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Abstract

This thesis primarily consists of results which can be used to simplify the computation
of the equivariant cohomology of a GKM space. In particular we investigate the role
that equivariant maps play in the computation of these cohomology rings.

In the first part of the thesis, we describe some implications of the existence of
an equivariant map π between an equivariantly formal T−manifold M and a GKM
space M̃ . In particular we generalize the Chang-Skjelbred Theorem to this setting
and derive some of its consequences. Then we consider the abstract setting of GKM
graphs and define a category of objects which we refer to as GKM fiber bundles. For
this class of bundles we prove a graph theoretical version of the Serre-Leray theorem.
As an example, we study the projection maps from complete flag varieties to partial
flag varieties from this combinatorial perspective.

In the second part of the thesis we focus on GKM manifolds M which are also
T−Hamiltonian manifolds. For these spaces, Guillemin and Zara ([GZ]), and Goldin
and Tolman ([GT]), introduced a special basis for H∗

T (M), associated to a particular
choice of a generic component ϕ of the moment map, the elements of this basis being
called canonical classes. Since, for Hamiltonian T spaces, HT (M) can be viewed as
a subring of the equivariant cohomology ring of the fixed point set, it is important
to be able to compute the restriction of the elements of this basis to the fixed point
set, and we investigate how one can use the existence of an equivariant map to sim-
plify this computation. We also derive conditions under which the formulas we get
are integral. Using the above results, we are able to prove, inter alia, positive inte-
gral formulas for the equivariant Schubert classes on a complete flag variety of type
An, Bn, Cn and Dn. (These formulas are new, except in type An). More generally, we
obtain positive integral formulas for the equivariant Schubert classes using fibrations
of the complete flag variety over partial flag varieties, and when this fibration is a
CP 1−bundle one gets from these formulas the calculus of divided difference operators.

[GT] Goldin, R. F. and Tolman, S., Towards generalizing Schubert calculus in the
symplectic category, preprint.
[GZ] Guillemin V. and Zara C., Combinatorial formulas for products of Thom classes.
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Chapter 1

Introduction

1.1 Equivariant cohomology

LetG be a compact Lie group, andM a topological space on which G has a continuous

action. Let EG be a contractible space on which G is acting freely, BG = EG/G the

classifying space for G, and EG→ BG the classifying bundle. Since the G action on

EG is free, the diagonal action on M × EG is free as well.

By the Borel construction, the G equivariant cohomology H∗
G(M) of M is defined to

be the ordinary cohomology of the orbit space (M ×EG)/G, i.e.

H∗
G(M) = H∗((M ×EG)/G).

In particular, when G acts freely on M , it is easy to check from this definition that

the equivariant cohomology of M coincides with the ordinary cohomology of M/G.

Observe that the equivariant cohomology of a point is particularly rich, since it

coincides with the ordinary cohomology of the classifying space BG

H∗
G(pt) = H∗(EG/G) = H∗(BG).

For example, when G is a circle S1, then ES1 is the unit sphere inside C∞, which we
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denote by S∞; as a consequence BS1 coincides with CP∞, and

H∗
S1(pt; C) = H∗(CP∞; C) = C[x] ,

where x is an element of degree 2, and can be thought as the curvature of the principal

S1−bundle S∞ → CP∞. If G is a torus T = (S1)d, then BT = (CP∞)d and

H∗
T (pt; C) = C[x1, . . . , xd] .

One can also think of C[x1, . . . , xd] as the symmetric algebra S(t∗) on t∗ = (Lie(T ))∗,

where {x1, . . . , xd} denotes a basis of t∗.

The unique map π : M → pt induces a map in equivariant cohomology π∗ :

H∗
G(pt) → H∗

G(M) which gives H∗
G(M) the structure of a H∗

G(pt)−module. In this

thesis we will be particularly interested in spaces for which the equivariant cohomology

ring is a free H∗
G(pt)−module.

The equivariant cohomology ring also recovers information about the ordinary

cohomology ring. In fact, from the inclusion {e} →֒ G, where e denotes the identity

element, one has a canonical restriction map

r : H∗
G(M) → H∗(M) .

In the next sections of this chapter we will exhibit categories of spaces for which the

map r is surjective, and the equivariant cohomology H∗
G(M) is a free H∗

G(pt)−module.

From now on we will restrict our attention to the case in which G is a d−dimensional

torus T .

If M is a manifold endowed with a smooth action ρ : T×M →M , there is another

interesting description of the equivariant cohomology of M due to Cartan ([7]), called

the Cartan model for the equivariant cohomology of M .

Let {ξ1, . . . , ξd} be a basis of the Lie algebra t = Lie(T ), and let {x1, . . . , xd} denote
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the dual basis in t∗. For every element ξ in t, consider the vector field ξ# generated

by ξ, i.e.

ξ#(p) =
d

dt
|t=0(exp(tξ) · p)

If Ω∗(M) denotes the ring of differential forms on M , every vector ξ in t induces two

derivations on Ω∗(M), the Lie derivative

Lξ = Lξ# : Ω∗(M) → Ω∗(M) ,

and the interior product

ιξ = ιξ# : Ω∗(M) → Ω∗−1(M) .

Let (Ω(M), d) denote the complex of de Rham differential forms, and (Ω(M)T , d)

the subcomplex of (Ω(M), d) composed by the differential forms which are invariant

under the Lie derivative of vector fields generated by the T action. Then the Cartan

complex (ΩT (M), dT ) is defined to be

ΩT (M) = Ω(M)T ⊗ S(t∗)

with differential

dT (α⊗ f) = dα⊗ f +

d∑

j=1

ιjα⊗ xjf

where ιj denotes ιξj .

This complex can be regarded as a double complex

Ωp,q
T (M) = Ωq−p(M)T ⊗ Sp(t∗)

with (anti)commuting differentials d = d ⊗ 1 and δ =
∑d

j=1 ιjα ⊗ xj . Hence the

additive structure of H∗
T (M) can be computed using the spectral sequence associated

to this double complex (for further details, see [16], [6]).

Another way of computing the equivariant cohomology of M is by using the Leray-

15



Serre spectral sequence associated to the fibration

M →֒ (M × ET )/T

↓

BT

(1.1)

which is the topological analogue of the spectral sequence associated to the Cartan

double complex.

1.1.1 Equivariant formality

The E1 term of the spectral sequence associated to the Cartan complex, thought as

a double complex, is given by

H(M) ⊗ S(t∗) .

More precisely Ep,q
1 = Hq−p(M) ⊗ Sp(t∗).

When this spectral sequence collapses at the E1 stage, we will say that M is

equivariantly formal. So as vector spaces, as well as S(t∗)−modules, we have

HT (M) ≃ H(M) ⊗ S(t∗).

Observe that in general this is not an isomorphism of rings. But since it is an iso-

morphism of S(t∗)−modules, and since the term on the right hand side is a free

S(t∗)−module, this implies that whenever M is equivariantly formal HT (M) is a free

S(t∗)−module.

There are a number of inequivalent conditions that imply equivariant formality.

For example Goresky, Kottwitz and MacPherson analyse this property in greater

generality in [12]; one of their results can be stated as follows

Theorem 1.1.1. If the ordinary homology groups of M are generated by classes which

can be represented by T−invariant cycles, then M is equivariantly formal.

Another characterization of equivariant formality can be given in terms of the

canonical restriction map r from the equivariant cohomology ring to the ordinary
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cohomology ring of M .

Theorem 1.1.2. M is equivariantly formal if and only if the canonical restriction

map

r : HT (M) → H(M)

is surjective.

Observe that if K is a closed subgroup of T and M is T−equivariantly formal,

then by Theorem 1.1.2 M is K−equivariantly formal as well, since the restriction

map r : HT (M) → H(M) factors through HK(M).

When M is a symplectic manifold with symplectic form ω, Kirwan ([19]) and

independently Ginzburg ([10]) proved the following

Theorem 1.1.3. M is equivariantly formal if it is compact and it admits an equiv-

ariantly closed extension of the symplectic form ω.

1.2 Localization in equivariant cohomology

Let M be a compact manifold acted on by a torus T , and let MT be the fixed point

set of the T−action. In this section we will review theorems that explore how much

information about the equivariant cohomology ring of M can be recovered from the

fixed point set data. In particular we will first recall a theorem of Borel ([5]) and

Hsiang ([17]) that studies the kernel of the restriction map HT (M) → HT (MT ) (in

the exposition we will follow [16]). Then we will recall a theorem which is due to

Atiyah and Bott ([2]), and Berline and Vergne ([3]), which gives an explicit expres-

sion for the push-forward map in equivariant cohomology π∗ : H∗
T (M) → H∗

T (pt).

Let’s recall that if A is a finitely generated S(t∗)−module, the annihilator ideal of

A is given by

IA = {f ∈ S(t∗), fA = 0} ,
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and the support of A is the algebraic variety in t ⊗ C associated to IA, i.e.

suppA = {x ∈ t ⊗ C, f(x) = 0 for all f ∈ IA} .

From the definition, it is easy to see that if A is a free S(t∗)−module then suppA =

t⊗C; moreover A is a torsion module if and only if suppA is a proper subset of t⊗C.

Observe that since M is compact, there are only a finite number of subgroups K

of T occurring as isotropy groups of points of M ; let k denote Lie(K), and HT (·)c the

equivariant cohomology with compact supports. Then we have the following

Theorem 1.2.1. Let M be a compact manifold acted on by a torus T , and let X be a

closed invariant T−submanifold. Then the S(t∗)−modulesHT (M\X) andHT (M\X)c

have supports contained in the set

⋃

K

k ⊗ C (1.2)

where the union is over all the subgroups K which occur as isotropy groups of points

of M \X.

An important consequence of this theorem is the following

Theorem 1.2.2. Let M be a compact manifold acted on by a torus T , X a closed

invariant T−submanifold, and iX : X →֒ M the inclusion. Then the kernel and

cokernel of the map

i∗ : HT (M) → HT (X)

are supported in the set (1.2).

Let’s restrict to the case in which X = MT . First of all observe that

HT (MT ) = H(MT ) ⊗ S(t∗) ,

hence HT (MT ) is a free S(t∗)−module. Combining this fact with Theorem 1.2.2 we

obtain the abstract localization theorem

18



Theorem 1.2.3. Let i : MT →֒ M denote the inclusion of the T−fixed point set into

M . Then the kernel of the map

i∗ : HT (M) → HT (MT ) (1.3)

is the module of torsion elements in HT (M).

We recall that if M is equivariantly formal then HT (M) is a free S(t∗)−module.

So one of the important consequences of equivariant formality is the following

Theorem 1.2.4. Let i : MT →֒ M denote the inclusion of the T−fixed point set into

M , and suppose that M is equivariantly formal. Then the restriction map

i∗ : HT (M) → HT (MT ) (1.4)

is injective.

This allows one to regard HT (M) as a subring of HT (MT ), which is a much easier

object to study. In particular, when MT is discrete, HT (MT ) is simply the ring of

maps from the fixed point set to S(t∗), Maps(MT , S(t∗)).

Suppose now that M is oriented and T acts on M preserving the orientation.

Observe that the fibration π : (M × ET )/T → BT gives rise to a push-forward map

in equivariant cohomology, π∗ : HT (M) → HT (pt) = S(t∗), which can be thought as

the integration along the fiber of π.

In the Cartan complex (Ω(M)T ⊗ S(t∗), dT ), there is a natural integration opera-

tion on the equivariant forms in Ω(M)T ⊗ S(t∗).

More precisely

∫

M

α⊗ f = f

∫

M

α. This produces an integration operation in equiv-

ariant cohomology ∫

M

: HT (M) → S(t∗)

which coincides with the push-forward map π∗ mentioned before.

Let F denote a connected component of the fixed point set MT , iF : F →֒ M the

inclusion map and e(νF ) the equivariant Euler class of the normal bundle νF of F .
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The next theorem gives an explicit expression for the map π∗ in terms of the fixed

point set data.

Theorem 1.2.5. (Localization formula).

For any α ∈ H∗
T (M)

π∗(α) =

∫

M

α =
∑

F⊆MT

∫

F

i∗Fα

e(νF )
(1.5)

the sum being over all the connected components F of MT .

This theorem is due to Atiyah and Bott ([2]) and Berline and Vergne ([3]), and

we will refer to it as the ABBV Localization theorem.

Observe that when F is just a point {p}, then e(ν{p}) coincides with the product

of the weights α1,p, . . . , αn,p of the isotropy representation of T on Tp(M). Hence if

MT is discrete the Localization formula is particularly easy, and it is given by

∫

M

α =
∑

p∈MT

α(p)∏
i αi,p

, (1.6)

where α(p) denotes i∗{p}(α). Observe that this identity is a formal identity in which

the left hand side is an element of S(t∗), whereas the right hand side is a sum of

elements of the ring

S(t∗)0 =
{g
h
, g ∈ S(t∗), h ∈ S(t∗) \ {0}

}

1.2.1 The Chang-Skjelbred Theorem

Suppose that M is a T equivariantly formal compact manifold, hence HT (M) is a

free S(t∗)−module. As we observed before, this implies that the restriction map

i∗ : HT (M) → HT (MT ) is an injection. The theorem we are going to recall in this

section, due to Chang and Skjelbred ([8]), describes precisely what the image of i∗ is.

Let H be a subgroup of T of codimension one which occurs as an isotropy group.

Observe that the inclusion i : MT →֒ M factors through the inclusion iH : MT →֒
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MH , i.e.

MT i
−→ M

iH ց ր

MH

This induces the following maps in equivariant cohomology

HT (M)
i∗

−→ HT (MT )

ց ր i∗H

HT (MH)

So it is clear that i∗(HT (M)) ⊆
⋂

H

i∗H(HT (MH)), the intersection being over all the

codimension one subtori H of T which occur as isotropy groups. The Chang-Skjelbred

Theorem asserts that the converse is also true, i.e.

Theorem 1.2.6. The image of i∗ is given by

⋂

H

i∗H(HT (MH)) (1.7)

where the intersection is taken over all the codimension one subtori H of T which

occur as isotropy groups.

1.3 Hamiltonian actions

Let (M,ω) be a symplectic manifold, i.e. a manifold endowed with a closed non

degenerate two form ω, with a (smooth) action of a torus T .

Then the action is said to be Hamiltonian if there exists a T−invariant map

ψ : M → t∗

which satisfies

ιξ#ω = −dψξ for all ξ ∈ t ,
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where ξ# is the vector field generated by ξ and ψξ is the (T−invariant) function on

M given by ψξ(p) = 〈ψ(p), ξ〉. When (M,ω) is a Hamiltonian manifold with moment

map ψ, we will refer to it as the triple (M,ω, ψ).

Observe that every Hamiltonian manifold (M,ω, ψ) is naturally endowed with an

equivariantly closed two form

ω + ψ ∈ Ω2
T (M),

since the conditions that characterize the moment map are equivalent to saying that

ω + ψ is in Ω2
T (M) and is dT−closed.

Conversely, if (M,ω) is a symplectic manifold with a smooth T−action, then this

action is Hamiltonian if ω can be extended to be a dT−closed two form in ΩT (M).

A beautiful result about Hamiltonian manifolds concerns the geometry of the

image of ψ, and is due to Guillemin and Sternberg ([16]), and independently Atiyah

([1]).

Theorem 1.3.1. (Atiyah, Guillemin-Sternberg) Let (M,ω, ψ) be a symplectic

manifold with a Hamiltonian action of a torus T . Then the image of the moment

map ψ(M) is a convex polytope. More precisely it is the convex hull of the image of

the fixed points of the T−action, ψ(MT ).

The existence of a Hamiltonian action on a symplectic manifold has many impor-

tant consequences.

For example the components ψξ of the moment map are (T−invariant) perfect Morse-

Bott functions, where the critical points are precisely the fixed points of the T−action.

Hence one can use Morse theory to understand the (equivariant) topological invariants

of M .

This approach was used by Kirwan ([19]) to prove that every compact symplectic

manifold with a Hamiltonian action is equivariantly formal (cfr. Theorem 1.1.3).

As a consequence of equivariant formality, if MT denotes the fixed point set of the

T−action, and i : MT →M the inclusion, Kirwan’s injectivity theorem can be stated

as follows
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Theorem 1.3.2. (Kirwan) Let M be a compact symplectic manifold endowed with

a Hamiltonian T action. Then the restriction map

i∗ : HT (M) → HT (MT )

induced by the inclusion i : MT →֒ M is injective.

This is the analogue in the symplectic category of Theorem 1.2.4.

Another important result is the Kirwan’s surjectivity theorem.

Suppose that zero is a regular value for the moment map ψ : M → t∗. Then the

preimage of this value, Z = ψ−1(0), is a T−invariant submanifold ofM , with a locally

free T−action. In particular if the action is free, then the orbit space Mred = Z/T is

a manifold. Marsden, Weinstein and Meyer (cf. [20], [22]) studied the properties of

Mred, which is also known as the Marsden-Weinstein-Meyer quotient, or simply the

reduced space.

Theorem 1.3.3. Let (M,ω, ψ) be a T−Hamiltonian manifold. Suppose that 0 is a

regular value for ψ and that the action of T on Z = ψ−1(0) is free. Let iZ : Z →֒ M

denote the inclusion, and πred : Z → Mred = Z/T the projection map. Then Mred is

a manifold and the projection πred : Z → Mred is a principal T−bundle. Moreover

Mred has a natural symplectic form ωred satisfying i∗Z(ω) = π∗
red(ωred).

Observe that since T acts freely on Z, then the T−equivariant cohomology of

Z can be identified with the ordinary cohomology of the reduced space Mred. The

second crucial result of Kirwan is the Kirwan’s surjectivity theorem.

Theorem 1.3.4. Kirwan Let (M,ω, ψ) be a T−Hamiltonian manifold, zero a reg-

ular value of the moment map ψ, and Z = ψ−1(0), with iZ : Z →֒ M . Suppose

moreover that T acts freely on Z. Then the map

i∗Z : H∗
T (M) → H∗

T (Z) ≃ H∗(Mred)

is surjective.
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1.4 GKM spaces

Let M be a 2n−dimensional compact manifold endowed with an effective smooth

action of a torus T .

Definition 1.4.1. We say that M is a GKM manifold if the following conditions

are satisfied:

i) MT is discrete

ii) HT (M) is a free S(t∗)−module

iii) For every p in MT the weights

α1,p, . . . , αn,p (1.8)

of the isotropy representation of T on the tangent space at p, TpM , are pairwise

linearly independent.

We want to recall a condition that is equivalent to condition iii). For the exposi-

tion we will follow [16], Chapter 11.

Theorem 1.4.2. Let M be a 2n−dimensional compact manifold endowed with an

effective smooth action of a torus T , satisfying properties i) and ii) mentioned above.

Then iii) is equivalent to the following:

iii)’ For every codimension one subtorus H of T , the connected components of MH

are at most two dimensional.

We outline the proof of this theorem.

Proof. Since, by assumption i),HT (M) is a free S(t∗)−module, by Theorem 11.6.1 [16]

every connected component of MH contains a T−fixed point; let X be a connected

component of MH , and let p be a T−fixed point in X. If we endow M with a

T−invariant metric g, then the exponential map

exp : TpM →M
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intertwines the isotropy action of T on TpM with the action of T on M . So it is clear

that

TpX = (TpM)H .

Since H is a subtorus of codimension one, its Lie algebra is given by

Lie(H) = {ξ ∈ t s.t. α(ξ) = 0}

for some α ∈ t∗. Hence dimX > 0 if and only if α is one of the weights of the isotropy

action of T on TpM . In particular, if this happens, then dimX = 2 if and only if

these weights are pairwise linearly independent.

Now we want to give a description of these two dimensional components of MH ,

where H is a codimension one subtorus of T . More precisely we want to describe

their equivariant cohomology ring; then, as a consequence of the Chang-Skjelbred

Theorem (cfr. section 1.2.1), we will be able to describe the equivariant cohomology

of the whole manifold M . This is the famous result presented by Goresky-Kottwitz-

MacPherson in [12], concerning the equivariant cohomology ring of a GKM space.

Let X be a two-dimensional connected component of MH , where H is a subtorus

of codimension one, and let p ∈ X be a fixed point of the T−action. Observe that

X is a compact oriented submanifold of M ; moreover it is easy to see that the fixed

point set XT is discrete.

Theorem 1.4.3. X is diffeomorphic to a two dimensional sphere S2, and the diffeo-

morphism conjugates the action of T/H with the standard S1 action on S2, given by

the rotation about an axis.

Proof. First of all observe that X is acted effectively by the circle T/H . In order

to prove that X is a two dimensional sphere S2, it is sufficient to prove that it has

positive Euler characteristic. But this follows from the fact that if ξ is a non zero

vector in Lie(T/H), then the corresponding vector field ξ# on X has index one at

every fixed point q in XT .
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Now endow X with a T−invariant metric. By the Korn-Lichtenstein Theorem

(cfr.[9]) this metric is conformally equivalent to the standard metric on S2. Hence

the diffeomorphism between X and S2 intertwines the T/H action on X with the

action of a one dimensional compact connected subgroup of SL(2,C), the group of

conformal transformation on S2. But these subgroups are all conjugate to each other.

So, up to conjugation, the T/H action on X can be thought as the standard S1 action

on S2, which is the rotation about an axis.

The standard action of S1 on S2 has two fixed points, the “north pole” N and

“south pole” S.

Observe that if the Lie algebra of H is given by Ker(α), and ξ ∈ ZT is a primitive

element in the group lattice of T such that α(ξ) 6= 0, then α(ξ) can be thought as

the speed at which S1 is rotating the sphere S2.

Now we want to study the equivariant cohomology ring HT (X) of X.

First of all observe that X is equivariantly formal. In fact the spectral sequence

associated to the Cartan complex ΩT (X) collapses at the E1 stage, since the coho-

mology of X is non zero only in dimension zero and two. Hence in particular, if N

and S denote the fixed points of the T−action, we have that the restriction map

i∗ : Hk
T (X) → Hk

T ({N, S}) = Sk(t∗) ⊕ Sk(t∗) is injective. Hence we can view HT (X)

as a subring of Sk(t∗) ⊕ Sk(t∗).

Let H be the codimension one subtorus stabilizing X, with Lie algebra given by

h =Ker(α), and let rH : S(t∗) → S(h∗) be the restriction map induced by the inclu-

sion h →֒ t. The next theorem studies the image of i∗.

Theorem 1.4.4. An element (f, g) ∈ Sk(t∗)⊕Sk(t∗) is in the image of i∗ if and only

if

rH(f) = rH(g) (1.9)

Observe that condition (1.9) is equivalent to say that

f − g = αP, for some P ∈ Sk−1(t∗) (1.10)
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Proof. First of all notice that the following diagram

Hk
T (X) −→ Hk

H(X)

↓ ↓

Hk
T ({N, S}) −→ Hk

H({N, S})

commutes, where the horizontal arrows are obtained by restricting the action of the

group T to H , and the vertical arrows are induced by the inclusion {N, S} →֒ X.

Since H acts trivially on X,

Hk
H(X) = H0(X) ⊗ Sk(h∗) ⊕H2(X) ⊗ Sk−1(h∗) .

Hence an element ω̃ in Hk
T (X) is mapped into an element of Hk

H(X) of the form

1 ⊗ P1 + ω ⊗ P2,

where P1 ∈ Sk(h∗), P2 ∈ Sk−1(h∗) and ω ∈ H2(X). So condition (1.9) follows from

the commutativity of the diagram, since

rH(f) = rH(g) = P1

Hence the subring of Sk(t∗)⊕Sk(t∗) given by the pairs (f, g) such that rH(f) = rH(g)

contains i∗(Hk
T (X)). In order to prove that the converse is also true, it is sufficient

to consider the dimension of these rings. In fact dim i∗(Hk
T (X)) = dimHk

T (X) =

dim(H0(X) ⊗ Sk(t∗) ⊕H2(X) ⊗ Sk−1(t∗)) = dim Sk(t∗) + dim Sk−1(t∗).

If we replace condition (1.9) with condition (1.10), it is clear that the subring of

Sk(t∗)⊕ Sk(t∗) satisfying (1.10) has dimension dim Sk(t∗) + dim Sk−1(t∗). So the con-

clusion follows.

Observe that if ω̃ is an element of Hk
T (X), and i∗(ω̃) = (f, g), then condition

(1.10) is also a consequence of the ABBV Theorem (cfr. Theorem 1.2.5). In fact if α

is the weight of the isotropy representation at N , hence −α the weight of the isotropy
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representation at S, then the ABBV Localization theorem gives

∫

X

ω̃ =
ω̃(N)

α
+
ω̃(S)

−α
=
f − g

α
∈ Sk−1(t∗) .

Let M be a GKM manifold. Then by definition, the equivariant cohomology ring

of M is a free S(t∗)−module. So Theorem 1.2.3 implies that the restriction map

i∗ : HT (M) → HT (MT ) = Maps(MT , S(t∗))

is injective.

Let X1, . . . , XN be the collection of embedded spheres that arise as fixed points

of codimension one subtori of T . Let Hi be the stabilizer of Xi, and Ker(αi) its Lie

algebra, for some αi ∈ t∗. Now we are ready to prove the celebrated theorem by

Goresky-Kottwitz-MacPherson, presented in [12] in greater generality.

Theorem 1.4.5. Let M be a GKM manifold, and let i∗ : HT (M) → HT (MT ) =

Maps(MT , S(t∗)) be the restriction map to the fixed point set. Then an element

P ∈Maps(MT , S(t∗)) belongs to i∗(HT (M)) if and only if

P (p1) − P (p2) = αiQ, for some Q ∈ S(t∗)

for every pair of fixed points p1 and p2 such that {p1, p2}∩Xi = XT
i , where Xi is one

of the embedded sphere defined before.

Proof. It is sufficient to combine the Chang-Skjelbred theorem (cfr. Section 1.2.1)

and Theorem 1.4.4.

1.4.1 The GKM graph of M

The information about the embedded two spheres X1, . . . , XN , as well as the equiv-

ariant cohomology of the GKM manifold M , can be encoded in a graph, called the
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GKM graph Γ = (VΓ, EΓ) associated to M , which is defined as follows.

• The set of vertices VΓ is given by the fixed point set MT .

• There exists a directed edge e from p to q, where (p, q) ∈ VΓ × VΓ, if and

only if there exists an embedded sphere Xi, for some i = 1, . . . , N , such that

{p, q} ∩Xi = XT
i .

Observe that if e = (p, q) is an edge in EΓ, then also ē = (q, p) is an edge in EΓ.

For every edge e = (p, q), we will refer to p (resp. q) as the initial point i(e) (resp.

terminal point t(e)) of e. Let Xe = Xē be the sphere corresponding to the edges e

and ē.

In order to encode the information about the action of T on M , we can assign to

each directed edge e in EΓ the weight of the isotropy representation of T on Tt(e)Xe.

On the graph Γ this assignment defines an axial function, i.e. a map

α : EΓ → t∗

which clearly satisfies α(e) = −α(ē).

Now we want to define a connection ∇e along an edge e ∈ EΓ. Observe that

the restriction of the tangent bundle TM to Xe splits equivariantly as a sum of line

bundles Li, i = 1, . . . , n

TM|Xe
=

n⊕

i=1

Li

Geometrically, a connection ∇e along e is a bijection between the (one dimensional)

complex spaces (Li)p and (Li)q, where the (Li)p coincides with the tangent space at

p of the sphere Xei
, where i(ei) = p. We can define the connection combinatorially

in the following way. Let e = (p, q) be a directed edge in EΓ, and define Ep (resp.

Eq) to be the subset of EΓ composed by edges e′ such that i(e′) = p (resp. i(e′) = q).

Then a connection along e is a bijection ∇e : Ep → Eq. A connection ∇ on Γ is a

family of connections ∇ = {∇e}e∈EΓ
such that ∇e = ∇−1

ē .

Observe that, if H denotes the stabilizer of the sphere Xe, then the isotropy

representation of H on the normal bundle of Xe doesn’t depend on the point x ∈ Xe.
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In particular this implies that the weights of the isotropy action of T at p = i(e) are

equal to the weights of the isotropy action of T at q = t(e) modulo α(e).

We will say that the axial function α is compatible with the connection ∇ if for

every edge e′ in Ep we have

α(∇e(e
′)) − α(e′) = cα(e)

for some constant c. These constants are in this case integers. In order to see this,

observe that if c(Li) is the Chern class of the bundle Li, then c(Li)(i(e)) = α(ei) and

c(Li)(t(e)) = α(∇e(ei)) for all the edges ei ∈ Ep. Hence, integrating c(Li) on Xe one

gets from the ABBV Localization theorem

ci =
α(∇e(ei)) − α(ei)

α(e)

So this constant coincides with the Chern number of Li, and hence it is an integer.

Given a GKM graph Γ together with an axial function α, we can define the

cohomology ring H∗
α(Γ) of the pair (Γ, α). Let f be an element of Maps(VΓ, S(t∗)).

Then f is an element of H∗
α(Γ) if and only if for every edge e = (p, q), f(p) and f(q)

have the same image in S(t∗)/α(e)S(t∗). Then Theorem 1.4.5 can be rephrased in the

following way.

Theorem 1.4.6. Given a GKM manifold M , let H∗
T (M) be the equivariant coho-

mology ring of M . Let Γ be the GKM graph associated to M , α the associated axial

function on EΓ, and H∗
α(Γ) the cohomology ring of (Γ, α). Then as rings, as well as

S(t∗)−modules, we have

H∗
T (M) ≃ H∗

α(Γ) (1.11)

1.4.2 Examples

Example 1.4.7 The complex projective space CP n

Let G = SU(n+1), with Lie algebra g, and let T be the torus of diagonal matrices in
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G with Lie algebra t. Let {xi}
n+1
i=1 be a basis of (Rn+1)∗ such that xi(ξ1, . . . , ξn+1) = ξi.

We can identify the dual of the Lie algebra of T , t∗, with the subset of (Rn+1)∗ given

by {
n+1∑

j=1

µjxj s.t.

n+1∑

j=1

µj = 0}. We choose as a basis of t∗ the vectors αj = xj −xj+1,

for all j = 1, . . . , n. Define µ to be the vector in Rn+1, µ = (µ1, . . . , µn+1), such that

µ1 < µ2 = µ3 = . . . = µn+1 and
∑n+1

j=1 µj = 0. Let p be the point in t∗ given by

p =
∑n+1

j=1 µjxj . Consider now the G coadjoint orbit through p, Op = G · p ⊂ g∗.

