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Abstract

This work presents the possible implementation of an artificial neural network in an
Automatic Flight Control System. This new generation of control systems is currently
still in the experimental stage and some aspects of the application were examined.
The neural networks approach is used to develop a system identification model that
imitates the dynamics of a class of flight vehicles. The networks are:trained with the
simulation data of the vehicle dynamics along a prescribed trajectory. The use of
the neural networks in the system identification of the vehicles is considered for use
in the design of a neuro-controller. A preliminary effort is made to incorporate the
neural network model in this context. The robustness of the neural networks is tested
by introducing uncertainties, changes in parameters and time delays in the control
system. The overall performance in this illustration is evaluated and compared to
that of classical PI control and adaptive control.
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Chapter 1

Introduction to Neural Networks

The ubiquity of the concept, design and application of intelligent systems in recent
years has displayed signs that the approach to the engineering problems has changed.
People are attempting to forge biologically-inspired methods into many aspects of
engineering problems. Those efforts are focused on the exploration of human-like
systems typified by some distinct features not found in traditional logic. Much of en-
gineering today is still based on the knowledge of unchanging objects where decisions
are made largely from facts. This is safe and -at times- accurate. But it hinders
creativity and thus the horizon of new potential; as well as being inadequate logic sys-
tem for certain problems, particularly ones which involve uncertainties, time-varying
or unknown parameters.

Presently we have the requisite hardware, software and sensor technologies at our
disposal for assembling intelligent systems. All the progress owes to the evolution
of computing methodologies -as the backbone of such systems- dating back to
the 1940s when the first neuron model was devised by McCulloch and Pitts. Neural
networks is one of the main constituents of modern computing methodology; the other
ones being the fuzzy set theory and genetic algorithm/simulated annealing.

Neural networks innovate the realm of information processing and computation
with its distinct feature of learning and adaptation. The method is based on the
biological process in the human brain. The brain as a source of natural intelligence has
both strengths and weaknesses compared to modern computer. It process incomplete
information obtained by perception at an incredibly rapid rate. Nerve cells function
about 106 times slower that electronic circuit gates, but human brain processes visual
and auditory information much faster than modern computers [4]. Neural network
methods explore the brain internal mechanism to simulate its powerful functionality.

A neural network is a nonalgorithmic computation technique in which the con-
nectionist architecture of the brain is simulated with a continuous-time nonlinear
dynamic system to mimic intelligent behavior. Such connectionism substitutes sym-
bolically structured representations with distributed representations in the form of
weights between a massive set of interconnected neurons (or processing units) and a
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surprisingly simple processor. It does not need critical decision flows in its 'algorithm'.
We do not need to have a detailed process to algorithmically convert an input to an
output. Rather, all that one need for most networks is collection of representative
examples of the desired translation. The power of an artificial neural network (ANN)
approach lies not necessarily in the elegance of the particular solution, but rather in
the generality of the networks to find its own solution to particular problems, given
only instances of the desired behavior.

As a novel computing methodology, neural networks approach is aimed at solving
real-world decision making, modeling and control problems. One area of particular
significance is system identification and control system design for aerospace vehicles
whereby some or all of the pilot's ability is replaced or augmented. During its evo-
lution in the past neural networks have not been used as an acceptable possibility
since engineers prefer to use well-defined systems due to the stringent requirement
of safety. That is one of the reasons why linear control has occupied large areas in
the engineering systems. A certain class of (flight) dynamics problems represents a
complex behavior characterized by:

L Nonlinear dynamics

[l Unknown parameters or uncertainties

OL Time-varying parameters in vehicle plant and environment

l Time lags

ol Noise inputs from sensors and from air disturbances

Conventional technology could not in general cope with most of these problems.
The use of neural networks provides a potential method by which the problems can
be approached, analyzed and overcome.

1.1 Basic Perspective of Neural Networks

1.1.1 Definition and Remarks

What are neural networks? There have been numerous definitions that is represen-
tative in describing the ANN. Some conceptual as well as technical notions from
researchers are listed below.

A neural network is a parallel, distributed information processing struc-
ture consisting of processing elements (which can posses a local memory
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and carry out localized information processing operations) interconnected
together with unidirectional signal channels called connections. Each pro-
cessing element has single output connection which branches ('fans out')
into as many collateral connections as desired (each carrying the same
signal - the processing element output signal). The processing element
output signal can be of any mathematical type desired. All of the pro-
cessing that goes on with each processing element must be completely
local i. e., it must depend only upon the current values of the input signal
arriving at the processing element via impinging connections and upon
values stored in the processing element's local memory [13]

Artificial neural networks are methods of computing that are designed
to exploit the organizational principles that are felt to exist in biological
neural systems [12].

Neural networks are massively parallel systems that rely on dense arrange-
ments of interconnections and surprisingly simple processors [10].

Neural networks are self-organizing information systems in which infor-
mation organizes itself [9].

Those attributes illustrate the novelty of neural networks in contrast to traditional
computing and information systems. It is the self-organizing characteristic resulting
solely from its internal dynamics that gives neural networks great capabilities.

1.1.2 Milestones on Neural Networks Research

Artificial neural networks method is still sometimes referred as new method though
it has evolved for more than 50 years along with other 'soft' computing constituents

(see Table 1.1). The list below gives the brief historical notes on neural networks
research.

O 1943. W. McCulloch and W.Pitts designed the first neuron model. Their paper
- "A Logical calculus of the ideas immanent in nervous activity"- presents
the mathematical formalization of a neuron, in which a weighted sum of input
signals is compared to a threshold to determine wheter or not the neuron fires.
It shows that simple neural networks can compute any arithmetic or logical
function.

oE 1948. Weiner's seminal book Cybernetics posed that cybernetics as the study
of information and control in humans and machines was the root of computing
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Table 1.1: A historical sketch of ANN research as part of soft computing evolution

[4]

Year Conventional ANN Fuzzy systems Other methods
AI

1940s 1947. 1943
Cybernetics McCulloch -Pitts

neuron model
1950s 1956. Artificial 1957.

Intelligence Perceptron
1960s 1960. Lisp 1960s Adaline/ 1965. Fuzzy

Language Madaline sets
1970 mid-1970s. 1974. Birth. 1974. Fuzzy 1970s. Genetic

Knowledge En- of backpropaga- controller Algorithm
gineering (Ex- tion algorithm.
pert systems) 1975. Cognitron

and
Neocognitron

1980 1980. Self- 1985 Fuzzy mid-1980s Ar-
organizing map. modeling tificial life Im-
1982. Hopfield mune modeling
Net.
1983 Boltzmann
machine.
1986 Backpropa-
gation algorithm
boom

1990 1990. Neuro- Genetic
fuzzy modeling. programming
1991. ANFIS.
1994. CANFIS.
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sciences, control and neurobiology. As we know today, those constituents have
tended to go their own separate ways and at times creates a barrier to effective
interchange of ideas between the disciplines.

E 1949. D. O. Hebb introduced a important learning method in his book The
Organization of Behavior which is used in some form in most learning rules
used today. The major proposal of this book is that behavior can be explained
by the neuron activities.

O 1951. Minsky and Edmonds devised the first hardware realization of a neural
network.

O 1958. F. Rosenblatt presented the first practical ANN called perceptron, a basic
unit for many other ANN. A form of Hebbian learning rules were used in the
learning techniques for perceptron.

O 1960. B. Widrow and M.E. Hoff introduced an adaptive perceptron-like network
that can learn quickly and accurately. Known today as Adaline, the system
has inputs and a desired output classification for each input. The well-known
gradient descent method is used to minimize the least mean square error as for
weights adjustment rules.

OE 1969. M. Minsky and Seymour Papert caused widespread pessimism -causing
inhibition of research funding and activities for several years- among the ANN
researches with their book Perceptrons. The book rigorously describes the limi-
tation of perceptron learning capability and is closed with the remark that field
of ANN is a dead end. Though this has been proved to be not entirely true,
the premise has showed the kind of problems that can or can not be solved by
perceptron.

o 1972. Teuko Kohonen and J. A. Anderson worked independently to come to
closely related results. Kohonen proposed a correlation matrix model for as-
sociative memory, while Anderson did for a 'linear associator' for the same
purpose. A generalized Hebbian learning rules were used to correlate input
and output vectors. While Kohonen's work gave emphasize on mathematical
structure, Anderson's remarks put weight on physiological plausibility of the
network.

Ol 1974. P.J. Werbos brought new ideas in error minimization algorithm of ANN
learning rules. His Ph.D. thesis "Beyond regression: new tools for prediction
and analysis in the behavior sciences" was published and gave birth to a now
famous learning rule - backpropagation.
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Table 1.2: Neural networks as a constituent of soft computing [4]

Methodology Strength

Neural network Learning and adaptation
Fuzzy set theory Knowledge representation

via fuzzy if-then rules
Genetic algorithm and sim- Systematic random search
ulated annealing
Conventional artificial Symbolic manipulation
intelligence

L 1976. S. Grossberg proposed a self-organizing neural network. The idea was
based on the visual system. The network is characterized by internal continuous-
time competition. This gives the basis for concepts of the adaptive resonance
theory (ART) networks.

O 1982. J.J. Hopfield, in his paper "Neural networks and physical systems with
emergent collective computation abilities", described a content-addressable neu-
ral network. This recurrent networks (today called Hopfield Net) was considered
highly influential in bringing about the renaissance of neural network research
that year.

At present research on neural networks is still growing. Some of it is still directed
to the learning method refinement (that once caused backpropagation algorithm boom
in the late 1980's). On the other side, people have tended to resort to the idea of
cybernetics where computation, information systems, control and neurobiology meet.
This tendency has created a new discipline called 'soft computing' consisting a mix
of the separated fields. In this discipline neural network method has blended with
the other methodologies: fuzzy logic, probabilistic reasoning and genetic algorithm.
Each of the elements has its own distinction. So they are complementary rather
than competitive with each other. The significant contribution of neural networks is
methodology for system identification, learning and adaptation; that of fuzzy logic is
computing with words; that of probabilistic reasoning is propagation of belief; and
that of genetic algorithm is systematized random search and optimization. Table 1.2
enumerates the strength of each soft computing elements.

Along with the unfolding of the neural networks research, industry has responded
with various applications in different fields ranging from consumer electronics and
industrial process control to decision support systems and financial trading. With
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many real-world problems that are imprecisely defined, contain uncertainties and
require human intervention, neural networks method is likely to play an increasingly
important roles today and in the future.

1.2 The Characteristics of Neural Networks

There are many reasons why neural networks are a likely candidate for an attractive
new design of system identification and control of aerospace vehicles. They stem from
ANN's intrinsic properties; they are summarized below from various references.

Ol Potential of intelligent and natural control. Inspired by biological neural
networks, ANN are employed to deal with pattern recognition, and nonlinear
regression and classification problems. It can also imitate human behavior if
desired.

[l Real-time parallel processing. Neural networks have a highly parallel struc-
ture which lends itself immediately to parallel implementation. Such an imple-
mentation can be expected to achieve a higher degree of fault tolerance than
conventional schemes. The basic processing element in a neural network has
a very simple structure. This, in conjunction with parallel implementation,
results in very fast overall processing.

O Nonlinear systems. Neural networks have the greatest promise in the realm
of nonlinear control problems. This emanates from their theoretical ability to
approximate arbitrary nonlinear mappings. These networks are likely to also
achieve more parsimonious modelingthan alternative approximation schemes.

O Resistance to noisy data. This capability comes from its ability to learn a
general pattern not necessarily an exact figures.

O Multivariable System. Neural networks naturally process many inputs and
have many outputs; they are readily applicable to multivariable systems.

Ol Computational efficiency. Without assuming to much background knowl-
edge of the problem being solved, neural networks rely heavily on high-speed
number-crunching computation to find rules or regularity in data sets. This is
a common feature of all areas of computational intelligence.

LO Fault Tolerance. The structure of neural networks depicts its inherent fault
tolerance characteristic. ANN architectures encode information in a distributed
fashion. Typically the information that is stored in neural networks is shared



CHAPTER 1. INTRODUCTION TO NEURAL NETWORKS

by many of its processing elements. This kind of structure provides redundant
information representation. The deletion of some neurons does not necessarily
destroy the system. Instead, the system continues to work with gracefully de-
graded performance; thus the result is a naturally fault -or error- tolerant
system.

o Quickly integrated into systems. Control systems using neural networks,
for example, has fixed software/hardware architecture. Changing the control
algorithm amounts to changing the weights of the neural connections and not
the structure of the controller.

O No requirement of explicit programming. Neural networks are not pro-
grammed; they learn by example. Typically, a neural network is presented with
a training set consisting of a group of examples from which the network can
learn. The training set, in the form of input-output value pairs is known as
the patterns. The absence of human development of algorithms and programs
suggests that time and human effort can be saved.

ol The ability of universal approximation. The nonlinear activation function
gives the neural network the capability of forming any nonlinear functional rep-
resentation. It should be noted that there are other universal approximation
methods. For example Taylor series, which use polynomial approximation and
Fourier series, which use the sine and cosine trigonometric functions to approx-
imate any continuous function. This ability is particularly useful in the case
when internal dynamics of a system under study are not clear, unavailable, or
nonlinear.

l Associative memory. The information in neural networks is stored in as-
sociative memory in contrast to digital computer's addressed memory where
particular pieces of information are stored in particular locations of memory.
This, besides giving a fault-tolerant property, is used to generalize between
training examples.

Note that all of these characteristics of neural networks can be clarified through
the simple mathematical structure of a neural networks model. Though the broad
behavioral terms such as learn, generalize and adapt are used, the neural network
behavior is simple and quantifiable at each node. In short, their internal mechanism
is clear and tractable, but produces complex macroscopic behavior.
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1.3 Artificial Neural Networks Applications in
Aerospace Engineering

There have been numerous research on ANN applications in aerospace field. There
are at least two major reasons why bringing new technology is attractive. Firstly, per-
formance gain over conventional approach is desirable; and secondly novel approaches
can engender wider horizon of possibilities. Several key considerations driving ANN
application to aerospace have been elaborated in the previous section dealing with
ANN characteristics.

Universities, aircraft companies and research centers have been involved in the
research of ANN for use in aerospace thus far. Some of them are summarized as
follows:

L Flight Control. Jorgensen and Schley (1990) propose the use of ANN in
autolanding systems, to increase the operational safety envelope and provide
methods of exploring alternative control systems capable of dealing with tur-
bulent, possibly nonlinear control conditions. The method used was to set up
a neural network to copy pilot's actions and hence attempt to obtain 'flight
sense'.

O FDIE and BITE. Notable work in the area of Fault Detection and Isolation
Equipment (FDIE) as well as Built In Test Equipment (BITE) was published
by Barron et al. (1990), where ANN were used successfully in the development
of an FDIE and BITE system for an aircraft with reconfigurable flight controls.

l Pilot Aid. Numerous researchers have been used ANN in developing pilot
aids, for example in pilot decision support systems (Seidman 1990); and flight
management systems (Burgin & Schnetzler 1990).

Ol Image Recognition. ANN have been used for image processing as well as
recognition, with application to identification of aircraft from visual or radar
signals. Research in this area is abundant, and is described as a typical appli-
cation of ANN (Freeman & Skapura 1991).

Ol Manufacturing. ANN are being investigated for use in process optimization
and control by several major aerospace company.

In the realm of control of aircraft or spacecraft, ANN will function either as the
following roles [33]:

Controller. An ANN controller would perform mappings of state variables (as input
vectors) into control variables (output vectors)
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Critic. The critic networks can be trained to monitor to aircraft's dynamic state,
mission profile and hence evaluate system performance. Information from this
critic can then be used to adapt a conventional adaptive controller or a Neu-
ral Networks Controller (NNC). Pattern classification networks would then be
suitable for this function.

Gain programmer. An ANN can be used as a gain scheduler/programmer, to link
with a conventional controller, under adaptive learning or static programming.
This technique has many advantages since by limiting the output gain range,
the Automatic Flight Control System (AFCS) can have 'proven' stability using
conventional linear stability analysis techniques.

Monitoring, fault detection. A suitable application for ANN in AFCS is in mon-
itoring systems and Fault Detection and Isolation Equipment (FDIE). This is
because ANN generally have a good fuzzy knowledge ability, can operate well
with noisy data, and have good generality.

Plant mimic. Of perhaps more use in the design of conventional and modern con-
trollers, an ANN can be used to model plant (e.g. aircraft/spacecraft, envi-
ronment, pilot) in order to optimize performance, find system inverse, dynamic
derivatives, etc.

Not only could an ANN function as a mimic of the plant, which is really in the
system identification role, but a network could be set up to model a reference
plant with desired properties for a model reference adaptive controller (MRAC).
This is however not recommended since for MRAC type systems it is customary
to choose a reference model with well known properties: such as a linear model

1.4 Neural Networks Architecture

The network architecture is defined by the basic processing elements and the way in
which they are interconnected. The basic processing element of the ANN architecture
is often called a neuron, but other names such as unit, node, perceptron and adaline
are also used. The neurons are connected by weights, also referred to as connections or
synapses, which convey the information. Neurons are also often collected into groups
called layers or slabs within which the neurons have a similar function or structure.
Depending on their function in the net, one can distinguish three types of layers.
The layers whose activations are input receptive for the net are called input layers,
similarly layers whose activations represent the output of the net, output layers. The
remaining layers are called hidden layers, because they are 'invisible' from outside.
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input
layer

hidden layer

output
layer

Figure 1-1: A Neural network structure with 2 hidden layers

In general, there can be any number of layers, and neurons in any layer can be
connected to neurons in any other layer. Some neurons have no input from other
neurons, and are known as bias, or threshold, unit. The memory content or signal
strength of neuron is referred to as the activation level. Usually, the activation levels
of the input and output units are scaled such that the activation levels are appropriate
to neuron function and the observable values are given a physical meaning.

1.4.1 Neuron Model and Network Structure

Let us consider a single neuron from the networks structure which is depicted in Fig.
1-1. An individual neuron has many inputs, dependent on the number of incoming
connections. Each connection to the neuron has a weight associated with it. After
the total neuron input signal is calculated, that is given by the sum of the product of
inputs and weights:

CHAPTER 1.
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n

ji - Wj,ixkYjl, k  (1.1)
k=1

this signal is converted into an activation value through a functional relationship.
The nonlinear processing power lies within this transfer function.

yj,i = f(xj,i) (1.2)

There is a wide class of arbitrary functions which can be used for some ANN. The
commonly used functions are listed in Table 1.3

The output of the neuron is obtained from the activation value also through a
functional relationship. The identity function is usually used in this step. In general,
the selection of the function that is used in neural networks depends on the type of
patterns (input-output value pairs). At present, the selection of activation function
is more art than science and the subject of much research. The important point to
remember is that any nonlinear function will provide network with the capability of
representing any nonlinear functional mappings.
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Figure 1-2: A Single Neuron Mathematical Model
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Table 1.3: Activation function for neuron

Function Expression Annotation
name

Sigmoidal f(z) = i This differentiable, step-
Function like, positive (bounded

by (0, 1)) function is the
most commonly used ac-
tivation function for neu-
ral networks

Hyperbolic f(x) = tanh(x) = Its characteristics resem-
Tangent ble those of the sigmoid

except that it is zero-
mean function bounded
by(-1, 1)

Threshold f(x) = H(x) = > 0 It is also called Heavi-
0, a < 0X <0 side step function and is

non-differentiable, step-
like and positive.

Signum f(x) = sgn(x) = 0 It is nondifferentiable,
Function ' step-like and zero-mean.
Ramp f(x) = ax This unbounded function
Function/ can be
Linear Scaling useful in some particular
Function conditions. Note that it

is a linear function.
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Figure 1-3: Activation functions
............. Ramp function /linear function

- Sigmoidal function
...... Hyperbolic Tanh

- Threshold /Sign function

in ANN neurons

CHAPTER 1.
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1.4.2 Types of Artificial Neural Networks

There are in general three different architectures of ANN. Each of them exhibits a
particular way of processing the information throughout the networks. Though all
these networks can perform various tasks, each of them is generally well-suited only
for a certain class of problem. Ref. [14] provides a rich array of networks that has
been developed during recent years. They are listed under the corresponding rubric
below.

Feedforward Networks

In these networks the output is computed directly from the input in one pass; no feed-
back is involved. Included in this category are perceptron (multi-layer perceptron),
linear associator and adaline. Feedforward networks are used for pattern recognition
and for function approximation. Examples of application areas for function approx-
imation are adaptive filtering and automatic control. Some feedforward (and their
variant) networks are listed as the following:

* Radial Basis Networks (RBN). RBN may require more neurons than standard
feed-forward backpropagation networks, but often they can be designed in a
fraction of the time it takes to train standard feed-forward networks. The
activation function used is called radial basis function. It has a maximum of
1 when its input is 0; and approaches 0 when its input approaches 00 or -oo.
The RBN work best when many training vector are available.

* Adaptive Critic. This networks are generally used in the reinforcement learning
controller (similar to direct control concepts of traditional adaptive control).
In this scheme a neural network is used as a judgement network capable of
differentiating between good performance and bad performance.

Competitive Networks

These types of networks are characterized by two properties. First, they compute
some measure of distance between stored prototype patterns and the input pattern.
Second, they perform a competition to determine which neuron represents the proto-
type pattern closest to the input. In the competitive networks the prototype patterns
are adjusted as new inputs that are applied to the network. These adaptive networks
learn to cluster the inputs into different categories.



