
A Tsume-Go
Life & Death Problem Solver

by
Adrian B. Danieli

Submitted to the
Department of Electrical Engineering and Computer Science

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

May 19, 1998

Copyright 1998 Adrian B. Danieli. All rights reserved.

@The author hereby grants to M.I.T. permission to reproduce and
distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author
Department of Electrical Engineering and Computer Science

May 19, 1998

Certified by
Robert Berwick

,Jhesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

9 Qr~r

En.

Table of Contents

Abstract 5

1 Introduction .. 6
1.1 Computer Games ... 6
1.2 Tsume-Go ... 7
1.3 Searching .. 8
1.4 O verview .. 8

2 The Basics of Go .. 10
2.1 The Game Board .. 10
2.2 Liberties, Capturing Stones, and Suicide 11
2.3 Groups (Strings) .. 13
2.4 Eyes, Life, and Death 14
2.5 Ko - Keeping Games Finite 15
2.6 Tsume-Go ... 16

3 The Challenge of Computer Go 19
3.1 The Current State of Go and Tsume-Go 19
3.2 Differences Between Go and Chess 20
3.3 The Middle Ground: Tsume-Go 21
3.4 Existing W ork ... 22

4 Tsume-Go Problem Solver 23
4.1 Development Environment 23
4.2 Classes / M odules ... 24
4.3 User Interface .. 25

5 Nodes .. 28
5.1 Knowledge Representation 28
5.2 Static Workspace ... 30
5.3 Node Creation, Analysis, and Ko Detection 31
5.4 Move Generation ... 34
5.5 Board Evaluation ... 35
5.6 Improvements 36

6 Adversarial Search .. 38
6.1 M inimax Search .. 38
6.2 Alpha-Beta Pruning 40
6.3 Alpha-Beta with Memory 43
6.4 MTD(f) Memory-enhanced Test Driver 47
6.5 Fast Tsume-Go Tree Searches 49

7 Experiments ... 51
7.1 Obvious M oves .. 51
7.2 Simple Problems .. 53
7.3 Harder Problems .. 55

8 Conclusion .. 58
8.1 Results 58
8.2 Problem Areas 59
8.3 Future Research .. 60

References ... 61

List of Figures and Tables

2.1 White Stones and Liberties 11
2.2 Capturing a Stone .. 12
2.3 An Illegal Suicide M ove .. 12
2.4 Groups.. 13
2.5 Capturing a Group 14
2.6 Eye Space ... 14
2.7 Unconditionally Alive ... 15
2.8 Ko .. 16
2.9 Tsume-Go Sample Problem 17
2.10 Harder Tsume-Go Problem 18

3.1 Human Go Ranking Scale 19
3.2 Comparison Between Chess, Go, and Tsume-Go 21
3.3 Tsume-Go Problem with a High Branching Factor 22

4.1 Major Classes / Modules 24
4.2 Screen Shot of User Interface 26
4.3 Screen Shot of Solved Problem 27

5.1 Member Variables of Class Node 29
5.2 Static Members of Class Node 30
5.3 Information Stored in a sWorkBoard Entry 31
5.4 A Single sWorkBoard Entry 31
5.5 Example of an Eye-Space of Size 3 36

6.1 Backing Up Scores in Minimax 39
6.2 Alpha-Beta Cutoff Example 41
6.3 Transposed Moves Lead to Identical Board Positions 43
6.4 Information Stored in Hash Table Entry 44
6.5 A Single Hash Table Entry 45
6.6 Hash Function Illustration 45

7.1 Basic Test Problem#1: OTEST1.TGO 52
7.2 Basic Test Problem #2: OTEST2.TGO 52
7.3 Screen Snapshot of STEST1.TGO 53
7.4 Algorithm Comparison for STEST1.TGO 54
7.5 Screen Snapshot of BTEST2.TGO 54
7.6 Algorithm Comparison for BTEST2.TGO 55
7.7 Screen Snapshot of HTEST1.TGO 55
7.8 Algorithm Comparison for HTEST1.TGO 56
7.9 Screen Snapshot of HTEST2.TGO 56
7.10 Algorithm Comparison for HTEST2.TGO 57

A Tsume Go
Life & Death Problem Solver

by
Adrian B. Danieli

Submitted to the
Department of Electrical Engineering and Computer Science

May 19, 1998

In Partial Fulfillment of the Requirements for the Degree of
Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

This thesis describes the techniques and problems one needs to consider when attempting
to create a Tsume-Go life and death problem solver; a program (or portion thereof) that
finds solutions to a sub-problem of the oriental strategy game Go. A Tsume-Go puzzle is
typically a configuration of stones on a small section of the full 19x19 Go board in which
the next player to move must make the correct, usually non-obvious, move in order to
"live". If the player fails to make the crucial move, even perfect follow-up play cannot
save the player's stones (assuming his opponent makes no mistakes as well). The Tsume-
Go problem solver developed here can solve very simple problems.

Thesis Supervisor: Robert Berwick
Title: Professor, MIT Artificial Intelligence Laboratory

1 Introduction

1.1 Computer Games

People have tried to create programs to play conventional games of skill ever since

computers were first built. The idea of writing a program that can play a game better than

you, better than your friends, better than the average person, perhaps better than a

grandmaster, has fascinated both researchers and common programmers alike. Maybe it

is the naive idea that if you can create a machine that plays at a level usually only

achieved by extremely intelligent people, you yourself are an extremely intelligent

person. Regardless of the motivation for these programs, game playing is one of the

classic problems in artificial intelligence.

Researchers have invested much effort into improving the quality of play in many

game programs. Simple (though non-trivial) games like Connect-Four have already been

solved; in Othello, computer programs are considered superior to the best humans; in

Backgammon, Checkers, and Chess, computers are among the strongest players - the

best capable of defeating human world champions [Mtiller 95]. However, these glorious

successes have not been achieved by computers in other games like Bridge, Chinese

Chess, and Go, where they are far outplayed by their human adversaries [Plaat 96].

If we briefly consider some of the differences between Chess and Go, it is easy to

see why Chess has been a more attractive research domain in the past. Go has a larger

board size, more moves in a complete game, the branching factor is larger, and evaluating

the current state of a game is more difficult since there is a very poor correlation between

the game state and the number of stones on the game board or the amount of territory

enclosed by a player's stones [Burmeister/Wiles 95]. Simply put, Chess is easy compared

to Go.

1.2 Tsume-Go

Somewhere between these two extremes lies Tsume-Go. Tsume-Go is a more tractable

sub-problem of Go. Instead of dealing with the vast 19x19 grid of a normal-sized Go

board, Tsume-Go problems are localize Go games that occupy a much smaller region of

the board. A player is faced with a certain arrangement of stones and he/she must

discover and make the correct move (there may be more than one). If the correct move is

chosen, that player is guaranteed a successful outcome assuming perfect subsequent

follow up play. On the other hand, if the wrong move is chosen, the player cannot "win"

this localized game if his/her opponent plays correctly. A successful outcome may be

defined as "black to move and kill white unconditionally" or "white to move and live".