This orbit is isomorphic to G/Pp, where Pp is the stabilizer of p, which is given by

S(U(1) × U(n)). This space is naturally isomorphic to the complex projective space

CP n, with symplectic form inherited by its coadjoint orbit structure. Moreover T

acts on CP n, and the T−fixed points are given by

(CP n)T = (G/Pp)
T = {

n+1∑

j=1

µjxσ(j), σ ∈ Sn+1} ⊂ t∗

Observe that there are only n + 1 distinct fixed points p1, . . . , pn+1, given by pσ(1) =

µ1xσ(1)+µ2(

n+1∑

i=2

xσ(i)), σ ∈ Sn+1, since all the permutation σ in Sn+1 such that σ(1) = j

are determining the same point pj.

It is easy to check that the weights of the isotropy action of T at pi are αj = xj−xi,

for all j ∈ {1, 2, . . . , n} \ {i}; hence they are pairwise linearly independent.

It is well known that the action of T on G · p is Hamiltonian, with moment map

given by ψ : G · p →֒ g∗ → t∗, where the first arrow denotes the inclusion of G · p in

g∗, and the second arrow is given by the projection of g∗ onto t∗. In particular the

moment map restricted to the fixed points set (G/Pp)
T is just given by the inclusion.

Since the action is Hamiltonian, by Theorem 1.1.3 this manifold is equivariantly

formal; in particular HT (CP n) is a free S(t∗)−module. Hence we can conclude that

G · p ≃ CP n, with the torus action described above, is a GKM manifold. In what

follows we describe its GKM graph Γ = (VΓ, EΓ) and the associated axial function.

• The set of vertices is composed by n+ 1 elements p1, . . . , pn+1

• There exists a directed edge e between any two vertices pi and pj (with i 6= j);

this edge corresponds to the sphere stabilized by the subtorus with Lie algebra
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Ker(xi − xj).

• If (pi, pj) denotes the directed edge from pi to pj , with i 6= j, then α(pi, pj) =

xi − xj

p1

p2

p3

x1 − x2

x2 − x3

x1 − x3

Figure 1-1: The GKM graph associated to CP 2

In the above figure, we represent the GKM graph associated to CP 2 and the

associated axial function. Observe that for every pair of vertices pi, pj, with i 6= j,

we are showing just one of the directed edges connecting pi to pj, the one from pi to

pj, with i < j.

Example 1.4.8 The variety of complete flags in Cn+1, F l(Cn+1)

Let µ = (µ1, . . . , µn+1) be a generic vector in Rn+1 such that µ1 < µ2 < . . . < µn+1

and

n+1∑

j=1

µj = 0. With the same notation as in the previous example, the G coadjoint

orbit through the point p =
n+1∑

j=1

µjxj, G ·p, is diffeomorphic to the variety of complete

flags in Cn+1, F l(Cn+1). The T−fixed points are in bijection with the elements of

Sn+1, and they are given by

(F l(Cn+1))T = (G · p)T = {
n+1∑

j=1

µjxσ(j), σ ∈ Sn+1}

Just like before, the symplectic structure is inherited by the structure of coadjoint or-

bit, and the action of T is Hamiltonian, with moment map ψ : G ·p →֒ g∗ → t∗. More-

32



over, if we identify the point
∑n+1

j=1 µjxσ(j) with the permutation σ = σ(1) . . . σ(n+1)

(written in the one line notation), then the weights of the isotropy action at σ are

given by sign(σ−1(k) − σ−1(h))(xh − xk), for all the subsets {h, k} of {1, . . . , n + 1}.

So F l(Cn+1) is a GKM manifold with respect to the T−action described above. The

GKM graph Γ = (VΓ, EΓ) and the axial function are described below.

• The vertices are in bijection with the elements of the permutation group Sn+1.

More precisely, the permutation σ = σ(1) . . . σ(n + 1) represents the point

µ1xσ(1) + µ2xσ(2) + . . .+ µn+1xσ(n+1).

• Two vertices σ, σ′ ∈ Sn+1 are joined by an edge e if and only if σ and σ′ differ

by a transposition, i.e. σ′ = (h, k)σ.

• The axial function is given by α(σ, σ′) =sign(σ−1(k) − σ−1(h))(xh − xk).

We recall that the multiplication to the left (h, k)∗ is swapping the values h and k in

the one line notation of σ, and the right multiplication ∗(i, j) is acting on the position

i and j, i.e. σ′ = σ(i, j) if and only if σ′ = (σ(i), σ(j))σ.

 123

132

213

231

312

321

x1 − x2

x2 − x3

x1 − x3

Figure 1-2: The GKM graph associated to F l(C3)

In the above figure, parallel edges are labelled with the same axial function.
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1.5 Results

In the second chapter, the first result is a generalization of Theorem 1.4.5 to spaces

M which are T−equivariantly formal manifolds, and admit a T−equivariant fiber

bundle π : M → M̃ over a GKM space M̃ (cfr. Theorem 2.1.6). In particular this

theorem asserts that we can compute the equivariant cohomology of M in terms of the

equivariant cohomology of the base, and the equivariant cohomology of the fibers over

M̃T . Then we consider the abstract setting of GKM graphs. We define the concept

of “GKM fiber bundle” between two abstract GKM graphs (Γ, α) and (B, αB), and

derive the combinatorial implications of the existence of such a map at the level of

their GKM graphs. In particular we prove a combinatorial analogue of Theorem 2.1.6

(cfr. Theorem 2.4.2), which can be interpreted as a discrete version of the Serre-Leray

theorem. Moreover we define the concept of “holonomy group” and “invariant class”

associated to a GKM fiber bundle.

In the third chapter we analyse in detail the example which was the source of

inspiration for the results above: the complete flag variety GC/B fibering over partial

flag varieties GC/P . First we recall the structure of the associated GKM graphs of

these spaces; then we define these projection maps combinatorially, and prove that

they are GKM fiber bundles. Then we apply all the results on equivariant cohomology

from the previous chapter to these examples. In particular we study the holonomy

group of these bundles, and prove its connection with the subgroup of the Weyl group

of G acting on the fibers. Then, by applying multiple times Theorem 2.4.2, we are

able produce equivariant cohomology classes on GC/B which are invariant under the

action of the Weyl group, where GC/B is a complete flag variety of type An, Bn, Cn

and Dn.

In the fourth chapter we work with T Hamiltonian manifolds M which are also

GKM spaces. To a generic component of the moment map ϕ, one can associate a

collection of equivariant cohomology classes αp, where p ∈ MT , and show they form
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a basis of the equivariant cohomology of M as a module over S(t∗). We refer to these

elements as the canonical classes associated to ϕ (cfr. [15], [11]). These classes do not

always exist, but when they exist they are unique. Since the equivariant cohomology

of M can be regarded as a subring of the equivariant cohomology of the fixed point

set MT , which is discrete in this case, it is important to be able to compute the

restriction of the canonical classes to MT . We first prove a Theorem (cfr. Theorem

4.2.3), which is a generalization of a result in [11], which allows us to compute these

restrictions using different equivariantly closed two forms of M ; in particular this

results recover the result in [11], which only uses the equivariant symplectic form of

M . Then, if π : (M,ω) → (M̃, ω̃) is a T−equivariant map between T−Hamiltonian

manifolds which are also GKM spaces, we define a category of maps, called “weight

preserving maps” (as a very particular case, GKM fiber bundles are weight preserving

maps). For this type of map we prove that we can use the pre-symplectic form π∗(ω̃)

to compute these restrictions. Moreover we derive a formula that computes induc-

tively the restriction of the canonical classes on M in terms of the canonical classes

on the fibers over the fixed point set of M̃ . Finally, we investigate how the integrality

of these formulas is related to the cohomology ring of M̃ .

In the fifth chapter we apply the results in the previous chapter to the case in

which M is a complete flag variety. In this case, canonical classes exist and corre-

spond to equivariant Schubert classes. Combinatorial formulas which compute the

restriction of these classes to the fixed points of the T action have already been stud-

ied in the combinatorics literature (cfr. [4]). The beauty of these formulas is that

they are manifestly positive and integral. In this chapter we use the structure of

weight preserving maps to produce formulas that are positive and integral in the case

in which M is a complete flag variety of type An, Bn, Cn and Dn. These formulas

are not equivalent to the one found in [4], except in type An (cfr. [25], where the

author proves the same formulas in type An and Cn using combinatorial tools, and

the equivalence with Billey’s formula in type An). We also prove a general positive

integral formula for canonical classes on generic flag varieties, which implies as a par-
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ticular case the divided difference operator identities.

The second and third chapters contain results from a joint work with V. Guillemin

and C. Zara (cfr. [14]), and the fourth and fifth chapters contain results from a joint

work with S. Tolman (cfr. [23]).
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Chapter 2

GKM fiber bundles

Let M and M̃ be T−equivariantly formal manifolds; suppose moreover that M̃ is

GKM. Then the existence of a T−equivariant fiber bundle π : M → M̃ gives informa-

tion about the equivariant cohomology of M in terms of the equivariant cohomology

of the base M̃ and the equivariant cohomology of the fibers over the fixed point set

of M̃ .

This is the content of the first section, in which we derive a generalization of the

Chang-Skjelbred theorem, which gives as a consequence a description of the equiv-

ariant cohomology of M in terms of the GKM graph of M̃ and the equivariant coho-

mology of the fibers over the T−fixed point set of M̃ .

In the other sections we derive the graph theoretical implications of the existence

of a “GKM fiber bundle” between two abstract GKM graphs. In particular we prove

a discrete version of the Serre-Leray theorem.

2.1 The Chang-Skjelbred Theorem for fiber

bundles

Let T = T n, M and M̃ be T−manifolds and π : M → M̃ a T−equivariant fiber

bundle. Suppose that M is T−equivariantly formal and M̃ is GKM. Let Ki, i =

1, . . . , N be the codimension one isotropy groups of M̃ and let ki be the Lie algebra
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of Ki.

Lemma 2.1.1. If K is an isotropy group of M̃ , then

Lie(K) = ∩kir

for some multi-index 1 ≤ i1 < . . . < im ≤ N .

For K a subgroup of T let XK = π−1(M̃K), where M̃K ⊂ M̃ denotes the set of

points in M̃ fixed by K. We recall ([16, Section 11.3]) that if A is a finitely generated

S(t∗)−module, then the annihilator ideal of A, IA is defined to be

IA = {f ∈ S(t∗), fA = 0} ,

and the support of A is the algebraic variety in t ⊗ C associated with this ideal, i.e.

suppA = {x ∈ t ⊗ C, f(x) = 0 for all f ∈ IA} .

Then from the lemma and [16] Theorem 11.4.1 one gets the following.

Theorem 2.1.2. The S(t∗)−modules H∗
T (M \XT ) and H∗

T (M \XT )c are supported

on the set
N⋃

i=1

ki ⊗ C (2.1)

where H∗
T ( · )c denotes the equivariant cohomology with compact supports.

By [16, Section 11.3] there is an exact sequence

Hk
T (M \XT )c −→ Hk

T (M)
i∗

−→ Hk
T (XT ) −→ Hk+1

T (M \XT )c (2.2)

Therefore since H∗
T (M) is a free S(t∗)−module Theorem 2.1.2 implies the following

theorem.

Theorem 2.1.3. i∗ is injective and coker(i∗) is supported on

N⋃

i=1

ki ⊗ C
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As a consequence we get the following corollary.

Corollary 2.1.4. If e is an element of H∗
T (XT ), there exist non-zero weights α1, . . . , αr

s.t. αi = 0 on some kj and

α1 · · ·αre ∈ i∗(H∗
T (M)) (2.3)

The next theorem is a fiber bundle version of the Chang-Skjelbred theorem.

Theorem 2.1.5. The image of i∗ is the ring

N⋂

i=1

i∗Ki
H∗
T (XKi) (2.4)

where iKi
denotes the inclusion of XT into XKi.

Proof. Via the inclusion i∗ we can view H∗
T (M) as a submodule of H∗

T (XT ). Let

e1, . . . , em be a basis of H∗
T (M) as a free module over S(t∗). Then by Corollary 2.1.4

for any e ∈ H∗
T (XT ) we have

α1 · · ·αre =
∑

fiei, fi ∈ S(t∗) .

Then e =
∑ fi

p
ei, where p = α1 · · ·αr. If fi and p have a common factor we can

eliminate it and write e uniquely as

e =
∑ gi

pi
ei (2.5)

with gi ∈ S(t∗), pi a product of a subset of the weights α1, . . . , αr and pi and gi

relatively prime.

Now suppose that K is an isotropy subgroup of M̃ of codimension one and e is in

the image of H∗
T (XK). By [16] Theorem 11.4.2 the cokernel of the map H∗

T (M) →

H∗
T (XK) is supported on the subset ∪ki ⊗ C, ki 6= k of (2.1), and hence there exists

39



weights β1, . . . , βr, βi vanishing on some kj but not on k, such that

βi · · ·βse =
∑

fiei .

Thus the pi in (2.5), which is a product of a subset of the weights α1, . . . , αr, is a

product of a subset of weights none of which vanish on k. Repeating this argument

for all the codimension one isotropy groups of M̃ we conclude that the weights in

this subset cannot vanish on any of these k’s, and hence is the empty set, i.e. pi = 1.

Then if e is in the intersection (2.4), e is in H∗
T (M).

Now suppose that M̃ = CP 1. This action of T on M̃ is effectively an action of a

quotient group, T/T1, where T1 is the codimension one subgroup of T stabilizing M̃ .

Moreover M̃T consists of two points, pi, i = 1, 2 , and X = XT consists of the two

fibers π−1(pi) = Fi. Let T = T1 × S1. Then S1 acts freely on CP 1 \ {p1, p2} and the

quotient by S1 of this action is the interval (0, 1), so one has an isomorphism of T1

spaces

(M \X)/S1 = F × (0, 1) , (2.6)

where, as a T1−space, F = F1 = F2.

Consider now the long exact sequence (2.2). Since i∗ is injective this becomes a

short exact sequence

0 → Hk
T (M) → Hk

T (X) → Hk+1
T (M \X)c → 0 . (2.7)

Since S1 acts freely on M \X we have

Hk+1
T (M \X)c = Hk+1

T1
((M \X)/S1)c

and by fiber integration one gets from (2.6)

Hk+1
T1

((M \X)/S1)c = Hk
T1

(F ) ,
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so the sequence (2.7) becomes

0 → Hk
T (M)

i∗

→ Hk
T (F1) ⊕Hk

T (F2)
r
→ Hk

T1
(F ) → 0 (2.8)

where r is the forgetful map Hk
T (Fi) → Hk

T1
(Fi) = Hk

T1
(F ).

We can summarize the previous results in the following theorem, which offers a

generalization of the GKM condition for T−equivariantly formal manifoldsM fibering

equivariantly over GKM spaces M̃ .

Theorem 2.1.6. Let M and M̃ be T−manifolds and let π : M → M̃ be a T−equivariant

fiber bundle. Suppose that M is T−equivariantly formal and M̃ is GKM; let (V,E) be

its GKM graph. For every p ∈ V let Fp = π−1({p}) be the fiber over p. Consider the

ring of maps that associate to each element p ∈ V an equivariant cohomology class

fp ∈ H∗
T (Fp), and let R be the subring characterized by the following condition:

• For every edge e ∈ E, if K denotes the stabilizer of the CP 1 associated to e,

then

rK(f(i(e))) = rK(f(t(e)))

where rK : H∗
T (Fp) → H∗

K(Fi(e)) ≃ H∗
K(Ft(e)), with p ∈ {i(e), t(e)}.

Then H∗
T (M) is isomorphic to R.

In [14] we also offer a sheaf theoretic interpretation of the previous theorem.

2.2 GKM graphs and cohomology of GKM graphs

Let Γ = (V,E) be a graph, where V denotes the set of vertices, and E the set of

directed edges. If e is an element of E directed from p to q, we will refer to p as the

initial point i(e) of e, and q as the terminal point t(e) of e. Hence every undirected

edge will appear twice in E, once as the edge joining p to q, and once as the edge

joining q to p. If e is the edge directed from p to q, we denote by e the “inverse” of

e, i.e. the edge e with opposite direction, joining q to p.
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Let p be an element of V , and define Ep to be the subset of E consisting of edges

e such that i(e) = p. In this thesis we will mainly consider graphs (V,E) which are

regular, i.e. graphs for which the cardinality of Ep doesn’t depend on p, for all the

vertices p in V .

Definition 2.2.1. A connection ∇e along an edge e ∈ E is a bijection from Ei(e) to

Et(e) satisfying ∇e(e) = e. A connection ∇ on Γ = (V,E) is a family of connections

{∇e}e∈E satisfying ∇e = ∇−1
e .

Let t be a finite dimensional vector space over R, and let t∗ denote its dual.

Definition 2.2.2. An axial function α is a map from E to t∗ satisfying the fol-

lowing properties.

(i) For every vertex p ∈ V , the vectors in the set {α(e), e ∈ Ep} are pairwise

linearly independent.

(ii) For every edge e ∈ E, α(e) = −α(e)

Observe that these properties are automatically satisfied when Γ = (V,E) is the

GKM graph associated to a GKM manifold, where the axial function is the one

described in section 1.4.1.

Consider a connection ∇ on Γ. We will say that an axial function α : E → t∗ is

compatible with the connection ∇ if the following condition holds.

(iii) For every edge e = (p, q) in E and for every e′ ∈ Ep we have

α(∇e(e
′)) − α(e′) = cα(e)

for some c ∈ R which depends on e and e′.

Definition 2.2.3. Let Γ = (V,E) be a regular graph, ∇ be a connection on Γ and

α : E → t∗ an axial function compatible with ∇. Then the pair (Γ, α) is called an

(abstract) GKM graph.
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Example 2.2.4 The GKM graph (Kn+1, α)

Let Γ be the complete graph with n+1 vertices {1, 2, . . . , n+1}. Define on this graph

a connection ∇ in such a way that ∇(i,j) : Ei → Ej sends (i, j) to (j, i) and (i, k) to

(j, k) for k 6= i, j. Moreover let {x1, . . . , xn+1} be a basis of t∗n+1, and consider the

axial function α : E → t∗n+1 given by α(i, j) = xi − xj . Then this axial function α

is compatible with ∇. Observe that the image of the axial function is given by the

subspace {
n+1∑

i=1

λixi ∈ t∗n+1 s.t.
n+1∑

i=1

λi = 0}. So (Kn+1, α) is a GKM graph. This is

precisely the GKM graph associated to the complex projective space CP n described

in example 1.4.7.

Example 2.2.5 The permutahedron (Sn+1, α)

Let Γ be the graph such that the set of vertices is in bijection with the elements of

the permutation group on n + 1 elements Sn+1, and two elements σ, σ′ in Sn+1 are

connected by an edge if and only if they differ by a transposition, i.e. σ′ = σ(i, j).

Such a graph is called a permutahedron, and we will refer to it simply as Sn+1. We

recall that the action of the transposition (i, j) on the right, ∗(i, j), is swapping the

elements of σ at positions i and j in the one line notation for σ, σ = σ(1) . . . σ(n+1);

whereas the action of the transposition (h, k) on the left, (h, k)∗ is swapping the

elements h and k in the one line notation of σ. Hence σ′ = σ(i, j) if and only if

σ′ = (σ(i), σ(j))σ, and two permutations differ by a transposition on the right if and

only if they differ by a transposition on the left. For every edge e = (σ, σ′), where

σ′ = (h, k)σ define ∇e : Eσ → Eσ′ to be

∇e(u, (a, b)u) = (v, (h′, k′)v)

where (h′, k′) = (h, k)(a, b)(h, k). An axial function α compatible with the connection

∇ defined above is the following: if σ′ = (h, k)σ then α(σ, σ′) = sign(σ−1(k) −

σ−1(h))(xh − xk). Hence (Sn+1, α) is a GKM graph; observe that it is precisely the

GKM graph associated to the variety of complete flags in Cn+1, F l(Cn+1), described

in example 1.4.8.
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2.2.1 The cohomology ring of GKM graphs

Let (Γ, α) be an abstract GKM graph, where α : E → t∗ is an axial function compat-

ible with some connection ∇. We want to define the cohomology ring of an abstract

GKM graph. Let S(t∗) be the symmetric algebra on t∗; if {x1, . . . , xn} is a basis of

t∗, then S(t∗) can be identified with the ring of polynomials R[x1, . . . , xn] (we will

use real coefficients unless otherwise stated). Then, inspired by the description of the

equivariant cohomology of a GKM manifold (cfr. Theorem 1.4.6), we want to define

the equivariant cohomology ring H∗
α(Γ) of a GKM graph (Γ, α). Consider the ring

Maps(V, S(t∗)), where V is the set of vertices of Γ.

Definition 2.2.6. An element f of Maps(V, S(t∗)) is in H∗
α(Γ) if and only if for every

edge e of Γ the following compatibility condition is satisfied

f(t(e)) − f(i(e)) = Pα(e), for some P ∈ S(t∗) (2.9)

This can be rephrased by saying that both f(t(e)) and f(i(e)) have the same

image in S(t∗)/α(e)S(t∗), for every edge e of Γ.

The ring structure onH∗
α(Γ) is simply given by the ring structure on Maps(V, S(t∗)).

Observe that H∗
α(Γ) is also an S(t∗)−module, since for every class f ∈ H∗

α(Γ), the ele-

ment Pf ∈ Maps(V, S(t∗)) such that (Pf)(p) = Pf(p) still satisfies the compatibility

condition (2.9), hence it is an element of H∗
α(Γ).

As for the grading, if f is an element of H∗
α(Γ) such that f(p) is a homogeneous

polynomial of degree k in S(t∗) for every p ∈ V , then f has degree 2k in H∗
α(Γ). If

H2k
α (Γ) denotes the space of cohomology classes of degree 2k in H∗

α(Γ), then we have

H∗
α(Γ) =

⊕

k≥0

H2k
α (Γ)

and the cohomology of (Γ, α) vanishes in odd dimension.

As we saw in Example 2.2.4, the image of the axial function α : E → t∗ might not
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be the entire space t∗. Hence for every vertex p ∈ V , define hp to be the subspace of

t∗ generated by the image of the axial function on edges e such that i(e) = p, i.e.

hp = span{α(e), e ∈ Ep} ⊂ t∗

Since Γ = (V,E) is a GKM graph, it is clear that if Γ is connected then hp doesn’t

depend on p. Let t∗0 denote this common image; then if we define α0 to be α0 : E → t∗0,

then also (Γ, α0) is a GKM graph.

Definition 2.2.7. An axial function α : E → t∗ is called effective if t∗0 = t∗.

Let Γ0 = (V0, E0) be a connected subgraph of Γ = (V,E) such that if e is an edge

in E with i(e), t(e) ∈ V0, then e ∈ E0. Suppose moreover that the connection ∇

defined on Γ satisfies

∇e(Ep ∩ E0) = Eq ∩E0

for all the edges e ∈ E0, with i(e) = p and t(e) = q. Observe that in this case the axial

function α : E → t∗ restricts to an axial function α : E0 → t∗ which is compatible

with the restriction of ∇ to E0. We will refer to the pair (Γ0, α) as a GKM subgraph

of (Γ, α). From the definition it follows that Γ0 is a regular graph as well, and (Γ0, α)

is a GKM graph on its own. Let (Γ1, α1) and (Γ2, α2) be two GKM graphs, where if

Γi = (Vi, Ei), then αi : Ei → t∗i , i = 1, 2.

Definition 2.2.8. An isomorphism of GKM graphs from (Γ1, α1) to (Γ2, α2) is

a pair (Φ,Ψ), where

(i) Φ : Γ1 → Γ2 is an isomorphism of graphs

(ii) Ψ : t∗1 → t∗2 is an isomorphism of linear spaces

(iii) For every edge (p, q) of Γ1 we have

α2(Φ(p),Φ(q)) = Ψ(α1(p, q))
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In particular, if E1 and E2 denote respectively the set of edges of Γ1 and Γ2, then

condition (i) implies that there exists a bijection Φ between these two sets, and that

the isomorphism Ψ intertwines the axial function on E1 and E2, i.e. the following

diagram

E1
Φ

//

α1

��

E2

α2

��

t∗1
Ψ

// t∗2

commutes.

2.3 Fiber bundles of GKM spaces

In what follows we will first introduce some definitions concerning particular mor-

phisms between graphs. Then we will define the same morphisms, but in the GKM

category, i.e. in the definition we will introduce compatibility conditions on the axial

functions defined on the GKM graphs.

2.3.1 The complete flag variety F l(Cn+1) fibering over the

complex projective space CP n

In this example we start with two GKM manifolds, the complete flag variety F l(Cn+1)

and the complex projective space CP n, exhibit a T−equivariant fibration between

these two spaces, and derive the graph theoretical implications of the existence of

such a map at the level of their GKM graphs. In the next sections, motivated by this

example, we will formalize some of these concepts in the abstract setting of GKM

graphs.

Let F l(Cn+1) be the variety of complete flags in Cn+1, and let V = (V1, . . . , Vn+1)

be a point in F l(Cn+1), i.e. a complete flag in Cn+1, where Vi is a complex vector

space of dimension i, and Vi+1 ⊃ Vi for all i = 1, . . . , n. Let CP n be the complex
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projective space of dimension n. Then there is a natural projection map

π : F l(Cn+1) → CP n

which is given by

π(V1, . . . , Vn+1) = V1 ,

where the typical fiber is isomorphic to a complete flag in Cn, F l(Cn).

Consider the description of F l(Cn+1) and CP n as GKM spaces given in section

1.4.2.

LetG = SU(n+1) and let T be the torus of diagonal matrices inG with Lie algebra

t. Then we can identify t∗ with the subset of (Rn+1)∗ given by {
∑n+1

j=1 λjxj s.t.
∑n+1

j=1 λj =

0}, where xi(ξ1, . . . , ξn+1) = ξi. Let p0 be a point in t∗ given by p0 =
n+1∑

i=1

µixi, where

µ = (µ1, . . . , µn+1) is a generic vector in Rn+1 satisfying µ1 < µ2 < . . . < µn+1 and
∑n+1

i=1 µi = 0. Using the Killing form we can identify the Lie algebra Lie(G) with its

dual Lie(G)∗, and hence we can consider t∗ as a subspace of Lie(G)∗. Then, the G

coadjoint orbit through p0, G · p0, is isomorphic to F l(Cn+1), with symplectic struc-

ture ωp0 given by its coadjoint orbit structure. Moreover the action of T on F l(Cn+1)

is Hamiltonian, and the moment map ψ restricted to the T−fixed point set is just

given by the inclusion, i.e. for all p =
∑n+1

i=1 µixσ(i) ∈ (G · p0)
T we have

ψ(
n+1∑

i=1

µixσ(i)) =
n+1∑

i=1

µixσ(i) ,

where σ ∈ Sn+1.

Let p̃0 be a point in t∗ given by p̃0 = µ̃1x1 + µ̃2

∑n+1
i=2 xi, where µ̃1 < µ̃2 and

µ̃1 + nµ̃2 = 0. Then the G coadjoint orbit through p̃0 is isomorphic to CP n, with

symplectic structure ωep0 inherited by its coadjoint structure. The action of T on CP n

is Hamiltonian, and the moment map ψ̃ restricted to the T−fixed point set is just
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the inclusion, i.e. for all p = µ̃1xσ(1) + µ̃2

∑n+1
i=2 xσ(i)

ψ̃(µ̃1xσ(1) + µ̃2

n+1∑

i=2

xσ(i)) = µ̃1xσ(1) + µ̃2

n+1∑

i=2

xσ(i) ,

where σ ∈ Sn+1.

In this setting, the projection map π described before is given by

π : (G · p0, ωp0, ψ) → (G · p̃0, ωep0, ψ̃)

g · p0 7→ g · p̃0

It is well known that this projection map is a T−equivariant fiber bundle, with typical

fiber isomorphic to a generic SU(n) coadjoint orbit, which we identify with F l(Cn).

Let Γ = (V,E) and B = (VB, EB) be the GKM graphs associated respectively to

F l(Cn+1) and CP n, with axial functions α and αB. Then the elements of V are in

bijection with the elements of Sn+1, and the bijection is given by

p =

n+1∑

i=1

µixσ(i) 7→ σ = σ(1) . . . σ(n+ 1)

The set of vertices VB is composed by n+1 elements {1, . . . , n+1}, where i corresponds

to the T−fixed point pi = µ̃1xi + µ̃2

∑
j 6=i xj .

From the equivariance of π it is clear that

• Vertices of Γ are mapped to vertices of B

• If e = (p, q) is an unoriented edge in E such that π(p) 6= π(q), then (π(p), π(q))

is an unoriented edge in EB

In the next proposition we want to give a combinatorial description of π at the

level of the graphs Γ and B; in particular we want to describe how the axial function

behaves with respect to π.

Proposition 2.3.1. The fibration π mentioned above has the following properties:

(i) If σ is a vertex of Γ, then π(σ) = π(σ(1), . . . , σ(n+ 1)) = σ(1).
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(ii) An edge e = (σ, σ′) in Γ, where σ′ = σ(i, j), i < j, is vertical, i.e. π(σ) = π(σ′),

if and only if i > 1.

(iii) If an edge e = (σ, σ′) of E projects to an edge π(e) = (h, k) of EB, with h 6= k,

then α(e) = αB(π(e)) = xh − xk.

Proof. First of all observe that the projection π restricted to the T−fixed point set

is simply given by

π : (G · p0)
T −→ (G · p̃0)

T

∑n+1
i=1 µixσ(i) 7−→ µ̃1xσ(1) + µ̃2

∑n+1
i=2 xσ(i)

So it is clear that, as a map from V to VB, π sends the element σ(1) . . . σ(n+1) to σ(1);

hence (i) and (ii) follow immediately. Consider an edge e of Γ given by e = (σ, σ′)

such that (π(σ), π(σ′)) = (h, k). This means that σ(1) = h and σ(j) = k for some

j > 1. Then by definition of axial function on Γ we have that α(σ, σ′) =sign(σ−1(k)−

σ−1(h))(xh − xk) = xh − xk = αB(h, k), and (iii) follows.