CHAPTER 1. INTRODUCTION TO NEURAL NETWORKS

Recurrent (Dynamic Associative Memory) Networks

As opposed to feedforward network, this type of network has feedback that associates
stored data with input data. In other words, they are used as associative memories in
which data is recalled in association with input rather than by an address. Hopfield
network is an example of recurrent networks.

1.5 Learning Algorithm

Learning is one of the basic features of intelligence. The concept of learning machines
comes from biological models. It is an effective self-modification of the organism
that lives in a complex and changing environment. Learning is a directed change
in knowledge structure that improves the performance [5]. This section describes
different learning rules in the training of neural networks. The word training here
means the process of minimization error between the networks output and the desired
one. The discussion will be restricted to the supervised feedforward model which is
so far the most tractable and most applied network model [6].

Learning rules govern the modification of connectivity as a function of experience
in neural network. Various learning rules have been developed and today the research
in that field is still active. Basically, most of the learning rules is inspired by Hebb's
law. Thus, we begin with the overview of the Hebb's law. Note that the list is
not intended as rigorous or comprehensive. Rather, it is given as a synopsis for
introductory purposes. For a more complete list, the reader can see Ref. [14]

1.5.1 Hebb's Law [2]

Hebb's law is the fundamental psychophysical law of associative learning. It serves as
both the basic law of psychology and artificial neural systems. The essence of Hebb's
law is formulated as follows:

"If neuron A repeatedly contributes to the firing of neuron B, then A's
efficiency in firing B increases"

The combination of Hebb's law and Grossberg's neural modeling theory explain the
learning process in Pavlovian experiments:

When a dog is presented with food it salivates. When the dog hears a bell
it does not salivate initially. But after hearing the bell simultaneously
with presentation of food on several consecutive occasions, the dog is
subsequently found to be salivate when it hears the bell alone.



CHAPTER 1. INTRODUCTION TO NEURAL NETWORKS

In general terms, when a conditioned stimulus (such as bell) is repeatedly paired
with an unconditioned stimulus (such as food) which evokes an unconditioned re-
sponse (such as salivation), the conditioned stimulus gradually acquires the ability to
evoke the unconditioned response.

Hestenes in ref. [5] concludes that the association strength between stimulus and
response that psychologist infer from their experiments is a crude measure of the
synaptic coupling strength between neurons in the central nervous system. The same
can be said about all association among ideas and actions. Thus, the full import of
Hebb's law is this:

"All associative (long-term) memory resides in synaptic connections of
the central nervous system, and learning consists of changes in synaptic
coupling strengths"

The strengthening of specific synapses within neural circuits is the most accepted
theory for learning and memory in the brain.

1.5.2 Generalized Delta Rule

The learning process (training) begins when error between ANN and the desired
output is obtained. The main problem of learning in the network with three or more
layers is how to modify an inner or hidden layer. The first answer is unsupervised
competitive learning, which generates useful hidden-unit connection. The second
answer is to assume a hidden-unit connection matrix, on a priori grounds. The third
possible way is the modification of the hidden units through the backpropagation error.
The determination of error starts with the output units, and then propagates to the
next hidden layer, until it reaches the input units. This kind of learning is called
generalized Delta Rule.

1.5.3 Sigma-Pi Units

This learning algorithm is applied for more general form of multilayer perceptron
called Sigma-Pi network. The net input is given by 7 wiIIailai2 ... aik where i indexes
the conjuncts impinging on unit j and ail, ai2, ... , aik are the k units in the conjunct.
Thus, the net input to each neuron is equal to weighted sum of all signals impinging
on that neuron, as well as weighted sum of selected products of these signals. The
more elaborate usage of Sigma-Pi units includes:

- Gates; weighted connections

- Dynamically programmable networks in which the activation value of some units
determine the function of other units
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- Mimicking different monotonic activation and interconnection functions

1.5.4 The Boltzman Machine Learning Rules

A Hopfield network will converge to a local minimum of the Lyapunov function, but
there is no guarantee that it will converge to a global minimum [14]. In the Boltzman
machine, noise is used in an attempt to reach the global minimum. The technique
is called simulated annealing and is analogous to metallurgical annealing, in which
a body of a metal is heated to near melting and then slowly cooled according to a
specified schedule. The high temperatures cause thermal agitation, which prevents
the metal from becoming frozen in a high energy (brittle) state. The global "energy"
of the system is defined as:

E= - wijsisj + 1 Oisi (1.3)
i<j

AEk wkii - Ok (1.4)

where
si is the state of i-th unit (-1 or +1)
0i is the threshold
AEk is the difference between the energy of the whole system

with the k-th hypothesis false and its energy with the
k-th hypothesis true.

While the binary threshold in perceptron is deterministic, in Boltzmann machine
it is probabilistic:

1
Pi = P (AEi) = (1.5)

1 + eAEi/T

where
Pi is the probability for the i-th unit to be in state
P (x) is a sigmoidal probability function
T is a parameter analogous to temperature and is a measure

of the noise introduced into the decision.
The total output to the unit is

AEj = wijsj (1.6)

The Boltzman learning algorithm is in this case closely related to the maximum
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likelihood methods. The learning is supervised i.e. the input units are clamped to a
particular pattern, while the network relaxes into a state of low energy in which the
output units have the correct values. Due to the symmetry (wij = wji ), the energy
gradient with respect to wij depends only on the behavior of i-th and j-th units and
not on the whole network. This fact helps in updating input, output and hidden
units.

1.5.5 Backpropagation

The backpropagation technique is first introduced in the Ph.D. work of Werbos in
1974. Since then numerous variants of backpropagation have been developed. The
name backpropagation is actually the popular name for the generalized Delta Rule
mentioned previously. It is probably the most commonly used learning algorithm
for the training of neural networks. The principle of backpropagation is summarized
from [8] as follows.

In basic backpropagation, how the output of a neural network depend on its inputs
and weights is defined using the following logic:

i = Xi, 1 < i < m (1.7)
i-1

neti = Wijxi, n < m < i < N + n (1.8)
j=1

xi = s (neti) , n < i < N + n (1.9)

Yi = Xi+N, 1 < i < n (1.10)

where
Xi is the input neuron(s)
Yi is the output neuron(s)
xi is the hidden neurons
m is the number of input neurons
n is the number of output neurons
N + n is the total number of neurons in the networks
s is commonly sigmoidal function.

In that structure, the networks is fully connected in the extreme. Most researchers
prefer to use layered networks, in which all connection weights wij are zeroed out,
except for those going from one layer to the next layer.

The weights in this learning algorithm are adjusted according to the following
procedures. First, we adapt weights wij, so as to minimize square error over training
set:
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T T n

E EE(t) E E ( (t) - Yi(i.)
t=1 t=1 i=1

This is simply a special case of the well-known method of least-squares. The
uniqueness of backpropagation lies in how this expression is minimized. In standard
backpropagation, we start with output values Yi for the weights w. Next, we calculate
the output Y (t) and the errors E (t) for the set of the weights. Then we calculate
the derivatives of E with respect to all of the weights. If increasing a weight leads
to a less error, we adjust it upwards. After adjusting all the weights up and down,
we start all over and keeping or going through this process until the weights and the
errors settle down. The uniqueness of backpropagation lies in the method used to
calculate the derivatives exactly for all of the weights in only a single pass through
the system. Secondly, the backward pass for the ANN starts with computing partial
derivative of error with respect to the output:

OE
= (t) Yi (t), 1 < i < n (1.12)aoi (t)

Using the definition of ordered derivatives [8], we can write:

O+E OE N+n O+E OXj (t)
+-- + N+n>i>1 (1.13)

axi (t) Oxi (t) ji+1 ,xj (t) ax, (t)'

where

DX (t) _-0 <i<m
ax (t) E iM (1.14)

X (t) 9N N+n > i m+

and

Xj (t)= s' (netj) wji with s' () = (1.15)
aXi (t) 8 ()

Now the ordered derivatives for the weights can be calculated as:

O+ E 0+ E

O - s' (net) Xj (t) (1.16)
awij (t) axi (t)
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Finally, the weights are updated using:

8+E
newwij = wij - c 1 < i < N + n; 1 <j < N +n (1.17)

where e is defined as the learning rate which is some small constant chosen on an
ad hoc basis.

The main problem with basic backpropagation is a slow convergence. Since back-
propagation was first popularized, there has been considerable work on methods to
accelerate the convergence of the algorithm. Together with this efforts was the de-
velopment of many variants of backpropagation. With respect to convergence im-
provements, there are two approaches: heuristic methods and standard numerical
optimization methods [14].

* Heuristic Methods. Under this category are backpropagation with momen-
tum (MOBP) and variable learning rate backpropagation (VLBP). These two
methods significantly accelerate the convergence. MOBP is simple to imple-
ment, can be used in batch mode or incremental mode. It does require the
selection of the momentum coefficient y, but -y is limited to the range [0, 1] and
the algorithm is not extremely sensitive to this choice [14]. The VLBP algo-
rithm is faster than MOBP but must be used in batch mode. For this reason it
requires more storage.

* Standard Numerical Procedures. Two well-known example of this tech-
nique are conjugate gradient backpropagation (CGBP) and Levenberg - Mar-
quardt backpropagation (LMBP). CGBP is generally faster than VLBP. It is
a batch mode algorithm, which requires a linear search at each iteration, but
its storage requirements are not significantly different from that of VLBP. The
LMBP algorithm is one of the fastest algorithm for training multilayer networks
of moderate size, even though it requires a matrix inversion at each iteration.
The main drawback of LMBP is the storage requirement.

* Other variants. The area of backpropagation variants has probably been
the most active area of neural network research since 1986. A few of the
more successful backpropagation approaches are: quickprop, Rprop, Cascade-
Correlation, Network-Pruning, Regularization and Stopped Training.
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1.5.6 Discussion of Some Related Issues

Active versus passive learning from samples

Active learning from an environment without necessarily assuming the availability of
training samples is much more demanding and difficult than passive learning from
samples. Conventional supervised and unsupervised learning are examples of passive
learning, whereas distal supervised learning is an example of active learning. In this
case the learner must be active in getting training samples from the environment. It is
worth pointing out that supervised learning is closely related to parameter estimation
in system identification and adaptive filtering [11]

On-line learning versus off-line learning

Off-line learning is carried out by presenting the network to a specified data set
(training set), and through learning the network's structure is reorganized. After
the training goal achieved the network can then be used on-line, but the network
is prevented from learning any further. Thus ANN performance will have a static
performance over time provided the plant does not change. On-line learning, in
contrast, is carried out by presenting the network to its intended operation. Thus it
learns continuously during operation. On-line or real-time learning in control is not
only normally desirable but also sometimes indispensable. For this to be possible,
learning algorithm must have simplicity and efficiency so that it can operate in the
real-time. In application, combining off-line learning and on-line learning is possibly
very useful. The systems first will be trained off-line (at least at a short period of
time) to ensure it has an adequate starting performance before it must go on-line.

Dynamic variable-structure learning versus static fixed-structure learning

Conventional neural networks training is fixed-structure learning. Structure param-
eters such as the number of neurons and layers remain unchanged during training.
The learning implies a determination of connection weights only, with an implicit
assumption that the present structure is capable of representing in some sense the
desired functional relationship. In contrast, dynamic variable-structure learning is
capable of self-determining some structure parameters such as the number of neurons
in response to incoming data, thereby making the net structure dynamically variable.
This feature is sometimes referred to as self-organizing for obvious reasons [11].
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Global learning versus specific learning

Depending on the usage, ANN can be made purposely to be globally or specifically
learning by supplying global or specific knowledge to the learner. If ANN is used
for a forward model, global learning is possible and normally necessary. In contrast,
if it is employed as a direct controller it is unlikely that the controller will be able
to be global, capable of dealing with a variety of different situations which may be
unforeseen and time-varying [11]

Spatial learning versus temporal learning

An ANN controller may be constructed via spatial learning or temporal learning.
A spatial learning scheme typically involves the extensive use of past experience to
improve the present and future performance. The past experience can be cumu-
lated during several past trials along a spatial direction in a time period of interest.
Memorizing past control knowledge and repeatedly interacting with the controller
environment are typical characteristics of a spatial learning. Compared with spa-
tial learning, temporal learning emphasizes learning accruing along a time direction
only by using the information gained at immediate past time-instants and reacting
to temporal variations [11].



Chapter 2

ANN for the GHAME Vehicle

Dynamics Simulation

2.1 Introduction

One of the most challenging tasks in aerospace engineering is problem involving time-
varying (nonautonomous) systems. This type of problems requires a careful analysis
since the use of 'standard' technique might indicate some counter-intuitive and pe-
culiar figures. This can cause misleading identification that in turn may result in
an inefficient design or otherwise inaccurate control decision. A better method is
therefore desired to meet the higher demand of performance and the more stringent
requirements for safety. To deal with time-varying system, many (if not most of) en-
gineers today still tacitly use a 'frozen' analysis where the systems are assumed to be
slowly varying. Under this assumption, the time-varying system is 'frozen' over var-
ious time intervals and treated as a constant coefficient system during each interval.
While this approach may be acceptable for some slowly varying system, it will be in-
adequate for time-varying (or highly varying) systems in general. The latter category
includes: dynamics of reentry vehicles such as space shuttle, hypersonic vehicles, bal-
listic missiles, etc.; dynamics Vertical/Short Take-Off and Landing V/STOL aircraft;
and space vehicles in general. A reentry vehicle undergoes variation in density with
altitude and aerodynamic parameters which renders the system highly time-varying.
Similarly, in the transition from hover to cruise, a VTOL aircraft exhibits time-varying
aerodynamic properties. A large flexible space structures operating in years obviously
falls under the class of nonlinear time-varying systems. During long time operation it
may have experienced structural characteristic evolution that changes its dynamics.

To cope with time-varying problems, a system that can 'follow' the changing
dynamics is thus desired. Artificial neural networks that provide a learning and
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adaptation ability will be one of the attractive approaches in handling such problems.
Not only will it adapt to the changing system and environment but further also pave
the way for the intelligent system design.

This chapter describes the use of the ANN for the simulation of second order
model of GHAME vehicle. The case for the fourth order model is given in Chapter
3.

2.2 GHAME Vehicle Geometric and Trajectory Pa-
rameters

GHAME (Generic Hypersonic Aerodynamic Model Example) is a mathematical model
of hypersonic vehicle that was developed in NASA to facilitate the increasing demand
for more accurate and realistic aerodynamic data in that flight regime. The program
was precursor of the well-known NASP project. The data contained in the GHAME
provides the requisite of realistic simulation for the design of control and guidance
systems as well as trajectory optimization. Those data are for a particular generic
vehicle geometry and were developed as a combination of existing aircraft and theo-
ries. Actual data from vehicles such as the Space Shuttle Orbiter, lifting body type,
as well as theories as the modified Newton impact flow method were employed in
developing the final GHAME aerodynamic data [18]

The GHAME data was developed for a flight regime of single-stage-to-orbit (SSTO)
mission. This mission entails the vehicle taking-off horizontally from conventional
runaways accelerating to orbital velocities as an airbreathing aircraft and insertion
into a low-Earth-orbit (LEO). Upon completion of this mission the aircraft would
re-enter the atmosphere and maneuver to power-off horizontal landing. The GHAME
basic configuration and parameters are given by [18].

In this study, the dynamics of the GHAME vehicle are examined as it traverses
a prescribed trajectory returning it into the Earth's atmosphere. The trajectory
employed is one which was originally designed to minimize the thermal-protection-
system (TPS) weight of the Space Shuttle Orbiter 049 vehicle. The TPS of the Space
Shuttle Orbiter consists of a collection of 22 metallic panels of varying composition
and thickness. In order to obtain the optimal trajectory, the method of steepest
descent was applied iteratively to minimize the total heat load at the stagnation
point. The optimal trajectory produced a minimum TPS weight of 30,700 lbs.

Referring to [27], the optimal Shuttle trajectory is detailed in the following figures.
The figures show the angle of attack, velocity, altitude, Mach number, flight path
angle and some other related parameters as functions of the non-dimensional variable
6. This non-dimensional variable is the number of vehicle lengths traversed along
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the trajectory. The Space Shuttle reentry trajectory covers a range of 165,000 to
290,000 vehicle lengths traversed and a descent from 225,245 ft at Mach number 20
to 100,000 ft at Mach number 3.2. The maximum acceleration does not exceed 3 g's.
Angle of attack values vary between 200 to 300 while flight path angles vary from 00
to -40. The variation of real time with respect to ( is nonlinear. The total time of
the trajectory under consideration is approximately 950 seconds.

2.2.1 Related Parameters

The calculation starts by calculating the absolute temperature T as a function of 5.
Our objective is to have mach number M as a function of (. This needs information
on the speed of sound a (T). Fig. 3-3 of ref. [21] gives the absolute temperature as
a function of altitude, T = T (h). Using this information and having the h = h ( )
from the prescribed trajectory, we can calculate T = T (s). The result is shown in
Fig. 2-1 (top). Temperature variation against 6 is then used to calculate a by the
relation:

a = VRT (2.1)

where

_ _ specific heat at constant pressure
- C, - specific heat at constant volume

R = gas constant
T = absolute temperature

For the air, Eqn. 2.1 can be expressed as [22],

a = 65.8V/ft/s (2.2)

The result is depicted in Fig. 2-1 (bottom). Note that the flat part of the curve
is due to the corresponding isothermal layer at altitude around 47 - 53 km in the
atmosphere. Mach number M can finally be calculated by the following relation:

M = - (2.3)
a

where the flight speed V is known from the prescribed trajectory, Fig. 2-2 (top).
The bottom figure shows the corresponding mach number M.
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The air density is calculated using the following formula [25]:

p (h) = Po 1_ -1g/R (2.4)TOo
in which Po and To are density and absolute temperature at sea level. Parameter e
specifies the temperature gradient in the temperature versus altitude curve and is
given in Fig. 3-3 of Ref. [21]. Parameter g is the acceleration of gravity which is in
general a function of altitude h. Overall, we can express p variation against since
Po, To and c are known and h = h (6) is available from the prescribed trajectory, Fig.
2-3 (top). The air density variation along the prescribed trajectory is given in Fig.
2-3 (bottom).

2.3 Stability Derivatives

The linearized equations of aircraft motion can be expressed in terms of stability
derivatives. These derivatives represent the changes in aerodynamic forces and mo-
ments due to small changes in the perturbation variables. As an illustration, the
a derivatives describe the changes that take place in the forces and moments when
the angle of attack is increased. This normally results in an increase in drag and
a negative pitching moment. The stability derivatives are defined in terms of par-
tial derivatives and expressed in terms of elementary aerodynamics parameters for
simulation. The nondimensional stability derivatives is obtained by normalizing the
derivatives with mass or the moments of inertia of the vehicle.

As an example, the L,1 derivatives are calculated below. L,i = C pV 2Sb. Hence

2 Sbv-LvI, = -- Lr I V S o v/0 v0
1 ( aC

= -pVSb I I2 \00
= 2pV2SbC

1 ,



CHAPTER 2. ANN FOR GHAME SIMULATION

x10
s

2.5 'oo = data points

= interpolation

2

1.5 0

1

1.6 1.8 2 2.2 2.4 2.6 2.8 3
ksi x 10

5

x 10
- 5

2.4 2.6 2.8 3
ksi x 10

5

Figure 2-3: Altitude h and air density p as a function of (

1.8 2 2.2 2.4 2.6 2.8 3
ksi x 10

5

1.8 2 2.2 2.4 2.6 2.8 3
ksi x 105

Figure 2-4: Angle of attack ao and flight path angle y as a function of

0(-as
.1z

025
ca

020C
I)

<15
1.

1ca -15

t.-
E 0,
E

(a
5-3
LL -4

1,1.{

i I I i , ,

0 0
0

6

6



ANN FOR GHAME SIMULATION

And

(Lr 1 ( OC,

V2 Sb2 pV 2Sb

= 4pV2Sb2 C

Similarly

LrIxx = , IpV2 Sb act

= 0V2Sb2C r

4

Subscripts -0 indicates the value is given at the equilibrium point. The remaining
stability derivatives are evaluated in similar fashion and the complete results are listed
in Table 2.1.

CHAPTER 2.
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Table 2.1: Stability derivatives

Stability Derivative Definition Expression
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2.4 Atmospheric Entry Equation of Motion: 2nd
Order Longitudinal Dynamics

2.4.1 Perturbation Equations

This section primarily describes the equations of motion in the plane of symmetry.
It is assumed that the vehicle experiences lift but does not roll and the planet is
spherical. The axis system through the center of mass of the vehicle is such that the
x - axis is always tangential to the instantaneous flight path. The equations of motion
for arbitrary flight path angles and zero thrust are given by [26], [27].