Tsume-Go puzzles share common features with both Go and Chess; move

generation, stone placement, and the goal of capturing territory is the same as Go.

However, the thinking skills required to do this are more Chess-like: a more limited

number of moves and countermoves, searched until all lines of play are exhausted (or

repeated) - and less like Go: global board analysis and pattern matching complemented

with intuition about the game's "hot spots".

1.3 Searching

Game-playing programs all rely on a search algorithm that mimics the behavior of a

human player. When a human tries to find a move, he/she typically looks ahead at a few

moves, predicts the responses of his opponent (and subsequent replies) and chooses the

most promising move. Programs do the same - searching each line of play until a

specified depth or until no more moves are possible, at which point the current board

state is evaluated. The first player to move attempts to maximize this score (to select the

best move). In response, the second player attempts to do the opposite - minimize the

first player's score (that is, maximize his/her own score). This process of backing up the

value of the best move at each level is called minimaxing. This thesis discusses the

implementation (and feasibility) of minimax search, as well as improvements on it like

alpha-beta pruning, alpha-beta with transposition tables, and null-window alpha-beta

searches like MTD(f) discussed later [Plaat 97].

1.4 Overview

The following is a short overview of the rest of this thesis. The intended reader of this

thesis is a computer science student with a basic grasp of artificial intelligence search

techniques. Section 2 briefly introduces the game of Go and Tsume-Go, no prior

experience with or knowledge of this game is necessary.

Section 3 discusses the current state of computer Go, the differences between

Chess and Go (from an artificial intelligence standpoint), and where Tsume-Go fits in.

Section 4 contains information about the Tsume-Go problem solver developed in

this thesis, the development environment, the basic class/module hierarchy , and the user

interface.

Section 5 details the node representation as implemented in this program. Specific

algorithms for node creation, analysis, Ko detection, move generation, and board

evaluation are explained.

After establishing a node structure and move generation, Section 6 introduces

minimax and alpha-beta search. Our alpha-beta search is then augmented with a hash

table. Finally, the search algorithm MTD(f) - memory enhanced test driver - is

introduced. Section 7 compares these algorithms on some Tsume-Go problems.

Section 8 concludes this thesis with a discussion of the results from Section 7.

Specific problem areas in this implementation are detailed, and possible directions for

future work are presented.

2 The Basics of Go

Go is a two-player board game which originated between 2,500 and 4,000 years ago in

China. Go is one of the oldest board games still actively played. It is an intellectual battle

solely based on skill. In China, Japan, Korea, and Taiwan, Go shares a similar status as

Chess does in western cultures [Burmeister/Wiles 95]. Part of Go's appeal is that it only

has a few simple rules that can be learned quickly. Go's complexity arises from the huge

number of possible board configurations, and the fact that nearly identical stone

configurations can have vastly different meanings.

2.1 The Game Board

A Go board consists of a grid formed from the intersection of horizontal and vertical

lines. The size of the board is generally 19x19, although quicker games can be played on

13x13 or 9x9 grids. The two players, black and white, alternately place a stone of their

color on the intersection points of the board (including the comers and edges). A stone

can only be placed on an empty intersections and it cannot move to another location. A

stone is removed from the board only when it is captured. A player can pass if making no

move is most advantageous. The game ends with two successive passes. The ultimate

goal of Go is to capture more territory and prisoners than your opponent.

2.2 Liberties, Capturing Stones, and Suicide

The empty intersections that neighbor a stone are called the stone's liberties. A single

stone may have up to four liberties (see stone D2 in figure 2.1). Stones placed on edges

or corners only have 3 or 2 adjacent locations, respectively. If a stone has no liberties, it

is captured and is removed from the game board (in figure 2.2, white surrounds the black

stone). Capturing is the only time a stone is moved once it has been placed on the game

board.

5

3

2 4

1 2

b c d e f

Figure 2.1: The white stones at Al, A4, and D2 have 2, 3, and 4 liberties, respectively. The number of
liberties a stone has equals the number of empty intersections near the stone.

Figure 2.2: White reduces the black stone's liberties to zero. The black stone is removed from the
board when this happens.

Suicide is not allowed in Go. A player cannot place a stone on an intersection

such that it (or its group) has no free liberties. For example, white cannot play at

intersection C3 in figure 2.3.

I I I I I

a b c d C

Figure 2.3: White cannot play a stone at C3 because it would have no liberties and would be
immediately removed.

2.3 Groups (Strings)

Same-colored stones form groups (or strings) when connected to each other horizontally

of vertically, but not diagonally. When a group of stones is formed, each stone in the

group no longer has individual liberties. Instead, a liberty count is calculated for the

group as a whole - the sum of the number of unique, empty, intersection points for each

stone in the group. Figure 2.4 shows two white groups with 7 liberties each, and one

black group with 5 liberties. A group (or stone) with only one liberty is said to be in atari.

An entire group can be captured by completely reducing its liberty count to zero as

demonstrated in figure 2.5 on the following page.

Sp q r

3 3 19

2 2 3 3 18

2 1 3 17

1 I 1 16

Figure 2.4: There are two white groups, each with 7 liberties. The black group has 5 liberties.

Figure 2.5: To capture a group, a player must reduce his/her opponent's group liberties to zero.

2.4 Eyes, Life, and Death

A group is said to have an eye when it completely surrounds an empty intersection point

(see figure 2.6). A group with a single eye can be captured by first surrounding it, then

filling the eye with a stone. The group needs to be completely surrounded before

attempting to fill the eye, otherwise the suicide rule forbids the move. The reason the

suicide rule is not applicable in the above case is because the opponent's captured stones

are first removed, then liberties are computed for the stones on the board.

Figure 2.6: This black group has a single eye at location "e". It can still be captured by white if white
first surrounds this group, then plays a stone in this eye space.

A group which has two separate eyes (not one two-intersection eye), as in figure 2.7, is

considered absolutely alive since it cannot be captured no matter how many consecutive

moves are given to the opponent. Similarly, a group is considered dead if there is no way

of stopping it from being captured no matter who moves first.

3

2

a b c d e

Figure 2.7: This white group is considered unconditionally alive since black cannot capture it no
matter what black does.

2.5 Ko - Keeping Games Finite

A player cannot play a stone that causes a previous board position to be repeated. This is

done to prevent infinite games. The basic Ko rule prohibits the simplest and most

common Ko shape in figure 2.8 - if a single stone captures a single stone, then no single

stone may recapture it immediately [Jasiek 97]. In the figure, white captures the black

stone. Black cannot not capture the white stone since it leads back to a previously seen

board configuration.

A Ko fight occurs when a player loses a stone in a Ko situation similar to figure

2.8. Black cannot capture the white stone, but he/she may be able to threaten white

Figure 2.8: This is the most common Ko shape. White captures black's stone by playing at "a", but
black cannot recapture white's stone at "b" without playing somewhere else on the board first.

somewhere else on the game board (not shown) forcing white's response. Now, black can

capture the white stone in the figure since it is a new board configuration.

