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ABSTRACT

SIMILARITY OF SEDIMENT TRANSPORT BY WATER AND AIR CURRENTS

by

FRANCISCO CORONADO DEL AGUILA

Submitted to the Department of Civil Engineering on April 24, 1970 in
partial fulfillment of the requirements for the Degrees of Master of
Science and Civil Engineer.

The present investigation explores the possibility of using air
currents to model the effects of water currents over a bed of sand, since
the use of air flow could provide easier measurement of turbulence, easier
handling of the sediments, less abrasion of machinery and more favorable
laboratory working conditions for a number of problems.

The analysis comprised:

a) An analytical model for the bed and saltation load considering
saltating sediment trajectories,

b) A two-dimensional mass conservation equation for the sediment in
suspension,

c) Characteristic parameters that govern the sediment movement in a
local scour problem.

Several modelling parameters were derived.

The experimental study was limited to verifying the applicability of
the parameters for a local scour problem. Specifically, the experiments
were designed to explore the action of a jet of water and of a jet of air
issuing through a nozzle 0.25 inches in height and 6 inches in width over
an initially flat bed of uniform granular sand. Three diameters of sand
particles: 0.71, 0.59, 0.42 mm nominally were employed. Velocities were
varied from 40 to 78 cm/sec in water and from 9 to 27 m/sec in air. Scour
patterns were observed for 16 tests with different values of velocities
and grain diameters under transient conditions up to the ultimate stable
scour pattern.
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The scour patterns for air and water jets could be represented by a
single normalized shape which was within the range of the experiments,
practically independent of time and of the ratio of jet velocity to the
particle fall velocity. The validity of a single similarity parameter
for the transfer of the scour pattern from the air model to the water
prototype was confirmed.

Thesis Supervisor: Arthur T. Ippen

Title: Ford Professor of Engineering
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I. INTRODUCTION

Many people have been trying to explain the phenomena of sediment

transport and have presented formulae to describe the rate of transport.

Further, they have tried physical representations with laboratory model

studies and mathematical models.

A theoretically correct description of the sediment transport has

not yet been presented as a consequence of the number of variables in-

volved in the process, and thus, an experimental study is still the most

useful resource. This laboratory representation requires faithful ad-

herence to similarity principles, at least, between the main forces

driving the phenomena.

The most important problem for hydraulic engineers is that of parti-

cles, mostly of quartz, transported by a stream of water. The use of air

as the fluid for a model representation of this phenomena has not been

undertaken by hydraulic engineers, mainly because water is the basic

element for a hydraulic laboratory and because it is easier to obtain

sand of the same prototype, giving a very large difference in value be-

tween the sediment and the fluid densities.

Geologists and soil scientists have been using air currents in the

laboratory but only to represent sediment transport by wind. So far, no

one has tried to use air currents to model the flow of water currents,

although they could provide easier measurements of turbulence, easier

handling of the sediments, less abrasion of machinery, and more favorable

laboratory working conditions for a number of problems.

-8-
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An analysis of the modes of initiation of sediment movement, i.e.,

lifting, rolling, sliding, or some combination of these modes, leads to

the conclusion that the Shields function (1) can give the critical con-

ditions.

Since an equation describing the entire range of sediment movement

is not available, the division of the sediment load into two groups, (a)

sediment moving as bed load and in saltation, and (b) sediment moving in

suspension and in wash load, is accepted in this study.

An analytical model for the bed and saltation load is presented

with saltating sediment trajectories, considered as a limit for the first

group: the sediment moving near the bed. The suspended sediment is

studied using a two-dimensional mass conservation equation. The method

of transforming the governing equations of motion to dimensionless form

seems the most appropriate to find the parameters relating the forces

governing the phenomena.

A heuristic approach is used for the local scour. The analyses are

carried out without any initial restriction on the density of the fluid

to be used in the model so that air currents may not be excluded.

The parameters proposed to model local scour are verified with a

laboratory study where a jet of water submerged in water was the proto-

type and a jet of air submerged in air was the model. With the accelera-

tion of gravity scale equal to one, the value of the normalized depth of

scour scale is given by:

1 Ps - P 1/2

S)r 2 ( p +k 2 p
r s 2 f r
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It is suggested to carry additional laboratory studies and related

prototype experiments to verify the generality of the parameters for

local scour, and the significance of the parameters proposed to model bed

and suspended load.
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II. REVIEW OF PREVIOUS WORK

Even though air currents were not used so far to model natural

streams of water transporting sediments, it is useful to present some of

the work that has been done about similarity studies in either mode of

sediment transport. Studies using water to model water currents will be

presented first, followed by studies using air currents.

General treatments of the theory of similarity can be found in many

books, see for instance references (3) to (7). References (8) to (10)

deal specifically with hydraulic models.

The laboratory studies of streams of water can be divided into the

so-called fixed and movable bed models. Both types of representation can

be either distorted or undistorted in the scales.

Fixed bed models are useful to study situations in which actual

changes in bed configuration are not critical. Foster (11) presents a

good description of fixed bed models and gives several examples of

laboratory studies. The scales are chosen following the Froude law and

a formula to compute the roughness factor. It is possible to study the

sediment transport behavior around or in hydraulic structures, i.e.

intakes and sandtraps, adding the sediment to the fixed bed, as it was

used in the studies described in references (12) and (13).

Movable bed models serve to investigate problems involving scour,

transportation, and deposition of sediments. Examples can be found in

references (7) and (8). The scales for the laboratory representation are

in general obtained by transforming to dimensionless form any of the

-11-



empirical or semi-empirical sediment load rate equations, or from

parameters obtained through dimensional analysis.

Little can be concluded about the advantage of using one specific

bed load formula over another since each one is the result of hypotheses,

assumptions or some experimental results, and consequently all formulae

have limitations, as can be learned by reviewing references (14) to (24).

The lack of extensive conformity studies between models and prototypes

makes the selection of a specific formula more difficult.

Presenting a purely empirical formula Blench (19), (25) gives a

summary of the so-called regime theory. According to this "theory",

channels in regime are those which, carrying a sediment load, are capable

of adjusting their solid boundaries to an equilibrium profile. Its basic

results are three relations involving the average width b, the depth yo

and channel slope So, with the discharge Q in the form:

b, yo, So = kQj  (2.1)

where k and j are dimensional constants. As indicated by Einstein (26),

with this theory it is impossible to obtain scales for the sediment size

and sediment discharge. Of all the semi-empirical bed load equations,

those by Meyer-Peter, MUller (17) and Einstein (18) are the most commonly

used.

The Einstein bed load functions (18) have been more extensively

employed in the United States and in many parts of the world. It is one

of the most important attempts to rationalize the calculations of the

sediment discharge using basic concepts of fluid mechanics like laminar

-12-
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sublayer, turbulent fluctuations as expressed in some way in his proba-

bilistic analysis for the sediment movement, and some sediment charac-

teristics like the particle shielding effects. Colby and Hembree (27)

presented a modification of the Einstein bed load computations, given also

in reference (28). Vanoni and Brooks (29) present a simpler procedure to

calculate the hydraulic radius using a working chart. They questioned

some assumptions of the Einstein theory, like the height limit of the bed

load and the use of a unique value for the Von Karmdn constant, especially

with various bed forms. Since until now there has not been any more

rational analysis as to how his parameters vary, Einstein's assumptions

remain acceptable.

Einstein and Chien (2) proposed several criteria to calculate the

scales for a movable bed model, namely: a friction criterion using a

generalized Manning equation, a Froude criterion, a laminar sublayer

criterion, a sediment transport and a zero sediment load criterion. The

sediment transport criterion uses the Einstein intensity transport

parameter 0*

iB qs Pf 1/2 1/2i B s ( ) (-) (2.2)

ib g(Ps - Pf) Ps - Pf gd3

for different fluids in model and prototype but for the same mixture of

grain sizes, it can be written as:

-3/2 1/2 -3/2
[qs(Ps - Pf) Pf d ] =1 (2.3)r

-13-
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where qs is the sediment bed load rate, ps and pf are the sediment and

fluid density respectively, d is the characteristic sediment diameter, and

the subindex r denotes the ratio between the values of model and prototype.

The zero sediment load criterion uses Einstein's intensity shear parameter

Y,, that is, a Shields parameter (1) with some corrections, and, taking

the ratio between the corrections for model and prototype equal to one,

obtain the Shields parameter ratio, as will be defined in the section on

initiation of sediment movement. Einstein and Chien also mention the

possibility of having up to seven distortions.

Bogardi (29) considers the Einstein-Chien parameters satisfactory,

but as a complement proposes another parameter, his channel stability

factor that is a sort of shear Froude number.

Yalin (20) presents an expression for bed load rate of transport

assuming a saltation model, in which the particles move on a ballistic

trajectory. His model of a saltation pattern as a limit for the sedi-

ment moving as bed load seems reasonable.

The study by Rouse (31) employing dimensional analysis will be men-

tioned next. He gives the relationships for bed load movement, sediment

transport in suspension, and local scour, including the sediment sorting

characterized by the standard deviation a of the particles, or the
s

particles fall velocity variation characterized by the standard deviation

a of the fall velocity. He arrives at four dimensionless parameters
w

containing six variables when a dimensional analysis allows only three

independent groups. For bed load he considers the action of shear stress

T sediment and fluid specific weight ratio y /Yf, the degree of immer-
0sion of particles of diameter d, inside the laminar sublayer thickness

sion of particles of diameter d, inside the laminar sublayer thickness 6,

-14-



in the form

T Y d

0 ( d , a ) (2.4)
yfd Yf 6

In the case of movement of sediment in suspension, he proposes the con-

centration Ca at a level a as a function of the relative height a/yo ,

where yo is the local flow depth, and the ratio between shear and fall

velocity

C = f ( , a, (2.5)
a y w w

For local scour, he writes a function for the geometrical characteristics

of the scour depth r in terms of the characteristic length k of the scour,

depending on the ratio between the flow velocity U and particle fall

velocity w and a kinematic relation wt/R (taking into account the tran-

sient conditions).

_ wt U
= (-- , , a ) (2.6)

Yalin (32) proposed 4 dimensionless groups: a Reynolds number,

du,/v, the relative height of the sediment size Yo/d, a parameter similar

to the Shields function (but without taking into account the buoyant

effect of the volume of fluid displaced by the sediments) pfu,2/gpsd the

density ratio ps /Pf

Field (33), using dimensional analysis and an analysis of a particle

in unsteady movement, suggests a length scale, (ps/Pf + k2)d, and a time

scale (ps/Pf + k2)[d/g(pspf - 1)]1/2. Experimenting with a horizontal

-15-



submerged jet of water he presents a plot of the maximum length of scour

and time normalized with respect to his own scales. He concludes that

his scale ratios give better correlation for various sediment to fluid

density ratios, although his plot of his data against Rouse (31) para-

meters shows a more defined trend in this latter case.

