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Genome sequencing dramatically increased our ability to under-
stand cellular response to perturbation. Integrating system-wide
measurements such as gene expression with networks of protein–
protein interactions and transcription factor binding revealed crit-
ical insights into cellular behavior. However, the potential of
systems biology approaches is limited by difficulties in integrating
metabolic measurements across the functional levels of the cell
despite their being most closely linked to cellular phenotype. To
address this limitation, we developed a model-based approach to
correlate mRNA and metabolic flux data that combines information
from both interaction network models and flux determination
models. We started by quantifying 5,764 mRNAs, 54 metabolites,
and 83 experimental 13C-based reaction fluxes in continuous cul-
tures of yeast under stress in the absence or presence of global
regulator Gcn4p. Although mRNA expression alone did not directly
predict metabolic response, this correlation improved through
incorporating a network-based model of amino acid biosynthesis
(from r � 0.07 to 0.80 for mRNA-flux agreement). The model
provides evidence of general biological principles: rewiring of
metabolic flux (i.e., use of different reaction pathways) by tran-
scriptional regulation and metabolite interaction density (i.e., level
of pairwise metabolite-protein interactions) as a key biosynthetic
control determinant. Furthermore, this model predicted flux re-
wiring in studies of follow-on transcriptional regulators that were
experimentally validated with additional 13C-based flux measure-
ments. As a first step in linking metabolic control and genetic
regulatory networks, this model underscores the importance of
integrating diverse data types in large-scale cellular models. We
anticipate that an integrated approach focusing on metabolic
measurements will facilitate construction of more realistic models
of cellular regulation for understanding diseases and constructing
strains for industrial applications.

amino acid stress response � fluxomics � gcn4 � systems biology

Metabolic f luxes are informative indicators of cellular phys-
iology and in vivo homeostasis. Fluxes are the model-

independent rates of metabolite interconversion that emerge
through the interplay of genes, proteins, and metabolites at
multiple regulatory levels. Protein–protein interactions (1) and
transcription factor binding (2, 3) can be used to predict a
cellular behavior at the gene and protein level (4, 5). However,
complex metabolite-enzyme interactions (6), translational reg-
ulation (7), and posttranscriptional mechanisms prevent direct
linkage of transcriptional state and metabolic phenotype. Pre-
vious in silico attempts to address this gap included metabolic
network and regulatory on/off switch models for growth and
viability prediction (8, 9). In addition, experimental studies of
posttranscriptional control have measured mRNA expression in
conjunction with either 13C-based flux (10) or metabolite level
measurements (11). Such studies have proven invaluable for

emphasizing the importance of metabolic phenotypes; however,
new approaches are needed which, by integrating these diverse
data types in biological models, can identify specific mechanisms
by which genetic regulatory circuits mediate metabolic f lux
phenotype.

Toward this goal, we created a pathway model of amino acid
biosynthesis that includes genetic regulatory circuits and metab-
olite-enzyme interactions to simultaneously integrate flux, me-
tabolite, and mRNA data into a functional biological model.
Specifically, our investigation focused on native transcriptional
control of amino acid biosynthetic enzymes via the Gcn4p-
mediated stress response. This collection of pathways has been
studied extensively by both classical genetics and genomic ap-
proaches (3, 12), and human counterparts of Gcn4p-regulated
pathways have been associated with 209 genetic disorders in-
cluding Phenylketonuria (PKU). Our study aimed to use this
model system to demonstrate that integrating metabolic f lux
phenotypes would yield new and specific insights to a well-
studied set of pathways. Here, we present the results of our
measurements, a mechanistic model of amino acid biosynthesis,
a predictor of metabolic f lux changes, and a discussion of what
we learned about the metabolic control structure for this model
system.

Results
To study the response enabled by Gcn4p, we compared wild-type
yeast to a gcn4�-knockout strain (i.e., stress response present
versus absent) with both strains cultivated in a chemostat under
constant pH, controlled growth rate, and starvation-induced
stress (Fig. 1A). Chemostat cultivations, which enable growth
under a tightly regulated steady-state environment, eliminate
variability that is inherent in dynamically changing batch cul-
tures. In shake-flask studies, for example, it is difficult, and in
some cases impossible, to control several key cultivation param-
eters (e.g., growth rate, media composition, dissolved oxygen
concentration, pH, etc.), which often obscures the ‘‘real’’ pa-
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rameter under investigation. This is particularly true when
exploring the transcriptional response, which is known to change
with specific growth rate (13).