2.6 Tsume-Go

Tsume-Go puzzles are very localized Go problems (or battles) between white and black,

usually of the form "Black to play and kill unconditionally." This means it is black's

move and there is at least one legal move that will guarantee that white cannot save its

stones, even with perfect play. For example, in figure 2.9, there are 7 legal moves for

black: 01, P1, S1, Q2, R2, and "pass". Move S1 is the correct choice, although the

counterproof of all the alternatives is beyond the scope of this thesis.

Figure 2.9: An example Tsume-Go problem [Dyer 96]: Black to move and kill white. Here, the
correct move for black is S1.

Tsume-Go-like board positions do arise in normal Go games. If a player is

especially good at identifying and solving these problems, he will have a great advantage

over those who do not because he will not need to waste time worrying about saving or

attacking dead groups.

Figure 2.10 shows an example of a difficult Tsume-Go problem that requires

black to make a very non-obvious move - filling its own group's eye space at B 1 [Wolf

96-7].

I.I II mu 4

Figure 2.10: A hard Tsume-Go problem [Wolf 96-7]: Black to move and kill white. The non-obvious
solution is for black to fill its own eye space at B2 - a move most efficient Go programs will overlook.

3 The Challenge of Computer Go

3.1 The Current State of Go and Tsume-Go

Computers that play Go have not had nearly as much success as their counterparts in

Checkers, Awari, Nine Men's Morris, or Chess. Despite extremely simple rules, Go

resists the bruce force search techniques that have worked successfully for these other

games [Muiller 95].

The best programs have garnered only slightly more than a beginner ranking on

the human ranking scale. Figure 3.1 shows the human ranking scale for Go players.

Someone just learning Go usually has a rank of 30 to 20 Kyu, which decreases as the

player's skill improves. After 1 Kyu, the amateur ranks progress from 1 Dan to 6 Dan.

The professional Go ranks are on a separate scale, progressing from 1 Dan to 9 Dan

[Mariano 97].

30 Kyu 20 Kyu 10 Kyu 1 Kyu 1 Dan 9 Dan

amateur 1 Dan 6Dan professional

Figure 3.1: The amateur scale ranges from 30 Kyu to 1 Kyu, then 1 Dan to 6 Dan.
Professional ranks begin at 1 Dan and continue up to 9 Dan (on a separate scale). The best computer
Go programs rank between 10-15 Kyu, while specialized Tsume-Go programs achieve near Dan-level

performance.

General computer Go programs rank somewhere between 10-15 Kyu, but are

often easily defeated by human opponents of the same skill after the human has learned

the computer's style of play. Specialized Tsume-Go programs achieve higher ratings

nearing Dan-level performance. This thesis explores the design and construction of a

Tsume-Go problem solver that aspires to amateur level performance.

3.2 Differences between Chess, Go, and Tsume-Go

Table 3.2 contains a comparison of the features between Chess, Go, and Tsume-Go.

These are the main reasons why the brute-force search techniques used in Chess do not

work at a similar level in Go. A regulation chess board has 64 squares, a typical game

lasts 80 moves, and a player has 35 possible moves, on average, for a given board

position. In Go, there are 361 intersections where stones can be played, a typical game

has more than 300 moves, and the number of moves a player could consider for a given

board position exceeds 200, on average [Burmeister/Wiles 95]. Chess programs are often

able to reduce the apparent branching factor further by evaluating moves by certain

pieces first, thus allowing more tree-pruning opportunities. In Go, there is only one kind

of piece - a stone - that is placed once and only removed if it is captured.

The board changes gradually from move to move in Go unlike Chess. There is no

good correlation between the number and quality of pieces and the final outcome of a Go

game. No simple evaluation function seems to exist. In Chess, the end of a game is easy

to determine: checkmate or resignation. It is not always clear (to beginners) when a Go

game should be called. Naturally, one would stop when making new moves cannot

improve one's score, but this is a difficult determination for Go programs to make

accurately.

In essence, Go programs lack both a good evaluation function and a human's

intuition about which stone groups can be captured or not, as well as which player has the

advantage. Go's search space is simply too large to perform brute-force searching

without a good evaluation function to measure progress.

Chess
Y

Go Tsume-Go

Region of play 64 squares 361 intersections -20-80 intersections

Number of pieces 6 1 1

Branching factor -35 -200 -30

Moves per game -80 -300 n/a

End of game checkmate counting territory alive or dead
determination
State of board changes rapidly - incremental incremental

Horizon effect grandmaster level beginner level n/a

Board evaluation good correlation poor correlation poor correlation
w/respect to pieces
Programming tree search, good not amenable to tree specialized tree
approaches evaluation criteria search search

Table 3.2: A comparison of features between Chess, Go, and Tsume-Go.
[based on a table by Burmeister/Wiles 95]

3.3 The Middle Ground: Tsume-Go

Tsume-Go problem solvers sit somewhere between Chess programs and Go programs.

Tsume-Go inherits Go's simple rules but it is amenable to chess-like tree searches

becasue it is only concerned with a small, localized area of the whole game board. Still,

Tsume-Go life and death problem solver can face extraordinarily complex and deep

problems (from a computational standpoint) even on relatively simple problems. Sparse

Tsume-Go problems like the one posed in Figure 3.3 can take many hours to solve, even

with advanced search techniques and heuristics. If a player's group escapes the local

battle the entire Go board is brought into the picture making further search futile.

..

Figure 3.3: A difficult Tsume-Go problem for computers because of the high branching factor. The
small squares are "interest points" - the region of moves the computer will search through.

3.4 Existing Work

GoTools is perhaps the strongest Tsume-Go problem solver in the world today. It was

written by Thomas Wolf, and has received the 1997 Award of the Japanese Computer Go

Forum. Some have credited GoTools with Dan-level performance. More information

about this program can be found at http://alpha.qmw.ac.uk/-ugah006/gotools/ [Wolf 97].

Dave Dyer has also written a life & death problem solver, currently unreleased to

the public. His website contains valuable resources for all Go programmers:

http://www.andromeda.com/people/ddyer/go-program.html [Dyer 96].

4 A Tsume-Go Problem Solver

This thesis has two main purposes: (1) to explore the applicability of tree-search

algorithms in Tsume-Go that have proven successful in other games like Chess, Othello,

and Checkers; and (2) to give the reader explicit algorithms and code examples

developed from the exploration of these techniques. It is my hope that this thesis will

lower the initial learning curve required to implement these algorithms by taking away

some of their mystique.

This thesis presents my basic progression from the initial idea of creating a

Tsume-Go life & death problem solver, to a real implementation that can actually solve

some simple problems.

4.1 Development Environment

In the hopes of creating a real program that can run almost anywhere today and that is

arguably user-friendly, this Tsume-Go program was developed for the Microsoft

Windows 95/NT operating system on the Intel x86 platform. An additional advantage of

this choice was the ability to use a decent compiler - Microsoft Visual C/C++ - with

modern debugging tools. The Microsoft Foundation Class libraries (MFC 4.2) were used

as the C++ wrapper for the Win32 system calls.

The development system was a Pentium II/266mhz MMX machine with 64MB of

RAM, although the program was tested on many Pentium-class machines with less

memory. Even these machines proved inadequate for solving certain Tsume-Go problems

which are considered relatively easy by human standards.