Barr and Herbertson (34) introduced the concept of dynamic velocity

defined, by the authors, as being proportional to that velocity that

would be attained if a representative element were to be acted on by an

active force, as it affects the element in the system through a represent-

ative distance. Clearly, this concept represents the combination of

dimensional magnitudes with a dimension of velocity. It is not clear,

however, why they have to combine these dimensional ratios to obtain

relations with dimensions of length, and then, form the ratio of these

new groups to obtain the dimensionless parameters. It seems that this

procedure adds unnecessary difficulties in the analysis of a phenomena,

and makes loose the physical meaning of the dimensionless parameters.

Using mathematical models, Gradowczyk and Folguera (35) studied the

scour in open channels, using the energy equation for unsteady flow, a

friction factor formula, and a sediment transport equation. The use of

a sediment transport formula introduces some coefficients which the

authors suggest obtaining from physical experiments.

In the case of sediment movement by air currents, the laboratory

studies have been reduced to find expressions for the rate of sediment

transport.

From wind tunnel studies, Bagnold (36), Zingg (37), and Chepil (38)

present a relation of the form

-16-



e(d/do)P Pf
q (2.7)

s g(1/Pf)
3 / 2

where e is a dimensional coefficient varying with the gradation of the

sediment, the proportion of fine dust, roughness of the field, and

amount of moisture in the soil; d/do is the ratio of the sand mean size d

to the mean size d of a standard sand taken as 0.25 mm; p is an exponent

equal to 1/2 in Bagnold's results and 3/4 in Zingg's studies.

Kawamura (22), assuming a division in the shear stress on the bed

surface T in the form T = T + T where T is an impact shear stress, ands w s

T is a horizontal shear stress, writes for qs in lb/ft-sec.

qs = Kps(u + uc )2 (u* - U,*c) (2.8)

where K is a dimensionless coefficient, u, and u*c are the shear velocity

and the threshold shear velocity respectively. He makes use of the

Stokes law for the fall velocity of spherical particles even when he

himself recognizes that, in general, the characteristics of the fall are

far from being laminar.

Kadib (23) makes an attempt to relate the sediment transport by air

and water, using the Einstein procedure for bed load.

It is clear that the different approaches used to obtain the amount

of sediment transported by water and air currents have to give differences

among the formulae proposed to determine the rate of sediment discharge,

making impossible the selection of one specific formula for a laboratory

representation of the action of water currents on a bed of sediments

-17-



using air currents. In this situation, it seems advisable to analyze the

sediment movement without specifying the nature of the fluid and sediment

in order to find parameters that could be used in a model study.

-18-



III. THEORETICAL ANALYSIS

3.1. Initiation of movement

For a fluid flowing over a loose bed, there exists near the bed a

mean velocity profile u = u(y) and superimposed turbulent velocity

fluctuations. The fluid force exerted on the sediments may be resolved

into two components, one parallel to the direction of the mean flow,

called the drag, and the other normal to the first, called the lift.

For noncohesive sediments such as sands and gravels, the forces

resisting motion are caused mainly by the weight of the particles dimin-

ished by the buoyancy effect of the fluid.

The grains of sediments begin their movements in various modes: by

lifting, by rolling, by sliding or by a combination of these forms such

as rolling and sliding.

Considering lifting as the first mode of sediment movement, it is

worth mentioning the work of Jeffreys (39) who explains that the pressure

distribution on a solid particle resting on the bottom of a stream pro-

duces a lifting force on this particle.

In the following derivation only the lift force will be considered.

The drag force will be considered as not having much effect at the

beginning of motion.

If we call the bed slope, 0 the angle of internal friction for the

sediments, in static loose conditions equal to the angle of repose of the

material, we can write:

L = F + W cos (3.1.1)
r

-19-
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where: L is the lift force and F is the component of the resultantr

frictional force between the particles. The lift force is usually ex-

pressed as:

u2

L = CL Ap -- (3.1.2)

wherein CL is a lift coefficient which is a function of a shape factor k1

and of the sediment shear Reynolds number, u d/v; A is the projected

section of the grain normal to the lift force, and equal to k1 d2/4.

y

Fig. 1. Schematic diagram of forces acting on a grain

For air and water the velocity distribution can be written:

for smooth boundary: -- = 5.75 log + 5.5
uv

for rough boundary: u- = 5.75 log 7--+ 8.5
u ke20

-20-
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writing y = nd and assuming the height of roughness ke proportional to

the sediment diameter d, the height y will be proportional to k :e

yu, ke u ke , 11.6v
S V , where 6

and the velocity distribution can be written as:

ud
= 5.75 log n + f ( )

u v

where the values 5.5 and 8.5 have been presented as a function of u d/v,

in a general form we can write:

ud

u = u, fl (' v ) (3.1.3)

Bagnold (21), Kadib (23) and Chiu (24) have utilized essentially the same

formula:

u = 5.75 u log ~ + u
e

where uc is a so-called threshold velocity which must be a function of

ud/v. Hence this velocity distribution is identical to equation (3.1.3).

The lift force can then be presented in the form

d2  u 2  ud uld
L = k1 P f 2 f ( v ) CL (s.f., )

or

rd2  u*d
L = 8 (Pf u*2 ) f2 (n, s.f., )

recognizing that the bed shear stress T = Pf 2
O

-21-



k ud
L = o d 2 f 2 (n, s.f., ) (3.1.4)

8 2 v

From the equilibrium of forces in the y direction, as shown in Fig.

1, the force Fr, the resultant friction force, is

F = [D + W sin f] tan 6
r

Neglecting the particle horizontal drag D,

F = W sin tan e (3.1.5)r

the submerged weight W can be written as:

rd3
W = (, - Pf) g cos # (3.1.6)

replacing (3.1.4), (3.1.5) and (3.1.6) in equation (3.1.1), we obtain

o 4 1 cos 4 (sin j tan 6 + 1) (3.1.7)
gd(p s -f) 3 k1 ud

f2(n, s.f., )

In most cases the slope of the bottom is small, therefore the value

of sin 4 is approximately zero and cos 4 is near unity. In addition, for

nearly spherical particles the shape factor is also nearly unity. Hence

for y approximately equal to d, equation (3.1.7) reduces to the Shields

function c (1),

c ud

S = gd(p - f) = f (  ) (3.1.8)
c gd(ps Pf)

-22-



In water, Bc has a value of approximately 0.056, as is seen from

Fig. 2. In air, Bagnold (21) obtained, in the case of movement of a few

particles, an approximate value of Bc = 0.056 as confirmed by Chepil (38).

With an appreciable number of particles moving, the impact of the first

few particles in movement over the grains still on the bed exercises an

additional force on the particles, making necessary a lower value of the

bed shear stress due to the flow, to initiate the movement. In this

case the critical Shields function has an approximate value of 0.0064.

Considering rolling of particles as initiation of sediment movement,

the Committee on Preparation of the Sediment Manual of the ASCE (41)

includes the lift effects in the drag force, considered parallel to the

bed, and taking moments with respect to the particle support points

expresses a critical shear stress in the form:

T

c )= k cos (tan 6 - tan c) (3.1.9)
gd(Ps - Pf)

where k is a coefficient which is a function of the shape of the particle,

the structure of the soil, the angle of internal friction of the particles

6, and the bed slope 4. For horizontal or nearly horizontal beds,

(3.1.9) reduces to:

T

gd(p= c tan 0 (3.1.10)
gd(p s - pf)

This formula was presented earlier by White (42), assuming negligible

lift.

-23-
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Fig. 2 Initiation of movement conditions.

Fig. 3 Beginning

1000ud
-w

Shields (I)

4 10 40 100 200 500 1000
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Considering the sliding of particles as the first mode of movement,

Carstens, Neilson and Altinbilek (43) write:

Tc _ tan e cos + sin k
gd(ps - pf) 1 + tan e C'D

where k is a constant and C'D is the drag coefficient for a freely

falling particle. Using a velocity distribution, as described for the
ud

lifting process u = u, fl ( ), a horizontal or nearly horizontal bed,

and with k and C'D functions of the shear Reynolds number, it is possible

to obtain:

c tan G *
Stan ef ( ) (3.1.12)

gd(p s - f) 1 + tan e v

representing a correction to the Shields function value for the different

angles of internal friction of the particles, i.e. with 0 = 300, there

is a reduction of approximately 60% in the Shields function value.

The variation of the critical value for the initiation of movement

as presented by Shields (Fig. 2) has been discussed at length and attri-

buted to many factors: the bed gradation, soil structure that could be

described by a shape factor, angle of internal friction, bed slope, and

the density difference between fluid and sediment, which represents dif-

ferent inertial responses to turbulent fluctuations. Vanoni (44), fol-

lowing an earlier plot by Rouse, has drawn a curve over the Shields,

Kramer, Gilbert and the USWES data, Fig. 3.

Ippen and Verma (45), in the case where a few particles moved over a

rough rigid bed, having a length roughness ke smaller than the particles

-25-
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diameter d, proposed an empirical correction to the Shields function in

the form:

T Pf k u d
c f ( ) (3.1.13)

gd(p - Pf) ps 1.5 v

Ward (46), in the cases of rolling and sliding, rolling without

sliding, or sliding without rolling, writes the equilibrium equations for

the tangential direction indicated by the angle of repose, normal direc-

tion, and the momentum about the center of mass of the particle, consider-

ing the resultant forces of drag and lift, acceleration of the particles

in the direction indicated by the angle of repose, zero angular velocity.

After solving the equations two by two, Ward obtains results of the form:

T p
c = kl{l + ( s ) k 2 }  (3.1.14)

gd(s - Pf) s f

where k1 and k2 are functions of the shear Reynolds number and become

constant for fully turbulent flow. His results can be written as a

functional relationship of the form:

T p udc f s )(3.1.15)
gd(Ps - P f) Ps- Pf V

A three-dimensional representation considering a third axis for density

ratios gives a surface of critical values for the Shields function. Ward

presents his own experimental data plotted in a Shields representation

showing noticeable differences with the Shields curve, as represented by

Vanoni (44). Using as the ordinate the values of the Shields parameter

-26-



Bc divided by the factor [1 + 1.25(p s/ps - Pf)], he obtains a reduction

of scatter for his data; however, he does not present the reduced value

of Shields, Kramer, etc. Plotting these data, appreciable scatter of the

later experimental values is observed.

From the preceding presentation it is possible to conclude generally

that the Shields function can be used as the parameter for the initiation

of movement, regardless of the mode of initiation of sediment movement.

3.2. Delimitation of the modes of sediment movement

It has been observed in many laboratory studies that sediment

transport has several distinctive modes. When velocities are low enough,

the transport occurs primarily by rolling and sliding along the bed

surface. With higher velocities particles are lifted a considerable

distance above this surface but return to the surface within a relatively

short distance. This process has been termed saltation. When the tur-

bulent velocities are increased further, particles are transferred to

still higher levels in the fluid and remain in the main body of the

turbulent stream for extensive periods of time or indefinitely. It is

said that this mode of transport represents suspension, i.e., statistical-

ly speaking, a certain amount is carried at the higher levels of the

stream at average concentrations. These concentrations are a function of

the turbulent mechanism and of the settling velocity. Referring to

Figs. 2 and 3, these three modes of transportation may be approximately

characterized by various values of the parameter 8 as derived in the

preceding section.

