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ABSTRACT

This paper presents a straightforward regression test of parametric and

semiparametric index models against more general semiparametric and

nonparametric alternative models. The test is based on the regression

coefficient of the restricted model residuals on the fitted values of the more

general model. A goodness-of-fit interpretation is shown for the regression

coefficient, and the test is based on the squared "t-statistic" of the

coefficient estimate, where the variance of the coefficient has been adjusted

for the use of nonparametric estimators. An asymptotic theory is given for

the situation where kernel estimators are used to estimate unknown regression

functions, and the variance adjustment terms are given for this case. The

methods are applied to the empirical problem of characterizing environmental

effects on housing prices in the Boston Housing Data, where a partial index

model is found to be preferable to a standard log-linear equation, yet not

rejected against general nonparametric regression. Various issues in the

asymptotic theory and other features of the test are discussed.





A REGRESSION TEST OF SEMIPARAMETRIC INDEX MODEL SPECIFICATION

by Diego Rodriguez and Thomas M. Stoker

1. Introduction

The purpose of this paper is to propose and illustrate a straightforward

specification test for index models. The test can be used to judge the

empirical adequacy of parametric index models; such as a linear model or a

probit model, against more general semiparametric or nonparametric models.

Alternatively, the test can be used to judge the restrictions of a

semiparametric partial index model, against more general semiparametric or

nonparametric alternatives. As such, the test is intended as a diagnostic

tool to be used in conjunction with empirical estimation of index models. We

illustrate the methodology in a study of the index structure of pollution

effects in the Boston Housing Data.

The test is based on the bivariate OLS coefficient of the residuals from

the restricted model regressed on the fitted values from the general model.

The test statistic is the square of the "t-statistic", or the ratio of the

slope coefficient to its estimated standard error; which is compared to a

2 (1) critical value. The value of the coefficient has a "goodness-of-fit"

interpretation, as the percentage of variation of the general model that is

not accounted for by the restricted model; and the restricted model is

rejected when the coefficient is significantly different from zero.

Our proposal amounts to a completely standard test of a zero coefficient

value, with one important proviso. In particular, the estimate of the

standard error of the coefficient must be adjusted for the use of estimates

(of parameters and functions) in both the restricted model and the general

model.

The test is similar in spirit to the test of a linear model against



nonparametric alternatives proposed by Wooldridge (1992) and Yatchew

(1992), and related work by Hong and White (1991, 1993), Ellison and

Fisher-Ellison (1992), Horowitz and HArdle (1992) and Eubank and Spiegelman

(1990), among others. In line with the discussion of Hong and White (1991),

this work is related to tests of moment restrictions as in Bierens (1990) and

Lewbel (1991).

Our approach differs from the earlier proposals in that a wide range of

restricted and general models are allowed, and that our test is based on an

adjustment of the familiar "t-statistic." Our development of the limiting

statistical theory of the test is based on index models, although similar

tests could be devised for situations where the restricted and general models

are nested in a particular fashion that we discuss below. We give the

standard error adjustment terms that arise when kernel estimation methods are

used to estimate unknown functions and index model coefficients. From Newey

(1991), it is natural to conjecture that the asymptotic theory for the test

will be the same when other kinds of nonparametric estimators are used, but

the relevant adjustments would need to be derived.1

The exposition proceeds as follows. We begin with a brief layout of the

models and the test in Section 2. Section 3 applies the test in an analysis

of pollution effects on housing prices using the Boston Housing Data of

Harrison and Rubinfeld (1978a, 1978b). Section 4 gives asymptotic

approximation theory for the test statistic, as well as discussing

implementation details and technical issues. Section 5 contains some

concluding remarks.



2. Basic Layout

2.1 Basic Framework and Index Models

The empirical setting we consider is an analysis of data (Yi,xi), i -

1,...,N, which is assumed to be an i.i.d. random sample, where yi is a

response of interest and x. is a k-vector of predictor variables. For the

statistical theory of Section 4, we assume that x is continuously distributed

with density f(x), where f(x) vanishes on the boundary of x values, and is

also first differentiable. We assume that the mean of y exists, and denote

the mean regression of y on x as m(x) - E(yjx).

Our interest is in testing index model restrictions on the structure of

m(x). To begin, m(x) is a single index model if there is a coefficient

vector P and a univariate function G such that

(2.1) m(x) - G(xT )

Familiar parametric models that are single index models include the standard

linear model; y - a + xT4 + e with E(eIx) - 0; giving

(2.2) m(x) - a + x P

Likewise included is the standard probit model for analyzing binary responses;

y - l[e < a + xT ] with e - N(0,1); giving

(2.3) m(x) - 4(a + x T)

with 4(.) the cumulative normal distribution function.

A semiparametric single index model is written as

(2.4) m(x) - Gl(x T)

which is in form (2.1), but GI is treated as an unknown, smooth univariate



function. Estimation of (2.4) involves estimation of the coefficients P and

the univariate function GI(.). A semiparametric partial index model is based

on

(2.5) m(x) - G2 (x1 T 1 ,x2)

where x - (x1,x2) is a partition of x into a k-k2 vector xl, and a k2 vector

x2 , and G2 is an unknown, smooth function of k2 + 1 arguments. This form is

useful if the impacts of some variables, here x2, require more flexible

treatment than permitted by the single index model (2.4). Our test is

applicable to testing a restricted index model (for instance (2.4)), against a

more general index model (for instance (2.5)).2

At the extreme end of generality, we consider the nonparametric

regression model

(2.6) m(x) - g(x)

where g(x) is an unknown smooth function of k arguments. Failure to reject a

proper index model against the general nonparametric regression constitutes

practical acceptance of the index model restrictions. Likewise, failure to

reject a parametric index model against the nonparametric regression

constitutes practical acceptance of the parametric regression restrictions.

Our empirical and theoretical analysis employs kernel estimators for

unknown functions in semiparametric and nonparametric regression models, and

(kernel) average derivative estimators for index model coefficients.3 The

latter refer to using an instrumental variables estimator of the vector 6 -

E(m'), where m' - am/8x. For model (2.4), the coefficients P are proportional

to 6, so we normalize the model by replacing P by 6, as in

(2.7) m(x) - Gl(xT 6)



redefining G1 to reflect the scale normalization. As such, 6 is estimated
A

directly (giving 6, say), and then G1 is estimated by kernel regression of y

T^
on x 6.

Likewise, for the partial index model (2.5), we have that 1 is

proportional to the k - k2 subvector 61 of 6 (those components associated with

Xl) , and so we normalize (2.5) as

(2.8) m(x) - G2 (x1 61,x 2)

A A A A

We denote estimators using hats; 6, Gi, G2 , g, etc. One attractive feature of

the index model framework is that a single consistent estimate of the average

derivative vector 6 can be used to estimate the relevant coefficients in

single and partial index models as in (2.7) and (2.8).

We give the formulae for the kernel estimators used in Section 4.1. For

clarity of the main theme, we now give a quick introduction to the ideas of

the specification test, and follow it with an empirical application. We set

aside many of the required technical details, deferring them until Section 4.

2.2 Quick Start: The Test and Its Motivation

We introduce the test by considering the problem of testing a

(semiparametric) single index model against general (nonparametric) regression

structure. In particular, the null hypothesis is that the true regression

takes the restricted form

(2.9) m(x) - Gl(xT6)

The alternative is represented by

(2.10) m(x) - g(x)

where g(x) obeys the smoothness conditions given in Section 4.2. The



methods for applying the test with other restricted and alternative models

will be clear from considering this case. Using the data yi, x), i -

1,...,N, we assume that an estimator 6 of 6 is computed, that GI is estimated
A TA

by the kernel regression G1 of yi on xiT 6, and that g is estimated by the
A

kernel regression g of yi on x.. Following the results of HArdle and Stoker
^ A

(1989), these procedures imply the G (x 6) is a consistent (nonparametric)

estimator of E(y xT ) in general (i.e. with model (2.10)), so that when (2.9)
A TA T

is valid, G (x 6) is a consistent nonparametric estimator of G (x 6).

The test statistic is computed as follows: for each observation i, form

A 
TA

the residual from the restricted model yi - G(xi 6) and the fitted value from
A

the general model g(x.), and then perform the bivariate OLS regression

A TA A A A A

(2.11) Yi - G(x ) - a + g(x.) + ui, i -1,...N.

The test is based on the value of y; if large (indicating a significant

difference from zero), we reject the single index model against the general

regression; otherwise, we fail to reject.4 In particular, if an estimate of
A A

the asymptotic variance of 7 is denoted a , then the appropriate "t value" is

found as e

A

(2.12) t- _ fN / a

2 2 ^
Our test compares t to a X (1) critical value. We discuss the estimate a

below, following some basic motivation.
A

On broad grounds, basing a test on y is sensible because if (2.9) is the

true model, y - Gl(xT6) is uncorrelated with any function of x. Provided that
^ T
G1 (x 6) is an accurate estimator of 1 (x 6), then y - G Tx 6) should be

A

approximately uncorrelated with g(x), which is what is being checked. More
T T A AT

formally, suppose G(x 6) = E(yix 6) denotes the consistent limit of G1(x 6).