Observe that the T−fixed points in the fiber π−1(h) are in bijection with the ele-

ments of Sn; more precisely V ∩ π−1(h) = {σ ∈ Sn+1 s.t. σ(1) = h}.

123

132

213

231

312

321

x1 − x2

x1 − x2

x2 − x3

x2 − x3

x1 − x3

x1 − x3

1

2

3

π

Figure 2-1: The projection π : F l(C3) → CP
2 from a GKM graph theoretical point of

view.
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In the above figure the darker edges correspond to the fibers of π, which is CP 1

bundle, over the fixed point set of CP 2.

Inspired by this example, in the next sections we are going to define the discrete

analogue of a fiber bundle between two GKM spaces, and derive the graph theoretical

implications of the existence of such a map.

2.3.2 Morphisms of graphs

Let Γ and B be connected graphs. Then π : Γ → B is a morphism of graphs if

• it maps vertices of Γ to vertices of B

• if e = (p, q) is an edge of Γ, then either π(p) 6= π(q) and (π(p), π(q)) is an edge

of B, or π(p) = π(q).

If e = (p, q) is an edge of Γ such that π(p) = π(q) (resp. π(p) 6= π(q) ), then we

will call e a vertical edge (resp. horizontal edge). In what follows we will be mainly

concerned with morphisms of graphs π which are surjective; so unless otherwise stated,

we assume that π is surjective.

For every vertex p of Γ, one has a natural “splitting” of Ep w.r.t. π, i.e. let Hp

be the set of horizontal edges of Γ with initial point p and let E⊥
p the set of vertical

edges in Ep. Then Ep = E⊥
p ∪Hp. Let EB denote the set of edges of B. Then every

morphism of graphs π naturally induces a map

(dπ)Hp
: Hp → (EB)π(p)

(p, p′) 7→ (π(p), π(p′))

Definition 2.3.2. We will say that a morphism of graphs π : Γ → B is a fibration

of graphs if the map (dπ)Hp
defined above is a bijection for every vertex p in Γ.

Observe that every fibration of graphs has the unique lifting property for paths. In

fact, given an edge (p0, p1) in EB, let q0 be a vertex in Γ such that π(q0) = p0. Then,
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since (dπ)q0 is a bijection, there exists a unique lift (q0, q1) of the edge (p0, p1) with

initial point q0, i.e. a unique edge e = (q0, q1) in E such that (dπ)q0(q0, q1) = (p0, p1).

More in general, given a path γ in B, i.e. a sequence of edges γ = (e1, . . . , ek) with

i(e1) = p0, let q0 be a vertex in the fiber π−1(p0). Then there exists a unique lift of γ

starting at q0, which is given by (e′1, . . . , e
′
k), where e′1 is the lift of e1 at q0, and e′i+1

is the lift of the edge ei+1 with initial point i(e′i+1) = t(e′i), for every i = 1, . . . , k − 1.

Consider now the fibers of the map π, π−1(p), for every vertex p of B. Let Vp be

the set of vertices of the fiber over p, and let Γp be the subgraph of Γ with vertex set

Vp. Then by definition of morphism of graphs the edge set of Γp is composed entirely

by vertical edges. When π is a fibration of graphs it is always possible to define a

map Φp,q between the set of vertices of Γp and Γq, for every edge (p, q) of B. More

precisely let p′ be a vertex of Γp, and let (p′, q′) be the lift of (p, q); then Φp,q : Vp → Vq

is simply defined to be Φp,q(p
′) = q′. It is clear that Φp,q defines a bijection between

Vp and Vq for all the edges (p, q) in B.

Definition 2.3.3. We will say that a fibration of graphs π : Γ → B is a fiber bundle

if for every edge (p, q) of B the map Φp,q is a morphism of graphs, Φp,q : Γp → Γq.

So if (p1, p2) is a vertical edge over p then (Φp,q(p1),Φp,q(p2)) is a vertical edge

over q. So for fiber bundles, the map Φp,q defines an isomorphism between the graphs

corresponding to the fibers over p and q, i.e.

Φp,q : Γp
≃

−→ Γq

2.3.3 Morphisms of GKM graphs

Now we want to define the same concepts in the GKM category. In order to do so,

we first give an example of fibration between two GKM manifolds, and derive the

properties that are naturally implied by the existence of such a map at the level of

their GKM graphs. Then we formalize the previous properties in the category of
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abstract GKM graphs.

Suppose that (M,ω, J) and (M̃, ω̃, J̃) are symplectic manifolds with compatible

almost complex structures, acted by the same torus T , and suppose that they are

GKM spaces with respect to this action. Let π be a surjective T−equivariant map

of almost complex manifolds π : (M,J) → (M̃, J̃), with surjective differential (dπ)p :

TpM → Tπ(p)M̃ . Let (Γ, α) and (B, αB) be the GKM graphs associated to M and

M̃ . Observe that π restricts to a morphism of graphs π : Γ → B since it is a

T−equivariant map and, since (dπ)p : TpM → Tπ(p)M̃ is surjective, it is a fibration

of graphs. In fact, let p be a vertex of Γ, and let (dπ)Hp
: Hp → Eπ(p) denote the

isomorphism defined before. Then this isomorphism can be canonically defined using

the axial functions α and αB. In fact, if (p, q) is an edge in Hp, by the equivariance

of π we have that α(p, q) = ±αB(π(p), π(q)); since π is a map of almost complex

manifold, then in this case we have α(p, q) = αB(π(p), π(q)). Since M and M̃ are

GKM manifolds, the map (dπ)Hp
: Hp → Eπ(p) can be canonically defined by saying

that

(dπ)Hp
(e′) = e if and only if α(e′) = αB(e)

Now consider a connection ∇B on B compatible with the axial function αB. For all

the horizontal edges e′ in E, we can define a connection ∇e′ on the set of horizontal

edges Hp, with i(e′) = p, by imposing the commutativity of the following diagram

Hp

∇e′
//

(dπ)Hp

��

Hq

(dπ)Hq

��

(EB)π(p)
(∇B)e

// (EB)π(q)

By definition of (dπ)Hp
, it is also clear that the axial function α is compatible with

∇e′ : Hp → Hq. Now we can extend the connection ∇ to be a connection defined on

the whole edge set of Γ, in such a way that it sends vertical edges into vertical edges,

horizontal edges into horizontal edges, and so that α is compatible with ∇.
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In what follows we want to define the previous concepts in the category of abstract

GKM graphs.

Definition 2.3.4. Let (Γ, α) and (B, αB) be GKM graphs with connections ∇, ∇B

compatible with α and αB. Then a map π : (Γ, α) → (B, αB) is a GKM fibration

(w.r.t. ∇ and ∇B ) if the following conditions are satisfied:

(i) π is a fibration of graphs.

(ii) For every edge e of B, if e′ denotes any lift of e, then α(e′) = αB(e).

(iii) For every edge e = (p, q) of Γ, ∇e preserves the splitting of Ep into horizontal

and vertical edges, i.e. ∇e sends horizontal edges into horizontal edges, and

hence vertical edges into vertical edges.

(iv) For every edge e of B, if e′ = (p, q) denotes its lift, the following diagram

Hp

∇e′
//

(dπ)Hp

��

Hq

(dπ)Hq

��

(EB)π(p)
(∇B)e

// (EB)π(q)

commutes.

Consider now a GKM fibration π : (Γ, α) → (B, αB), which satisfies the compat-

ibility conditions mentioned above w.r.t. ∇ and ∇B. Let Γp be the graph with set

of vertices π−1(p), where p is a vertex of B. Then since ∇ sends vertical edges into

vertical edges, and α is compatible with ∇, it follows that the fibers (Γp, α) are GKM

subgraphs of (Γ, α), with a connection ∇p which is the restriction of ∇ to the vertical

edges over p, and an axial function α which is compatible with ∇p.

Given a GKM fibration π : Γ → B, we would like to be able to describe how the

GKM subgraphs (Γp, α) change as the vertex p of B changes.

Definition 2.3.5. Let π : (Γ, α) → (B, αB) be a GKM fibration. Then π is a GKM

fiber bundle if

(i) π is a fiber bundle
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(ii) All the fibers of π are isomorphic as GKM (sub)graphs

For every edge e = (p, q) of B, let Φp,q : Γp → Γq denote the isomorphism between the

graphs corresponding to the fibers π−1(p) and π−1(q).

(iii) If e′ is the lift of e starting at p′, then for all the vertical edges (p′, p′′) in Ep′

we have

∇e′(p
′, p′′) = (Φp,q(p

′),Φp,q(p
′′))

Hence if Γ is connected all the fibers are isomorphic as GKM subgraphs. To

be more precise, let t∗p be the subspace of t∗ generated by the values that the axial

function takes on edges of Γp, i.e.

t∗p = span{α(e), e edge in Γp} ⊂ t∗

Thus we can restrict the axial function on Γp to be αp : Γp → t∗p. Then if π is a GKM

fiber bundle, for every edge (p, q) of B there exists an isomorphism of GKM graphs

Υp,q = (Φp,q,Ψp,q) : (Γp, αp) → (Γq, αq)

where Φp,q is the isomorphism of graphs defined using the unique lifting property,

and Ψp,q : t∗p → t∗q is a linear isomorphism intertwining the axial functions αp and αq.

Observe that by (iii), since α is compatible with ∇, and αp (resp. αq) is just the

restriction of α to the edges of the fiber Γp (resp. Γq), we have that if (p1, p2) is an

edge of Γp and (q1, q2) is the corresponding edge in Γq, i.e. qi = Φp,q(pi), i = 1, 2,

then αq(q1, q2) − αp(p1, p2) = cα(p1, q1), and by definition of isomorphism of GKM

graphs, αq(q1, q2) = Ψp,q(αp(p1, p2)). Now since α(p1, q1) = αB(p, q), we can conclude

that

Ψp,q(αp(p1, p2)) − αp(p1, p2) = cαB(p, q) ,

where the constant c depends on αp(p1, p2). So we can conclude that for every edge

e = (p, q) in B

Ψe(x) = Ψp,q(x) = x+ c α(e), for all x ∈ t∗p . (2.10)
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If the base B is a connected graph, all the fibers of a GKM fiber bundle are

isomorphic GKM spaces. So we can introduce a typical fiber (F, αF ), and for all the

vertices p of B fix an isomorphism of GKM graphs from (F, αF ) to (Γp, αp)

ρp = (ϕp, ψp) : (F, αF ) → (Γp, αp)

2.4 Cohomology of GKM fiber bundles

Let (Γ, α) and (B, αB) be GKM graphs, and let π : (Γ, α) → (B, αB) be a GKM fiber

bundle. In this section we want to prove the main theorem of this chapter, which

relates the cohomology ring of the total space Hα(Γ), to the cohomology ring of the

base HαB
(B) and the fiber HαF

(F ). The theorem we prove is a discrete version of

the Serre-Leray theorem.

First of all, let ρ = (ϕ, ψ) : (Γ1, α1) → (Γ2, α2) be an isomorphism of GKM

graphs. This isomorphism induces a pull back map between Maps(V1, S(t∗1)) and

Maps(V2, S(t∗2)). More precisely let ρ∗ be the map

ρ∗ : Maps(V2, S(t∗2)) → Maps(V1, S(t∗1))

f 7→ ρ∗(f)

where ρ∗(f)(p) = ψ−1(f(ϕ(p))), for all the vertices p in V1, and ψ−1 : S(t∗2) → S(t∗1) is

the isomorphism obtained by extending ψ−1 : t∗2 → t∗1 to be an algebra isomorphism.

Since Hα2(Γ2) is a subring of Maps(V2, S(t∗2)), we can restrict ρ∗ to Hα2(Γ2). What

we want to prove next is that the image of Hα2(Γ2) is precisely Hα1(Γ1).

Proposition 2.4.1. The isomorphism of GKM graphs ρ : (Γ1, α1) → (Γ2, α2) induces

an isomorphism of rings ρ∗ : Hα2(Γ2) → Hα1(Γ1).

Proof. We need to prove that if f is an element of Hα2(Γ2), then ρ∗(f) is in Hα1(Γ1),

i.e. it satisfies the compatibility condition

ρ∗(f)(t(e)) − ρ∗(f)(i(e)) = Pα1(e)
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for all the edges e in Γ1, where P is an element of S(t∗1).

From the definition of isomorphism of GKM graphs it follows that given an edge

e = (p, q) in Γ1, then (ϕ(p), ϕ(q)) is an edge in Γ2 such that α2(ϕ(p), ϕ(q)) =

ψ(α1(p, q)). Since f is a cohomology class in Hα2(Γ2), we have f(ϕ(q)) − f(ϕ(p)) =

Q α2(ϕ(p), ϕ(q)) = Q ψ(α1(p, q)) for some Q ∈ S(t∗2). Then we have

ρ∗f(q) − ρ∗f(p) = ψ−1(f(ϕ(q))) − ψ−1(f(ϕ(p))) = ψ−1(Q)α1(p, q)

So ρ∗f is an element of Hα1(Γ1), and ρ∗ is an isomorphism of cohomology rings.

Now consider the ring HαB
(B); the map π defines a pull-back map π∗ : HαB

(B) →

Hα(Γ), which embedsHαB
(B) as a subring ofHα(Γ). Observe that π∗ also givesHα(Γ)

the structure of a HαB
(B)−module. We will refer to π∗(HαB

(B)) as the subring of

basic classes of Hα(Γ), which we denote by (Hα(Γ))bas.

For every vertex p of B, consider the inclusion of the fiber Γp into Γ, ip : Γp →֒ Γ,

which induces a map in cohomology i∗p : Hα(Γ) → Hα(Γp). The discrete analogue of

the Serre-Leray theorem can be stated as follows.

Theorem 2.4.2. Let π : (Γ, α) → (B, αB) be a GKM fiber bundle, and let c1, . . . , ck be

cohomology classes in Hα(Γ) such that their restrictions to the fiber Γp, i
∗
pc1, . . . , i

∗
pck,

form a basis of Hα(Γp) as an S(t∗)−module, for all the fibers Γp. Then Hα(Γ) is

isomorphic to the free HαB
(B)−module on c1, . . . , ck.

Proof. First of all, it’s clear that every linear combination of the classes c1, . . . , ck

with coefficients in (Hα(Γ))bas is a class in Hα(Γ). Moreover the HαB
(B)−module

on c1, . . . , ck, as a submodule of Hα(Γ), is free. In fact for every collection of basic

classes P1, . . . , Pk, if the linear combination
∑k

i=1 Pici is identically zero, then also
∑k

i=1 i
∗
p(Pici) is zero, for all the vertices p of B. But i∗p(Pi) is a constant polynomial

on the fiber, because Pi is basic. By assumption the classes i∗pc1, . . . , i
∗
pck form a basis

of Hα(Γp) as an S(t∗)−module, which implies that i∗pPi is identically zero for all p,

and hence Pi is zero, for all i = 1, . . . , k. So the free HαB
(B)−module on c1, . . . , ck is

embedded in Hα(Γ).
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Conversely, let c be a cohomology class inHα(Γ). Then, since the classes i∗pc1, . . . , i
∗
pck

are a basis for Hα(Γp), for every vertex p of B we have

i∗p(c) =
k∑

i=1

i∗p(Pi)i
∗
pci

where the elements Pi belong to Maps(V, S(t∗)), and they are constant on each fiber

Γp, for all i = 1, . . . , k. We want to prove that in fact Pi belongs to (Hα(Γ))bas. Let

e = (p′, q′) be the lift of the edge e = (p, q) in B at p′. Then since c and the classes ci,

i = 1, . . . , k, belong to Hα(Γ) and α(e′) = αB(e), we have c(q′)−c(p′) = Q αB(e), and

ci(q
′) − ci(p

′) = Qi αB(e), where Q and Qi are elements of S(t∗), for all i = 1, . . . , k.

In particular

Q αB(e) = c(q′) − c(p′) =

k∑

i=1

i∗q(Pi)(ci(p
′) +Qi αB(e)) −

k∑

i=1

i∗p(Pi)ci(p
′).

Observe that the polynomials Q and Qi’s depend on the vertex p′ in Γ, and we can

rewrite the above expression as

k∑

i=1

(i∗q(Pi) − i∗p(Pi))ci(p
′) = αB(e) Q′(p′)

If p′′ is another vertex of Γp such that (p′, p′′) is an edge of Γp, we have

k∑

i=1

(i∗q(Pi) − i∗p(Pi))(ci(p
′′) − ci(p

′)) = αB(e)(Q′(p′′) −Q′(p′))

Since α(p′, p′′) divides ci(p
′′) − ci(p

′), for all i = 1, . . . , k, then α(p′, p′′) divides the

right hand side of this equality. But α(p′, p′′) and α(e) are independent vectors, hence

α(p′, p′′) must divide Q′(p′′) − Q′(p′). So Q′ is a cohomology class in Hα(Γp), which

implies that Q′(p′) =
∑k

i=1 βici(p
′), for some polynomials β1, . . . , βk ∈ S(t∗). Hence

k∑

i=1

(i∗q(Pi) − i∗p(Pi) − αB(e)βi)i
∗
pci
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is the zero class in Hα(Γp). But since the vectors i∗pc1, . . . , i
∗
pck are a basis of Hα(Γp)

we have that

i∗q(Pi) − i∗p(Pi) = αB(e)βi

which implies that the elements Pi are in (Hα(Γ))bas.

2.4.1 The holonomy group and invariant classes

For every GKM fiber bundle it is natural to introduce the holonomy group, which is

a subgroup of GKM automorphism of the typical fiber.

For every path γ = (p0, . . . , pm) in B, we can compose the isomorphisms of GKM

graphs defined before, and get

Υγ = Υpm−1,pm
◦ · · · ◦ Υp0,p1 : (Γp0, αp0) → (Γpm

, αpm
)

which is an isomorphism of the GKM graphs corresponding to the fibers (Γp0, αp0)

and (Γpm
, αpm

).

We can repeat the same argument for all the loops γ based at a vertex p of the

base B. More precisely, let Ω(p) be the set of loops with initial and final point p.

Define Ap to be

Ap = {Υγ, γ ∈ Ω(p)}

which is a subgroup of the GKM automorphisms of the fiber Γp.

If we consider the typical fiber (F, αF ), for every path γ in B from p to q we can

define the GKM automorphism of the fiber ργ = (ϕγ, ψγ) : (F, αF ) → (F, αF ) given

by

ργ = ρ−1
q ◦ Υγ ◦ ρp

If we restrict our attention to the loops γ based at a vertex p of B we obtain the

holonomy group

Holp = {ργ , γ ∈ Ω(p)} ,

which is a subgroup of the GKM automorphisms of the typical fiber (F, αF ). Observe
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that for any two vertices p and q of the base, the groups Holp and Holq are conjugated

through the automorphism of the fiber ργ , where γ is any path in the base joining p

to q.

In theorem 2.4.2, we presented a way to understand the equivariant cohomology

of (Γ, α) from the cohomology of the base (B, αB), and classes c1, . . . , ck in Hα(Γ)

such that their restriction to each fiber (Γp, αp) form a basis for Hαp
(Γp). Now we

want to give a way to build these classes starting from the cohomology of a fixed fiber

(Γp, αp), and the subgroup of its GKM automorphisms Ap.

Definition 2.4.3. Let fp be a cohomology class of the fiber (Γp, αp), i.e. an element

of Hαp
(Γp). Then fp is an invariant class if

Υ∗
γ(fp) = fp, for all Υγ ∈ Ap

We want to prove that every invariant class in Hαp
(Γ) can be extended to a global

class, i.e. can be extended to an element of Hα(Γ). First of all, let q be a vertex of

B, and γ a path in B which starts at q and ends at p. If fp is an invariant class of

Hαp
(Γp), define fq to be

fq = Υ∗
γ(fp)

Lemma 2.4.4. The definition of fq doesn’t depend on the path γ chosen.

Proof. Let γ1 and γ2 be two paths from q to p. Then γ2 ◦ γ
−1
1 is a loop based at p.

Since fp is an invariant class, we have

Υ∗
γ2◦γ

−1
1

(fp) = Υ∗
γ−1
1

◦ Υ∗
γ2

(fp) = fp

and hence Υ∗
γ1

(fp) = Υ∗
γ2

(fp).

Let’s define f to be an element of Maps(V, S(t∗)) such that for every fiber Γq, if

iq : Γq →֒ Γ denotes the inclusion of the fiber Γq in Γ, then i∗q(f) = fq. Observe that

the restriction of f to each fiber is an element of Hαq
(Γq).
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Proposition 2.4.5. The element f : V → S(t∗)) defined by i∗q(f) = fq is a cohomol-

ogy class in Hα(Γ).

Proof. Since f restrict to an element of Hαq
(Γq) on each fiber Γq, for all the vertices

q in B, we only need to prove that f satisfies the compatibility condition (2.9) on

horizontal edges. Let (p1, p2) be an edge in B, and let (p′1, p
′
2) be its lift at p′1. Then

by definition

f(p′2) − f(p′1) = fp2(p
′
2) − fp1(p

′
1) = (Υ∗

γ2
fp)(p

′
2) − (Υ∗

γ1
fp)(p

′
1)

Now since Υ∗
γ2

= Υ∗
p2,p1

◦ Υ∗
γ1

and (Υ∗
p2,p1

fp1)(p
′
2) = Ψ−1

p2,p1
(fp1(p

′
1)), then

f(p′2) − f(p′1) = Ψ−1
p2,p1

(fp1(p
′
1)) − fp1(p

′
1)

Hence, since by (2.10) Ψ−1
p2,p1

(x) = Ψp1,p2(x) = x+cα(p′1, p
′
2) for all x ∈ t∗1 and fp1(p

′
1) ∈

S(t∗1), we can conclude that f(p′2) − f(p′1) = Qα(p′1, p
′
2) for some Q ∈ S(t∗).

Remark 2.4.6. By the previous proposition, in order to find classes c1, . . . , ck in

Hα(Γ) such that their restrictions to the fibers Γp form a basis for Hαp
(Γp), it is

sufficient to find classes c1,p, . . . , ck,p which are a basis for Hαp
(Γp) and are invariant

under Ap.

2.5 The GKM fiber bundle π : S3 → K2

In this section we explore in details the fibration of the complete flag variety F l(C3)

onto the complex projective CP 2 described in section 2.3.1 at the level of GKM

graphs, prove that it is a GKM fiber bundle, describe its holonomy and give an ex-

ample of an invariant class.

Let S3 be the permutahedron with six vertices, corresponding to the elements

123, 132, 213, 231, 312, 321 (written in the one line notation). Then, since the axial

function on the permutahedron is given by α(σ, σ′) = sign(σ−1(k)−σ−1(h))(xh−xk),

60



where σ′ = (h, k)σ (cfr. example 2.2.5), we have

α(123, 132) = α(213, 312) = α(231, 321) = x2 − x3

α(123, 213) = α(132, 231) = α(312, 321) = x1 − x2

α(132, 312) = α(123, 321) = α(213, 231) = x1 − x3

Let K3 be the complete graph on three vertices 1, 2, 3 (cfr. example 2.2.4). Here the

axial function αB is simply given by αB(i, j) = xi − xj . Consider now the projection

π given by

π : S3 −→ K3

σ(1)σ(2)σ(3) 7→ σ(1)

In section 2.3.1, Proposition 2.3.1, we have already observed that this map is induced

by the projection map of F l(C3) onto CP 2, and in particular satisfies α(e) = αB(π(e))

for every horizontal edge e of S3. Moreover it is easy to check that it is a GKM

fibration with respect to the connections defined in Examples 2.2.4 and 2.2.5.

Now we want to see that it is a GKM fiber bundle. Geometrically, the projection

π : F l(C3) → CP 2 is a CP 1−bundle. In the GKM picture, the three fibers over

the vertices of K3 are given by the subgraphs Γ{i}, i = 1, 2, 3, with set of vertices

V{i} = {σ ∈ S3 s.t. σ(1) = i}. These are GKM subgraphs with respect to the

connection ∇ defined in example 2.2.5. Observe that, as graphs, they are isomorphic

to K2, which has vertices 1 and 2. But the axial function that the graphs Γ{i}

inherit as GKM subgraphs of S3 does not coincide with the axial function on K2;

in particular it depends on i. For example Γ{1} has two vertices, 123 and 132, and

α(123, 132) = x2 − x3, whereas for K2 we have α(1, 2) = x1 − x2. Since the graphs

Γ{i} correspond geometrically to the GKM graphs associated to the fibers π−1(pi) of

the T−equivariant fibration π : F l(C3) → CP 2, where pi is a fixed point of CP 2 (cfr.

section 2.3.1), the fact that the axial function on Γ{i} depends on i corresponds to

the fact that the subtorus which is stabilizing the T−invariant fibers π−1(pi) depends
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on the fixed point pi, i = 1, 2, 3.

Now, for every pair of vertices i, j, i < j, in K3 we want to define the maps

Φi,j : V{i} → V{j}, where Φi,j = Φ−1
j,i . By definition of Φi,j we have that

Φ1,2(123) = 213, Φ1,2(132) = 231

Φ2,3(213) = 312 Φ2,3(231) = 321

Φ1,3(123) = 321 Φ1,3(132) = 312

So it is clear that the maps Φi,j are isomorphisms of graphs, and hence π : S3 → K2

is a GKM fiber bundle. Moreover, if t∗i denotes the subspace of t∗ generated by

the values of the axial function α on the edges of Γ{i}, we have t∗1 = R〈x2 − x3〉,

t∗2 = R〈x1 − x3〉 and t∗3 = R〈x1 − x2〉. The maps Ψi,j : t∗i → t∗j are given by

Ψ1,2(x2 − x3) = x1 − x3

Ψ2,3(x1 − x3) = x1 − x2

Ψ1,3(x1 − x2) = −(x2 − x3)

and Υi,j = (Φi,j,Ψi,j) : (Γi, α{i}) → (Γj, α{j}) defines an isomorphism of GKM graphs

for every pair of vertices i, j in K3.

Now we want to study the group of GKM automorphisms A1 of the fiber Γ{1}.

Observe that the loop in K3 given by 1 → 2 → 3 → 1 lifts to the path in S3 with

initial point 123 given by 123 → 213 → 312 → 132, and it’s easy to check that A1

is composed by two elements, Υ0 = Id and Υ1 = (Φ1,Ψ1) where Φ1(123) = 132 and

Ψ1(x2 − x3) = −(x2 − x3).

Consider now the element c1 : V{1} → t∗1 given by c1(123) = −(x2 − x3) and

c1(132) = x2 − x3. Since c1(132) − c1(123) = 2α(123, 132), it follows that c1 is

a cohomology class in Hα{1}
(Γ1). Moreover c1 is an invariant element. So we can
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extend it to be a cohomology class c in Hα(S3) using the recipe described in section

2.4.1. If we do so we obtain

c(213) = −(x1 − x3) = −c(231)

c(312) = −(x1 − x2) = −c(321)

If 1 denotes the cohomology class in Hα(Γ) which takes value 1 at every vertex of Γ,

by theorem 2.4.2 we obtain that Hα(Γ) is a free HαB
(K2)−module on 1, c.

123

132

213

231

312

321
x1 − x2

x2 − x3

x1 − x3

1

2

3

π

Figure 2-2: The projection π : S3 → K2.

In particular in the above figure, we show the lift of the path 1 → 2 → 3 → 1 at

123, and the axial function on the fibers.

In the next chapter we will see that this example is just a special case of a more

general type of GKM fiber bundles, which is obtained by fibering GC/B over GC/P ,

where GC is a semisimple complex Lie group, P a parabolic subgroup of GC, and B

a Borel subgroup of GC contained in P .
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Chapter 3

GKM fiber bundles of flag varieties

Let GC be a connected semisimple Lie group, P a parabolic subgroup, and GC/P the

associated flag variety. In this chapter we review the GKM structure of the (gener-

alized) flag variety GC/P , and prove that if B is a Borel subgroup of GC contained

in P , the natural projection map GC/B → GC/P is a GKM fiber bundle. Moreover,

for the classical groups, we use a sequence of such bundles to produce cohomology

classes on GC/B which are invariant under the action of the Weyl group W of GC.

3.1 Flag varieties as GKM spaces

Let G be a compact simple Lie group with Lie algebra g, and let T ⊂ G be a maximal

torus with Lie algebra t. Let R ⊂ t∗ denote the set of roots and W the Weyl group

of G. Let R+ ⊂ R be a choice of positive roots in R, and R0 the associated simple

roots.

If 〈·, ·〉 denotes a positive definite symmetric bilinear form on g which isG−invariant,

we can use it to identify g and g∗, and also t and t∗.

Given a point p0 ∈ t∗, consider the G−coadjoint orbit Op0 = G·p0. Let Gp0 ⊂ G be

the stabilizer of p0; the map which takes g ∈ G to g ·p0 ∈ Op0 induces an identification

Op0 = G/Gp0. Moreover, there is a natural symplectic form ω on Op0 , and the action

of G on Op0 is Hamiltonian, with moment map given by the inclusion map Op0 →֒ g∗.

Hence, the moment map ψ : Op0 → t∗ for the T action is the composition of this
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inclusion with the natural projection from g∗ to t∗. Moreover, (Op0 , ω, ψ) is a GKM

space. The GKM structure can be described as follows.

If p0 is a generic point in t∗, let (Γ, α) be the GKM graph associated to (Op0, ω, ψ).

• The map from the Weyl group W to t∗ which takes w to w(p0) induces a

bijection between the elements of the Weyl group and the T−fixed point set of

Op0, which corresponds to the vertex set V . The moment map ψ restricted to

V is the inclusion map, that is ψ(p) = p for all p ∈ V .

• There exist an edge e between two vertices p1 = w1(p0) and p2 = w2(p0) if and

only if w2 = w1sβ, where sβ is the reflection associated to some β ∈ R+. The

value of the axial function on (p1, p2), α(p1, p2), is w1(β).

Remark 3.1.1. For all β ∈ R and w ∈W the following relation

wsβ = sw(β)w (3.1)

holds (cfr. [18]). Since the Weyl group takes R to itself, it follows that two elements

of the Weyl group W differ by a reflection over a root on the right if and only if they

differ by a reflection on the left.

