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Abstract

We apply nonparametric regression models to estimation of demand curves of the type

most often used in applied research. From the demand curve estimators we derive

estimates of exact consumers surplus and deadweight loss, that are the most widely used

welfare and economic efficiency measures in areas of economics such as public finance.

We also develop tests of the symmetry and downward sloping properties of compensated

demand. We work out asymptotic normal sampling theory for kernel and series

nonparametric estimators, as well as for the parametric case.

The paper includes an application to gasoline demand. Empirical questions of

interest here are the shape of the demand curve and the average magnitude of welfare loss

from a tax on gasoline. In this application we compare parametric and nonparametric

estimates of the demand curve, calculate exact and approximate measures of consumers

surplus and deadweight loss, and give standard error estimates. We also analyze the

sensitivity of the welfare measures to components of nonparametric regression estimators

such as the number of terms in a series approximation.
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1. Introduction

Nonparametric estimation of regression models has gained wide attention in the past

few years in econometrics. Nonparametric models are characterized by a very large

numbers of parameters. Often they may be difficult to interpret, and their usefulness in

applied research has been demonstrated in a limited number of cases. We apply

nonparametric regression models to estimation of demand curves of the type most often

used in applied research. After estimation of the demand curves, we will then derive

estimates of exact consumers surplus and deadweight loss which are the most widely used

welfare and economic efficiency measures in areas of economics such as public finance.

We also work out asymptotic normal sampling theory for the nonparametric case, as well as

the parametric case (where except in certain analytic cases the results are not known).

The paper includes an application to gasoline demand. Empirical questions of

interest here are the shape of the demand curve and the average magnitude of welfare loss

from a tax on gasoline. In this application we compare parametric and nonparametric

estimates of the demand curve, calculate exact and approximate measures of consumers

surplus and deadweight loss, and given estimates of standard errors. We also analyze the

sensitivity of the welfare measures to components of nonparametric regression estimators

such as window width and number of terms in a series approximation.

The definition of exact consumers surplus is based on the expenditure function:

1 0 r 1 r 0 r
CS(p ,p ,u ) = e(p ,u ) - e(p ,u ),

0 1 r
where p are initial prices, p are new prices, and u is the reference utility

level. The case r = 1 corresponds to the case we focus on here, equivalent variation:

1 0 11 0 1 0 1
EV(p ,p ,y) = e(p ,u ) - e(p ,u ) = y - e(p ,u ),

where y denotes income, fixed over the price change. It is also easy to carry out a



similar analysis for compensating variation.

The measure of exact deadweight loss (DWL) used corresponds to the idea of the loss

in consumers surplus from imposition of a tax less the compensated tax revenues raised,

under the implicit assumption that they are returned to the consumer in a lump sum

manner. See Auerbach (1985) for a discussion of the various definitions of deadweight

loss (also called the excess burden of taxation). Here we use the Diamond-McFadden

1 o
(1974) definition of deadweight loss where p - p is the vector of taxes. Then, for

equivalent variation the definition of exact DWL is:

DWL(p ,p O,y) = EV(p ,p ,y) - (p1-pO)'h(p1 ,ul) = y - e(p ,u ) - (p -p )'q(pl,y),

where h(p,u) is the compensated, or Hicksian, demand function and q(p,y) is the

Marshallian (market) demand function. Thus, to estimate exact consumers surplus or exact

DWL it is necessary to estimate the expenditure function and the compensated function

demand which are related by the equation,

ae(p,u)/ap. = h.(p,u). (Shephard's Lemma).
J J

The expenditure function and compensated demand curve are estimated from observable data

on the market, or Marshallian, demand curve, q (p,y).

Various approximations have been proposed for estimation of the exact welfare

measures. Willig (1976) demonstrated that the Marshallian measure of consumers surplus

is often close to the exact measures, and he derived bounds as a function of the income

share. Various authors have also recommended higher order Taylor-type approximations to

the exact welfare measures. Limitations of the approximation approach are that they do

not yield measures of precision given that they are based on estimated coefficients in

most cases and the approximations may do poorly in some situations which are difficult to

specify a priori. Deaton (1986) discusses these problems in more detail. Also, Hausman

(1981) demonstrated that while the approximations may often do well for the consumers



surplus measure, they often do very poorly in measurement of DWL; Small and Rosen (1981)

also demonstrated a similar proposition in the discrete choice situation.

Two approaches have been proposed to estimation of the exact welfare measures from

estimation of ordinary demand functions. Hausman (1981) demonstrated that for many

widely used single equation demand specifications, the necessarily differential equation

could be integrated to derive the expenditure function and also the compensated demand

function. He was also able to derive the sampling distribution for the measures of

consumers surplus and DWL, given the distribution of the estimated demand coefficients.

Vartia (1983), instead of using an analytic solution to the differential equations,

proposed a variety of numerical algorithms which estimate consumers surplus and DWL to

any desired degree of accuracy. While the Vartia approach can be applied to a wider

range of situations, no correct sampling distribution has been derived for the estimated

welfare measures, although some approximate results are given in Hayes and Porter-Hudak

(1986).

Both the Hausman approach and the Vartia approach can be applied to multiple price

changes and are path independent for the true demand function. The various approximation

approaches do not share the path independence property which can lead to perplexing

computational results and has led to much theoretical misunderstanding in the appropriate

literature. Here, we consider nonparametric estimation via an unrestricted estimator

that uses some, but not all the implications of path independence. Our approach allows

us to test path independence, i.e. symmetry of compensated demands, and impose further

implications of path independence to construct more efficient estimators.

The Hausman and Vartia approaches begin with Roy's identity which links the ordinary

demand function with the indirect utility function:

qj(p,y) = -8(v(p,y)/8pj ]/1v(p,y)/8y],

where v(p,y) is the indirect utility function. The partial differential equation from



this equation can be solved along an indifference curve for a unique solution so long as

the initial values are differentiable. Let p(t) denote a price path with p(O) = po

and p(1) = p , and let y(t) be compensated income, satisfying V(p(t),y(t)) = V(p ,y).

Differentiating with respect to y gives

[aV(p(t),y(t))/ap]' ap(t)/at + [aV(p(t),y(t))/ay]8y(t)/at = 0.

Hausman notes that this equation can be converted into an ordinary differential equation

by use of the implicit function theorem and Roy's identity. Let S(t,y) = y - e(p(t),u )

1
denote the equivalent variation for a price change from p(t) to p . Then, since

compensated income is y - S(t,y),

(1.1) aS(t,y)/at = -q(p(t), y-S(t,y))'8p(t)/at, S(l,y) = 0.

Alternatively, this equation follows immediately from Shephard's Lemma and the definition

of S(t,y). Hausman solves this equation for some widely used demand curves. The

solution gives both the expenditure function and indirect utility function, while the

right-hand side of this equation gives the compensated demands.

Vartia's numerical solutions to the differential equation also arise from equation

(1.1). To solve it Vartia uses a numerical method of Collatz. He orders ts = 1 - s/N,

(s = 0,..., N), and defines S iteratively by

S(t s+) = S(t s) - .5[q(p(t s+),y-S(ts+ ) ) + q(p(t s),Y-S(t s))]' [P(t s+)-p(t s)]

This algorithm consists of averaging the demand at the last price and the current price

and multiply this average by the change in price. By the envelope theorem, the product

of the price change times the quantity equals the additional income required to remain on

the same indifference curve. Intuitively, dy = q*dp, where y is updated at each step of

the process, rather than holding y constant which the Marshallian approximation to

consumer surplus does. One can also use alternative numerical algorithms to solve



equation (1.1), that may lead to faster methods. We use an Buerlisch-Stoer algorithm

from Numerical Recipes that does not require solution to the implicit equation in

Vartia's algorithm, has a faster (quintic) convergence rate that Vartia's (cubic), and in

our empirical example leads to small estimated errors with few demand evaluations.

The possible shortcoming of all applications to date of both the Hausman approach

and the Vartia approach is that the parametric form of the demand function is required.

In most applied situations, the exact parametric specification of the demand curve (up to

unknown parameters) will not be known. Thus, commonly used demand curve specifications

may well lead to inconsistent estimates of the welfare measures if the demand curve is

misspecified. This problem is potentially quite important, especially in the case of

measuring deadweight loss which depends on "second order" properties of the demand curve.

See Hausman (1981) for a discussion of the second order properties and their effect on

estimates of the deadweight loss.

Varian (1982 a,b,c) has proposed an alternative approach based on the revealed

preference ideas of Samuelson (1948) and Afriat (1967, 1973) which is nonparametric, but

is only able to estimate upper and lower bounds on the welfare measures. Varian's

nonparametric approximation approach is very interesting, but it often yields rather wide

bounds, because many price observations per individual are required for tight bounds.

Furthermore, use of sampling distributions to measure the precision of the estimates is

problematical. Here, we use a nonparametric cross-section demand analysis analysis,

imposing enough homogeneity across individuals and smoothness of the demand function that

we can estimated it by nonparametric regression. We construct point estimates of exact

consumers surplus and DWL as well as precision estimates of the welfare measures. The

sensitivity of the welfare measure to the amount of smoothing used in the nonparametric

regression can be analyzed straightforwardly.