Consider the linear regression equation that holds if the true functions G and

g were known:

(2.13) y - G(xT6) - a + 7 g(x) + u

where the parameter 7 is defined via OLS projection, as

E([g(x)-E(g)][y - G(x 6)])
(2.14) ly- E[g(x)-E(g)]2

Here u is uncorrelated with g(x) by definition. Equation (2.11) is just the

sample analogue of the equation (2.13). Obviously, 7 - 0 when g(x) - G(xT 6),

reflecting the lack of correlation.

The value of 7 is also easy to characterize under the alternative, when

g(x) 0 G(xT6). In particular, from the law of iterated expectations, we have

that

(2.15) G(xT 6) - E[ylx 6] - E[g(x) x T6].

Consequently,

(2.16) g(x) - E[g(x) IxT6] + (g(x) - E[g(x) xT6])

- c(xT6) + U(x)

where U(x) - g(x) - E[g(x)x T6] has mean 0 conditional on xT6. Therefore

E[U(x) 2
(2.17) -y 2->0E[g(x)-E(g)]2 > 0

when g(x) differs from G(xT 6) on a set of positive probability. Therefore,

7 is the percentage of (structural) variance of the true regression not
A

accounted for by the restricted model. The statistic 7 is an empirical

measure of this "goodness of fit" value. The key feature of this motivation



is that the restricted regression is the expectation of the general

regression, conditional on the index argument(s) of the restricted model.

This "nesting" is easily verified for comparing semiparametric index models

(any coefficients in the general model must also be coefficients of the

restricted model), and is assured by using kernel estimators for unknown

functions and average derivative estimators for coefficients. 5

We now describe how we measure the variance of 7. If the parameters 6

and the functions G and g were known, then the variance of 7 would be

consistently measured by the standard (White) heteroskedasticity consistent

variance estimator. Our approach is to add adjustments to the standard term,
A A A A

to account for the presence of the estimates 6, G and g. In particular, a is

the sample variance of

1 A W A

(2.18) sg ([g(x.) - g] u. + rai - la.
g 1 1 1

where g and s^ are the sample average and sample variance of g(x.)
g A A A^ ^ Tlxir ^ ^(

respectively, and u. - y - G (x 6) - 7 [g(x) - g] is the estimated

residual. The term ra. is the adjustment for the estimation of g(xi)

(the "right-hand" function), and the term lai is the adjustment for the

estimation of G(x T6) (the "left-hand" function). These terms are spelled out

in Section 4 and Appendix 2. It should be noted that the standard (White)

variance statistic is constructed from (2.18) with ra(xi ) and la(xi) omitted.

With this motivation, we now turn to an empirical example.

3. Index Structure of the Boston Housing Data

We illustrate the test by studying the index structure of the Boston

Housing Data of Harrison and Rubinfeld (1978a,b). The focus of that study is

on measuring environmental effects on housing prices, for the purpose of

measuring the dollar-value benefits of lower air pollution levels, and their



method of analysis is to estimate a standard log-linear hedonic price

equation. All our nonparametric estimation uses kernel regression estimators,

and testing is performed on a "trimmed" sample, that omits the 5% of the

observations that displayed smallest estimated density values.

This data and the log-linear price equation has been extensively studied

elsewhere, for instance, in the work of Belsley, Kuh and Welsch (1980) on

regression diagnostics, among others. There is no particularly persuasive

theoretical reason for choosing the log-linear form for the housing price

equation; however, the amount of previous study of this equation makes it a

good base case.6 Our initial expectation was that our study of the index

structure of the data would give some confirmation to the log-linear model.

We adopt the definitions of the observed variables in Harrison and

Rubinfeld (1978a, 1978b). For notation, yi denotes the log of the price

of house i, and x. denotes the vector of nine predictor variables that

Harrison and Rubinfeld found to be statistically significant in their

analysis. The data consists of 506 observations on the variables depicted in

Table 3.1. As mentioned above, the earlier work produced a linear equation

between y and x; of the form

(3.1) y = In p - a + xTB +

The coefficients P summarize the proportional impacts of changes in x on

housing prices. Table 3.2 contains the OLS estimates of these coefficients.

Our interest is in studying whether the log-linear model, or a more

general index model, is a statistically adequate representation of the true

regression m(x) - E(ylx) of log-prices on the predictor variables. We begin

this by looking at a direct estimate of the average proportional impacts of

changes in x on housing prices, or the average derivative 6 - E[m'(x)]. When

the true model is linear as in (3.1), then m(x) - a + x T, with 6 - P.



Moreover, as discussed above, (the appropriate components of) the average

derivative 6 represent the coefficients in semiparametric index and partial

index models, so that our estimates can be used for coefficients of all such

index specifications. In any case, we can regard the vector 6 as giving

generalized values of typical effects of the predictors on log housing prices.

Our estimates are given in Table 3.2.8

We see that the basic difference between the OLS coefficient estimates
A A

P and the average derivative estimates 6 are minor. The Wald test that the

differences are zero is based on the statistic

A A T i A A

(3.2) W - N (6 - p) V6 (6 - 8)

A A

where VA A is the consistent estimator of the asymptotic variance of 6 - 4
6-8

given by the sample variance of its influence representation. Here W - 13.44,

which fails to reject for significance levels less that 15%.

The largest qualitative difference in the coefficient estimates occurs

for the coefficient of B, or the race effect. Because of the quadratic

construction of B, for communities with small percentages of black residents,

the OLS coefficient indicates a substantive negative race effect. The

average derivative estimates indicate negligible race effects. From the

consistency of average derivative estimates for coefficients of the single

index model

(3.3) m(x) - G1 (xT6)

the difference in the B coefficient could arise because of nonlinearity in the

function G1 (which is not permitted by the log-linear model that motivates the

OLS coefficients). We investigate this by computing and plotting the estimate

T^
of G1 obtained by nonparametric regression of yi on xi 6, shown in Figure 3.1.

This function appears as two lines with a shift (flat) in the center.



It seems that the negative race effect evidenced by the OLS coefficients

may have resulted from forcing these two line segments together, as done by

assuming that the overall model is linear.

To see whether this difference is statistically important, we apply our

regression test to the linear model versus the single index model. All of our
A

testing results are summarized in Table 3.3. Both the estimate 7 and the

"t-statistic" for testing the linear model against the single index model are

quite small, so the linear model is not rejected. Therefore, the linear model

(with the large race effect) and the single index model (with the negligible

race effect but nonlinear function G1 ) are statistically equivalent

descriptions. Choice between these models rests on which has the more

sensible interpretation; we would be inclined to use the single index model,

but this is a purely subjective choice.

To see whether the linear model and/or the single index model stand up to

further generalization, we compute the nonparametric regression of y on x,

fitting the "model"

(3.4) m(x) - g(x)

A

The nine-dimensional curve g(x) is difficult to plot and interpret, and so we

mainly use it as the base case for the specification testing.

Again from Table 3.3, we see that the regression test rejects both the

linear model and the single index model against the general regression. The

A

estimates 7 of the percentage of variance not accounted for by these models

relative to general regression are 17.1% and 23.1%, which are each

significantly different from zero.10 Therefore, the restrictions of the single

index model are too strong, and we must look further for a model that

adequately captures the systematic variation between log price y and

predictors x.



Our approach for this is to consider partial index models of increasing

generality. In particular, we begin by estimating partial index models with

one variable excluded from the index, so that the impact of the excluded

variable is treated flexibly. This is computationally simple, since the

average derivative estimates can be used as the coefficients for the variables

remaining in the index. At any rate, the best model emerging from "one

variable unconstrained" estimation is

(3.5) E(ylx) - G2 (x1 , X-1'6- 1)

where x-1 - (x2,...,x 9) is the vector of all characteristics except for x -

NOXSQ, the pollution variable, and 6_1 - (62,...,69) is the vector of average

derivatives of the characteristics in the index. The function G2 is a two

dimensional function, and permits a general impact of the pollution variable

x1 . In Table 3.3, we refer to this model as PARTIAL1.

We see that the single index model is rejected against model PARTIAL.
A

The graph of the function G2 in Figure 3.2 reveals some variation in the

pollution effect, that is not consistent with the single index model (the

"slices" of G2 for different values of x1 have varying shapes). The model

PARTIAL1 is rejected against the general regression, failing to account for an

estimated 7.2% of the variation of the general regression. As such, we

proceed to a next level of generalization, namely dropping two variables from

the index.