Consider a subset of the simple roots Σ ⊂ R0, and let W (Σ) be the subgroup of

W generated by the reflections sα, with α ∈ Σ.

If p0 is not a generic element of t∗, i.e. p0 belongs to
⋂

αi∈Σ

Hαi
, where Hαi

is the

hyperplane orthogonal to the simple root αi and Σ 6= ∅, then observe that w(p0) = p0

for all the elements w ∈ W (Σ).

Let 〈Σ〉 denote the subset of R+ given by the roots which can be written as

linear combinations of roots in Σ. Let Op0 be the coadjoint orbit corresponding to

p0 ∈
⋂

αi∈Σ

Hαi
. Then in this case the GKM graph (Γ, α) associated to (Op0 , ω0, ψ) has

the following description.

• The elements of V are in bijection with the right cosets

W/W (Σ) = {wW (Σ) s.t. w ∈W} = {[w] s.t. w ∈W}
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The moment map ψ : V → t∗ is given by ψ([v]) = v(p0). Observe that since

p0 ∈
⋂

αi∈Σ

Hαi
, then ψ is well defined.

• Two elements [v] and [w] are joined by an edge if and only if [w] = [vsβ] =

[sv(β)v] for some β ∈ R+\〈Σ〉. Observe that this condition implies that [v] 6= [w].

The axial function α on this edge is given by α([v], [vsβ]) = α([v], [sv(β)v]) =

v(β).

• The connection ∇e along the edge e = ([v], [vsβ]) is given by ∇e([v], [u]) =

([sv(β)v], [sv(β)u]), for all ([v], [u]) ∈ E[v]. It’s easy to check that the axial function

is compatible with this connection.

Observe that the previous case, the coadjoint orbit through a generic point p0 ∈ t∗,

can be obtained from this one by setting Σ = ∅.

Example 3.1.2 The GKM graph associated to a generic coadjoint orbit of

type B2, W (B2)

Let G = SO(5), and let α1 = x1 − x2 and α2 = x2 be a choice of simple roots. Let

s1 be the reflection associated to α1, and s2 the reflection associated to α2. Then the

GKM graph associated to a generic coadjoint orbit of type B2, W (B2), is shown in

Figure 3.1.

id

s1

s2

s1s2

s2s1

s1s2s1

s2s1s2

s1s2s1s2 = s2s1s2s1

x1 − x2

x1 + x2

x1

x2

Figure 3-1: The GKM graph W (B2)
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[id]

[s1]

[s2s1]

[s1s2s1]

x1 − x2

x1 + x2

x1

x2

Figure 3-2: The GKM graph W (B2)/W (Σ).

Example 3.1.3 With the same notation of Example 3.1.2, let Σ = {α2}. Then

W (B2)/W (Σ) is the GKM graph associated to Gr+
2 (R5), the Grassmannian of ori-

ented two planes in R5, and it is shown in Figure 3-2.

The coadjoint orbit Op0, where p0 ∈
⋂

αi∈Σ

Hαi
, can also be regarded as the manifold

of generalized flags GC/P (Σ), where GC is the complexification of G, and P (Σ) is the

parabolic subgroup corresponding to Σ, i.e.

Lie(P (Σ)) = b ⊕
⊕

α∈〈Σ〉

g−α ,

where b is the Lie algebra of the Borel subgroup associated to R+, and Lie(GC) =

gC = h ⊕
⊕

α∈R gα is the canonical decomposition of gC, with h ⊃ t.

If GC/P (Σ) is the generalized flag manifold associated to GC and Σ, we will denote

its GKM graph by (W/W (Σ), α).

Consider now two points p0 and p̃0 in t∗ such that they both lie in the closure of

the same Weyl chamber, and such that Gep0 ⊂ G (the stabilizer of p̃0) contains Gp0

(the stabilizer of p0). Consider the coadjoint orbits Op0 and Oep0 . Then there is a

natural projection map

π : Op0 → Oep0

g · p0 7→ g · p̃0

(3.2)
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It is well known that π is a T−equivariant fibration with symplectic fibers, isomorphic

to Gep0/Gp0.

In the language of flag varieties, this corresponds to take two subsets of simple

roots Σ1 and Σ2 such that Σ1 ⊂ Σ2 ⊂ R0, consider the parabolic subgroups P (Σ1) ⊂

P (Σ2) ⊂ GC, and the associated projection map π : GC/P (Σ1) → GC/P (Σ2), with

fiber P (Σ2)/P (Σ1).

Now consider the case in which Σ1 = ∅, and hence GC/P (Σ1) is a complete flag

variety. Let (W,α) be its associated GKM graph. Let Σ be a non empty subset of the

simple roots R0, and consider the partial flag GC/P (Σ), with associated GKM graph

(W/W (Σ), α). In the next proposition, we want to prove that the discrete analogue

of the map (3.2) is a GKM fiber bundle.

Proposition 3.1.4. The projection map π : (W,α) → (W/W (Σ), α) is a GKM fiber

bundle.

Proof. For every vertex w ∈W it’s clear that the set of vertical edges E⊥
w is given by

E⊥
w = {(w,wsβ) s.t. β ∈ 〈Σ〉}

and the set of horizontal edges Hw

Hw = {(w,wsβ) s.t. β ∈ R+ \ 〈Σ〉}.

Hence the map (dπ)Hw
: Hw → E[w] is a bijection, and we can define it by imposing

that α(e) = α(π(e)) for all the edges e ∈ Hw, i.e. (dπ)Hw
(w,wsβ) = ([w], [wsβ]).

Hence α(w,wsβ) = w(β) = α([w], [wsβ]). Moreover it is easy to check that the

connections on W and W/W (Σ) are compatible in the sense of definition 2.3.4. So

π is a GKM fibration. The graph associated to each fiber is clearly isomorphic to

W (Σ). Now we need to prove that given two elements [w] and [v] connected by an

edge e in W/W (Σ), there exists an isomorphism of GKM graphs between the fibers

Γ[w] and Γ[v]. Let [v] = [wsβ] for some β ∈ R+ \ 〈Σ〉. Let V[w] be the set of vertices
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of Γ[w]; so we have V[w] = {wu, u ∈ W (Σ)}. Consider the lift of ([w], [wsβ]) at u.

By definition we have that Φ[w],[wsβ] : V[w] → V[wsβ] is given by Φ[w](wu) = sw(β)wu =

wsβu. Hence any vertical edge (wu,wusγ) in Γ[w], where γ ∈ 〈Σ〉, is sent to the

edge (sw(β)wu, sw(β)wusγ). So Φ[w],[wsβ] : Γ[w] → Γ[wsβ] is an isomorphism of graphs.

The map Ψ[w],[wsβ] : t∗ → t∗ is simply given by Ψ[w],[wsβ](γ) = sw(β)(γ). Moreover it’s

straightforward to check that condition (iii) of definition 2.3.5 holds. Hence π is a

GKM fiber bundle.

Example 3.1.5 Consider W (B2) and W (B2)/W (Σ), as described in Example 3.1.2

and 3.1.3. Then the projection map π : W (B2) → W (B2)/W (Σ) is described in the

following Figure.

id

s1

s2

s1s2

s2s1

s1s2s1

s2s1s2

s1s2s1s2 = s2s1s2s1

π
[id]

[s1]

[s2s1]

[s1s2s1]

Figure 3-3: The projection π : W (B2) → W (B2)/W (Σ).

From the proof of the previous proposition, we can summarize the isomorphism

of GKM graphs between the fibers Γ[w] and Γ[wsβ] in the following way.

The isomorphism of graphs Φ[w],[wsβ] : Γ[w] → Γ[wsβ] is given by

Φ[w],[wsβ] : Γ[w] −→ Γ[wsβ]

v 7→ sw(β)v

whereas the isomorphism Ψ[w],[wsβ] : t∗ → t∗ is given by

Ψ[w],[wsβ] : t∗ −→ t∗

δ 7→ sw(β)(δ)
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Since the typical fiber is isomorphic toW (Σ), it’s easy to see that the map (ϕ[w], ψ[w]) :

(W (Σ), α) → (Γ[v], α) defined by ϕ[w](u) = wu and ψ[w](δ) = w(δ) is an isomorphism

of GKM graphs, where w is a fixed representative of the elements in [w].

3.1.1 The holonomy subgroup of the GKM bundle

π : W →W/W (Σ)

For every element u of W (Σ), there is a natural GKM automorphism (Φu,Ψu) :

W (Σ) → W (Σ), which is given by Φu(u
′) = uu′ and Ψu(β) = u(β). So there is an

embedding of W (Σ) into the GKM automorphisms of the GKM graph (W (Σ), α).

Now consider the group of automorphisms Hol[v0] of (W (Σ), α) determined by

the loops in W/W (Σ) based at some point [v0] ∈ W/W (Σ). More explicitly a loop

in W/W (Σ) based at [v0] is a sequence of vertices [v0], [v1], . . . , [vk] = [v0] such that

vi = svi−1(βi−1)(vi−1), where βi−1 ∈ R+\〈Σ〉, for all i = 1, . . . , k. So vi = v0sβ0 . . . sβi−1
,

for all i = 1, . . . , k.

If ([v0], [v1]) is an edge in W/W (Σ) such that v1 = sv0(β)v0 for some β ∈ R+ \ 〈Σ〉,

then for every element v0u of the fiber π−1([v0]), with u ∈ W (Σ), Φ[v0],[v1](v0u) =

sv0(β)(v0u) = v1u.

So if γ is the loop ([v0], [v1], . . . , [vk] = [v0]) we have that

Φγ = Φ[vk−1],[vk] ◦ · · ·Φ[v0],[v1] : Γ[v0] → Γ[v0]

is given by

Φγ(v0u) = svk−1(βk−1) · · · sv1(β1)sv0(β0)(v0u) = v0sβ0sβ1 . . . sβk−1
u = vku .

Hence the isomorphism of the typical fiber ϕγ : W (Σ) →W (Σ) is given by

ϕγ(u) = (ϕ−1
[v0]Φγϕ[v0])(u) = v−1

0 vku
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and ψγ : t∗ → t∗ is given by ψγ(δ) = v−1
0 vk(δ). Since [v0] = [vk], this implies that

w = v−1
0 vk ∈W (Σ).

The previous argument proves that for every loop γ in W/W (Σ), there exists an

element w ∈ W (Σ) such that (ϕγ , ψγ) : (W (Σ), α) → (W (Σ), α) is given by

ϕγ(u) = wu

ψγ(β) = w(β)

(3.3)

In the next proposition we want to prove that also the converse is true.

Proposition 3.1.6. Given the GKM fiber bundle π : W → W/W (Σ), for every

element w of W (Σ) there exists a loop γ in W/W (Σ) such that the automorphism of

the fiber (ϕγ , ψγ) : (W (Σ), α) → (W (Σ), α) induced by γ is given by (3.3).

Proof. Since every element in W (Σ) can be written as a product of reflections sαi
,

with αi ∈ 〈Σ〉, it is sufficient to prove that for every element αi in 〈Σ〉, there exists a

loop γ in W/W (Σ) such that the corresponding isomorphism of the fiber is given by

(3.3).

Since the Weyl group acts transitively on R, there exists an element w ∈W such

that w(αi) ∈ R+ \ 〈Σ〉. We can write w as uv, where u ∈ W (Σ) and v = sβ1 . . . sβk
,

with β1, . . . , βk ∈ R+\〈Σ〉. Then it’s easy to check that also u−1w(αi) = sβ1 . . . sβk
(αi)

belongs to R+ \ 〈Σ〉 (cfr. Lemma 4.1 in [14]). So we need to prove that there exists

a loop γ = ([v0], . . . , [vm]) based at [v0] such that vm = v0sαi
.

Observe that v0v
−1sv(αi)v = v0sαi

, so it is sufficient to consider the loop

[v0] → [v0sβk
] → . . .→ [v0sβk

· · · sβ1] = [v0v
−1] → [v0v

−1sv(αi)] →

→ [v0sv(αi)sβ1 ] → . . .→ [v0v
−1sv(αi)sβ1 · · · sβk

] = [v0v
−1sv(αi)v] = [v0sαi

]

and the claim follows.

Combining the previous proposition with the definition of invariant classes we can

say that
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Definition 3.1.7. A cohomology class f ∈ Hα(W ) is invariant if and only if

f(wu) = wf(u) for all w, u ∈W (3.4)

In the next section we will use a sequence of such GKM fiber bundles to construct

a basis for the equivariant cohomology of (W,α) composed by invariant classes.

3.2 GKM fiber bundles of classical groups

Let GC/B be the complete flag variety in type A,B,C and D, and let (W,α) be the

associated GKM graph. In this section we will use the structure of the holonomy

group associated to the GKM fiber bundle W → W/W (Σ), for some Σ ⊂ R0, to

construct a basis of Hα(W ) which is invariant under the action of the Weyl group W ,

in the sense of definition 3.1.7.

3.2.1 Type An

In type An the complete flag variety GC/B is the variety of complete flags in Cn+1,

F l(Cn+1). The set of simple roots R0 is given by R0 = {α1, . . . , αn}, where αi = xi−

xi+1 for i = 1, . . . , n, and the set of positive roots is R+ = {xi−xj , 1 ≤ i < j ≤ n+1}.

If we consider Σ = {αi, i = 2, . . . , n} then 〈Σ〉 = {xi − xj , 2 ≤ i < j ≤ n + 1}, and

R+ \ 〈Σ〉 = {x1 − xj, j = 2, . . . , n+ 1}

Now we want to consider the GKM fiber bundle π : W → W/W (Σ). Observe

that W/W (Σ) is the GKM graph associated to the complex projective space CP n as

described in Example 1.4.7, and hence this GKM fiber bundle is the discrete analogue

of the bundle described in section 2.3.1. In fact, considering W/W (Σ) is equivalent

to consider the GKM graph of the coadjoint orbit through a point p̃0 ∈
n+1⋂

i=2

Hαi
,

where Hαi
is the hyperplane orthogonal to αi. If p̃0 = µ1x1 + µ2(x2 + . . . + xn+1),

with µ1 < µ2 and µ1 + nµ2 = 0, then the n + 1−fixed points of Oep0 are given
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by p̃i = µ1xi + µ2(x1 + . . . + x̂i + . . . + xn+1), i = 1, . . . , n + 1. Define βi to be

x1 − xi, i = 2, . . . , n+ 1. So the set R+ \ 〈Σ〉 is given by

R+ \ 〈Σ〉 = {βi, i = 2, . . . , n+ 1} .

Consider now the elements of W given by Id, sβ1, . . . , sβn+1. Then there is a bijection

between these elements and the fixed points of Oep0 given by

Id 7→ p̃0

sβi
7→ sβi

(p̃0) = p̃i,

for i = 2, . . . , n+ 1. Hence the vertices of W/W (Σ) are given by the elements

ω1 = [Id], ω2 = [sβ2], . . . , ωn+1 = [sβn+1] .

Observe that since sβj
= sxi−xj

sβi
sxi−xj

for all i 6= j, with i, j ∈ {2, . . . , n + 1}, we

have [sβj
] = [sxi−xj

sβi
], and hence α(ωi, ωj) = xi−xj . So, as a GKM graph, W/W (Σ)

is isomorphic to the complete graph Kn+1 (cfr. 2.2.4).

Now we want to use Theorem 2.4.2 to build classes on W which are a basis for

the cohomology of W , and are invariant under the action of the Weyl group W .

Consider the cohomology of W/W (Σ). The element τ ∈ Maps(W/W (Σ), S(t∗))

given by τ(ωi) = xi is a cohomology class, since

τ(ωi) − τ(ωj) = xi − xj = α(ωi, ωj) .

Moreover τ is invariant under the action of the Weyl group W , i.e. wτ(ωi) = w ·xi =

τ(wωi). This also follows from the fact that the class τ , modulo rescaling, coincides

with the moment map ψ on Oep0 plus a constant, and the moment map on coadjoint

orbits is naturally invariant under the action of the Weyl group. Then, it’s easy to

see that the classes {1, τ, . . . , τn} form a basis for the cohomology of W/W (Σ), as a

module over S(t∗).

Now consider the fiber of the projection W → W/W (Σ). In order to find coho-
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mology classes on W such that their restriction to each fiber form a basis for the

cohomology of the fiber, by Remark 2.4.6 it is sufficient to find cohomology classes

on the fiber which are invariant under the action of the holonomy group of the fiber,

and then extend them to the whole graph W . Since the typical fiber is isomorphic to

a generic coadjoint orbit of type An−1, we can proceed inductively.

Consider the GKM fiber bundle π : S3 → K3 as in Example 2.5, where the

projection is given by σ 7→ σ(1), for all σ ∈ S3. Then the typical fiber is isomorphic

to S2 ≃ K2, and an invariant class on π−1(1) is given by c(123) = x2 and c(132) = x3.

If we extend c to be an element of Hα(S3), then by definition we obtain an element

c which is invariant under the action of S3. By applying Theorem 2.4.2 we obtain

that the cohomology of S3 is generated by the (invariant) classes 1, c, τ, τ 2, τc, τ 2c.

Let c[0,0] = 1, c[0,1] = c, c[1,0] = τ, c[1,1] = τc, c[2,0] = τ 2, c[2,1] = τ 2c. The values of these

classes on S3 are summarized in the following table.

c[0,0] c[0,1] c[1,0] c[1,1] c[2,0] c[2,1]
123 1 x2 x1 x1x2 x2

1 x2
1x2

213 1 x1 x2 x2x1 x2
2 x2

2x1

132 1 x3 x1 x1x3 x2
1 x2

1x3

231 1 x3 x2 x2x3 x2
2 x2

2x3

312 1 x1 x3 x3x1 x2
3 x2

3x1

321 1 x2 x3 x3x2 x2
3 x2

3x2

Table 3.1: Invariant classes on S3

If we repeat this procedure further we obtain the following

Theorem 3.2.1. The cohomology Hα(Sn) has a basis B(An−1) given by invariant

classes cI : Sn → t∗, where if I is the multi-index I = [i1, . . . , in−1],

cI(w) = w · (xi11 · · ·xin−1

n−1 ) = xi1
w(1)x

i2
w(2) · · ·x

in−1

w(n−1)

and

B(An−1) = {cI s.t. I = [i1, . . . , in−1], 0 6 i1 6 n−1, 0 6 i2 6 n−2, . . . , 0 6 in−1 6 1} .
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3.2.2 Type Bn

The set of simple roots of Bn (for n > 2) is R0 = {α1, . . . , αn}, where αi = xi − xi+1,

for i = 1, . . . , n− 1 and αn = xn. The set of positive roots is

R+ = {xi | 1 6 i 6 n} ∪ {xi ± xj | 1 6 i < j 6 n} .

If Σ = {α2, . . . , αn}, then

〈Σ〉 = {xi | 2 6 i 6 n} ∪ {xi ± xj | 2 6 i < j 6 n}

is the set of positive roots for a root system of type Bn−1, and

R+ \ 〈Σ〉 = {β1 = x1} ∪ {β±
j = x1 ∓ xj | 2 6 j 6 n} .

Let

ω+
1 =[id] , ω−

1 = [sβ1 ]

ω+
j =[sβ+

j
] = [sx1−xj

] for 2 6 j 6 n

ω−
j =[sβ−

j
] = [sx1+xj

] for 2 6 j 6 n .

Then W/W (Σ) = {ω+
1 , ω

−
1 , . . . , ω

+
n , ω

−
n }, and the graph structure of W/W (Σ) is

that of a complete graph with 2n vertices.

Geometrically, let p̃0 be a point in
n⋂

i=2

Hαi
; for example let p̃0 be x1. Then W/W (α)

is the GKM graph associated to the coadjoint orbit Oep0 through p̃0, which corresponds

to a Grassmannian of oriented two planes in R2n+1, Gr+
2 (R2n+1). The T−fixed points

of Oep0 are given by −x1, . . . ,−xn, x1, . . . , xn, and the bijection with the vertices of
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W/W (Σ) is given by

ω+
1 = [Id] 7→ x1 = Id(x1)

ω−
1 = [sβ1] 7→ −x1 = sβ1(x1)

ω+
j = [sβ+

j
] 7→ xj = sβ+

j
(x1), 2 6 j 6 n

ω−
j = [sβ−

j
] 7→ −xj = sβ−

j
(x1), 2 6 j 6 n

If τ is the map τ : W/W (Σ) → t∗, τ(ωǫj) = ǫxj , with 1 6 j 6 n and ǫ ∈ {+,−}, then

the axial function α is given by

α(ωǫii , ω
ǫj
j ) =





τ(ωǫii ) − τ(ω
ǫj
j ) for 1 6 i 6= j 6 n

1
2
(τ(ωǫii ) − τ(ω−ǫi

i )) for 1 6 i = j 6 n .

Note that although W/W (Σ) and K2n are isomorphic as graphs, they are not isomor-

phic as GKM graphs. One way to see that is to notice that

α(ω+
1 , ω

−
1 ) + α(ω−

1 , ω
−
2 ) + α(ω−

2 , ω
+
1 ) = −x1 6= 0 .

Nevertheless, as in the K2n case, the set of classes {1, τ, . . . , τ 2n−1} is a basis for

the free S(t∗)−module H∗
α(W/W (Σ)). Moreover observe that the class τ is precisely

the restriction to the fixed point set of the moment map on Oep0 , and hence it is

W−invariant. Hence all the classes 1, τ, . . . , τ 2n−1 are W−invariant.

An alternative description of the Weyl group W is that of the group of signed

permutations (u, ǫ), with u ∈ Sn and ǫ = (ǫ1, . . . , ǫn), ǫj = ±1. The element (u, ǫ) is

represented as (ǫ1u(1), . . . , ǫnu(n)).

Then sxi
is just a change of the sign of xi, sxi−xj

corresponds to the transposition

(i, j), with no sign changes, and sxi+xj
corresponds to the transposition (i, j) with both

signs changed. In particular, Id is the identity permutation with no sign changes, sβ1

is the identity permutation with the sign of 1 changed, sβ+
j

is the transposition (1, j)

with no sign changes, and sβ−
j

is the transposition (1, j) with sign changes for 1 and

j. In general, if u ∈ Sn and ǫ = (ǫ1, . . . , ǫn) ∈ Zn
2 , then the element w = (u, ǫ) ∈ W

acts by (u, ǫ) · xk = ǫkxu(k). Then W/W (Σ) can be identified with {±1,±2, . . . ,±n}

77



by ωǫj → ǫj, and the projection π : W → W/W (Σ) is π((u, ǫ)) = ǫ1u(1).

For I = [i1, . . . , in−1], let cI : W → S(t∗) be given by

cI((u, ǫ)) = (ǫ1xu(1))
i1 · · · (ǫn−1xu(n−1))

in−1 .

Then cI ∈ (H∗
α(W ))W is an invariant class, and we will construct a basis of the free

S(t∗)−module H∗
α(W ) consisting of classes of type cI , for specific multi-indices I.

When n = 2, the fiber over 2 is π−1(2) = {(2, 1), (2,−1)} and is identified with

W (Σ) = S2 = {1,−1}. A basis for H∗
α(W (Σ)) is given by the invariant classes

{c[0], c[1]}, where c[0] ≡ 1 and c[1](1) = x1, c[1](−1) = −x1. These classes are extended

to the invariant classes c[0,0] and c[0,1] on W .

The classes 1, τ , τ 2, and τ 3 on the base lift to the basic classes c[0,0], c[1,0], c[2,0],

and c[3,0] on W . Then a basis for the free S(t∗)−module H∗
α(W ) is

B(B2) = {cI | I = [i1, i2], , 0 6 i1 6 3, 0 6 i2 6 1} .

The values of these classes on the elements of W (B2) are shown in Table 3.2.

Repeating the procedure further, we get the following result.

c[0,0] c[0,1] c[1,0] c[1,1] c[2,0] c[2,1] c[3,0] c[3,1]
(1, 2) 1 x2 x1 x1x2 x2

1 x2
1x2 x3

1 x3
1x2

(1,−2) 1 −x2 x1 −x1x2 x2
1 −x2

1x2 x3
1 −x3

1x2

(−1,−2) 1 −x2 −x1 x1x2 x2
1 −x2

1x2 −x3
1 x3

1x2

(−1, 2) 1 x2 −x1 −x1x2 −x2
1 x2

1x2 −x3
1 −x3

1x2

(2, 1) 1 x1 x2 x1x2 x2
2 x2

2x1 x3
2 x3

2x1

(2,−1) 1 −x1 x2 −x1x2 x2
2 −x2

2x1 x3
2 −x3

2x1

(−2,−1) 1 −x1 −x2 x1x2 x2
2 −x2

2x1 −x3
2 x3

2x1

(−2, 1) 1 x1 −x2 −x1x2 x2
2 x2

2x1 −x3
2 −x3

2x1

Table 3.2: Invariant classes on W (B2)

Theorem 3.2.2. A basis of the S(t∗)−module H∗
α(W (Bn)) is given by the invariant

classes

B(Bn) = {cI | I = [i1, . . . , in], 0 6 i1 6 2n− 1, 0 6 i2 6 2n− 3, . . . , 0 6 in 6 1} .
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3.2.3 Type Cn

The set of simple roots of Cn (for n > 2) is R0 = {α1, . . . , αn}, where αi = xi − xi+1,

for i = 1, . . . , n− 1 and αn = 2xn. The set of positive roots is

R+ = {2xi | 1 6 i 6 n} ∪ {xi ± xj | 1 6 i < j 6 n} .

If Σ = {α2, . . . , αn}, then

〈Σ〉 = {2xi | 2 6 i 6 n} ∪ {xi ± xj | 2 6 i < j 6 n}

is the set of positive roots for a root system of type Cn−1, and

R+ \ 〈Σ〉 = {β1 = 2x1} ∪ {β±
j = x1 ∓ xj | 2 6 j 6 n} .

Let

ω+
1 =[id] , ω−

1 = [sβ1 ]

ω+
j =[sβ+

j
] = [sx1−xj

] for 2 6 j 6 n

ω−
j =[sβ−

j
] = [sx1+xj

] for 2 6 j 6 n .

This is essentially the same as the Bn case, and W (Cn) ≃ W (Bn) is the group of

signed permutations of n letters. Then W/W (Σ) = {ω+
1 , ω

−
1 , . . . , ω

+
n , ω

−
n }, and the

graph structure of W/W (Σ) is that of a complete graph with 2n vertices. In type Cn,

the graph W/W (Σ) corresponds to the GKM graph of a complex projective space

CP 2n−1; in this case the axial function on W/W (Σ) is given by

α(ωǫii , ω
ǫj
j ) = τ(ωǫii ) − τ(ω

ǫj
j ) ,

It’s easy to see that, although W (Bn) and W (Cn) are not isomorphic as GKM graphs,

B(Cn) = B(Bn) is a basis of Hα(W (Cn)) consisting of invariant classes.
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3.2.4 Type Dn

In type Dn a set of simple roots is given by R0 = {α1, . . . , αn} is given by αi =

xi− xi+1, for i = 1, . . . , n− 1, and αn = xn−1 + xn. The corresponding set of positive

roots is

R+ = {xi ± xj , 1 6 i < j 6 n}

Let Σ = {α2, . . . , αn}; then

〈Σ〉 = {xi ± xj , 2 6 i < j 6 n}

Observe that 〈Σ〉 is a set of positive roots of type Dn−1 if n > 4, whereas if n = 3 it

is of type A1 × A1. Then we have

R+ \ 〈Σ〉 = {β±
i = x1 ∓ xi, 2 6 i 6 n}

Consider a point p̃0 ∈ t∗ such that p̃0 ∈
n⋂

i=2

Hαi
; for example let p̃0 = x1. Then the

coadjoint orbit Oep0 is isomorphic to the Grassmannian of oriented two planes in R2n,

Gr+
2 (R2n). The T−fixed points are given by the elements ±xi, i = 1, . . . , n.

The GKM graph associated to Oep0 is W/W (Σ), where the vertices are given by

the classes

ω+
1 = [Id]

ω−
1 = [sβ−

i
sβ+

i
] = [sβ+

i
sβ−

i
], for all 2 6 i 6 n

ω±
i = [sβ±

i
], for all 2 6 i 6 n

and the bijection between these vertices and the T−fixed points of Oep0 is as in type

Bn. Observe that every vertex ω±
i is connected to every other vertex, except for ω∓

i ,

for all i = 1, . . . , n. Consider the element τ : W/W (Σ) → t∗ given by τ(ωǫi ) = ǫxi,

where ǫ ∈ {+,−}. Observe that, as in the other types, τ is the moment map on Oep0

restricted to the fixed point set.

In terms of τ , the axial function on W/W (Σ) is given by

α(ωǫii , ω
ǫj
j ) = τ(ωǫii ) − τ(ω

ǫj
j ) = ǫixi − ǫjxj .
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The Weyl group W can be described as the group of signed permutations (u, ǫ), with

an even number of sign changes. So if ǫ = (ǫ1, . . . , ǫn) ∈ Zn
2 , we have ǫ1 · · · ǫn = 1, and

the element w = (u, ǫ), with u ∈ Sn, acts on xk by w · xk = ǫkxu(k). Observe that, as

before, the elements 1, τ, . . . , τ 2n−2 are W−invariant elements of Hα(W/W (Σ)); but

we need another element of degree n − 1 (hence an element of H2n−2
α (W/W (Σ))) to

obtain a basis for Hα(W/W (Σ)) (as a module over S(t∗)). Observe that if we take

η = x1 · · ·xnτ
−1, this is inH2n−2

α (W/W (Σ)), and it is invariant. Using a Vandermonde

type argument, it can be proved that the classes 1, τ, . . . , τ 2n−2, η form a basis of

W−invariant classes of Hα(W/W (Σ)).

In terms of the description of the Weyl group given above, the vertices of W/W (Σ)

can be identified with the set {±1, . . . ,±n}, where ω±
i corresponds to ±i, and the

projection π : W →W/W (Σ) is given by π(u, ǫ) = ǫ1u(1).

For every multi-index I = [i1, . . . , in] consider the class cI : W → S(t∗) given by

cI(u, ǫ) = (ǫ1xu(1))
i1 · · · (ǫn−1xu(n−1))

in−1 .