2. Estimation

Our estimator of consumer surplus is obtained by solving equation (1.1) numerically

with q(p,y) replaced by an estimator obtained from nonparametric regression. We will

also allow covariates w to enter the demand function q(p,y,w). In our empirical work

these covariates are region and time dummies. In other contexts they might be

demographic variables. We will try to minimize the dimension of this nonparametric

function by restricting w to enter in a parametric way. Let T(g) denote a one-to-one

function with range equal to the nonnegative orthant of k such as T(g) = e , x a

one-to-one function of (p,y), and let T(x) denote a "trimming" function, to be

further discussed below. We will assume that the true value of the demand function is

given by

(2.1) q0 (p,y,w) = T(g 0 (x,w)), g0 (x,w) = r0 (x) + w', 0,

T-(q) = g0 (x,w) + c, E[cIx] = 0, EIT(x)wc'] = 0.

where q denotes observed quantity and the expectations are taken over the distribution

of a single observation from the data. We assume here that a numeraire good has been

excluded from q, so that k is the number of goods, minus one.

Thus, the true demand function is assumed to be a function of a partially linear

specification for the regression of T-1 (q) on p, y, and w. A corresponding

estimator of the demand function will be q(p,y,w) = T(g(x,w)) = T(r(x)+w' g), where g

is an estimator of go, such as the kernel or series estimator discussed below. We

estimate exact consumer surplus nonparametrically by substituting q(p,y,w) for q(p,y)

1This specification does not restrict the joint distribution of the data, unlike previous
work on partially linear models (e.g. Robinson, 1988), where E[c p,y,w] = 0 is imposed.
A precise description of g0 (x,w), for nonnegative t, is as the mean-square projection

of E[qlx,w] on functions of the form r(x) + w'1B for the probability distribution
Pr (4) = E[r(x)l(C)]/Pr(4), where 1(*) denotes the indicator function.T



in equation (1.1) and solving numerically. The empirical results reported in this

version of the paper set w equal to its sample mean and T(x) = I.

A kernel estimator is a locally weighted average that can be described as follows.

Let X(v) be a kernel function, where v has k+l elements, satisfying 'X(v)dv = 1

and other regularity conditions discussed below, h > 0 a bandwidth parameter, and

Kh(v) = h-k-IX(v/h). Also, let the data be denoted by z 1, ... , z n , where z includes

q, y, w, and possibly other variables. For a matrix function B(z), a kernel estimator

of E[B(z) Ix] is

E[B(z)Ix] = Ejn B(z.)Kh (x-x)/ KlK (h(X-X.).

To estimate the partially linear specification in equation (2.1), we "partial out" the

coefficients of w in a way analogous to that in Robinson (1988). The estimator of g

is

(2.2) g(x,w) = r(x) + w' , r(x) = E[T- (q)Ix] - E[wlxl'wx ,

= [ T.Ein (w-i[wlxi]) (w.-ti[wIx.]) ' ]-•iTir(wi-i[wlx.i)(T (qi)-l[T (q)Ixi.),
~ -i=1 1 1 i il 1 1 1 1

where r. = r(x.). A convenient kernel that we consider in the empirical work is
I I

(2.3) X(v) = C ( - v'v), v'v

O , otherwise

where the constant C is chosen so fX(v)dv = 1. This is a multivariate Epanechnikov

kernel. The asymptotic theory requires kernels with integrals over X(v) of certain

even powers of v equal to zero, that are often called "higher order," and are useful

for reducing asymptotic bias in kernel estimation. Therefore, we also consider in the

empirical work a kernel of the form

1 2  2 4 2 2 4
(2.3a) X(v) = 2)(12 - 6v - 6v2 + 5v + 10v1 2 + 5v2~(v1)~(V2 )(l2 6 1 2 1 + 1>+v 2)



for our one dimensional price (k = 1) application.

It is well known that the choice of bandwidth h can have important effects on

nonparametric regression. In the empirical work we consider a data based choice of h,

equal to a "plug-in" value that minimizes estimated asymptotic mean square error, and

also consider the sensitivity of the results to the choice of bandwidth. In the

empirical work we also allow the kernel to be data based in that we normalize by the

estimated variance of price and income, although the theory does not allow for data-based

bandwidth or kernel.

A series estimator is the predicted value from a regression of the log of gasoline

consumption on some approximating functions for p and y and on w. For x a

one-to-one, smooth transformation as above, let K(x) = Ik (1K(x),..., •KK(x)) denote a

matrix of functions of x, the idea being that r(x) is to be approximated by linear

combinations of WK(x). Let K(x,w) = ( K(x)',w')' and =

SK(xi.,wi)K(x.,w.)' 1-1 • K(x.,wi)T-l(qi) be the the coefficients from a

regreion o i on A series estimator of g with r(x) = 1 is
regression of T-1(q.) on #K(x.,w.). A series estimator of g with r(x) = 1 is

(2.4) g(x,w) = K (x,w)' K(x) + w' i

where 7 = ( Y', ,')' is partitioned conformably with K(x). This estimator can also be

interpreted as "partialling out" w, satisfying equation (2.2) with the kernel

conditional expectation estimator replaced by EIB(z) xl = BK(x)' B  where nB are the

coefficients of the least squares regression of B(z.) on KK(x.).
1 1

Two important types of approximating functions are power series and regression

splines. Power series are formed by choosing the elements of K(x) to be products of

powers of the individual components of x. Power series are easy to compute and have

good approximation rates for smooth functions, although they are sensitive to outliers

and local behavior of the approximation, and can be highly collinear. The collinearity

problem can be overcome to some extent by replacing the powers of individual components



with orthogonal polynomials, which does not effect the estimator but may lead to easier

computation. Regression splines are piecewise polynomials of order a with fixed join

points. For univariate x in [0,1] with evenly spaced knots (i.e. join points),

regression spline approximating functions are a jK(x) = xj -  (j = 1 ... , 4+1),

(x-(j-4-1)/[K-4]) , j a a+ 2, where (v)÷ = l(vkO)v . For multivariate x, a

regression spline can be formed from all cross-products of univariate splines in the

components of x. The spline approximation rate for very smooth functions is not as fast

as power series, but they are less sensitive to outliers. Unlike power series, the range

of x must be known in order to place the knots. In practice, such a known range could

be constructed by dropping from the data any observation where x is not in some known

range. Also, the power spline sequence above can be highly collinear, but this problem

can be alleviated by replacing them with their corresponding B-splines: e.g. see Powell

(1981).

Series estimators are sensitive to the numbers of terms in the approximation. In

the empirical work we choose the number of terms by cross-validation, and also try

different numbers of terms to see how the results are affected.

Returning now to estimation of consumer surplus, our estimator is constructed by

substituting the estimated demand function in equation (1.1) and integrating numerically.

0 1As in Section 1, let p(t) be a price path with p(O) = p and p(1) = p . Also, let

S(y,w,g) denote the solution to equation (1.1) with demand function q(p,y) = T(g(x,w)).

Then consumer surplus at particular income and covariate values y0  and w0

respectively, with a corresponding estimator, is

(2.5) SO = S(Y 0 ,w 0 ,g0 ), S = SY0'wO'g),

where g is a kernel, series, or other nonparametric estimator. A corresponding

deadweight loss value and associated estimator can be formed by subtracting the "tax

receipts," as in



(2.6) LO = S0 - (p'-p0 )'T(g(p.,yOw 0)), = S- (p -p )'T(g(p 'Y0 w 0 )).

A summary measure for consumer surplus can be obtained by averaging over income

values. In addition, it may sometimes be of interest to average over different prices,

to reflect the fact that individuals face different prices. To set up such an average

let u index price paths, so that p(t,u) is the price at t E [0,1] for price path

u, with initial and final prices p(O,u) and p(l,u) respectively. Also, let z

denote a single data observation that includes u and values y0  for income and w0

for covariates. For example, u, yO, and w0  might be drawn (simulated) from some

distribution, or y0  and w0  might be the actual observations. Let S(z,g) be the

solution to equation (1.1) for the price path p(u,t) at y0  and w 0 , with demand

q(p,y) = T(g(x,w)). The average surplus and deadweight loss we consider are weighted

means across z, of the form

-- 1 n n
(2.7) o = E[w(z)S(z,g )]/E[w(z)], = l E.ils(z.,g)/n, w 1= •i (z.)/n.

A0 = A0 - E[w(z){p(1,u)-p(0,u))'T(g 0 (P(l,u),Y0,w 0))I/E[w(z)l,

A = A - li=nlw(zi){p(l,ui)-p(o0,u)}' T(g(p(l,ui )y i'wOi))/n.

It is interesting to note that the consumer surplus estimator may converge faster

than the deadweight loss estimator. In particular, S is like an integral over one

dimension (the variable t in p(t)), and so has a faster convergence rate than L,

which depends on the value of g at a particular point. 2 Similarly, average consumer

surplus and deadweight loss may have different convergence rates. One important case

where their convergence rates will be the same, both being the parametric 1/Vr rate, is

2It is known from the work on semiparametric estimation that integrals or averages
converge faster than pointwise values, e.g. Powell, Stock, and Stoker (1989). The fact
that one-dimensional integrals converge faster than pointwise values has recently been
shown in Newey (1992a) for kernel estimators.



when the initial and final prices and income have sufficient variation. An example would

be that where the initial price for each individual is the price they actually faced, and

the tax rate is the same across individuals. In this case averaging will take place over

all the arguments of the nonparametric estimates, which is known from the semiparametric

estimation literature to result in rV-consistency (under appropriate regularity

conditions).