Here, we find that the best model treating two variables flexibly is

A

(3.6) E(ylx)- G3(y ,xx T6-19

which permits flexible effects of the pollution variable x1 - NOXSQ and the

"lower status" variable 9 LSTAT 11 The function G is a three dimensional"lower status" variable x9 - LSTAT. The function G 3 is a three dimensional



function, with the estimated model is referred to as PARTIAL2 in in Table 3.3

From Table 3.3, we see that the model PARTIAL2 gives a fairly
A

parsimonious statistical depiction of the data. In particular, the estimate 7

of the variation of the general regression not accounted for by PARTIAL2 is

1.16%, which is not significantly different from 0 at levels of significance

lower than 3%. We likewise note that each more restricted index model we

consider is rejected against PARTIAL2.

The three dimensional estimated function G of PARTIAL2 is somewhat
A A

more difficult to depict than G1 and G2 of the more restricted index models.
A

Partial depictions are given in Figure 3.3, by plotting G3 holding

x9 constant at its mean, the lower status variable, (Figure 3.3a), and by
A A

plotting G3 holding the partial index x 196 19 constant at its mean (Figure

3.3b). The clearest difference between this model and the more restricted

ones is the strong nonlinearity in the effect of xl the pollution variable,

over ranges of x9 , the lower status variable. In particular, the marginal

pollution effect is flat or slightly positive for high status communities (low

"lower status" values), and strongly negative for low status communities (high

"lower status" values. One interpretation of our testing results is that this

I nonlinearity is sufficiently strong to dictate a completely flexible treatment

of both pollution and lower status effects on housing prices.

We close out this discussion by pointing our the effects of the
A

nonparametric adjustments on the variances of the test coefficient -. In
A

Table 3.4, we include different estimates of the variance of 7 for the tests

summarized in Table 3.3. The first column gives the standard OLS variance

estimates, which neglect heteroskedasticity as well as the fact that estimated

parameters and functions are used. The second column gives the (White)

heteroskedasticity-consistent estimates, which likewise neglect that estimated

functions are employed. Finally, the third column gives the variance



estimates adjusted for the presence of estimated parameters and functions.

Except for the test of PARTIAL2 against general regression, the adjustments

for heteroskedasticity increase the variance estimates. In all cases, the

adjustment for the use of estimated coefficients and functions increase the

variance values. We will make reference to this feature when discussing

issues with the limiting distributional theory below.

4. Technical Analysis of the Test Statistics

In this section, we give the explicit formulation of the estimators and

test statistics, and summarize the theoretical results we have been

able to obtain. We focus on the cases where the restricted and general models

involve nonparametric estimation, and where kernel estimators are used for

unknown regression functions. In Section 4.3A, we indicate how it is easy to

incorporate cases where the restricted model is parametric.

We have introduced and applied our testing methodology in Sections 2 and

3, in order to motivate the value of a specification test as a tool for

studying the appropriate index model structure in empirical data. The

adjustments for nonparametric estimation that we have employed are based on

familiar logic of the "delta method" as applied to the structure of our test

statistic. We raise this now because our asymptotic theory for the test is

incomplete, in a fashion that is not immediate from the derivations themselves

- the standard asymptotic theory exhibits a singularity familiar from the

discussion of Wooldridge (1992) and Yatchew (1992). The practical

significance of this issue is that our critical values may not be tight enough

- rejections of restricted models are unaffected, but a failure to reject
A

could arise from our method overestimating the standard error of 7 (i.e. for

the Boston Housing Data, the model PARTIAL2 might still miss significant

structure of the general regression model). We discuss this feature in detail



after presenting the technical results.

Because the notation and the results become quite daunting in a hurry, it

is useful to describe what we show. Standard semiparametric and nonparametric

theory involves showing consistency and asymptotic normality under optimal

approximation conditions - namely as sample size increases, nonparametric

approximation parameters (here bandwidths) are adjusted optimally with sample

size. This theory addresses the approximation capability of the statistic

under study. We give a set of conditions under which 4-N (7 - 7) has a

limiting normal distribution under those guidelines. As with most asymptotic

theory, the derivation is based on isolating the leading terms of an

asymptotic expansion, to which central limit theory is applied to show
A

normality. Moreover, our method of estimating the variance of - consistently

estimates the variance of the relevant leading terms.

As it stands, this would give a traditional justification to our test.

The singularity problem arises from the behavior of the test statistic in the

limit of bandwidths approaching zero, when the restricted model equals the

general model. In this case, the leading terms that our variance estimator is

based on actually vanish, or that y converges to - - 0 at a rate faster than
A

T~N, with the limiting distribution of 7 based on the next higher order terms

in the expansion. At this time, we have not characterized these terms, to see

whether a higher order analysis produces a better variance estimate. We will

note how our results for the Boston Housing Data do not exhibit qualitative

features consistent with the singularity, and as such we have proposed the

method as it stands. At any rate, this issue appears to arise in most

specification tests involving nonparametric alternatives, and we will discuss

how other researchers have addressed the issue in the remarks following our

results.



4.1 Estimation Formulae

Each of our comparisons involve nested index models, for which we enhance

our notation as follows. Suppose that vector x of predictors is partitioned

into x - (x0 1 ,x0 2,x1 ). In line with our treatment above, the symbol G is

associated with the restricted model, and the symbol g is associated with the

general model, as follows. The restricted model states that the regression

m(x) - E(ylx) is determined by dl arguments z1 - (x01 T60 1+x02 602 ,x1 )

(x0 60,X1), namely that E(ylx) - E(Ylzl) = G(zl). The general model states

that the regression m(x) is determined by do arguments z0 - (x01T 601 ,x0 2 ,x1),

do > dI , namely that E(ylx) - E(Ylz 0 ) - g(z0 ). In the following, the notation

g' refers to the partial derivative of g(x0 1 601, 0 2,x1) with respect to its

index argument x01T601 , and G' is likewise the partial derivative of

G(x0T60 ,x1 ) with regard to its index argument x0T60

For estimating the density f(x) of x, we use the kernel density estimator

N
A -1x - x.

(4.1) f(x) - Nl hfk  E h-l

j-1 f

where hf is the bandwidth value and Xf is the kernel density that gives

weights for local averages. One use of this estimator is to trim the sample

for analysis, whereby we drop the observations with low estimated density. In
A A

particular, we drop observations with Ii - 1[f(xi) > b] - 0, where b is

a constant. The results of Section 3 had b set so that Ii - 0 for 5% of the

observations. Our asymptotic results likewise take b as a fixed constant.

To measure the average derivatives (and therefore all index model

coefficients), we use the "indirect IV" estimator of Stoker (1991,1992). This
A

estimator is based on the density estimator f(x) of (4.1) as follows. Form
A A A

the estimated "translation score" L(xi) - - f'(xi)/f(xi) for each observation

Ax.. Take 6 as the instrumental variables estimator of the coefficients of yi



A A

regressed on xi, using £(x )Ii as the instrumental variable. Specifically,

set

A A A A A

(4.2) 6 - [Zi t(xi)I. (xi - x) T] [i (x.)I. (Yi - Y)].

See Stoker (1992), among others, for explanation and motivation of this

estimator.

The asymptotic results only require that we have an estimator

60 - (601,602) of the coefficients that obeys

(4.3) 4-N(60 - 60) - N-1/2 C r60 (Yi,xi ) + o (1)

and therefore is 4f- asymptotically normal. Denote the subvector of r60

corresponding to 601 - 601 as r60 1. The components of the estimator (4.2)

have r60 (y,x) - m0'(x) - 60 + [y - m(x)]t0 (x), where mo' 8am/ax 0 , and t0 (x) -

- aln f/ax 0, as derived in HArdle and Stoker (1989) and Stoker (1991).

Nonparametric estimators of unknown regression functions are

summarized as follows. The function G of the restricted model is estimated by
^ ^ TA
G, the dl dimensional kernel regression of y on z1 - (x0 60 ,x1), using

kernel function X< and bandwidth hi, or

N ^

(4.4) G(z) - Fl(z) lN lh 1 h Yj

j-1 1

where

N 
A

(4.5) Fl(Z) - N"hd1 X1 h

A

The function g of the general model is estimated by g, the do dimensional
A sing kernel function

kernel regression of y on z0 - (x01T601 ,X0 2,x1 ), using kernel function X<0 and



bandwidth h0, or

N A

A-A1 -d o j(4. g(z) - FO(z)l N h0 d0 0 Y '

j-i hJ

where

N ^

(4.7) F0 (z) - N" d 0 0 X
j-i

While these formulae are daunting, they are directly computed from the

data, given bandwidth values and specifications of the kernel functions.1 2 The

same is true of the adjustment terms required for the variance of our

t-statistic. Because of their size, we give the formulae for these adjustment

terms in Appendix 2.