Assuming that the slope of the lift curve is approximately independent of flight
speed and Mach number at high supersonic speeds, the aerodynamics coefficients
are linearized through a Taylor Series expansion about a nominal trajectory. After
eliminating 0 and V from the equations and change of the independent variable from
t to ( according to

L = V (t) (2.5)

the equations of motion is transformed into the equation for perturbation angle-
of-attack a after linearizing the aerodynamic coefficients. The result reads:

a" + wl ( ) O' + wo () a = f () (2.6)

where

w1 ()= 6 [C - a (Cmo +Cm)] + V

Wo ( J)= -- Cm. + -CD, COS -7 rcL +

J C 6O - [CL. (am + CO) + CLOC] +

3 (V2 vcos2 ( + ao)
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f () = 6 ) [CDo - aCM 1-- IIcosy - 6'CLO +

62CL (CDO + J Cmq) -

gl [3L g') sin 26 + -v sin 2 (7 + o)
V2 r V2 2r

The non-dimensional parameter are defined by

pSI IxX - Izz ml2

6S= = = (2.7)
2m ' IY ' I

The primes represent differentiation with respect to the new independent variable
C. The terms wl, wo, and f are functions of parameters which depend on instantaneous
flight conditions, and can be calculated if the trajectory of the center of mass is
explicitly known. This implies that the effect of the angle-of-attack perturbations
on the trajectory itself is negligible. Eqn. 2.6 is a second order linear differential
equation with variable coefficients. It is, in general, impossible to be solved exactly.
The arrangement of numerical data for calculating the instantaneous flight conditions
is detailed in the following paragraphs.

2.4.2 Numerical Data

The numerical data for the GHAME are made available in Appendix D. The data
from NASA were given as matrix representing aerodynamic coefficients as a function
of mach number and angle of attack. The mach number were varied from 0.4 to 24
and angle of attack from -3o to 210. The trajectory data from Ref. [27] is used in
conjunction with the available data. It were originally given for the GHAME vehicle
entering atmosphere at altitude 4 x 105 ft. with the angle of attack around 540 at the
speed 2.6 x 104ft./s. Only part of the data, where angle of attack data extrapolation
is still considered valid, is used. This corresponds to range of variable from 1.6 x 105
to 2.85 x 105. This flight segment describes the vehicle entering atmosphere at altitude
2.4 x 105ft. with angle of attack a around 300 . The a varies in the range of 190
- 300 and the mach number M from 3 - 20. The available aerodynamic coefficient
data is first extrapolated up to a = 300. The bisection interpolation is then used
to refine the data in the flight segment under interest. This is done to facilitate the
two-dimensional polynomial fitting for every aerodynamic coefficient.

As an illustration, the calculation of CL is outlined as follows. The three degree
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polynomial of a and M is used to fit the data in a least-squares
coefficients of the polynomial are in the form of matrix below:

sense. The resulted

p9 =

2.3743e-009
-1.5620e-007
9.2581e-007
-3.4802e-005

-1.0528e-007
6.9259e-006
-4.1050e-005
1.8201e-003

1.7013e-006

-1.1192e-004
6.6337e-004
-3.1509e-002

-2.1377e-005
1.4063e-003

-8.3355e-003
1.8989e-001

Thus, the three degree polynomial expression for CL in a and M is

CL = 2.374 x 10-9M 3a3 - 1.0528 x 10-7M 3& 2 + 1.701 x 10-6M 3a - 2.138 x 10-5M 3

- 1.562 x 10-7M 2 a 3 + 6.9259 x 10-6M 2a 2 - 1.119 x 10-4M 2a + 1.406 x 10-3M 2

+ 9.258 x 10- Ma3 - 4.105 x 10-5Ma 2 + 6.6337 x 10-4Ma - 8.3355 x 10- 3M

- 3.480 x 10-5a 3 + 1.820 x 10-3a 2 - 3.1509 x 10-2a + 1.8989 x 10-1

Similar procedures were done for all other aerodynamic coefficients. The degree of
the polynomial for the fitting depends on the nature of coefficient variation. In gen-
eral, for more complex variation, a higher degree polynomial is necessary to achieve a
satisfactory result. The two-dimensional polynomials approximation for each coeffi-
cient are plotted below. Fig. 2-5 through Fig. 2-10 show the variation of aerodynamic
coefficients against M and a in the flight segment under interest.
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Figure 2-5: Aerodynamic coefficient Cmq as a function of M and a
CMA as a function of Mach and AOA

-0.04-

-0.05-

-0.06-

-0.07

-0.08-

-0.09-

-0.1 15

5 
20

15

20 30 Alpha(deg.)

Mach number, M

Figure 2-6: Aerodynamic coefficient Cmc, as a function of M and a



CHAPTER 2. ANN FOR GHAME SIMULATION

CLO as a function of Mach and AOA
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CDO as a function of Mach and AOA
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Figure 2-9: Aerodynamic coefficient CDO as a function of M and a
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Upon knowing the aerodynamic coefficients as functions of M and a, we can
express them further in variable (. This can be done since we have calculated M
and a as functions of ( (See Fig. 2.3 and Fig. 2-4). The aerodynamic coefficients
are plotted against ( in the subsequent figures. Since flight conditions have been
all expressed in , we have all the necessary terms for calculating wo () and wl (i).
Fig. 2-17 depicts the variation of wo ( ) and wl (() in the flight segment. Equation
2.6 is then solved numerically using Runge-Kutta. The integration is executed with
SIMULINK and the diagram is displayed in Fig. 2-18. The numerical data yielded
from the Runge-Kutta integration is saved for the purpose of neural networks training.
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Figure 2-18: Simulation block diagram for 2-nd order longitudinal dynamics

2.5 Root Locus Analysis

The stability analysis is done by sketching the rootlocus and observing the corre-
sponding time response behavior. Since the coefficients appearing in the differential
equation of variable a is a function of , the root locus of the system will also be a
function of .

2.5.1 Root Locus

The root locus of the second order model of GHAME is given in Fig. 2-19. At the
early phase of the trajectory, the conjugate roots are located near the origin. As the
vehicle transverses the prescribed flight trajectory, the roots move to the left half
plane. In general the longitudinal dynamics of the vehicle is stable and characterized
by damped oscillation. As can be observed from the figure, the damping and the
frequency of the oscillation increase along the trajectory.
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Root Locus for 2nd order GHAME longitudinal motion
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Figure 2-19: Root locus variation for 2-nd order longitudinal dynamics
o - beginning of the trajectory ( = 1.6.10 5

x - end of the trajectory ( = 2.85.105

2.5.2 Time Response

The time responses for the 2nd order longitudinal dynamics are given by Fig. 2-20 -
Fig. 2-23. The fourth order Runge-Kutta integration method is used in generating
the time response of the system. The scheme of the simulation is depicted in Fig. 2-
18. In agreement with the root locus analysis, the results show the damped oscillatory
behavior of the system. The changes of the frequency is also present in the early stage
of oscillation.
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a (1.6.10 5) - 0
& (1.6.105) - 1

- 0 .8 v . ........... ..... ..........

1.6 1.62 1.64 1.66
ksi

1.68 1.7 1.72

x 10
s

Figure 2-23: Variable & time response for 2-nd order longitudinal dynamics
a (1.6.105) _ 0
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2.6 Sensitivity Analysis

In dynamics analysis of vehicles, it is often important to know how each parameter
affects its motion. This study is called a sensitivity analysis. It studies the effect of
an incremental change in a certain physical parameter to the motion of the vehicle.
If the motion of the vehicle is described by state variable x, then we can write the
sensitivity variable s as partial derivative of x with respect to a certain parameter p.

s= - (2.8)
Op

If the dynamics of the vehicle is written in the state space form,

x = A (p) x (2.9)

we can write the sensitivity equation as

s = As + Apx

x = Ax

Note that the above expressions are given in matrix equation. For a certain
purpose (e.g. simulation) it is easier to write the scalar version.

The sensitivity of the GHAME vehicle second order angle-of-attack perturbation
is carried out in that manner. The effects of aerodynamic coefficients CL,, Cm,,
and Cm, are studied due to their known importance in the longitudinal dynamics.
For the sake of completeness, the sensitivity of the longitudinal dynamics due to all
other aerodynamic coefficients is also included to observe their relative significance
to the above-mentioned coefficients.

The sensitivity equation of the GHAME can be derived starting from the general
equation of motion:

a" + w1 () a' + wo () a = 0 (2.10)

It can be rearranged to include the sensitivity variable s as follows:
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a" = -i () ' - wo (6) a
S" = -wl, () a' - Wo () a - W1 (6) s' - wo ()

Si = -W()s'- w ( )S - 1, () a' - wo, ()

In solving the differential equation, we need to first calculate the partial derivatives
of the time-varying coefficients w's with respect to the aerodynamic coefficients. As
an illustration for Cm,, the partial derivatives can be calculated as:

= -66'CL

After calculating all the necessary partial derivatives, again we can use the Runge-
Kutta method to integrate the differential equation of variable s. Note that the
initial conditions for the sensitivity differential equation are only given to the state
variable a. The initial conditions for s are all zero. For comparison, notice that upon
having the simulation scheme, we can use Eqn. 2.8 directly to find the sensitivity
of each parameter. It can be carried out by perturbing the system with Ap where p
is the aerodynamic coefficients. We can then take the output difference between the
perturbed system and the original unperturbed system. Dividing the difference by the
incremental perturbation Ap , we will get the sensitivity of parameter p. The following
figures give the sensitivity of all the aerodynamic coefficients to the longitudinal
motion of the GHAME vehicle. The two mentioned methods are compared.
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Figure 2-25: Sensitivity of 2-nd order longitudinal dynamics to CL
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It can be observed from those plots, that the three dominant aerodynamic coeffi-
cients mentioned earlier indeed give higher order effects to the longitudinal dynamics.
Sensitivity of CL, is of order 10- 3, whereas C,, and Cm, are of order 10-1. The
other coefficients give much lower sensitivity, i.e << 0 (10-6). In general, how-
ever, the reentry sensitivity to all aerodynamic coefficients behave in similar manner.
They oscillate with the same frequency and all reach the maximum amplitude at

= 1.62.105, or approximately 3,000 vehicle lengths from the initial trajectory. This
is followed by an amplitude decay until it decreases to zero after the vehicle travels
about 15,000 vehicle lengths.

In conclusion, it is clearly evident that when concerned with the effect of changes
in aerodynamic coefficients on GHAME vehicle longitudinal dynamics, greater con-
sideration should be given to C,, and Cm, than the other aerodynamic parameters.

2.7 The Use of ANN for System Identification

The ANN is used to copy the behavior of the second order GHAME vehicle dynamics.
As alluded in previous chapter, the success of the control system employing neural
network will be dependent on the success of using ANN as the system identification.
In this work, we are just concerned with the ANN use for dynamics identification.
The ANN model is trained using data from the prescribed (known) dynamics that
has been derived in detail. Note that in reality, we can use ANN for the lesser
known dynamic or system with uncertainties. During the training, ANN just need
the vector pair of input and output of the system (the so called pattern) to learn the
dynamic. Thus, it is clear that the performance of the neural networks in mimicking
the dynamics will depend on the way the training material is given and the range of
the patterns given during the training.

2.7.1 Network Training

The ANN is used to model the angle-of-attack perturbation variable a dynamics. The
networks is inputted with two delayed signal of a ( ) and the target (or output) is
the signal a ( ). Since the system is linear, the linear network is used. This kind of
network can be quickly trained and suitable for the adaptive system. The results are
presented in the following plot.

The figures show that the trained network gives very good performance in mimick-
ing the true behavior of the second order GHAME vehicle dynamic. In the following
section, we will test the network for the presence of the uncertainty in the system.
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2.7.2 Network Testing

To test the robustness of the network model, the trained network is tested with the
uncertainty appearing in the damping coefficient wi (s). It is assumed that the system
deviates from the behavior that was learned by the network during the training period.
This is done by letting the w1 (() increase by 10%. The trained network is now tested
with this changing system. The result is presented in the following figure.

The figure shows that the neural network model still captures the dynamics of the
GHAME vehicle though the w1 ( ) increases by 10% from its original value. However,
there is a certain limit at which the network will fail to cope with the changing
system i.e. when the system deviates too far from the neighborhood of the training
domain. To observe this phenomenon the similar network is again tested by the
GHAME vehicle dynamics with wi ( ) increases by 20% . Figure 2-32 indicates that
the networks can still follow the dynamics at the right frequency but fails to capture
the amplitude.

To improve the performance of the networks, the material of the training is
changed to include the information that some degree of uncertainty exists within
the system. This can be likened to telling the networks about the presence of uncer-
tainty. To emulate this, we introduce a white noise to wi ( ) for the training material
of the networks. The behavior of the wi ( ) can be observed in the Fig. 2-33. Now,
after training the network with white noise added to the wi (a), the network is tested
for system with 15% increase in wi ( ) and further with 20% increase in wi (c). The
results are subsequently shown in the following two figures.

The results indicates only slight improvement on the network performance in
learning the dynamic of the system with 20% increase in wi (s). This suggests that
using a white noise during training is useful in giving the information about the
presence of uncertainty to the network though it might not be satisfactory for the
case when the system has larger scale of uncertainty. In real application, where the
network has to learn online the uncertainties can be dealt inherently since any change
present in the system will be captured during identification process. In the realm of
neural network training, this can be done, for example, by back propagation through
time learning method.
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Chapter 3

GHAME Vehicle Fourth Order

Longitudinal Dynamics

The GHAME vehicle dynamics are described by nonlinear and time-varying differ-
ential equation. To reduce complexity, the equations are linearized about a specific
a for a given Mach number at zero 3. The process of linearization, leading to the
use of the stability derivatives, are detailed in the following sections. Note that the
linearized motion will sufficiently represent the true non-linear behavior if the motion
of the vehicle is in the neighborhood of the equilibrium point or the perturbation
variable are small. For large amplitude perturbation (like in spin and high angle of
attack maneuver), nonlinear analysis is required.

3.1 Equations of Motion

Following Ref. [29], the general longitudinal dynamics of a flight vehicle can be
described by three equations which are obtained through balancing the lift and drag
forces as well as moments acting on the vehicle, below:

-mlV + (T - D) - W (0 - a) = 0 (3.1)

L - W - mV (0 - ) = 0 (3.2)

My - Iyy0 = 0 (3.3)

Eqn. 3.1 is the drag equation and represents a balancing of forces in the direction
of flight. Lift equation expressed in Eqn. 3.2 describes the sum of forces in a direction
perpendicular to the flight path. And the moment equation shown in Eqn. 3.3
balances the moments experienced by the vehicle about its center of mass. In order to
linearize these equations of motion, the flight parameters a, V, and 0 are represented
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as perturbations about a nominal flight condition, as follows:

a = So + Aa (3.4)

V = Vo + AV (3.5)

0 = 00 + AO (3.6)

Here, ao, Vo, and 00 are the nominal flight conditions. The forces of thrust, lift
and drag as well as the aerodynamic moment are expressed about a nominal flight
condition through expansion in a convergent Taylor series. Taylor series expansion
allows the forces and moment to be written as

OL OL
L = Lo + Aa + AV +... (3.7)

0T
T = To + -AV +... (3.8)av

OD OD
D = Do + aa + AV +... (3.9)

80 DV
OM OM DM DM

M = Mo + Aa + AV + Lo + As+ A O+...
0 (3.10)

Lo, To, Do, and Mo are nominal values of the aerodynamic forces and moment
which produce the equilibrium flight condition given by ao, Vo, and 0 o. Eqn. 3.1 -
3.10 are substituted into the general nonlinear equations of motion and after some
manipulation results in the following equations:

AV + AV (Dv - Tv) + Aa (D" - g) + gAO = 0 (3.11)

Lv ) AV+ + - =0 (3.12)
Vo Vo

-MvAV - M&A - M,Aa + AO - M A0 = 0 (3.13)

The parameters Dv, D,, Tv, Lv/Vo, La/Vo, Mv, M,, and Mi appearing in the
equations above are longitudinal stability derivatives of the vehicle and vary with
time as the flight conditions change along the reentry trajectory. These derivatives
have been defined in Table 2.1. They are basically partial derivatives of aerodynamic
force or moment with respect to the flight parameter in question normalized by mass
or moment of inertia.



CHAPTER 3. GHAME 4TH ORDER LONGITUDINAL DYNAMICS 59

3.2 Longitudinal Stability Derivatives

Referring to Table 2.1, the first eight stability derivatives are longitudinal stability
derivatives. In the analysis of vehicle dynamics and stability some of the these deriva-
tives are subdominant to the other terms and thus are assumed to be zero. In our
analysis, these include the thrust velocity derivative, Tv, the angle-of-attack damping
derivative, M& and speed stability term, Myv. Note that u = v, and it explains the
notation Mu, Du and L.

From the expression, it is obvious that the stability derivatives are functions of
vehicle geometric parameters, trajectory parameters and vehicle aerodynamic char-
acteristic. The first class of parameters is assumed to be constant. The others are
varying with time as the vehicle moves along the reentry trajectory. The variation of
trajectory parameters has been shown in Fig. 2.3 - Fig. 2-4. The figures describe the
velocity V, air density p and other related parameters as a function of , the num-
ber of vehicle lengths traversed along the trajectory. The variation of aerodynamic
characteristic against ( are shown subsequently in Fig. 2-13 - Fig. 2-15. As a result,
we have all the requisite to express the stability derivatives as functions of . The
following figures display the longitudinal stability derivatives of the GHAME vehicle
along the prescribed reentry trajectory.

There are some useful "rules of thumb" for obtaining practical insight from the
vehicle stability derivatives. This rules are basically a rough measure of stability based
on the accumulated experiences with (conventional) aircraft design. For conventional
flight vehicle, Dv , D, and La are usually positive and of small magnitude. Lv is
larger than the latter and positive. In this respect, the GHAME vehicle does not
exhibit anomalies. All value of those derivatives are positive. It is also evident that
Lv is dominant over other parameters. The tendency of those derivatives, shows a
close resemblance to that of air density variation along reentry trajectory. This means
that the air density plays a major influence in determining these derivatives.
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Three stability derivatives that significantly determine vehicle longitudinal stabil-
ity are M0, Mi, and Mv. For conventional vehicle configuration these parameters
are usually negative. If M, is positive the vehicle is statically unstable. On the other
hand, the vehicle is statically unstable when My is negative and dynamically unstable
when My is positive. Thus, My is desired to be of very small number or close to
zero. In our analysis My is of 0 (10-6) and thus neglected. Fig. 3-3 shows that both
M and Mi ( or Mq) are negative. Both exhibit similar tendency. In the early phase
of reentry, their values are close to zero and they increase as the vehicle flies along
the prescribed trajectory.

3.3 Solution to the Equations of Motion

To solve the equation of motion, Eqns. 3.11 - 3.13 are first simplified and written
into the standard state space form:

s + Dv - Tv Da -g g AV [0
Lv/Vo s + La/Vo -s IAa (3.14)
-My -(Mos+Mo) s(s-M ) Ae 0

Variable s denotes the derivative operator A. Again, stability derivatives appear-
ing in the matrix vary with time leading to a time-varying system. It can not be
solved with the standard method for solving the time-invariant (constant coefficient)
cases.

Solution to the equations of motion is obtained by calculating the determinant of
the main matrix in the above equation. Ignoring the derivatives Tv , we have

s + Dv - Tv D - 9 9
det Lv/Vo s + La/Vo - = 4 3 3  28 2 +W18 +

-M -M" s (s - Mj) (3.15)

For a steady flight condition w3, 2, , w and w0o are given by:

w3 = La/Vo - M6 + Dv (3.16)

w2 = Dv (La/Vo) - DvMi (La/V o) - Mc - Da (La/Vo) + g (Lv/Vo)
(3.17)

wl = MvD - MaDv - DvM6 (La/Vo) + DcM6 (Lv/Vo) - gM6 (Lv/Vo)
(3.18)

Wo = g [Mv (La/Vo) - Ma (Lv/Vo)] (3.19)
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and s is again the derivative operator A. Under the assumption that the longi-
tudinal stability derivatives in the above equations are constant, the full longitudinal
response of the vehicle is described by setting the above determinant equal to zero
and replacing the higher order s with their corresponding higher order derivatives.
When flight conditions are changing, the decoupled scalar equations for AV, AO, and
Aa are of the general form (3.20) with different wi (t).

d4y d3y d2y dy
dt + (t) + w2 (t) d + w1 (t) - + wo (t) y = 0
dt4 dt3 dt2 dt

(3.20)

This equation is dominant approximation to the actual longitudinal behavior and
is made under the assumption that the stability derivatives in Eqns. 3.16 - 3.19
are constant. It turns out that the coefficients appearing in Eqn. 3.20 are actually
time varying. For slowly varying flight conditions the coefficients along the reentry
trajectory are shown in the following figures.
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Figure 3-4: Time-varying coefficient wo and wl as a function of

Numerical integration using Adam-Gear technique is employed to solve the above
linear time-varying equation. The technique is typically used for what so called stiff
system, where the characteristic roots are widely separated. The block diagram for
the simulation of longitudinal dynamics of the GHAME vehicle during atmospheric
reentry is shown in Fig. 3-6

1
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Figure 3-5: Time-varying coefficient w2 and w3 as a function of I

3.4 Root Locus Analysis

Like in the case of 2nd order GHAME vehicle dynamics, the stability analysis is done
by sketching the rootlocus and observing the corresponding time response behavior.
Since the coefficients appearing in the differential equation of variable a is a function
of (, the root locus of the system will also be a function of (.