The average values of B are:

-27-
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1. 0(10 - 2 ) < B < 1 primarily movement as bed and saltation load

2. B 1 primarily movement as suspension and wash load.

Sutherland (47) remarks that suspension occurs when the upward fluid

velocity exceeds the grain fall velocity before the grain settles back

to the bed. Bagnold (48) expresses a limiting function B for the

initiation of suspension in the form:

w 2  Pf
B = 0.64 f (3.2.1)
s gd p - ps f

that can be related to the Shields function 8 in the form:

2
W 2  Pf U,2  W 2

B =0.64 - = 0.64- 2 (3.2.2)
s gd p - u u

Considering the equilibrium between the drag force and the sediment

submerged weight the mean fall velocity w can be written in the form

w /(Ps - Pf)d

instead of equation (3.2.2) we could have

B = constant
S

For grains of quartz in water equation (3.2.1) gives

w 2

B = 0.4 ( ) (3.2.3)
s gd

for grains of quartz in air, it is possible to write:
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w
2

B = 0.0003 (3.2.4)
s gd

From Bagnold's plot in Fig. 4, we could conclude that particles

smaller than 0.1 mm can move only in suspension, but this limiting

diameter is open to question, since for low enough velocities it is pos-

sible to have even these particles, slipping, rolling, or saltating.

According to the same Fig. 4, the suspension criterion of B=l could be

valid only for grain sizes larger than 1 mm, but if instead of considering

the grain diameter we consider the grain Reynolds number, this limiting

size corresponds to highly turbulent flows, which is generally the case

for natural streams of water. Thus, the Shields function value B=l can

be accepted as a lower limit for sediment moving in suspension.

3.3. Saltation and bed load movement

3.3.1. General model

Since the thickness of the layer of saltating cohesionless particles

in water has been accepted to be between 2 or 3 mean particle diameters

(18), and since the motion of the same kind of particles in air is mostly

in saltation (21), it may be assumed here that the bed load movement can

be considered as a characteristic saltation pattern. Hence, the forces

acting on a grain in a two-dimensional motion should be studied as for

the case of movement in water by Yalin (20), and for movement in air by

Bagnold (21) and Owens (49).

A two-dimensional analysis considering the equilibrium of a particle

as shown in Fig. 5 follows.
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m

B

f

~~

m d 2 y = L - D(y) - W (3.3.1)

At the bed the lift force L can be written, as obtained in section 2.1,
o

in the form:

L k fu 2 d2 f2(n, s.f., )

Defining a critical lift force L equal to the submerged weight of the
oc

particle, this particle begins to move when:

u~d
L = W = k U 2 d2 f (n, s.f., )
oc 1 8 Pf *c 2 v

It is then possible to write the general ratio for the lift force on the

bed to submerged weight as:

-31-
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Fig. 5. Characteristic sediment saltation pattern

1. Sediment motion in the y direction.

The equilibrium of a particle at any time and position can be

described by the equation:



Lo Lo f 2 (n, s.f., u d/v) u 2

W L f2 
( , s.f., ucd/v) u 2

OC 2 kc *c

The functions f2 can be considered equal since, in the region of sediment

motion, the particles pass from a thin transitional zone to a turbulent

zone where the function f2 varies only slightly with the Reynolds number,

thus:

L u 2

o u *

W *C 2

At a level y over the bottom the ratio of lift force to submerged weight

can be written

L u,2

= of ( ) = f ( ) (3.3.2)
W W d U c d

In order to define the function f(y/d) it has to be remembered that the

lift force L has to be equal to the maximum lift force Lo at the bottom,

and equal to zero at the maximum height of the saltation path.

f(y/d) = 1 at y/d = 0,

f(y/d) = 0 y/d -ax
d

for simplicity a function of the form

f (d) =1- add d
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may be introduced, where a has to be less than one, has to be determined

experimentally and is of an order of magnitude of 1/yo.

D(y), the vertical projection of the drag force, can be written as a

function of the submerged weight. Considering the s direction, tangent to

the trajectory of the particle, and the velocity ds/dt, one may write

ds/dt
D(s) = W

w

Besides, the projection D(y), see Fig. 6, is equal to

dy/dt
D(y) = D(s) ds/dtds/dt

therefore:

D(y) = W dy/dt (3.3.3)
w

dy/dt
D(s) D(y) ds/dt

s (s)

w

Fig. 6. Vertical drag force D(y) determination

W, the submerged weight can be expressed in the form:

wd3

W = 6 d s - f)g (3.3.4)
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m d2y L _ (y)
W dt2 W W

(3.3.6)

Replacing the expressions for the virtual mass, submerged weight, lift and

vertical projection of the drag force:

p + k 2  f d2y
P( s _ f dt 2  u2 (1 - a ) - 1 d - 1 (3.3.7)

g s f dt u*c d w dt

Setting:

( )g = G , and
Ps + 

k2 Pf

2
u 2

U*c2 M

equation (2.3.7) can be written:

d2 y+G GY+MGG
dt2+dt MG y = G(M - 1)
dt2 w dt d

(3.3.8)

the initial condition is: at t=0, y=O, dy/dt = 0

and the final condition: at t=T, duration of the saltation, y=O

-34-

m, the virtual mass is equal to:

m = d3 (p + k2 Pf) (3.3.5)

where k2 is the added mass coefficient.

Equation (3.3.1) can be written, after dividing by W, in the form

- --- -- --------i------------i ------- -;1~- ---ii --



The homogeneous part of equation (3.3.8) has 3 possibilities,

setting

G 2 4aMG
w d

a) k>0

G-- +k
w

t
2

Yh = C1 e

b) k=0

Yh = (cl + c2t) e

+ C2

G
w

t
2

G
2w

c) k< 0

G
2w

(c1 cos kt + c 21 2
sin kt)

the particular solution is

M- 1 d
p M ca

Working with the first possibility, (a), applying first the final

condition, c2 = 0; with the initial condition,

G
-- k
w

t
M-ld 2

S(1 - e )M a
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G
where - has to be larger than k in order to have solutions. Besides, wew

must have for the maximum height of saltation zero velocity, thus:

G
-- k

G w- - k t
dy M - 1 d ( w 2
dt M a 2

at the maximum height, t # 0 and dy/dt = 0, so, the only possibility is

G/w = k, which is incompatible with the condition that a solution must

exist.

Working with the second possibility, (b), with the initial condition

= 0 at t = 0

M- 1 d
cl M a

and

G
M-ld 2w

y = (- + c t) eM a 2
M-Id

+ -
M a

G
G M - 1 d 2w
2w M a 2t) e

+ c2e

G
2w

with dy/dt = 0 at t = 0

G M-ld
c2 2w M a

so:

M - 1 d
Y= [1 --M a

G
(1 + G t) e2w

-36-
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This solution gives at t = T # 0, y # 0 and has to be rejected.

Working with the last possibility, c, with the initial condition

y = 0 at t = 0,

M-id
l M a

thus:

G
St

2w
y= e

M- 1 d
Scos kt +

M a
M- 1 d

:2 sin kt) + M a2 M a'

G

= e 2w
dt

M- 1 d
(k M 1  sin kt + c k

M a 2

G
2w e
2w

G
2w

but at t = 0; dy/dt = 0, then

1 G M - 1 d
c2 = k 2w M a

M-id 1
y = M 1 [1- (cos kt +- sin kt)M 

M- 1 d
M 1 cos kt + c sin kt)M a 2

and:
G

t
2w

] (3.3.9)

To determine the maximum height of saltation, from equation (3.3.9)

G
t

cl_ M - i d 2w
d - [-(- k sin kt + cos kt) edt M a

G
G 2wt
-w e
2w

1
(cos kt + - sin kt)]

k
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For maximum y the velocity dy/dt must be equal to zero, and thus:

M-y d
Ymax M a

(3.3.10)

Trying to model the movement as saltation, the maximum height

reached for the particles must certainly be represented. From (3.3.10)

Ymax 1
( ) =i-d M

u2

and recalling that M = 2 and f( ) = 1 - a( ) ,
c d d

Ymax 1 U *c
f( ) = 1 - a )= u 2 (3.3.11)

is obtained. In

weight constant,

prototype:

order to keep the ratio between lift force and submerged

the function f(y/d) has to be equal in model and

u*c2

u2 ) =
* r

(3.3.12)

Considering water as the prototype fluid and air as the model fluid,

equation (3.3.12) can be transformed to:

()r = 8.75 (3.3.13)

in accordance with the findings of the discussion on initiation of

movement, equation (3.1.8).

To obtain the complete set of parameters governing the sediment
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motion in the y direction, let us scale equation (3.3.7), using a vertical

scale L , a time scale T and a particle settling velocity scale W. The

following relations are obtained:

L p + k2 p u 2  L u 2  L
v s 2 f * v * v

T 2 g p - Pf ' u *C2  d u 2 ' T W
v s f *c c v

Since a is a coefficient that gives the form of variation of the lift

force with height, it can be considered equal in model and prototype; with

the same scale for the sediment size and vertical dimensions, and observ-

ing that the last relation is a kinematic parameter, the relations are

reduced to the two parameters:

Lv p + k2 Pfv s 2

T 2g P - P r

(3.3.14)

u 
2

u 2
*c r

where the second parameter in the case of water as fluid in prototype and

air as the model fluid can be written as B = 8.75, giving a modelling of
r

the maximum height of saltation.