4.2 Classes / Modules

The program was developed using MFC's Document/View Architecture as an SDI

(single-document interface) application. Table 4.1 lists the eight major classes used in

this program.

Class / Module Description

CI1App the application object class (Windows-specific)

CMainFrame the main frame window class (Windows-specific)

CViewBoard the game board "view", user-interface code responsible for
drawing and updating the game board (Windows-specific)

CViewCtrl the control panel "view" (Windows-specific)

CGoDoc the application's document, contains code to perform minimax
search, alpha-beta, alpha-beta w/memory, and MTD(f).

goboard the Go board representation used in the user interface

node a Go board node, optimized for use in the various searches
(includes move generation & evaluation functions)

hashtable a Go node-specific transposition table

Table 4.1: Major modules in this Tsume-Go program.

The classes CIlApp, CMainFrame, CViewBoard, and CviewCtrl are Windows

specific classes used in single-document interface design. CGoDoc is the application's

document, and contains the code that performs minimax searching, alpha-beta pruning,

alpha-beta with memory, and MTD(f) - a memory-enhanced test driver algorithm (see

Section 6).

4.3 User Interface

The application is divided into two views: a control panel and the Go board view (see

figure 4.2). The control panel contains the following board operations: rotate clockwise,

rotate counter-clockwise, flip horizontally, flip vertically, and zoom.

A user may place stones or interest marks on the board by first clicking the

appropriate radio button in the control panel, then clicking on the desired intersection(s)

in the board view. "Interest marks" are a way of manually setting which intersections are

of interest for a particular Tsume-Go problem (clearly, any intersections beyond the black

stones in figure 4.2 are not relevant).

The control panel maintains counts of the number of black stones, white stones,

and interest marks on the game board. Clicking on the "Groups" button will label each

group in the go board view with a unique number. Clicking on the "Libs" button will

label each group with its liberty count.

Figure 4.2: Screen shot from the Tsume-Go program. The control panel view is on the left, the Go
board view on the right. The small squares in the board view are interest marks.

At the bottom of the control view, one selects which player is to make the next

move, and then presses the appropriate search-method button. The program attempts to

solve for that player's best move. In figure 4.3, after searching to a depth of 16, the

program believes 019 will guarantee black a score of at least 125 (the evaluation function

here is 127 minus the number of white stones). 1,403,945 nodes were searched in this

process. In this example, the search was performed by the alpha-beta algorithm

augmented by a hash-table. 48,226 unique nodes were stored in the table. This proposed

move is incorrect since a search depth of 16 is not sufficient to analyze all possible paths

to their conclusion.

Figure 4.3: After searching for Black's best move to a depth of 16 using alpha-beta with a hash table,
the program believes that playing at 019 will yield a score no worse than 125. (The evaluation

function is 127 minus the number of white stones remaining) [Dyer %].

5 Nodes

This section covers the first essential object that must be defined before implementing

any game-playing machine using tree-search. In Tsume-Go, a game node is a snapshot of

the entire Go board, along with which player is moving next. Efficiency of space and

time must be a priority when creating the node representation as this code may be

executed millions of times during a deep tree-search. Sections 5.1 and 5.2 attempt to

tackle this problem without overly complicating the node creation code (section 5.3),

move generation (5.4), and board evaluation (section 5.5) procedures.

5.1 Knowledge Representation

A node contains a snapshot of a Go game. Table 5.1 summarizes the member variables in

class node, and a description of what each holds. The game board is thought of as a

20x20 array of intersections, the Oth-row and Oth-column are unused. A "move" is the x

and y indexes into this array, with the exception of two special cases: a pass (0,0) and no-

move (0,1). The move leading to the root node is a "no-move".

Since there are only two players in a Go game, the color of the player who moves

next is stored in the boolean variable mColor. Black is defined as 0 (false), white as 1

(true). This variable is used to generate appropriate moves for that player given the

current state of the game board. mPossibleMoveX [] and mPossibleMoveY [] are

arrays which store the possible moves for the current player (see section 5.4 for details).

In the current implementation, these are fixed-sized, 64-byte arrays. Thus, a maximum

branching factor of 64 is allowed, much more than any Tsume-Go problem requires. The

member variable mPossibleMoveCount holds the actual number of possible moves

(after move generation).

Variable Type Description

mcolor boolean color of player making next move
mParent node pointer this node's parent
mDepth integer this node's depth in the search tree
movex byte x-coordinate of move leading to this node
maoveY byte y-coordinate of move leading to this node
mPossibleaoveCount integer number of possible moves
mPossibleMoveX] 64-byte array x-coordinates of possible moves
mPossibleoveY I] 64-byte array y-coordinates of possible moves
mKothreats integer number of KO fights this player can win
mCompressedBoard C] 25-dword array compressed version of 19x19 game board

Table 5.1: Member variables of class node.

A pointer to this node's parent is maintained in mParent. In addition, the node's

depth in the search tree is stored in mDepth, and the opponent's move which led to this

board position is stored in mMovex and mMoveY, both bytes. Some Tsume-Go problems

can only be "won" by winning one or more Ko fights. If the variable mKOthreats is

greater than zero, then up to mKOthreats duplicate board positions are allowed to occur

for this player - that many Ko fights to be won.

A compressed version of the game board is stored in a 32-bit word array called

mCompressedBoard [] of length 25. Each intersection can be empty, black, or white;

so only 2-bits are needed per location. A grid of 20x20 intersections can be stored in 800

bits, or 100 bytes, or 25 double words. The reason for compressing the game board is to

speed up node comparisons (necessary for Ko detection, see section 5.3). The data

maintained in a single node entry is less than 256 bytes total.

5.2 Static Workspace

When the root node is created, certain static variables in the node class are initialized.

The color of the root node determines the evaluation function. This information is stored

in the boolean variable sEvalAsWhite. Since the root node color is constant for the

duration of any given tree-search, there is no need to replicate this information in every

node. Similarly, the maximum recursion depth, sMaxDepth, is constant throughout a

search.

The root node of the search tree is created based on the current Go board state in

the user interface modules. The "interest marks" are stored in a static 20x20 boolean

array called sInterest [I [, which remains constant. This information is used by the

move generator to create only relevant moves. Table 5.2 summarizes the static variables

in the node class.

Variable Type Description

sEvalAsWhite boolean evaluate leaf nodes from white's
perspective (is the root node white?)

sMaxDepth integer maximum recursion depth

sInterest []1 20x20 boolean interest mark settings for each interesection
array on the Go board

sworksoard t [1 20x20 dword uncompressed workboard
array

Table 5.2: Static member variables of class node.

In order to faciliate move generation further, the compressed game board at every node is

uncompressed into the 20x20 double-word array sWorkBoard []] that maintains

extended information about the Go board for the move generation routines. Each entry in

this table maintains the following information (Table 5.3, Figure 5.4): if the intersection

is occupied by a stone, what color the stone is if it exists, the group this stone belongs to,

the number of liberties this group has, and a few bits so the move generation and analysis

routines do not repeat work.