3.4.1 Root Locus

The root locus diagrams of the fourth order model of GHAME are given in Fig. 3-7
and Fig. 3-8. The figures depict the nature of a stiff system i.e. the characteristic
roots are widely separated. At the early phase of the trajectory, there is a pair of
conjugate roots located near the origin. These conjugate roots represent the phugoid
mode which is usually characterized by slow and lightly damped motion. Two other
roots are located in negative real axis around -0.045 and -0.6 respectively. As the
vehicle transverses the prescribed flight trajectory, the roots move to the left half
plane. The frequency of the phugoid mode increases from around 0.001 up to 0.015,
while the damping rises from around zero to -0.008. The real roots move further to
about -0.1 and -3.5 which gives substantial increment in the damping of this mode.

CHAPTER 3.
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Figure 3-6: Simulation block diagram for 4-th order longitudinal dynamics

In general the longitudinal dynamics of the vehicle are stable and are characterized
by damped oscillations. As can be observed from the figure, the damping and the
frequency of the oscillation increase along the trajectory.

3.4.2 Time Response

The time responses of the 4th order longitudinal dynamics for different initial condi-
tions are given by Fig. 3-9 - Fig. 3-16. As mentioned earlier, the Adam-Gear inte-
gration method is used in generating the time response of the system. The scheme of
the simulation is depicted in Fig. 3-6. In agreement with the root locus analysis, the
results show the damped oscillatory behavior of the system. The frequency changes
in the early stage of oscillation.

CHAPTER 3.
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Figure 3-7: Root locus variation for 4-th order longitudinal dynamics: plot of phugoid
roots and one real root

o beginning of the trajectory = 1.6.10 5

x - end of the trajectory 6 = 2.85.105

Root Locus for 4th order GHAME Longitudinal motion
0.015

0.01

0.005 ..........

E 0 ........ ........

-0 .005 .......... .....................

-0.01 ..........

-0.015
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Re

Figure 3-8: Root locus variation for 4-th order longitudinal dynamics: plot of the
complete roots

o beginning of the trajectory = 1.6.10 5

x - end of the trajectory ( = 2.85.105



CHAPTER 3. GHAME 4TH ORDER LONGITUDINAL DYNAMICS 66

1.2

0.8

0.6. . .

0.4

0.2

0-

-0.2

-0.4

-0.6

1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78 1.8
ksi x 10s

Figure 3-9: Time response of y for 4th order longitudinal dynamics
y (1.6.10 5) -- 1
y' (1.6.105), y" (1.6.105), y"' (1.6.105) - 0

x 10
6-

4-

2-

0

-2

-4

-6

-8

1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78 1.8
ksi x 105

Figure 3-10: Time response of y' for 4th order longitudinal dynamics
y (1.6.105) = 1
y' (1.6.105), y" (1.6.105), y"' (1.6.105) = 0



GHAME 4TH ORDER LONGITUDINAL DYNAMICS

1.6 1.62 1.64 1.66 1.68 1.7
ksi

1.72 1.74 1.76 1.78 1.8
x 10

Figure 3-11:

Figure 3-12:

Time response
y'(1.6.10 5)

of y for 4th order longitudinal dynamics

1.8
x 10s

Time response
y'(1.6.10 5)

of y' for 4th order longitudinal dynamics
E 1

CHAPTER 3.

y (1.6.105), y" (1.6.105), y"' (1.6.105)

y (1.6.105), y" (1.6.105), y"' (1.6.105)



CHAPTER 3. GHAME 4TH ORDER LONGITUDINAL DYNAMICS 68

x 104

2 -

1.5

-0.5

-1-1.5 .

1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78 1.8
ksi x 105

Figure 3-13: Time response of y for 4th order longitudinal dynamics
y" (1.6.10 5) = 1

y' (1.6.105), y' (1.6.105), y"' (1.6.105) - 0

20.................................

15

10

5

-5

-10

-15

1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78 1.8
ksi x 105

Figure 3-14: Time response of y' for 4th order longitudinal dynamics
y" (1.6.10 5 ) - 1

y' (1.6.105), y' (1.6.105), y"' (1.6.105) = 0



GHAME 4TH ORDER LONGITUDINAL DYNAMICS

3

2

1

0-

-1

-2

1.6 1.62 1.64 1.66 1.68 1.7
ksi

1.72 1.74 1.76 1.78 1.8
x 10

s

Figure 3-15: Time response of y for 4th order longitudinal dynamics
y"' (1.6.10 5 ) = 1

1.6 1.62 1.64 1.66 1.68 1.7 1.72 1.74 1.76 1.78 1.8
ksi x10

5
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3.5 Sensitivity Analysis

The sensitivity of the fourth order GHAME vehicle dynamics is carried out in similar
manner as that of the second order case. For the sake of completeness, the sen-
sitivity of the general response of the state variable to all stability derivatives are
studied to observe their corresponding effects. This includes vertical dampingL",
Do, angle-of-attack static stability parameter Ma, lift-velocity derivative L., drag
stability derivative D,, and pitch damping Mq

The sensitivity equation of the 4th order GHAME vehicle dynamics can be derived
starting from the general equation of motion:

d4y d3 y d2y dy
+ w3 - - + w2 + woy = 0 (3.21)dt4 + dt3 +2dt2 +W dt

or can be also written as

y"" + w 3 y 1 + W2Y" + W1YI + Woy = 0 (3.22)

It can be rearranged to include the sensitivity variable s as follows:

y" = -w 3y/ - w 2y" - Wly I - woy

8SM = -W3,y -2 w2py" - wlPy' - woy

- 3Y- W W lp -- Wlylp - WOYp

S III I = -W 3 8l l - W2 8SI - W18s - W08 - W3py W-- 2_pY 1 - Wlpy - Wopy

In solving the differential equation, we need to first calculate the partial derivatives
of the time-varying coefficients w's with respect to the stability derivatives. After
calculating all the necessary partial derivatives, again we can use the Adam-Gear
method to integrate the differential equation of variable s. Note that the initial
conditions for the sensitivity differential equation are only given to the state variable
y. The initial conditions for s are all zero. The following figures give the sensitivity
of the longitudinal motion of the GHAME vehicle to all the aerodynamic coefficients.
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Figure 3-17: Sensitivity of 4th order longitudinal dynamics to D.
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Figure 3-19: Sensitivity of 4th order longitudinal dynamics to L,
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Figure 3-20: Sensitivity of 4th order longitudinal dynamics to L,
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Figure 3-21: Sensitivity of 4th order longitudinal dynamics to M,
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Figure 3-22: Sensitivity of 4th order longitudinal dynamics to Mq
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3.6 The Use of ANN for System Identification

Analogous to the 2nd order case, the ANN will be used to design a system identifi-
cation for 4th order GHAME vehicle longitudinal dynamics. The same technique of
learning and test of robustness is used for the 4th order case. The results are shown
in the following figures.

co
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Figure 3-23: Neural Network Model for 4th
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Figure 3-24: Neural Network Model for 4th order GHAME, training with white noise
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Figure 3-25: Neural Network Model for 4thorder GHAME with 10% increase in wl (,)
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Figure 3-26: Neural Network Model for 4thorder GHAME with 20% increase in wl ()
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Figure 3-29: Neural Network
with 20% increase in wl (,)

Model (trained with white noise) for 4thorder GHAME

GHAME with 20% increase in wl (C)
Neural network model output

Like the 2nd order case, again the results indicate only a slight improvement on
the network performance in learning the dynamics of the system with 20% increase
in wl (6). This suggests that using a white noise during training is useful in giving
the information about the presence of uncertainty to the network though it might no
longer be satisfactory for the case when the system has larger scale of uncertainty.

CHAPTER 3.



Chapter 4

GHAME Vehicle Fourth Order
Lateral-Directional Dynamics

The analysis of the 4th order lateral-directional dynamics of the GHAME vehicle
is parallel with its longitudinal counterpart. The notion of stability from Poincare -
Lyapunov theorem is again used in conjunction with the linearization of the equations
of motion.

4.1 Equations of Motion

Analogous to longitudinal dynamics, the differential equations of motion describing
the lateral-directional dynamics of a flight vehicle are generally nonlinear and time-
varying. Hence, to obtain the solution, the equations of motion are linearized about
a nominal flight condition. The nonlinear equations of motion describing the lateral-
directional dynamics of the GHAME vehicle are given by [29]

Y - mi - mVr + mge = 0 (4.1)

L - I,, + I = 0 (4.2)

N - Izi + I,, = 0 (4.3)

where Y, L, and N are the aerodynamic side force, rolling moment, and yawing mo-
ment on the vehicle, respectively. Note that the variable v represents the component
of velocity V perpendicular to the flight path, while r and 0 are the yaw rate and roll
angle of the vehicle. Eqns. 4.1 through 4.3 are obtained by "trimming" the vehicle
at a nominal flight. At the trimmed condition, the aerodynamic and inertial forces
as well as moments are balanced out. Eqn. 4.1 is attained by balancing the forces
in the direction perpendicular to the flight path. While Eqns. 4.2 and 4.3 are the
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result of balancing the rolling and yawing moments of the vehicle respectively. These
three equations are treated equally to their longitudinal counterparts. The three pa-
rameters v, r, and ¢ are represented as perturbations about a nominal value. The
aerodynamic forces and moment are then expressed in the form of a Taylor series
expansion as in the longitudinal case. The Taylor series representations and the per-
turbation forms of v, r, and € are plugged into the nonlinear equations of motion
given by Eqn. 4.1 - 4.3. The result is the standard state space form for the linearized
lateral-directional equations of motion [29].

s - Y, V -g AV 0
-L, -I -s - Lr s 2 - Lps Ar = 0 (4.4)

N, s - N -2 Ns s A 0

where variable s is as before the derivative operator A. The parameters Y, L,, Lr,
L,, N,, Nr, and Np appearing in the above state space equation are the lateral-
directional stability derivatives for the flight vehicle. Their expressions have been
elaborated in Table 2.1. From their expressions, it is obvious that those parameters
for GHAME vehicle vary with time as the vehicle travels along the reentry trajectory.
The influence of variation in V and p has been alluded in Chapter 3. The more
subtle contributions come from the non-dimensional stability derivatives CY, CI,,
C, C C Cp, 1 I Cnr, and C,,. They are all functions of the angle-of-attack a and Mach
number M. The technique to express them in high order two variable polynomial
has been detailed in Chapter 3. The results of the polynomial approximation of these
parameters are shown in the succeeding figures. Again, having a and M as a function
of , we can express all the above non-dimensional stability derivatives in the variable
( leading to having the parameters Y,, L, Lr, Lp, N,, Nr, and Np as functions of t.
These are all the requisite of the calculation of the time-varying coefficients appearing
in the linearized differential equation to be detailed in the next paragraphs.
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CYB as a function of Mach and AOA
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Figure 4-1: Aerodynamic coefficient Cy, as a function of M and a

4.2 Lateral- Directional Stability Derivatives

Similar to the corresponding section for longitudinal dynamics, this section elaborates
the stability derivatives for the lateral-directional motion. Stability derivative Y,
corresponds to the derivative Cyp that is called side-force derivative. It gives the
force that acts in the y direction (right) when the vehicle has a positive 3 or v.
Cy is usually negative, and frequently small enough to be neglected entirely. The
main contributions are those of the body and vertical tail, although the wing, and
wing-body interference, may modify it significantly [24]. Fig. 4-8 (top) shows that
GHAME vehicle has a small negative Y,. The value increases in magnitude along the
flight trajectory.

Stability derivative L, corresponds to the derivative Cl called the dihedral effect.
Its importance is related to the notion of roll stiffness, i.e. the flight vehicle tends to
fly with wings level. The primary contribution to C1 is from the wing. The dihedral
angle, aspect ratio and sweep angle of the wing all are important parameters. As
shown in Fig. 4-8 (bottom), the value of L is small almost through out the entire
flight trajectory. The sharp increment in the end is due to the increasing air density.
Since GHAME vehicle wings do not have dihedral angle, the likely main contribution

CHAPTER 4.
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CLLB as a function of Mach and AOA
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Figure 4-2: Aerodynamic coefficient Cl. as a function of M and a
CLLP as a function of Mach and AOA
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Figure 4-3: Aerodynamic coefficient C, as a function of M and a
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CLLR as a function of Mach and AOA
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Figure 4-4: Aerodynamic coefficient Cl, as a function of M and a
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CLNP as a function of Mach and AOA
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to the derivative is the sweep angle, wing-fuselage interference and vertical tail effect.
Another important cross stability derivative is L, which is related to derivative Cr,.
This describes the rolling moment due to yawing. The increase in lift on the left wing,
and the decrease on the right wing combine to produce rolling moment proportional
to the original lift coefficient CL. The wing aspect ratio, taper ratio and sweepback all
give paramount effects. If the vertical tail is large, it can give significant contribution.
Fig. 4-9 (top) describes this derivative for GHAME vehicle. It is of positive large value
and has tendency similar to variation of air density. The bottom figure shows the
L stability derivative which corresponds to derivative C1, better known as damping-
in-roll derivative. It expresses the resistance of the flight vehicle to rolling. For the
conventional configuration, only the wing contribute significantly to this derivative.
The value is usually negative. The GHAME vehicle exhibit no unusual properties
with respect to this derivative. Along the reentry trajectory, Lp remains of negative
value with tendency again resembles that of air density variation.

The directional stability derivative N, corresponding to C,3 is also of paramount
important. This parameter represents the tendency of flight vehicles to yaw into the
relative wind and largely caused by the change in oncoming airflow angle experienced
by the vertical tail. This tendency gives the stabilizing effect called weathercock
stability. In contrast with its analogous longitudinal stability Cm., the wing has little
influence in most cases, and the center of gravity location is a weak parameter. Note
that whether or not a positive value of C,, will produce lateral stability can only be
determined by a full dynamic analysis [24]. The value of this derivative for GHAME
vehicle (shown in Fig. 4-10) is unusually small enough although still positive.

The next directional derivative is Nr. The related derivative C", is often referred
to as damping-in-yaw derivative, and is always negative. The body does not have
critical contribution to this derivative except when it is very large. The significant
contributions come from wing and tail. The increases in both the profile and induced
drag on the left wing and the decreases on the right wing give a negative yawing mo-
ment and hence resistance to the motion. The aspect ratio, taper ratio and sweepback
again determine the magnitude of the effect. Fig. 4-10 (middle) shows the parameter
Nr which is of negative value throughout the entire flight segment.

The directional stability that is coupled with lateral stability is Np. This so
called cross derivative represents the yawing moment produced by the rolling motion.
The wing and tail both influence the derivative Cp,. Fig. 4-10 (bottom) depicts the
corresponding stability derivative of the GHAME vehicle along the reentry trajectory.
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4.3 Solution to the Equation

The equation of motion described by Eqn. 4.4 is solved in similar manner as that
of its longitudinal counterpart. First, it is assumed that the stability derivatives de-
scribed in previous paragraphs are of constant value throughout the flight trajectory.
Under such an assumption, the three independent variables of the lateral-directional
equations of motion Av, Ar, and A0 have the same response. They are replaced
by generic variable y whose dynamics are described by the determinant of the main
matrix in Eqn. 4.4. Taking the determinant equal to zero we get the characteristic
equation in variable s.

s 4 + +3 8 3 + W2 8
2 + W18 + W0 = 0 (4.5)

Noting that s is a differential operator A, the equation can be rewritten as

d4 y d3y d2Y dy
dt-+ (t) + W2 (t) t 1 (t) + Wo (t)y (4.6)

For a steady flight condition w3, w2, W1 and w0 are given by:

w3 (t) = (aNP + bLr + Nr + LP - abY + Y,) / (ab - 1) (4.7)

w2 (t) = (LrNp - LpNr - aYvNp - bYvLr - YNr - YLp - bL,V - NV) /(ab - 1)
(4.8)

w1 (t) = (L,g + YLpNr - YLrNp - L,N,V + N,L,V + agN,) / (ab - 1) (4.9)

wo (t) = g (NvLr - L,N) / (ab - 1) (4.10)

and

Ixz Iz
a = b = (4.11)

Fig. 4-11 and 4-12 show the coefficients of the GHAME vehicle lateral directional
dynamic for slowly varying flight conditions. Solution to this time-varying system is
obtained via numerical integration using Runge-Kutta method. The block diagram
for the system is depicted in Fig. 4-13.
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Figure 4-13: Simulation block diagram for 4-th order lateral-directional dynamics
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4.4 Root Locus Analysis

Like its longitudinal counterpart,, the stability analysis is done by sketching the root-
locus and looking at the corresponding time response behavior. Since the coefficients
appearing in the differential equation of variable a is a function of (, the root locus
of the system will also be a function of C.

4.4.1 Root Locus

The root locus of the fourth order lateral directional motion of GHAME are given
in Fig. 4-14 and Fig. 4-15. At the early phase of the trajectory, there is a pair of
conjugate roots located near the origin. These conjugate roots represent the dutch-
roll mode which is usually characterized by high frequency lightly damped oscillatory
motion. Two other roots are located in positive real axis; one is around 0.01 and the
other very close to zero. As the vehicle transverses the prescribed flight trajectory,
the conjugate roots move to the left half plane. The frequency of the dutch-roll-like
mode increases from around 0.015 up to 0.05, while the damping increases by order
of 10 from around -0.005 to -0.05. The real root which is close to zero moves
further to the left which gives substantial increment in the damping of this mode.
However another real root moves from 0.01 to about 0.03 which causes the system to
be unstable. In general the lateral directional dynamics of the vehicle is unstable.

4.4.2 Time Response Analysis

The time response of the 4th order lateral-directional dynamics for different initial
conditions are given by Fig. 4-16 - Fig. 4-23. As mentioned earlier, the Adam-Gear
integration method is used in generating the time response of the system. The scheme
of the simulation is depicted in Fig. 4-13. In agreement with the root locus analysis,
the results show the unstable behavior of the system.
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Figure 4-18: Time response of y for 4th order lateral-directional dynamics
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Chapter 5

Vertical Take-Off and Landing

(VTOL) Aircraft Dynamics

We now consider the longitudinal dynamics of a VTOL aircraft during the hover-
forward flight transition. The model taken into account is the dynamics of XC-142
aircraft. The model, approach and solutions are based on Ramnath [30]. At hover the
vehicle behaves like a helicopter and is dynamically unstable. At the forward flight
condition it is dynamically stable. Linearization of the equations of motion about the
transition trajectory leads to the time-varying coefficients in the differential equations.
For our purpose, we just consider the dependence of the stability derivatives on V
(the main one). Based on the work of Ramnath [30] at Princeton University, they
are given in Table 5.1

The V is a function of time and the following two variation are studied:

150t ft

V(t) = 1105W-_ft/sec

5.1 Third Order Longitudinal Dynamics

5.1.1 Equations of Motion

As shown by Ramnath [30], the decoupled linearized perturbation equations of motion
of a VTOL during the transition valid in the vicinity of hover are given by:
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Table 5.1: VTOL Stability Derivatives

Stability Derivative Expression
-XU 0.2
-Zw 0.1 + 0.0004V

Z u  0.25V
_u 10+V

-Mq 0.1 + 0.0034V

-M 0.015 (-1 + )
-0.02 + 0.00025 150
0.005 + 0.015 (v)

S-(X + Mq) ii+(XuM-2X,)it+ (gM +XM, -X)u= 0

0- Xu +M+ u0+ (XuMq-qMqM +gMuO0

(5.1)

(5.2)

where u and 0 are perturbations in forward velocity and pitch attitude.
Note that since we are dealing with linear time-varying (LTV) system, the equation

describing the two state variables have different forms. This may lead to a different
stability behavior i.e. one of the states might be stable while the other might be
unstable. This phenomenon can not happen in the LTI system. In the LTI case, the
above equations will be the same.

Since the V is a function of time and the stability derivatives are functions of V,
they can now be written as functions of time and depend on the transition trajec-
tory. For a specific prescribed trajectory the decoupled equations for the perturbation
variables u and 0 are:

(1 + 0.1t) ii +(0.3 + 0.081t)ii + (0.02 + 0.01222t)/i + 0.48u = 0

(1 + 0.1t) 2 0 +(0.4 + 0.081t)(1 + 0.1t)O + (0.081 + 0.01833t

+0.00122t 2)O + 0.48(1 + 0.1t)O = 0

(5.3)

(5.4)
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5.1.2 Stability Analysis

The root locus method is again used to observe the stability behavior of the system.
Figure 5-1 and 5-2 show the variation of the root locus along the flight trajectory
starting from t = 0 to t = 150 sec. for the variable u and 0. In general they consist
of a pair of conjugate roots and one real root. In the beginning of the trajectory, the
conjugate roots lie within the right half plane making the system unstable. As the
VTOL transverses along its flight path, these roots move to the left and cross the
imaginary axis around t = 60 sec. From then on, all the roots are in the left half
plane and so the system is stable. Thus, in that segment of trajectory, the system
experiences a change in the stability behavior that happens around t = 60 sec.

Root Locus of variable u
0.8 1 I I I 1 I I

0 .6 ............