2. Sediment motion in the x direction

The equation of sediment motion in the x direction can be written as:

dx
d 2 x (u - dt

m dt2 D(s) d = 0 (3.3.15)
dt2 ds

dt
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which can be transformed into

dx
W (u -

md 2x 0
dt2  w

dividing by W and using equations (3.3.4) and (3.3.5), we obtain

1 Ps + k2 Of d2x 1 dx u( ) ) + u 0  (3.3.16)
g Ps - f dt2 w dt w

Scaling this equation, using a horizontal scale Lh, a time scale Th, a

mean flow velocity scale U, and a mean particle settling velocity scale

W, the following two parameters are obtained,

Lh P 5 + k2 Pf
[ 2( )] = 1

h s Pf r

(3.3.17)

U
( -) =1
w

r

Nordin and Beverage (50) discussed the validity of a ballistic

trajectory approach for sediments moving as bed load in water, as used by

Yalin (20) and followed in this study. They pointed out that apparently

Yalin's bed load formula proportions the total load for low shear stresses

or lower unit discharges. This finding can be explained since at these

discharges the sediment in suspension does not account for much of the

total load.
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3.3.2. Summary of the similitude parameters

Time scales:

Lh
Th = [g

P5 + k2 Pf

P - Pf

L p +k 2 pv s + k2 Pf
T = [ v fv g ( - p

r s

1/2

r

1/2

r

Velocity scales:

Ur = Urr *r

Lh

h

P - Pf
) = [gL h ( P- + kf
r s 2 Pf

1/2

r

Fluid discharge per unit width:

P - P
qr = (U L ) =[(gLh f )rv p + k 2 pfr s 2f

1/2

L ]

Total fluid discharge:

Qr = (U Lv Lh )r v h

p - pf

= [(g s
Ps 2 f

1/2
3/2

L L I
h v

r

Defining a two-dimensional concentration, C2, equal to the total fluid

transverse area divided by the sediment are:
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Lh Lv

2  d2 r
r

With a three-dimensional definition of the concentration, C3, equal to a

fluid volume divided by the sediment volume:

Lh2 L
C ( h v
3 ( d3  rr

The mass of sediment ratio

(m )2 (P C2 d
3 ) = [ps L L L d]

r

(m ) = (P C3 d 3 ) = [ps Lh 2 L ]r
r

The sediment discharge per unit width

mms p Pf 1/2

(qs ) = ( t h Lh) = [L d( g P f ]
2 r s h h r v Lh Ps + k2 f r

and the total sediment discharge

(Qs)r = ( = [Lv L 2 (g P Pf 1/2
Ps th +k2 f

The initiation of movement parameter 8, when using the same fluid in model

and prototype, is Br = 1, and, when using air to model the movement of

U
sediment by water, B = 8.75. The velocity ratio ( - ) = 1.r w r
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3.4. Suspension and wash load movement

3.4.1. Primary requirement

1. Basic equations

The mass conservation equation for sediments with a concentration

c(x,y,z,t) can be written in a Cartesian coordinate system:

Tc ac 3c ac 3 ac a ac 3 ac ac
+u +v +w -- = (E ) + (E -) + (Ez  ) +w 

t x 9y Dz Dx x @x Dx y Dy 9z z z s 9y

(3.4.1)

where: u,v,w are time averaged components of instantaneous velocity in

the x, y and z directions respectively; E x, E and E are the turbulent
y z

ac ac 3c
diffusion coefficients; u , v , w are changes of concentra-

ax 3y z
a ac a ac a ac

tion by convection; (E ) ( ) and (E )- are3x x x ay 9y 9z z 3z
ac

changes in the flux of the sediments by turbulent diffusion; w --
s Dy

represents the settling of the sediments and w is the mean fall velocity
s

of the sediments. From equation (3.4.2) on w will be referred to as w.

Taking the direction of flow as that of increasing x, the y axis

directed upward from the bottom, and z a lateral direction.

Considering:

- a wide channel, the rate of change is smaller in the z direction, i.e.

-- > -- >> a

Dy 3x Dz

- a slowly varying flow, with the diffusion of sediments in the longitu-

dinal x direction smaller than in the vertical y direction, i.e.

-43-



i

E '

ac ac 3 ac acc+ u- - (E ) +
3t x y y Dy 3y

(3.4.2)

For fully developed turbulent flow, the turbulent diffusion coeffi-

cient per momentum E can be written:
my

E =
my du/dy

(3.4.3)

Considering a linear shear stress distribution which holds strictly only

for a uniform and steady flow of uniform density

T = To (1 - y/yo) (3.4.4)

the Karman-Prandtl velocity distribution profile

du L0'

dy ky
(3.4.5)

and with /E7P we obtain from (3.4.3) making use of equations (3.4.4)
o

and (3.4.5):

E = k u, y(l - y/yo) (3.4.6)
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3 ac 3 ac-x (E x ) <<-- (E -c )
x x Dx Dy y y

- the vertical and lateral components of the mean flow velocity v and w

are equal to zero.

The equation (3.4.1) reduces to:



with no = y/Y , equation (3.4.6) is written:

E
S= k n (1 - no) (3.4.7)

U*yo o

Many investigators have related the turbulent diffusion coefficients per

mass and per momentum by a constant of proportionality X in the form:

E = XAE, where A can vary from values less than unity to larger than
y my

unity. A depends on many factors, such as size of material bed forma-

tions (52), relation between sediment and fluid densities (53) and some

other factors like sediment concentration and fluid viscosity, but never-

theless it can always be written:

Ey = X k u, yo n (1 - n ) (3.4.8)

Therefore the ratio between these turbulent mass transfer coefficients for

the prototype and model can be reduced to:

[A k u Yo n (1 - no)(39)
(Ey) k u, o ( n) = (u L) (3.4.9)yr [A ku*y n (1 - noum v r

With this definition of the turbulent mass transfer coefficient, steady

motion (@/st = 0), and unsteady motion, considering very gradual varia-

tion with time, will be discussed.

a. Steady and uniform flow, in this case /ax = 0 and the governing

equation is:

y (Ey ) + ~ = 0
Dy y Dy ) y
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Assuming the particle mean fall velocity to be independent of the

concentration, although McNown and Lin (54) and Coronado (55), among

others, have demonstrated experimentally that w is a function of the con-

centration, the well-known O'Brien formula (56) is obtained,

ac
wc + E = 0 (3.4.10)

y y

b. Steady and non-uniform flow, then the governing equation is:

c 3c @ Dc
u - w (E y ) (3.4.11)

9x Dy Dy y y

c. Unsteady and non-uniform flow, governed by equation (3.4.2).

2. Similitude analysis

Considering C a reference concentration, U and w, characteristic

velocities; Lv and Lh characteristic vertical and horizontal scales; T a

reference time; ( ) a dimensionless quantity, and ( )r the ratio between

prototype and model values, the governing equations can be scaled for the

cases presented.

a. Steady and uniform flow, introducing the reference values in

equation (2.4.10)

CE
wC (w° c +) ( -) =

v

is obtained. After multiplying by L /CE , the dimensionless parameter

wL
v

E
Y
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is obtained. Determining the scale ratios for similarity and using the

result (3.4.9), (w/u,)r = 1 results.

Using the velocity distribution U = u, fl(u*d/v), as written in

section 2.1, the following parameter

( U ) = 1 (3.4.12)
U r

is obtained.

b. Steady and non-uniform flow, introducing the reference values in

the corresponding governing equation

UC co wC o cO 1 D C acOC(u° xo ) .. E )]Lh  x - Lv (w s  Dy Lv y [Ey Lv yO

after multiplying by Lh/UC, we obtain the dimensionless parameters:

wLh E Lh
and

UL UL 2
v v

Determining the scale ratios for similarity, and assuming similarity of

velocity distributions for non-uniform flow to exist and thus introducing

equation (3.4.9) in the second parameter, we can conclude that we must

have the horizontal scale equal to the vertical scale, that is, vertical

distortion is not possible. The dimensionless parameters reduce to

W ) = 1 (3.4.13)

c. Unsteady, non-uniform flow can only be analyzed if the variation
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with time is very gradual, as in the case of tidal motions, so that the

shear stress and velocity distributions of uniform flow are approximately

valid. Scaling equation (3.4.2)

C co UC Dc* wC 0 cO 1 C cO
( ) + (u ) - (wo ) =  [E )]T Dto Lh 3xo Lv y Lv Dy2 y Lv yO

and after multiplying by T/C the following dimensionless parameters are

obtained:

ET

L ' L ' L 2

The first of these is a kinematic parameter. Multiplying by Lh/UT, the

three parameters result in the form:

Lh  Lh  ETh w h __
U ' U L ' L 2
T v v

the first parameter is again kinematic, the other two can be reduced to:

w
(- ) = 1U r

The mean fall velocity can be obtained from Figs. 7 and 8, taken from

reference (40).

3.4.2. Secondary requirement

In the case of steady uniform flow, the mean fluid velocity, which is

one of the main independent variables affecting the sediment movement,

can be obtained from the Darcy-Weisbach equation with D = 4R:
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U = v'87 / RS. This equation of the mean velocity gives for similarity:

RL 1/2
U = [ ] (3.4.14)

r fL rh r

where f is the ratio between the friction factors in model and prototype.r

Following Meyer-Peter and MUller (17) in dividing the friction factor

into a grain friction f' and a bed form friction f", we can write:

f' + f"
m m

f f, + f (3.4.15)
p p

Until recently, the Moody diagram was accepted for the calculations

of f' (57) although this diagram was plotted from experiments over fixed

walls. Alam, Cheyer, and Kennedy (58) noted that even when the friction

factor calculated with a Moody diagram has values higher than for bed with

sediment in movement, these differences are small and not known. The

representative ke may be replaced by d5 0, the particle diameter with 50%

of finer elements.

Earlier, Ippen and Verma (45), for flow over a rough bed with moving

particles calculated values for f' confirming the Moody diagram trend for

Reynolds numbers less than 105, but, from their correlation between the

Manning coefficient n, Reynolds number and the relative roughness R/ke,

it is possible to observe an increase in the values of n for Reynolds

numbers larger than 2.5 x 104. Knowing that the friction factor f can be

written as proportional to the square of the Manning coefficient, it is

possible to expect an increasing trend for values of the friction factor
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f' for higher Reynolds numbers.

Recently, Lovera and Kennedy (59) presented the friction factor f' in

the form

uR R
f' = f( -v d50

Plotting experimental flow and natural river data, they show that for

Reynolds numbers larger than 2.5 x 104, f' increases with the Reynolds

number as can be seen in Figs. 9 and 10. For lower Reynolds numbers the

Moody diagram may be used (Fig. 11).

The bed form friction factor f" can be obtained from Fig. 12 taken

from reference (58). The approach used in the last mentioned reference is

reinforced by J. Herbertson (60) who performed an analysis very similar to

Alam, Cheyer and Kennedy (58).

The procedure to obtain the velocity ratio from formula (3.4.14) can

be one of trial and error. Assuming a model fluid flow velocity, the

friction factors f' and f" are calculated, then the friction factors
m m

ratio f can be determined. The velocity ratio U using the Darcy equation
r r

is recomputed and checked with the first assumption.

In the case of wide channels, equation (3.4.14) reduces to

L 2 1/2

U = (v ) (3.4.15)
r fL r

For the cases of unsteady and steady non-uniform flow, the dynamic

equation of motion for an open channel is:
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Fig. 9 Friction tactor predictor for flat bed flows in alluvial

channels. Lovera, Kennedy (59)
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au au Yo
+ av = -g[ - S ] - g Sft 3x x equation transforms to:

After scaling, this equation transforms to:

+ (a U 2 ) (u ) =-

Sh

L

h X

L
v
Lh

So 0]

(3.4.16)

g Sf

which gives the following dimensionless parameters after multiplying by

Lh/U2

Lh gLv  gLh
UT ' U2 '

The ar can be equated to 1 since their values are very close to 1. Under
r

undistorted conditions the Froude Law velocity ratio results:

1/2
U = L (3.4.17)

r r

3.4.3. Summary of the similitude parameters

Time scale. Steady uniform flow

f L h3 1/2
T =( )r RL

v r

Gradually varied flow and unsteady flow

T = L 1/2
r r

Fluid discharge. Steady uniform flow
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per unit width

L 4 1/2
V

q = (U L) = ( )r

total discharge

R L3 Lh 1/2

Qr =(UL L h) = ( f hr

Gradually varied and unsteady flows

per unit width

3/2
r r

total discharge

5/2
Qr = Lr

Sediment discharge. Using the definition of concentrations, masses and

sediment discharge as defined for the case of bed load and saltation.