Despite similar growth rate conditions and overall macro-
scopic growth characteristics, the responses of the 2 strains
differed markedly at the molecular level. Our gene expression
measurements (Dataset S1) confirmed that active Gcn4p in the
wild-type population induces transcription of hundreds of target
genes within amino acid biosynthesis and other pathways (3, 14),
as shown in Fig. 2A. The median enzyme mRNA expression level
increased at least 2-fold for the arginine, asparagine, tryptophan,
phenylalanine, tyrosine, histidine, isoleucine, leucine, and valine
pathways, and at least 1 transcript reached this threshold for the
cysteine, methionine, and lysine pathways.

Despite these drastic changes at the molecular level, the wild
type and gcn4� chemostat cultures maintain a macroscopic
physiological similarity. To explain this, we hypothesized that the
cell compensated at the level of metabolism to maintain similar
macroscopic growth under the divergent transcriptional pro-
grams observed in the wild-type and gcn4� cultures. Metabolic
compensation can be assessed by monitoring 2 features: metab-
olite levels—defined as the relative abundances of non-
genetically-encoded substrates, intermediates, or products of
metabolic pathways (15), and reaction fluxes—defined as the
rates of conversion by each reaction in the metabolic network
(16) (Fig. 1B). To measure metabolite levels, we used gas
chromatography coupled to mass spectrometry (GC-MS) to
separate, characterize, and quantify metabolites from whole-cell
extracts. Additionally, we used high performance liquid chro-
matography (HPLC) to obtain more precise measurements of 17
of the 20 free amino acids. In total, we assigned statistical
confidences to abundance ratios of 54 observed metabolites in
the gcn4� versus wild-type cells (Dataset S2).

Reaction fluxes provide a direct measure of metabolite inter-
conversion rates. In the absence of experimental data, values of
reaction fluxes are often estimated in silico under the constraints of

maximized biomass production, an assumed cellular stoichiometry,
a steady state metabolic network and fixed protein composition
(17). However, these simulations result in an underdetermined
system (more fluxes than measurements), and it is still an open
question whether such methods adequately capture regulatory-
induced large network perturbations. For this reason, we cultivated
cells on 1-13C-glucose and experimentally measured condition-
specific biomass amino acid content with HPLC and isotopic
labeling patterns with GC-MS to overdetermine the reaction system
(more measurements than fluxes) and thus more robustly estimate
fluxes (18) that can be found in Dataset S3. Stable isotopic labeling
is an established technique for flux determination whereby meta-
bolic conversion of 13C-enriched substrates generates specifically
labeled metabolites, i.e., isotope isomers, whose labeling patterns
are direct functions of the flux configuration (16). As such, flux can
be estimated from measurements (by GC-MS) of isotopic enrich-
ment of metabolites and solving the inverse problem. Overall, our
measurements yielded 17 amino acid fluxes into biomass and 250
13C-labeling abundances, thus providing a very overdetermined
system (see below) for accurate and robust flux estimation.

To convert these 13C-labeling abundances to intracellular flux
values and statistically verify the results (18), we developed a new
method based on the yeast metabolic reaction network refined
and expanded from Gombert et al. (19). Compared with the 2
existing methods for flux determination (19, 20), we took greater
advantage of redundant flux information (i.e., more measure-
ments than fluxes) by (i) using the complete labeling distribu-
tions instead of lumping abundances into a summed fractional
labeling [relative to the GC-MS method (19)], and (ii) simulta-
neously fitting the entire measurement set [relative to the NMR
method (20)]. We used a network of 83 reactions (with corre-
sponding carbon transitions) distributed among the 3 assigned
compartments (cytosolic, mitochondrial, extracellular), using
75 metabolites (1 substrate, 51 balanced intracellular, and 23
products). Combining our measurement set with this network
resulted in 105 redundant measurements for our now over-
determined system (SI Appendix, C13-Based Reaction Flux De-
termination). By adding experimentally obtained amino acid
fluxes into biomass measurements (previously assumed un-
changing), we expanded our resolution beyond that of previous
methods that only use networks of central carbon metabolism.
We also note the exceptionally high quality of fit in Fig. S2 that
gives us high confidence in our experimentally measured fluxes.
Because metabolite levels and fluxes are independent measure-
ments (21), together they give a more complete view of the
metabolic regulatory system.