0.2 H . •

t=0

t-150

t=0 .....-

t=150

t=150

-0.2

-0.4 -

-0.6

-0.8
-1

Figure
o
x

-0.8 -0.6 -0.4 -0.2 0.2 0.4

5-1: Root locus variation for 3rd order VTOL longitudinal dynamics: var. u
beginning of the trajectory t = 0
end of the trajectory t = 150 sec.
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Root Locus of variable theta

t=O

:150

-0.8 -0.6

t=150

t=150

-0.4 -0.2

t=O

0.2 0.4

Figure 5-2: Root locus variation for 3rd order VTOL longitudinal dynamics: var. 0
o beginning of the trajectory t = 0
x = end of the trajectory t = 150 sec.
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wO out

wO out1

Figure 5-3: Simulation block diagram for perturbation variable u(t) and O(t) dynamics
of VTOL aircraft
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To get the time response behavior, the two decoupled perturbation equation are
then integrated using Runge Kutta fourth order method. SIMULINK block diagrams
for the simulation are shown in Fig(5-3). In finding the numerical solution, the
perturbation equation is rewritten in the following form:

U(3) + c 2 (t)u(2 ) + Cl(t) (1) + CO(t)U = 0

The time responses for different initial conditions for the perturbation variable u
are shown from Fig. 5-4 to Fig. 5-7 and from Fig. 5-8 to Fig. 5-11 for 0.

Figure 5-4: Time response of u

50 100
Time (second)

for 3rd order VTOL
u (0) - 1
i (0), ii (0) - 0

150

longitudinal dynamics model
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0 50 100
Time (second)

Figure 5-5: Time response of it for 3rd order VTOL longitudinal dynamics model
u (0) 1
S(0), ii (0) 0

0 50 100
Time (second)

Figure 5-6: Time response of u for 3rd order VTOL longitudinal dynamics model
it (0) 1
u (0), ii (0) =0
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Time (second)

Figure 5-7: Time response of it for 3rd order VTOL longitudinal dynamics model
it (0) 1
u (0), ii (0) - 0

From Fig. 5-4 to 5-7, we can observe that from the beginning of the trajectory
until reaching t = 60 sec. the perturbation variable u is divergent. This correspond to
the roots that are located in the right half plane. Afterwards, the roots move to the
left half plane and this is reflected in the convergent time response. Similar behavior
is also shown by perturbation variable 0. The corresponding time response behavior
for 0 is displayed in the following figures.
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20 40 60 80 100 120 140
Time (second)

Figure 5-8: Time response of 0 for 3rd order VTOL longitudinal
0 (0) 1
S(0), (0) 0

20 40 60 80 100 120 140
Time (second)

Figure 5-9: Time response of 0 for 3rd order VTOL longitudinal
9(0) - 1

(0),#(0) - 0

dynamics model

dynamics model
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20 40 60 80 100 120 140
Time (second)

Figure 5-10: Time response of 0 for 3rd order VTOL longitudinal dynamics model

(0)
(0), 0(0)

S1

20 40 60 80 100 120 140
Time (second)

Figure 5-11: Time response of 0 for 3rd order VTOL longitudinal dynamics model
0(0)
0(), 0 (0)

S1
- 0
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5.1.3 Neural Network for System Identification

The ANN is used to design a system identification for the 3rd order model of VTOL
aircraft longitudinal dynamics. Only the variable u behavior is considered since 0
practically exhibits a similar behavior. The same technique of learning and test of
robustness are used as for the GHAME vehicle case. The results are shown in the
following figures.

80

60

40

20-

time(second)

Figure 5-12: Neural Network Model

- I

for 3rd order VTOL, training without white noise
VTOL output
.Neural network model output

Fig. 5-12 shows the results of the training of neural network without adding any
white noise. The trained neural network is tested with the original system. The figure
shows the neural network accurately learns the dynamic of the system. The trained
network is then tested for the system with the presence of uncertainty. Fig. 5-13 and
Fig. 5-14 show the results of the test for 10% and 20% uncertainty in the system
respectively.

The second training of the neural network includes white noise. The variation of
c2 (t) along with its perturbed value is shown in Fig. 5-15. The result of the second
training and the test for the trained network are given from Fig. 5-16 to Fig. 5-
19. The results indicate that using the white noise during training can improve the
performance of the network in anticipating the presence of uncertainty.

106



VTOL AIRCRAFT DYNAMICS

o
0

-20

time(second)

Figure 5-13: Neural Network Model for 3rd order VTOL with 10% increase in 2 (t)
= VTOL with 10% increase in c2 (t)

- Neural network model output

time(second)

Figure 5-14: Neural Network Model for 3rd order VTOL with 20% increase in c2 (t)
- VTOL with 20% increase in c2 (t)
- Neural network model output
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Figure 5-15: Damping Coefficient c2 (t) with 20% uncertainty
- +20% uncertainty in c2 (t)
- 20% decrease in c2 (t)
- 20% increase in c2 (t)

........... - 10% increase in c2 (t)
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Figure 5-16: Neural Network Model for 3rd order VTOL, training with white noise
- VTOL output
- Neural network model output
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C

40-

20-

0/Z,.

time(second)

Figure 5-17: Neural Network Model
(training with white noise)

7- r

for 3rd order VTOL with 10% increase in c2 (t)

OT

Neural
with 10% increase in c2 (t)
network model output

time(second)

Figure 5-18: Neural Network Model for 3rd order VTOL with 15% increase in c2 (t)
(training with white noise)

- VTOL with 15% increase in c2 (t)
- Neural network model output
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time(second)

Figure 5-19: Neural Network Model for 3rd order VTOL with 20% increase in c2 (t)
(training with white noise)

VT)T, with 90 incrase in c(f

Neural network model output
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5.2 Fourth Order Longitudinal Dynamics

5.2.1 Perturbation Equation

The study of the longitudinal dynamics is also carried for the 3 degree of freedom
case. As shown by Ramnath [30], the decoupled equation for the perturbed variable
u is given by:

P4 u
(4) + p3 u (3) + p2 u (2) + pl u (1) + poU = 0 (5.5)

where

p4 = (10 + t) 3 (25 + 5t + t 2)(5 + 8t)

P3 = (100 + 29.25t + 8.85t 2 + 0.97t 3)(25 + 5t + t2)(10 + t)2 (5 + 8t)

P2 = 4(631.25 + 715t + 250.2875t 2 + 70.6175t 3 + 9.121t 4 + 0.8129t 5)(5 + 8t)

pi = 8(1483.75 + 644t + 152.4475t 2 + 20.85925t 3 + 1.4096t 4 + 0.07744t 5 )(5 + 8t)

po = 4.83(10 + t)(250 + 551.25t + 68.5t 2 + 41.95t 3 + 3.78t 4 + 0.25t 5 )

Note that in finding the numerical solution the equation needs to be rewritten as

U(4 ) + C3 (t)( 3 ) + C2(t)U(2) + C(t)U(1) + CO(t)u = 0

where the new coefficients are resulted from normalization by the coefficient p4.

5.2.2 Root Locus Analysis

The stability is analyzed using root locus method. Since we have two forms of V
variation and stability derivative M, variation, we have four possible root locus con-
figurations corresponding to the combination of V and M,. The combination is again
written for the sake of clarity.

-0.02 + 0.00025 150

SMw 0.005 + 0.015 (V)15 2

V (t) = 15otft/sec
2ft/sec
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Fig. 5-20 represents the root locus for the system using the first form of both Mt
and V. In the early phase of the trajectory, there are two real roots in the left half
plane and a pair of conjugate roots in the right half plane. As the time increases, the
conjugate roots move to the left half plane but at the same time one of the real roots
moves to the right half plane. The system is thus unstable. Fig. 5-21 represents the
root locus for the system using the second form of V and the first form of M,. The
system exhibits the same stability behavior as that of the first case. Therefore, the
system is also unstable.

Root Locus for 4th order Longitudinal of VTOL motion
AR

0.6 .......

0I

-0.6

-U.5
-2.5 -2 -1.5 -1 -0.5

Re
0 0.5 1 1.5

Figure 5-20: Root
and M, (1)

locus variation for 4th order VTOL longitudinal dynamics: V(1)

beginning of the trajectory t = 0
end of the trajectory t = 50 sec.

Fig. 5-22 describes the root locus for the system using the second form of both
M, and V. The system is unstable in the early period of trajectory. This is shown
by the presence of conjugate roots in the right half plane. However, these roots move
to the left half plane when the vehicle moves along its trajectory. As a result, the
system changes from the unstable to the stable condition.

Finally, Fig. 5-23 represents the root locus of the system using the first form of
V and the second form of M,. The behavior is the same as that of the previous
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Root Locus for 4th order Longitudinal of VTOL motion

OF )i .- .. .

-2

S -:..... .......................... ..

• ' " . . . .......... . .

...... . ... . .. ..........

Figure 5-21: Root
and Mw(1)

locus variation for 4th order VTOL longitudinal dynamics: V(2)

o
x

beginning of the trajectory t = 0
end of the trajectory t = 50 sec.

case. Note that the 4th order VTOL dynamics model exhibits a unique phenomenon.
It is characterized by the presence of drastic change in the topology of the solution
shown in all of the above root locus. The location in the root locus at which this
phenomenon happens is called the turning point. For the first two cases, it happens
in the positive real axis around point 0.25. The phenomenon is characterized by a
jump in the root locus branches. In the later two cases, the turning point happens in
the negative real axis around point -0.5. This is the point where the two real roots
in the negative real axis meet and then break up into two parts. This translates into
changing the behavior from exponential to oscillatory.

For further analysis, the time response for the above root locus is generated. To
specifically observe the turning point, only the latest case is considered. The time
responses for different initial conditions are given in Fig 5-24 to Fig. 5-27. We observe
some peculiarities in the time response around t = 12. This phenomenon corresponds
to the turning point.
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Root Locus for 4th order Longitudinal of VTOL motion

114

Figure 5-22: Root locus variation for 4th order VTOL longitudinal dynamics: V(2)
and M,(2)

o beginning of the trajectory t = 0
x end of the trajectory t = 50 sec.

Root Locus for 4th order Longitudinal of VTOL motion
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Figure 5-23: Root locus variation for 4th order VTOL longitudinal dynamics: V(1)
and M (2)

o beginning of the trajectory t = 0
x - end of the trajectory t = 50 sec.
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5 10 15 20 25 30 35 40 45
Time (second)

Figure 5-24: Time response of u for 4th order VTOL longitudinal dynamics model
U (0)
i (0),

5 10 15 20 25 30 35
Time (second)

40 45 50

Figure 5-25: Time response of it for 4th order VTOL longitudinal dynamics model
u (0) = 1

(0), ii (0), ii (0) -
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Figure 5-26: Time response of u for 4th order VTOL longitudinal
it (0) - 1
u(0), i(0), ii (0) 0

dynamics model
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Figure 5-27: Time response of it for 4th order
i (0)
u (0), i (0), ii (0)

VTOL longitudinal dynamics model
= 1
= 0
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5.2.3 Sensitivity Analysis

The sensitivity equation of the 4th order VTOL aircraft dynamics can be derived
starting from the general equation of motion:

(4) + C3 (t)( 3) + C2 (t)u(2) + CI(t)u( 1) + CO(t)u = 0

Following the similar technique as for the GHAME sensitivity analysis, the equa-
tion is rearranged to include the sensitivity variable s . And the final result can be
written as:

s(4) = - S -C2 - ClS - COS - C3p U -C2-p - Clp - COpU

The sensitivity of the longitudinal dynamics to all of the stability derivatives
is studied. In solving the differential equation, we need to first calculate the partial
derivatives of the time-varying coefficients c's with respect to the stability derivatives.
As an illustration, the partial derivatives for Mq and M, can be calculated as:

Oc3
= -1

dMq

SMq Mw,

0c M ±
c1= -XuZ - M Xu + 2X,

OMq M
dco M,= -x + x,

dc 3  _yL

OMW MM 2

=C - X,

aci M M
M =VX, + XM, - 2Xu M

O gZU + g MWM --- M + X,(V + Mq) - ku

OMw mW2 w2 MW 2
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The results of the sensitivity analysis are shown in the following figures. From the
figures, we can observe that the longitudinal dynamics is most sensitive to M, and M,.
Both are in the order of 102. The other stability derivatives do not give substantial
effect to the longitudinal dynamics. In particular, the longitudinal dynamics is least
sensitive to X, i.e. the variation of this stability derivative is not significant.

0 5 10 15 20 25 30 35 40 45 50
Time (second)

Figure 5-28: Sensitivity of 4th order VTOL longitudinal dynamics to X,
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0 5 10 15 20 25 30 35 40 45
Time (second)

50

Figure 5-29: Sensitivity of 4th order VTOL longitudinal dynamics to Z,

20 25 30 35
Time (second)

Figure 5-30: Sensitivity of 4th order VTOL longitudinal dynamics to Mu
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Figure 5-31: Sensitivity of 4th order VTOL longitudinal dynamics to Z,,

0 5 10 15 20 25 30 35 40 45 50
Time (second)

Figure 5-32: Sensitivity of 4th order VTOL longitudinal dynamics to M,
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Figure 5-33: Sensitivity of 4th order VTOL longitudinal dynamics to Mq
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Chapter 6

Neural Networks Application for
the Control of a Time-varying
System

This chapter describes the implementation of a neural network for control. As we are
dealing with time-varying systems, the notion of on-line learning is first presented. It
is critical when we use neural networks for system identification in the control system
architecture such as in the indirect adaptive control scheme. In that case, the success
of the control scheme will depend largely on the performance of the system identifi-
cation networks (neural network model). As will be shown later, the neural network
model in that scheme acts as a teacher that trains the neural network controller to
generate a certain desired control command. To evaluate the performance, the neu-
ral network controller is compared to two different techniques i.e. PI controller and
adaptive controller.

6.1 On-line Learning

6.1.1 Why On-line Learning?

We learn from the previous chapters that in dealing with dynamic systems we can
no longer rely on the use of an off-line training. The backpropagation method, dis-
cussed in Chapter 1, is simply an efficient method for calculating derivatives of a
single target quantity (such as pattern classification error) with respect to a large set
of input quantities (such as the parameters or weights in a classification rule). An
extension of the backpropagation method is therefore necessary to deal with systems
with time-varying parameters or operating in changing environments. The backprop-
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agation through time allows us to calculate the derivatives needed when optimizing
an iterative analysis procedure, a neural network with memory, or a control system
which maximizes performance over time [8]. Note that the off-line learning described
in Chapter 1 is still useful and relevant to the whole problem of system identification
and control. First, it establishes the basis for the training of a multi-layered network
and describes how the ordered derivatives are used to calculate the error. Secondly,
it is often advantageous to train the networks off-line prior to permitting them to
perform an on-line learning during real operation.

6.1.2 Backpropagation Through Time [15]

The backpropagation technique is described using a one-layer recurrent network as
shown in Figure 6-1. The feed-back block represents the discrete transfer function
that delays its input (the output of the network) by one sample interval. All elements
of an input are delayed by the same sample delay. The definition of z - 1 is given by
the z-transform below [1]:

Z [6 (t - kT)] = z - 1 (6.1)

where k is any integer and T is the sampling time.

Dis. Transfer Fcn

Figure 6-1: N-feed-forward multilayer neural network, z - 1 - time shift operator

The network can be described by the following state equations:

y(t + 1) = G(y(t), u(t))
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where G is non-linear mapping and u is control input. Figure 6-2 presents a block
diagram of a system which can be described by Eqn. 6.2.

Backpropagation Through Time

u(tl)

y(tl)
01ii

1st layer

G

u(t2)

y(t2)

2nd layer

G
tf-th layer

G
y(tf)-1

Figure 6-2: Structure of backpropagation through time

The objective of learning in dynamic networks is to present a suitable algorithm
to follow a desired trajectory over time (to, tf). For simplicity we shall concentrate
only on discrete-time systems. The error is defined as

t = to, to + 1,..., tf

where y (t) denotes the system output at the time instant t.
The performance criterion is defined as

1 tj
J = 2 E T (t) E (t)

to

(6.3)

(6.4)
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The idea of backpropagation through time is to unfold the network through time,
i.e. replace the one-layer recurrent feed-forward network with tf layers (see Fig. 6-2)
represented by the same neural network modeling the mapping G.

It follows from Eqn. 6.4 that

DJ (W) 1 t ( aE (t)
S 2 E T (t) (6.5)

w 2to

The derivatives wt of the errors at the subsequent time instants with respect
to the weight wi can be computed by applying a static back-propagation scheme
(given in Chap.1) at each time instant based on the input produced at the previous
time instant and the error corresponding to this time instant. For more complete
derivation, the reader can refer to [15] and [8].

6.2 Neural Networks for an Online System Iden-
tification

6.2.1 Motivation

It was seen in Chapter 2 that flight vehicles generally exhibit time-varying dynamic
properties. Most of them result from plant non-stationarity, non-linearity and random
disturbances which affect the plant behavior in the following way:

* Non-stationary. The plant is called non-stationary if its dynamics change in
time, e.g. as a result of ageing effects after being in operation for a long time.

* Non-linear. If the plant is non-linear then the dynamic properties of its lin-
earized model are different in the vicinity of various steady-state points ( in
normal operating conditions the steady-state point changes).

* Stochastic. Stochastic models are used to represent the disturbances acting at
the plant output because of the large number and different nature of the factors
disturbing the normal plant operation [15].

All the above factors essentially can exist in the operation of the two flight vehicles
that we consider in this work. We have observed that the dynamics of those vehicles
are described by time-varying differential equation. This factor alone has made the
design of control techniques for such system difficult. Others include disturbances
affecting the plant, improper plant model structure or a change in the plant param-
eters. To design a robust control system, we need a system identification approach
that has the capability to capture all changes in the plant parameters.
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6.2.2 System Identification for VTOL using Neural Networks

The XC-142 aircraft is taken as the plant to be identified. Note that the neural
networks do not need the precise representation of the system. The networks can
learn the dynamics of the plant by searching the functional relationship between
the input and output of the plant. For this purpose, the dynamics of the XC-142
aircraft is represented by the discrete dynamic relation between input uc and output
perturbation velocity u given as:

u (i) = f (u (i - 1),u (i - 2), ... , u (i - nA), (6.6)

uc (i - 1 - k) , uc (i - 2 - k) , ... , u (i - nB - k)) (6.7)

where i denotes discrete time and f is an unknown function to be learned by
neural networks. The number of input neurons is given by nA + nB and k refers
to additional discrete-time delay. For our case, nA and nB is taken to be 3 and
1 respectively. And we assume k = 0. Ten hidden neurons are used in the neural
networks model. The structure of the networks is given by Fig. 6-4. Note that input
and output neurons generally use linear activation function. Following the notations
we used in Chapter 1, we can derive the equation that relates the output and inputs
of the neural networks model. Neuron i and the layer j is defined by xj,i. We have
15 neurons in the networks.

xl, i = uc (t - i), i = 1 (6.8)

zxl,i = u (t - i), 2 < i < 4 (6.9)
4

Oi = Z Wi,kXl,k, 4 < i < 14 (6.10)
k=1

Y = (6.11)

10

U (t) = X3,15= 1 Wi,kk+4, i = 15 (6.12)
k=1

The dimension of the weights matrix relating the input layer and hidden layer is
10 x 4 and that of the one relating hidden layer and output layer is 10 x 1. As an
illustration their initial values are given in the two matrices below:

Weight matrix relating the input neurons and hidden neurons:

0.6762 0.6614 0.0150 0.4558
0.5139 0.4018 0.2742 0.8171
0.7286 0.6056 0.6430 0.0221
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0.7208 0.9865 0.5461 0.1607
0.9448 0.1504 0.9178 0.7069

0.4607 0.6701 0.2666 0.7078
0.9402 0.3438 0.9701 0.4366

0.3216 0.5417 0.2467 0.5824
0.4604 0.5228 0.8440 0.7517

0.5171 0.8292 0.6940 0.9915

Weight matrix relating hidden neurons and output neuron:

0. 6957
0.2795

0.7539
0.1712
0.0043

0.4957
0.0799
0. 1631
0.9033

0.7830

The XC-142 aircraft is simulated for 150 second during which the aircraft experi-
ences a transition from unstable hover into stable forward flight. The neural network
is used as a recursive (on-line) identification scheme. The effects of some learning
parameters are investigated. Those include the learning rate, the number of hidden
neurons and the activation function for the hidden neurons. The performance of
the neural network model is evaluated by the mean square error (MSE) between the
actual output and the estimation from the model. However, it turns out that this
measure alone does not give sufficient guarantee to the overall model performance.
Thus, the evaluation must include the actual behavior of the model in tracking the
true dynamics of the system. Figure 6-5 through Fig 6-10 present comparison of the
neural network model performance for different learning rates. The simulation is done
with the same network structure using ten hidden neurons with sigmoidal activation
function. Table 6.1 summarize the MSE comparison. The table indicates that the
higher learning rates can give lower MSE. However, as can be observed from Figure
6-9 and 6-10, the network model might exhibit unfavorable behavior if the learning
rate is too high. This phenomenon is not uncommon in the system identification and
can be explained by the fact that for high learning rate, the model tends to give too
confident an estimate resulting in an overshoot.