So far, our nonparametric consumer surplus estimators have ignored the residual c =

T- (q) - g0 (p,y,w). This approach is consistent with current practice in applied

econometrics, and is difficult to improve on without more information about the residual.

One can ignore the residual if it is all measurement error and not if it contains

individual heterogeneity. Hausman (1985) shows that it is possible to separate out

measurement error and heterogeneity in parametric, nonlinear models, but the amount of

heterogeneity is not identified in our nonparametric, linear in residual specification.

Even when c is all heterogeneity, it may be possible to interpret the demand function

as corresponding to a particular consumer type. Suppose that c = c(p,y,w,v) for some

function c(p,y,w,v) of prices, income, covariates and a taste variable v, where v

is independent of price and income. In general c(p,y,w,v) will depend on p and y,

as shown by Brown and Walker (1990).3 Nevertheless, if c(p,y,w,v) is identically zero

for some value of v then g(p,y,w) can be interpreted as the demand function for that

value of v (e.g. for c = o(p,y,w)v). In the rest of the paper we stay with the

specification of demand as T(g 0 (p,y,w)), corresponding to an interpretation of c as

measurement error or to evaluation at a particular consumer type.4

3 They showed that for T(q) = q the residual c must be functionally dependent on p
and y. Also, Brown has indicated to us in private communication that the same result is
true for T(q) = e .

4An alternative approach recently suggested by Brown and Newey (1992) is to average
consumer surplus over different consumer types, when c(p,y,w,v) is an estimable,
one-to-one function of v.



3. Asymptotic Variance Estimation

Under regularity conditions given in Section 6, all of the estimators will be

asymptotically normal. To be specific, let 6 denote any one of the estimators

previously presented. For a kernel estimator there will be V0  and a t 0 such that

(3.1) vr e( - e0) N(0, V0 )

The "full-average," V-consistent case corresponds to a = 0, while in other cases the

convergence rate for E will be l/(Vi~cx), which is slower than I/Vi by o -- ) 0. For

a series estimator there will be V such that
n

-1/2 d(3.2) Vi•nR ( - )  N(0, 1).
n 0

In the Vr-consistent case the series and kernel estimators will have the same asymptotic

variance, with Vn converging to V0  from equation (3.1). In other cases the two

estimators generally will not have the same asymptotic variance, and the series estimator

will satisfy the weaker property of equation (3.2), that does not specify a rate of

convergence. Exact convergence rates for series estimators are not yet known, except

for 4Vi-consistency, although it is possible to bound the convergence rate. Despite this

lack of a convergence rate, equation (3.2) can still be used for asymptotic inference.

For large sample inference, suppose that there is an estimator V of V in
n n

equation (3.2). If (V /V )1/2 p 1 then it follows by equation (3.2) (and the Slutzky
n n

theorem) that

_-1/2 d
(3.3) V / (6 -_0) , N(0, 1).

Consequently, a 1-x large sample confidence interval will be

(3.4) 6 /
or/2 n



where 4x/2 is the 1 - a/2 quantile of the standard normal distribution. One could

also use equation (3.4) to form large sample hypothesis tests.

To form large sample confidence intervals, as in equation (3.4), an estimator n

of V is needed. For kernel estimators, one method of forming 9 would be to derive
n n

a formula for V and then substitute estimators for unknown quantities to form -r Oa V .0

This procedure is not very feasible, because the asymptotic variances are quite

complicated, as described in Section 6. Instead we use an alternative method, from Newey

(1992a), that only requires knowing the form of E. For series estimators we also use a

method that just uses the form of 6.

The asymptotic variance estimators for kernel and series estimators have some common

features. In each case,

n -2
(3.5) V9 = Ei= i ./n,

where the estimates qni are constructed in the following way. Also, in each case, the

variance will be based on the form of the surplus estimator, as in

-1 n n
(3.6) 8 = -W • ia(z.,g)/n, w = Eilw(yi)/n,

where a(z,g) is a function of a single observation z and the partially linear

specification g = g(x,w) = r(x) + w' 3, g is the kernel or series estimator described

earlier, and w(y) is a weight function. The specification of a(z,g) and w(y)

corresponding to each case is

(3.7) 6 = S: a(zi,g) = S(y 0 ,w 0 ,g); w(y) = 1;

1 0 1
6 = L: a(z.,g) = S(y0,w,g) - (p-p )'T(g(p,y,w0));

E = g: a(z.,g) = w(yi)S(zi,g);
I 1 1

6 = X: a(z.,g) = w(yi.){S(z.,g) - [p(l,u.)-p(0,u.)]'T(g(p(l,u.),y.,w.))},
1 1 1 1 1



where g(p,y,w) denotes g(x,w) = r(x) + w'j8 evaluated at the x that is the image of

(p,y). For both kernel and series estimation, Oni will have two components, one of

which accounts for the variability of zi in a(zi,g) and w(yi), and the other for

the variability of g. The first component is the same for both kernel and series, so

that we can specify

(3.8)== wa(z.,g) - - i-([(y.) - ,ni 1 i 1 1 1

where an n subscript on i and is suppressed for notational convenience. Thei i
Az .th
i term is an asymptotic approximation to the influence on 8 of the i observation

in -in. a(z, The term g will account for the estimation of g. It can be

constructed from an asymptotic approximation to the influence on e of the ith

observation in g, taking a different form for kernel and series estimators.

For kernel estimators the idea for forming 0ni, developed in Newey (1992a), is to
.th

differentiate with respect to the ith observation in the kernel estimator. This

calculation amounts to a "delta-method" for kernels, and leads to an estimator that is

robust to heteroskedasticity and has the same form, no matter what the convergence rate

of 6 is. To describe the estimator, let a denote a scalar and

(3.9) h (x) = j=(T (q)-' Kh(x-x n, (x) = Kh

..= 8a(n = a(zj,{f + BK(*-x.))-lh + {(T- (q.)-wj)K (--x.) + w' )/n]/8MlI j 1  1 1 i i 1 6=0'

B = 8[j=na(z ,g )/nl/a8=~I,=  g (x,w) = I[T (q)-w' j 3x] + w'B3

= nL T.(w.- [w x.])(w.i-i[wI x. ] )/n,

. = w- . - nl A./n + Al• IT.(w.-i[wlx.i)(T- (q.)-(xi,w.))).
1 1 j=1 I I 1 1 11

thThe term A. in an asymptotic approximation to the influence of the i observation in

r(x) on the average of a(z .,g), while the second term in _ is a fairly standard
J I



delta-method term for estimation of g.

For series estimators the idea is to apply the "delta-method" as if the series

approximation were exact. This results in correct asymptotic inference because it

accounts properly for the variance, while the bias is small under appropriate regularity

conditions. To describe the estimator, let

(3.10) ( = 8(jn a(zjg. /nl/ l . I•, g (x,w) = K(x,w)' ,,

-1= 6 E • K(x.,w.)[T (qi) - g(x,w., = (xw K(x,w.)'/ n .

Here 9 is a standard "delta-method" term for ordinary least squares estimation of 7.

For either kernels or series, the main difficulty in computing Oý is calculating
I

the derivatives A. and 13 or 6 7. For each of the estimators described in Section

2, it is possible to derive analytical expressions for these derivatives, but the

expressions are so complicated as to make them almost useless for calculation. Instead,

these derivatives can be calculated by numerical differentiation. This calculation only

requires evaluation of inla(zi,g)/n for many different values of g, which is quite

feasible, particularly for series estimators.

A procedure analogous to that for the series estimator can be used to construct a

consistent asymptotic variance estimator for exact consumer surplus for any parametric

specification of the demand function. For a parametric specification, a(z,7) will

depend on the parameters 7 of the demand function. In this case =

a[in a(zi,7)/n]/a7•rr_~ can be calculated by numerical differentiation. Then, supposing

that 4V(~ - 70 ) = E.n1 'I?(z.)/V- + o (1) and that . is an estimator of %7 (z.), we
thatp and that

can form

(3.11) &i = Oi +

Asymptotic inference for parametrically estimated exact consumer surplus could then be

carried out as described above for Vn as in equation (3.4).n



4. Testing Consumer Demand Conditions

Tests of the downward slope and symmetry of Hicksian (compensated) demands provide

useful specification checks for consumer surplus estimates, and are of interest in their

own right as tests of consumer theory. Here we consider tests that are natural

by-products of consumer surplus estimation. An implication of symmetry is that consumer

surplus is independent of of the price path, which can be tested by comparing estimates

based on different price paths. The downward sloping property can be tested by comparing

the demand at the new price with compensated demand at the initial price, which is easily

computed from the consumer surplus estimate.