For steady uniform flow

per unit width

m d2L 4 1/2
q2 v

r s h = (  h

total discharge

ms3 R Lv3Lh 1/2

s p t r f rr s
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For gradually varied and unsteady flows

per unit width

qs =(dL /2) r
r

total discharge

5/2
Q =L

r

The velocity ratios; for all cases

w) = 1Ur

The velocity scales

Steady uniform flow

R L 1/2
U =( v)

r= f Lh r

Gradually varied and unsteady flows

U = L 1/2
r r

3.5. Local scour

The understanding of the mechanism of the sediment transport in uni-

form steady flow is difficult in itself. The process of localized scour

presents additional complications due to the change of flow characteris-

tics with time, or some particular fluid pattern due to the effect of the

-57-

- - CLI L-



geometry of some obstacle. In this situation, a general solution or an

equation that could describe the process is practically impossible.

Rouse (31) and Laursen (61) presented the parameters wt/£ and U/w

as the characteristics for the development of local scour produced by

horizontal and vertical jets. Laursen (62), (63) proposed some expres-

sions for different cases of localized scour, but there is, as yet, no

consistent generalization for a model study. Carstens (64), analyzing

the equilibrium of a single particle, obtained a parameter u//(ps /pf-l)gd

that can be transformed to the Shields parameter following the previous

consideration for initiation of motion of sediments. Field (33), with

dimensional analysis, found, among many other dimensionless numbers, a

parameter similar to that obtained by Carstens.

In the present study the local scour patterns developed were

initially assumed to depend on the following characteristics:

The parameter (U/w) is assumed as significant here as it was

obtained from studying the movement of sediment as bed load and

in suspension.

It can also be concluded that the initial shear stress T
o

responsible for the development of a scour pattern must be sig-

nificant relative to the critical shear stress T as defined by
c

Shields. Therefore, the scour dimensions should be dependent on

T /T or B /B according with equation (3.1.8).
c o c

Finally, the time passed until a stable scour pattern is

obtained may be related to the time ratio developed for the

saltation model (see section 3.3.1).
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d

\B

Fig. 13. Characteristic scour geometry

Following the notations defined in Fig. 13 a general relation for

the relative scour depth E/k may thus be written as:

U f 1 p + k 2 Pf 1/2

/R = f( 8___ (f) (3.5.1)

c  s  f

It may be noted here that dunes and ripples in streamflow may be

considered as a series of local scour patterns. For dunes and ripples

Yalin (65) has found the length to depth ratio k/yo % 5 while Nordin (66)

obtained for the same ratio a constant of 4.2. This would point to scour

being independent of the first two parameters of the function (3.5.1).

3.6. General modelling scheme

3.6.1. Procedure

Fig. 14 shows the steps to follow in order to choose the representa-

tive parameters for a model study of sediment movement.

The first step will be to check if the sediment will move. From

comparison of the prototype Shields function B and the critical prototype
p

value of the Shields function 5pc' there will be no sediment movement if
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r ,r = 8.75

(U/w)r L (Ps + k2Pf p

L (Ps +k )] /V 1 T2g (PS P),
TE (Ps- Pf)r (U/w),= I

NO YES

Stop Reconsidher

Fig. 14. General modelling scheme.
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p < pc"

Since it is impossible to describe analytically in a unique form the

total movement of sediment, the division of the modes of sediment motion

primarily as bed load and saltation or as suspension and wash load can be

made by comparing B with unity. If B < 1 the sediment will move as bed
p p

load and saltation, and if B > 1 the sediment will move primarily as

suspension and wash load.

In the case of sediment movement as suspension and wash load the

velocity scale can be chosen according to the kind of flow. For steady

uniform and uniform varied flow U = (RL /fLh )/2 For unsteady flow

1/2
U = Lv

r r

The sediment discharge per unit of width is for bed load:

q = Lv d [ L P s Pf /2

sr r r Lh Ps + k2 Pf r

and for steady uniform flow with sediment in suspension.

d2L 4 1/2
q v
sr fLh3 r

and for non-uniform and gradually varied flows with sediment in suspension:

q = (dL vl/2)rsr v r

The process of local scour can be studied in the case of long

stretches of streams of movable bed by using the parameters for bed load

or for suspension. In special cases, like scour at bridge piers: Br = 1i,
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1/2 1/2 1/2
(U/w) r = 1 and tr [(L h /g)(p s + k 2 Pf) /(P - Pf) r can be

used.

3.6.2. Relation between the parameters characterizing the different

modes of sediment movement

In the case of bed load and saltation the first relation to satisfy

using the same fluid in model and prototype is Br = 1, and using air as

the fluid in the model B = 8.75.
r

If the Stokes formula for the fall velocity of the sediments applies:

w = 1 (p -f )d 2
18 p s f

the Shields parameter can be written as:

u* u d

w 18v

Since in the case of suspension and wash load the similarity ratio (w/u)r

has to be equal to one, the parameters for modelling bed load and
u~d

suspension are related by the Reynolds number ratio ( )r"

If the fall velocity follows the turbulent resistance relation at

higher Reynolds numbers, it can be written as:

w = k /(s f)d

where k is a coefficient of the particle shape depending on many factors.

In this case the Shields parameter is expressed as:

u, 2 k2pf

w g
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Only in the case of using the same fluid and particles in model and pro-

totype can sediment movement be represented in the laboratory using either

bed load or suspended load parameters.
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IV. EXPERIMENTAL VERIFICATION

4.1. Scope of the experimental study

The purpose of the experimental tests is to verify the applicability

of the similitude parameters derived in the study. However, the magni-

tude of the work that a verification of all these parameters would

require limits the scope of the present study to the testing of one set

of parameters. The particular case chosen for this purpose is a problem

of local scour.

In this study, the action of a horizontal, two-dimensional jet of

water, submerged in water, over an originally horizontal bed of sediments

is considered and is compared with the action of a horizontal, two-

dimensional jet of air, submerged in air.

This case already is quite complicated since the sediment moves as

bed load as well as in suspension. Consequently, an experimental verifi-

cation of the local scour parameters can be considered to be valid quite

generally and may be expected to apply to different scour problems with

different flow patterns.

Specifically, the experiments were designed to explore the action of

a jet of water and of air issuing through a nozzle, .25 inches in height

and 6 inches in width over an initially flat bed of uniform, granular

sand. Three diameters of sand particles .71, .59 and .42 mm nominally

were employed. Velocities could be varied from 40 to 78 cm/sec in water

and from 9 to 27 m/sec in air. Scour patterns were observed for 16

tests with different values of velocities and grain diameters under
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transient conditions up to the ultimate stable scour pattern.

4.2. Experimental setup

The equipment, designed and built for the present tests, consists of

a main tank, water and air supply systems, auxiliary devices for flow

measurement and control. Fig. 15 and Photographs 1 and 2 show this

apparatus.

4.2.1. The experimental flume

The main tank, built in plexiglass 3/8 in. thick, is 6 in. wide and

78 in. long, and is divided into 3 chambers. The first one, a stilling

chamber, is 14 in. long and 40 in. high. The fluid enters through a cir-

cular opening 3 in. in diameter in the bottom of this chamber. It serves

as a constant head tank for the flow discharging to the second chamber

through a horizontal slot 1/4 in. high and 6 in. wide, with its lower

edge 10 in. high over the bottom of the tank.

The second chamber is 60 in. long and 28 in. high and is the main

test chamber containing the sediment bed. A grid formed of one inch

squares is inscribed on one of the lateral walls for observation of the

scour patterns. This test chamber is connected to the third chamber over

a suppressed weir 25 in. high that serves to keep the water jet under

constant submergence. It also prevents the transport of sand into the

pump sump. The third chamber is only 4 in. long and 28 in. high and

essentially serves only as a return to the sump through a 2 in. diameter

pipe.

The recirculating water system consists of a 15 gallon sump connected

by a 1 in. pipe (PVC sch 40) to a constant discharge centrifugal pump
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Fig. 15 Main tank and air and water supply systems



Photo 1. Main tank and air water system

Photo 2. Water supply system
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(Cole Palmer model 7006-1). This is powered by a 1/3 HP motor with 3450

RPM. A 1 in. pipe by-pass serves to regulate the water discharge toward

the entrance tank.

The air supply system consists of 2 blowers installed in series.

Each one consists of two self-cooling vacuum cleaner motor-fans enclosed

in a 1/2 in. plywood wall, and rated at 1/3 to 1/2 HP at high speed

operation. These motors have a variable voltage supply in the range 30

to 120 volts through a General Radio Corp. model W-20-M Variac trans-

former. The discharge control is complemented with a Butterfly valve

installed at the end of a short 2 in. pipe, ahead of the air supply line.

4.2.2. Testing equipment

The flow measurement, in the case of the water jet, was obtained by

measuring the water jet velocity passing through the horizontal slot, as

a function of the differential water head. The zero level was considered

at the top of the weir between the second and third chambers. This dif-

ferential water head was measured with a point gage of 0.001 ft. divi-

sions. Fig. 16 shows the calibration curve, which, for convenience, gives

the jet velocity in terms of water surface elevation h above the weir

crest.

For the air jet the different variac settings regulated the fluid

discharge. A water manometer with readings of 1 mm, and connected to the

first chamber, was used to measure the pressure inside that chamber, and

after a transformation to an equivalent column of air, the air jet

velocity is obtained using the relation U = V2-gh assuming no losses at

the entrance to the second chamber where the scour was produced. Table 1
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Fig. 16 Water jet velocity. Calibration curve
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presents the values of chamber pressures in cm of water column against

variac settings and jet velocities.

Blower calibration.

Ah(cm)

0.30

0.54

0.67

0.94

1.91

2.15

2.71

4.4

4.84

6.10

6.60

Table 1

Water pressure vs. variac

Variac

No. 1

21.5

20

25

30

51

52.5

65

90

95

115

120

Settings

No. 2

12.5

15

17.5

25

43

45

54

78

85

103

110

The scour measurements were obtained from photographs taken with a

Polaroid Land 350 camera. The photographs showed the scour profile behind

a grid with one inch squares. A point gage with 0.001 ft. accuracy was

used directly on the scour profile to check the measurements on the

photographs. Polaroid Land film, black and white, type 107, 3000 speed

with 3-1/4 x 4-1/4 inch prints was used.