Consistent with the previous observation that mRNA expres-
sion insufficiently predicts protein level (22), biosynthetic
mRNA changes demonstrated poor correlation with f lux
changes (r � 0.02 for log ratios or differences in Fig. 2B, r � 0.07
for deltas or linear differences in Fig. 4B). Indeed, we found little
correlation for any pairwise combination of mRNA, flux, and
end-product metabolite changes (Fig. 2 B–D). Furthermore,
Gcn4p DNA-binding strength did not always translate to tran-
scriptional activation (Fig. 2 A).

We next proposed that a mechanistic model of amino acid
biosynthesis capturing regulatory knowledge would better cor-
relate the mRNA, intracellular flux, and metabolite level data-
sets. Accordingly, we created a biosynthetic network consisting
of gene/protein, reaction, and metabolite nodes connected by
condition-specific transcription factor binding interactions (3),
protein–protein binding interactions (23), and enzyme-reaction
and reaction-metabolite interactions. This network contained at
its core the metabolic reaction network used previously for (and
statistically verified by) flux determination. Additionally, we
curated all known metabolite-enzyme interactions (24) as an
explicit avenue of enzyme-level regulation. The key feature of
our updated model is that we no longer rely on stoichiometry
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Fig. 1. Experimental design and measurement strategy. (A) Analyzing the
Gcn4p-dependent stress response in a controlled-growth chemostat environ-
ment. Wild-type S288C and an isogenic gcn4� derivative were cultured in a
glucose-limited chemostat diluted at 0.10 h�1 (416 min per doubling) in
unsupplemented YNB minimal media regulated to 5 �/� 0.1 pH. Titrated
histidine biosynthesis inhibitor levels (10 and 0.1 mM, respectively, of 3-amino-
1,2,4-triazole or 3AT) created histidine near starvation (Fig. S1), which causes
Gcn4p translational activation and transcriptional activation of hundreds of
targets in the wild type (�Gcn4p). Through this modulation of the inhibitor
(3AT) concentration, both wild-type and gcn4� cultures were grown at the
same specific growth rate (0.10 h�1) and achieved similar cell densities and
production rates of ethanol and CO2 (Table S3). (B) Multitiered measurement
strategy for analyzing large-scale network perturbations. We used microar-
rays, GC-MS, and HPLC to measure mRNAs, fluxes, and metabolites (see text
and SI Text for further detail). These independent measurements give a broad
view of the Gcn4p stress response and help to characterize network effects,
such as metabolite interaction densities.
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alone. Now, regulatory information (given by interactions within
the network) is incorporated that might impact the correlation
between mRNA levels and metabolic f lux. This expanded net-
work model linking all measurement types was visualized in
Cytoscape (25) as shown in Fig. 3 (with a log2 color bar for
measurement ratios of the wild type strain relative to gcn4�).

To improve the poor mRNA-flux agreement seen in Fig. 2B, we
used this expanded network model to construct a predictor of
metabolic flux changes as presented in SI Appendix, section 3. A
novelty of the model is the introduction of a parameter termed
‘‘metabolite interaction density’’ for each reaction that captures the
degree to which the reaction’s enzymes are negatively or positively
regulated by metabolites as represented in the above pathway
model. Specifically, for a pathway this quantity is defined as the ratio
of the number of metabolite-enzyme interactions to that of the total
reaction enzymes in the pathway, as displayed in Fig. 4A. Thus,
pathways with high degree of feedback inhibition (Fig. 3 A, B, and
E) and other enzyme-level regulation will have high metabolite
interaction density for their constituent reactions.

Using this concept, network flux changes were predicted from
changes in mRNA levels and metabolite interaction densities,
using the following equation: �f lux � exp(�p1 � dinteraction)

�mRNA
p2

. The rationale for this equation is to allow metabolite

interaction density (dinteraction) to modulate the extent to which
changes in mRNA levels are allowed to propagate to changes in
flux, with p1 and p2 determined to minimize the difference
between actual and predicted fluxes (SI Appendix, mRNA-Flux
Model). According to this equation, the effect of mRNA changes
(�mRNA) is attenuated by metabolite interaction density in
causing changes in the pathway flux (�f lux). The last feature of
our model is the additional constraint that fluxes predicted by
the above equation must also be consistent with the overall
metabolic network stoichiometry and satisfy the steady state
reaction network, i.e., the equation S � �v � 0.