The effect of the number of the hidden neurons used in the networks is shown by
Fig. 6-11. The MSE comparison is given by Table 6.2. The number of hidden neurons
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Figure 6-3: System Identification Scheme
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Figure 6-4: Structure of Neural Networks Model
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Table 6.1: Mean Square Error comparison for

Hidden sigmoidal neuron # Learning rate
10 0.07
10 0.1
10 0.17
10 0.2
10 0.4
10 0.5

different learning rates

Mean Square Error
2.746 x 10- 4

3.1625 x 10- 4

2.1892 x 10- 4

2.1877 x 10- 4

1.6435 x 10- 4

1.6186 x 10- 4

Table 6.2: Mean Square Error comparison for different number of hidden neurons

Hidden sigmoidal neuron # Learning rate Mean Square Error
3 0.2 1.4282 x 10-4
5 0.2 2.0391 x 10- 4

10 0.2 2.1870 x 10- 4

15 0.2 1.5862 x 10- 4

20 0.2 4.8398 x 10- 4
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Table 6.3: Mean Square Error comparison for different activation function

Hidden neuron Learning rate Mean Square Error
sigmoidal function 0.2 2.187 x 10- 4

linear 0.2 19.831 x 10- 4

affects the performance of the system identification in a subtle way. From the table
we notice that the more neurons used does not always give better performance. In
fact, for the case of 20 hidden neurons we get degrading performance reflected both
in the MSE and in the noisy networks output. There is a common agreement among
researchers that the number of neurons used is mainly dictated by the nature of the
plant. As a general rule, the figure between as many and twice as many as the number
of input neurons will be sufficient for a good system identification performance. Note
that low number of hidden neuron can sometime give an acceptable low error. How-
ever, we must consider the possibility that the system might be underrepresented.
This can lead to unfavorable situation if the system parameter changes beyond the
networks identification capability. Finally, we must note the effects of the activation
function. In general, sigmoidal function gives a wider region of system representation.
Table 6.3 give the error comparison between the networks using sigmoidal function
and linear function. Notice that linear time-varying system requires nonlinear repre-
sentation of neuronal activation function to give an acceptable neural network model
performance.
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Figure 6-5: ANN for an Online System Identification of VTOL dynamics
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Figure 6-11: ANN for an Online System Identification of VTOL dynamics
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Now, we want to examine the robustness of the system identification in response
to changes in plant parameters. We will test how the networks can cope with a drastic
change in the dynamic of VTOL during transition. In reality, it can correspond to
some unknown problems in the rotor system. The problem is emulated by the change
in the stability derivatives. For our purpose, we choose the stability derivative M" for
problem emulation due to its profound effect on the vehicle stability. It is assumed
that a new problem arises at t = 50 second. This is represented by a drastic change
in M, described by Fig. 6-13. The expression for M, is given as:

0.015 (-1+ v1) 0 < t < 50

-Mu - 1 o (6.13)
0.0015 -1 + v-K 50 < t < 150

The neural networks model with 10 hidden sigmoidal neurons is now used to
identify the system on-line. The performance of the neural networks in coping with
the change in plant parameter Mu is shown in Fig. 6-14. It is shown that the networks
can successfully capture the change in the dynamics. This feature is essential for the
success of designing a robust control system that can cope with all changes in the
plant parameters as will be shown in the next section.
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6.3 Neural Networks for the Control of VTOL Air-
craft

This section elaborates the use of neural networks for the control of VTOL aircraft. To
cope with the change in plant parameters, indirect adaptive control scheme is chosen
as the candidate. In this scheme, neural network is used both as system identification
and controller. The neural networks model that has been designed previously is used
as the system identification.

6.3.1 Indirect Adaptive Control (IAC) Scheme

Models of dynamic system and their inverses have immediate utility for control. In
this work, we assume that such models are available in the form of neural networks the
structure of which has been outlined above. However we will just focus on one possible
architecture of control system involving neural networks. It is beyond the scope of this
thesis to provide a complete survey of all neural network based architecture available
in the literature. The scheme that we are interested in uses neural network model as
a mean of training the neural network controller. Figure 6-15 describe the schematic
diagram of the so-called indirect adaptive control. We take the XC-142 as the plant to
be controlled. For the sake of simplicity, we just observe the dynamics of perturbation
velocity u.

In this approach a neural network model provides a prediction of a plant's future
response over a specified state horizon. The predictions are supplied by the network
as passed to numerical optimization routine which attempts to minimize a specified
performance criterion in the calculation of a suitable control signal. The control signal
uc is chosen to minimize the quadratic performance criterion which compromises
between the tracking error and the control cost:

N2  N2

J = u (r(t + j) - U (t + j))2 + Aj (uc (t + 1) - uc (t + j - 2)) 2

j=N1 j=1 (6.14)

Here the constants N1 and N 2 define the horizons over which the tracking error
and control increments are considered. The values of A are the control weights. Once
the iterative optimization algorithm finds the optimal solution uc it is applied to the
plant. The actual value of the plant output up is measured and jointly with the
reference signal r it is sent to the neural network controller. This network is trained
to produced the same control output uc as the optimization routine. As the result
the nonlinear feedback control law is obtained. Using the above scheme, the control
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to stabilize the VTOL XC-142 during transition is developed. The parameters N
and N 2 are taken to be 1 and 4 respectively. The reference signal is square wave with
frequency of 0.1 and amplitude of 0.01ft.. The results are presented in the following
section.

6.3.2 Simulation Results

This section summarizes and discusses the results of the indirect adaptive control
employing neural networks for XC-142 during transition. The performance of the IAC
system is shown in Figure 6-16. After approximately 20 seconds the control system
can successfully track the reference signal. To observe the tracking performance
the comparison between the reference signal and the VTOL output is shown for
the time period after 20 seconds as shown in Fig. 6-17. The figure presents the
tracking performance and the amount of control input to achieve it. To investigate
the robustness of the control technique some unfavorable factors are introduced into
the system. The factors represent realistic aircraft dynamics problems. First factor
taken into account is the possibility of the change in plant parameters. This has
been emulated in the previous system identification design by the presence of the
unprecedented change in Mu during the transition. Now, the IAC is used to cope with
the presence of this change. The result is shown in Fig. 6-18. The figure indicates
that the IAC can handle the change in system parameter well. We note that this
is the advantage of having the system identification that can capture all changes in
the plant parameters. Further robustness test includes the time lag introduced in the
system besides the change in parameter. The result is depicted in Fig. 6-19. It is
shown that the IAC system can cope with change in Mu and time lag simultaneously.
Figure 6-20 shows how the IAC system cope with the change in plant parameter
together with noise in the sensor system. The noise causes a slight disturbance to the
tracking performance especially when the change in M, happens at t = 50 seconds.
However the IAC system still works with only gracefully reduced performance.
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Figure 6-16: Result of IAC for VTOL during Transition
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Figure 6-17: IAC for VTOL during Transition
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6.3.3 Comparison with Conventional PI and Adaptive Con-
troller

Performance Measures

To evaluate the advantages of IAC employing neural networks, the proposed scheme
is compared with two other approaches. For our study, the comparison is made
to conventional PI controller and adaptive controller. Note that there are many
performance measures which effectively give a grade for how well the control system
is performing. A list of possible functions is given below. The example functions
listed are mean square integral evaluations.

Displacement Error Squared. This error is obviously of importance since it shows
how well the system is tracking the reference command.

1 ti2
1 t (r - y)2 dt (6.15)

tl - to to

Reference Model Displacement Error. This is the requirement for the IAC type
controller.

e 1  (eM) 2 dt (6.16)
tj - to at,

Ride Discomfort Error. This is the function that measures the ride discomfort,
or similarly the fatigue loading on the system. These are clearly desirable to
minimize in some applications (like AFCS for commercial airplanes) but are not
important in others. The function expresses the integral square deviation of the
load factor from 1.0.

1 t (1.0 - nf) 2 dt (6.17)
tl - to to

Control Energy. This is an important measures in particular for spacecraft systems
and missile systems. Minimizing this value means that actuators are not used as
much, so the control system is not using as much energy. Note that we use the
square of time derivative of the control signal since the energy is proportional
to the square of rate of displacement.

1 () dt (6.18)

11 - to Jto
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Survival/Time Error. This class of error functions is somewhat specialized quan-
tity. For instance, a pole balancing control system has an error based on how
long it can stay upright, as well as the displacement error [33].

S= H (t) dt (6.19)

H1 if pole upright
H (t) = 0 pole fallen (6.20)

Similarly, a missile control system could use an error signal based on how quickly
it finds its target.

E = H (t) dt

H (t) 1 target lost
H (t) = 0 target found

Control System Performance Comparison

This section contains the performance comparison between the control system schemes
in term of two error measures. The function that measures the tracking performance
and the function that gives the corresponding control power used are chosen as the
error measures. We define them as el and E2:

E =ti (r - y) 2 dt (6.21)
t1 - to to

E2 ti (it) 2 dt (6.22)
tj - to to

The block diagrams of the PI and adaptive controller scheme are given in Fig.
6-21 and Fig. 6-22, respectively.

The result of simulation of PI controller and adaptive control scheme for different
conditions are shown in Fig. 6-23 - Fig. 6-27. As shown in the Fig. 6-23 and
Fig. 6-24, in general PI controller can not work with a time-varying system. The
task of the control system is to drive the system output to follow a certain reference
signal. The reference signal in this simulation is defined as the square wave signal
with the frequency of 0.1 and an amplitude of 0.01. Even for the nominal case where
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Figure 6-21: SIMULINK block diagram for PI controller

change in plant parameter, time lags, and noise are not introduced, PI controller
exhibit unacceptably low tracking performance. The output of the plant fails to
follow the square wave reference signal. The worse case happens when an unfavorable
disturbance is presented into the system. Based on the simulation (see 6-24), PI
controller drives the system to an unstable condition when change in plant parameter
is introduced. Thus, the direct use of PI controller is not recommended for such a
system. We have to note that this does not indicate that PI controller is not useful
for controlling a time-varying system. The useful application will depend on how we
introduce the algorithm for adjusting the gain of the PI controller. Ref. [7] is an
example of how nonlinear neural network can be utilized for the auto-tuning PI(D)
controller.

Fig. 6-25 - Fig. 6-27 presents the result of adaptive control simulation. The algo-
rithm for the adaptive control simulation is given in Ref. [15]. The results indicate
that the adaptive control can cope with time-varying system. The change in plant
parameter as well as the time lag are handled successfully. The noise causes the
tracking performance degradation whilst overall system is still performing adequately
well. The comparison using error measures is summarized in Table 6.4 and 6.5 for
nominal case and for case with the change in plant parameter Mu. With respect to
IAC (using ANN) and adaptive control performance, the comparison suggests that
despite the better tracking performance the adaptive control requires much higher
control power.
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Figure 6-22: SIMULINK block diagram for adaptive control

Table 6.4: Error Comparison (No change in parameters)

Controller E1 E2
PI 6.5571 x 10- 4 1.161 x 10-

Adaptive Control 3.7772 x 10- 5  309.2974
IAC with ANN 4.8433 x 10- 5 0.0926

Table 6.5: Error Comparison (change in M,)

Controller E1 C2

PI 6.9355 x 103 0.0812
Adaptive Control 3.7528 x 10- 5 309.2976
IAC with ANN 4.9017 x 10-5 0.0926
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Discussion and Conclusions

7.1 Discussion and Conclusions

7.1.1 Time-varying System

The study of flight vehicle dynamics is in general involved with the problem of
non-linear time-varying differential equations. Linearization procedures justified by
Poincare - Lyapunov theorem are usually used, resulting in a simpler system as an
acceptable representation of the original system. If the system is time-varying, how-
ever, the dynamics analysis must be conducted carefully as this type of system exhibits
some peculiar behaviors not present in the linear time invariant case. Some of the
most distinct feature is that the location of the characteristic roots does not neces-
sarily describe the stability of the system. Some time-varying systems might also
exhibit a turning point phenomenon. This is characterized by a drastic change in the
topology of the solution of the corresponding differential equation.

The differential equation of an LTV system does not, in general, have an ex-
act solution. The approximation to the exact solution can be done analytically and
numerically. In practice, these two approaches have their own advantages and disad-
vantages. The analytical solution gives a better understanding of the related physical
phenomena but maybe mathematically demanding. The numerical method, thanks
to the rapid development of the number-crunching computer can give a quick and
easy approximation to the solution. However this technique is not related directly
to the physical understanding of the problem. We should note here that there has
been some effort to combine the advantage of the analytical approach and the numer-
ical method. For time-varying and nonlinear systems, the generalized multiple scales
(GMS) method [28] is a good example of such an approach.
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7.1.2 GHAME Vehicle Dynamics

The GHAME vehicle model provides a realistic representation of an advanced flight
dynamic problem. The reentry problem in particular exhibits a rich dynamic phe-
nomenon where many factors such as thermal effects and aerochemistry are involved.
In all reentry modes, there are two overriding technical concerns - maximum decel-
eration and aerodynamic heating. With regard to reentry of manned space vehicle
there is an extra consideration. The vehicle must follow a certain trajectory between
overshoot boundary where it will go shooting past back into outer space; and under-
shoot boundary where maximum deceleration will be too large. Consequently, there
is a narrow reentry corridor into which the vehicle must be guided for a successful
return to the earth's surface.

For an analysis of a space vehicle, the reentry problem can be broken into two
parts. First is the motion of a center of mass of the vehicle following a certain bound-
aries as described above. This is often treated as an optimization problem. The second
part is studying the stability of the flight vehicle as it moves along the optimized tra-
jectory. In this work, the reentry dynamics was examined along a trajectory which
was originally designed to minimize the thermal-protection-system (TPS) weight of
the Space Shuttle Orbiter 049 vehicle [27].

Second order angle-of-attack perturbation model was developed using an appro-
priate transformation of variable to the equation of motion. The original equation
of motion is simplified into a linear variable coefficient differential equation. The
variable coefficient is a function of GHAME vehicle geometry and trajectory param-
eters and aerodynamics stability derivatives. The trajectory parameters are given as
the variation of angle-of-attack a, flight path angle y, flight speed V and altitude h.
And aerodynamic derivatives are given as a function of two variable, Mach number
M and a. The stability analysis is done by root locus technique and time response
analysis. A pair of conjugate roots move from locus near zero to the left half plane.
The root locus construction indicates that as the vehicle moves along the trajectory,
the frequency and the damping of the motion increase. A noticeable increase occurs
in the early phase of the trajectory. The time response analysis confirms that the
perturbation variable a oscillation has an increasing frequency at the early stage.
The sensitivity analysis is carried to observe the effect of aerodynamic parameter to
the longitudinal dynamics. The results show that the longitudinal dynamics is most
sensitive to Cm, and Cm,. The GHAME vehicle sensitivity to variation of those two
parameters was found to be 14 times as high as change in CL. and 5000 times as
high as variation in CD. Variation of CLo and CDo was found to be negligible. In
the analysis of stability and control, greater attention must be given to the most
influential parameter such as Cm, and Cm, since they affect the stability more than
any other parameters.
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A fourth order longitudinal and lateral-directional reentry dynamics were also
analyzed. The approximate solution is predicated on the assumption that the flight
conditions are slowly varying. The root locus configuration for the longitudinal case
indicates that there is a conjugate roots around zero and there are two real roots in
the left half plane. The conjugate roots represent a phugoid mode, characterized by
lightly damped low frequency motion. Along the trajectory, this frequency increases
as seen by the roots moving upward (downward). The time response shows the stable
oscillation with a slight frequency increase in the early stage.

The lateral-directional reentry dynamics was predicated on the same approach as
its longitudinal counterpart. The root locus diagram shows that in the early phase
of the trajectory there is a pair of conjugate roots located in the left half plane. In
the standard flight dynamics analysis, this pair of roots corresponds to the dutch-roll
mode which is characterized by high frequency and lightly damped motion. The other
roots are real and are located near zero and in the right half plane, respectively. As
the GHAME vehicle transverses along the trajectory, the dutch-roll-like roots move
further to the left with substantial increase in frequency. The root near zero moves to
the left half plane but the other one moves further to the right resulting in unstable
behavior. The time response verifies that the lateral-directional motion of GHAME
vehicle is unstable.

7.1.3 VTOL Aircraft Dynamics

Like the problem of reentry dynamics, the VTOL aircraft dynamics exhibit some
distinct phenomena. The vehicle flight involves two different segments: hover (like
a helicopter) which is dynamically unstable and the forward flight which is stable.
In this work, the dynamics of XC-142 aircraft based on a prior study at Princeton
was examined. The stability derivatives appearing in the perturbation equation are
assumed to be a function of the flight velocitiy V. The analysis was done for two
different forms of velocity variation and stability derivative M, variation.

In the 2 degree of freedom approximation, the plunging or vertical motion is sup-
pressed and the resulted equation for drag and moment can then be decoupled. The
approach leads to the independent perturbation equation for variable u and 0. The dif-
ferential equations have a variable coefficient mainly as a function of stability deriva-
tive and flight velocity. The velocity is given as a function of time, therefore the final
representation of the perturbation equation is a third order time-varying differential
equation. The root locus diagram for both perturbation variables reveal that the
trajectory begins with unstable motion (hover) indicated by a pair of unstable roots.
As the time increases, the unstable roots move quickly to the left half plane. The
time response analysis justifies that in the early phase of the trajectory, the motion
is unstable. After approximately 60 sec. the divergent motion ceases and the sys-
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tem exhibits stable behavior. In principle the result shows how the VTOL dynamics
behave during transition from hover to the forward flight.

The complete 3 degree of freedom analysis involves the intricate turning point
phenomenon. For simplicity, only the perturbation variable u was examined. The
perturbation equation is in the form of 4th order time-varying differential equation.
The root locus diagram displays the turning point phenomenon i.e. there is change in
the topology of the solution of the dynamic system. Such phenomenon occurs when
there are multiple characteristic root. This happens around t = 12 seconds.

7.1.4 The Use of Neural Networks

Judging from its increasingly popular use in the realm of dynamic and control, neural
network is intended to be used as system identification for the system under study.
In this work, a static type of network is considered to be a precursor of further study.
This implies that the learning process of the dynamic system is done off-line. In this
case the data for the training is first obtained via simulation of the vehicle model.
Upon gaining the data, the network is then trained using selected input and output
pairs called patterns. During training the neural network must predict the behavior
of the true system. The test is then done to observe the network performance in
learning the system dynamics. In general the network shows an accurate prediction of
the vehicle dynamics. However, the test by changing the plant parameters, indicates
that the trained network can only cope with a slight uncertainty (below 10%). For
the presence of a higher uncertainty in the system a different training technique is
necessary. It can be said that in general on-line type of learning will be necessary to
handle the system which is not only time-varying but also contains uncertainties.

The online learning scheme design is presented in Chapter 7. It is motivated by
the need to have a system identification that can capture all possible changes in the
system. These changes may stem from disturbances affecting the plant, improper
plant model structure and a change in plant parameters. The design of the neu-
ral network system identification includes the investigation of the networks structure

(number of hidden neuron), class of activation function and learning rate parameter.
The design is concluded with the neural network model with the optimum number
of sigmoidal hidden neuron with moderate learning rate of 0.2. Based on the simula-
tion results, the neural network model is performing well after only a few second in
operation without any prior off-line training.

The IAC was designed using the available neural network model. The results
indicate that the IAC can cope with various realistic problem including plant param-
eter changes, time lags, and noise. Comparison with two different approach (PI and
adaptive control) was based on two error measures each corresponds to the tracking
performance and the required control power. Overall comparison suggests that IAC
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Table 7.1: Some of advantages and disadvantages of using ANN for AFCS

Advantages
Noise and disturbances robustness
Nonlinear capability
'Intelligent' control possibilities
Faster computation due to paralellity
Fault tolerance capability
Simple, easy integration
'Natural' control

Disadvantages
Not well understood
No proven closed loop performance
'New' technology
May require a lot of simulation
Lack of design tools

system exhibits more favorable performance reflected by the adequate tracking per-
formance with a low required control power. We have to note that serial simulation of
the neural networks did not allow exploitation of the speed benefits, but a flexibility
in software and ease of integration was enjoyed.

With respect to AFCS, Artificial Neural Networks are so versatile and interesting
that they undoubtedly have found many applications. For current using this ap-
proach, there are both advantages and disadvantages that we have to consider. Some
of them are listed in Table 7.1.

7.2 Recommendations for Further Work

The following is suggested as the area of further research pertaining neural network
application and the analysis of flight vehicle in general.

* Investigate the 4th order model of the GHAME vehicle using direct integration
of the nonlinear time-varying equation. This will give a true behavior of the
system.

* Determine the handling qualities of the GHAME vehicle and VTOL aircraft.