Path independence can be tested by comparing consumer surplus for the same income

and covariates but different price paths. To describe this test, let j index a price

path pJ(t), with p (0)i( lp and p( 1) = pl. Let S. denote the equivalent
J

variation estimator described above for the price path p (t), income yO, and

covariates w0 . An implication of symmetry of compensated demand is that all j, (j =

1, ... , J) should converge to the same limit. This implication can be tested by

comparing the different estimators. A simple way to construct this test is by minimum

chi-square. Let ^j denote the corresponding estimator from equation (3.7), and

-1 -ni i

Here Q2 is an estimator of the joint asymptotic variance of iH. Let e denote a J x I

vector of l's. Then the test statistic is given by

- = -l -1 ~-l-
(4.2) T = n(A - S.e)'•-(' s - J.*e), i = (e'W-le)-le'2 -l.

Under the symmetry hypothesis the asymptotic distribution of this test statistic will be

The estimator 
may be of interest in its own right B(J-).

The estimator S may be of interest in its own right. By the usual minimum



chi-square estimation theory, under symmetry of compensated demands it will be at least

as asymptotically efficient as any of the estimators S j, with an estimated asymptotic

variance matrix (e'6 le)- . This efficiency improvement leads to the question of an

efficiency bound. This question could be answered, in part, by deriving the optimal way

to average over all different price paths, a question outside the scope of this paper.

The downward slope of compensated demands can be tested by testing for nonnegativity

of (p -p )' [T(g0 (p, 0 ,WO0 )) - T(g0 (p ,Y0 -S(Y0 ,w 0 ,g 0 ),w 0 )] over several different prices,

0 1
incomes, and covariates. To describe this test, let pj, pj, Y0j, W0j' (j= 1, ... , J)

denote different values, let S. denote the corresponding equivalent variation

estimates, and

1i 1 0
(4.3) pj = (p - )' T((p ,y ) - T(pj,-Sj w j )), (j = 1, ... , J).

An implication of convexity of the expenditure function is that each of these estimators

should have a nonnegative limit. This hypothesis can be tested using an estimator of the

asymptotic variance matrix of e = (4 1 ... J)', that can be constructed via the

approach of Section 4. Let be as described in equation (3.7), for a(z,g) =

(p '-p )' (T(g(p .,yjw -T(g(p,y.j-S.(ywj.',g),wj0), w(z) = 1 and let C = 1i=1

( i ... 0 J)'(0 .... i)/n. Alternatively, if the income values yj 0  are mutually

distinct then the asymptotic covariances between the e. will be zero, so that

S= in d ia g ( ( 1)2  )2 )/n will suffice. The asymptotic approximation to the

distribution of 6 is then that 6 is normal with variance r6/n. Thus, the hypothesis

that the limit of e is a nonnegative vector can be tested by applying multivariate

tests of inequality restrictions developed in the statistics literature. A particularly

simple test would be to reject if min.{ A./i2..i) s k for some k. The size of this
J J JJ

test could be calculated by simulating the distribution of the minimum of vector of mean

zero normals with variance matrix equal to the correlation matrix implied by 0.

It is possible to combine these two types of tests, of symmetry and of downward



sloping compensated demand, into a single test of consumer demand theory, by "stacking"

S and 0 into a single vector (5',O'). The ' values could be stacked in the

corresponding way, and an estimator of the variance of (S' ,'' formed as the average

outer product of the stacked vector of $ values. Also, it would be possible to

consider versions of these tests based on the consumer surplus averages of equation

(2.7). Furthermore, it should be possible to give these tests some asymptotic power

against any alternative to demand theory by letting J grow with the sample size in such

a way that different price paths and income and covariate "cover" all values in their

support. These extensions are beyond the scope of this paper.

5. An Application to Gasoline Demand

To estimate the nonparametric and parametric demand functions for gasoline, we use

data from the U.S. Department of Energy. The first three waves of the data were

collected in the Residential Energy Consumption Survey conducted for the Energy

Information Agency of the Department of Energy. Surveys were conducted in 1979, 1980,

and 1981 at the household level. Gasoline consumption is kept by diary for each month;

in our analysis we use average household gallons consumed per month. The gasoline price

is the weighted average of purchase price over a month. Note that gasoline prices were

quite high during most of this period in the U.S. because of the second (Iranian) oil

shock. Gasoline prices averaged between $1.34-1.46 for these 3 years where we use 1983

$. Income is divided into 12 categories with the highest category being over $50,000 (in

1983 $). Here we used the conditional median for national household income above

$50,000. Lastly geographical information is given by 8 census regions. Average driving

patterns differ significantly across regions of the U.S.. The last three waves of data

were collected by the Energy Information Agency in the Residential Transportation Energy



Consumption Survey for the years 1983, 1985, and 1988. Price and income were collected

in the same manner as the earlier surveys. (The upper limit on income changed in the

surveys; however the technique used to estimate income in the top category remained the

same) Note that the (real) gasoline price in the U.S. fell throughout this period so

that by 1988 it had decreased to levels, about $0.83, approximately equal to prices

before the first oil shock in 1974. In the latter surveys, 9, rather than 8, census

divisions were used. Since we are unable to map the earlier 8 region breakdown into 9

regions, or vice-versa, in the empirical specifications we use different sets of

indicator variables depending on the survey year.

Overall, we have 18,109 observations which should provide sufficient observations to

do nonparametric estimation and achieve fairly precise results. Our empirical approach

is to do both the nonparametric and parametric estimation with indicator variables both

for survey year and for regions. Thus, we have 20 indicator variables in our

specifications. In the parametric specifications, we allow for interactions, most of

which are found to be statistically significant which is to be expected given our very

large sample. However, we decided to use the same set of indicator variables in both the

nonparametric and parametric specifications to make for easier comparisons.

We give four types of nonparametric estimates, using the Epanechnikov kernel from

equation (2.3), the normal higher order kernel from equation (2.3a), a cubic regression

spline with evenly spaced knots, and power series. We use a log-linear demand

specification, where T(g) = eg . Also, the covariates w are 20 indicator variables

that allow for different region and survey year effects. In the results we present we

evaluate demand and consumer surplus at a fixed value for w equal to its sample mean.

We tried several different bandwidths for the kernel estimators, based on the

smoothness of the graphs discussed below. The Epanechnikov kernel estimates used a

bandwidth of .82 for the coefficients 3 of w, and T(x) = 1. The bandwidths were

used to form r(x), equal to h = .82, h = .55, and h = .45. For the normal, higher

order kernel in equation (2.3a), we used bandwidths of h = .55 and h = .45 for both



the nonparametric part and the coefficients of w.

For the series estimates, we used cross-validation to help choose the number of

terms. Cross-validation is the sum of squares of prediction errors from predicting one

observation using coefficients estimated from all other observations. Minimizing

a cross-validation criteria is known to lead to minimum asymptotic mean-square error

estimates. Table 5.1 reports the criteria for splines and power series that are additive

in (log) price and income. No interactions were included because they were never found

to be significant, either in a statistical sense or in terms of lowering the

cross-validation criteria.

Table 5.1: Cross-validation for Series Estimators

Cubic spline, evenly spaced knots Power series

Knots CV Order CV

1 832 1 922
2 826 2 903
3 842 3 834
4 857 4 824
5 801 5 825
6 797 6 900
7 784 7 823
8 801 8 791
9 782 9 804

10 801

The criteria are minimized at 7 or 9 knots and 8th order power series. The theory

suggests that one should choose a number of knots that is greater than the mean-square

error minimizing one, so the bias goes to zero faster than the variance. For this reason

th thwe prefer 8 or 9 knots and an 8t h  or 9 order polynomial. The results for 9

knots were similar to those for 8, except that the estimated standard errors were very

large, so we do not report them. Instead we report results for 6, 7, and 8 knots.

For purposes of comparison we also report results for standard parametric forms for

the demand function. The specification of the demand function is:



Inqi = •0 + rllnp + 72lny + w'1 + c,

where y is household income, p is gasoline price, and w are the 20 region and time

dummies discussed above. The estimated income elasticity is .37 with standard error

.01 while the estimated price elasticity is -0.80 with standard error .09.

To check on the sensitivity of our estimates, we also estimated a "translog" type of

parametric specification where we allow for quadratic terms in log income and log price

as well as an interaction term between log income and log price. The income-price

interaction term has no estimated effect, but the quadratic terms do have an effect on

the estimates. The sum of squared errors decreases from 8900.1 to 8877.0 which is a

decrease of 0.26%, but a traditional F statistic is calculated to be 16.1 with three

degrees of freedom due to the large sample size. The estimated elasticities for the

log-linear and log-quadratic model are quite similar at the median gasoline prices,

$1.23: the log-linear price elasticity is -0.81 at all income levels while the

log-quadratic model price elasticity is approximately -0.87 with very little variation

across income levels. The two specifications do have different elasticities at lower and

higher gasoline prices. The log linear model price elasticity, since it is estimated as

a single parameter, remains at -0.81 across all gasoline prices while the log-quadratic

model, which has a variable price elasticity, has an estimated elasticity of

approximately -0.64 for gasoline price of $1.08 (the first quartile price) while the

log-quadratic model has an estimated elasticity of -1.14 at a gasoline price of $1.43

(the third quartile). Since the results for log quadratic translog specification are

only approximately similar to the simpler liner specification, we present results for

both of the parametric specifications in what follows.