A thermometer, installed in the entrance chamber, measured the water

temperature, and another, installed in the exit chamber, determined the

room temperature for the air jet.
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(m/s)

6.80

9.00

10.10

11.90

17.00

18.00

20.20

25.50

27.00

30.30
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4.2.3. Sediment characteristics

Sand classified according to the U.S. Standard sieve series was used

for the experiments. Sand passing the sieve no. 20, 0.84 mm opening, and

retained on sieve no. 25, 0.71 mm opening, was labelled as 0.71 mm diam-

eter, sand passing the sieve no. 25 and retained on sieve no. 30, 0.59 mm

opening, as 0.59 mm diameter, and the sand passing the sieve no. 30 and

retained on sieve no. 60, 0.25 mm opening, was labelled as 0.42 mm. The

corresponding fall velocities were determined experimentally (listed in

Table 2) and also from the ASCE publication (40).

Table 2 presents the specific gravity, fall velocity in still water,

angle of repose and the grain shape for the different diameters of sand.

The specific gravity was obtained by the picnometer method, the fall

velocity with a settling vertical tube 5 ft. long and 2 in. inside diam-

eter; the angle of repose was obtained by gentle pouring on a flat

surface. The microscope observation indicated the quartz nature of the

grains and their rounded shape. Photographs 3, 4, and 5 show these

grains.

Table 2

Sand characteristics

d(mm) Particle Specific Fall velocity w(cm/s) Angle of
shape gravity 590 630 repose

air water air water

.71 Rounded 2.73 505 10.45 11.40 29022 '

.59 Rounded 2.64 450 9.54 9.57 29056 '

.42 Rounded 2.67 315 6.72 30043 '
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Photo 3. Sand varying between 0.84 mm and 0.71 mm
and named as 0.71 mm

Photo 4. Sand varying between 0.71 mm and 0.59 mm
and named as 0.59 mm
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Photo 5. Sand varying between 0.59 mm and 0.25 mm and

named as d=0.42 mm
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4.3. Experimental procedure

The first step is to fill the second chamber until the level of the

bottom of the horizontal slot located between the first and this second

chamber is reached, in this case with a 10 inch high layer of one sediment

size.

In the case of an air jet, after sealing the top of the first

chamber, the next step is to supply air pressure, controlled by varying

the variac settings. The water manometer gave the interior pressure and

the air jet velocity using the calibration Table 1.

In the case of a water jet the second step is to fill the second

chamber until the water level reaches the top of the wall located between

the second and the third chamber. That will give a minimum of sub-

mergence of 15 inches. Water was then pumped into the first chamber with

the nozzle initially closed to avoid passing of sand to the first chamber.

The desired jet velocities are then obtained from reading the head of

water over the top level of the weir between the second and the third

chamber using the calibration curve previously shown.

These procedures, for the case of a jet of air as well as for a jet

of water, were repeated with 3 different sand sizes. Three jet veloci-

ties were used on the 2 smaller sizes of particles 0.59 mm and 0.42 mm,

and two jet velocities on the 0.71 mm particles.

To register the successive scour profiles, photographs were taken

after 0.5, 1, 2, 5, 10, 15, 30, 60 minutes and every hour thereafter from

the beginning of each run. Extra photographs were taken in some of the

runs. From each photograph the vertical and horizontal coordinates of



mm - ~__ _~

the points of the scour profile were measured. The approximation on the

reading was 1/20 inch. Fig. 17 shows the coordinate system.

A thermometer reading every 30 minutes served to register the water

jet temperature. Variations of 20F to 40F were allowed between the

beginning and end of each run.

No particular temperature control was used in the case of the jet of

air, since the air was continuously resupplied from the room of experi-

mentation.

x

y

Fig. 17. Coordinate system to measure the scour profile

4.4. Description of the scour process

The air or water jets flowing over a bed of sand produce a shear

effect on the uppermost grains, and put them in movement. The mode of

sediment movement will depend on the magnitude of the lift force acting on

the grains. The fact that the jet velocity decreases with the distance

from the outlet section, in this case from the horizontal slot will ex-

plain the skewed form of the scour profiles observed at the beginning of

the runs. Fig. 18(a) shows this initial scour geometry.

After a small scour hole is formed, the jet forms a separation zone

within the hole and can entrain and mix with fluid from below. A recir-
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culating movement in the form of an eddy is generated that produces a

sediment movement against gravity forming a slope larger than the natural

angle of repose of the sand, between the points B and 0 from Fig. 18(b).

The sediment moves between these points mostly as bed load. This eddy

acts from a stagnation point S, that is located in the position where the

jet velocity begins to produce a higher shear stress in its own direction

of movement. During a test, this point S changes position according to

the jet oscillations. Downstream from this point, the sediment moves in

suspension at the beginning of the test and as bed load after some vaguely

defined time.

S
B d

(a) (b)

Fig. 18. Schematic representation of the scour hole formation

In the case of a jet of water, and after some distance from the

origin, the shear stress is not high enough to keep the sediments moving

as fast as the bottom eddy can scour the bed, and the sand begins to

accumulate, deflecting the direction of the jet and forming a large,

slowly rotating eddy over the upper boundary of the jet. As a consequence,

downstream from the deposited sand, the water has only very reduced

velocities; the sediment begins to deposit and shows essentially no move-

ment after settling to the bed. See Fig. 19(a). The scour profile is
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uniform throughout the transverse section of the second chamber of the

experimental flume described in section 4.2.1. Only at the top of the

deposited sediment and, far away from the jet origin, the transverse

shape exhibits a variation in plan as shown in Fig. 19(b).

particles -crest
settling i

R

no sediment (b)
movement

(a)

Fig. 19. Scour formation with a jet of water

For the case of a jet of air, as it was determined from experiments

and described in section 3.1, the necessary shear stress due to the action

of the flow of air to move the sediments is lower than in the case of

water, and, consequently, the scour profile is larger than in the case of

water under the same boundary conditions of jet discharge and sediment

characteristics. Downstream from the scour hole, a small accumulation of

sand with a very gentle slope is observed quite in contrast to the water

conditions. The scour and profiles of deposition across the transverse

section of the test chamber are very uniform, with only a slight excess

rise near the top of the deposition in a very thin layer near the wall.

Since the test chamber was not covered, the air jet can be con-

sidered as discharging into an infinite medium with regard to the upper

boundary and, consequently, no eddy is observed there.
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Fig. 20 shows a characteristic progression of the scour hole. In

the case of a jet of water, only cases (a) and (e) through (h) were

observed.

4.5. Experimental results

Table 3 shows the different run conditions. A total of 16 experi-

ments were carried out.

From the photographs, tables presenting four columns with data were

prepared. The first two columns present the vertical and horizontal

coordinates of the points of the scour profile. The third and fourth

columns present the values of these coordinates normalized with respect

to the length k, as defined in sections 3.5 and 4.4. The entire set of

photo-records and tables are kept on file at the Hydrodynamics Laboratory

of M.I.T.

Appendix B presents a table with the summary of basic scour data and,

as a sample, four photographs and their respective tables for each one of

the scour patterns produced by the jet of water flowing with an initial

mean velocity of 52 cm/s and by the jet of air flowing with an initial

mean velocity of 17 m/s over a bed of sand 0.42 mm diameter.

Fig. 21 shows the similarity of the final or stable scour profiles

for different ratios between U, the initial mean jet velocity and w, the

particle mean fall velocity.

Fig. 22 shows an almost constant value of the ratios between r, the

maximum depth of scour, and ., the maximum length of scour, for different

times of jet action, and different ratios U/w.

In the case of flow of the jet of air, the mean experimental value
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U _ I

rolling ,.
sliding

(a)

U -

(b) movement by sliding

(c) uniform sliding

(d) side rolling, sliding

4-

(e) general sliding

(f) maximum depth of scour

, I C

(g) longer and less deep

Fig. 20 Characteristic process of enlargement of the

scour hole, by a jet of air
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Table 3

Scour by jets of air and water. Experimental conditions.

d(mm) Fall veloci

air (700F)

0.71 505 1

0.59 450

0.42 315

ty • w(cm/s) Jet velocity

water U(cm/s)

590 630 air water

0.45 11.40 2020 40

3030 60

9.54 9.57 900 32

1800 48

2700 64

6.72 1190 39

1700 52

2550 78

U/w

air

4

6

2

4

6

3.78

5.40

8.10

water

590

3.83

5.74

3.35

5.03

6.71

5.80

7.74

11.61

630

3.51

5.26

3.34

5.02

6.69

(U/w)r

630

1.140

1.141

0.599

0.797

0.897

0.652

0.698

0.698

Test temperature

oF

air water

73 60-63

58-62

72 62-64

62.5-65

62-65

73 58-63

58-62

58.5-62
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d (mm) water U/w air U/w

0.71 -" 5.27 6

y 3.51 7 4

0.59 6.69 6
, 5.02 ' 4
* 3.34

0.42 11.61 o 8.10
A 7.74 A 5.40

S 5.80 3.78

- 0.30

- 0.20

oo

0.00

_'____'_ '_'_ _,_, ,

0.30

0.00oo 0.50 1.0oo .50 X1,

Fig. 21 Similarity of the stable scour profiles
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d(mm) water U/w

0.71 5.27

V 3.51

0.59 , 6.69

" 5.02

S53.34

0.42 11 .61

A 7.74

* 5.80

0

*

0

0
5

L4

I F ' v . 1 ,

0'0S ~e

*dp

' I 00 t (min

Fig. 22 Constancy of the normalized scour depth with time
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(C/k) air is equal to 0.225.

In the case of flow of the jet of water, the mean experimental value

(i/i) water is 0.154. And the ratio between the air and water maximum

normalized depth of scour is

WO air 0.225
( I ) = = 1.46
k r (4/t) 0.154water

Table 4 and Fig. 23a show the influence of the ratio U/w, initial

jet mean velocity to the particle mean fall velocity, in determining ed ,

the upstream slope of the scour profile. Higher values for this angle

are observed in the case of action of a jet of air. Fig. 23(b) shows the

relation existing between the normalized upstream slope ed with respect

to the angle of repose 6 and the ratio jet velocity to particle fall

velocity for model and prototype.

4.6. Discussion

In order to clarify the experimental results, this discussion is

divided in two parts; the first one will deal with the nature of the scour

configuration for the two different fluids, and the second one will cover

the validity of the proposed local scour parameters.