Bit positions Number of bits Field description
0-8 9 group number (range 0-511)
9-17 9 group liberties (range 0-511)
18 1 occupied (set if occupied)
19 1 color (set if white, not set if black)
20 1 clean/dirty bit (set if clean, for board analysis)
21 1 checked/unchecked bit (set if checked, board analysis)
22-31 10 unused

Table 5.3: Information maintained in each entry of the 20x20 work board structure. Since there are
only 361 intersections on a Go board, 9 bits each for the group number & liberties will suffice.

unused x d cI o Iroup liberties group number
10 bits 1 1 1 1 9 bits 9 bits

Figure 5.4: A workboard single table entry.
"x" = check/unchecked bit, "d" = clean/dirty bit,"c" = color bit, and "o" = occupied bit.

5.3 Node Creation, Analysis, and Ko Detection

The root node is created by passing a reference to the user-interface's Go board, the

player who is making the next move, the maximum tree depth, and the number of Ko

fights this player is allowed to win. This information is expanded into the

sWorkBoard C I [] and sInterest [I [] arrays. A board analysis is performed to

remove dead stone groups (if any), then the move generation algorithm is called (see

Section 5.4).

CONSTRUCTOR node (board:UlGoBoard, maxdepth: INT, color:BOOL,
KOthreat sI INT)

1. initialize node member variables
a. parent is null
b. save node color
c. node depth is zero
d. save KOthreats
e. last move does not exist

2. initialize static information (constant for the tree-search)
a. save root node color
b. save maximum recursion depth

3. generate sWorkBoard []] from UIGoBoard
4. generate sInterest [] [] from UZGoBoard
5. analyze go board
6. generate moves
7. compress game board

The board analysis routine contains three major parts. First, it scans the entire go board

looking for groups. When it finds a stone that has not been explored yet, it performs a

recursive search starting at the current location that progresses to adjacent stones in order

to find all the members of this group. As this search progresses, we keep track of the

number of unique, empty intersections adjacent to this group - this final value is the total

number of liberties of the entire group.

After we've discovered every group on the board and its liberty count, we need to

remove any of the current player's stone groups with zero liberties. Remember, the

opponent made the move leading up to this board position - which may well have

captured one of the this player's strings. Finally, if any groups were removed, the entire

board is rescanned to reflect changes in liberties that need to be propagated due to this

removal.

BOOL analyze(void)
1. scan entire Go board for stone groups

a. found a new group, analyze-newgroup()
b. update all members so that they reflect the group's

liberties
2. scan board for this player's groups with zero-liberties

a. remove group from board
3. if groups were removed, rescan entire Go board as in step 1.
4. return TRUE if enemy stone groups exist on the board

INT analyze-newgroup(xpos:INT, ypos:INT, group:INT, color:BOOL)
1. check the four neighboring intersections of (xpos,ypos)

a. if position is off the game board, or it has already
been examined, skip this intersection

b. mark location as previously examined
c. if this position is empty, increment the liberty count
d. if this intersection is occupied by our stone color,

then recurse on this new location
2. sum the liberty counts returned by each neighboring

intersection and return this value

To explore children of a node, the search algorithm calls the getchild () member

function of a node n. This looks to see if node n has any unexplored, possible children. If

it does, a new node is created by passing a reference to the parent and the attempted move

to the node constructor. A child node is created in a similar fashion to the root node - a

stone of the appropriate player is placed on the board, and the board is analyzed. If this

child node is a leaf, a static evaluation is performed. Otherwise, move generation

proceeds. Now getchild () has a possible child, but we must check for Ko situations.

If all is well, the child node is returned. If this fails and node n has no more children, a

NULL value is returned by getchild ().

NODE* getchild (void)
1. If there are no possible moves from this board position

remaining, return NULL.
2. Create a new node from the next move in the possible moves

array. Return if NULL.
a. Find this node's grandparent (two board positions ago)
b. Compare these nodes. If they are the same, check if we

can win any more KO fights.
i. Yes? Return this node.
ii. No? This move isn't possible, repeat step 2.

c. Nodes are different; find grandparent's grandparent.
d. Recurse to step b until we run out of grandparents.

3. No KO situation found, return this node.

5.4 Move Generation

If one disregards Ko situations for a moment, a list of possible moves can be generated

by scanning the Go board for empty intersections. A particular empty intersection is a

valid move for player A if any one of the neighboring intersections meets one of these

conditions:

* the intersection is empty (at least one liberty will exist for this stone)

* the intersection is occupied by a stone of Player B that has only one liberty (an

enemy group will be captured, leaving at least one liberty for this stone)

* the intersection is occupied by a stone of Player A that has more than one

liberty (this stone will become part of a larger group, with at least one liberty)

Also, passing (move 0,0) is always a valid move. However, two successive passes marks

the end of the game. Adding passes increases the branching factor b by one, but (b+1)d is

still O(bd), where d is the average search depth of a problem. Correctness does not make

finding the solution exponentially worse.

After move generation, the arrays mPossibleMoveX [] and

mPossibleMoveY [] contain possible moves from the current board position. Some of

these moves may be refuted due to Ko rules, as described in the previous section.

5.5 Board Evaluation

When solving a Tsume-Go problem, a program can have two slightly different goals

depending on what kind of problem is being solved. One goal is absolute life or death for

a certain player - only one color remains on this localized region of the board, or rather

no further plays by the enemy can result in an alive group. The other goal is finding the

best move for a player, which could result in seki, a stalemate situation where no territory

is awarded.

In Tsume-Go problems where you know the solution (e.g., black to move and kill

white unconditionally), the first goal is applicable - all reasonable lines of play must be

searched completely until a solution is found which guarantees a win. In a general

computer Go player, the other alternative is more appropriate. The program doesn't know

if absolute victory is possible. Instead, it wants to find the move that maximizes its score,

whatever that may be. In this case, the Tsume-Go routine acts more like a general

purpose Go problem solver.

This thesis attempts to develop a program that will solve Tsume-Go puzzles with

known solutions. We can use this simple evaluation function:

board value = 127 - enemy stone count

We know Tsume-Go problems of the form "white to move and kill" will have a final

minimax value of 127. Armed with this knowledge, we can substantially improve on the

alpha-beta pruning algorithms (see Section 6.4, 6.5).

5.6 Improvements

One of the hardest things to do in Tsume-Go is leaf detection. When should the computer

stop searching? Benson's proof sets forth the criteria for unconditional safety of a group,

but problem solvers can stop searching sooner - as soon as a group is safe assuming

perfect play [Miller 95].

g h i I
Figure 5.5: An example of an eye-space of size 3.

Existing Tsume-Go programs attempt to classify the state of an eye (see Section

2.4) surrounded by a single chain either algorithmically (GoTools [Wolf 97]) or through

the use of a large "eye shape" lookup table (Dave Dyer [Dyer 96]). The purpose of this

algorithm or database is to determine, given an eye-shape such as the one in figure 5.5,

what the outcome is and the move that leads to it, without explicit searching. This leads

to large performance gains by significantly decreasing the number of nodes searched.