Figures 1 - 3 show the estimated nonparametric log demand with respect to log price,

evaluated at mean income, for the parametric, Epanechnikov kernel, and spline

specifications. We do not give graphs for other income values because the graphs have

(5.1)



similar shape and the spline results discussed below strongly suggest that the log demand

function is additive in log price and log income, in which case the shape of log demand

will not depend on income. There are interesting differences between the parametric and

nonparametric estimates, with the nonparametric estimates having a much more complicated

shape than the parametric ones. In Figure 2 we find kernel demand curves that are

generally downward sloping over the range of the data. In our opinion the demand curve

for h = .82 looks "too smooth," and the one for h = .45 looks "too rough" so in the

subsequent analysis we will use h = .55 as our preferred bandwidth. The shape of the

spline demand function is qualitatively similar to that the kernel estimate, although the

demand function does slope up very slightly at some points on the graph. We tested

whether this upward slope indicates a failure of demand theory using the test for of

downward sloping compensated demand described above. For 8 knots (our preferred number)

a price change from $1.39 - 1.46, which is the range over which the demand curve slopes

up, our N(0,1) statistic .90. This value is not statistically positive at any

conventional (one-sided) critical value. 5

We next estimate the exact consumers surplus, here the equivalent variation, across

our different estimated demand curves. We consider two sets of price changes for

gasoline: an increase from $1.00 to $1.30 (in 1983 $) per gallon and an increase from

$1.00 to $1.50 per gallon. The starting price of $1.00 corresponds roughly to 1992

gasoline prices and a 50 cent increase is well within the range of the data. We

estimate the equivalent variation for these prices changes at the median of income. We

present the estimates in Table 5.2. Estimated standard errors are given in parentheses,

and were calculated using the formulas given earlier.

5The conventional significance levels may not be appropriate here, because we have chosen
the interval based on the estimated demand function. However, the conventional
critical values should provide a bound when the test statistic is maximized over
choice of interval, with our test being an approximate maximum.



Table 5.2: Yearly Equivalent Variation Estimates

Parametric Estimates $1.00-1.30

1. Log linear model 282.34
( 2.07)

2. Translog quadratic model 285.44
( 3.03)

Epanechnikov Kernel Estimates

3. h = .45

4. h = .55

5. h = .82

Normal,

6. h =

Higher Order Kernel Estimates

.45

7. h = .55

Cubic Spline Estimates

8. 6 knots

9. 7 knots

10. 8 knots

Power Series Estimates

11. 8th order

12. 9th order

$1.00-1.50

442.00
( 2.31)

444.16
( 3.90)

$281.31
( 4.36)

$284.00
( 4.11)

279.87
( 3.58)

286.44
(6.56)

284.36
( 5.35)

284.58
( 4.93)

282.30
( 4.68)

287.12
( 4.77)

287.31
( 4.76)

287.27
( 4.75)

$445.09
( 4.46)

$447.41
(4.11)

445.42
( 3.59)

450.14
( 7.07)

445.35
(6.34)

444.63
( 6.31)

441.72
( 5.82)

447.80
( 6.04)

448.64
( 5.91)

448.55
( 5.88)

Note that all the nonparametric estimates are quite close. A choice of different

nonparametric estimator assumptions leads to virtually the same welfare estimates.

Surprisingly, although the graphs show quite different shapes for parametric and

nonparametric estimates, the welfare estimates are quite similar. A Hausman test

statistic based on the difference of the kernel estimate and the difference of their

estimated variances, which is valid if the disturbance is homoskedastic, is 1.3, which

is not significant for a two-tailed tests based on the normal distribution.



We also estimate the deadweight loss from a rise in the gasoline tax of either $0.30

or $0.50 which would induce the corresponding rise in gasoline prices. We base our

estimate of deadweight loss on the equivalent variation measure of the compensating

variation. The results are given in Table 5.3:

Table 5.3: Yearly Average Deadweight Loss Estimates

Parametric Estimates $1.00-1.30

1. Log linear model 26.92
(3.13)

2. Translog quadratic model 27.07
( 3.15)

Epanechnikov kernel estimates

3. h = .45

4. h = .55

5. h = .82

Normal,

6. h =

higher order kernel estimates

.45

7. h = .55

Cubic

8. 6

Spline Estimates

knots.

9. 7 knots

10. 8 knots

Power Series Estimates

11. 8th order

12. 9th order

$1.00-1.50

62.50
(6.77)

75.30
(7.24)

$33.41
(8.68)

36.90
(7.97)

37.10
(6.80)

$27.70
(5.65)
27.94
(5.01)

22.89
(3.88)

$36.38
(6.47)

$31.62
(5.72)

28.60
(5.03)

38.68
(5.37)

35.72
(5.27)

34.92
(5.21)

34.86
(5.38)

$33.09
(14.06)

47.61
(8.92)

51.05
(8.65)

46.84
(8.77)

46.95
(8.94)

48.66
(8.80)

48.74
(8.86)

The estimates of DWL are very similar across bandwidths for the kernel estimator, but are

sensitive to the use of a higher order kernel. We give more credence to the higher order

kernel estimates, because of their theoretically better property of having smaller bias



relative to mean-square error, and their similarity to the spline estimates. The spline

results are sensitive to the number of knots. We prefer the results for the larger

number of knots, because they are theoretically preferred and the results seem to be less

sensitive to choice between 7 and 8 than to 6 and 7.

We do find rather large differences between the nonparametric and parametric

estimates of deadweight loss. The estimated differences between the nonparametric

estimates and the log linear parametric estimates are in the range of 40-50%. In

particular, the nonparametric estimates seem to be somewhat smaller for the larger price

change and larger for the smaller price change. These are economically significant

differences, with the ratio of DWL to tax revenue varying widely between parametric and

nonparametric specifications. The differences are also statistically significant: A

Hausman test of based on the log-linear and normal kernel specification is -10.14 for

the larger price change and bandwidth .55 and is 5.18 for the smaller price change

and bandwidth .45. Thus, efficiency decisions on which commodities to tax and the size

of the tax might well depend on the rather sizable differences in the estimated

efficiency cost changes from the increased taxes.



6. Asymptotic Distribution Theory

In this section we give results for the kernel estimator of consumer surplus at

particular income and covariate values, and for power series. The conclusions for other

cases will be described, without full sets of regularity conditions. These results show

that the standard error formulas given earlier are correct, and describe the asymptotic

properties of the estimators, without overburdening the reader.

Precise conditions are useful for stating the results. Let pt(t,u) = ap(t,u)/at

and g(p,y,w) denote r(x(p,y)) + w'1. Let UI be the support of u, P = p([O,l1]x1) be

the image of p(t,u) on [O,1]xU, and W be the support of w. Also, let J = (y, ]

be a set of y values that includes those where the demand function is evaluated in

solving equation (1.1). - The conditions will involve supremum norms for the demand

function over the set Z = Px'JxW. Let Ilglh = supZ,tsjl8 g(p,y,w)/8(p,y, , where

for a matrix function B(z), a8 B(z)/ 8az denotes any vector of all distinct tth order

partial derivatives of all elements of B(z). Let "a.e." denote almost everywhere with

respect to Lebesgue measure.

Assumption 1: W, U, and ' are compact, Z is contained in the support of z., 11g0 112 
<

Co, T(g) and x(p,y) are one-to-one and three times continuously differentiable with

nonsingular Jacobians on their respective domains, p(t,u) is twice continuously

differentiable on [0,1]xU1, and ? does not include zero. Also, w(y) is bounded and

continuous a.e. and for C = sup[0,1]xx0 xW T(g0(P(t,u),y,w))' pt(t,u)l, w(y) = 0 for y

outside 'Y = [y+C+c,y-C-cl, for some c > 0.

We will derive the results under an i.i.d. assumption and certain moment conditions

specified in the following result. Let T(x) be a trimming function that will be

identically equal to one for series estimators.



Assumption 2: z. is i.i.d., E[IIT- (q)II < w, x is continuously distributed withI

bounded density f0 (x), and E[T(x)(w-E[w x])(w-E[w Ix)'] is nonsingular.

Assumptions 1 and 2 are useful for both the kernel and series results. Following the

earlier format, we will first give results for kernel estimators. The next three

assumptions are more or less standard conditions for kernel estimators.

Assumption 3: EMIT-1 q)1 l xlf0(x) is bounded, r(x) is bounded, bounded away from zero

on z E Z, and zero outside a compact set on which f 0 (x) is positive.

Assumption 4: There is a positive integer s such that X(u) is twice continuously

differentiable, with Lipschitz derivatives, X(u) is zero outside a bounded set, 'X(u)du

= I, and for all j < s, •X(u)[eJ uldu = 0.
e~0.

Assumption 5: There is

E[wIx] to all of Rk+l

differentiable to order

a nonnegative integer d and extensions of E[T- 1(q) I x and

such that f0(x), f0(x)r0(x), and f (x)E[wI x are continuously

d x s + 2 on Rk+ l

Assumption 4 requires that the kernel be a higher order, bias-reducing type. An example

of such a kernel is the Gaussian one used in the application.