Then cI is a W−invariant class in Hα(W ).

Repeating an argument similar to the other types, we have

Theorem 3.2.3. A basis of W−invariant elements of Hα(W ) is given by the elements

cI , for I ∈ Pn, where P2 = {[0, 0], [1, 0], [2, 0], [0, 1]} and Pn = [i1, . . . , in] is defined

inductively by the following rule

• 0 6 i1 6 2n− 2 and [i2, . . . , in] ∈ Pn−1 or

• i1 = 0 and [i2 − 1, . . . , in − 1] ∈ Pn−1.

(For more details about this construction, see [14], section 5.4).
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Chapter 4

Canonical classes

Let M be a T−Hamiltonian manifold with discrete fixed point set MT . As we ob-

served in the introduction, in this case the equivariant cohomology ring of M can be

viewed as a subring of the equivariant cohomology ring of MT .

In this chapter we introduce a special basis for the equivariant cohomology of

M associated to a generic component of the moment map, and give formulas that

compute the restriction of this basis to the fixed point set of the T action.

In particular let π : M → M̃ be a T−equivariant fibration between T−Hamiltonian

GKM spaces. We explore how to use the symplectic structure of M̃ , together with the

graph theoretical implications of the existence of such a map, to derive formulas that

compute the restriction of the elements of this basis to the fixed point set. Moreover

we explore how the integrality of such formulas is related to the cohomology of M̃ .

4.1 Definition of canonical classes

Let (M,ω) be a compact symplectic manifold with a Hamiltonian action of a torus

T . Let ψ : M → t∗ be the moment map. We recall that ψ is a T−invariant map

satisfying

ιξ#ω = −dψξ for all ξ ∈ t
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where ξ# is the vector field generated by ξ, and ψξ is the T−invariant function

defined by ψξ(p) = 〈ψ(p), ξ〉. Moreover, if dT denotes the Cartan differential on

ΩT (M) defined in the introduction, then ω + ψ is a dT−closed equivariant two form.

So every Hamiltonian manifold (M,ω, ψ) is naturally endowed with an equivariant

cohomology class [ω + ψ] ∈ H2
T (M).

Suppose that the fixed point set MT is discrete. Fix a generic ξ ∈ t, i.e. a vector

ξ in t such that η(ξ) 6= 0, for each weight η ∈ t∗ of the isotropy action of T on TpM ,

for every fixed point p ∈MT . Then the ξ component of the moment map ψ, ϕ = ψξ,

is a perfect Morse function with critical set corresponding to the fixed point set MT .

Let ν−(p) be the negative normal bundle of ϕ at p. Then T has an isotropy action on

ν−(p) with one fixed point, p. So the Morse index of ϕ at p is even for all p ∈ MT .

We define λ(p) to be half of the Morse index of ϕ at p.

Consider the weights of the isotropy action of T on ν−(p). By our choice of the

moment map, they are positive weights, i.e. every such weight satisfies η(ξ) > 0. Let

Λ−
p denote the product of the weights on the negative normal bundle ν−(p).

Definition 4.1.1. Let T be a torus which acts on a symplectic manifold (M,ω) in

a Hamiltonian fashion, with moment map ψ : M → t∗. Let ϕ = ψξ be a generic

component of the moment map. Then αp ∈ H
2λ(p)
T (M,R) is the canonical class at

p (w.r.t. ϕ) if

1. αp(p) = Λ−
p

2. αp(q) = 0 for all q ∈MT \ {p} s.t. λ(q) ≤ λ(p)

We will say that a canonical class is integral if αp ∈ H
2λ(p)
T (M,Z).

These classes were introduced by Goldin and Tolman ([11]) in the symplectic

category, and they coincide in a particular case with the “Thom classes“ introduced

by Guillemin and Zara ([15]) in the GKM category. They can be thought as an

equivariant Poincaré dual to the closure of the unstable manifolds of ϕ.

Canonical classes do not always exist (cfr. Example 2, [11]); but if they do for all

the fixed points p ∈ MT , then the set {αp}p∈MT is a basis for HT (M) as a module
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over HT ({pt}) (cfr. Proposition 2.2, [11]). Moreover the set of canonical classes is

uniquely determined by ϕ (cfr. Lemma 2.6, [11]). Since the restriction map

i∗ : HT (M) → HT (MT ) = Maps(MT , S(t∗)) is injective (cfr. Theorem 1.3.2), in

order to understand the equivariant cohomology ring of M it is sufficient to find

formulas that compute the image of {αp}p∈MT under i∗. As a consequence, one can

also derive formulas for the multiplicative structure constants ([11], [15]). In the next

sections we will provide formulas that compute i∗({αp}), for all p ∈MT , which are a

generalization of the one provided in [11].

4.2 A generalized path formula for canonical classes

Let M be a Hamiltonian T manifold with moment map ψ : M → t∗ and discrete

fixed point set MT . Let ϕ = ψξ : M → R be a generic component of the moment

map, and suppose that there exists a canonical class αp ∈ H
2λ(p)
T (M,R) for each fixed

point p ∈MT . In this section we give a formula that computes i∗(αp) for all p ∈MT .

First we define a graph Γ = (V,E) determined by the canonical classes associated

to ϕ (which are unique, as we mentioned before); we will refer to it as the canonical

graph.

• The vertex set V is the fixed point set MT ; we label each vertex with the

moment map image ψ(p).

• The directed edge set E is given by

E = {(r, r′) ∈ V × V | λ(r′) − λ(r) = 1 and αr(r
′) 6= 0} ;

we label each edge (r, r′) ∈ E by

ξ(r, r′) =
αr(r

′)

Λ−
r′

,

which is an element of S(t∗)0, the field of fractions of S(t∗).

A path γ in Γ from p to q is a sequence of k+1 vertices γ = (γ1, . . . , γk+1), where
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γ1 = p, γk+1 = q and (γi, γi+1) ∈ E for all 1 ≤ i ≤ k. We define the length of this

path to be k, the number of edges, and we will refer to it as |γ|. We denote by Σ(p, q)

the set of all paths from p to q in Γ.

Before proving the first theorem, we recall two Lemmas from [11].

Lemma 4.2.1. Let ϕ = ψξ be a generic component of the moment map and

αp ∈ H
2λ(p)
T (M ; R) the canonical class w.r.t. ϕ at a fixed point p. Then

• αp(q) = 0 for all q ∈MT so that q 6= p and ϕ(q) ≤ ϕ(p).

Lemma 4.2.2. Let ϕ = ψξ be a generic component of the moment map.

Fix p ∈ MT . Let γ be a (integral) class in H2i
T (M ; R). If γ(q) = 0 for all q ∈ MT so

that λ(q) < λ(p), then

• γ(p) is a (integral) multiple of Λ−
p ; in particular,

• if λ(p) > i then γ(p) = 0.

The next theorem gives an inductive formula for computing the restriction of a

canonical class αp to another fixed point q ∈ MT , αp(q), for all p, q ∈ MT . In

particular this formula depends on the value of αr(r
′) for all the fixed points r, r′ ∈MT

such that λ(r′) − λ(r) = 1. In the next section we will give an explicit expression for

αr(r
′) when M is a GKM space.

Theorem 4.2.3. Let a torus T act on a compact symplectic manifold (M,ω) with

discrete fixed point set and moment map ψ : M → t∗. Let ϕ = ψξ be a generic

component of the moment map. Assume that for all p ∈MT there exists a canonical

class αp ∈ H
2λ(p)
T (M ; R) . Let (V,E) be the associated canonical graph.

Given fixed points p and q, let Σ(p, q) denote the set of paths from p to q in (V,E).

For each r ∈MT pick a closed equivariant two form ωr +ψr ∈ Ω2
T (M) . Assume that

ψγi
(q) 6= ψγi

(γi) for all γ = (γ1, . . . , γ|γ|+1) ∈ Σ(p, q) and 1 ≤ i ≤ |γ|. Then

αp(q) = Λ−
q

∑

γ∈Σ(p,q)

|γ|∏

i=1

ψγi
(γi+1) − ψγi

(γi)

ψγi
(q) − ψγi

(γi)
ξ(γi, γi+1) (4.1)
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Proof. Our convention is that if p 6= q and Σ(p, q) is empty, then αp(q) = 0. Observe

that if p 6= q and λ(q) ≤ λ(p) there are no terms in the sum, hence αp(q) = 0, which

is true from the definition of canonical class. If λ(q)− λ(p) = 1, the formula above is

true because of the definition of ξ(p, q). So the claim is true if λ(q) − λ(p) ≤ 1.

We can always assume that ψr(r) = 0, by replacing ψr with ψ
′

r = ψr − ψr(r) for

all r ∈ MT ; observe that for all γ = (γ1, . . . , γ|γ|+1) in Σ(p, q), ψ
′

γi
satisfies ψ

′

γi
(q) 6=

ψ
′

γi
(γi) = 0 for all 1 ≤ i ≤ |γ|. We will refer to ψ

′

r simply as ψr.

Formula (4.1) can be written as

αp(q) =
∑

(p,r)∈E

ψp(r)

ψp(q)
ξ(p, r)αr(q) (4.2)

and we prove (4.2) by induction.

Let αp ∈ H
2λ(p)
T (M ; R) be the canonical class at p. By definition, αp(p) = Λ−

p and

αp(s) = 0 for all s ∈ MT such that s 6= p and λ(s) ≤ λ(p). Consider αp(ωp + ψp) ∈

H
2λ(p)+2
T (M ; R). This form vanishes at all fixed points s such that λ(s) ≤ λ(p). By

Lemma 4.2.2 this implies that for all r ∈MT such that λ(r)−λ(p) = 1, its restriction

αp(r)ψp(r) to r is a multiple of Λ−
r . We can conclude that αp(r)ψp(r)

Λ−
r

= ξ(p, r)ψp(r) is

a real number.

Consider the class

αp(ωp + ψp) −
∑

(p,r)∈E

ξ(p, r)ψp(r)αr ∈ H
2λ(p)+2
T (M ; R).

Since αr(r) = Λ−
r for all r ∈ MT , this class vanishes on all fixed points s such that

λ(s) ≤ λ(p) + 1. By the second part of Lemma 4.2.2 this implies that it is the zero

class, therefore

αp(ωp + ψp) =
∑

(p,r)∈E

ψp(r)ξ(p, r)αr

Restricting to q and dividing by ψp(q) (which is not zero by assumption) we obtain

(4.2).

Remark 4.2.4. Observe that by the definition of canonical graph and by Lemma
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4.2.1, for every edge (r, r′) in E we have ϕ(r) < ϕ(r′). So if γ = (γ1, . . . , γ|γ|+1) is a

path in the canonical graph, then ϕ(γi) < ϕ(q) for all 1 ≤ i ≤ |γ|. This implies that

ψ(γi) 6= ψ(q) for all 1 ≤ i ≤ |γ|. Hence the equivariant symplectic form ω+ψ always

satisfies the condition required by Theorem 4.2.3. If we choose ωr+ψr = ω+ψ for all

r ∈ MT , equation (4.1) recovers precisely the formula found by Goldin and Tolman

in [11] (cfr. Theorem 1.2).

Our next goal is to simplify formula (4.1) as much as possible.

For example, consider a family of closed equivariant two forms ω1+ψ1, . . . , ωk+ψk

in Ω2
T (M) such that for all (r, r′) ∈ E and j ∈ {1, . . . , k}

either ψ
ξ

j(r) < ψ
ξ

j(r
′) or ψj(r) = ψj(r

′) .

Moreover suppose that for each (r, r′) ∈ E, there exists j ∈ {1, . . . , k} such that

ψj(r) 6= ψj(r
′).

We can define the height of an edge (r, r′) ∈ E to be

h(r, r′) = min
{
j ∈ {1, . . . , k} | ψj(r) 6= ψj(r

′)
}
.

Fix q ∈MT ; consider a point r ∈MT \ {q} and a path γ = (γ1, γ2, . . . , γ|γ|+1) from r

to q. By assumption, there exists j ∈ {1, . . . , k} such that ψ
ξ

j(γ1) < ψ
ξ

j(γ2). Moreover,

ψ
ξ

j(γi) ≤ ψ
ξ

j(γi+1) for all i ∈ {1, . . . , |γ|}. Therefore, ψ
ξ

j(r) < ψ
ξ

j(q), which implies

that ψj(r) 6= ψj(q). So for all r ∈MT \ {q} such that Σ(r, q) 6= ∅ we can define

h(r, q) = min
{
j ∈ {1, . . . , k} | ψj(r) 6= ψj(q)

}
.

Since for all (r, r′) ∈ E either ψ
ξ

j(r) < ψ
ξ

j(r
′) or ψj(r) = ψj(r

′), it follows that if

ψj(γi) = ψj(q) for some i ∈ {1, . . . , |γ|} then ψj(γi) = ψj(γi+1) = ψj(q) as well.

Therefore,

h(γi, q) ≤ h(γi+1, q) and h(γi, q) ≤ h(γi, γi+1). (4.3)

The first refinement of Theorem 4.2.3 is the following Corollary.
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Corollary 4.2.5. Let a torus T act on a compact symplectic manifold (M,ω) with

discrete fixed point set and moment map ψ : M → t∗. Let ϕ = ψξ be a generic

component of the moment map. Assume that there exists a canonical class αp ∈

H
2λ(p)
T (M ; R) for all p ∈MT ; let (V,E) be the associated canonical graph. Pick closed

equivariant two forms ω1 +ψ1, . . . , ωk+ψk in Ω2
T (M) such that for all (r, r′) ∈ E and

j ∈ {1, . . . , k}

either ψ
ξ

j(r) < ψ
ξ

j(r
′) or ψj(r) = ψj(r

′)

Assume that for each (r, r′) ∈ E there exists j ∈ {1, . . . , k} such that ψj(r) 6= ψj(r
′)

and for all (r, r′) ∈ E define

h(r, r′) = min
{
j ∈ {1, . . . , k} | ψj(r) 6= ψj(r

′)
}
.

Given p and q in MT , let Σ(p, q) denote the set of paths in (V,E) from p to q. Then

αp(q) = Λ−
q

∑

γ∈C(p,q)

|γ|∏

i=1

ψh(γi,γi+1)
(γi+1) − ψh(γi,γi+1)(γi)

ψh(γi,γi+1)(q) − ψh(γi,γi+1)(γi)
ξ(γi, γi+1), where

C(p, q) =
{
γ ∈ Σ(p, q) | h(γ1, γ2) ≤ h(γ2, γ3) ≤ · · · ≤ h(γ|γ|, γ|γ|+1)

}
.

Proof. As we observed before, for all r ∈ MT \ {q} s.t. Σ(r, q) 6= ∅ we can define

h(r, q) = min{j ∈ {1, . . . , k} | ψj(r) 6= ψj(q)}. We apply Theorem 4.2.3 choosing

the equivariantly closed two form ωr + ψr associated to r ∈ MT to be ωh(r,q) +

ψh(r,q) if r 6= q and Σ(r, q) 6= ∅. Then Theorem 4.2.3 implies that

αp(q) = Λ−
q

∑

γ∈Σ(p,q)

|γ|∏

i=1

ψh(γi,q)(γi+1) − ψh(γi,q)(γi)

ψh(γi,q)(q) − ψh(γi,q)(γi)
ξ(γi, γi+1).

Let γ be one of the paths in Σ(p, q). Observe that if ψh(γi,q)
(γi) = ψh(γi,q)

(γi+1), then

γ contributes 0 to the formula above. Therefore only the paths γ in Σ(p, q) which

satisfy

h(γi, γi+1) ≤ h(γi, q) for all i = 1, . . . , |γ| (4.4)
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have a non zero contribution. Using (4.3) together with (4.4), the paths in Σ(p, q)

which give non zero contribution satisfy

h(γi, γi+1) = h(γi, q) ≤ h(γi+1, q) = h(γi+1, γi+2)

for all i = 1, . . . , |γ| − 1.

4.3 Canonical classes on GKM spaces

Let M be a compact symplectic manifold with a Hamiltonian action of a torus T

and moment map ψ : M → t∗. Suppose that the fixed point set MT is discrete.

Then M is equivariantly formal (cfr. Theorem 1.1.3) and therefore HT (M) is a free

S(t∗)−module. Then M is a GKM manifold if for every codimension one subtorus

K of T , the connected components of the fixed submanifold MK have dimension at

most two. This is equivalent to requiring the weights of the isotropy action of T on

TpM be pairwise linearly independent.

Every GKM manifold is naturally endowed with a graph, called the GKM graph,

where

• the set of vertices coincide with the set of fixed points MT ; we label each vertex

p ∈MT with its moment map image ψ(p) ∈ t∗

• given p 6= q, there exist a directed edge (p, q) from p to q exactly if there exists

a codimension one subtorus K ⊂ T so that p and q are contained in the same

connected component N of MK . We label each directed edge (p, q) by the

weight η(p, q) associated to the isotropy representation of T on TqN ≃ C.

We denote the set of vertices of the GKM graph by V , and the set of edges by EGKM

(to avoid confusion with the set of edges E of the canonical graph).

Observe that if (p, q) ∈ EGKM then (q, p) ∈ EGKM. Moreover for all (p, q) ∈ EGKM

η(p, q) = −η(q, p) and ψ(q)−ψ(p) is a positive multiple of η(p, q). The set of weights
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in the tangent space at p ∈ V is

Πp = {η(r, p) | (r, p) ∈ EGKM}.

Consider a generic component of the moment map ϕ = ψξ. Then the set of weights

Π−
p in the negative normal bundle of ϕ at p is the set of positive weights in the tangent

bundle, that is,

Π−
p = {η(r, p) | (r, p) ∈ EGKM and η(r, p)(ξ) > 0}.

Observe that Π−
p also coincides with the set {η(r, p) | (r, p) ∈ EGKM and ϕ(r) < ϕ(p)}.

Hence, Λ−
p =

∏
η∈Π−

p
η and λ(p) = |Π−

p | is the number of edges (r, p) ∈ EGKM such

that ϕ(r) < ϕ(q).

On GKM manifolds it is possible to find conditions that ensure the existence

of canonical classes and when canonical classes αp exist, it is possible to compute

explicitly αp(q) for all q ∈MT such that λ(q) − λ(p) = 1 (cfr. [11], [15]).

Definition 4.3.1. Let (p, q) be an edge in EGKM. We say that (p, q) is increasing

if ϕ(p) < ϕ(q).

A path γ = (γ1, . . . , γ|γ|+1) in (V,EGKM) is an increasing path if the edges (γi, γi+1)

are increasing for all i = 1, . . . , |γ|.

A generic component of the moment map ϕ is called index increasing if λ(p) < λ(q)

for every increasing edge (p, q) ∈ EGKM.

If ϕ is index increasing, integral canonical classes exist and it is possible to compute

the restriction of a canonical class αp to q ∈ MT , for all p and q in MT such that

λ(q) − λ(p) = 1. More specifically, given η ∈ t∗ s.t. 〈η, ξ〉 6= 0, let ρη : S(t∗) → S(t∗)

be the homomorphism of symmetric algebras induced by the projection map which

sends X ∈ t∗ to X − 〈X,ξ〉
〈η,ξ〉

η ∈ ξ◦ ⊂ t∗, where ξ◦ = {β ∈ t∗ | β(ξ) = 0}.
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For any (p, q) ∈ EGKM, following [15], we define

Θ(p, q) =
ρη(p,q)(Λ

−
p )

ρη(p,q)(
Λ−

q

η(p,q)
)
∈ S(t∗)0

where S(t∗)0 denotes the ring of fractions of S(t∗). Observe that neither ρη(p,q)(Λ
−
p )

nor ρη(p,q)(
Λ−

q

η(p,q)
) are zero, since by the GKM assumption the weights at each fixed

point are pairwise linearly independent. The theorem below was proved in [15] over

the rationals and then extended to the integers in [11].

Theorem 4.3.2. Let (M,ω, ψ) be a GKM space and (V,EGKM) the associated GKM

graph. Let ϕ = ψξ be a generic component of the moment map; assume that ϕ is

index increasing. Then

1. For each p ∈MT there exists a canonical class αp ∈ H
2λ(p)
T (M ; Z).

2. If p and q are vertices such that λ(q) − λ(p) = 1, then

αp(q) =





Λ−
q

Θ(p, q)

η(p, q)
if (p, q) ∈ EGKM, and

0 if (p, q) /∈ EGKM

(4.5)

3. Θ(p, q) is a non-zero integer.

Let (M,ω, ψ) and (M̃, ω̃, ψ̃) be GKM spaces; let (V,EGKM) and (Ṽ , ẼGKM) be the

associated GKM graphs.

Let π : M → M̃ be an equivariant map. An edge e = (p, q) ∈ EGKM is said to

be vertical (with respect to π) if π(p) = π(q) and horizontal (with respect to π) if

π(p) 6= π(q).

From the equivariance of π it is easy to see that the following conditions are

satisfied:

• π(V ) ⊂ Ṽ .

• If e = (p, q) ∈ EGKM is a horizontal edge, then π(e) = (π(p), π(q)) is an edge in

ẼGKM.
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• If e ∈ EGKM is a horizontal edge then η(e) = ±η(π(e)).

Definition 4.3.3. Let π be an equivariant map between two GKM spaces. Then π is

weight preserving if η(e) = η(π(e)) for all horizontal edges e ∈ EGKM.

Observe that if π is weight preserving and has surjective differential, then one can

find connections on Γ and Γ̃ in such a way that π is a GKM fibration (cfr. section

2.3.3).

Remark 4.3.4. If J and J̃ are compatible almost complex structure on (M,ω) and

(M̃, ω̃) respectively, then any equivariant map π : M → M̃ which intertwines J and

J̃ is weight preserving.

Lemma 4.3.5. Let (M,ω, ψ) and (M̃, ω̃, ψ̃) be GKM spaces, and π : M → M̃ a weight

preserving equivariant map. Let ϕ = ψξ be a generic component of the moment map;

assume that ϕ is index increasing. Define an oriented graph with vertex set V = MT

and edge set

E = {(r, r′) ∈ EGKM | λ(r′) − λ(r) = 1},

where (V,EGKM) is the GKM graph associated to M . Then for all the horizontal edges

(r, r′) ∈ E

ψ̃ξ(π(r)) < ψ̃ξ(π(r′))

Proof. Let (r, r′) be an edge in E. Since λ(r′) > λ(r) and ϕ = ψξ is index increasing

we have ϕ(r) < ϕ(r′) . Since π is an equivariant weight preserving map, if (r, r′) ∈

EGKM is horizontal with respect to π, then ψ(r′) − ψ(r) and ψ̃(r′) − ψ̃(r) are both

positive multiples of η(r, r′), and the conclusion follows.

Definition 4.3.6. Let (M,ω, ψ) and (M̃, ω̃, ψ̃) be GKM spaces, and let π : M → M̃ be

an equivariant fibration. We will say that π has symplectic fibers if the restriction

of ω to M̂p = π−1(π(p)) is symplectic for all p ∈ MT .

Given a generic ξ ∈ t, consider the Morse functions ϕ = ψξ on M , and ϕ̃ = ψ̃ξ on

M̃ . Let Λ̂−
p and Λ̃−

π(p) denote respectively the equivariant Euler class of the negative
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normal bundle of ϕ|cMp
at p ∈ M̂p and the equivariant Euler class of the negative

normal bundle of ϕ̃ = ψ̃ξ at π(p) ∈ M̃ .

Observe that for every fixed point p ∈MT the T−invariant fiber is a Hamiltonian

space (M̂p, ωcMp
, ψ|cMp

) and is a GKM space with GKM graph (V̂p, (ÊGKM)p), where

V̂p = V ∩ M̂T
p and (ÊGKM)p = {(q, r) ∈ EGKM | π(q) = π(r) = π(p)}. Moreover the

set of weights in the tangent space at any point p ∈ M̂p is

Π̂p = {η(r, p) | (r, p) ∈ EGKM and π(r) = π(p)} .

Let (Ṽ , ẼGKM) be the GKM graph associated to M̃ , and suppose that π is weight

preserving. If Π̃s = {η(r, s) | (r, s) ∈ ẼGKM}, then

Π̃π(p) = {η(r, p) | (r, p) ∈ EGKM and π(r) 6= π(p)}

and

Πp = Π̃π(p)

∐
Π̂p (4.6)

In particular, if Π̂−
p and Π̃−

π(p) denote respectively the set of weights in the negative

normal bundle of ϕ|cMp
at p and the set of weights in the negative normal bundle of

ϕ̃ = ψ̃ξ at π(p) ∈ M̃T , then

Π−
p = Π̃−

π(p)

∐
Π̂−
p . (4.7)

and

Λ−
p = Λ̃−

π(p)Λ̂
−
p (4.8)

Therefore if λ̃(s) is half of the Morse index of ϕ̃ at s ∈ M̃T and λ̂(p) half of the Morse

index of ϕ|cMp
at p ∈ M̂T

p , then

λ(p) = λ̃(π(p)) + λ̂(p) for all p ∈MT (4.9)

since by (4.7) λ̃(s) = |Π̃−
s | and λ̂(p) = |Π̂−

p |.

Proposition 4.3.7. Let {(Mi, ωi, ψi)}
k
i=0 be a sequence of GKM spaces so that M0 is
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a point and pi : Mi+1 → Mi a weight preserving equivariant map for each

i ∈ {0, . . . , k − 1}. Let ϕk = ψξk : Mk → R be a generic component of the moment

map; assume that ϕk is index increasing. Define an oriented graph with vertex set

V = (Mk)
T

and edge set

E = {(r, r′) ∈ EGKM | λ(r′) − λ(r) = 1},

where (V,EGKM) is the GKM graph associated to Mk. Also, for all distinct r and r′

in V , define

h(r, r′) = min{j ∈ {1, . . . , k} | πj(r) 6= πj(r
′)}

where πk = Id : Mk →Mk and otherwise πj = pj ◦ pj+1 ◦ · · · ◦ pk−1 : Mk →Mj for all

j = 0, . . . , k − 1. Let ψj = π∗
j (ψj) : Mk → t∗ for all j = 0, . . . , k. Then

1. For all p ∈MT
k there exists a unique canonical class αp ∈ H

2λ(p)
T (Mk; Z).

2. Given p and q in MT , let Σ(p, q) denote the set of paths from p to q in (V,E);

then

αp(q) = Λ−
q

∑

γ∈C(p,q)

|γ|∏

i=1

ψh(γi,γi+1)(γi+1) − ψh(γi,γi+1)(γi)

ψh(γi,γi+1)(q) − ψh(γi,γi+1)(γi)
·
Θ(γi, γi+1)

η(γi, γi+1)
,

where

C(p, q) = {γ ∈ Σ(p, q) | h(γ1, γ2) ≤ h(γ2, γ3) ≤ · · · ≤ h(γk, γk+1)}.

Proof. By Theorem 4.3.2, integral canonical classes exist, and (V,E) is precisely the

canonical graph associated to (Mk, ωk, ψk, ϕk). Moreover by definition for all (r, r′) ∈

E

ξ(r, r′) =
αr(r

′)

Λ−
r′

=
Θ(r, r′)

η(r, r′)
.

For each j ∈ {1, . . . , k}, consider the closed equivariant 2-forms
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ωj + ψj = π∗
j (ωj + ψj) ∈ Ω2

T (Mk). Since each pi is an equivariant weight preserving

map, πj is also an equivariant weight preserving map for all j. Hence, Lemma 4.3.5

implies that for all (r, r′) ∈ E and j ∈ {1, . . . , k}

either ψ
ξ

j(r) < ψ
ξ

j(r
′) or πj(r) = πj(r

′) (4.10)

Hence for all (r, r′) ∈ E either ψ
ξ

j(r) < ψ
ξ

j(r
′) or ψj(r) = ψj(r

′). Moreover, since

πk = Id, it is obvious that ψk(r) 6= ψk(r
′) for all (r, r′) ∈ E, and the second claim is

an immediate consequence of Corollary 4.2.5.

Lemma 4.3.8. Let (M,ω, ψ) and (M̃, ω̃, ψ̃) be GKM spaces. Let π : M → M̃ be a

weight preserving equivariant fibration with symplectic fibers. Let ϕ = ψξ be a generic

component of the moment map; assume that ϕ is index increasing.

Define an oriented graph with vertex set V = MT and edge set

E = {(r, r′) ∈ EGKM | λ(r′) − λ(r) = 1},

where (V,EGKM) is the GKM graph associated to M .

1. There exists a canonical class α̂s on the fiber M̂s = π−1(π(s)) with respect to

the restriction ϕ|cMs
for all s ∈MT .

2. For all r and q in MT such that π(r) = π(q), let Σ̂(r, q) be the set of paths from

r to q in Σ(r, q) such that every edge is vertical. Then

α̂r(q) =
Λ−
q

Λ̃−
π(q)

∑

γ∈bΣ(r,q)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q) − ψ(γi)

Θ(γi, γi+1)

η(γiγi+1)

Proof. We have already observed that for all s ∈ MT the fiber M̂s is a GKM space

and the GKM graph of M̂s is just the restriction of the GKM graph for M to M̂s.

By (4.9), for all p ∈MT , λ(p) = λ̃(π(p))+ λ̂(p). Therefore ϕ|cMs
is index increasing

on M̂s. Moreover λ(p) − λ(q) = λ̂(p) − λ̂(q) for all p and q such that π(p) = π(q).

Hence, canonical classes exist by Theorem 4.3.2. The canonical graph associated
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to M̂s is just the restriction of the canonical graph of M restricted to M̂s. For all

r, s ∈ M̂T
s such that λ(s) − λ(r) = 1 (hence λ̂(s) − λ̂(r) = 1) define Θ̂(s, r) to be

Θ̂(s, r) =
ρη(s,r)(Λ̂

−
r )

ρη(s,r)(
bΛ−

s

η(s,r)
)
.

Since π(s) = π(r), by (4.8) we have

Θ̂(s, r) =
ρη(s,r)(Λ̂

−
r )

ρη(s,r)(
bΛ−

s

η(s,r)
)

=
ρη(s,r)(Λ

−
r )

ρη(s,r)(
Λ−

s

η(s,r)
)

= Θ(s, r) . (4.11)

Equivalently, if we define ξ̂(r, s) to be
α̂r(s)

Λ̂−
s

, then

ξ(r, s) = ξ̂(r, s)

and the conclusion follows from Theorem 4.2.3 and Remark 4.2.4.