4.2 Summary of the Test and Asymptotic Results

We now formally introduce the test, in order to present the asymptotic

results as well as the ideas on which precision measurement is based. To keep

the presentation compact, subscript "i" denotes evaluation of relevant terms
A A

at (y,x) - (Yi,xi); for instance, gi denotes g evaluated at z0 i, Gi denotes G
A A A

evaluated at zli, and Ii is the trim indicator that is 1 if f(xi) > b, and 0

otherwise, as above.
A

With trimming incorporated, our test is based on the coefficient - of the

regression

A A A A A A A A

(4.8) (Yi - G.)I. a Ii + 7 gil + u

Letting



1 A 
2  A A

(4.9) S - N1 1 (gi g ) li; g - N Z gili

A A A

denote the sample variance and mean of g.I., we have that the coefficient y is

^ 1 A A A A

(4.10) " -- N N (gi - g)(y. - G.)I
S

^

g

In line with of the discussion of Section 2, this regression procedure

amounts to fitting a sample analog of the equation

(4.11) (Yi - Gi)I -=7 [gi - E(gI)]I. + u.

where the parameter I is defined via OLS projection as

E([g-E(gI)][y - G]I)
(4.12) - 2

E([g-E(gl)] 2I)

Consequently, I is the percentage of variation of g not accounted for by G,

over the untrimmed part of the population. Moreover, I - 0 if and

only if g - G a.s. for x such that f(x) > b.

We require the following basic assumptions

Assumption 1: The fourth moments of (y,x) exist.

Assumption 2R: For F0 the density of z0, we have that E(y4 1z0 )F0 (z0) and F

are bounded, (g - G)I is continuously bounded a.e., and [g - G]FO and

F0 are continuously differentiable of order P0 > do*

Assumption 2L: For Fl the density of z1 , we have that E(y
4 1z)F((zl) and F1

are bounded, GI is continuously bounded a.e., and GF1 and

F1 are continuously differentiable of order P1 > dl"



Assumption 3R: The kernel (0 has bounded support, is Lipschitz, f X0(u) du -
131, and is of order P0 > d 13

Assumption 3L: The kernel X1 has bounded support, is Lipschitz, f x 1(u) du -

1, and is of order P1 > dl"

Assumption 4: For f the density of x, fI is continuously bounded a.e., f

is continuously differentiable of order Pf > k. The kernel Xf has

bounded support, f J(f(u) du - 1, and is of order Pf > k.

A

Our approach to characterizing the limiting distribution of 7 is to

establish the following decomposition:

(4.13) 4 N(- 7) - 4-N( - 7) + RAN - LAN + o ()

where 7 is the "estimator" based on known functions;

1
(4.14) - - N N [gi - E(gI)](y.i - Gi)I

g

with

(4.15) S - I N- [gi - E(gI)]21i

2
an estimator of the (trimmed) variance ao - E([g - E(gI)]I) . The remaining

g

terms are the adjustments for using estimates on both sides of the regression

equation: first,



1

(4.16) RAN" N-/2 N(gi - gi)(Yi - Gi)IX
a
g

is the adjustment for nonparametric estimation of the "right hand side", or

predictor variable, and second,

1 A

(4.17) LAN - N- /2  (Gi - G i)[g - E(gI)]li
a
g

is the adjustment for nonparametric estimation of the "Left-hand-side", or

dependent variable, of the original regression. Standard limit theory applies

to the "estimator" 7 of (4.14); with u = (y - G)I - y[g - E(gI)], we have that

1
(4.18) )T-N( -y) - N'/2 [gi - E(g)]uili + o (1)

a
g

so our conditions imply that - is asymptotically normal.

Therefore, the characterization of the limiting distribution of -

requires studying the adjustment terms, and establishing (4.13). The

adjustment terms are characterized in two lemmas that follow from results of

Newey (1992):

Lemma R: Given Assumptions 1, 2R and 3R suppose (a) N - ®, h 0  0;

2d 2P

(b) Nh0  /(ln N) 4 c and (c) Nh0  + 0. Let

rgi - [gi - Gi](yi - gi)i

rRi rgi + B0 r60(yixi)II

where B0 - [B0 1 ,0] and

B01 - E(g'[E[(y-G)x01z0]I - (g-G)IE[x0 1zl] + (g'-G')I[E[yx0Izl] - gIE[x 0jz l]).

Then we have that



RAN - NI/Z Z rRi + o (1)
- -

(In the case where do - k, where g(x) - E(ylx) involves no estimated

coefficients, we set B0 - 0.)

Lemma L: Given Assumptions 1, 2L and 3L, suppose (a) N ÷4 o, h0 4 0;

2d 2P
(b) Nhl /(ln N) - o and (c) Nh1  - 0. Let

rGi - [Gi - E(y)](Yi - G i )I.

rLi - rGi + B1 r60(Yi,xi)I.

where B1 - E(G' [E[(y+g)x0 zl] - 2 G E[x0 zl]). Then we have that

LAN - N"- / 2  rLi + o (l)
a P

The relation (4.13) is then shown as part of the proof of the Theorem 1.

Theorem 1: Suppose that Assumptions 1, 2R, 2L, 3R, 3L and 4 are valid, and

assume the bandwidth conditions of Lemmae R and L. Suppose further that

2k
(a) N 4 c, hf 0; Nhf /(In N) - * and Nhf

k 2d0  k 2dD
÷ ®, (c) Nhf hO /(n N) ÷ *, (d) Nhf hi

d 2d
Nh0 h1 /(In N) - ®. Define

2P k d d
2 0, (b) Nhf h 0 h0 

1/(ln N)3

i/(ln N)3 - * and (d)

DA



ri7 " [gi - E(gI)lu.I. + rRi - rLi

- [gi - E(gI)]u.Ii + [gi - Gi](Yi - gi) - [Gi - E(y)](y. - G.)

+ [B0 - B1 ]r6 0(YiXi)

We then have that

A 1
N-1 / 2  r ri + o ()

g

^ 
-2

so that -N(7 - 7) a N(0,o ), where a - a Var (r .). Further, the
-y7 7 g Tiy"

A

estimator a given in Appendix 2 is a consistent estimator of a .

A

Consequently, Theorem 1 gives conditions under which 7 is asymptotically

normal, with the squared "t-statistic" having a limiting x 2(1) distribution.

4.3 Related Remarks

A. Testing Parametric Regression Models

When the restricted regression model is parametric, as with our tests of

the linear model in Section 3, the test is modified in a straightforward way.

In particular, suppose that the restricted model is m(x) - r(x,4 ), and

that we wish to test it against a general nonparametric regression, m(x) -

g(x) above. Suppose further that we have a 4iN asymptotically normal estimator
A

B of the parameters of the restricted model, wherein

(4.19) 4-N( - ) - N-1/ 2  r (yi,xi) + 0 (1)

A

(where 4 - plim P if the restricted model is not true).

The specification test is applicable as above, namely by computing the
A

OLS regression coefficient 7 of



A A A A A

(4.20) Y, - F(xi',) - a + - g(xi) + ui  , i - 1...,N.

Testing is based on whether 7 - 0, which is likewise tested by the square of

the "t-statistic." The only complication (actually simplification) is that
A A

the asymptotic variance of 7 must reflect the fact that the estimator 8 is

used. The only change to the above development is that the "left" adjustment

only contains the influence of 8, with the "right" adjustment left unaffected.

In particular, here we have

1 A

(4.21) LAN - N-1 /2 [r(xi,) - r(xi,)][g i - E(gl)]I i.

g

This term is analyzed in an entirely standard fashion, namely we have

1 A

(4.22) LAN - E(Ir(xi' i)/a8 [gi E(gl)]Ii) -N(8 - 8) + o ((1)
a P

g

If r (Yi,xi) is a (uniformly) consistent estimator of the influence r (Yi,xi),

then the relevant estimate for the influence term of the left hand

adjustment is

1 A A R A A

(4.23) la- (N ar(xi ,8)/a8 [gi - g]Ii) r (Yi'Xi)

A

We then estimate the asymptotic variance of y by the sample variance of

(2.18). This method was applied for the test statistics involving the linear

model of Section 3.

B. Issues of Practical Implementation

As is now standard, our asymptotic results above have assumed the use of

higher order kernels for nonparametric estimation. It is also well known



that such kernels, with giving positive and negative local weighting, do not

often give good estimator performance in small samples. Consequently, for

our estimation of Section 3, we have used positive kernels throughout. In

particular, each kernel function is the product of biweight kernels: for

estimation of a d dimensional function, we used

(4.24) X(ul, ....,ud) - H k(u )

where k(u.) is given as

(4.25) k(u) - (~ (1- u2)2 1[ul 1]

We have likewise used these kernel functions in the variance adjustment

formulae.