4.6.1. On the characteristics of the scour profiles by water and air

currents

a) With the same experimental flume and sediments, and under similar

ratios between the initial jet mean velocity and the particle mean fall

velocity, the scour in the bed of sand is initially faster with air cur-

rents than with water currents. This fact seems to be a consequence of

-83-

---- ----- -I--- ----- * "--------- - ._..__.+~_il~--_



Table 4

Upstream slope of the scour profile

Fluid d(mm)

Water 0.71

0.59

0.42

0.71

0.59

0.42

U/W

590

3.83

5.74

3.35

5.03

6.71

5.80

7.74

11.61

4

6

2

4

6

3.78

5.40

8.10

630

3.51

5.26

3.34

5.02

6.69

(U/w)
r

630

1.140

1.141

0.599

0.797

0.897

0.652

0.698

0.698

Upstream

tan ed
0.620

0.650

0.580

0.625

0.665

0.610

0.631

0.646

0.650

0.657

0.600

0.643

0.663

0.650

0.666

0.675

slope

e
d

31048 '

33001 '

30007 '

320

33038 '

31023 '

32015 '

32052 '

33001 '

33018 '

30058 '

32044 '

33033 '

33001 '

33040 '

34001 '

Angle of

tan e

repose

e

6d/e (ed/ 6 ) r

.563 29022 '  1.083

1.124

.576 29056 '  1.019

1.069

1.124

.588 30043 '  1.022

1.050

1.070

.579 29022 '  1.12

1.13

.608 29056 '  1.035

1.094

1.121

.593 30O43 '  1.077

1.098

1.109

0.956

1.005

1.016

1.023

0.997

1.054

1.046

1.036

Air



d (mm) water ar
0.71 v

0.59 0
0.42 *

I I I

U/w

Fig. 23(o) Upstream slope of scouring hole Od vs. U/w

d (mm) air/water
0.71 v
0.59 a
0.42

*

I I II * I

0.5 1.0 (U/w)r

Fig. 23(b) Normalized upstream slope of scouring hole ed vs. U/w
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the lower shear stress due to the flow necessary to move the sediments in

air, as indicated for the proposed values of the Shields function, 0.056

in water and 0.0064 in air, see section 3.1.

b) After a scour hole is formed, from the stagnation point down-

stream, the sediment moves mostly in suspension in a small depth. From

the stagnation point, toward the origin of the jet, the sediment movement

is mostly as bed load and, in particular, by sliding and rolling, sug-

gesting that the shear stress produced by the eddy, circulating below the

jet, is lower than the shear stress produced from the stagnation point

downstream by the jet itself. After some period of time the movement from

the stagnation point downstream is also mostly as bed load.

c) The scour produced by a jet of air is deeper than the scour

produced by a jet of water. Here, again, the difference between the

necessary shear stress due to the different fluids plays a primary role.

d) The relative shapes of the scour, as can be deduced from photo-

graphs of the process, are rounded and proportional to each other, sug-

gesting the possibility of modelling local scour by water currents using

air currents in the laboratory.

e) Downstream from the scour hole, the water jet produces a deposi-

tion with a triangular form that is higher than the deposition of sedi-

ments generated by a jet of air. The origin of this difference is the

lower value of the shear stress for air flow to move the sediments.

f) The accumulation of sediment in the case of the flow of the jet

of water forces this jet to deflect, producing a large eddy between jet

and free surface and reducing the velocities downstream of the deposition.
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The particles, after crossing that crest, fall as in still water. In air,

such a behavior is not observed. Instead, the transport of sediment,

which moves with characteristic saltating trajectories, is predominant.

4.6.2. Validity of the parameters proposed to model local scour

The role of each one of the parameters proposed for a study of local

scour will be independently analyzed in the following paragraphs.

a) Parameter U/w

The normalized stable profile of scour results essentially independ-

ent of the value of U/w within the range covered in the experiments, as

can be seen in Fig. 21. During the experiments it was observed that after

equilibrium in the mechanism of sediment movement inside the scour hole

is reached, the normalized profiles of scour obtained with the jets of

air and water are independent of the value of U/w and show a similar

shape.

A variation in value of the ratio (U/w)r air-model to water-

prototype from 0.599 to 1.141 was calculated for the present experiments

as shown in Table 3. Therefore, the modelling of the local scour process

by air and water jets can be assumed as valid at least for ratios (U/w)r

close to unity.

Fig. 23a indicates the possible influence of the parameter U/w on

the upstream slope of the scouring hole 6d . A trend toward a constant

value of ed is observed with increasing values U/w. Fig. 23b shows the

relation between the values of 6d normalized with respect to the angle

of repose 6 and values of U/w. However, it is to be noted that the up-

stream slope of the scouring hole 6d does not vary much between the air

-87-



and water jets and different values of the ratio U/w.

b) Transient scour development

Fig. 22 shows that the normalized maximum scour depth is essentially

independent of time.

The observed time to obtain the stable scour profiles with the jets

of air and water were in the range of 6 hours and in a ratio of 1 to 1.2.

Hence, the time scale for these experiments can be considered equal to

one for air to water modelling of this type.

c) Parameter /B
c

In the present laboratory study where the movement of sediment in

the scour hole was mostly by rolling and sliding, the critical Shields

function value should be the same in air and water and the ratio (c/B) r

can be taken equal to unity.

1 LP+ k2 pf 1/2
d) Parameter ( s Pf

t g Ps f

This parameter can be written in the form:

1/2 p - Pf 1/2

t(g) ( fL p + k2 Pf

Using the same experimental flume the scale of lengths is reduced to

one, the time scale considered equal to one as confirmed by experiments,

and the acceleration of gravity ratio equal to one, the ratio of the

parameters for air and water reduces to:

Ps - Pf 1/2s f
ps + k2 Pf r

The shape of the sand used in the experiments was determined as
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intermediate between a sphere and an ellipsoide with the aid of a micro-

scope. The added mass coefficient in water can then be assumed equal to

0.35, an arithmetic average between k2 = 0.5 the added mass coefficient

for a sphere, and k2 = 0.20 for an ellipsoide falling in the direction of

its longer axis and with a ratio of 2:1 for the larger to the smaller

axis.

Table 5 presents the values of the above parameter evaluated for

added mass coefficients k2 = 0.35 and 0.50 respectively. The added mass

coefficients are of importance only for water, since the product k2 pf

becomes insignificant for air in comparison to ps. In fact, the param-

eter reduces to the value of the above ratio for water.

Table 5

P - Pf 1/2
Values of ( + k2

s + k2 Pf r

Specific gravity

2.73

2.64

2.67

Values of

k2 = 0.35

1.46

1.47

1.463

Experimentally the value of the ratio, model to prototype, of the

normalized maximum depth of scour was obtained equal to 1.46, see section

4.5. The applicability of the parameter for determining the depth nor-

malized with respect to the length of scour with an added mass coefficient
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0.71

.59

.42

parameter

k2 = 0.50

1.54

1.55

1.55
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in water equal to 0.35 is verified in the form:

Ps - Pf 1/2(r s f

P r p + k2 Pf r

Table 6a shows the coordinates of the mean curves of the normalized

measured scour profiles produced by the jets of water and air. Experi-

mental results by Laursen (61) are also shown for his water tests. The

results for air are reduced according to the value of the proposed param-

eter using both values of the added mass coefficient and are presented

in Table 6b.

Fig. 24 shows fairly good agreement between the normalized scour

profiles in water and the reduced normalized scour profile in air.

To further verify the applicability of the proposed parameter to

model local scour, the present experiments in air are considered a model

of the experiments carried on by Laursen (61) with a submerged jet of

water issuing from a slot .025 ft. = .30 inches high.

Laursen does not present the specific gravity and the shape of the

sand used in his experiments. The diameters with 50% of finer elements

were used to check if the value of the fall velocity for quartz sand as

it could be obtained using Fig. 8 taken from (40) coincide with the values

of fall velocity as presented by Laursen. Since no significant differ-

ences were obtained between the fall velocities, it can be assumed that

he used quartz sand in his experiments and hence the values of specific

gravity, shape and added mass coefficients in water as used in the

present experiments can be assumed as valid.
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Table 6

Conformity between model and prototype measurements

Table b

Water Measurement

Experiments Laursen
Experim.

x/

0

.10

.20

.28

.30

.40

.50

.635

y/ P

.035

.095

.135

.151

.158

.130

.078

0

.80 -.091

.90 -.14

1. -.205

1.2 -.10

Air

Experiments

x/k y/k x/R

.10 .085

.20 .138

.30

.40

.50

.60

.663

.80

.90

1

1.2

.175

.163

.10

.038

0

-.095

-. 14

-.20

-.05

.10 .11

.20 .17

.30

.40

.50

.60

.70

.80

.875

1

1.1

1.2

.22

.23

.22

.18

.12

.055

0

-. 08

-.05

-.04

.068

.137

.205

.274

.342

.411

.479

.548

.599

.685

.753

.822

Air Measurements

1/2
Reduced by (ps-Pf /Ps+k2Pf)r

0.35

y/~

.075

.116

.151

.158

.151

.123

.082

.038

0

.055

.034

.027

k = 0.50

x/ y/.

.065

.130

.195

.260

.325

.390

.455

.519

.568

.649

.714

.778

.071

.110

.142

.149

.142

.117

.078

.036

0

.052

.032

.026

1 1/2Reduced by 4L (ps- f/P s+k 2 P f)r1/2

k = 0.35 rk = 0.50

x/ y/P x/ y/Z

.074

.150

.224

.300

.374

.450

.525

.600

.656

.750

.825

.900

.082

.127

.165

.173

.165

.135

.090

.042

0

.060

.037

.030

.071

.142

.214

.285

.356

.427

.498

.568

.622

.711

.782

.853

.078

.120

.155

.163

.155

.128

.085

.039

0

.057

.035

.028

Table a
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Scour profile in water

o Predicted scour, from air data. k2 -035
A Predicted scourfrom air data. k2 - 0 .5 0

0.00 0.50 1.00 1.50o x/

Fig.24 Comparison between normalized scour in water and predicted scour

based on air data

- 0.30

-0.1

0.24
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It remains only to correct the value of the parameter, as presented

in Table 5, by the length scale. The length scale is equal to the ratio

between the heights of the issuing jets, since they are the significant

lengths in this two-dimensional problem.

Yom 0.25 in 1
r Yo 0.025 ft x 12 in/ft 1.2

Table 6b also presents the values of the scour profile measured in

air reduced by the factor

1 P - f 1/2

L 1/2 Psp + k2 Pf r
r

using added mass coefficients in water of 0.35 and 0.50.

The agreement between the Laursen results in water, the normalized

scour profiles of the present experiments in water and the scour profile

based on air data is notable. This can be seen graphically on Fig. 25

for an added mass coefficient in water of .35, verifying the applicability

of the proposed parameter.

It may be noted further that the Laursen experiments in water were

carried out with U/w ratios as high as 32, while the present water tests

did not have values higher than 11.6 for this ratio.
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* Present scour in water

& Laursen scour in water

o Predicted scour, k2 =0.35

a Predicted scour, k-0.35

A *

0

0 0
oA

0.00 0.50 1.00 1.50 X/

Fig. 25 Conformity between the present experiment and Laursen scour

water and their prediction based on air data
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V. CONCLUSIONS

The experiments reported in this study and their similarity analysis

permit the following general conclusions.

1. Air jets can be used to model the scour produced by water currents

over an initially horizontal flat bed of sand. The similarity

parameters proposed in this study to model such local scour are

verified.

2. Within the scour holes produced by the water and air currents, the

sand moves in the same mode, mostly by rolling and sliding. How-

ever, at the beginning of the development of the scour hole the

sand moves in suspension and in saltating patterns downstream of a

certain point.