Corollary 4.3.9. Assume that the hypotheses of Lemma 4.3.8 hold. Then given p

and s in MT , let Σ(p, s) denote the set of paths γ from p to s in (V,E) such that

π(γi) 6= π(γi+1) for all i. Let ψ : M → t∗ be π∗(ψ̃).

Then for every p and q in MT ,

αp(q) =
∑

s∈cMT
q


 ∑

γ∈Σ(p,s)

Λ̃−
π(q)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q) − ψ(γi)
·
Θ(γi, γi+1)

η(γi, γi+1)


 α̂s(q).

Proof. By lemma 4.3.8 for all s ∈ MT there exists a canonical class α̂s on M̂s with

respect to ϕ|cMs
. Moreover for all s and q in MT such that π(s) = π(q), the restriction

α̂s(q) is given by

α̂s(q) =
Λ−
q

Λ̃−
π(q)

∑

γ∈bΣ(s,q)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q) − ψ(γi)

Θ(γi, γi+1)

η(γiγi+1)
, (4.12)

where Σ̂(s, q) is the set of paths from s to q in the sub-graph of (V,E) with vertices
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V ∩ M̂T
q .

We can apply Proposition 4.3.7, where (M,ω, ψ) = (M2, ω2, ψ2) and (M̃, ω̃, ψ̃) =

(M1, ω1, ψ1), and π = π1 : M → M̃ . Observe that for all p, q in MT and every path

γ = (γ1, . . . , γ|γ|+1) in C(p, q), there exists j ∈ {1, . . . , |γ|+1} such that h(γi, γi+1) = 1

for all i = 1, . . . , j − 1, and h(γi, γi+1) = 2 if i = j, . . . , |γ|. Since h(γi, γi+1) =

h(γi, γk) = 1 for all i ≤ k − 1, the subpath (γ1, . . . , γj) belongs to Σ(p, γj) (and

γi /∈ M̂T
q for all i < j), and (γj , . . . , γ|γ|+1) belongs to Σ̂(γj, γ|γ|+1) (hence γi ∈ M̂T

q for

all i ≥ j). Conversely every path γ = (γ1, . . . , γ|γ|+1) that can be broken into two paths

(γ1, . . . , γj) ∈ Σ(γ1, γj) and (γj, . . . , γ|γ|+1) ∈ Σ̂(γj, γ|γ|+1) belongs to C(γ1, γ|γ|+1).

Hence by Proposition 4.3.7 we have that for all p, q ∈MT

αp(q) = Λ−
q

∑

s∈cMT
q


 ∑

γ∈Σ(p,s)

Υ(γ)





 ∑

γ∈bΣ(s,q)

Υ̂(γ)


 (4.13)

where

Υ(γ) =

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q) − ψ(γi)
·
Θ(γi, γi+1)

η(γi, γi+1)

and

Υ̂(γ) =

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q) − ψ(γi)
·
Θ(γi, γi+1)

η(γi, γi+1)

Combining equations (4.12) and (4.13), the conclusion follows immediately.

4.4 Integrality and positivity

In this section we investigate conditions under which the path formula for the com-

putation of the restriction of the canonical classes to the fixed point set is integral

and positive, in the sense specified below.

Let (M,ω, ψ) be a GKM space and ϕ = ψξ a generic component of the moment

map. We define the set of weights of M to be

Π(M) = {η(r, p) | (r, p) ∈ EGKM}
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and the set of positive weights of M to be {α ∈ Π(M) | α(ξ) > 0}.

Given any subring (with unit) A ⊂ Q, let S(A⊗ ℓ∗) denote the symmetric algebra

associated to the A module A⊗ ℓ∗, where ℓ∗ ⊂ t∗ is the weight lattice. If {x1, . . . , xn}

is a basis for ℓ∗, then S(A⊗ ℓ∗) = A[x1, . . . , xn].

Proposition 4.4.1. Let (M̃, ω̃, ψ̃) be a T−Hamiltonian space which is a GKM space

with respect to this action. Let ϕ̃ = ψ̃ξ be a generic component of the moment map.

Assume that H∗(M̃, A) ≃ H∗(CP
1
2

dim fM , A) as rings, and that [ω̃] is an integral

class, i.e. it lies in the image of H2(M,Z) → H2(M,R). Given x ∈ M̃T and a subset

S ⊂ {y ∈ M̃T | ϕ̃(y) < ϕ̃(x)}, then

Λ̃−
x

∏

y∈S

1

ψ̃(x) − ψ̃(y)

is an element of A+{α ∈ Π(M) | α(ξ) > 0}, the semiring of S(A ⊗ ℓ∗) generated by

A+ = {t ∈ A | t ≥ 0} and the set of positive weights of M̃ .

Proof. First observe that since the fixed points are isolated and ϕ̃ is a perfect Morse

function, there exists one fixed point of index 2i, for all i ∈ {0, . . . , dim(fM)
2

}. Moreover

the GKM graph associated to M̃ is a complete graph, and

ϕ̃(y) < ϕ̃(x) if and only if λ(y) < λ(x) (4.14)

(cfr. also Proposition 3.4 in [24]). Then for all y ∈ S, ψ̃(x) − ψ̃(y) = nη(y, x) for

some n ∈ N, which implies that

Λ̃−
x

∏

eϕ(y)<eϕ(x)

1

(ψ̃(x) − ψ̃(y))
= q ∈ Q+

and hence

Λ̃−
x

∏

y∈S

1

ψ̃(x) − ψ̃(y)
∈ Q+{α ∈ Π(M) | α(ξ) > 0}.
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We need to prove that q ∈ A+. Consider the equivariant cohomology class

β =
∏

eϕ(y)<eϕ(x), y∈MT

[ω̃ + ψ̃ − ψ̃(y)] ∈ H
2λ(x)
T (M ; Z)

Since M̃ is an index increasing GKM space (cfr. (4.14)), integral canonical classes

exist by Theorem 4.3.2. Hence, by Lemma 4.2.2, β = mαx for some m ∈ N, where

αx is the canonical class at x w.r.t. ϕ̃, and 1
m

[ω̃]λ(x) is an integral class. Since by

assumption H∗(M̃, A) ≃ H∗(CP
1
2

dim fM , A), we have 1
m

∈ A+. But

αx(x)

β(x)
= Λ̃−

x

∏

eϕ(y)<eϕ(x)

1

(ψ̃(x) − ψ̃(y))
=

1

m

and the conclusion follows.

Corollary 4.4.2. Assume that the hypotheses of Corollary 4.3.9 hold. Moreover

suppose that H∗(M̃, A) ≃ H∗(CP
1
2

dim fM , A) as rings.

Given p and s in MT , let Σ(p, s) denote the set of paths γ from p to s in (V,E)

such that π(γi) 6= π(γi+1) for all i. Define ψ : M → t∗ to be π∗(ψ̃).

Then for every p and q in MT ,

αp(q) =
∑

s∈cMT
q


 ∑

γ∈Σ(p,s)

P (γ)


 α̂s(q)

where

P (γ) = Λ̃−
π(q)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q) − ψ(γi)
·
Θ(γi, γi+1)

η(γi, γi+1)

lies in the symmetric algebra S(A ⊗ ℓ∗). Moreover if Θ(r, r′) > 0 for all (r, r′) ∈ E,

then P (γ) lies in A+{α ∈ Π(M) | α(ξ) > 0}, the semiring of S(A⊗ ℓ∗) generated by

A+ = {t ∈ A | t ≥ 0} and the set of positive weights of M .

Proof. Since H2(M̃, A) = H2(CP
1
2

dim fM , A), the value of P (γ) will be the same for

any closed equivariant two form ω̃ + ψ̃ ∈ Ω2
T (M̃) which is not exact. So we can

assume that [ω̃ + ψ̃] is a non zero integral class, i.e. it lies in H2
T (M̃,Z). Then
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ψ(r′) − ψ(r)

η(r, r′)
∈ Z for all (r, r′) ∈ E, and since π is weight preserving, it is a positive

integer. Moreover observe that for all the paths γ ∈ Σ(p, q) ψ
ξ
(γi) < ψ

ξ
(q), for all

i = 1, . . . , |γ|. The conclusion follows by combining part three of Theorem 4.3.2,

Corollary 4.3.9 and Proposition 4.4.1.

Suppose that {(Mi, ωi, ψi)}
k
i=0 is a sequence of GKM spaces such that M0 is a

point, and let pi : Mi+1 → Mi be a weight preserving equivariant map for each

i = 0, . . . , k − 1. Moreover assume that each pi is a fibration with symplectic fiber

Fi and H∗(Fi, A) ≃ H∗(CP
1
2

dim fM , A) as rings. Then we can apply Proposition 4.3.7

and by an argument similar to the one used in the proof of Corollary 4.4.2, we get

the following result (see [23]).

Proposition 4.4.3. Assume that the hypotheses of Proposition 4.3.7 hold. If each pi

is a fibration with symplectic fiber Fi, with H∗(Fi, A) ≃ H∗(CP
1
2

dim fM , A) as rings,

then given p, q ∈MT we have

αp(q) =
∑

γ∈C(p,q)

Ξ(γ)

where

Ξ(γ) = Λ−
q

|γ|∏

i=1

ψh(γi,γi+1)(γi+1) − ψh(γi,γi+1)(γi)

ψh(γi,γi+1)
(q) − ψh(γi,γi+1)

(γi)
·
Θ(γi, γi+1)

η(γi, γi+1)

lies in the symmetric algebra S(A ⊗ ℓ∗). Moreover, if Θ(r, r′) > 0 for all (r, r′) ∈ E

then Ξ(γ) lies in A+{α ∈ Π(M) | α(ξ) > 0}, the semiring of S(A ⊗ ℓ∗) generated by

A+ = {t ∈ A | t ≥ 0} and the set of positive weights of M .
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Chapter 5

Canonical classes on flag varieties

In this chapter we apply the results proved in Chapter 4 to the case of complete flag

varieties. In particular we prove integral formulas for canonical classes on complete

flag varieties of type An, Bn, Cn and Dn. Canonical classes correspond to equivariant

Schubert classes on flag varieties, and the formulas we find are new, except in type

An. Moreover we prove a general integral formula that implies the divided difference

operator identities.

5.1 Existence of canonical classes

Let G be a compact simple Lie group with Lie algebra g, and T ⊂ G a maximal torus

with Lie algebra t. Let R ⊂ t∗ denote the set of roots, R+ a choice of positive roots

in R, and R0 the associated simple roots. Let 〈·, ·〉 be a positive definite symmetric

bilinear form on g which is G−invariant (e.g. negative the Cartan-Killing form),

which we use to identify g with g∗ and t with t∗. Let W be the Weyl group of G.

Consider a generic point p0 in t∗; we choose p0 in such a way that 〈p0, α〉 < 0 for all

α ∈ R+. If Op0 denotes the G−coadjoint orbit through p0, we have already observed

(cfr. section 3.1) that Op0 is a GKM space with respect to the residual T−action.

We recall the structure of the GKM graph (V,EGKM).

• The vertices are in bijection with the elements of the Weyl group; more precisely

the bijection is given by sending w ∈ W to w(p0) ∈ t∗. The restriction of the
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moment map ψ to the set of vertices is the inclusion.

• There exist an edge e between two vertices p1 = w1(p0) and p2 = w2(p0) if and

only if w2 = w1sβ for some β ∈ R+. The weight associated to the directed edge

(p1, p2) is η(p1, p2) = w1(β). Since w1sβ = sw1(β)w1, we can also say that p1 and

p2 are joined by an edge if and only if w2 = sαw1 for some α ∈ R. In this case

we can define the weight associated to (p1, p2) to be the unique α ∈ R such that

w2 = sαw1 and 〈p2, α〉 > 0. It’s easy to check that the two definitions of weight

given above are equivalent.

Let w2 = sαw1, p1 = w1(p0) and p2 = w2(p0). Then

ψ(p2) − ψ(p1) = p2 − sα(p2) = 2
〈p2, α〉

〈α, α〉
α = 2

〈p2, α〉

〈α, α〉
η(p1, p2). (5.1)

Hence, as required, ψ(p2) − ψ(p1) is a positive multiple of η(p1, p2). Since 〈·, ·〉 is g

invariant

〈p2, α〉 = 〈w2(p0), α〉 = 〈p0, w
−1
2 (α)〉 = 〈p0, w

−1
1 sα(α)〉 = −〈p0, w

−1
1 (α)〉. (5.2)

In particular, the set of weights Πp2 in the tangent bundle at p2 is

Πp2 = {α ∈ R | 〈p0, w
−1
2 (α)〉 > 0}. (5.3)

Fix a generic ξ ∈ t such that α(ξ) > 0 for all α in R+ and let ϕ = ψξ : Op0 → R be a

generic component of the moment map; it’s easy to see that ϕ achieves its minimum

value at p0 and therefore α(ξ) < 0 for every weight α ∈ Πp0 . Since 〈p0, α〉 < 0 for all

α ∈ R+, for any point p = w(p0) we can rewrite (5.3) as

Πp = {α ∈ R | w−1(α) ∈ −R+} = w(−R+)

The set of weights Π−
p in the negative normal bundle of p is the set of positive weights

in the tangent bundle at p, i.e. if η belongs to Π−
p then η(ξ) > 0 and hence η ∈ R+.
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This implies that

Π−
p = R+ ∩ w(−R+) = w

(
−R+ ∩ w−1(R+)

)
. (5.4)

In particular, λ(p) = |R+ ∩ w(−R+)| .

We will need the following standard facts about root systems (cfr. [18]). Every

element w of the Weyl group W can be written as a product of simple reflections, i.e.

w = si1 · · · sir , where sij = sαij
and αij ∈ R0 for all j = 1, . . . , r. The length of w,

denoted by l(w), is the smallest r for which such an expression exists. We refer to

any such expression with r = l(w) as a reduced expression for w (by convention

l(1) = 0).

Given w ∈W and γ ∈ R+, l(wsγ) > l(w) if and only if w(γ) ∈ R+.

Let w = si1si2 . . . sir be a reduced expression for w ∈ W and βj = sir · · · sij+1
(αij ),

with βr = αir , where sij = sαij
for some αij ∈ R0 for all j = 1, . . . , r. Then

R+ ∩ w−1(−R+) = {β1, β2, . . . , βr} (5.5)

Moreover, the βj are all distinct.

Combining (5.4) and (5.5), we see that for any p = w(p0) ∈ V ,

λ(p) = l(p), and, (5.6)

Π−
p = w

(
−R+ ∩ w−1(R+)

)
= {η1, η2, . . . , ηr} (5.7)

where ηj = si1 · · · sij−1
(αij ), with η1 = αi1 .

We are ready to prove the following.

Lemma 5.1.1. Let the maximal torus T of a compact simple Lie group G act on a

generic coadjoint orbit Op0 ⊂ g∗. Let (V,EGKM) be the associated GKM graph. Let

ψ : M → t∗ be the moment map and ϕ = ψξ : Op0 → R a generic component of the

moment map. Then ϕ is index increasing.

Proof. Consider an edge (p1, p2) ∈ EGKM so that ϕ(p2) > ϕ(p1); let α = η(p1, p2).
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By the description of (V,EGKM), there exists w1 and w2 in W so that p1 = w1(p0),

p2 = w2(p0), and w2 = sαw1. Since ψ(p2)−ψ(p1) is a positive multiple of η(p1, p2), the

fact that ϕ(p2) > ϕ(p1) implies that α(ξ) > 0, that is α ∈ Π−
p2

; by (5.4) this implies

that α ∈ R+ ∩ w2(−R
+). Hence δ = −w−1

2 (α) = w−1
1 (α) is a positive root, and

α = w1(δ) is a positive root. This implies that l(w1sδ) > l(w1), which is equivalent

to l(w2) = l(sαw1) > l(w1). Finally, by (5.6), λ(w2) > λ(w1) as required.

Since a generic component of the moment map is index increasing, Theorem 4.3.2

implies that integral canonical classes exist.

We recall that to any edge (p, q) ∈ EGKM one associates an element Θ(p, q) in the

field of fractions S(t∗)0 (cfr. section 4.3). When λ(q)− λ(p) = 1, this Θ(p, q) is a non

zero integer (cfr. Theorem 4.3.2).

Proposition 5.1.2. Let T be a maximal torus in a compact simple Lie group G,

acting on a generic coadjoint orbit Op0 ⊂ g∗. Let (V,EGKM) be the associated GKM

graph. Let ψ : M → t∗ be the moment map and ϕ = ψξ : Op0 → R a generic component

of the moment map. Then

Θ(p, q) = 1

for all (p, q) ∈ EGKM with λ(q) − λ(p) = 1.

Proof. Let Π−
p (resp. Π−

q ) denote the set of weights in the negative normal bundle of

ϕ at p (resp. q) and α the weight associated to (p, q). Observe that in order to prove

that Θ(p, q) = 1, it is sufficient to find a bijection f : Π−
p → Π−

q \ {α} such that for

all η ∈ Π−
p , f(η) − η = cα for some constant c (depending on η).

Let q = w(p0) and w = s1s2 · · · sl be a reduced expression for w (where si = sαji

for some αji ∈ R0, i = 1, . . . , l). By the Strong Exchange Condition (cfr. [18])

p = w′(p0), where w′ = s1 · · · ŝj · · · sl for some (unique) j = 1, . . . , l.

Let w̃ = s1s2 · · · sj−1. We have

q = s1s2 · · · sl(p0) = w̃sjsj+1 · · · sl(p0) = s ew(αj)w̃sj+1 · · · sl(p0) = s ew(αj)(p)
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So, for the particular reduced expression of w above, α = w̃(αj). Moreover

Π−
p = {α1, s1(α2), . . . , s1s2 · · · sj−2(αj−1), s1 · · · sj−1(αj+1), . . . , s1 · · · ŝj · · · sl−1(αl)}

Π−
q \ {α} = {α1, s1(α2), . . . , s1s2 · · · sj−2(αj−1), s1 · · · sj(αj+1), . . . , s1 · · · sl−1(αl)}.

Define f : Π−
p → Π−

q \ {α} to be

f(s1 · · · sk(αk+1)) = s1 · · · sk(αk+1) if 1 ≤ k < j − 1 ,

and

f(s1 · · · ŝj · · · sk(αk+1)) = s1 · · · sk(αk+1) if j ≤ k < l

For every k s.t. j ≤ k < l we have s1 · · · sk(αk+1) = s ew(αj)(s1 · · · ŝj · · · sk(αk+1)), hence

f(s1 · · · ŝj · · · sk(αk+1)) − s1 · · · ŝj · · · sk(αk+1) ≡ 0 mod α(= w̃(αj)) .

Since on the other weights f is the identity, the claim follows immediately.

Consider two points p1 and p2 in t∗ which lie in the closure of the same Weyl

chamber, and such that Gp2 ⊂ G (the stabilizer of p2) contains Gp1 (the stabilizer of

p1). Consider the G−coadjoint orbits Op1 and Op2 . Then there is a natural projection

map

π : Op1 → Op2

g · p1 7→ g · p2

(5.8)

We have already observed (cfr. section 3.1) that π is a T−equivariant fibration with

symplectic fibers isomorphic to Gp2/Gp1. Moreover π is a weight preserving map,

since it is a map of almost complex manifold. In [14] we prove a much stronger result:

if Γ1 and Γ2 denote the GKM graphs associated respectively to O1 and O2, then

π : Γ1 → Γ2 is a GKM fiber bundle (cfr. Theorem 4.2).

Now we apply the results of Chapter 3 to derive integral formulas for canonical

classes on generic coadjoint orbits of type A,B,C and D.
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5.2 Generic coadjoint orbit of type An

Let G = SU(n+1), and let T be the torus of diagonal matrices in G with Lie algebra

t. Then Sn+1, the group of permutations on n + 1 elements, is the Weyl group W of

G. Let {xi}
n+1
i=1 be the basis of (Rn+1)∗ given by xi(ξ1, . . . , ξn+1) = ξi. We can identify

the dual of the Lie algebra of T , t∗, with the subset of (Rn+1)∗ given by

{
n+1∑

j=1

µjxj |
n+1∑

j=1

µj = 0

}
.

A choice of simple roots is given by αj = xj − xj+1, for all j = 1, . . . , n. For all

i = 0, . . . , n define µi = (µi1, . . . , µ
i
n+1) to be a vector in Rn+1 such that

µi1 < µi2 < . . . < µii < µii+1 = . . . = µin+1 and
∑n+1

j=1 µ
i
j = 0. Let pi be the point

pi =
∑n+1

j=1 µ
i
jxj in t∗. The coadjoint orbit Opi = G · pi is isomorphic to G/Gpi, where

Gpi = S(U(1) × . . .× U(1) × U(n− i+ 1)) .

The T−fixed points are given by

(G/Gpi)T = {
i∑

j=1

µijxσ(j), σ ∈ Sn+1} ⊂ t∗ .

The moment map ψi restricted to the fixed point set is given by the inclusion

ψi : (G/Gpi)T →֒ t∗. Observe that G/Gp0 is just the point p0 and G/Gpn is isomorphic

to F l(Cn+1), the manifold of complete flags in Cn+1.

For all i = 0, . . . , n define Mi = G/Gpi, and consider the projection map

pi : Mi+1 →Mi as defined in (5.8); then the fiber of pi, i = 0, . . . , n− 1 is isomorphic

to U(n−i+1)/U(n−i), which is the complex projective space CP n−i. So the sequence

of spaces {(Mi, ωi, ψi)}
n
i=0 is a sequence of GKM spaces, and the map pi : Mi+1 →Mi

is a weight preserving T−equivariant fibration with symplectic fiber isomorphic to

CP n−i, for all i = 0, . . . , n− 1.

Let πi : Mn → Mi be the composition πi = pi ◦ pi+1 ◦ · · · ◦ pn−1. The restrictions

of the maps pi’s and πi’s to the fixed points, pi : (Mi+1)
T → (Mi)

T and
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πi : (Mn)
T → (Mi)

T , are given by

pi(

n+1∑

j=1

µi+1
j xσ(j)) =

n+1∑

j=1

µijxσ(j), hence πi(

n+1∑

j=1

µnj xσ(j)) =

n+1∑

j=1

µijxσ(j) .

Let r and r′ be points in (Mn)
T , where r =

∑n+1
j=1 µ

n
j xσ(j) and r′ =

∑n+1
j=1 µ

n
j xσ′(j).

Then

πi(r) = πi(r
′) ⇐⇒ πj(r) = πj(r

′) ∀ 0 ≤ j ≤ i⇐⇒ σ(j) = σ′(j) ∀ 0 ≤ j ≤ i

For any pair of elements r, r′ in (Mn)
T define h(r, r′) to be

h(r, r′) = min{j ∈ {0, . . . , n} | πj(r) 6= πj(r
′)}

(cfr. Proposition 4.3.7). It’s clear that h(r, r′) = a if and only if σ(j) = σ′(j), for all

0 ≤ j < a and σ(a) 6= σ′(a). If (r, r′) is an edge in E, hence in EGKM, then r′ = sβr

for some reflection sβ ∈ W , β ∈ R, where β = xσ(h) − xσ(k) for some h < k; in this

case h(r, r′) = h.

Let’s recall the following notation: σ′ = σ(h, k) means that σ′ is obtained from σ

by swapping the elements at positions h and k in the one line notation of

σ = σ(1) . . . σ(n + 1); σ′ = (i, j)σ means that we are swapping the elements i and j

in the one line notation of σ. Hence σ′ = σ(h, k) if and only if σ′ = (σ(h), σ(k))σ.

Observe that if σ′ = σ(h, k), with h < k, then the height h(σ(pn), σ′(pn)) of the edge

(σ(pn), σ′(pn)) is given by h.

Consider now the canonical classes {αp}p∈MT
n

associated to ϕn = ψξn. These classes

exist by Lemma 5.1.1. For any p, q ∈ (Mn)
T define

C(p, q) = {γ ∈ Σ(p, q) | h(γ1, γ2) ≤ h(γ2, γ3) ≤ . . . ≤ h(γ|γ|, γ|γ|+1)} .

Proposition 5.2.1. Let G/Gpn be a generic coadjoint orbit of type An. Fix p and q

in (G/Gpn)T . Let αp ∈ H
2λ(p)
T (Mn; Z) be the canonical class associated to ϕn = ψξn.

(1) A path γ = (σ1(p
n), . . . , σl+1(p

n)) is an element of C(σ1(p
n), σl+1(p

n)), if and
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only if

(a) l(σj+1) = l(σj) + 1 and σj+1 = σj(hj , kj) with hj < kj, for all j = 1, . . . , l

(b) h1 ≤ h2 ≤ . . . ≤ hl

(2) (c) For all p, q ∈ (G/Ppn)T

αp(q) = Λ−
q

∑

γ∈C(p,q)
γ=(σ1(pn),...,σl+1(pn))

l∏

j=1

1

xσj (hj) − xσl+1(hj)

(d) For all γ = (σ1(p
n), . . . , σl+1(p

n)) in C(p, q)

Ξ(γ) = Λ−
q

l∏

j=1

1

xσj (hj) − xσl+1(hj)

is a polynomial with positive integer coefficients in the simple roots, i.e. it

belongs to Z≥0[α1, . . . , αn].

Proof. Condition (a) is equivalent to saying that γ belongs to Σ(σ1(p
n), σl+1(p

n)).

Then, from what we observed before, if σj+1 = σj(hj, kj) with hj < kj, then

h(σj(p
n)σj+1(p

n)) = hj , for all j = 1, . . . , l. So part (1) follows from the definition of

C(p, q).

Now observe that the sequence of GKM spaces {(Mi, ωi, ψi)}
n
i=0 satisfies the

hypotheses of Proposition 4.3.7. Define ψj = π∗
j (ψj) : Mn → t∗ for all j. Then

ψi(σ(pn)) =
∑n+1

m=1 µ
i
mxσ(m), where µii+1 = . . . = µin+1. Hence, if h(σ(pn)σ′(pn)) = h,

we have ψh(σ
′(pn)) − ψh(σ(pn)) = µhh(xσ′(h) − xσ(h)) + µhh+1

∑n+1
m=h+1(xσ′(m) − xσ(m)).

But
n+1∑

m=h

(xσ′(m) − xσ(m)) = 0 because {σ(h), . . . , σ(n + 1)} = {σ′(h), . . . , σ′(n + 1)},

hence

ψh(σ
′(pn)) − ψh(σ(pn)) =

µhh(xσ′(h) − xσ(h)) + µhh+1

n+1∑

m=h+1

(xσ′(m) − xσ(m)) − µhh+1

n+1∑

m=h

(xσ′(m) − xσ(m)) =

(µhh+1 − µhh)(xσ(h) − xσ′(h))
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In particular if σ′ = σ(h, k) with h < k then

ψh(σ
′(pn)) − ψh(σ(pn)) = (µhh+1 − µhh)(xσ(h) − xσ(k)) = (µhh+1 − µhh)η(σ(pn), σ′(pn))

Recall that for every path γ = (σ1(p
n), . . . , σl+1(p

n)) in C(σ1(p
n), σl+1(p

n)),

h(σi(p
n), σi+1(p

n)) = h(σi(p
n), σl+1(p

n)) for all i = 1, . . . , l (cfr. Corollary 4.2.5).

Combining the above computations with Proposition 4.3.7 and 5.1.2, we obtain

claim (c). Part (d) follows from Proposition 4.4.3.

5.3 Generic coadjoint orbit of type Bn

Let G = SO(2n + 1) and T a maximal compact subtorus in G with Lie algebra t.

Let {xi}
n
i=1 be the basis of (Rn)∗ ≃ t∗ given by xi(µ1, . . . , µn) = µi, i = 1, . . . , n. Let

R be the set of roots of G, α1 = x1 − x2, . . . , αn−1 = xn−1 − xn, αn = xn a choice of

simple roots R0, and R+ the associated set of positive roots. The Weyl group W of

G is the group on signed permutations of n elements.

Consider a vector in Rn (µ1, . . . , µn) such that µ1 < µ2 < . . . < µn < 0 and let p0

be the point in t∗ given by p0 =
∑n

j=1 µjxj .

The T−fixed points of the G−coadjoint orbit Op0 = G · p0 ≃ G/T are given by

OT
p0

=

{
n∑

j=1

(−1)ǫjµjxσ(j), ǫj ∈ {0, 1} j = 1, . . . , n, σ ∈ Sn

}
⊂ t∗

Let’s denote Op0 by M , and let ω be the canonical symplectic form associated to

it. The moment map ψ restricted to the fixed point set is given by the inclusion

ψ : OT
p0

→֒ t∗. Let ξ be a generic vector in t such that α(ξ) > 0 for all α ∈ R+. Then

ϕ = ψξ : M → R is a Morse function, and the point p0 is the minimum of ϕ.

Now let’s consider the set of canonical classes {αp}p∈MT associated to ϕ, which

exists by Lemma 5.1.1. The main result of this section is an explicit inductive positive

integral formula for αp(q) for all p, q ∈ MT , i.e. a formula in which each term is a

polynomial in the simple roots with positive integer coefficients.
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Let p̃0 be the point −x1 ∈ t∗. Then the coadjoint orbit G · p̃0 = Oep0 is isomorphic

to Gr+
2 (R2n+1), the Grassmannian of oriented two planes in R2n+1. Let’s denote it by

M̃ ; let ω̃ be the canonical symplectic structure on M̃ , and ψ̃ : M̃ → t∗ the moment

map.

The GKM graph (Ṽ , ẼGKM) associated to (M̃, ω̃, ψ̃) is a complete graph with 2n

vertices,

Ṽ = {±xi, i = 1, . . . , n}

and as before the moment map restricted to the fixed point set is given by the inclusion

ψ̃ : OT
ep0

= Ṽ →֒ t∗. The same choice of the polarizing vector ξ gives a Morse function

ϕ̃ = ψ̃ξ : M̃ → R, with critical points {−x1,−x2, . . . ,−xn, xn, . . . , x2, x1}. We have

λ̃(−xi) = i − 1, λ̃(xi) = n − i, for all i = 1, . . . , n, where λ̃(p) denotes half of the

Morse index of ϕ̃ at p. So the critical points are listed by increasing Morse index;

hence the points −x1 and x1 are respectively the minimum and the maximum of ϕ̃.