Since there is no developed theory for optimal bandwidth choice for the

purpose of our specification test, we chose bandwidth values using Generalized

Cross Validation (GCV) of Craven and Wahba (1979). For instance, to estimate

the general regression m(x), let Y denote the vector of observations (yi) and
A

Mh denote the vector of values (m(xi)) computed with bandwidth h. Consider

the weight matrix Wh defined from

(4.26) Mh - WhY

The GCV bandwidth is the value of h that minimizes

N 1 (I . Wh)YI2
(4.27) -I 2

[N Tr(I - Wh)]

We also standardized the predictor data for the nonparametric estimation.
14

This method of bandwidth choice was used for simplicity. However, it is

unlikely that this method applied in increasingly large samples will give the

bandwidth conditions of Theorem 1 above. In particular, those conditions



require pointwise bias to vanish faster than pointwise variance, which is not

implied by GCV bandwidths chosen for each sample size.

As indicated above, we have incorporated the trimming indicator, dropping

the 5% of data values with lowest estimated density values. In practical

terms, this drops observations with isolated predictor values, such as remote

outliers. Moreover, since the regression estimators involve dividing by

estimated density, dropping observations with small estimated density likely

avoids erratic behavior in the nonparametric estimates.

4.4 The Singularity Issue

The singularity issue that we alluded to at the beginning of this section

is evident from Theorem 1. In particular, under the limiting bandwidth

conditions of the theorem and under the null hypothesis that G - g a.e., we

have that the influence function r . - 0 for all i. Under those provisos,
A A

with 7 - 0 in that case, we have that 4i(7 - 7) - o (1), of that 7 converges

to the true value 7 - 0 at a rate faster than 4-N. This is not true under any

circumstance where G o g for a set of x's of positive probability, nor is it

true if the limiting theory did not take the bandwidths closer to 0 in an

optimal fashion with increases in sample size N.

Since we have departed from the conditions of Theorem 1 for our

application, by using positive kernels (positive local weighting), one might

wonder how relevant the singular y problem is. We can look at one feature of

our results, by noting how the singularity arises. In particular, the leading

(White) terms of the influence given in Theorem 1 (or their sample analogue,

the first term of (2.18)) have variance, and the singularity means that the

nonparametric adjustments actually cancel this variation, so that the overall

influence terms vanish. In Table 3.4, we see that the adjustments for

nonparametric estimation actually increase the estimated variances, which is



the opposite of what we would expect (under the null) if our variance

estimator were estimating 0. For instance, this is the case with our test of

PARTIAL2 versus general regression, where if the singularity were important,
A

our estimate of 7 - .0116 would be more precise (higher t-statistic) than we

have displayed. While these observations don't prove anything, they suggest
A

that the standard leading terms of 7 - 7 may not have negligible variance in

our application.

Another way of looking at the singularity is to consider varying the

conditions of Theorem 1 in a way that might lead to a more accurate
A

distributional approximation for 7. Since we have used positive kernels, and

higher order kernels are a technical device for increasing the order of bias,
A

we might ask how the approximate distribution of y would look if the bias were

explicitly recognized. One of the authors has recently studied finite sample

bias issues on the basis of approximation for large N but where the bandwidth

parameters are not decreased with sample size (Stoker 1993a, 1993b). This

kind of approximation is not without controversy (N treated as large but

bandwidths as fixed), but it does shed light on our method of estimating the

A

variance of 7, so we discuss it for a moment. In particular, we formulate the

nonparametric adjustment terms on the basis of the variation of the (U
A

statistic) structure of 7, and nothing in this demonstration uses higher order

kernels. Suppose that we are testing a single index model E(ylx) - G(x T6)

versus general regression E(ylx) - g(x). Suppose that conditional on the
A A A A

values of the bandwidths used, the limits of 6, Gl , g and I are denoted with

overbars as 3, Gl, g and I. Further define

E([g-E(gi)][y - 6 1 (x T6 )]I)
(4.28) - 2

E([g-E(gi)] I)



While we have not provided a formal proof, the proof of Theorem 1 suggests
A

that we can conjecture with positive kernels that 1) 4N (7 - 7) 4 N(0,o );
A

where a > 0 when bandwidths are nonzero, and 2) a is a consistent estimator

of a . Given that this conjecture is verified, it would give some validation

for our method of estimating variance and setting critical values. However,

it also shows the difficulty of including bias - namely 7 is the regression

coefficient of the test using the (potentially biased) functions g and G.

There is a practical sense in which one must take the nonparametric estimates

of unknown functions as the best representation of the true regressions, but

if the biases are severe and systematic in an unfortunate way, we could be

verifying g(x) - Gl(x T) a.e. without the corresponding equality among the

true functions. Even under the controversial position that a better

distributional approximation might result from holding bandwidths fixed in the

theory, we do not have a totally satisfactory answer.

Other authors, notably Wooldridge (1992) and Yatchew (1992), have made

different proposals in light of the singularity. Wooldridge develops a theory

involving "asymptotic poor fitting" of the general nonparametric regression,

whose analogue here would be to use a bandwidth sequence for the general

regression that shrinks more slowly than under the conditions of Theorem 1.

Yatchew proposes sample splitting, wherein nonparametric estimation is done

with half (say) of the sample and specification testing is done using the

other half. Other artificial methods could be proposed, such as adding random

noise to the y data (after estimating computing the nonparametric estimates),

but these artificial methods may avoid but do not address the basic issue.

Finally, within the context of the standard theory, one could do

estimation with the proper higher order kernels, and characterize the higher

order terms that represent the variation in the test statistic under the

nonparametric approximation theory. Some recent unpublished work has made



progress in this direction. Horowitz and HArdle (1993) consider testing a

parametric model against a nonparametric alternative using an approach similar

to ours, focusing on a part of a regression statistic for which the higher

order terms can be successfully characterized. Hong and White (1993) develop

some general theory toward characterizing the higher order terms, although we

have not succeeded in verifying their convergence conditions for our test.

Such verification would permit solving for the higher order terms, and our

method of estimating variance could be assessed relative to alternatives.

5. Conclusion

In this paper we have presented a simple specification test for assessing

the appropriate index model in an empirical application. The index model

framework gives a generalization of linear models that may be informative for

applications where there are no theoretical reasons for specifying a

particular functional form. Our application to measuring environmental

effects from housing prices had this feature, and we have tried to illustrate

how index models can give an enhanced depiction of the data relationships

relative to standard linear modeling. We have used our test to check to the

adequacy of a parametric (linear) model versus nonparametric regression, and

it seems natural that the testing approach will be useful for other (nested)

testing problems.

We have focused on the use of nonparametric kernel estimators. While the

adjustment terms listed in Section 2 involve large formulae, they are computed

directly from the data and do not involve more complicated computation than

required for the kernel estimators themselves. We also have developed a

standard asymptotic theory for using kernel estimators; but from the results

of Newey (1991), it is natural to conjecture that the same distributional

results would be obtained when other nonparametric estimators are used, such



as truncated polynomials or other series expansions. We have raised the

singularity issue for tests using nonparametric estimators, and discuss

various ways our basic method might be further studied or justified.

We do want to stress one feature of our method that we find appealing

relative to alternative testing proposals. In particular, focusing on the

single coefficient 7 is valuable because of its goodness of fit

interpretation. The cost of this was a fairly complicated technical analysis,

such as the formulation of the adjustments required to account for

nonparametric estimation. But in our view, the value of focusing on an

interpretable statistic is the immediate practical sense it gives for which

models "fit" the data and which do not. For instance, the model PARTIAL2

accounts for an estimated 1-7 - .9884 of the variation of the general

regression, which is strong support for the notion that the model PARTIAL2

captures the systematic features of the the log housing price regression in

the Boston Housing Data, especially relative to the more restricted models.

As such, we feel our method is more appealing on practical grounds than

specification tests that just take on an uninterpretable "accept or reject"

posture, without giving further information.



Appendix i: Proofs of Results

The structure of the terms that adjust for estimated functions and

parameters are quite similar, so we present generic results which specialize

to Lemmas L and R above. For this section, refine the notation slightly for

any partial index model: suppose that x is partitioned as x - (x0,x1 ), with xl

a d-l vector, d < k, and z denotes the the d vector of predictors for a

partial index model, namely z - (x0 60, x1 ). Thus, the notation can range

from the case of a single index model, where d - 1 and z - xT6, to the general

regression case where d - k, where without loss of generality we set z - x

(and ignore the adjustment term for the estimation of 60 below).

Further, let x2 denote a k - d subvector of x0, where the remaining

component of x0 has a positive coefficient 61. The transformation

(z,x2) - r(x)

is linear and nonsingular with (constant) Jacobian 61, so that the Jacobian of
-1

r7 is 1/61. Below, we need to consider several functions of x as functions

of (z,x2). To keep this compact, we use a "*" to signify this simply: for

a function a(y,x), we have

* -1
a (y,z,x2 ) - a(y,r (z,x2))

We will mention this explicitly when necessary for clarity.