This model represents a new, hybrid approach to correlating
mRNA and flux data that combines information from both
interaction network models and flux determination models. A
core element is that the model preserves metabolic network
consistency both in flux determination and in flux prediction
from mRNA data. In addition, the model introduces the new
concept of metabolite interaction density that embodies a hy-
pothesis that a simpler, less-connected regulatory network often
has more correlated mRNA and flux changes.
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The model illustrates that flux control (i.e., invariance to per-
turbation) increases as metabolite—enzyme interaction density
increases. In other words, greater interaction density lessens tran-

scriptional control and gives metabolites an increasing role in
regulating the flux phenotype. This model supports the body of
literature on feedback inhibition in that increased metabolite
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regulation of enzyme activity results in greater metabolic control.
The high interaction density aromatics and isoleucine-leucine-
valine pathways (dinteraction � 13/14 and dinteraction � 7/11 in Fig. 3
A and B, respectively) provide an illustrative foil to the low
interaction density arginine and lysine pathways (dinteraction � 1/10
and dinteraction � 2/7 in Fig. 3 C and D, respectively) as depicted in
Fig. 4A and discussed in SI Discussion. For the high metabolite
interaction densities, we hypothesize that because end products are
not being increasingly used in protein synthesis, the metabolite
levels build up and cause feedback inhibition at the enzyme level,
resulting in tightly regulated flux. In contrast, we hypothesize that
low metabolite interaction density pathways use alternative strat-
egies. These pathways rely on preferential vacuolar localization of
products and activation of transcription factor regulators separate
from Gcn4p to compensate for unnecessary metabolite build-up.

Despite high metabolite interaction densities of the aspartate and
threonine pathways, dinteraction � 6/8, fluxes are transcriptionally regu-
lated and increase significantly because of rewiring of glycine flux, as
revealed by the 13C-labeling patterns (Fig. 3E). Glycine may be pro-
duced from 3 independently 13C-enriched precursors: glyoxylate
(Agx1p), serine (Shm1p, Shm2p), and threonine (Gly1p). After dis-
carding glyoxylate flux as 0 (within 3% noise) in all conditions, �99%
of glycine flux comes via serine in the reference condition; however, the
presence of activated Gcn4p shifts 44% of that flux to a threonine
precursor. We hypothesize that although free aspartate and threonine
do not increase appreciably, the significant (FDR �2%) activation of
aat2, hom3, and hom2 and near significant (FDR �3% or log2 ratio
�1.0) activation of thr1, thr4, and gly1 likely provide an increased
biosynthetic capacity. Thus, some glycine biosynthetic flux is rewired
away from serine to a route depleting the now more available free
aspartate and threonine and increasing fluxes (�30% change), i.e., the
up-regulated green reaction nodes in Fig. 3E. Overall, these data
suggest that global rewiring of flux through the network may be a
mechanism to override high metabolite interaction density.

In total, the predictive network model highlights 5 general
observations and 10 new system hypotheses not evident without
high resolution metabolic f lux data (Tables S1 and S2). Because
transcriptional f lux rewiring has not been studied extensively
and, more specifically, glycine flux rewiring has not previously
been reported as a potential conserved physiological for stress
response, we chose to examine these observations and hypoth-
eses in greater detail.

To validate the predictive network model for transcriptional
changes that drive a rewiring of global network fluxes, we created

additional perturbations of yeast transcriptional regulation in the
vicinity of glycine biosynthesis (Fig. 3E) with met28�, cbf1�,
met31�, and met32� knockout strains. We measured mRNA levels
for each strain in shake flask cultures and found that met28� and
cbf1� displayed significant changes in amino acid biosynthetic
pathways (Figs. S3–S6). Using the measured mRNA levels and the
predictive network model from above without any further modifi-
cation, we determined that both met28� and cbf1� should exhibit
a glycine flux rewiring that favors a threonine precursor.

To experimentally validate the conclusions of the predictive
network model, we used the 13C labeling analysis described above
to measure glycine biosynthetic fluxes for the wild type, met28� and
cbf1� strains in YNB minimal media supplemented with methio-
nine to correct for the corresponding knockout auxotrophies. As
before, we achieved an exceptionally high quality of fit in Fig. S7.

Notably, we observed that the predictive network model cor-
rectly identified this experimentally-determined glycine flux rewir-
ing, using the mRNA data. We observed a shifting of glycine flux
to a threonine precursor where serine-originating glycine flux
decreased from �50% in the wild type to �25% in met28� to 0%
in cbf1� as shown in Fig. 5. We hypothesize that the increasing
shutdown of mRNA levels in the methionine pathways increased
the availability of homoserine and thus threonine to yield greater
conversion rates of threonine to glycine.