Consider the projection map

π : (M,ω, ψ) → (M̃, ω̃, ψ̃) (5.9)

given by π(g · p0) = g · p̃0, for all g ∈ G. Recall that the fixed point set MT of M can

be described as {w(p0), w ∈ W}, and the map π restricted to the fixed point set is

simply given by

π|
MT

: MT → M̃T

w(p0) 7→ w(p̃0) .

Since p0 and p̃0 lie in the closure of the same Weyl chamber, the map π is a weight

preserving T−equivariant fibration with symplectic fibers. Moreover observe that the

fiber over a point ±xh ∈ M̃T is a generic coadjoint orbit of type Bn−1. The subgroup

Wh of W generated by the elements sxi
and sxi−xj

with i, j ∈ {1, . . . , n} \ {h} acts

transitively on the fixed points of the fiber.

For every p and q ∈ MT , let Σ(p, q) be the set of paths in Σ(p, q) which are

horizontal with respect to π (cfr. Corollary 4.3.9). Given γ ∈ Σ(p, q), let γ̃ = π(γ)
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be its projection to ẼGKM and V (γ̃) the set of vertices of γ̃,

V (γ̃) = {γ̃1, . . . , γ̃|γ|+1} ⊆ Ṽ ,

with γ̃i = π(γi), for all i = 1, . . . , |γ|+1. Observe that γ̃i = ±xj , for some j = 1, . . . , n;

so we can define −γ̃i to be ∓xj

Definition 5.3.1. Given a path γ ∈ Σ(p, q), let γ̃ = π(γ). The path γ is said to be

uneven if the following conditions are satisfied.

(i) γ̃|γ|+1 ∈ R+,

(ii) −γ̃|γ|+1 ∈ V (γ̃), and

(iii) max{h | xh ∈ V (γ̃)} 6= max{h | −xh ∈ V (γ̃)}.

Otherwise γ is said to be even.

−x1−x2

x1x2

In the above figure we show the projection π(γ) = (−x1, x2, x1) of an uneven path

γ.

Observe that from the definition of uneven path, condition (ii) implies that the

set

{j | xj and − xj ∈ V (γ̃)}

is non empty. For every uneven path define

k(γ) = max{j | xj and − xj ∈ V (γ̃)} .

Observe that (iii) implies that k(γ) < n.
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Definition 5.3.2. Given a path γ ∈ Σ(p, q), let γ̃ = π(γ). The path γ is said to

be relevant if it is either even or if it is uneven and xk(γ)+1 ∈ V (γ̃). Let R(p, q) ⊂

Σ(p, q) denote the set of relevant paths.

Observe that by Lemma 4.3.8, canonical classes on the fiber of π exist. The main

theorem of this section is the following.

Theorem 5.3.3. Let π : (M,ω, ψ) → (M̃, ω̃, ψ̃) be the projection map (5.9). Let

ϕ = ψξ : M → R be a generic component of the moment map, and consider the

canonical classes {αp}p∈MT associated to ϕ. For every s ∈MT consider the canonical

class α̂s on the fiber M̂s = π−1(π(s)), and let R(p, s) be the set of relevant paths from

p to s.

For every γ ∈ R(p, s) define Q(γ) to be

(i)

Q(γ) = Λ̃−
π(γ|γ|+1)

|γ|∏

i=1

π(γi+1) − π(γi)

π(γ|γ|+1) − π(γi)

1

η(γi, γi+1)

if γ is even;

(ii)

Q(γ) = 2Λ̃−
π(γ|γ|+1)




|γ|∏

i=1

π(γi+1) − π(γi)

π(γ|γ|+1) − π(γi)

1

η(γi, γi+1)


 π(γ|γ|+1)

η(−xk(γ)+1, π(γ|γ|+1))

if γ is uneven.

Then

(1) For all p and q in MT

αp(q) =
∑

s∈cMT
q


 ∑

γ∈R(p,s)

Q(γ)


 α̂s(q),

(2) Q(γ) is a polynomial in the simple roots with positive integer coefficients, i.e.

it belongs to Z≥0[α1, . . . , αn].
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Before proving Theorem 5.3.3 we need to give another characterization of even

and uneven paths, and make the expression of the terms Q(γ) more explicit.

If (V,EGKM) is the GKM graph associated to a GKM space (M,ω, ψ), we define

the magnitude mψ(e) of an edge e = (r, s) ∈ EGKM to be

mψ(e) =
ψ(s) − ψ(r)

η(e)
.

Observe that for the GKM space (M̃, ω̃, ψ̃) it is possible to define the magnitude of

(r, s) for any pair of vertices r, s in Ṽ , since (Ṽ , ẼGKM) is a complete graph. Since

from now on we will only consider the magnitude of edges in (Ṽ , ẼGKM), we will

denote m
eψ(e) simply by m(e), for all e ∈ ẼGKM.

Definition 5.3.4. Given a path γ ∈ Σ(p, q), let γ̃ = π(γ). The set of skipped

vertices of γ is

SV (γ̃) =
{
s ∈ Ṽ

∣∣∣ ψ̃ξ(s) < ψ̃ξ(γ̃|γ|+1)
}
\ V (γ̃).

Proposition 5.3.5. Let γ = (γ1, . . . , γ|γ|+1) be a path in (V,EGKM) which is horizon-

tal and increasing. Define

P (γ) = Λ̃−
π(γ|γ|+1)

|γ|∏

i=1

π(γi+1) − π(γi)

π(γ|γ|+1) − π(γi)

1

η(γi, γi+1)

If γ̃ denotes π(γ) then

(i) P (γ) =
∏

s∈SV (eγ)

η(s, γ̃|eγ|+1) if and only if one of the following happens

(a) γ̃1 ∈ R+ or γ̃|eγ|+1 /∈ R+

(b) −γ̃|eγ|+1 /∈ V (γ̃) and max{h | xh ∈ V (γ̃)} 6= max{h | −xh ∈ V (γ̃)}

(c) −γ̃|eγ|+1 ∈ V (γ̃) and max{h | xh ∈ V (γ̃)} = max{h | −xh ∈ V (γ̃)}

(ii) P (γ) = 2
∏

s∈SV (eγ)

η(s, γ̃|eγ|+1) if and only if γ̃|eγ|+1 ∈ R+, γ̃1 /∈ R+, −γ̃|eγ|+1 /∈ V (γ̃)
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and max{h | xh ∈ V (γ̃)} = max{h | −xh ∈ V (γ̃)}

(iii) P (γ) =
1

2

∏

s∈SV (eγ)

η(s, γ̃|eγ|+1) if and only if γ̃|eγ|+1 ∈ R+, −γ̃|eγ|+1 ∈ V (γ̃) and

max{h | xh ∈ V (γ̃)} 6= max{h | −xh ∈ V (γ̃)}.

Hence P (γ) is a polynomial with positive integer coefficients in the positive roots if

and only if γ is even.

As usual we set the empty product to be equal to one.

Proof. First of all it’s easy to see that if γ̃ = (γ̃1, . . . , γ̃|eγ|+1) = π(γ), then

P (γ) =

|eγ|∏

i=1

m(γ̃i, γ̃i+1)

m(γ̃i, γ̃|eγ|+1)

∏

s∈SV (eγ)

η(s, γ̃|eγ|+1) (5.10)

In fact observe that π(γ|γ|+1) 6= π(γi) for all i = 1, . . . , |γ|, since π is a weight pre-

serving map and γ is horizontal and increasing. Then observe that

π(γi+1) − π(γi)

η(γi, γi+1)
=
ψ̃(π(γi+1)) − ψ̃(π(γi))

η(π(γi), π(γi+1))
= m(π(γi), π(γi+1))

and
Λ̃−
π(γ|γ|+1)

π(γ|γ|+1) − π(γi)
=

Λ̃−
π(γ|γ|+1)

m(π(γi), π(γ|γ|+1))η(π(γi), π(γ|γ|+1))
.

Moreover since γ is an increasing horizontal path, and since π is a weight preserving

map, the path γ̃ = π(γ) is increasing as well. Hence by definition of SV (γ̃) we have

that
|γ|∏

i=1

Λ̃−
π(γ|γ|+1)

η(π(γi), π(γ|γ|+1))
=

∏

s∈SV (eγ)

η(s, π(γ|γ|+1)) ,

and (5.10) follows. Then observe that since γ̃ is increasing, its sequence of vertices is

an ordered subsequence of

(−x1,−x2, . . . ,−xn, xn, . . . , x2, x1)

The only edges in ẼGKM of magnitude 2 are the ones connecting opposite vertices −xj
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and xj , for some j = 1, . . . , n; all the others have magnitude 1. Then, since γ̃ is an

increasing path, it can have at most one edge of type (−xj , xj) for some j = 1, . . . , n,

and if such an edge exists then j = max{h | xh ∈ V (γ̃)} = max{h | −xh ∈ V (γ̃)}.

Hence we have that

|eγ|∏

i=1

m(γ̃i, γ̃i+1) = 2 precisely if γ̃ contains an edge of type (−xj , xj),

where j = max{h | xh ∈ V (γ̃)} = max{h | −xh ∈ V (γ̃)}, otherwise the product

equals 1.

Similarly

|eγ|∏

i=1

m(γ̃i, γ̃|eγ|+1) = 2 precisely if γ̃ contains the edge (−γ̃|eγ|+1, γ̃|eγ|+1).

Combining these facts and (5.10) the claim follows.

We recall that for every uneven path γ, if γ̃ = π(γ), k(γ) is defined to be

max{j | xj and − xj ∈ V (γ̃)}, which from the definition of uneven path is a non

empty set, and k(γ) < n. The proof of Theorem 5.3.3 is based on the following two

lemmas (the proofs of which are given at the end of this section).

Lemma 5.3.6. Let γ be a horizontal path in Σ(p, q) and let γ̃ = π(γ). If γ is uneven

then either xk(γ)+1 or −xk(γ)+1 belongs to V (γ̃).

For every path γ̃ = π(γ) satisfying this property define γ̃′ to be the path obtained

from γ̃ by replacing the vertex xk(γ)+1 ∈ V (γ̃) (or −xk(γ)+1 ∈ V (γ̃)) with −xk(γ)+1

(or xk(γ)+1). For example if γ̃ = (. . . ,−xk(γ),−x̂k(γ)+1, . . . , xk(γ)+1, xk(γ), . . .) then

γ̃
′
= (. . . ,−xk(γ),−xk(γ)+1, . . . , x̂k(γ)+1, xk(γ), . . .).

Lemma 5.3.7. Let γ be a horizontal path in Σ(p, q) and let γ̃ = π(γ). If γ is an

uneven path then there exists γ
′
∈ Σ(p, q) such that π(γ

′
) = γ̃

′
.

Hence the uneven paths which are in the image of Σ(p, q) always come in pairs.

We are now ready to prove Theorem 5.3.3

Proof of Theorem 5.3.3. Observe that if π : (M,ω, ψ) → (M̃, ω̃, ψ̃) is the projection

(5.9), then π∗(ψ̃)(r) = π(r) for all r ∈ MT . By Corollary 4.3.9 it follows that for all

p, q ∈MT

αp(q) =
∑

s∈cMT
q


 ∑

γ∈Σ(p,s)

Λ̃−
π(q)

|γ|∏

i=1

π(γi+1) − π(γi)

π(q) − π(γi)
·
Θ(γi, γi+1)

η(γi, γi+1)


 α̂s(q).
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Hence by definition of P (γ) and Proposition 5.1.2 we have

αp(q) =
∑

s∈cMT
q

(
∑

γ∈Σ(p,s)

P (γ))α̂s(q) .

In order to prove part (1) of Theorem 5.3.3 it is enough to prove that for all p, s ∈MT

∑

γ∈Σ(p,s)

P (γ) =
∑

γ∈R(p,s)

Q(γ)

Observe that for every relevant path γ ∈ R(p, s), we have

Q(γ) =





P (γ) if γ is even

2P (γ)
π(s)

η(−xk(γ)+1, π(s))
if γ is uneven

By Lemma 5.3.6 and 5.3.7, the set of uneven paths in Σ(p, s) contains pairs of paths

γ and γ′, where the set of vertices of γ̃′ = π(γ
′
) is obtained from the set of vertices of

γ̃ = π(γ) by replacing xk(γ)+1 (or −xk(γ)+1) with −xk(γ)+1 (or xk(γ)+1). Hence either

γ or γ
′
is relevant. Suppose that γ is relevant, i.e. xk(γ)+1 ∈ V (γ̃) (or equivalently

−xk(γ)+1 ∈ SV (γ̃)). Observe that by definition of γ and γ′ we have

SV (γ̃) \ {−xk(γ)+1} = SV (γ̃′) \ {xk(γ)+1}. Hence by Proposition 5.3.5 (iii)

P (γ)

η(−xk(γ)+1, π(s))
=

1

2

∏

r∈SV (eγ)

η(r, π(s))

η(−xk(γ)+1, π(s))
=

1

2

∏

r∈SV (eγ′)

η(r, π(s))

η(xk(γ)+1, π(s))
=

P (γ′)

η(xk(γ)+1, π(s))
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So

P (γ) + P (γ
′

) =
P (γ)

η(−xk(γ)+1, π(s))
η(−xk(γ)+1, π(s)) +

P (γ′)

η(xk(γ)+1, π(s))
η(xk(γ)+1, π(s))

=
P (γ)

η(−xk(γ)+1, π(s))
(π(s) + xk(γ)+1 + π(s) − xk(γ)+1)

= 2P (γ)
π(s)

η(−xk(γ)+1, π(s))
= Q(γ).

This proves part (1) of Theorem 5.3.3.

Now observe that if γ is an even relevant path then P (γ) = Q(γ). By Proposition

5.3.5 (i) and (ii), P (γ) is a polynomial with positive integer coefficients in the positive

roots, hence with positive integer coefficients in the simple roots.

If γ is an uneven relevant path then it follows from Proposition 5.3.5 (iii) that

Q(γ) = 2P (γ)
π(s)

η(−xk(γ)+1, π(s))
=

∏

r∈SV (eγ)\{−xk(γ)+1}

η(r, π(s))π(s)

which is clearly a polynomial with positive integer coefficients in the positive roots,

hence with positive integer coefficients in the simple roots.

Example 5.3.8 Let M be a generic coadjoint orbit of type B2. Then the associated

GKM graph (V,EGKM) has eight vertices, p0 = −2x1 − x2, p1 = −2x1 + x2, q0 =

−x1 −2x2, q1 = x1 −2x2, r0 = −x1 +2x2, r1 = x1 +2x2, s0 = 2x1 −x2, s1 = 2x1 +x2.

Moreover, with the convention for ϕ = ψξ : M → R chosen before, the minimum

and maximum of ϕ are respectively p0 and s1. The canonical graph associated to the

canonical classes w.r.t. ϕ is shown in Figure 5-1. Observe that it is a subgraph of

(V,EGKM).

The graph (Ṽ , ẼGKM) associated to the degenerate coadjoint orbit M̃ has four

vertices, p = −x1, q = −x2, r = x2 and s = x1. It’s easy to see that π(p0) = π(p1) =

p, π(q0) = π(q1) = q, π(r0) = π(r1) = r and π(s0) = π(s1) = s. We want to compute

αp1(s1) and αq1(s1) using π : M → M̃ .
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p0

p1

q0 q1

r0 r1

s0

s1

Figure 5-1: An example of canonical graph.

Let’s first compute αp1(s1). Since π−1(π(s1)) = {s0, s1}, we need to find the sets of

paths Σ(p1, s0) and Σ(p1, s1), and the corresponding subsets of relevant pathsR(p1, s0)

and R(p1, s1). It’s easy to see that

- Σ(p1, s0) = {γ, γ
′
}, where γ = (p1, r0, s0) and γ

′
= (p1, q1, s0). Then, since

γ̃ = π(γ) = (p, r, s) = (−x1, x2, x1) and γ̃
′

= (p, q, s) = (−x1,−x2, x1), the

paths γ and γ
′
are uneven and

P (γ) =
1

2
(x1 + x2) and P (γ

′

) =
1

2
(x1 − x2) .

By definition γ is relevant, hence R(p1, s0) = {γ} andQ(γ) = P (γ)+P (γ
′
) = x1.

- Σ(p1, s1) = {γ
′′
}, where γ

′′
= (p1, q1, r1, s1) (and γ̃

′′
= π(γ

′′
) = (−x1,−x2, x2, x1)).

Hence, since Σ(p1, s1) is composed by one path only, γ
′′

must be even, and hence

relevant. Moreover Q(γ
′′
) = 1.

By Theorem 5.3.3, we have that

αp1(s1) = Q(γ)α̂s0(s1) +Q(γ
′′

)α̂s1(s1)

where the fiber over π(s1) has two fixed points, s0 and s1. Since s0 is the minimum

in the fiber, and s1 the maximum, we have α̂s0(s1) = 1 and α̂s1(s1) = x2, and we can
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conclude that

αp1(s1) = x1 + x2 .

Now we compute αq1(s1). It’s easy to check that Σ(q1, s0) = {(q1, s0)} and Σ(q1, s1) =

{(q1, r1, s1)}; hence both sets are composed by even paths. For γ1 = (q1, r1, s1) we

have Q(γ1) = 2x1, whereas for γ2 = (q1, s0), Q(γ2) = x1(x1 − x2). By Theorem 5.3.3

we have

αq1(s1) = 2x1α̂s1(s1) + x1(x1 − x2)α̂s0(s1) = 2x1x2 + x1(x1 − x2) = x1(x1 + x2)

It remains to prove Lemmas 5.3.6 and 5.3.7.

Let’s introduce some notation.

If α1 = x1 − x2, α2 = x2 − x3, . . . , αn−1 = xn−1 − xn, αn = xn are the simple roots,

let’s denote by s1, s2, . . . , sn the associated reflections. We recall that they satisfy the

following relations

sisi+1si = si+1sisi+1 for all i = 1, . . . , n− 2

sn−1snsn−1sn = snsn−1snsn−1

sisj = sjsi for all i, j ∈ {1, . . . , n} s.t. |i− j| ≥ 2

Moreover we have that for all l ∈ {1, . . . , n−1} and j ∈ {1, 2, . . . , n} with j /∈ {l, l+1}

sxl
= slsxl+1

sl

sxl±xj
= slsxl+1±xj

sl

sxl+xl+1
= slsxl+xl+1

sl

(5.11)

The proofs of Lemmas 5.3.6 and 5.3.7 will be a consequence of the next result.

Proposition 5.3.9. Let γ̃ be an increasing path in (Ṽ , ẼGKM) starting at −xl and

ending at xl, for some l = 1, . . . , n− 1. Suppose that γ̃ satisfies one of the following

two conditions
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(a) {−xl+1, xl+1} ∩ V (γ̃) = ∅

(b) −xl+1 /∈ V (γ̃) and xl+1 ∈ V (γ̃).

If γ̃ is of type (a), let γ̃′ be the path in (Ṽ , ẼGKM) obtained from γ̃ by adding the

vertices −xl+1 and xl+1. If γ̃ is of type (b), let γ̃′ be the path obtained from γ̃ by

replacing the vertex xl+1 with −xl+1, i.e. if γ̃ = (−xl,−x̂l+1, . . . , xl+1, xl) then

γ̃′ = (−xl,−xl+1, . . . , x̂l+1, xl). Then in both cases the path γ̃
′
is increasing. Moreover,

for every such pair of paths, consider the lifts γ and γ
′
(resp. of γ̃ and γ̃

′
) starting

at the same point p ∈ V . Then γ and γ
′
end at the same point.

Proof. It’s easy to see that γ̃′ is an increasing path in both cases. Then, since π is a

GKM fibration (cfr. section 3.1), it is sufficient to prove that if γ̃ = (γ̃1, . . . , γ̃|eγ|+1)

with γ̃i+1 = sβi
γ̃i for βi ∈ R and i = 1, . . . , |γ̃|, and γ̃

′
= (γ̃

′

1, . . . , γ̃
′

|eγ′|+1) with

γ̃
′

j+1 = sδj γ̃
′

j for δj ∈ R and j = 1, . . . , |γ̃′|, then sβ|eγ|sβ|eγ|−1
· · · sβ1 = sδ|eγ′ |sδ|eγ′|−1

· · · sδ1 .

Denote sβ|eγ|sβ|eγ|−1
· · · sβ1 by w and sδ|eγ′|sδ|eγ′|−1

· · · sδ1 by w
′
. Using the identities (5.11)

it follows that

(a1) If γ̃ = (−xl, xl) (hence γ̃
′
= (−xl,−xl+1, xl+1, xl)) then w = sxl

= slsxl+1
sl = w

′

(a2) If the length of γ̃ is greater than one then we have w = sxl±xh
w0sxl±xi

and

w
′

= slsxl+1±xh
w0sxl+1±xi

sl for some h, i > l + 1, where w0 is a product of

reflections (or possibly an empty product, which we set to be the identity) which

commutes with sl, i.e. slw0sl = w0. Hence w
′

= slsxl+1±xh
slw0slsxl+1±xi

sl =

sxl±xh
w0sxl±xi

= w.

(b1) If γ̃ = (−xl,−x̂l+1, xl+1, xl) and γ̃
′
= (−xl,−xl+1, x̂l+1, xl) then w = slsxl+xl+1

and w
′
= sxl+xl+1

sl, hence w = w
′
.

(b2) If the length of γ̃ is greater than two then w = slsxl+1±xh
w0sxl±xi

and w
′

=

sxl±xh
w0sxl+1±xi

sl for some h, i > l + 1, where w0 is a product of reflections

(possibly the empty product) which commutes with sl.

Hence w = slsxl+1±xh
slw0slsxl±xi

= sxl±xh
w0sxl+1±xi

sl = w
′
.
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Proof of Lemma 5.3.6. Let γ ∈ Σ(p, q) be an uneven path, and let

k = max{j s.t. xj and − xj ∈ V (γ̃)}. Suppose that neither xk+1 nor −xk+1 belongs

to V (γ̃). Let γ̃
′
be the path obtained from γ̃ by adding the vertices −xk+1 and xk+1.

Then by Proposition 5.3.9 γ̃ and γ̃
′
are increasing paths which lift to increasing paths

γ = (γ1, . . . , γ|γ|+1) and γ
′
= (γ

′

1, . . . , γ
′

|γ|+3) both starting at p and ending at q. But

this is impossible since γ ∈ Σ(p, q) implies that λ(q)−λ(p) = |γ|. On the other hand

since γ
′
is increasing too, and M is an index increasing GKM space we would have

λ(γ
′

i+1)−λ(γ
′

i) ≥ 1 for all i = 1, . . . , |γ|+2, which would imply λ(q)−λ(p) ≥ |γ|+2.

Proof of Lemma 5.3.7. By Lemma 5.3.6 either −xk+1 or xk+1 belongs to V (γ̃), with

γ̃ = π(γ) and γ ∈ Σ(p, q). Suppose that xk+1 ∈ V (γ̃), and let γ̃
′

be the path

defined as in Proposition 5.3.9 (b). Then the lift γ
′
= (γ

′

1, . . . , γ
′

|γ′|+1), with γ
′

1 = p,

is an increasing path which ends at q, with the same length as γ. Hence it must be

λ(γ
′

i+1) − λ(γ
′

i) = 1, for all i = 1, . . . , |γ|, which implies that γ
′
∈ Σ(p, q).

5.4 Generic coadjoint orbit of type Cn

Let G = Sp(n), the quaternionic unitary group U(n,H) and T a maximal torus in G

with Lie algebra t. Consider the basis {xi}
n
i=1 of (Rn)∗ ≃ t∗ such that xi(µ1, . . . , µn) =

µi. Let R be the roots of G, and αi = xi− xi+1, i = 1, . . . , n− 1, αn = 2n a choice of

simple roots. In this case the Weyl group W of G is the group of signed permutations

on n elements.

For all i = 0, . . . , n let µi = (µi1, . . . , µ
i
i, µ

i
i+1, . . . , µ

i
n) be a vector in Rn such that

µi1 < . . . < µii < µii+1 = . . . = µin = 0. Then every such vector determines a point pi

in t∗, pi =
∑i

j=1 µ
i
jxj . The coadjoint orbit Opi = G · pi of the point pi is isomorphic

to G/Gpi, where in this case Gpi = S1 × . . . × S1 × U(n − i; H). The T−fixed set

(G/Gpi)T is given by

(G/Gpi)T = {
i∑

j=1

(−1)ǫjµijxσ(j), ǫj ∈ {0, 1} ∀ j = 1, . . . , i, σ ∈ Sn} ⊂ t∗

and the moment map ψi restricted to the fixed point set is given by the inclusion,
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ψi : (G/Gpi)T →֒ t∗.

Let Mi be G/Gpi, i = 0, . . . , n, and observe that the fiber of the natural projection

pi : Mi+1 →Mi is U(n−i,H)/(S1×U(n−i−1,H)), which is isomorphic to a projective

space CP 2(n−i)−1. Hence {(Mi, ωi, ψi)}
n
i=0 is a sequence of GKM spaces, and for all

i = 0, . . . , n − 1 the map pi : Mi+1 → Mi is a weight preserving T−equivariant

fibration with symplectic fibers isomorphic to CP 2(n−i)−1.

Let πi : Mn →Mi be the composition πi = pi ◦ · · · ◦ pn−1. The maps pi’s and πi’s

restricted to the fixed point sets, pi : (Mi+1)
T → (Mi)

T , πi : (Mn)
T → (Mi)

T , are

given by

pi(
i+1∑

j=1

(−1)ǫjµi+1
j xσ(j)) =

i∑

j=1

(−1)ǫjµijxσ(j) ,

πi(
n∑

j=1

(−1)ǫjµnj xσ(j)) =
i∑

j=1

(−1)ǫjµijxσ(j)

From the definitions, for any r, r′ ∈MT
n such that r =

∑n
j=1(−1)ǫjµnj xσ(j)

and r′ =
∑n

j=1(−1)ǫ
′
jµnj xσ′(j) we have

πi(r) = πi(r
′) ⇐⇒ πj(r) = πj(r

′) ∀ 0 ≤ j ≤ i⇐⇒ ǫj = ǫ′j and σ(j) = σ′(j) ∀ 0 ≤ j ≤ i

For any pair of points r, r′ in (Mn)
T define

h(r, r′) = min{j ∈ {0, . . . , n} | πj(r) 6= π(r′)}

(cfr. Proposition 4.3.7). So h(r, r′) = h if and only if σ(j) = σ′(j), and ǫj = ǫ′j for

all 0 ≤ j < h and (−1)ǫhxσ(h) − (−1)ǫ
′
hxσ′(h) 6= 0. In particular if (r, r′) in an edge

in E ⊂ EGKM, then r′ = sβr for some β ∈ R. Then β can be either xσ(h) ± xσ(k) for

some h, k s.t. 1 ≤ h < k ≤ n or 2xσ(h) for some h = 1, . . . , n; in both cases we have

h(r, r′) = h.

Consider now the canonical classes {αp}p∈MT
n

associated to ϕn = ψξn, which exist

and are integral by Lemma 5.1.1 and Theorem 4.3.2. For any p, q ∈ (Mn)
T let C(p, q)

be the set of paths as defined in Proposition 4.3.7.
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Proposition 5.4.1. Let G/Gpn be a generic coadjoint orbit of type Cn. Fix p and q

in (G/Gpn)T . Let αp ∈ H
2λ(p)
T (Mn; Z) be the canonical class associated to ϕn = ψξn.

(1) A path γ = (w1(p
n), . . . , wl+1(p

n)), where wj ∈W and wj(p
n) =

n∑

m=1

µnm(−1)ǫ
j
mxσj (m)

for all j = 1, . . . , l + 1, is an element of C(w1(p
n), wl+1(p

n)) if and only if

(a) l(wj+1) = l(wj)+1 and wj+1 = sβj
wj where βj is either xσj(hj)±xσj (kj), for

some hj , kj such that 1 ≤ hj < kj ≤ n, or 2xσj(hj) for some hj = 1, . . . , n,

and σj ∈ Sn, for all j = 1, . . . , l.

(b) h1 ≤ h2 ≤ . . . ≤ hl

(2) (c) For all p, q ∈ (G/Gpn)T

αp(q) = Λ−
q

∑

γ∈C(p,q)
γ=(w1(pn),...,wl+1(p

n))

l∏

j=1

1(
(−1)

ǫ
hj
hjxσj(hj) − (−1)

ǫl+1
hj xσl+1(hj)

)

(d) For every path γ = (w1(p
n), . . . , wl+1(p

n)) in C(p, q)

Ξ(γ) = Λ−
q

l∏

j=1

1(
(−1)

ǫ
hj
hjxσj(hj) − (−1)

ǫl+1
hj xσl+1(hj)

)

is a polynomial with positive integer coefficients in the simple roots, i.e. it

belongs to Z≥0[α1, . . . , αn].

Proof. Part (a) is equivalent to saying that γ belongs to Σ(w1(p
n), wl+1(p

n)). Then,

for what we observed before, h(wj(p
n), wj+1(p

n)) = hj for all j = 1, . . . , l; so claim

(1) follows immediately.

Let ψj = π∗
j (ψj) : Mn → t∗. Observe that if r, s are points in MT

n , with r =
∑n

j=1(−1)ǫjµnj xσ(j), s =
∑n

j=1(−1)ǫ
′
jµnj xσ′(j) and h(r, s) = h then

ψh(s) − ψh(r) = µnh

(
(−1)ǫ

′
hxσ′(h) − (−1)ǫhxσ(h)

)

The conclusion in part (c) follows by applying Proposition 4.3.7 together with Propo-

sition 5.1.2. Part (d) follows from Proposition 4.4.3.

125



Example 5.4.2 Let M be a generic coadjoint orbit of type C2. The GKM graph

Γ = (V,EGKM) associated to it is the same as the one associated to a coadjoint

orbit of type B2, but the axial functions are different. Let V be the set of vertices

of Γ as described in Example 5.3.8. Suppose that we want to compute αp1(s1).