* Investigate other control algorithm using Neural Networks for an AFCS such
as internal model control (IMC), self-tuning controller and heuristic reference
adaptive critic (HRAC)

* Determine fault tolerance of neural networks

* Investigate ways of using neural networks in BITE and FDIE systems
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Figure A-22: Aerodynamics coefficient CLLR as a function Mach number M
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Figure A-24: Aerodynamics coefficient CLNB
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Figure A-26: Aerodynamics coefficient CLN.DA as a function Mach number M
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Figure A-27: Aerodynamics coefficient CL,,R as a function
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Figure A-28: Aerodynamics coefficient CLNDR as a function Mach number M
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Figure A-29: Aerodynamics coefficient CLN as a function of angle of attack a
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Figure A-30: Aerodynamics coefficient CLN, as a function Mach number M
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Figure A-32: Aerodynamics coefficient CLNR as a function Mach number M
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THREE-DIMENSIONAL AERODYNAMICS DATA

CLLB as function of Mach and Angle of Attack

X 10 - 3

Alpha (degree) -10 0
Mach

Figure B-1: Aerodynamics coefficient CLLB as a function of angle of attack a and
Mach number M
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CLLDA as function of Mach and Angle of Attack
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Figure B-2: Aerodynamics coefficient CLLDA as
Mach number M

a function of angle of attack a and
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THREE-DIMENSIONAL AERODYNAMICS DATA

CLLDR as function of Mach and Angle of Attack

x 10- 4

Alpha (degree) -10 0
Mach

Figure B-3: Aerodynamics coefficient CLLDR
Mach number M

as a function of angle of attack a and
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THREE-DIMENSIONAL AERODYNAMICS DATA

CLLP as function of Mach and Angle of Attack

Alpha (degree) -10 0
Mach

Figure B-4: Aerodynamics coefficient CLLP as a function of angle of attack a and
Mach number M
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CLLR as function of Mach and Angle of Attack

0.1
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0.06.
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30
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Figure B-5: Aerodynamics coefficient CLLR as a function of angle of attack a and
Mach number M
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THREE-DIMENSIONAL AERODYNAMICS DATA

CLNB as function of Mach and Angle of Attack

x 10 3

Alpha (degree) -10 0
Mach

Figure B-6: Aerodynamics coefficient CLNB as a function of angle of attack a and
Mach number M
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THREE-DIMENSIONAL AERODYNAMICS DATA

CLNDA as function of Mach and Angle of Attack

x 10 - 4

Alpha (degree) -10 0
Mach

Figure B-7: Aerodynamics coefficient CLNDA as a function of angle of attack a and
Mach number M
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CLNDR as function of Mach and Angle of Attack

x 10-3
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Figure B-8: Aerodynamics coefficient CLNDR as a function of angle of attack a and
Mach number M
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THREE-DIMENSIONAL AERODYNAMICS DATA

CLNP as function of Mach and Angle of Attack

-0.1
30

Alpha (degree) -10 0
Mach

Figure B-9: Aerodynamics coefficient CLNP as a function of angle of attack a and
Mach number M
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THREE-DIMENSIONAL AERODYNAMICS DATA

CLNR as function of Mach and Angle of Attack

Alpha (degree) -10 0
Mach

Figure B-10: Aerodynamics coefficient CLNR as a function of angle of attack a and
Mach number M
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CLO as function of Mach and Angle of Attack
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Figure B-11: Aerodynamics coefficient CLo as a function of angle of attack a and
Mach number M
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CLA as function of Mach and Angle of Attack
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Figure B-12: Aerodynamics coefficient CLA as a function of angle of attack a and
Mach number M
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CDO as function of Mach and Angle of Attack
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Figure B-13: Aerodynamics coefficient CDo as a function of angle of attack a and
Mach number M
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THREE-DIMENSIONAL AERODYNAMICS DATA

CDA as function of Mach and Angle of Attack
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30
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Figure B-14: Aerodynamics coefficient CDA as a function of angle of attack a and
Mach number M
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THREE-DIMENSIONAL AERODYNAMICS DATA

CMO as function of Mach and Angle of Attack

x 10-3

Alpha (degree) -10 0 Mach

Figure B-15: Aerodynamics coefficient CMo as a function of angle of attack a and
Mach number M
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THREE-DIMENSIONAL AERODYNAMICS DATA

CMA as function of Mach and Angle of Attack
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Figure B-16: Aerodynamics coefficient CMA aS a function of angle of attack a and
Mach number M
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CLLB as function of Mach and Angle of Attack

x 10 - 3

Alpha (degree) -10 0 Mach

Figure C-1: Aerodynamics coefficient CLLB as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLLDA as function of Mach and Angle of Attack

x 10-

3
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0.5

0
0

Mach Alpha (degree)

Figure C-2: Aerodynamics coefficient CLLDA as
Mach number M : exact versus 2-D polynomial

a function of angle of attack a and
approximation
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CLLDR as function of Mach and Angle of Attack

x 10 -4

Mach Alpha (degree)

Figure C-3: Aerodynamics coefficient CLLDR as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLLP as function of Mach and Angle of Attack

Alpha (degree) -10 0 Mach

Figure C-4: Aerodynamics coefficient CLLP as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLLR as function of Mach and Angle of Attack
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Figure C-5: Aerodynamics coefficient CLLR as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLNB as function of Mach and Angle of Attack
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Figure C-6: Aerodynamics coefficient CLNB as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLNDA as function of Mach and Angle of Attack
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Figure C-7: Aerodynamics coefficient CLNDA as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLNDR as function of Mach and Angle of Attack
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30
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Figure C-8: Aerodynamics coefficient CLNDR as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLNP as function of Mach and Angle of Attack
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-0.1
25
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Figure C-9: Aerodynamics coefficient CLNp as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLNR as function of Mach and Angle of Attack
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-0.2

-0.4
25

Alpha (degree) -5 0 Mach

Figure C-10: Aerodynamics coefficient CLNR as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLO as function of Mach and Angle of Attack

Alpha (degree) Mach

Figure C-11: Aerodynamics coefficient CL as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CLA as function of Mach and Angle of Attack
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Figure C-12: Aerodynamics coefficient CLA as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CDO as function of Mach and Angle of Attack
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Figure C-13: Aerodynamics coefficient CDo as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CDA as function of Mach and Angle of Attack
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Figure C-14: Aerodynamics coefficient CDA as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CMO as function of Mach and Angle of Attack

x 10-3

Alpha (degree) -10 0 Mach

Figure C-15: Aerodynamics coefficient CMo as a function of angle of attack a and
Mach number M : exact versus 2-D polynomial approximation
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CMA as function of Mach and Angle of Attack

x 10 - 3
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30

Alpha (degree) -10 0 Mach

Figure C-16: Aerodynamics coefficient CMA as
Mach number M : exact versus 2-D polynomial

a function of angle of attack a and
approximation
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Appendix D

GHAME numerical data

The aerodynamic data of GHAME were originally presented in an array of 9 by
13. This needed two lines of text per line of the array. For the sake of clarity,
here the data are given as 13x9. The data varies as a function of angle of at-
tack a(-3.0, 0.0,3.0,60,.0, 9.0, 12.0, 15.0, 18.0 and 21.0) across and Mach number M
(0.4, 0.6, 0.8, 0.9, 0.95, 1.05, 1.2, 1.5, 2.0, 3.0, 6.0, 12.0 and 24.0) respectively.

CLo

0.04508
0.05491
0.04723
0.06222
0.06411
0.07569
0.06492
0.04782
0.03480
0.01583
-0.00175
-0.00547
-0.00468

-0.03575
-0.03810
-0.04375
-0.03800
-0.03800
-0.03150
-0.03675
-0.03905
-0.02965
-0.02475
-0.02075
-0.01871
-0.01562

-0.11693
-0.11690
-0.13532
-0.13317
-0.14505
-0.13861
-0.14068
-0.12433
-0.09539
-0.06776

-0.22054
-0.21782
-0.23228
-0.22108
-0.25401
-0.23254
-0.25132
-0.21391
-0.16617
-0.11392

-0.32599
-0.32773
-0.33138
-0.30955
-0.34726
-0.35937
-0.36570
-0.31249
-0.24995
-0.17259

-0.04593 -0.07910 -0.12465
-0.03483 -0.05409 -0.08445

-0.02893 -0.04481 -0.06985

-0.41960
-0.43704
-0.43095
-0.43224
-0.44946
-0.49158
-0.42414
-0.41519
-0.34693
-0.24957
-0.18941
-0.14139
-0.11688

-0.56105
-0.58493
-0.53773
-0.53748
-0.52428
-0.52394
-0.53246
-0.48735
-0.42815
-0.32392
[ -0.26223

-0.21567
-0.17836

-0.72859
-0.68972
-0.61593
-0.60137
-0.52399
-0.54559
-0.64640
-0.53332
-0.49102
-0.38885
-0.34431
-0.30273
-0.25036

-0.92320
-0.80347
-0.69635
-0.65836
-0.50020
-0.54335
-0.77975
-0.56663
-0.54949
-0.45683
* -0.43640

-0.40437
-0.33438
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CL.

0.05483 0.05472 0.05460 0.05827 0.06087 0.06092 0.06440 0.06872 0.07303
0.05972 0.05805 0.05638 0.05833 0.06170 0.06287 0.06678 0.06725 0.06772
0.06170 0.06173 0.06177 0.06255 0.06328 0.06370 0.06455 0.06368 0.06282
0.06832 0.06613 0.06395 0.06275 0.06192 0.06452 0.06533 0.06343 0.06153
0.07085 0.07078 0.07072 0.07170 0.07006 0.06976 0.06792 0.06215 0.05638
0.07335 0.07272 0.07208 0.06993 0.07203 0.07470 0.06927 0.06448 0.05970
0.07145 0.06948 0.06752 0.06987 0.07093 0.06717 0.06722 0.06847 0.06972
0.05858 0.05817 0.05775 0.05830 0.05973 0.06097 0.05978 0.05725 0.05472
0.04392 0.04417 0.04442 0.04527 0.04720 0.04957 0.05017 0.04950 0.04882
0.02805 0.02854 0.02904 0.02967 0.03138 0.03409 0.03582 0.03651 0.03720
0.01379 0.01513 0.01647 0.01815 0.02038 0.02342 0.02613 0.02863 0.03112
0.00956 0.01012 0.01068 0.01139 0.01297 0.01630 0.01986 0.02319 0.02652
0.00794 0.00840 0.00886 0.00946 0.01076 0.01350 0.01645 0.01921 0.02197

Cmq

-2.71900 -2.73700 -2.76900 -2.76400 -2.71100 -2.93800 -1.71700 -1.20300 -1.04100
-2.74800 -2.82400 -2.79800 -2.82300 -2.79800 -2.57200 -1.94100 -1.26100 -1.18500
-3.00000 -3.02500 -3.05100 -3.22700 -3.50300 -3.63000 -3.05100 -2.52100 -2.34400
-3.60000 -3.55400 -3.80600 -4.33600 -4.56500 -4.08400 -3.20200 -2.77300 -3.00000
-3.50300 -3.58100 -4.46600 -5.39600 -4.15700 -2.87400 -2.09300 -1.71400 -1.84100
-3.25100 -3.27700 -3.50500 -3.68100 -3.30300 -2.16700 -1.23500 -0.95700 -1.58800
-3.05000 -3.07600 -3.05100 -3.12500 -3.90700 -3.83200 -1.48800 -1.00800 -1.23500
-3.20000 -3.10000 -3.10000 -3.10000 -3.10000 -3.20000 -3.00000 -1.20000 -1.00000
-2.40000 -2.40000 -2.40000 -2.40000 -2.40000 -2.40000 -2.20000 -1.90000 -1.70000
-1.80000 -1.80000 -1.80000 -1.80000 -1.70000 -1.70000 -1.70000 -1.80000 -1.80000
-1.60000 -1.60000 -1.60000 -1.60000 -1.60000 -1.60000 -1.60000 -1.60000 -1.60000
-0.27800 -0.65300 -0.87600 -0.99800 -1.12200 -1.34500 -1.72200 -1.99300 -2.26700
-0.27800 -0.65300 -0.87600 -0.99800 -1.12200 -1.34500 -1.72200 -1.99300 -2.26700
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Cmo

-0.00332 0.00000 0.00187 0.00245 0.00221 0.00182 0.00315 0.01029 0.00149

-0.00379 0.00000 0.00216 0.00288 0.00298 0.00308 0.00463 0.01030 0.00406

-0.00383 0.00000 0.00263 0.00360 0.00398 0.00502 0.00702 0.01232 0.00873

-0.00449 0.00000 0.00270 0.00376 0.00454 0.00562 0.00767 0.01080 0.00846

-0.00411 0.00000 0.00322 0.00468 0.00565 0.00760 0.01008 0.01408 0.01373

-0.00457 0.00000 0.00304 0.00457 0.00599 0.00785 0.01001 0.01182 0.01117
-0.00403 0.00000 0.00347 0.00545 0.00670 0.00857 0.01087 0.01396 0.01555

-0.00403 0.00000 0.00310 0.00512 0.00699 0.00912 0.01121 0.01241 0.01229

-0.00364 0.00000 0.00335 0.00571 0.00691 0.00809 0.00970 0.01193 0.01501

-0.00331 0.00000 0.00292 0.00526 0.00734 0.00932 0.01121 0.01229 0.01280

-0.00312 0.00000 0.00300 0.00546 0.00686 0.00783 0.00915 0.01078 0.01409

-0.00275 0.00000 0.00267 0.00507 0.00721 0.00895 0.01075 0.01203 0.01349

-0.00254 0.00000 0.00254 0.00493 0.00706 0.00869 0.01051 0.01195 0.01395

Cm7

-0.00127 -0.00100 -0.00071 -0.00047 -0.00028 -0.00017 -0.00024 -0.00065 -0.00008

-0.00145 -0.00120 -0.00082 -0.00055 -0.00038 -0.00029 -0.00035 -0.00065 -0.00022

-0.00146 -0.00125 -0.00100 -0.00069 -0.00050 -0.00048 -0.00054 -0.00078 -0.00048

-0.00171 -0.00152 -0.00103 -0.00071 -0.00058 -0.00054 -0.00058 -0.00069 -0.00046

-0.00157 -0.00142 -0.00123 -0.00089 -0.00072 -0.00072 -0.00077 -0.00089 -0.00075

-0.00174 -0.00162 -0.00116 -0.00087 -0.00076 -0.00075 -0.00076 -0.00075 -0.00061
-0.00154 -0.00145 -0.00132 -0.00104 -0.00085 -0.00082 -0.00083 -0.00089 -0.00085
-0.00154 -0.00148 -0.00118 -0.00097 -0.00089 -0.00087 -0.00085 -0.00079 -0.00067
-0.00139 -0.00135 -0.00128 -0.00109 -0.00088 -0.00077 -0.00074 -0.00076 -0.00082
-0.00126 -0.00124 -0.00111 -0.00100 -0.00093 -0.00089 -0.00085 -0.00078 -0.00070
-0.00119 -0.00117 -0.00114 -0.00104 -0.00087 -0.00075 -0.00070 -0.00068 -0.00077
-0.00105 -0.00105 -0.00102 -0.00097 -0.00092 -0.00085 -0.00082 -0.00076 -0.00073
-0.00097 -0.00097 -0.00097 -0.00094 -0.00090 -0.00083 -0.00080 -0.00076 -0.00076
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CDo

0.02941
0.03035
0.03127
0.03633
0.04871
0.06964
0.07106
0.07076
0.06228
0.04472
0.02961
0.02122
0.01766

0.03594
0.03714
0.04141
0.04936
0.06265
0.08447
0.08354
0.08047
0.07067
0.05161
0.03553
0.02584
0.02150

0.03261
0.03394
0.03647
0.04104
0.05359
0.07359
0.07468
0.07480
0.06681
0.04947
0.03502
0.02583
0.02150

0.01436
0.01489
0.01049
0.01345
0.02174
0.04174
0.04369
0.05000
0.04731
0.03597
0.02594
0.02021
0.01685

-0.0230(
-0.0238(
-0.04433
-0.03845
-0.04007
-0.0209(
-0.0159
0.00010
0.00808
0.00925
0.00672
0.00797
0.00672

5 -0.08415
5 -0.09375
3 -0.13162
5 -0.13204

-0.14179
-0.12953

5 -0.09461
-0.07789
-0.05773
-0.03957
-0.02957
-0.01836
-0.01507

CDa

0.00415
0.00425
0.00595
0.00764
0.00858
0.00939
0.00838
0.00607
0.00448
0.00281

0.00794
0.00820
0.01150
0.01248
0.01444
0.01514
0.01402
0.01100
0.00841
0.00554

0.00139 0.00347

0.00068 0.0020L
0.00056 0.00161

0.01227
0.01323
0.01769
0.01907
0.02153
0.02275
0.01922
0.01645
0.01309
0.00908
7 0.00619
4 0.00407
9 0.00336

0.01816
0.02137
0.02453
0.02588
0.02791
0.02910
0.02683
0.02150
0.01766
0.01269

0.02424
0.02993
0.02995
0.03170
0.03380
0.03633
0.03326
0.02777
0.02305
0.01663

0.03033
0.03849
0.03537
0.03752
0.03969
0.04357
0.03969
0.03404
0.02844
0.02057

0.00896 0.01197 0.01498
0.00640 0.00904 0.01169

0.00529 0.00749 0.00968

238

-0.1871E
-0.23091
-0.25573
-0.2570E
-0.26424
-0.25284
-0.23458

-0.17409
-0.14190
-0.10402
-0.07789
-0.05742
-0.04744

-0.31882
-0.40962
-0.38482
-0.39617
-0.40820
-0.42320
-0.38219

-0.31589
-0.26256
-0.19187
-0.14391
-0.11319
-0.09366

-0.47897
-0.62884
-0.54072
-0.56164
-0.57770
-0.62233
-0.56587

-0.48309
-0.40512
-0.29579
-0.22221
-0.17988
-0.14894

-0.00323
-0.00348
-0.00507
-0.00646
-0.00677
-0.00716
-0.00588
-0.00475
-0.00419
-0.00356
-0.00319
-0.00256
-0.00213

-0.00107
-0.00120
-0.00173
-0.00157
-0.00163
-0.00132
-0.00121
-0.00137
-0.00151
-0.00158
-0.00180
-0.00153
-0.00128

0.00110
0.00109
0.00160
0.00331
0.00352
0.00453
0.00347
0.00201
0.00117
0.00040
-0.00041
-0.00051
-0.00043
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-0.00128 -0.00121 -0.00112 -0.00103 -0.00098 -0.00094 -0.00057 -0.00022 0.00006

-0.00143 -0.00125 -0.00102 -0.00080 -0.00063 -0.00047 0.00002 0.00051 0.00079

-0.00158 -0.00129 -0.00093 -0.00057 -0.00015 0.00027 0.00073 0.00117 0.00155

-0.00065 -0.00057 -0.00049 -0.00041 -0.00020 0.00001 0.00022 0.00042 0.00055

-0.00145 -0.00115 -0.00072 -0.00028 0.00024 0.00077 0.00106 0.00136 0.00164

-0.00160 -0.00142 -0.00122 -0.00102 -0.00083 -0.00065 -0.00041 -0.00018 0.00006
-0.00242 -0.00195 -0.00149 -0.00102 -0.00055 -0.00008 0.00059 0.00126 0.00191

-0.00190 -0.00158 -0.00119 -0.00080 -0.00046 -0.00012 0.00032 0.00077 0.00119
-0.00139 -0.00122 -0.00096 -0.00070 -0.00059 -0.00048 -0.00038 -0.00028 -0.00012

-0.00050 -0.00038 -0.00023 -0.00009 0.00002 0.00014 0.00022 0.00031 0.00045
-0.00003 -0.00002 -0.00003 -0.00003 -0.00002 0.00000 0.00001 0.00001 0.00003

0.00003 0.00004 0.00002 0.00000 0.00002 0.00004 0.00005 0.00006 0.00011

0.00003 0.00004 0.00002 0.00000 0.00002 0.00004 0.00005 0.00006 0.00011

Cl0.a

0.00227 0.00231 0.00235 0.00240 0.00246 0.00253 0.00256 0.00259 0.00260

0.00242 0.00240 0.00246 0.00251 0.00253 0.00256 0.00259 0.00262 0.00260
0.00250 0.00245 0.00255 0.00265 0.00242 0.00219 0.00217 0.00215 0.00213

0.00231 0.00207 0.00174 0.00142 0.00151 0.00160 0.00176 0.00191 0.00200
0.00195 0.00195 0.00194 0.00192 0.00176 0.00160 0.00163 0.00165 0.00172

0.00183 0.00182 0.00176 0.00170 0.00162 0.00154 0.00155 0.00156 0.00156

0.00145 0.00145 0.00138 0.00132 0.00138 0.00144 0.00142 0.00140 0.00138

0.00092 0.00092 0.00092 0.00092 0.00092 0.00092 0.00092 0.00092 0.00092

0.00068 0.00068 0.00068 0.00068 0.00069 0.00070 0.00072 0.00074 0.00077

0.00026 0.00027 0.00029 0.00031 0.00034 0.00037 0.00041 0.00046 0.00051

0.00015 0.00015 0.00017 0.00019 0.00022 0.00026 0.00030 0.00035 0.00040

0.00016 0.00016 0.00018 0.00020 0.00023 0.00026 0.00030 0.00034 0.00040

0.00016 0.00016 0.00018 0.00020 0.00023 0.00026 0.00030 0.00034 0.00040
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C16r

0.00051 0.00051 0.00050 0.00049 0.00048 0.00046

0.00051 0.00051 0.00050 0.00049 0.00048 0.00046

0.00041 0.00039 0.00038 0.00037 0.00036 0.00035
0.00007 0.00007 0.00011 0.00014 0.00018 0.00022

0.00005 0.00005 0.00006 0.00008 0.00009 0.00010
0.00032 0.00030 0.00029 0.00027 0.00026 0.00024

0.00030 0.00029 0.00028 0.00027 0.00026 0.00024

0.00024 0.00023 0.00022 0.00021 0.00020 0.00020
0.00020 0.00018 0.00017 0.00016 0.00015 0.00014
0.00016 0.00015 0.00014 0.00013 0.00013 0.00012

0.00011 0.00010 0.00009 0.00007 0.00007 0.00007
0.00007 0.00007 0.00006 0.00005 0.00004 0.00004
0.00007 0.00007 0.00006 0.00005 0.00004 0.00004