We will focus on adjustment terms that arise from the estimation of the

regression function M(z) - E(ylz). Recall that the marginal density of x is

f(x), and the joint density of y and x is q(ylx)f(x). The regression of y on

z is written explicitly as

M(z)'- C(z)/F(z)



where C(z) is

C(z) - 611 yq*(z,x2)f (zx2) dx2  61-1 m (z,x2)f* (z,x2) dx2

and F(z) is the marginal distribution of z; namely

F(z) - 61- 1 f*(z,x 2 ) dx2 *

All the adjustment terms that we consider are based on kernel estimation
A A

T thof M(z) - E(yJz). Let z - (x0Oi T, xli) denote the i observation of the

predictor based on estimated index coefficients, and zi - (x T60, x ) denote

the analogous vector based on the true coefficient values. The kernel
A A

estimator used in estimation is M(z), computed using zi, yi, namely

A A A

M(z) - C(z)/F(z)

where

N ^

C(z) - N 1lh d X( I yj

j-1

where X is a kernel function, h is a bandwidth parameter that must be set for

estimation, and

N ^

F(z) - N-lh-d z

j-1

Finally we will need to make reference to the kernel estimator that would be

computed if the coefficients 60 were known, namely

h(z) - C(z)/F(z)

where



N
C(z) - N-lh-d (hi Yj

j-1

and

N

F(z) - N lh- d

j-1

z -i z.
h

Each adjustment term takes the following form:

-1/2 A A
(A.1) A - N [M(zi) - M(zi) ] a(Yi,xi) I.

where a(y,x) has mean 0 and finite variance. We first split this

into variation due to the estimation of 60, and due to the estimation of M:

A - A6 + AM

where

A6 -N" /2 [M(zi) - (zi)] a(yi,xi) I

AM - N-1/2 [R(z ) - M(z )] a(y,x ) I

Again, recall that for k - d, we set A - 0.

First, consider the adjustment for nonparametric estimation, or AM. This

is analyzed by linearizing M in terms of its numerator and denominator,

analyzing its U-statistic structure to show asymptotic normality, and

analyzing its bias separately, along the lines of HArdle and Stoker (1989).

Fortunately, some recent unifying theory is applicable. Let

4(z) - E[a(y,x)Ilz] .



Begin with the following generic assumption:

Assumption Al: We assume that

1) E(y 4 ) < C,

2) E(y 4z)F(z) and F(z) are bounded,

3) E[a(y,x) 2] < 0

4) The kernel X has bounded support, is Lipschitz, J X(u) du - 1,

and is of order P > d.

5) 4(z)F(z) and F(z) are continuously differentiable of order at

least P,

6) There exists a compact set 9 such that 4(z) - 0

for z e Rd/d

7) A(z) is continuously bounded a.e.

The adjustment for nonparametric estimation, AM, is characterized by applying

Theorem 3.4 of Newey (1992).

Lemma 1: Given Assumption Al, if Nh2d/(ln N) 4 c and N h2 P 4 0, then

AM - N-1 / 2 1 rAMi + Op(1),

where rAMi - A(zi) [Yi - M(zi)], and AM 4 N[O, E(rAMirAMiT ].

The adjustment for using estimated coefficients is characterized directly

as follows. Recall that

A

rN(60 - 60) - N"-2  r60(Yi,xi) + o (1)

Let



B - E( aM/az l (z)[E(axOlz) - 4(z)E(xolz)] + 84/az l(z)[E(yx0 lz) - M(z)E(x0olz)])

then we have

Lemma 2: Given Assumption Al, if Nh d+2/(ln N) 4 m and h 4 0, then

A

Ad -B M (60 - 60) + o (1),

- N-1/ 2  2 r6 0 (i,x i) + Op (1)

Proof: Denote the kernel regression as a function of x. and 6 as2.

H (xi; 6 )

( { -x )o x i-xJ

h h
js .I\-1 "0'~T XIX 1

1 (x 0-x )T 6
-S (xi; 6) E x o o ;

j-1

N

j-l

T

01 x li j)h h

Xlixxi 
Yj 1

By the Mean Value Theorem, we have that

A

A6 - (N 1 1 [8M+(x ;6i)/86] a(yi,x i ) I i fi(600 - 60

A

where .i, i-l,,..,N lies on the line segment between 60 and 60.

BN N-1 [aM+(x;i i)/86] a(yi,xi) Ii

and we can characterize plim BN B S, then we will have

A

A B6 3 4-N(S 0 - 80) + O(1)

Therefore, if

We have

r __



-N i x x T
M+ (xi;6)/860 - S(xi;6) - x0i-x0j) 6 li-• j

j- h h h Y

N T

- M+(xi;6) SX(xi; 6 ) 1 x ~ i-x Oj (x0ix0j) 6 xi-

j- h h h

- x0i (M+)1'(Xi;6 )

N 1 i-x o XoX)T o Xlj-x

- h h h o j
j-1

(x1 ( x .- ) 6 x .-x
+ M+(xi ; 6 ) SX(xi;6) -1 X, h I' h1j x0

h h h

where " ' " denotes differentiation with regard to the index, or first

argument. Under our conditions, as h 4 0 and 6 - 60, these terms estimate

aM(xi;6)/860 - Xoi M1'(Z i )  [F(z )]l [8[E(xY lZ i )F(z )]/8z

+ M~z)[F( -1+ M(zi)[F(zi)]l [a[E(x0 lZ)F(zi)]/az1 ]

X- oi M'(Zi) - [El'(xoYlzi) - M(zi)El'(xOlzi)
]

-[E(xYlzi) - M(zi)E(xolZi)][F(zi)]-1Fl'(z i)

Since x can be regarded as bounded because of

trimming on small positive density, then uniform convergence follows as in

d+2 A

Newey (1992), since Nh /(ln N) - * as h - 0 and 60 - 60 - o (1). Therefore

S - E(a(y,x)[x 0 Ml'(z) - [E1 '(x 0 ylz) - 'z)E,1'(x0Iz)]

- [E(xoylz) - M(z)E(xoljz •F(z)]- Fl'(z)])

- E( M1'(z)[E(axo[z) -4(z)E(x0lz)]



+ 41 '(z)[E(yxol0 z) - M(z)E(xolz)])

giving the characterization of A6 above. QED

Consequently, we conclude that

Lemma 3: If Nh2d/(ln N) - m and N h2 P 4 0, then

A - 4-Ni(6 0 - 60) + N-1 / 2  rAMi + o (1),

Ap- N" I / 2 C B r6(YiXi) + N" I / 2 X rAMi + o (1)- N "I / 2  rAi + op (1)

where rAi - B r6 (yi,x.) + rAM

Applying Theorem 1 to RAN and LAN yields Lemmae R and L.

Estimation of asymptotic variance is accomplished by using an estimate of

the influence terms for the adjustment factors, with the consistency of this

procedure verified by an argument similar to that in HArdle and Stoker (1989).

With regard to the generic adjustment term (A.1), the matrix B is consistently
A

estimated by evaluating the expression for BN above at 6 and the bandwidth

used for estimation. The influence term rAMi is estimated from the

U-statistic structure of AM, which would be used in a direct proof of Lemma 1

above. In particular, we have that

AM - N 1/ 2 [U1 - U 2 ] + o (l)

where



-1 N N
- N2 Plij

i-i j-i+1

with

1 -d z. - z. (a(yi,x.)y.I. a(y.,x )y Ip " 1/2 h- d  X 3 'xi ) i + 1j

h F(zi) F(zj)

and

-1 N N

2 2 N P2ij
i-i j-i+l

where

-d z " - z a(yi'x )M(zi )I a(y.,x )M(z,)I.
P2ij 1/2 hd  X h + F )

h F(zi) F(zj)

A A A A A A

If plij and P2ij denote the above expressions evaluated at 6, M, F, I and the

bandwidth used for estimation, then the influence term rAMi is estimated
A A A A

by rAMi - N j (Plij _ P2ij ) i'  Carrying out these manipulations for

the "right" adjustment RAN and and the "left" adjustment LAN give the

estimators presented in Appendix 2.