To describe the result for the kernel estimator of consumer surplus at a particular

income and covariate value, it is necessary to introduce a little more notation. Let

S(t) denote the solution to equation (1.1) at the truth, i.e. the solution to dS/dt =

-T(g0(p(t),yo-S(t)W 0))p t(t), S(1) = 0, where Pt(t) = 8p(t)/at. Let x(t) =

x(p(t),y 0 -S(t)), and partition x(t) = (x (t),x2(t)')', where x (t) is a scalar.

Let

t
<(t) = ((t).expi-j C(v)'[8g0 (p(v),y 0 -S(v),w 0 ))/8yldv),



C(t) = Tg(g 0 ((t),Y0-S(t),w 0 )) Pt(t).

Let t(r) be the inverse function of Xl(t) (which will exist by Assumption 6 below),

x(T) = x(t(T)) = (T,x 2 (T))', and (t() = M(t(r)).

Assumption 6: i) There is 7) > 0 such that p(t) can be extended to a function with

domain 2 - (--,l1+iq] such that x (t) is one-to-one with derivative bounded away from

zero; ii) E[cc' Ix] is continuous a.e. and for some 71 > 0, and (0,7') partitioned

conformably with x(T) = (T,X2(t)'),

Ix (V)){suPl -Y: (1+E[IIl4 1 x=x(r)+(0,7))f 0 (x(T)+( 0 ,Y)))dT < c. iii) f 0  is bounded away
1

from zero on x(p(V),j[,y]), for y and y from Assumption 1.

Note that x2(r) is differentiable by the inverse function theorem and the chain rule,

and let R(r) = f[J'X(v,u+[ax 2 (Tr)/8]v)dv]2 du. The asymptotic variance of consumer

surplus at a point will be

V0 = fl(0st(Tr)l)I(t()f(x(r))-1I B1t(r)/8t I 2E[{(( ' cý21 x=x(r)]dr.

Let 1(A) denote the indicator function for the set A. The following result gives the

asymptotic distribution of the kernel estimator of consumer surplus evaluated at a

particular income and covariate value.

Theorem 1: If Assumptions I - 6 are satLsfied, for u(y) = I(y = y ) , a- = o(n)

with nE k+4/[n(n)] -,w, and no2  - 0, then ok/2 (-S O) -~ N(O, V ). If in

addition n3+7/Ln(n) - o then for V in equation (3.5), ak r VO.

For our application, where k = 1, the conditions on the bandwidth a are that

10 2s
n 10/In(n) -- * c and n -2- 0. These conditions require that s > 5, i.e. that the

kernel be at least sixth order. The normal kernel used in the application is such a



sixth order kernel.

The asymptotic distribution of a kernel estimator of deadweight loss at a particular

income and covariate value is straightforward to derive. Because the "tax receipts" term

(pl-po)'T(g(pl,yOW0)) depends on the demand function evaluated at a particular point,

it will have a slower convergence rate than the consumer surplus "integral," and hence

will dominate the asymptotic distribution. Then standard results on pointwise

convergence of kernel regression estimators can be applied to obtain, for x1 = x(p ,y0),

(k+l)/2 d
n (Lk E - L0 ) 9- N(0, Vo0,

V0 = [XX(u)2dulf 0 (x)-l. E[{(pl-p' Tg(g0 (x ,w 0 ))c2 I x=xl].

Also, it is straightforward to show consistency of the asymptotic variance estimator, by

means like those used to prove Theorem 1.

As previously noted, average consumer surplus and deadweight loss will be

rV-consistent if initial and final prices are allowed to vary. In this case the

asymptotic distribution will be the same for both kernel and series estimators. This

asymptotic distribution will be described below.

Some of the conditions need to be modified for series estimators.

Assumption 7: E[c.c I x.,i'wi] is bounded and has smallest eigenvalue that is bounded away
11 1 1

from zero.

Let ltgl l be as defined above except that the supremum is taken over the support of

(x,w), and let X denote the support of x.

Assumption 8: 0kK(X) consists of products of powers of the elements of x that are

nondecreasing in order as K increases, with all terms of a given order included before

the order is increased, D is a compact rectangle and the density of x is bounded away

from zero on 1.



The condition that the density is bounded away from zero is useful for controlling the

variance of a series estimator. The next condition is useful for controlling the bias.

Assumption 9: r0(x) and E[w x] are continuously differentiable of all orders on I

and there is a constant C such that for all integers d the partial derivatives of

order d are bounded in absolute value by Cd on 1.

This smoothness condition is undoubtedly stronger than necessary. It is used in order to

apply second order Sobolev norm approximation rates (i.e. approximation of the function

and derivatives up to order 2), where a literature search has not yet revealed such

approximation rates for power series except under this hypothesis. Also, results for

regression splines are not given here because multivariate Sobolev approximation rates do

not seem to be readily available for them.

Average equivalent variation and deadweight loss will be Vr•-consistent under

certain conditions that we now describe. Let t. denote a random variable that is
I

uniformly distributed on [0,1] and independent of z i , Pi = p(t.,u.), y =

Yi-S(ti zigo), and x. = x(Pi'Yi). Let S(t,z) = S(t,z,g 0) and

t
ý(t,z) = ((t,z).expi(-j (v,z)' g0y(p(v,u),y-S(v,z),w))dv},

((t,z) = T (g0 (p(t,u), y-S(t,z),w))' pt(t,u).

Assumption 10: Conditional on w, x is continuously distributed with bounded density

f'f(xlw) and for the density f(xlw) of x. given w, a(x,w) =
1

E[w(y.i)(tizi)Ixi=x,wi=w] is zero outside the support of f(xlw), and

-1
f(xlw)-l a(x,w) is bounded.

Let ( = E[w(y )] and

'(x,w) = f(xl w) f (x Iw)E[w(y.)(t.,z.) x.i=x,w.=wJ.
1 11 1 1



M(x,w) = E[~ (x,w)Ix] + (w-E[wlxl)' M-1E[(w-E[w Ixj)' I(x,w)1.

1 -1 I= 'o(y )S(0,z.i ) A + W '[ i) - W1 + ;-e (xi' c.

Then the asymptotic variance of A will be E[.' I.

Under an additional condition we can also derive the asymptotic variance of

deadweight loss. We consider here only the case where there is sufficient variation in

the final price to achieve VE-consistency. The next assumptions embodies this

requirement, by the condition that the final price is continuously distributed.

Assumption 11: Conditional on w, i = x(p(u.),y.i)' is continuously distributed with

bounded density f (x w), and w(y)f (x w) is zero outside the support of f(xlw).

Let T. = w-w(yi)(pl-p°)'T(g(p (u.i),Y))) and

A(x,w) = f(xlw)-lA (xlw)E[u(yi)(p 1-p 0 )'T (g0(xi,w I x=x,wi =wlJ

A (x,w) = E[lA(x,w)lxl + (w-E[wlxl)' M-E[(w-E[wIxl)'' (x,w)l.

S =  - (T. - E[T.] - W (y.) - + co A (x.w.)'c.}.1 1 1 1 1 1 1 1 1

Then the asymptotic variance of L will be E[(@L)2

The next result shows asymptotic normality of the power series estimators.

Theorem 2: Suppose that Assumptions I - 2, 7 - 9 are satisfied, with T(x) = 1, and K

= K(n) satisf es K11/n -- 0 and Kn - --+ M for some y > 0. Then for = S or § =

L, equation (3.3) will be satisfied and e = 80 + 0 (K/V ). If Assumption 10 is also

satisfied and V0 = E[(f )2 ] > 0, then vl(4 - O)  N(0,V0 ) and -4 V0. If

Assumption 11 is also satisfied and V0 = E A ) 2 ] > 0, then V( - A) N(0,V Oand O

and V-4V 0 *



Appendix: Proofs of Theorems

Throughout the Appendix C will denote a generic positive constant, that may be

different in different uses.

One intermediate result that is needed for both kernel and series estimators is a

linearization of the solution to equation (1.1) around the true demand function. Some

additional notation is needed to set up this linearization. Let z be a data observation

that includes u and S(t,z,g) denote the corresponding solution to equation (1.1), i.e.

the solution to aS/at = -T(g(p(t,u),y-S,w)). Let gy(p,y,w) denote the derivative of

g(p,y,w) with respect to y, and

t
(6.1) C(t,z,g) = e(t,z,g).exp(i-o (v,z,g)' g0y(p(v,u),y-S(v,z,g),w))dv},

4(t,z,g) = T (g(p(t,u),y-S(t,z,g),w))' pt(t,u).

Under conditions specified below, when g is near the truth go, equivalent variation

can be approximated by the linear functional

1
(6.2) A(z,g;g) = { g(p(t,u),y-S(t,z,g),w)' (t,z,g)dt,

evaluated at g = go.

Lemma Al: If Assumption I is satisfied then there is an c > 0 and a constant C such

that for all z e Z, IIg-g 0 112 < c, and IIg-g 0112 < c, it is the case that

I (y)S(O,z,g)-w(y)S(O,z,g)-w(y)A(z,g-g;g) I 5 CII g-gll 0 1•-gl, I (y)A(z,g;go0 ) 5 CII gll O

I W(y)S(0,z,g)-w(y)S(0,z,g 0 ) I 0 CIIg-g 0ol 0 , and for any g with Ilglll < o,

I (y)A(z,;g)-uly)Ag;gzg;g 0 ) I s C(llgI110lg-g 0 I11 + l1lI lllg-g 0 0 ).

