3.3: REGRESSION TESTS OF FUNCTIONAL FORM

TESTS AGAINST GENERAL REGRESSION

<table>
<thead>
<tr>
<th>Restricted</th>
<th>Unrestricted</th>
<th>γ</th>
<th>t value</th>
<th>Prob [$X^2(1) > t^2$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR</td>
<td>GENERAL</td>
<td>.1712</td>
<td>3.41</td>
<td>.0006</td>
</tr>
<tr>
<td>INDEX</td>
<td>GENERAL</td>
<td>.2314</td>
<td>5.96</td>
<td>0.0</td>
</tr>
<tr>
<td>PARTIAL1</td>
<td>GENERAL</td>
<td>.0718</td>
<td>4.52</td>
<td>0.0</td>
</tr>
<tr>
<td>PARTIAL2</td>
<td>GENERAL</td>
<td>.0116</td>
<td>2.19</td>
<td>.0291</td>
</tr>
</tbody>
</table>

PARTIAL INDEX MODEL TESTS

<table>
<thead>
<tr>
<th>Restricted</th>
<th>Unrestricted</th>
<th>γ</th>
<th>t value</th>
<th>Prob [$X^2(1) > t^2$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR</td>
<td>INDEX</td>
<td>.0276</td>
<td>.52</td>
<td>.602</td>
</tr>
<tr>
<td>LINEAR</td>
<td>PARTIAL2</td>
<td>.1862</td>
<td>4.51</td>
<td>0.0</td>
</tr>
<tr>
<td>INDEX</td>
<td>PARTIAL1</td>
<td>.1975</td>
<td>4.59</td>
<td>0.0</td>
</tr>
<tr>
<td>PARTIAL1</td>
<td>PARTIAL2</td>
<td>.0893</td>
<td>3.72</td>
<td>.0002</td>
</tr>
</tbody>
</table>
TABLE 3.4: ADJUSTED AND UNADJUSTED STANDARD ERROR ESTIMATES

TESTS AGAINST GENERAL REGRESSION

<table>
<thead>
<tr>
<th>Restricted</th>
<th>Unrestricted</th>
<th>γ</th>
<th>Standard OLS</th>
<th>Hetero. Consist. (White)</th>
<th>Corrected for NP Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR</td>
<td>GENERAL</td>
<td>0.1712</td>
<td>0.0211</td>
<td>0.0268</td>
<td>0.0500</td>
</tr>
<tr>
<td>INDEX</td>
<td>GENERAL</td>
<td>0.2314</td>
<td>0.0224</td>
<td>0.0311</td>
<td>0.0388</td>
</tr>
<tr>
<td>PARTIAL1</td>
<td>GENERAL</td>
<td>0.0718</td>
<td>0.0131</td>
<td>0.0149</td>
<td>0.0157</td>
</tr>
<tr>
<td>PARTIAL2</td>
<td>GENERAL</td>
<td>0.0116</td>
<td>0.0053</td>
<td>0.0047</td>
<td>0.0053</td>
</tr>
</tbody>
</table>

PARTIAL INDEX MODEL TESTS

<table>
<thead>
<tr>
<th>Restricted</th>
<th>Unrestricted</th>
<th>γ</th>
<th>Standard OLS</th>
<th>Hetero. Consist. (White)</th>
<th>Corrected for NP Estimation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINEAR</td>
<td>INDEX</td>
<td>0.0276</td>
<td>0.0252</td>
<td>0.0279</td>
<td>0.0530</td>
</tr>
<tr>
<td>LINEAR</td>
<td>PARTIAL2</td>
<td>0.1862</td>
<td>0.0186</td>
<td>0.0255</td>
<td>0.0413</td>
</tr>
<tr>
<td>INDEX</td>
<td>PARTIAL1</td>
<td>0.1975</td>
<td>0.0232</td>
<td>0.0301</td>
<td>0.043</td>
</tr>
<tr>
<td>PARTIAL1</td>
<td>PARTIAL2</td>
<td>0.0893</td>
<td>0.0122</td>
<td>0.0146</td>
<td>0.0240</td>
</tr>
</tbody>
</table>
Figure 3.1
Single Index Function for Housing Data
Figure 3.2
Effects of NOXSQ and Index Variable; Model PARTIAL1
Figure 3.3a
Effects of NOXSQ and Index Variable; Model PARTIAL2
Figure 3.3b
Effects of NOXSQ and LSTAT; Model PARTIAL2