Therefore, the remainder of the proof of Theorem 1 rests on the validity

of

A

S(7 - )- RAN - LAN + o (1)

This equation is demonstrated by verifying two features: namely that trimming

with regard to the estimated density gives the same results as trimming with

regard to the true density; and that the equation can be linearized into the

adjustment terms above.
A

The first piece requires showing that the estimated trimming index I. -



A

l[f(xi) > b] can be replaced by I. - l[f(xi) > b] in the terms

-1 A /2 A A

NI/2 (gi g)(Yi Gi)i

1 2A

N (gi - g) I.

that comprise 7, without affecting their asymptotic distribution. This

feature follows from a term-by-term analysis which we highlight below. In

particular, we have that

-1 A A A A A

N-/2 (i i -G)(I - ) - 1/2 i - gi)(yi - G(i(Ii-Ii)

A A A A A

- N-1/2 gi " gi(Gi-G i)(li 'i) - N- 1/2 (gi- E(gl))(Gi -G )(i -i)

-1/2 A A

+ N (g- E(gI))(G -G )(l i-I i )

and

S A 2A (A 2 A 2 A
N- 1 gi g) i- i) N  gi gi) Ii-i ) + N (g - E(gl)) (Ii- )

+ N-1 (g -1 E(gl))2 ( i') - 2 N-1 (g- E(gl))(g i - E(gl))(li-Ii )

A A A ̂ A

- 2N- •1 (gi - gi)(gi - E(gl))(li-I ) + 2 N "  (gi gi ) (g - E(gl))(I -i)

Each of the terms in these expression can be shown to be o (1) by a similar

method, which we outline as follows. Begin by noting that that our

A

assumptions implies uniform convergence of f(x) to f(x) (when f(x) > e > 0),

so that with high probability
A

f(x) - cN < f(x) < f(x) + cN

where cN - 0b [(Nhfk/1n N)-1/2], a constant. If - l[b-cN < f(x) < b+cN],



note that
A A 2 k -1/2

Prob( I - I nonzero) - E[(I - I)2  5 E(I) - ' [(Nhf k/n N)/2
S 2

Further, let NI - (Ii - li) denote the number of nonzero terms in each of

the terms above.

To illustrate how the terms are analyzed, consider the first term of

the first expression, for which we have

-A A

N 1E[X (gi - gi)(Yi - Gi)(I--i )]2

A A A

* N [Prob(I-I nonzero)] (sup Igi-gil) 2 [ (yi- Gi i - )I/N ] + 0 (1)

k -1/2- -1/2 3/2S0O[ N (Nhk /In i n (Nh0 /1n N) " 1] - O([N hfhd 0 ] (ln N) ]

- o(l)

given our bandwidth conditions. Similarly, the third term of the second

expression is

-2 2 A 2 2 2 A 2
N E[X(g i - E(gI)) i- 2  - (N /N)2 E[(g i - E(gI)) (I -I)/N I]2

- O[(Nhf k/n N) - ] - o(l)

and so forth. All the other terms are treated similarly.

Finally, with trimming based on the true density, the linearization is

shown by uniformity arguments analogous to those used above. Denote the

sample variance based on trimming with the true density as
1 ^A 2

S A N (g - g) I2. It is easy to show that plim SA a g, so
gI gI



A A ^ A
N ( - ) - A N- /2 (Z (gi g)(Yi G )I [gi - E(g)](yi - Gi)I)

+ 9 N12 [g. - E(g)](y. - G)I.1
S Sg

g gI

11 N-1/ 2  (Z i A A G A

___ -N- G)I - [gi - E(g)](yi - Gi)Ii]

+ o (1)

so we focus on the overall adjustment term

ADJN - N- /2 (gi g)(Yi - Gi)I

Some tedious arithmetic gives that

ADJ - N'/2 ~( - gi)(Yi - Gi)I. - N1/ 2 Z [g - E(g)](G. - G i)I

-T1N + T2n + T3N

where

T1N - [g - E(g)] N- /2 E (yi - Gi)Ii

A 
AT32N - N'-/2 [(g - E(g) (G - G) Z I

T3N I N X (g, - g,)(Gi - Gi)Ii

N'I/2 
(gi " g)(Yi " Gi)li

- [gi - E(g)](Yi - Gi)li)



Moreover, by the methods used above, if is easy to verify that each T is

o (1). For instance, for T3N, we have

S- N1/2 
- G

IT3NI - N/2 sup(I(g i - gi)IiI) sup(I(Gi - Gi)lij)

- [N-1/2 h -d0/2 -d1/2 (in N)] - o p(1)

d dd
since Nh0 h1 /(ln N) 2  co. The other terms follow similarly. Thus, we

have that

ADJN - R - LA + o(1)

which completes the proof of the Theorem. QED



Appendix 2: Variance Adjustment Terms

Recall that we use subscript "i" to compactly denote evaluation of

relevant terms at (y,x) - (Yi,xi); for instance, gi denotes g evaluated at
A A A A

z i G. denotes G evaluated at z li, and I. is the trim indicator
i 1 1 i

that is 1 if f(xi ) > b, and 0 otherwise, as above.

To account for the estimation of 6 (or a subvector), we use the

"slope" influence estimator discussed in Stoker (1992), namely

A 1 -T

r 6 (Yi,x) - [N .• .I. (x - x) T

A • N N x - x. x. - x. 1.v
.I.. + N-1 -kX f 1 J t

f / f' h hf f

j-1 f f j

A^ T^
where v. - (y -y) - (x-x) 6 is an estimated residual. The asymptotic

A1

covariance matrix of 6 is estimated as the sample variance of r 6(i,xi).

The adjustment terms are given as follows. The "right-hand" adjustment

is

A A A

rai rgi + B0 r60 (Yi,x i )

A A

where r601 refers to the subvector of r60 corresponding to the coefficients of

the more general (right hand) regression function, and where

rgi

N ^ ^ ^ ^ A ^

-d X z oi - oi (Yzi G y (y - G )YiI

h O 0 0 +
h F Fojj-1 0 01 Oj

A A A A A A

z0i - z0) (Yi -i)giI i + - G )g I
0(O ho FOi  F

0 01 Oj

43



A

Recall B0 - 0 if m does not have an index variable as an argument, otherwise

B -0 N D0 (yi - G.) Iwhere X denotes the derivative1 i

where J( denotes the derivative of 10 with regard to its index argument, and0

A 
-SDO - SOx (x i )

N T(x
x0 ix j (x 0) ; Xlih x l j

j-1 h0 ho hi0

N T
A x x -x ) 6 x -x

- gi Sx (x.)0-1 0 Oj 0T Oj XliXlj

j-1 h0 h0  h0

0 .0) 8 i lj

SOX(x i ) - [ 0 X il
h0 h0

Finally, the "left hand" adjustment is

A A A

la - r .Gi + B r601(yix )i G 1 801(yi x1

where

A

rGi

N AA A A A A

-d z - z (g - g)y i (g g)- I
Sh1dl ~1 -1^ + g

h F Flj
j-1 1 li 1

A A A A A A A A A A A A

1i - z (gi - g)G(z I i - g)G(z )I
hi  ) Fi Fij

1li

S 1•  A A A A

B1 - D1  i - g) I1

and where X1' denotes the derivative of X1 with regard to its index argument



N T
S- i hx . ( ( x h ) x ix01 0Oi j 1 1i

j-1 1 h 1 h 1 )J

N r T x
N x -x oix )T  x l-x-i

• i S (x.i) h E x°x°Jh hh'
j -1 1 h hi

S I(x i ) -
N (x -x 0 T x -x

Lii x0hT Xli Xlj
j-1 h1 h

With these assignments, the asymptotic variance of y is estimated as the
A

sample covariance a of

A A A ^ ^

r i - s^ ([g ra - la. )I
S g i 3 i i

and so the variance of 7 is estimated by a /N.

A -i

D - S Ix(x i )



Notes

We focus on kernel estimators in line with our application, but not because

their analysis is necessarily easier than with other estimators. In

particular, Newey (1992) develops some prerequisite theory for polynomial

estimators of index coefficients (average derivatives), which would provide

the initial foundation for tests based on polynomial estimation of the

restricted and general models.

We could likewise apply our test using other kinds of index models as

either the restricted model (null) or the general model (alternative), such

as the multiple index model m(x) - G(xl T ,x2 2 ). The key requirement for

our development is that the restricted model is nested in the more general

model, as discussed later.

See Hardle (1991) for a thorough development of nonparametric regression

estimation and Stoker (1992) for a discussion of average derivatives, kernel

estimation and the connection to index models. This choice of estimation

method has some attractive features, such as permitting two-stage estimation

of index models (estimate coefficients, then estimate unknown functions) as

described below. However, there are many alternatives methods, such as

estimation of the coefficients and unknown functions simultaneously by least

squares. Stoker (1992) gives references to many of the proposals for

estimating index models.

We include the constant term to permit minor differences in the mean of the

fitted values of the restricted and general models.



This "goodness of fit" interpretation may not apply for parametric

model - semiparametric model comparisons where different estimation methods

are used for the restricted and unrestricted models. For example, when the

null hypothesis is a linear model, the mean of y conditional on the index xT8

will be nonlinear under general alternatives, so that the relevant analog of

(2.15) will not hold. Also, for considering other semiparametric methods of

estimating index models, the nesting implied in (2.15) is what is necessary

for 7 to have the goodness of fit interpretation; one could always base a test

on 7 - 0, but the nesting is required to assert that 7 o 0 when the general

model captures structure that the restricted model misses.