Proof of Lemma Al: By Assumption 1, it suffices to prove the result when u(y) = 1 for all

y E c . We use standard results on existence and continuity of solutions of differential



equations, e.g. in Finney and Ostberg (1976). Let q(t,y,z,g) = T(g(p(t,u),y,w))' pt(t,u).

By T(g) thrice continuously differentiable, its derivative up to order 2 are bounded and

Lipschitz on any bounded set. Then by pt(t,u) bounded, we can choose c so that for

IIg-g 0 112 < ', l g-g 0 112 < , and 6 small enough,

(A.1) sup[o, 1 )x laJq(t,y,z,g)/ayJ - aJq(t,y,z,g)/ayJI| C1g-gII . (j = 0, 1, 2).

In particular, for 8 small enough, suP[0,lxlxxZI q(t,y,z,g) I s C+c. Also, by construction

of c, (p(t,u),y-s) E Px'9 for (t,u,y,s) e [0,1]xtUxYC/x[-C,C]. Then by Theorem 12-6 of

Finney and Ostberg (1976), there exists a solution S(t,z,g) to aS(t,z,g)/8t =

-q(t,y-S(t,z,g),z,g), S(1,z,g) = 0, for t E [0,11, z e Ze , and y now included in z.

Furthermore, by integration of equation (1.1) on t E (0,11, I S(t,z,g)l < C+c, so that

y-S(t,z,g) e Y for z E Z . Also, the same existence and boundedness properties hold for

g replacing g in q and S.

Next, ilg112 < m by 11g0 112 < a and IIg-g 0 112 < 6. Also, by p(t,u) E P and

y-S(t,z,g) E Y for t e [0,11, and z E Ze, it follows that g(p(t,u),y-S(t,z,g),w) and

gy(p(t,u),y-S(t,z,g),w) are bounded on this set. Then boundedness of C(t,z,g) follows by

by T (g) bounded on any compact set and boundedness of pt(t,u), giving the second

conclusion.

Next, it follows by Theorem 12-9 (equation 12-22) of Finney and Ostberg (1976), T(g)

Lipschitz on any bounded set, pt(t,u) bounded, and eq. (A.1) that

(A.2) suPte[O,1],ze Z I S(tzg)-S(tzg)l - CIIg-gll 0,

which implies the third conclusion.

Next, for all t e [0,1], z E Zc, by IS(t,z,g)l s C+c and IS(t,z,g 0) 1 < , it

follows that IIg(p(t,u),y-S(t,z,g),w)ll S IUgll 0 , and by a mean-value expansion and eq.

(A.2) that Ilg(p(t,u),y-S(t,z,g),w) - g(p(t,u),y-S(t,z,g0),w)ll S

Ilgy(p(t,u),y-S(t,z,g,g 0 ),w)ll IS(t,z,g)-S(t,z,g 0 ) s IIglllllg-g 0 110 for an intermediate value



g. Then by boundedness of C(t,z,g)0

(A.3) IA(z,g;g)-A(z,;g0 )I s II5II0supte[0,11,ZEZ IIC(t,z,g)-C(t,z,g 0 )II + ClIllIg-g0I 1 0

Also, g(p(t,u),y-S(t,z,g),w)), (p(tu),y-S(tz'g),w)), and gyy (p(t,u),y-S(t,z,g),w))

are all bounded for uniformly in t E [0,11, z Z, lg-g0 112 < and IIg-g0 112 < c, as

are the same expressions with S(t,z,g) replaced by a value in between S(t,z,g) and

S(t,z,g 0 ). Also, it then follows by mean-value expansion arguments like those above,

including expansions of in S(t,z,g) around S(t,z,g 0 ), that uniformly in IIg-g0 112 < c,

(A.4) suPte[0,11,zeZ II11(t,z,g)-C(t,z,g 0 )ll II CIIg-g0 1 .

For example, for a value S(t,z,g,g0) in between S(t,z,g) and S(t,z,g 0),

IIg y(p(t,u),y-S(t,z,g),w)) - g0y(p(t,u),y-S(t,z,g0),w))ll :g y(p(tu),y-S(tzg),w)) -

g0 y(p(t,u),y-S(t,z,g),w))II + IIg0 y(p(tu),y-S(t,z,g),w)) - g0y(p(t,u),y-S(t,z,g 0 ),w))llI

IIg-g 0 11 + lig0 yy(p(t,u),y-S(t,z,g,g 0),w))llI IIS(t,z,g)-S(t,z,g0)II 5 CIIg-g0 11. The fourth

conclusion then follows by eq. (A.3).

Finally, to show the first conclusion, let D(t,z,g,g) = S(t,z,g)-S(t,z,g). For

notational convenience, suppress the t and z arguments, and let S = S(t,z,g) and S =

S(t,z,g). Differencing the differential equation gives

(A.5) aD/at = -q(y-S,g) + q(y-S,g) = -[q(y-S,g) - q(y-S,g)] - [q(y-S,g) - q(y-S,g)]

- {q(y-,gj)-q(y-S,g) - [q(y-S,g) - q(y-S,g)]}

= -C(g)'{g(y-S)-g(y-S)) - q (y-S,g)D - R(g,g),

R(g,g) = [q(y-S,g)-q(y-S,g)-g(g)' {g(y-S)-g(y-S))} + [q(y-S,g)-q(y-S,g)-q (y-S,g)D]

+ [q(y-S,g)-q(y-S,g)-q(y-S,g)+q(y-S,g)] = R1(g,g) + R2 (g,g) + R3 (g,g).

The first equation here is an inhomogeneous linear differential equation, with final



condition DI t= 1 = 0, nonconstant coefficient -q (y-S,g), and nonconstant shift
t

-g(g)' (g(y-S)-g(y-S)} + R(g,g). Let v(t,z,g) = exp[-o qy(r,y-S(r,z,g),z,g)'dr] ??.

Then the solution to this linear equation at t = 0 is

(A.6) DIt = ((s](y-S)-g(y-S)I + R(g,g)]v(t,z,g)dt = A(z,g-g) + JOR(g,1)9(t,z,g)dt.

By g(y-S) and g(y-S) bounded and T twice continuously differentiable, the elements
g

of a2T(g(y-S))/8g 2 will be bounded on t e [0,11, z e Z., for any g on a line joining

g and g (that may differ from element to element of 82T(g)/8g2 ). Then by a mean-value

expansion, for all t e (0,11, z E ZC,

(A.7) IR1(g,g)I I Cllptll1182T(g)/8g21 IIg(y-S)-g(y-S)II 5 CIIg-gll0 2

By I S < C+c and ISI < C+c, q(y-s,g) - q(y-s,g) is differentiable in an open interval

containing S and S. Let S = S(t,z,g,g) be the mean value for an expansion of

q(y-S,g) around S, with S between S and S, so that y-S E 'Y and IS-SI s IDI. A

similar statement holds for the mean value S of an expansion of qy (y-S,g) around S.

Then for all t E [0,11, z e Z ,

(A.8) IR2 (g,g)l 5 Iq (y-S,g)-q (y-S,g) IIDI 5 Iq (y-S ,g)l IDI 2s CIIg-g llo2

Similarly, for a mean-value expansion of q(y-S,g) - q(y-S,g) around S, for all t e

[0,1], z e ZC'

(A.9) IR3 (g,j) -S Iqy(y-,gj)-qy (y-S,g) I I-SI 5 CIIg-glllllg-gl1 0 .

where g, S, and S denote mean values. Then combining eqs. (A.7) - (A.9) and noting

that g(t,z,g) is bounded uniformly in t e [0,1], z E Zc , and IIg-g 0 11 < c, we have

1oR(g,g)g(t,z,g)dt 5 CIIg-gIlllllg-gl 0, so the first conclusion follows by eq. (A.6). QED.

Proof of Theorem 1: We first consider S, and proceed by using the Lemmas of Section 5 of



Newey (1992a) (N henceforth). Let f, h q  and hW denote possible values for the

functions f(x), f(x)E[T-1(q) xI and f(x)E[w x] respectively, and h = (f,h ,hw). Let

g(z;jS,h) = f(x)-1h q(x)-g'hW(x)] + g'w and for any h let L(x,h;1,fi) =

f(x)-1[h (x)-s'hW(x)] - f(x)-2gqgx)-0' W(x)}f(x). Let h and h in N equal (e,i')' and

h here. Let m(z,,h) = (ml(z,g,h),m2(z,i,h)')' there be ml(z,1,h) = S(0,YoW0'og(*.;,h))

- e and m2(z,B,h) = r(x)[q-g(z;i,h)le[w-f-l(x)h (x)]. For A(z,g;g) from equation (A.2)

let D (z,h;fi,) = A(z,L(.,h;B,i);g(.;B,i)) and D2 (z,h;fi,}) =

-r(x)f(x)-1[q-g(z;g,h)le[hW(x)-f-l(x)iw (x)f(x) - r(x)L(x,h;,fi)e[w-f-l(x)fi (x)]. By

Assumption 1 with c(y) = 1(y = y0 ) it follows that yO e ~c. Let 11g lj be as defined

preceding Assumption 1, and lihil = sup xx(Px [,),tsl8 • j h(x)/8xtll. Then by the hypothesis

that the density of x is bounded away from zero on x(Px(y,y]), it follows by a

straightforward application of the quotient rule for derivatives that if Ilh-h 0lj, lN-h0 j,
and 113-0011 are small enough then IIg-gil s Cl1h-hl.j for g = g(*;h,1) and g = g(.;h,}).