6 Adversarial Search

This chapter explains the search algorithms that can be used to solve some Tsume-Go

problems. Section 6.1 covers minimax search, the basic method for deciding which move

to make in a given situation. Alpha-beta pruning (Section 6.2) is an idea that significantly

reduces the number of nodes that need to be explored to arrive at the minimax value. This

is accomplished by aborting losing lines of play.

While the basic Alpha-beta algorithm is described in many A.I. textbooks, it is

seldom used in real world programs. Section 6.3 presents a memory-enhanced version of

the alpha-beta algorithm. By storing previously explored nodes in a hash table, alternate

lines of play that lead to identical positions can be quickly retrieved without re-

exploration. Sections 6.4 and 6.5 explore a new minimax search algorithm, MTD(f), that

performs zero-window alpha-beta searches and its applicability to Tsume-Go.

6.1 Minimax Search

Minimax search simulates one way humans decide on which move to make next in a

game. Player A examines a particular move, then guesses Player B's response, considers

his/her reply to this move, and so on. After analyzing every move in this fashion, the

move which appears to lead to the most promising board position is selected [Winston

92].

Programs perform the minimax algorithm by doing a depth-first search through

the game-tree to a specified, maximum depth. Unlike breadth-first or best-first searches,

depth-first search requires very little memory space, and its path through the search space

is easy to follow. When a program reaches the end of a line of play, either the maximum

search depth has been reached or no legal moves can be made, the current node is

assigned a value from a static evaluator (see Section 5.5).

Player A, the maximizer, wants to choose a move which leads to a board position

of maximum value. Player B, the minimizer, wants to choose a move which leads to a

board position of minimum value. The maximizer decides the best move to make at all

even levels in the tree, the minimizer decides its best move at odd levels in the search

tree. The root node has a depth of zero. Scores are backed up from leaves to the root

node. Figure 6.1 shows the minimax algorithm in progress.

max 2

min W3L 2L

max

1 -3 4 2 3 4
Figure 6.1: Backing up scores in minimax. If Player A makes move "d", he/she is assured a score of

at least 2 based on this minimax tree.

Here is some pseudo-code for a minimax procedure. One can start a minimax

search by creating a root node r and specifying the maximum search depth d during its

creation, then calling minimax (r, 0). The value returned is the minimax value of this

node, searched to depth d, as well as the best move itself.

minimax(n:NODE *,depth:INT)
returns bestvalue:INT, bestmoveX:BYTE, bestmoveY: BYTE

1. Check if n is a leaf node. If it is, return its value.
2. If depth is odd, this is a minimizing level

a. let the minimum score seen thus far be MAXSCORE
b. get a child c of node n. if c is NULL, break to step 2f
c. recursively call minimax(c,depth+l)
d. if returned value is less than min

i. let min=value
ii. save the move that led to c as the best seen so far

e. delete node c, then loop to step 2b
f. done, return min and best move found

3. If depth is even, this is a maximizing level
a. let the maximum score seen thus far be MINSCORE
b. get a child c of node n. if c is NULL, break to step 3f
c. recursively call minimax(c,depth+l)
d. if returned value is more than max

i. let max=value
ii. save the move that led to c as the best seen so far

e. delete node c, then loop to step 3b
f. done, return max and best move found

6.2 Alpha-Beta Pruning

The alpha-beta pruning algorithm augments minimax search by only a few lines of a

code. It cuts off certain paths in the search tree that have no effect on the final minimax

value. This is illustrated in figure 6.2. Here, the minimizer at board position X has

evaluated one of its children whose value is -3. But, the maximize one level above

position X is already guaranteed a value of at least 1, so there is no need to explore the

other children of X since the minimizer would never return anything better than -3.

max

min

max - X
1 -3

Figure 6.2: Alpha-beta cutoff example.

In alpha-beta pruning, alpha is a lower-bound on the minimax value as the search

progresses, beta is the upper-bound. The maximizer trys to increase the lower-bound,

alpha, while the minimizer trys to lower the upper-bound, beta. If the lower-bound and

upper-bound collide, searching can be terminated. The minimax value (alpha returned by

the top maximizing level) has been found.

Here is some pseudo-code for an alpha-beta procedure. It is essentially like

minimax, except you feed in default values for alpha and beta, usually the minimum and

maximum leaf value.

alphabeta(n:NODE *,depth:INT,alpha:INT,beta:INT)
returns bestvalue:INT, bestmoveX:BYTE, bestmoveY:BYTE

1. Check if n is a leaf node. If it is, return its value.
2. If depth is odd, this is a minimizing level

a. while alpha < beta, do steps 2b thru 2e
b. get a child c of node n. if c is NULL, break to step 2f
c. recursively call alphabeta(c,depth+l,alpha,beta)
d. if returned value is less than beta

i. let beta=value
ii. save the move that led to c as the best seen so far

e. delete node c, then loop to step 2a
f. done, return beta and best move found

3. If depth is even, this is a maximizing level
a. while alpha < beta, do steps 3b thru 3e
b. get a child c of node n. if c is NULL, break to step 3f
c. recursively call alphabeta(c,depth+l,alpha,beta)
d. if returned value is more than alpha

i. let alpha=value
ii. save the move that led to c as the best seen so far

e. delete node c, then loop to step 3a
f. done, return alpha and best move found

Move ordering plays a large role in how big a savings is seen with alpha-beta pruning. In

the worst case, alpha-beta is no better than minimax. Good move-ordering heuristics are

essential in most game playing applications.

A simple improvement for Tsume-Go is based on this point: my opponent's best

move is often my best move. We can implement this easily by inserting code after lines

2C and 3C, respectively, that reorders the remaining children of node n such that the

move just returned by my opponent (node c's best move) is searched next, if it is a child

of n and has not been examined yet. This simple heuristic always seems to improve the

alpha-beta search in Tsume-Go [Dyer 96].

6.3 Alpha-Beta with Memory

Often, identical board positions arise while performing an alpha-beta search, usually as

the result of some transposed moves. Consider starting the Go board in figure 6.3, with

black to move next. In the move sequences b-c-d-a and b-a-d-c white's moves are

reversed, but the same board position B arises after each move sequence. Many programs

maintain a large hash table (or transposition table) so that repeat board positions are not

fully searched each time. In Go especially, a high percentage of identical positions occur

because the Go board tends to change so gradually as play progresses.

Position A Position B
Figure 6.3: Board position B can arise from move sequence b-c-d-a and b-a-d-c.

A hash table entry for a particular node would contain the following information [Levy

91]:

* the score of that node (determined from a previous alpha-beta visit)

* a bit indicator whether this is an exact value, or an upper/lower bound on the

minimax score

* the depth of searching done beyond this node, from which this score was

derived

* the best move to make given this position

* the position (node / Go board) itself

In order to be effective, a hash table should be large (ranging from 4,000 to 4,000,000

entries), and is typically a power of 2 [Levy 91]. Of course, with a node-size of 256

bytes, storing the entire Go board inside each hash table entry is unreasonable. Instead, a

hash function calculates a hash code of length m bits from a node. m is typically 36 to 64

bits in length, far smaller than what is necessary to uniquely specify a node. Hash

functions are designed to minimize the possibility that two different positions are

assigned the same hash code. The bottom k bits of the hash code (k < m) are used to find

the position in the hash table (assume a table size of 2k).