6 We have written a companion paper, Rodriguez and Stoker (1993), that

discusses various issues of using hedonic price equations, as well as gives a

detailed graphical analysis of the partial index model PARTIAL2, the

"final model" that results from the specification testing.

We do not take account of the jointness of the hypotheses to be tested. It

would be useful to develop Bonferoni critical values or a Scheffe S-method for

the tests involved with characterizing index structure.

8 These are "indirect IV" estimates in the terminology of Stoker (1992).

Details on estimation are discussed in Section 4.

9 Strictly speaking, this is a test of the equality of the average derivative

6 - E(m') and the limit of the OLS coefficient 8 - [Var(x)]- Cov(x,y), which

must coincide when the model is linear.



10 Two observations are warranted on the fact that the log-linear model appears

. to explain more structural variation than the single index model (17% versus

23% unexplained structural variation. First, there is nothing in the
A

estimation than constrains y to be lower in this case. Second, in practical

terms, the fitted OLS equation may not well approximate the nesting condition

T^ T
(2.15); we likely don't have that E[g(x)lx ] A x T.

LSTAT is the log of the percentage of adults without a high school education

who are employed.

12 The specifications used in Section 3 are discussed in Section 4.3 below.

13 A kernel X is of order P if If (u)du - 1, and "moments" f nu. X R(u)du - 0
a.

when a. < P < ; f lu. X(u)du o 0 when - P.

14 The relevant bandwidth values were found via a grid search. They are as

follows: (1) for the density estimate used for average derivatives and for

trimming, and for the general kernel regression, h - 1, (2) for the

univariate regression G1 of the single index model, h - .04, (3) for the

bivariate regression of PARTIAL1, h - .07, and (4) for the trivariate

regression of PARTIAL2, h - .10.



References

Belsley, D.A., E. Kuh and R.E. Welsch (1980), Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity, New York,
Wiley.

Bierens, H.J. (1990), "A Consistent Conditional Moment Test of Functional
Form," Econometrica, 58, 1443-1458.

Craven, P. and G. Wahba (1979), "Smoothing Noisy Data With Spline Functions:
Estimating the Correct Degree of Smoothing by the Method of Generalized
Cross-Validation," Numerische Mathematik, 31, 377-403.

Eubank, R. and C. Spiegelman (1990), "Testing the Goodness of Fit of a linear
model via Nonparametric Regression Techniques," Journal of the American
Statistical Association, 85, 387-392.

Ellison, G. and S. Fisher-Elison (1992), "A Simple Framework for Nonparametric
Specification Testing," draft, December, NBER.

Hardle, W. (1991), Applied Nonparametric Regression, Cambridge, Cambridge
University Press, Econometric Society Monographs.

HArdle, W. and Stoker, T.M.(1989), "Investigating Smooth Multiple Regression
by the Method of Average Derivatives," Journal of the American
Statistical Association, 84, 986-995.

Harrison, D. and D.L. Rubinfeld, (1978a), "Hedonic Housing Prices and the
Demand for Clean Air," Journal of Environmental Economics and
Management, 5, 81-102.

Harrison, D. and D.L. Rubinfeld, (1978b), "The Distribution of Benefits from
Improvements in Urban Air Quality, Journal of Environmental Economics and
Management, 5, 313-332.

Hong, Y. and H. White (1991), "Consistent Specification Testing via
Nonparametric Regression," draft, Department of Economics, University of
California at San Diego, December.

Hong, Y. and H. White (1993), "M-Testing Using Finite and Infinite Dimensional
Parameter Estimators," draft, Department of Economics, University of
California at San Diego, January.

Horowitz, J.L. and W. HArdle (1992), "Testing a Parametric Model Against a
Semiparametric Alternative," Department of Economics Working Paper No.
92-06, University of Iowa.

Lewbel, A. (1992), "Consistent Tests of Nonparametric Regression and Density
Restrictions," draft, Department of Economics, Brandeis University.

Newey, W.K. (1991), "The Asymptotic Variance of Semiparametric Estimators,"
Working Paper No. 583, Department of Economics, MIT, revised July.



Newey, W.K. (1992), "Kernel Estimation of Partial Means and a General Variance
Estimator," draft, Department of Economics, MIT, January.

Rodriguez, D. and T.M. Stoker (1993), "Semiparametric Measurement of
Environmental Effects," MIT CEEPR Working Paper, June.

Stoker, T.M. (1991), "Equivalence of Direct, Indirect and Slope Estimators of
Average Derivatives," in Nonparametric and Semiparametric Methods in
Econometrics and Statistics, Barnett, W.A., J.L. Powell and G.Tauchen,
eds., Cambridge University Press.

Stoker, T.M. (1992), Lectures on Semiparametric Econometrics, CORE Foundation,
Louvain-la-Neuve.

Stoker, T.M. (1993a), "Smoothing Bias in Density Derivative Estimation,"
forthcoming Journal of the American Statistical Association.

Stoker, T.M. (1993b), "Smoothing Bias in the Measurement of Marginal Effects,"
MIT Sloan School of Management Working Paper, revised January.

Wooldridge, J. (1992), "A Test for Functional Form Against Nonparametric
Alternatives," Econometric Theory, 8, 452-475.

Yatchew, A.J. (1988), "Nonparametric Regression Test Based on Least Squares,"
Econometric Theory, 8, 452-475.



TABLE 3.1: VARIABLE SPECIFICATION IN THE BOSTON HOUSING DATA

y - In p LMV log of home value

x1 NOXSQ nitrogen oxide concentration

x2  CRIM crime rate

x3  RMSQ number of rooms squared

x4  DIS distance to employment centers

x5  RAD accessibility to radial highways

x6  TAX tax rate

x7  PTRATIO pupil teacher ratio

x8  B (Bk - .63) 2, where Bk is proportion of black

residents in neighborhood

x9 LSTAT log of proportion of residents of lower status



TABLE 3.2: COEFFICIENT ESTIMATES FOR THE HOUSING PRICE EQUATION

y - In p

-.0175

(.0152)

-.0526

(7.514)

- . 2583

(.0370)

(Standard Errors in Parentheses)

WALD TEST OF 6 - #: W - 13.44,

LMV

Average

Derivatives
A

6

-.0034

(.0035)

-.0256

(.0056)

.0106

(.0025)

-.0746

(.0504)

.0669

(.0468)

-.0009

(.0003)

NOXSQ

CRIM

RMSQ

DIS

RAD

TAX

PTRATIO

LSTAT

OLS
A

-.0060

(.0011)

-.0120

(.0012)

.0068

(.0012)

-.1995

(.0265)

.0977

(.0183)

-.00045

(.00011)

-.0320

(.0047)

.3770

(.1033)

- . 3650

(.0225)

Prob{ X2(9) > 13.44 ) - .143



TABLE 3.3: REGRESSION TESTS OF FUNCTIONAL FORM

TESTS AGAINST GENERAL REGRESSION

Restricted

LINEAR

INDEX

PARTIAL1

PARTIAL2

Unrestricted

GENERAL

GENERAL

GENERAL

GENERAL

A

.1712

.2314

.0718

.0116

t value Prob [X 2(1) > t2

3.41

5.96

4.52

2.19

.0006

0.0

0.0

.0291

PARTIAL INDEX MODEL TESTS

Restricted

LINEAR

LINEAR

INDEX

PARTIAL1

Unrestricted

INDEX

PARTIAL2

PARTIALl

PARTIAL2

A

-y

.0276

.1862

.1975

.0893

2 t2t value Prob [x (1) >t ]

.52

4.51

4.59

3.72

.602

0.0

0.0

.0002



TABLE 3.4: ADJUSTED AND UNADJUSTED STANDARD ERROR ESTIMATES

TESTS AGAINST GENERAL REGRESSION

Restricted

LINEAR

INDEX

PARTIALl

PARTIAL2

Unrestricted

GENERAL

GENERAL

GENERAL

GENERAL

.1712

.2314

.0718

.0116

Standard
OLS

.0211

.0224

.0131

.0053

Hetero.
Consist.
(White)

.0268

.0311

.0149

.0047

Corrected
for NP

Estimation

.0500

.0388

.0157

.0053

PARTIAL INDEX MODEL TESTS

Restricted

LINEAR

LINEAR

INDEX

PARTIALl

Unrestricted

INDEX

PARTIAL2

PARTIALl

PARTIAL2

-f

.0276

.1862

.1975

.0893

Hetero.
Standard Consist.

OLS (White)

.0252

.0186

.0232

.0122

.0279

.0255

.0301

.0146

Corrected
for NP

Estimation

.0530

.0413

.043

.0240
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