We were especially encouraged by 3 aspects of the glycine flux
rewiring observations in our follow-on analysis. First, the 13C high
resolution flux determination enabled the experimental observa-
tion of a previously unreported mechanism for which an interaction
network allows mRNA to mediate a flux rewiring for a cellular
response. Second, this glycine rewiring mechanism was experimen-
tally observed for perturbations originating in different network
locations indicating a convergent rewiring pathway activated by
transcriptional regulation (Fig. 5B). Finally, we demonstrated that
mRNA and network data may be used to correctly predict flux
changes.

Discussion
Looking forward toward a full fusion of transcriptional and meta-
bolic data, the suspected role of metabolite interaction density and
metabolite-triggered activation of ARO9 transcription (among oth-
ers) demonstrate opportunities to substantially augment the cur-
rently available interactome. Despite modulating nearly all path-
ways observed, cell-wide data on interactions between metabolites
and proteins are not yet available unlike protein–protein interac-
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tions. Chemical genomics investigations screen small molecule
libraries for desired function (e.g., drug efficacy), but the inverse
process to enumerate all interactions of a given metabolite is not as
common. We anticipate that this metabolite-protein interactome
will result from new protein array techniques and iterative inter-
action network reconstructions of systematically measured fluxes
and metabolite levels akin to previous metabolic and genetic
network reconstructions (26, 27). Just as Hall et al. (28) demon-
strated that metabolic enzyme Arg-5,6p was a transcription factor
by globally screening proteins for DNA binding activity, many
metabolite-enzyme interactions remain to be discovered in broad
screens looking outside a targeted system.

In this investigation, we offer evidence that should place bounds
on the interpretation of transcriptional data and provide 5 general
observations and 10 new system hypotheses not evident without
high resolution metabolic data (Tables S1 and S2). We observe that
flux control by metabolites at dense regions of metabolite-enzyme
interactions is a key posttranscriptional regulatory strategy that
allows cells to balance biosynthetic needs for growth. Additionally,
we observe that predictive flux models may be used to correctly
identify flux changes, using mRNA levels and interaction networks.
We conclude that the satisfactory fusion of metabolomic and
fluxomic data for microbial and mammalian systems will not only
benefit from improving analytical and computational techniques
for metabolite and flux measurement but will also necessarily rely
on large-scale interaction networks expanded to include globally-
screened data on metabolite interactions.

Materials and Methods
Chemostat Growth Conditions. Strains were cultivated in aerobic carbon-limited
chemostat cultures in 2-L fermentors (Applikon) in standard YNB media obtained
from Qbiogene with indicated levels of 3-amino-triazole (3AT). The working
volume was 1.0 L and the dilution rate was 0.10 h�1. Cultivations were carried out
at30 °Cwithanagitationspeedof600rpm,pHof5.0,airflowrateof1.0 standard

L�min�1, and dissolved oxygen �80% air saturation. The bioreactors were fitted
with cooled condensers (4 °C), and the off-gas was directed to a gas analyzer
(INNOVA)formeasurementofCO2 andO2.Steady-statesamplesweretakenafter
5 volume changes. Biomass concentration, extracellular metabolite concentra-
tions, and carbon dioxide evolution rate were constant over at least 3 measure-
ments taken before sampling.

Biomass Amino Acid C13 Enrichment Analysis. C13 enrichment biomass was
achieved by chemostat experiments performed in in-house-built reactors with
a working volume of 200 mL. Cultivations were carried out at 30 °C with an
agitation speed of 600 rpm, a dilution rate of 0.1 h�1, a pH of 5.0, and airflow
rate of 1.0 standard L�min�1. Steady-state samples were taken after 5 volume
changes. 100% of the glucose used was labeled in position 1 (1-13C glucose was
from Omicron Biochemicals). The 13C-labeled biomass was harvested by cen-
trifugation at 4,000 � g and 0 °C for 5 min. After centrifugation, the super-
natant was poured off, and the cell pellet was frozen instantaneously in liquid
nitrogen and stored at �80 °C. Hydrolysis, derivatization, and analysis were
carried out as described by Antoniewicz et al. (29).

Metabolic Flux Determination. Metabolic fluxes were determined using the
Metran software, using the elementary metabolite units (EMU) algorithm (30,
31). Metran accepts as input a user-defined metabolic network model con-
sisting of biochemical reactions and atom transitions, and a set of 13C-
measurements and external fluxes; it produces as output metabolic fluxes for
the entire network, confidence intervals for all fluxes, and statistical analysis
of the goodness-of-fit (18).

Additional materials and methods on strains, shake flask growth condi-
tions, whole genome expression analysis, biomass amino acid composition
analysis, endometabolome analysis, and exometabolome analysis are in SI
Materials and Methods.
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