The hash table used in the Tsume-Go program assigns each board a 38-bit hash

code. The bottom 18 bits are used as an index into the hash table itself (218 entries x 64

bits each = 2MB hash table). Table 6.4 and figure 6.5 detail this implementation's hash

table entry structure.

Bit positions Number of bits Field description
0-31 (LOB) 32 hash code (low 32-bits)
0-5 (HOB) 6 hash code (high 6-bits)
6-12 7 node score (range 0-127)
13-21 9 depth of search beyond this node (range 0-511)
22-30 9 best move(x = va1%20, y = val/20)
31 1 indicates bound score (not exact)

Table 6.4: Information maintained in each entry of the hash table.

32 low-order bits of hash code

b best move depth node score hash code (high)
1 9 bits 9 bits 7 bits 6 bits

Figure 6.5: A single hash table entry is comprised of two 32-bit words. The lower word is the 32 low-
order bits of the hash code. The upper word contains the remaining 6 bits of the hash code, 7 bits for

score, 9 bits for depth, 9 bits for the best move, and 1 bit to indicate a bound score.

Most programs determine a hash code for a board position using a hash function

technique first described by Al Zobrist in 1970. This hash function uses a piece-square

table of dimensions 2 (black/white pieces) by 361 (intersections) filled with random

numbers the size of our hash code. A node is assigned a hash code by exclusive-or'ing

the random numbers assigned to the appropriate piece squares [Levy 91]. Identical boards

do not mean identical nodes however, so we need additional entries for which player has

the next move, and how many Ko threats are available to this player. In Figure 6.6, with

black to move and zero Ko threats, this node gets a hypothetical 16-bit hash code of

0000001101110011.

4 Pl-white
Q1 -black
R1-black

3 P2-white
Q3-white
R3-white

2 S3-white
B-move
KO = 0

0001 1010 1011 1111
10101000 0010 0100
0100 1100 1111 1110
1100 0000 0010 0010
0101 1110 1011 1100
0101 0101 0101 0100
1110 000 01 0110
0100 1010 0001 0001
1001 1101 1101 1101 011

W Wall XOR'd 0000 0011 0111 0011
p q r s

Figure 6.6: Given the above board, black to move, and zero Ko threats,
this node hashes to the value 0000001101110011.

We are almost ready to present a modified version of the alpha-beta pruning algorithm

enhanced with a hash table. If a node n is found in the hash table, when can the alpha-

beta algorithm use this information to terminate a line of play? An example where we

cannot use it is when the depth of the stored node is too shallow. If we store a deep

position in the search tree in the hash table whose minimax value and best move were

calculated only to a depth of x, and then encounter this same position higher up in the

search tree with more than x levels below it, we cannot terminate because we have not

searched all lines of play to the specified maximum depth. We need expand this node and

update the hash table entry appropriately.

A node n found in the hash table can only be considered terminal if the following

two conditions are satisfied:

* the depth stored in n is equal to or greater than the maximum depth - current

depth

* the score is exact, or at least a sufficient bound to cause an alpha-beta cutoff.

The following pseudo-code is identical to the normal alpha-beta pruning algorithm except

for the lookup and store calls in the hash table.

alphabeta_hash(n:NODE *,depth:INT,alpha:INT,beta:INT)
returns bestvalue:INT, bestmoveX:BYTE, bestmoveY:BYTE

1. Check if n is a leaf node. If it is, return its value.

2. If depth is odd, minimizing level
a. initialize minchild to MAXSCORE
b. while alpha < beta, do steps 2b thru 2g
c. get a child c of node n. if c is NULL, break to step 2h
d. lookup node in hash table

i. if current depth > max depth - hash node's depth
ii. if exact score or (score<=alpha)
iii. then terminal node. Use stored value.

e. node not in hash, or can't be used
i. recurse on alphabeta_hash(c,depth+1,alpha,beta)

f. if returned value is less than beta
i. let beta=value
ii. save the move that led to c as the best seen

g. delete node c, then loop to step 2b
h. done, store minchild in hash

i. if n has children remaining, store as a bound
ii. otherwise, store value & bestmove as exact

3. If depth is even, maximizing level
a. initialize maxchild to MINSCORE
b. while alpha < beta, do steps 3b thru 3g
c. get a child c of node n. if c is NULL, break to step 3h
d. lookup node in hash table

i. if current depth > max depth - hash node's depth
ii. if exact score or (score>=beta)
iii. then terminal node. Use stored value.

e. node not in hash, or can't be used
i. recurse on alphabeta_hash(c,depth+l,alpha,beta)

f. if returned value is greater than alpha
i. let alpha=value
ii. save the move that led to c as the best seen

g. delete node c, then loop to step 3b
h. done, store maxchild in hash

i. if n has children remaining, store as a bound
ii. otherwise, store value & bestmove as exact

6.4 MTD(f) - Memory-enhanced Test Driver

MTD(f) is a minimax search algorithm that is simple to implement and efficient

(provided you already have an existing alpha-beta-hash-table algorithm) [Plaat et al. 94].

MTD(f), an acronym for Memory-enhanced Test Driver, gets its efficiency from

performing only zero-window (or null-window) alpha-beta searches, and using a good

bound variable to perform these searches.

As we have seen, normal alpha-beta algorithms are called with a wide search

window - typically alpha is the smallest value a leaf can have and beta the largest. This

ensures that the returned value lies between these two values and hence is the true

minimax value of the search tree. A narrower alpha-beta window gets more cutoffs,

which improves search efficiency. Zero-window alpha-beta causes the most cutoffs but at

the expense of information - only a bound on the minimax value is found. If alpha-beta

fails high, we have a lowerbound on the minimax value. If alpha-beta fails low, we have

an upperbound on the minimax value [Plaat 97].

The MTD(f) algorithm repeatedly calls alpha-beta with a zero window and a good

bound. For example, suppose we call alphabeta_hash (root, d, beta-1, beta),

where root is the root node, beta is the good bound, and d is the search depth. This will

return some value v. If v is less than beta, alpha-beta has failed low hence our new

upperbound is v. Otherwise, alpha-beta has failed high and our new lowerbound is v.

When the lower and upper bounds collide, we have found the minimax value. The

algorithm zooms in on the minimax value by repeatedly calling alpha-beta. It is essential

the alpha-beta is implemented with a hash table. If it was not, each pass of MTD(f) would

re-explore most of the nodes.

mtdf (root :NODE *, depth: INT, initialguess: INT)
returns bestvalue, bestmoveX:BYTE, bestmoveY:BYTE

1. let x = initialguess
2. initialize upperbound to MAXSCORE
3. initialize lowerbound to MINSCORE
4. while lowerbound < upperbound

a. if x = lowerbound, beta = x + 1
otherwise, beta = x
b. x = alphabeta_hash(root,d,beta-l,beta)
c. if x < beta then upperbound = x

otherwise, lowerbound = x
5. return x, bestmove

In the above pseudo-code at line 4A, if x is the same as lowerbound, we are trying

to improve the lowerbound. Otherwise, we are trying to improve the upperbound. In line

4C, we update the appropriate bound depending on whether alphabeta_hash failed

high or low. If our initial guess is the minimax value, alphabeta_hash is called

exactly twice. Once for the upperbound, and once for the lowerbound.