C(p1, s1) is composed by three paths, γ1 = (p1, r1, s0, s1), γ2 = (p1, q0, s0, s1) and

γ3 = (p1, r1, q1, s1), and their contributions are Ξ(γ1) = x1 − x2, Ξ(γ2) = x1 + x2 and

Ξ(γ3) = 2x2. Hence Proposition 5.4.1 gives

αp1(s1) = (x1 − x2) + (x1 + x2) + (2x2) = 2(x1 + x2)

Remark 5.4.3. In type Bn one could still apply the same argument shown in type Cn,

and the formula for the canonical classes on a generic coadjoint orbit of type Bn is the

same as in type Cn (cfr. Proposition 5.4.1 part (c)). Notice however that if α1, . . . , αn

denote the simple roots in type Bn and A = Z[1
2
], the single contributions Ξ(γ) (cfr.

Proposition 5.4.1 part (d)) belong to A+[α1, . . . , αn] (cfr. section 4.4). This comes

from Proposition 4.4.3, since the fibers of the maps pi are isomorphic to Grassman-

nians of oriented two planes in R2k+1, and H∗(Gr+
2 (R2k+1), A) ≃ H∗(CP 2k−1, A).

5.5 Generic coadjoint orbit of type Dn

Let M be a generic coadjoint orbit of type Dn. In this section we prove an inductive

integral formula for the canonical classes on M . Since the exposition and the proofs

are very similar to the ones given in section 5.3, we will either omit or just outline

them.

Let G = SO(2n), and α1 = x1 − x2, α2 = x2 − x3, . . . , αn−1 = xn−1 − xn,

αn = xn−1 + xn a choice of simple roots. Let (µ1, . . . , µn) be a vector in Rn such

that µ1 < µ2 < . . . < µn < 0, and consider p0 =
∑n

j=1 µjxj ∈ t∗. Let M be

the G−coadjoint orbit G · p0. Let p̃0 = −x1; then the G−coadjoint orbit through p̃0,

(M̃, ω̃, ψ̃), is isomorphic to Gr+
2 (R2n), the Grassmannian of oriented two planes in R2n.

Let (Ṽ , ẼGKM) be the GKM graph associated to it. Then Ṽ = {±xi, i = 1, . . . , n}.
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As for the edges of ẼGKM, there exists an edge between any two vertices, except for

the pairs of vertices −xi, xi, i = 1, . . . , n (so it is not a complete graph).

If we choose a generic ξ ∈ t such that α(ξ) > 0 for all the positive roots α ∈ R+, then

ψ̃ξ has the following critical points, listed in non decreasing Morse index:

−x1,−x2, . . . ,−xn, xn, . . . , x2, x1

Observe that now −xn and xn have the same Morse index.

Let

π : M → M̃ (5.12)

be the projection of G · p0 onto G · p̃0. Consider the set of horizontal paths Σ(p, q)

in the canonical graph associated to the canonical classes {αp}p∈MT w.r.t. ϕ = ψξ.

Since π is a weight preserving equivariant fibration, we can apply Corollary 4.3.9 to

compute the restriction of the canonical classes to the fixed point set. In particular

if ψ = π∗(ψ̃), for every p, q ∈MT , then

αp(q) =
∑

s∈cMT
q


 ∑

γ∈Σ(p,s)

Ξ(γ)


 α̂s(q) ,

where

Ξ(γ) = Λ̃−
π(q)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q) − ψ(γi)
·

1

η(γi, γi+1)
.

Before starting, we want to exhibit an explicit computation that shows that in this

case the single “horizontal contribution” Ξ(γ) is not integral in the weights.

Example 5.5.1 Let n = 4, so that G · p̃0 ≃ Gr+
2 (R8). Suppose that we want to

compute αp0(q), where q is the maximum of ϕ. The only fixed point s ∈ M̂T
q for

which Σ(p0, s) is not empty is the point s = −µ1x1 +µ2x2 +µ3x3−µ4x4, which is also

the minimum of ϕ|cMT
q

on M̂T
q . The set of paths Σ(p0, s) is composed by two paths, γ

and γ′: their projections γ̃ and γ̃′ are given by γ̃ = (−x1,−x2,−x3, x4, x3, x2, x1) and
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γ̃′ = (−x1,−x2,−x3,−x4, x3, x2, x1), and their contributions are given by

Ξ(γ) =
x1 + x4

2x1

and Ξ(γ′) =
x1 − x4

2x1

.

Let γ̃ be a path in (Ṽ , ẼGKM) and V (γ̃) the set of its vertices.

Definition 5.5.2. Let γ be a path in Σ(p, q), and let γ̃ = (γ̃1, . . . , γ̃|γ|+1) be π(γ). We

say that γ is uneven if −γ̃|eγ|+1 ∈ V (γ̃). It is even otherwise.

If γ is an uneven path, define k(γ) to be max{i | −xi and xi belong to V (γ̃)},

where γ̃ = π(γ). By definition this set is non empty, and k(γ) < n, since (−xn, xn)

cannot be an edge of γ̃.

Definition 5.5.3. A path γ ∈ Σ(p, q) is said to be relevant if either γ is even or γ

is uneven and xk(γ)+1 ∈ V (γ̃), where γ̃ = π(γ). Let’s denote this subset of Σ(p, q) by

R(p, q).

Since π is a T−equivariant fibration with symplectic fibers, by Lemma 4.3.8

canonical classes on the fiber exist. The next theorem gives an inductive integral

formula for computing the restriction of the canonical classes to the T−fixed point

set.

Theorem 5.5.4. Let π : (M,ω, ψ) → (M̃, ω̃, ψ̃) be the projection map (5.12). Let

ϕ = ψξ : M → R be a generic component of the moment map, and consider the

canonical classes {αp}p∈MT associated to ϕ. For every s ∈MT consider the canonical

class α̂s on the fiber M̂s = π−1(π(s)), and let R(p, s) be the set of relevant paths from

p to s.

For every path γ = (γ1, . . . , γ|γ|+1) in R(γ1, γ|γ|+1), define Q(γ) to be

Q(γ) = Λ̃−
π(γ|γ|+1)

|γ|∏

i=1

π(γi+1) − π(γi)

π(γ|γ|+1) − π(γi)

1

η(γi, γi+1)

128



if γ is even, and

Q(γ) = 2Λ̃−
π(γ|γ|+1)




|γ|∏

i=1

π(γi+1) − π(γi)

π(γ|γ|+1) − π(γi)

1

η(γi, γi+1)


 π(γ|γ|+1)

η(−xk(γ)+1, π(γ|γ|+1))

if γ is uneven.

Then

(1) For all p, q in MT

αp(q) =
∑

s∈cMT
q

(
∑

γ∈R(p,s)

Q(γ))α̂s(q)

(2) Q(γ) is a polynomial in the simple roots with positive integer coefficients, i.e.

it belongs to Z≥0[α1, . . . , αn].

The next Proposition gives another characterization of even and uneven paths,

and shows that the non integral contributions come from uneven paths.

Proposition 5.5.5. Let γ = (γ1, . . . , γ|γ|+1) be a path in (V,EGKM) which is hori-

zontal and increasing. Define P (γ) to be

P (γ) = Λ̃−
π(γ|γ|+1)

|γ|∏

i=1

π(γi+1) − π(γi)

π(γ|γ|+1) − π(γi)

1

η(γi, γi+1)

Then if γ̃ = π(γ)

P (γ) =





∏

r∈SV (eγ)\{−eγ|eγ|+1}

η(r, γ̃|eγ|+1) if γ is even

∏

r∈SV (eγ)

η(r, γ̃|eγ|+1)

2γ̃|eγ|+1

if γ is uneven

We recall that for any uneven path γ, k(γ) is defined to be

max{j | xj and − xj ∈ V (γ̃)}, where γ̃ = π(γ), which from the definition of uneven

path is a non empty set, and k(γ) < n.
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Lemma 5.5.6. Let γ be a horizontal path in Σ(p, q). If γ is uneven and γ̃ = π(γ)

then either xk(γ)+1 or −xk(γ)+1 belongs to V (γ̃).

For every path γ̃ = π(γ) satisfying this property define γ̃′ to be the path obtained

from γ̃ by replacing the vertex xk(γ)+1 ∈ V (γ̃) (or −xk(γ)+1 ∈ V (γ̃)) with −xk(γ)+1 (or

xk(γ)+1).

Lemma 5.5.7. Let γ be a horizontal path in Σ(p, q). If γ is an uneven path then

there exists γ
′
∈ Σ(p, q) such that π(γ

′
) = γ̃

′
.

Hence the uneven paths which are in the image of Σ(p, q) always come in pairs.

Proof of Theorem 5.5.4. The proof of this theorem can be carried on as in the Bn

case, observing that by Corollary 4.3.9 and Proposition 5.1.2

αp(q) =
∑

s∈cMT
q


 ∑

γ∈Σ(p,s)

P (γ)


 α̂s(q)

Then, if γ is even, P (γ) = Q(γ); if γ is uneven and relevant then P (γ)+P (γ′) = Q(γ),

where γ′ is defined in Lemma 5.5.7.

As for the integrality and positivity of Q(γ), observe that if γ is even, then Propo-

sition 5.5.5 implies that Q(γ) = P (γ) belongs to Z≥0[α1, . . . , αn]. If γ is uneven and

relevant, let γ′ be the path defined before and let γ̃ = π(γ). It’s easy to check that

Q(γ) = P (γ) + P (γ′) =
∏

r∈SV (eγ)\{−xk(γ)+1}

η(r, γ̃|eγ|+1)

which is clearly a polynomial with positive integer coefficients in the positive roots,

hence in the simple roots.

Example 5.5.8 Let M be a generic coadjoint orbit of type D4 through the point

p0 = −4x1 − 3x2 − 2x3 − x4. Suppose that we want to compute αp(q), where p =

−4x3 − 3x1 − 2x2 − x4 and q = 4x2 − 3x1 − 2x3 + x4. There are precisely two paths

in R(p, q), γ1 and γ2, and their projection onto M̃ is given by γ̃1 = (−x3,−x4, x3, x2)

and γ̃2 = (−x3, x4, x3, x2). Their contribution is given by Q(γ1) = (x1 + x2)(x2 − x4)
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and Q(γ2) = (x1 + x2)(x2 + x4). Moreover it’s easy to check that q is the minimum

on the fiber over π(q). So α̂s(q) 6= 0 if and only if s = q, where s ∈ (π−1(π(q)))T , and

α̂q(q) = 1. Hence Theorem 5.5.4 gives

αp(q) = Q(γ1) +Q(γ2) = (x1 + x2)(x2 − x4) + (x1 + x2)(x2 + x4) = 2x2(x1 + x2)

5.6 A general integral formula

Let G be a compact simple Lie group, T ⊂ G a maximal compact torus in G with

Lie algebra t, p0 a generic element of t∗, and p̃0 an element in the closure of the Weyl

chamber containing p0. We have already observed that if G · p0 and G · p̃0 are the

G− coadjoint orbit through p0 and p̃0, the natural projection π : G · p0 → G · p̃0 is a

T−equivariant weight preserving fibration. So we can use Corollary 4.3.9 to compute

the restriction of the canonical classes to the fixed point set. More precisely, for every

p, q ∈ (G · p0)
T , let q0, . . . , qN be the elements of (π−1(π(q)))T . Then, combining

Corollary 4.3.9 with Proposition 5.1.2, we have

αp(q) =

N∑

j=0


 ∑

γ∈Σ(p,qj)

Ξ(γ)


 α̂qj(q) ,

where

Ξ(γ) = Λ̃−
π(q)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q) − ψ(γi)
·

1

η(γi, γi+1)
. (5.13)

However the single “horizontal contribution” Ξ(γ) is not in general in Z≥0[α1, . . . , αn],

where α1, . . . , αn denote the simple roots (see Example 5.5.1). This strongly depends

on the cohomology ring of G · p̃0 (see also Corollary 4.4.2).

In this section we show how to combine the contributions Ξ(γ) to get an integral

formula, for any T−equivariant weight preserving map π : G · p0 → G · p̃0.

In particular we prove that when π is a CP 1 bundle, as a consequence of this

formula one gets the divided difference operator identities.
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We recall the following combinatorial description of π. Let R be the set of roots

of G, R+ a choice of positive roots, and R0 the associated simple roots. Let W be

the Weyl group of G. Given a subset of simple roots Σ ⊂ R0, let 〈Σ〉 denote the

subset of R+ given by the roots which can be written as linear combinations of roots

in Σ. Moreover, let W (Σ) be the subgroup of W generated by the reflections sα, with

α ∈ Σ. If

p̃0 ∈
⋂

αi∈Σ

Hαi

lies in the closure of the Weyl chamber containing p0, then the projection

π : G · p0 → G · p̃0 induces a map at the level of the GKM graphs W and W/W (Σ)

associated to these spaces. This map π : W → W/W (Σ) is a GKM fiber bundle

(see section 3.1). Let EGKM be the edge set of the GKM graph associated to G · p0,

and V ≃ W the set of vertices. Let ϕ = ψξ : G · p0 → R be a generic component

of the moment map. We recall that an edge e ∈ EGKM is said to be increasing if

ϕ(i(e)) < ϕ(t(e)).

For every simple root α ∈ R0, define Φα : V → V to be

Φα(w(p0)) = wsα(p0) .

More in general, for every element u of the Weyl group, define Φu : V → V to be

Φu(w(p0)) = wu−1(p0) .

Observe that if u = si1 · · · sim , with sij = sαij
and αij ∈ R0 for all j = 1, . . . , m, then

Φu = Φsi1
···sim

= Φαi1
◦ · · · ◦ Φαim

.

The main result of this section will be a consequence of the following lemmas.

Lemma 5.6.1. Let p1 = w1(p0) and p2 = w2(p0), for some w1, w2 ∈ W , and α a

simple root. Consider the edge (p1, p2) ∈ EGKM, where w2 = w1sδ for some

δ ∈ R+ \ {α}. Then (Φα(p1),Φα(p2)) ∈ EGKM and η(p1, p2) = η(Φα(p1),Φα(p2)).
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Moreover if (p1, p2) is an increasing edge in EGKM, then (Φα(p1),Φα(p2)) is increasing

as well.

Proof. Since by assumption w2 = w1sδ and δ ∈ R+, η(p1, p2) = w1(δ). Then

Φα(p2) = w2sα(p0) = w1sδsα(p0) = sw1(δ)Φα(p1); hence (Φα(p1),Φα(p2)) ∈ EGKM.

Moreover it’s easy to check that the condition δ ∈ R+ \ {α} implies

〈Φα(p2), w1(δ)〉 > 0, hence η(Φα(p1),Φα(p2)) = w1(δ). We recall that for every edge

(p, q) in EGKM, ψ(q) − ψ(p) is a positive multiple of η(p, q). So, since

η(p1, p2) = η(Φα(p1),Φα(p2)), if (p1, p2) is an increasing edge, then (Φα(p1),Φα(p2))

is increasing as well.

Lemma 5.6.2. Under the same hypotheses of Lemma 5.6.1, suppose that

λ(p2) − λ(p1) = 1. If (p1,Φα(p1)) is increasing, then (p2,Φα(p2)) is increasing as

well. Equivalently if (Φα(p2), p2) is increasing, then (Φα(p1), p1) is increasing as well.

Moreover λ(Φα(p2)) − λ(Φα(p1)) = 1

Proof. Suppose that (p1,Φα(p1)) is increasing but (p2,Φα(p2)) is not increasing. Then

by Lemma 5.1.1, λ(Φα(p2)) < λ(p2), and by Lemma 5.6.1, λ(Φα(p1)) < λ(Φα(p2)).

But this implies that λ(p1) < λ(Φα(p1)) < λ(Φα(p2)) < λ(p2), which contradicts the

fact that λ(p2) − λ(p1) = 1.

For the last claim, it’s easy to see that since α is a simple root, then by (5.6)

λ(Φα(p2))−λ(p2) = λ(Φα(p1))−λ(p1) is either 1 or −1, and the conclusion follows.

Consider the canonical classes on G · p0 associated to ϕ, and let (V,E) = (W,E)

be the associated canonical graph. Fix a subset of simple roots Σ ⊂ R0 and consider

the projection map π : W → W/W (Σ). Let Σ(p, s) be the set of horizontal paths in

Σ(p, s), i.e. paths γ = (γ1, . . . , γ|γ|+1) such that γ1 = p, γ|γ|+1 = s, (γi, γi+1) ∈ E and

π(γi) 6= π(γi+1) for all i = 1, . . . , |γ|. Observe that for every horizontal edge (γi, γi+1)

of γ, if γi = wi(p0) and γi+1 = wi+1(p0), wi, wi+1 ∈ W , then wi+1 = wisδ for some

δ ∈ R+ \ 〈Σ〉.

Let q0 = u0(p0) be the minimum of ϕ|
π−1(π(s))

on π−1(π(s)), the fiber of π over

π(s). Recall that by our choices p0 is the minimum of ϕ on G · p0 (cfr. section 5.1).
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Lemma 5.6.3. The set of horizontal paths Σ(p0, q0) is non empty.

Moreover let v be an element of W (Σ). Then

λ(Φv−1(p0)) = λ(Φv−1(q0)) − λ(q0) ,

and Φv−1 defines a bijection between Σ(p0, q0) and Σ(Φv−1(p0),Φv−1(q0)).

Proof. Consider the canonical class αp0. Since p0 is the minimum of ϕ, αp0(q) = 1 for

every q ∈ V . As we observed at the beginning of this section,

αp0(q) =
N∑

j=0


 ∑

γ∈Σ(p0,qj)

Ξ(γ)


 α̂qj(q) ,

where Ξ(γ) is given by (5.13). Observe that since q0 is the minimum of ϕ on the fiber

containing q, by Lemma 4.2.1 α̂qj(q0) 6= 0 if and only if j = 0, and α̂q0(q0) = 1. Hence

if q = q0 the above formula gives

αp0(q0) =
∑

γ∈Σ(p0,q0)

Ξ(γ) .

Since αp0(q0) = 1 this implies that Σ(p0, q0) is non empty.

Let sαi1
· · · sαim

be a reduced word for v ∈W (Σ), where αij ∈ Σ for all

j = 1, . . . , m. Consider the path γ = (γ1, . . . , γ|γ|+1) in Σ(p0, q0).

Since λ(p0) = 0 < λ(Φαi1
(p0)) = 1, by Lemma 5.1.1 (p0,Φαi1

(p0)) = (γ1,Φαi1
(γ1))

is an increasing edge. Since (γ1, γ2) is an horizontal edge s.t. λ(γ2) − λ(γ1) = 1,

combining Lemma 5.6.1 and 5.6.2 we have that (γ2,Φαi1
(γ2)) is an increasing edge,

hence λ(Φαi1
(γ2)) − λ(γ2) = 1.

Moreover λ(Φαi1
(γ2)) − λ(Φαi1

(γ1)) = 1. By repeating the same argument for all

the edges (γi, γi+1) of γ we can conclude that (q0,Φαi1
(q0)) is an increasing edge and

λ(Φαi1
(q0))− λ(q0) = 1. Moreover Φαi1

(γ) = (Φαi1
(γ1), . . . ,Φαi1

(γ|γ|+1) is an element

of Σ(Φαi1
(p0),Φαi1

(q0)). Vice versa, for every element γ′ ∈ Σ(Φαi1
(p0),Φαi1

(q0)),

Φαi1
(γ′) is an element of Σ(p0, q0).

Now consider the points pj = sαi1
· · · sαij

(p0) = Φαij
(pj−1) for all j = 1, . . . , m.
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Then pm = Φv−1(p0) = v(p0). Observe that since sαi1
· · · sαim

is a reduced expression,

then sαi1
· · · sαij

is a reduced expression for all j = 1, . . . , m. This implies that

λ(pj) = j, hence λ(pj+1) − λ(pj) = 1 for all j = 1, . . . , m− 1.

We can repeat the argument shown above for the edge (p0,Φαi1
(p0)) multiple

times, for all the increasing edges (pj,Φαij
(pj)), j = 1, . . . , m, and the conclusion

follows.

Lemma 5.6.4. Let p, q be elements of V and v an element of W (Σ) such that

q = Φv−1(q0). Then if Σ(p, q) 6= ∅

λ(p) − λ(Φv(p)) = λ(q) − λ(q0) .

Moreover Φv defines a bijection between Σ(p, q) and Σ(Φv(p), q0).

Proof. Let sαi1
· · · sαim

be a reduced word for v. Observe that sαi1
· · · sαij

is a reduced

expression for all j = 1, . . . , m. Let vj = sαi1
· · · sαij

and define

qj = Φv−1
j

(q0) = Φαij
(qj−1) for all j = 1, . . . , m; observe that qm = q.

Since Φv−1
j

(p0) = sαi1
· · · sαij

(p0) and λ(Φv−1
j

(p0)) = j, by Lemma 5.6.3

λ(qj) = λ(q0) + j. So (qj−1,Φαij
(qj−1)) is an increasing edge in EGKM s.t.

λ(Φαij
(qj−1)) − λ(qj−1) = 1 for all j = 1, . . . , m.

At this point the conclusion follows by applying an argument similar to the one

used in the proof of Lemma 5.6.3.

Remark 5.6.5. The previous Lemma also proves that if α is a simple root in Σ,

λ(q) − λ(Φα(q)) = 1 and λ(p) − λ(Φα(p)) = −1 then Σ(p, q) = ∅.

Now we are ready to prove the main result of this section.

Theorem 5.6.6. Let Σ ⊂ R0 be a subset of simple roots and π the projection map

π : G · p0 → G · p̃0, where p̃0 ∈ ∩αi∈ΣHαi
lies in the closure of the Weyl chamber

containing p0. Consider the set of canonical classes {αp}p∈(G·p0)T associated to a

generic component of the moment map ϕ : G · p0 → R.
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Fix p, q ∈ (G ·p0)
T . Let q0, . . . , qN be the elements of (π−1(π(q)))T , where q0 is the

minimum of ϕ on π−1(π(q)). Consider v0, . . . , vN in W (Σ) such that qj = Φv−1
j

(q0)

and define pj = Φvj
(p) for all j = 0, . . . , N .

Let J = {j ∈ {0, . . . , N} | λ(p) − λ(pj) = λ(qj) − λ(q0)}. Then

αp(q) =
∑

j∈J

αpj
(q0)α̂qj(q) (5.14)

Proof. Since π is a weight preserving T−equivariant fibration between GKM spaces,

we can apply Corollary 4.3.9. Hence, if ψ = π∗(ψ̃) : G · p0 → t∗, where ψ̃ is the

moment map on G · p̃0, we have that for every p, q in (G · p0)
T

αp(q) =

N∑

j=0


 ∑

γ∈Σ(p,qj)

Λ̃−
π(q)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q) − ψ(γi)
·

1

η(γi, γi+1)


 α̂qj(q) , (5.15)

where we also use the fact that Θ(r, r′) = 1 for all the edges (r, r′) of the canonical

graph (cfr. Proposition 5.1.2).

Observe that for all the simple roots α in Σ and all the points r ∈ (G · p0)
T ,

ψ(r) = ψ(Φα(r)) since π(r) = π(Φα(r)). By Lemma 5.6.1 η(r, r′) = η(Φα(r),Φα(r
′))

for all the horizontal edges (r, r′) ∈ EGKM . Moreover by definition Λ̃−
π(q) = Λ̃−

π(Φα(q)).

In (5.15) we can restrict the sum to the fixed points qj such that Σ(p, qj) 6= ∅. Let

vj be the element inW (Σ) such that qj = Φv−1
j

(q0) for all j = 0, . . . , N . If Σ(p, qj) 6= ∅,

then by Lemma 5.6.4 there exists a bijection between Σ(p, qj) and Σ(pj , q0), where

pj = Φvj
(p) and λ(p) − λ(pj) = λ(qj) − λ(q0). So (5.15) can be written as

αp(q) =
∑

j∈J


 ∑

γ∈Σ(pj ,q0)

Λ̃−
π(q0)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q0) − ψ(γi)

1

η(γi, γi+1)


 α̂qj(q) . (5.16)

For any r ∈ (G · p0)
T consider αr(q0). Since q0 is the minimum of ϕ|

π−1(π(q0))
, by

Lemma 4.2.1 α̂s(q0) = 0 for all s ∈ (π−1(π(q0)))
T \ {q0}. Moreover α̂q0(q0) = 1. So
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Corollary 4.3.9 gives

αr(q0) =
∑

γ∈Σ(r,q0)

Λ̃−
π(q0)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)

ψ(q0) − ψ(γi)

1

η(γi, γi+1)
. (5.17)

The conclusion follows combining (5.16) and (5.17).

We can restate Theorem 5.6.6 in a more combinatorial way.

Theorem 5.6.7. Let Σ ⊂ R0 and consider the projection π : W → W/W (Σ). Fix

u, w ∈ W . Consider the elements u0, . . . , uN of the set π−1(π(u)) ⊂ W and let u0 be

the unique element satisfying l(u0) = min{l(uj), j = 0, . . . , N}.

Let v0, . . . , vN be elements in W (Σ) such that uj = u0vj, for all j = 0, . . . , N .

Define J = {j ∈ {0, . . . , N} | l(w) − l(wv−1
j ) = l(uj) − l(u0)}. Then

αw(u) =
∑

j∈J

αwv−1
j

(u0)α̂uj
(u) . (5.18)

5.6.1 The divided difference operator identities

Canonical classes on generic coadjoint orbits coincide with equivariant Schubert classes.

The divided difference operator has a natural action on equivariant Schubert classes,

which is described as follows.

First of all, let’s identify the fixed points of the T−action on G · p0 with the

elements of the Weyl group, w(p0) 7→ w. Consider the canonical classes associated

to ϕ, {αw}w∈W . Let α be a simple root, and sα the associated reflection. Then the

divided difference operator ∂α acts on αw in the following way

∂ααw(u) =
αw(usα) − αw(u)

u(α)
(5.19)

Equivariant Schubert classes satisfy the following identities, which we will refer to as
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the divided difference operator identities (cfr. [4])

∂ααw(u) =





αwsα
(u) if l(w) > l(wsα)

0 if l(w) < l(wsα)

(5.20)

In this section we prove how the identities (5.20) are an easy consequence of Theorem

5.6.7.

Fix u and w in W , and consider the projection map π : W →W/W (α), where Σ =

{α}. Suppose that l(w) > l(wsα) and l(usα) > l(u) (the case in which l(usα) < l(u)

is similar); recall that by (5.6), this implies that u is the minimum of fiber π−1(π(u)),

since π−1(π(u))T = {u, usα}. Observe that since α is a simple root l(usα) − l(u) = 1

and l(w) − l(wsα) = 1; hence by Remark 5.6.5 Σ(wsα, usα) = ∅.

Then Theorem 5.6.7 implies that

• αwsα
(usα) = αwsα

(u)α̂u(usα). Since u is the minimum of the fiber, α̂u(usα) = 1.

Hence ∂ααwsα
(u) = 0

• αw(usα) = αwsα
(u)α̂usα

(usα) + αw(u)α̂u(u). Now observe that

α̂usα
(usα) = Λ̂−

usα
= u(α) and α̂u(u) = 1. Hence the previous equation gives

αwsα
(u) =

αw(usα) − αw(u)

u(α)
= ∂ααw(u)

5.7 Connections with Billey’s formula

In [4], Billey proves a manifestly positive integral formula for the restriction of equiv-

ariant Schubert classes on flag varieties GC/B to the fixed point set of the T action,

where GC is a semisimple Lie group and B a Borel subgroup. More precisely, the

formula can be stated in the following way.

Let α1, . . . , αn be a choice of simple roots, and s1, . . . , sn the associated reflections.

For every element u of the Weyl group W , let sa1 · · · saN
be a reduced expression for

u, where ai ∈ {1, . . . , n} for all i = 1, . . . , N . Then (cfr. [4] sec. 4)
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Theorem 5.7.1. (Billey’s formula) For every fixed reduced word sa1 · · · saN
of u

αw(u) =
∑

(aj1
,...,ajm )∈J(w,u)

m∏

k=1

sa1sa2 · · · s(ajk
−1)(αajk

) (5.21)

where J(w, u) is the set of ordered subsequences (aj1 , . . . , ajm) of (a1, . . . , aN) such

that saj1
· · · sajm

is a reduced word for w.

The key point in the proof of this Theorem is the use of the divided difference

operator identities, which are also a consequence of Theorem 5.6.7.

In [25], Zara proves that in type An there is a bijection between the path contri-

butions given in Proposition 5.2.1 and the Billey’s contributions, for a special choice

of a reduced word for u. In type Bn, Cn and Dn the positive integral formula we

exhibit in sections 5.3, 5.4 and 5.5 are not equivalent to Billey’s formula. In what

follows we give counter examples in each type.

• Consider a generic coadjoint orbit of type B2, and consider αq1(s1) as in Example

5.3.8. It’s easy to see that if q1 = w(p0), then the only reduced word for w is

given by sα1sα2 . If s1 = u(p0), then u has two reduced words: sα1sα2sα1sα2

and sα2sα1sα2sα1 . In the first case there are precisely three positive integral

contributions in Billey’s formula, whereas in the second case there is precisely

one. Since in Example 5.3.8 we only had two positive integral contributions,

the two formulas cannot be equivalent.

• Consider a generic coadjoint orbit of type C2, as in Example 5.4.2. Suppose

that we want to compute αp1(s1) using Billey’s formula. Let p1 = w(p0) and

s1 = u(p0). Then the only reduced word for w is given by sα2 , and the two

reduced words for u are given by sα1sα2sα1sα2 and sα2sα1sα2sα1 . Independently

on the reduced word chosen for u, there are only two positive integral contri-

butions in Billey’s formula, given by 2x1 and 2x2; whereas in Example 5.4.2 we

had three positive integral contributions.
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• Consider a generic coadjoint orbit of type D4 as in Example 5.5.1, and suppose

we want to compute αp(q) using Billey’s formula. Let p = w(p0) and

q = u(p0). The only reduced word for w is given by sα2sα1 , whereas there are

precisely two reduced words for u, given by sα2sα3sα4sα2sα1 and sα2sα4sα3sα2sα1 .

In both cases the contributions in Billey’s formula are given by (x2−x3)(x1+x2)

and (x2 + x3)(x1 + x2), which are different from the contributions we obtained

in Example 5.5.1.
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