-0.09435
-0.09435
-0.11066
-0.10971
-0.11446
-0.12126
-0.12795
-0.12312
-0.10678
-0.08322
-0.05890
-0.04347
-0.04347

-0.10059
-0.10059
-0.11301
-0.11305
-0.11400
-0.12168
-0.12551
-0.12350
-0.10640
-0.08170
-0.06080
-0.04199
-0.04199

0.00045
0.00045
0.00035
0.00023
0.00009
0.00022
0.00024
0.00019
0.00013
0.00011
0.00006
0.00003
0.00003

-0.10651 -0.11054 -0.11712 -0.12118

-0.10488 -0.10727 -0.10872 -0.11495

-0.10488 -0.10460 -0.09994 -0.09196

-0.09819 -0.08717 -0.08189 -0.08911

-0.10526 -0.07960 -0.08478 -0.09196

-0.11058 -0.08797 -0.09416 -0.09937

-0.12016 -0.11290 -0.11047 -0.10895

-0.11476 -0.10640 -0.10564 -0.10640

-0.10678 -0.10450 -0.09804 -0.09386

-0.08208 -0.08170 -0.08094 -0.08132

-0.06118 -0.06270 -0.06384 -0.06612
-0.04332 -0.04469 -0.04750 -0.05221

-0.04332 -0.04469 -0.04760 -0.05221

0.00045 0.00043

0.00044 0.00043

0.00035 0.00035

0.00024 0.00022

0.00008 0.00007

0.00020 0.00020

0.00023 0.00023

0.00018 0.00018

0.00013 0.00012
0.00010 0.00009

0.00005 0.00005
0.00002 0.00002

0.00002 0.00002

-0.12627 -0.13076
-0.12118 -0.13076
-0.10108 -0.11111

-0.09819 -0.10537

-0.09625 -0.09964

-0.10169 -0.10401

-0.11126 -0.12221

-0.11628 -0.12274
-0.09234 -0.09196

-0.08284 -0.08512

-0.06840 -0.07182

-0.05453 -0.05590

-0.05453 -0.05590

240

Clip

-0.13642
-0.13315
-0.11734
-0.10587
-0.10108
-0.10442
-0.12168
-0.12198
-0.09424
-0.08664
-0.07410
-0.05533
-0.05633



0.07182
0.07144
0.06992
0.06764
0.06688
0.06498
0.06080
0.05206
0.03800
0.02128
0.01406
0.01330
0.01330

-0.00103
-0.00080
-0.00057
-0.00041
-0.00028
-0.00102
-0.00102
-0.00080
-0.00070
-0.00009
-0.00003

0.07671
0.07496
0.07267
0.07021
0.06906
0.06688
0.06270
0.05377
0.03971
0.02214
0.01453
0.01397
0.01397

241

0.07961
0.07847
0.07543
0.07277
0.07125
0.06878
0.06460
0.05548
0.04142
0.02299
0.01501
0.01463
0.01463

0.08350
0.08198
0.07818
0.07534
0.07344
0.07068
0.06650
0.05719
0.04313
0.02385
0.01548
0.01529
0.01529

0.08740
0.08550
0.08094
0.07790
0.07562
0.07258
0.06840
0.05890
0.04484
0.02470
0.01596
0.01596
0.01596

-0.00098 -0.00094 -0.00057 -0.00022 0.00006

-0.00063 -0.00047 0.00002 0.00051 0.00079
-0.00015 0.00027 0.00073 0.00117 0.00155

-0.00020 0.00001 0.00022 0.00042 0.00055
0.00024 0.00077 0.00106 0.00136 0.00164

-0.00083 -0.00065 -0.00041 -0.00018 0.00006

-0.00055 -0.00008 0.00059 0.00126 0.00191
-0.00046 -0.00012 0.00032 0.00077 0.00119

-0.00059 -0.00048 -0.00038 -0.00028 -0.00012

0.00002 0.00014 0.00022 0.00031 0.00045

-0.00002 0.00000 0.00001 0.00001 0.00003

0.00003 0.00004 0.00002 0.00000 0.00002 0.00004 0.00005 0.00006 0.00011
0.00003 0.00004 0.00002 0.00000 0.00002 0.00004 0.00005 0.00006 0.00011
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0.04636
0.04750
0.04750
0.04598
0.04560
0.04408
0.04028
0.03230
0.02470
0.01672
0.01026
0.00950
0.00950

0.05272
0.05348
0.05311
0.05139
0.05092
0.04930
0.04541
0.03724
0.02802
0.01786
0.01121
0.01045
0.01045

0.05909
0.05947
0.05871
0.05681
0.05624
0.05453
0.05054
0.04218
0.03135
0.01900
0.01216
0.01140
0.01140

0.06545
0.06545
0.06431
0.06222
0.06156
0.05976
0.05567
0.04712
0.03467
0.02014
0.01311
0.01235
0.01235

Clf3

-0.00128
-0.00143
-0.00158
-0.00065
-0.00145
-0.00160
-0.00242
-0.00190
-0.00139
-0.00050
-0.00003

-0.00121
-0.00125
-0.00129
-0.00057
-0.00115
-0.00142
-0.00195
-0.00158
-0.00122
-0.00038
-0.00002

-0.00112
-0.00102
-0.00093
-0.00049
-0.00072
-0.00122
-0.00149
-0.00119
-0.00096
-0.00023
-0.00003
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Cl46a

0.00043 0.00046 0.00050 0.00055 0.00059 0.00063 0.00066 0.00069 0.00071

0.00056 0.00060 0.00063 0.00066 0.00069 0.00072 0.00070 0.00068 0.00066

0.00079 0.00079 0.00080 0.00081 0.00071 0.00062 0.00062 0.00063 0.00060

0.00107 0.00107 0.00094 0.00081 0.00073 0.00065 0.00046 0.00027 0.00033
0.00101 0.00100 0.00095 0.00090 0.00064 0.00039 0.00026 0.00012 0.00013

0.00038 0.00036 0.00035 0.00034 0.00034 0.00034 0.00024 0.00014 0.00012

0.00047 0.00034 0.00020 0.00007 0.00010 0.00013 0.00010 0.00007 0.00003
0.00014 0.00011 0.00007 0.00002 0.00000 -0.00003 -0.00005 -0.00008 -0.00010
-0.00004 -0.00005 -0.00007 -0.00009 -0.00011 -0.00013 -0.00015 -0.00016 -0.00018

0.00002 -0.00001 -0.00003 -0.00005 -0.00007 -0.00009 -0.00010 -0.00011 -0.00012

0.00001 0.00000 -0.00001 -0.00002 -0.00004 -0.00005 -0.00007 -0.00008 -0.00009
0.00000 0.00000 -0.00001 -0.00002 -0.00004 -0.00005 -0.00006 -0.00007 -0.00007
0.00000 0.00000 -0.00001 -0.00002 -0.00004 -0.00005 -0.00006 -0.00007 -0.00007

C1l6r

-0.00093 -0.00092

-0.00084 -0.00082

-0.00057 -0.00057

-0.00008 -0.00010
-0.00012 -0.00012

-0.00062 -0.00057

-0.00053 -0.00052

-0.00038 -0.00037

-0.00027 -0.00026

-0.00021 -0.00021

-0.00015 -0.00014

-0.00011 -0.00010

-0.00011 -0.00010

-0.00090
-0.00079
-0.00057
-0.00017
-0.00014
-0.00054
-0.00050
-0.00036
-0.00026
-0.00020
-0.00013
-0.00009
-0.00009

-0.00088
-0.00076
-0.00056
-0.00023
-0.00015
-0.00050
-0.00048
-0.00035
-0.00025
-0.00020
-0.00012
-0.00007
-0.00007

-0.00085
-0.00074
-0.00056
-0.00029
-0.00018
-0.00047
-0.00045
-0.00034
-0.00024
-0.00019
-0.00011
-0.00006
-0.00006

-0.00083
-0.00073
-0.00055
-0.00034
-0.00020
-0.00044
-0.00043
-0.00033
-0.00023
-0.00018
-0.00010
-0.00005
-0.00005

-0.00082 -0.00081

-0.00072 -0.00071

-0.00054 -0.00052

-0.00034 -0.00033

-0.00019 -0.00018

-0.00043 -0.00041

-0.00042 -0.00041

-0.00032 -0.00030

-0.00022 -0.00021

-0.00017 -0.00016

-0.00009 -0.00008

-0.00005 -0.00004

-0.00005 -0.00004

-0.00080
-0.00072
-0.00051
-0.00030
-0.00016
-0.00040
-0.00041
-0.00030
-0.00019
-0.00015
-0.00007
-0.00004
-0.00004
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0.02242 0.01064 -0.00114 -0.01292 -0.00114 0.01064 0.02622 0.04180 0.05738
0.01311 0.01254 0.01197 0.01140 0.01045 0.00950 0.01995 0.03040 0.04085

0.01862 0.01900 0.01938 0.01976 0.01273 0.00570 0.00095 -0.00380 -0.00855

-0.00342 0.00000 0.00342 0.00684 -0.00418 -0.01520 -0.02280 -0.03040 -0.03800

-0.00304 -0.00418 -0.00532 -0.00646 -0.02223 -0.03800 -0.04750 -0.05700 -0.06650

0.01824 0.00494 -0.00836 -0.02166 -0.03173 -0.04180 -0.05605 -0.07030 -0.08455
0.01520 0.00380 -0.00760 -0.01900 -0.00038 0.01824 -0.00988 -0.03800 -0.06612
0.03363 0.02660 0.01957 0.01254 0.01577 0.01900 0.01102 0.00304 -0.00494
0.04446 0.03800 0.03154 0.02508 0.02071 0.01634 0.01197 0.00760 0.00323

0.02413 0.02052 0.01691 0.01330 0.01197 0.01064 0.00969 0.00874 0.00779
0.04351 0.03344 0.02337 0.01330 0.00665 0.00000 -0.01710 -0.03420 -0.05130

0.01710 0.01140 0.00570 0.00000 -0.00570 -0.01140 -0.01520 -0.01900 -0.02280
0.01710 0.01140 0.00570 0.00000 -0.00570 -0.01140 -0.01520 -0.01900 -0.02280

C-0.10564 -0.10754 -0.12996 -0.10108 -0.10716 -0.11020 -0.11438 -0.11134 -0.11172r
-0.10564 -0.10754 -0.12996 -0.10108 -0.10716 -0.11020 -0.11438 -0.11134 -0.11172

-0.10032 -0.10108 -0.10906

-0.10792 -0.10868 -0.11172

-0.11172 -0.10868 -0.10602

-0.11362 -0.12008 -0.13832

-0.13452 -0.13718 -0.14782

-0.16302 -0.15846 -0.19570

-0.17480 -0.17480 -0.18240

-0.15960 -0.15960 -0.16150

-0.12160 -0.12236 -0.12540

-0.08170 -0.08246 -0.08360

-0.12730 -0.13566 -0.14022

-0.12730 -0.13566 -0.14022

-0.09958
-0.12008
-0.14516
-0.15466
-0.17176
-0.20634
-0.18240
-0.16150
-0.12920
-0.08550
-0.11058
-0.11058

-0.09880 -0.12008 -0.12312 -0.12768 -0.14402
-0.12692 -0.12958 -0.14022 -0.16226 -0.20140

-0.16682 -0.13756 -0.32528 -0.18696 -0.24320

-0.15542 -0.14516 -0.24700 -0.20596 -0.26220

-0.17670 -0.17024 -0.18278 -0.25270 -0.39102

-0.19988 -0.26372 -0.21356 -0.32528 -0.40052

-0.15960 -0.15960 -0.15200 -0.14440 -0.14440

-0.16530 -0.17480 -0.18620 -0.20140 -0.22420

-0.14060 -0.15390 -0.17290 -0.19836 -0.23180

-0.08930 -0.09880 -0.11400 -0.13110 -0.15390

-0.08284 -0.07790 -0.08740 -0.10602 -0.09918

-0.08284 -0.07790 -0.08740 -0.10602 -0.09918

243
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CYO
-0.01868

-0.01815

-0.01870

-0.02040

-0.01946

-0.01667

-0.01785

-0.01782

-0.01938

-0.00895
-0.00601

-0.00562

-0.00562

-0.01866

-0.01790

-0.01870

-0.02020

-0.01850

-0.01700

-0.01715

-0.01654

-0.01638

-0.00792
-0.00552

-0.00515

-0.00515

-0.01844

-0.01790

-0.01865

-0.01995

-0.01800

-0.01675

-0.01645

-0.01584

-0.01563

-0.00757
-0.00527

-0.00477

-0.00477

-0.01822

-0.01790

-0.01860

-0.01970

-0.01750

-0.01650

-0.01575

-0.01515

-0.01488

-0.00723
-0.00503

-0.00440

-0.00440

-0.01810
-0.01790

-0.01870
-0.01935
-0.01750
-0.01630
-0.01525
-0.01475
-0.01446
-0.00691
-0.00488
-0.00430
-0.00430

-0.01799

-0.01790

-0.01880

-0.01900

-0.01750

-0.01610
-0.01475

-0.01435

-0.01405

-0.00659

-0.00473

-0.00420

-0.00420

-0.01760

-0.01790
-0.01885

-0.01810

-0.01620

-0.01600

-0.01470

-0.01429

-0.01358

-0.00641

-0.00465

-0.00410

-0.00410

-0.01697

-0.01805

-0.01890

-0.01720

-0.01490

-0.01590

-0.01465
-0.01423

-0.01311

-0.00623

-0.00414

-0.00400

-0.00400

-0.01697

-0.01820

-0.01825

-0.01560
-0.01317

-0.01532

-0.01469

-0.01333

-0.01231

-0.00592

-0.00403

-0.00338

-0.00338

C6a

-0.00320

-0.00321

-0.00428

-0.00510

-0.00400

-0.00214

-0.00155

-0.00060

-0.00330
-0.00333
-0.00415
-0.00500
-0.00400
-0.00203
-0.00110
-0.00054

-0.00355

-0.00354

-0.00403

-0.00445

-0.00370

-0.00203

-0.00105

-0.00046

-0.00380

-0.00375

-0.00390

-0.00390

-0.00340

-0.00202

-0.00100

-0.00038

-0.00390

-0.00387
-0.00385
-0.00323
-0.00230
-0.00180
-0.00112
-0.00027

-0.00400

-0.00400

-0.00380

-0.00255

-0.00120

-0.00158

-0.00125

-0.00015

-0.00406

-0.00403

-0.00357

-0.00215

-0.00075

-0.00149

-0.00119

-0.00015

-0.00412

-0.00405

-0.00335

-0.00175

-0.00030

-0.00140

-0.00113

-0.00015

-0.00416

-0.00410

-0.00314
-0.00216

-0.00062
-0.00134
-0.00104
-0.00015

-0.00003 0.00000 0.00009 0.00018 0.00025 0.00031 0.00034 0.00037 0.00039

0.00011 0.00015 0.00021 0.00026 0.00032 0.00038 0.00041 0.00045 0.00047

-0.00011 -0.00008 -0.00004 0.00001 0.00006 0.00010 0.00013 0.00016 0.00017

-0.00013 -0.00009 -0.00005 -0.00001 0.00002 0.00006 0.00008 0.00010 0.00012

-0.00013 -0.00009 -0.00005 -0.00001 0.00002 0.00006 0.00008 0.00010 0.00011

244
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Cy6r

0.00305 0.00300 0.00295 0.00290 0.00283 0.00275 0.00268 0.00262 0.00261

0.00275 0.00270 0.00268 0.00265 0.00261 0.00258 0.00256 0.00255 0.00253
0.00210 0.00205 0.00203 0.00200 0.00199 0.00198 0.00198 0.00198 0.00199

0.00082 0.00085 0.00090 0.00095 0.00105 0.00115 0.00120 0.00125 0.00118

0.00044 0.00045 0.00050 0.00055 0.00062 0.00070 0.00066 0.00063 0.00056

0.00180 0.00170 0.00166 0.00162 0.00156 0.00150 0.00146 0.00142 0.00138

0.00165 0.00160 0.00155 0.00150 0.00145 0.00140 0.00136 0.00132 0.00132

0.00121 0.00120 0.00116 0.00112 0.00101 0.00102 0.00099 0.00095 0.00092

0.00090 0.00090 0.00087 0.00084 0.00079 0.00075 0.00072 0.00070 0.00072

0.00065 0.00062 0.00059 0.00056 0.00054 0.00052 0.00049 0.00046 0.00044
0.00040 0.00038 0.00035 0.00032 0.00030 0.00028 0.00025 0.00022 0.00020

0.00028 0.00026 0.00023 0.00020 0.00018 0.00016 0.00014 0.00013 0.00010

0.00028 0.00026 0.00023 0.00020 0.00018 0.00016 0.00014 0.00013 0.00010

Cm6e

-0.00019 -0.00019 -0.00019 -0.00019 -0.00019 -0.00019 -0.00019 -0.00018 -0.00017

-0.00020 -0.00020 -0.00020 -0.00020 -0.00020 -0.00020 -0.00020 -0.00019 -0.00017

-0.00021 -0.00021 -0.00021 -0.00021 -0.00021 -0.00021 -0.00021 -0.00020 -0.00018

-0.00023 -0.00023 -0.00023 -0.00023 -0.00023 -0.00023 -0.00023 -0.00022 -0.00020

-0.00017 -0.00017 -0.00017 -0.00017 -0.00017 -0.00017 -0.00017 -0.00016 -0.00014

-0.00014 -0.00014 -0.00014 -0.00014 -0.00014 -0.00014 -0.00014 -0.00013 -0.00012

-0.00014 -0.00014 -0.00014 -0.00014 -0.00014 -0.00014 -0.00014 -0.00012 -0.00011

-0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00016 -0.00015 -0.00013

-0.00013 -0.00013 -0.00013 -0.00013 -0.00013 -0.00013 -0.00013 -0.00012 -0.00011

-0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00009 -0.00008 -0.00007
-0.00015 -0.00015 -0.00015 -0.00014 -0.00014 -0.00013 -0.00012 -0.00012 -0.00012

-0.00014 -0.00014 -0.00014 -0.00014 -0.00013 -0.00012 -0.00012 -0.00011 -0.00011

-0.00014 -0.00014 -0.00014 -0.00014 -0.00013 -0.00012 -0.00012 -0.00011 -0.00011
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6e

-1.8374
-2.0657
-2.4294
-2.2907
-3.8401
-4.5858
-5.7665
-4.5499
-6.0978
-8.3870
-5.4283
-5.1968
-5.1958

-1.6536 -1.3649 -2.3623 -8.1304 -1.2775
-2.1362 -2.2112 -3.3234 -7.7868 -3.3318
-2.6810 -3.3873 -4.7375 -8.7774 -6.7602
-2.7737 -3.4368 -4.6264 -7.0461 -6.1086
-4.6392 -6.2352 -8.2696 -12.5045 -13.7870
-6.0167 -7.8888 -10.0578 -12.8418 -13.7221
-7.0894 -9.0590 -11.4905 -15.9708 -20.1165
-6.2123 -8.1109 -9.9647 -11.9311 -13.3703
-7.3824 -8.6446 -10.3625 -13.7957 -19.6225
-11.7100 -14.8660 -17.8678 -21.1933 -24.9666
-7.1408 -8.8443 -10.6945 -13.2967 -17.3718
-7.7219 -10.3661 -12.8748 -15.1866 -17.0350
-7.7807 -10.3417 -12.9090 -15.4552 -18.0311

3.26300
3.24392
3.06295
2.59470
2.37897
1.88397
1.76495
1.55130
1.39679
1.18105
0.83580

4.56835
4.53213
3.99984
3.32609
3.12431
2.47868
2.45131
2.24781
2.06087
1.81802
1.51044

4.92715
4.86354
4.10645
3.51035
3.29842
2.79378
2.78378
2.62229
2.46702
2.25449
2.00907

4.74023
4.62947
3.81081
3.35137
3.17300
2.77785
2.80980
2.73254
2.61159
2.42901
2.25726

4.28754
4.00031
3.40297
3.07151
2.93662
2.63752
2.68026
2.67760
2.59704
2.45572
2.34988

3.86251
3.43723
3.06178
2.78377
2.64411
2.40421
2.52971
2.49128
2.44452
2.34340
2.30924

-0.13576 0.54794 1.17278 1.71717 2.07032 2.25354 2.27409
-0.13962 0.54297 1.16751 1.71222 2.06658 2.25113 2.27253
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2.4936
2.7232
2.5864
2.7449
3.3769
4.5883
4.2608
3.5847
3.8947
5.2793
3.0107
2.7405
2.6006

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

-1.4043
-1.5534
-1.7746
-1.6470
-2.6411
-3.0537
-3.6664
-2.7536
-3.5827
-4.6617
-2.8951
-2.6537
-2.6006

L/D

-3.01843
-3.00868
-2.93242
-2.52900
-2.12455
-1.55875
-1.66750
-1.48946
-1.27945
-1.21335
-1.08469
-1.16491
-1.16581

1.28370
1.38169
1.18470
1.12896
1.02426
0.87288
0.71169
0.59211
0.52268
0.36328
0.08549

-0.99464
-1.02577
-1.05652
-0.76982
-0.60653
-0.37290
-0.43991
-0.48525
-0.41958
-0.47953
-0.59414
-0.72424
-0.72662