Also, it follows by the usual mean value expansion for ratios that for such h and h,

Ilg-g-L(,~,-h:~,1l0 s Ilh-fhll 0 . Then by the conclusion of Lemma I and by Ilh-ill 0 s Ilh-flll,

for lIE-h0 l 2 and Ih-h0 l 2 small enough,

(A.10) I ml(z,,h)-ml(z,g,h)-Dl(z,h-fi;B.) I

s IA(z,g-g;g)-A(z,L([,h-f;,fl,g)]I + CIIg-ill0lIg-gll1

_ CIIg-j-L(.,h-E;#,fi)IIO + Cllh-fi I0lh-fil 1 s Cllh-fEIh lh-Efi11

It also follows by similar reasoning that for 11-13011 and lfib-ho0 2 small enough,

(A.11) ID1(zh;#,fh)I = IA(z,L(*,h;o,h);g)l s CIIL(*,h;0,h)Ii O s CIIhil 0,

ID1 (z,h;F,h)-D1(z,h;•,ho0 )I = ClhIIhl011 -h011 + CIIhl l(lE-h0 0 11+•- 0 ),

Iml(z,8,h)-ml(z,3 00,h0 )1 5 Cllh-h 0 11 + Cll3-•0 l.



It also follows by straightforward algebra that for 11i-1 011, llh-h0110, and Ih-h 0 112 small

enough, there is b(z) = C(l+llqll) such that

(A.12) IIm2(z,i,h)-m2(z,g,f.)-D2(z,h-h.;9,h)ll s b(z)(IIh-h0 110 )2, ID2(z,h;9,h)l b(z)llIlO,

IID2(z,h;,hi)-D2(z,h;10,h0)ll s b(z)Illl 011h-h 0 110

IIm2(z,U,h)-m 2(z,0,h0)11 s b(z)(llh-h 0 110 + 118-%011).

Furthermore, E[b(z) 4 ] < c and for n = ln(n)/(nrk+2j)] 1/2s and a = m/2, we have 2
n n

--* 0, v(- 0)2 -- 0, vnoT 7n n -- 0, implying that 1/(Vi k ) - ln(n)/(vic k ) - 0.

Therefore, the hypotheses of Lemma 5.4 of N are satisfied, giving

(A.13) V'ie& i=[mt(zi,h,10o)-mt(zi,ho,[0)]/n = Vnioet[mt(h)-me(ho ) + o (1), (t = 1, 2),

for = a and a2 = 0, and m (h) = SD (z,h;hO,d0)dF(z).

Next, by hypothesis, m2(h) = 0. Let C(T) = M(t(T),y 0 ,w 0 ,g 0 ) and f (T) =

1(0st(T)sl) I 8t(T)/8r I denote the density of T when t is uniformly distributed on

[0,1]. By the inverse function theorem, f (T) is bounded and continuous a.e. with compact

support. Then by the definition of A and L,

(A.14) ml(h) = JfA(z,L(.,h;0,h 0);g 0)dF(z)

= J'w(t)h(x(t))dt, W(T) = f (x(T))-1(T)' [-rO(x(T)),I,- ' f 'r).

By Assumptions 5 and 6, (Tr) is bounded, continuous almost everywhere, and zero outside

T([0,1]). Also, by the inverse function theorem and the chain rule, x2(T) is continuously

differentiable with bounded derivatives on r(2D), a compact convex set containing T([0,11)

2k 2s
in its interior. By the above shown conditions, n2 -- o and no -2 0. Then it follows

by Lemma 5.4 of N that vg [ml(h)-ml(h0)] - N(0,V ). It then follows by equation (A.13),

a-- 0, and the triangle inequality that VEi o ml(zi.,f0,)/n_ N(0,VO) Furthermore,



by equation (A.13), m2(h) = 0, and m2 (h0 ) = 0 it follows that Yri ~ .am2 (zi' BOi)/n -- + 0.

Next, note that by Lemma Al, for I-1113SII and IIh-ho 0 2  small enough, ml(z,B,h) is

differentiable in S with derivative that is bounded uniformly in B and h, and

derivative with respect to e equal to -1. Also, m2 (z,B,h) is linear in 1, and it is

straightforward to show that n =•ilm2(zi'gh)/S= converges in probability to

E[am2 (z,B0,h 0 )/8a], with a first column of zeros, and the remaining columns being

nonsingular by Assumption 2. The first conclusion then follows by a Taylor expansion.

To show the second conclusion it is useful to verify Assumption 5.2 of N for both

mi and m2 . For mi , parts i) - iii) of Assumption 5.2 follow by eqs. (A.10) - (A.11),

with = O, 1 = 2 = 1, and A3 = 0. Also, part iv) is satisfied with 63n = 1/2, by

the conditions that no 3k+4/ln(n) -- and nr 2 s -+ 0. It then follows by Lemma 5.5 of

N that -ilU/n --"+ V for U. + j - : A./ n. Also, it is straightforward to
= 1 1 J =1 J

check that Assumption 5.2 of N is satisfied for m2, so that for =

Ti(wi-[wIxi])(T-l(qi)-i(x,wi)), 1.nlil 2 / -4 0. Also, by arguments similar to

those for asymptotic normality, B is bounded in probability and M -2 M, so the

second conclusion follows by the triangle inequality. QED.

Proof of Theorem 2: The proof proceeds by verifying the hypotheses of Theorem A.1 of

Newey (1992b), that will henceforth be referred to as N. Assumption A.1 of N follows by

Assumption 7 and boundedness of a(z,g 0 ) in each case. Assumption A.2 of N follows by

Assumption 8 here and Lemma 8.4 of Newey (1991), with 1KII. CK +2 j , j = 0, 1, 2.

Assumption A.3 of N follows by Assumption 9 here and Lemma 8.2 of Newey (1991), with ad

equal to any positive number. Assumption A.4 of N, with A = 2, A1 = 0, a 2 = A3 = 1,

follows by Lemma Al for each case. Furthermore, by Kn-  a for some y > 0, it

follows that for any r1, r 2 >, there are ad such that n rK 2K-d --- 0. Therefore,

II1KI 2[K1/2/ V + K- 2] s CK5 K 1/2/v~ + o(1) = o(1),

v1 0K11 jKIII (KI1 /2/ n + K-o)(K /2/In + K-al) CKK3.K/V + o(1) = o(1),



K l/2 
11 K 12/ CK/K'1 /2K2 /3 o(l) Kl/2,1 K 1j sC K/231A o(1), viK-%o = o(1),

so that the rate hypotheses of Theorem A.1 of N are satisfied. Therefore, it suffices to

show that for e = - or 9 = i, Assumption A.6 or A.7 of N is satisfied, while for e =

gI or 6 = A, Assumption A.5 of N is satisfied.

For S, the A(z,g;g 0 ) from N is fJ(r)'[r(x(p(T),y 0-S(T)w)+w1B]dr. Consider g

values with 1 = 0. It follows as in the proof of Lemma A.4 of N that Assumption A.6 of

N is satisfied. For L, x0 = x(p ,y0 ) and Tg = g 0o(XoWo 0'

E[A(z,r(x);g 0)] = fS(r)' r(x(r))f(Tr)dT - (p -P O TgOr(xO

By Tg nonsingular and pl * p there exists F such that (p -p)' TgOF * 0. Also by

T continuously distributed and p(t) one-to-one on (0,1), Prob(x(T)=x 0 ) = 0.

Therefore, by reasoning similar to that in the proof of Lemma A.4 of N, there exists

r (x) with r (x ) = F, that is everywhere continuous, bounded uniformly in j,
J JO

converges to zero for all x * x0 , as j --* m, and hence J(Tr)' r(x(r))f (r)dT -- 0,

so there exists rK(x) = W K(x)'0 K such that E[1i K(x)'KII 21 --+ 0 and E[A(z,rK(x);g0)]

- (p -p )' T F * O, so that Assumption A.6 of N is satisfied.

-1
For i, A(z,g;g 0 ) in N is W w(y)A(z,g;g 0 ) here, so that

wE[A(z,g;g )l = E[w(yi )g(iwii)' i(tizil = E[[EcO(y i)(tizi)' I iwi. g(i',wi)

= E1'E[w(Yi.)((ti.,z)' I i.=x,w.=wlg(x,w)f(x I w)dx]
1 1 1 1 1

= E[Sf(x,w)' g(x,w)f(xI w)dx] = E[C(x.,w.)' g(x.,wi.)] = E[l(x.,w.)' g(x.,w.)],

where the last equality follows by straightforward calculation. It also follows

similarly that Assumption A.5 of N is satisfied for A. Then the conclusion follows by

Theorem A.1 of N. QED.
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