3. Downstream of the scour hole the sand is deposited in different

patterns for air and water. For water jets a fairly well defined

triangular dune is formed above the original bed elevation which is

considerably higher than the deposit formed downstream of the scour

hole for air. For water, all sand movement downstream of the dune

is stopped as a consequence of the jet deflection upwards. For air,

characteristic transport by saltation continues for a considerable

distance, so that the deposit remains low and relatively flat.

4. With the acceleration of gravity and time scales equal to unity, the

scale ratio of the normalized depth of scour is given by:

( 1 Ps Pf 1/2
Sr L 1/2 Ps + k2 Pf r

r
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5. The normalized scour profiles produced by the air and water jets

remain essentially constant with time, i.e. the profiles obtained at

successive intervals of time are similar.

6. The ratio for the periods necessary to obtain stable scour profiles

by air and water jets was found essentially equal to unity.

7. The ratio between the initial jet mean velocity to the particle mean

fall velocity (U/w)r can assume any value.

8. In air as well as in water, larger ratios U/w, give larger values of

the upstream slope of the scour hole, although this angle shows only

a very small variation.

9. In short, with velocities higher than critical for sediment transport

for air jets and water jets this particular study established that

geometric similarity can be achieved independent of the dynamic

factors and sediment properties.
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VI. RECOMMENDATIONS

1. Parameters for modelling local scour.

a. It is suggested that laboratory tests with jets of air and

water be carried out using different density ratios and differ-

ent added mass coefficients in water by experimenting, i.e.,

with spherical or cylindrical plastic beads.

b. A wind tunnel should be used to explore the applicability of the

modelling parameter for three-dimensional problems of scour,

i.e., produced by currents of water crossing bridge piers or

expansions of the transverse section of flow.

2. Parameters for modelling bed load and suspended load.

Air currents should be used to explore the applicability of the

parameters proposed to model the bed and suspended load of natural streams

of water.
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APPENDIX A

LIST OF SYMBOLS

a distance over the sediment bed level

b channel or river width

c concentration of sediments at a point and time

d sediment nominal diameter

d mean size of a standard sand taken as 0.25 mm
0

e dimensional coefficient for rate of sediment transported by air

f expressing function, Darcy friction factor

f' grain friction factor in Darcy friction formula

f" bed form friction factor in Darcy friction formula

g acceleration of gravity

h maximum height reached by sediments on saltation

j exponent of the fluid discharge for the regime theory formulae

k coefficients

k1 shape factor of sediments

k2  added mass coefficient

k height roughness
e

) characteristic length of a localized scour

m virtual mass

m mass of sediment
s

n Manning formula's coefficient

p exponent for the rate of sediment transported by air

q fluid discharge per unit width
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qs sediment discharge rate per unit width

r as subindex, ratio between model and prototype values

t time

u flow velocity component along the channel flow

u threshold velocity along the channel flow
c

U* shear velocity

u*c critical shear velocity

v vertical component of the flow velocity

w sediment settling velocity, and lateral component of flow

velocity

x, y, z longitudinal, vertical and lateral coordinate axis respective-

ly with origin over the mean bed level

Yo mean flow depth

A sediment projected section normal to the lift force

B Bagnold initiation of suspension parameter
s

C reference value of concentration

C sediment concentration at a level "a"
a

C'D drag coefficient

C'L lift coefficient

C2 C3 two and three-dimensional concentration respectively

D drag force on a sediment

D(s) drag force along the sediment trajectory

D(y), D(x) vertical and longitudinal projections of drag force

E turbulent diffusion coefficient per mass

E turbulent diffusion coefficient per momentumm
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G

KI' K2

L

L
O

L
oc

M

Q

Qs

R

S

Sf

T

U

W

( )O

() , ()m

a

Bc

6e

Od

P - ps f
defined as equal to ( )g

Ps + k2 Pf

coefficient function of the shear Reynolds number

lift force at a height y over the bed

lift force on the bed

critical lift force on the bed

defined as equal to u 
2 /u*c2

fluid discharge

sediment discharge

hydraulic radius

bed slope

gradient of the energy

time scale

velocity scale

sediment submerged weight

dimensionless quantity

prototype and model values

coefficient giving the form of variation of the lift force

with height

Shields' function

Shields' critical function

laminar sublayer thickness

local scour depth

sediments angle of internal friction

angle of the upstream slope of a scouring hole
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bed angle of inclination with respect to the x direction

1n dimensionless depth equal to y/d

I 0dimensionless depth equal to y/yo

ratio between the turbulent diffusion coefficient per momentum

and per mass

v fluid kinematic viscosity

Ps', Pf sediment and fluid densities

as, a standard deviation of sediment sizes, and fall velocities

T bed shear stress
o

TB shear stresses at the lowest point of a local scour

T critical shear stress
c

s w impact and horizontal shear stresses

T*,, D Einstein's intensity shear and transport parameters
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APPENDIX B

CHARACTERISTIC PHOTOGRAPHS AND TABLES SHOWING THE SCOUR
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Photo 6. Water jet scour, d = 0.42 mm, U/w = 7.74

Photo 7. Water jet scour, d m 0.42 mm, U/w = 7.74
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Photo 8. Water jet scour, d = 0.42 mm, U/w = 7.74

Photo 9. Water jet scour, d = 0.42 mm, U/w = 7.74
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4 2C

A C .

Photo 10. Air jet scour, d = 0.42 mm, U/w = 5.40

-1-I . . .... . . . I ,---

Photo 11. Air jet scour, d = 0.42 mm, U/w = 5.40
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Photo 12. Air jet scour, d = 0.42 mm
U = 17 cm/s U/w = 5.40

Photo 13. Air jet scour, d = 0.42 mm
U = 17 cm/s U/w = 5.40
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Table 7

Jet of water. Scour profiles.

d = 0.42 mm U/w = 7.74U = 52 cm/s
w = 6.72 cm/s

t = 0.5 min

y

0
0.60
0.70
0.60

0
-0.16
-0.92
-0.60
-0.33
-0.10

x/ yl/

.182

.273

.364

.515

.745
1

1.091
1.273
1.455

x

0
1

1.5
2

2.83
4.1
5.5

6
7
8

x

0
1.12
1.42

2
2.5

3
4

5.33
7

8.16
9.40
11
14

.109

.127

.109
0

-.029

-.167

-.109

-.060

-.018

t = 60 min

x y x/ y/

0 0.33 0 .037
0.33 0.46 .037 .051
2 1.30 .222 .144

2.50 1.42 .278 .158
3 1.33 .333 .148
4 1.10 .444 .122
6 0 .667 0

7.70 -1.0 .855 -.111
9 -1.88 1 -.209

11 -1.0 1.222 -.111
13 -0.25 1.444 -.028
15 0 1.667 0

t = 360 min

y/

.025

.113

.113

.135

.147

.137

.104
0

-. 123

-. 203

-. 092

-.037
0

x y

0 0.45
1 1.0
2 1.50

2.40 1.50
3.40 1.75
4 1.66
5 1.33

7.5 0
9 -0.85

10 -1.65
11.30 -2.20
12 -2.0
14 -1.25
16 -0.50
18 0

x/Z

0
.088
.177
.212
.301
.354
.442
.664
.796
.885
1

1.062
1.239
1.416
1.593

yl/

.040

.088

.133

.133

.155

.147

.118
0

-.075
-.146
-.195
-.177
-.111
-.044

0

-114-

t = 15 min

y x/Z

0.20 0
0.92 .137
0.92 .174
1.10 .245
1.20 .306
1.12 .368
0.85 .490
0 .653

-1.0 .858
-1.66 1
-0.75 1.152
-0.30 1.348
0 1.716
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Table 8

Jet of air. Scour profiles.

d = 0.42 mm

t = 5 min

x

0
1

1.5
2.25

3
4

4.90
5.25

7

y

0
0.78

1
1.16

1
0.66

0
-0.16

0

U = 1700 cm/s
w = 315 cm/s

x/k y/

.190

.286

.429

.571

.762

.933
1

1.333

.149

.190

.221

.190

.126
0

-. 030
0

t = 15 min

y x/

0.40 0
1 .074

1.75 .148
2.33 .222
2.85 .296
3.10 .370
3.15 .444
3.10 .519
2.85 .593
2.35 .667
1.75 .741
1 .815
0 .919

-0.85 1
-0.55 1.185
-0.33 1.333

t = 345 min

y/ -

.030

.074

.130

.173

.211

.230

.233

.230

.211

.174

.130

.074
0

-.063
-.041
-.024

x

1
2
3
4
5
6
7

8.50
10
12
14
16

17.40
18

19.16
20
22
24

y

1.33
2.
2.66
3.30
3.85
4.16
4.40
4.55
4.33
3.75
2.50
1.0

0
-0.45
-1.20
-1.
-0.90
-0.80

x/

.052

.104

.157

.209

.261

.313

.365

.444

.522

.626

.731

.835

.908

.939
1

1.044
1.148
1.253
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U/w = 5.40

t = 60 min

x

0
1
2
3
4
5
6

7.25
9
10
11
12
14

15.10
16.75
19
21
23

y

0.50
1.10
1.90
2.60
3.10
3.55
3.85
4.0
3.85
3.50
3

2.35
1.0

0
-1.16
-0.75
-0.66
-0.60

x/

0
.060
.119
.179
.239
.299
.358
.433
.537
.597
.657
.716
.836
.901
1

1.134
1.254
1.373

.030

.066

.113

.155

.185

.212

.230

.239

.230

.209

.179

.140

.060
0

-.069
-.045
-.039
-.036

x

0
1
2
3
4
5
6
7
8
9

10
11

12.4
13.5
16
18

y/z

.069

.104

.139

.172

.201

.217

.230

.237

.226

.196

.130

.052
0

-.023
-. 063

-. 052

-. 044

-. 042

iQdP~II*s~CC-.



Table 9

Summary of basic scour data

Fluid Fluid Sand max ' U U2 /2g U/w
specific diam.
weight d

(kg/m3 ) (mm) (inch) (inch) (inch) (cm/s) (inch)

Water 999 0.71 0.85 5.50 3.75 40 0.32 3.51

1.60 11.25 7.00 60 0.72 5.26
(63 0 F) 0.59 0.66 4.08 2.83 32 0.21 3.34

1.38 8.83 5.63 48 0.46 5.02

S2.00 13.00 8.33 64 0.82 6.69

0.42 0.97 6.60 4.25 39 0.31 5.80

1.75 11.30 7.50 52 0.54 7.74

3.83 22.60 15.60 78 1.22 11.61

Air 1.22 0.71 3.58 15.00 13.33 2020 820 4

6.50 27.75 24.40 3030 1842 6

(700F) 0.59 0.72 4.80 4.80 900 163 2

3.75 17.00 14.16 1800 650 4

7.50 32.00 27.60 2700 1465 6

0.42 2.27 9.95 9.00 1190 285 3.78

4.55 19.16 17.40 1700 580 5.40

9.44 40.50 33.50 2550 1307 8.10

I
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