6.5 Fast Tsume-Go Tree Searches

The maximum value for a leaf node as defined by our evaluation function in Section 5.5

is 127. If we are solving a Tsume-Go problem in which one player (either black or white)

dies unconditionally with no stones remaining, we know the minimax value of this search

tree will be 127. We do not know which move (or moves) will lead to this outcome.

The following algorithm will find a move with the desired minimax value of goal

with only one zero-window alpha-beta call. It is important that all lines of play are

searched completely - alpha-beta must not abort at some fixed maximum depth. In the

Tsume-Go problem solver developed for this thesis, one would create a root node with no

maximum depth cutoff and then call tsumego_td (root, 127).

tsumego_td(root:NODE *, goal:INT)
returns bestmoveX:BYTE, bestmoveY:BYTE

1. x = alphabeta_hash(root,0,goal-l,goal)
2. if x equals goal, return the bestmove
3. Otherwise, no solution was found.

This algorithm is a special case of MTD(f). We know the minimax value ahead of time,

and thus need only one pass to verify that the lowerbound really is our goal.

7 Experiments

The following experiments were created to test the correctness of the Tsume-Go problem

solver created for this thesis. The first couple examples show that the node class and

minimax code work properly. Then, the performance of the four search algorithms,

minimax, alpha-beta, alpha-beta with a hash table, and MTD(f) using alpha-beta w/hash,

are compared against each other on increasingly difficult problems.

These experiments were performed on an Intel Pentium II/266mhz MMX

processor with 64MB of RAM.

7.1 Obvious Moves

To verify its correct functionality, the Tsume-Go program solved many extremely simple

problems. One of the most basic tests is shown in figure 7.1. It is white's move. The

interest marks are arranged so that only moves A17, B17, and C17 are allowed for white.

The problem solver correctly identifies B 17 as the optimal move, with a minimax score

of 127. In this example, a board position without any black stones is defined as a leaf, so

minimax stops. This is not a sufficient condition for search termination, in general. Of the

three moves generated at the root node, B 17 is neither the first nor the last tried.

Figure 7.1: Problem filename OTEST1. TGO.

White to move. Play at B17 to capture the black stone.

The problem in figure 7.2 tests the programs ability to recognize Ko situations. Black

plays at "x". If it had made the other move, white would have captured black's stone.

White would not then be able to capture white's stone because of the Ko rule, hence the

board would contain 3 black stones and 4 white stones. By playing at "x", the board is

split evenly 4 black stones versus 4 white stones.

Figure 7.2: Problem filename OTEST2. TGO.
Black to move. Play at X, avoiding white capture and Ko situation.

7.2 Simple Problems

A more interesting problem is a situation in which white is forced to make a move to

avoid capture. In figure 7.3, white only has 3 move choices at the root node. However,

searching all lines of play in their entirety involves many useless lines of play. For

example, if white played at Q1, black would respond either at R1 or S1, forcing atari.

White has no legal moves, so black would play and capture the white group. Now, five

intersections are free and white continues to hopelessly battle. Table 7.4 compares the

four different search algorithms on this problem.

Figure 7.3: Problem filename STEST1. TGO.
White to move. Play at R1 forming two distinct eyes. The white group

is now unconditionally alive.

max minimax alpha-beta alpha-beta-hash MTD(f) using
depth alpha-beta-hash
4 88 36 32 180
6 1216 176 142 311
8 32838 933 721 1653
10 516005 3899 2666 6479
12 11130 6451 15483
14 26383 13385 31729
16 51601 24584 51020
18 87359 28876 73516
none _ :: 39115 60257

Table 7.4: Number of nodes explored at specified depth by each algorithm.
operation took too long to complete.

A shaded box means

The problem in Figure 7.5 showed particularly good results for the MTD(f) algorithm.

Table 7.6 compares all the searches.

Figure 7.5: Problem filename BTEST2. TGO.
Black to move. After searching the entire tree with MTD(f), the program

has determined that move C2 will kill the white group.

max minimax alpha-beta alpha-beta-hash MTD(f) using
depth alpha-beta-hash
4 1202 140 142 712
6 13632 1203 1026 1455
8 114924 4196 3412 3797
10 5508 3944 950
12 15969 9300 2998
14 31553 14170 7487
16 41579 18212 10020
18 61913 23931 13611
none 31497 14689

Table 7.6: Number of nodes explored at specified depth by each algorithm. A shaded box means
operation took too long to complete.

7.3 Harder Problems

The problem in Figure 7.7 is a real Tsume-Go problem. If black plays at S 1, he/she can

kill all of white's groups. Table 7.8 contains the analysis of the search algorithms on this

problem. Unfortunately, the search tree proved too deep, so an incorrect answer was

returned because of the truncated lines of play.

U U 2

n a p q r S

Figure 7.7: Problem filename HTEST1.TGO [Dyer 96].
Black to move and kill white unconditionally. Correct play is at S1.

max minimax alpha-beta alpha-beta-hash MTD(f) using
depth alpha-beta-hash
4 1194 154 147 703
6 17038 1292 1006 3870
8 237688 7498 3392 9354
10 : 54630 25037 36184
12 169475 73002 41415
14 365443 160579
16 514519
18
none

Table 7.8: Number of nodes explored at specified depth by each algorithm. A shaded box means
operation took too long to complete.

The problem in Figure 7.9 is a hard Tsume-Go problem taken from a paper on GoTools

by Thomas Wolf, credited to Denis Feldmann. Black moves first and can kill white by

playing at B 1. The branching factor has increased significantly, hence the search

algorithms do not perform well. Table 7.10 shows the results of this experiment.

a b c d e f g h

Figure 7.9: Problem filename HTEST2.TGO [Wolf 96-7].
This is a very hard Tsume-Go problem. Black to move and kill.

The correct move is for black to fill its own group's eye-space at B1.

max minimax alpha-beta alpha-beta-hash MTD(f) using
depth alpha-beta-hash
4 3312 187 187 1641
6 145536 7446 4980 16566
8 49742 31907 135128
10 1079949 559844 1850622
12
14
16
18
none

Table 7.10: Number of nodes explored at specified depth by each algorithm. A shaded box means
operation took too long to complete.

Part of the reason why MTD(f) performs so miserably in this experiment is that MTD(f)

requires a good initial guess. Here, we guess the solution is 127, the static evaluation of

the game board if all white pieces were removed. Because the branching factor and depth

of this search tree is so great, cutting off the search at a depth of 10 yields a very low

minimax value. MTD(f) performs many iterations trying to find this. In a real Go

program, one would use iterative deepening to get a better initial guess when calling

MTD(f).

8 Conclusion

8.1 Results

From the raw node counts in Section 7, one instantly realizes that plain minimax

searching has no place in a Tsume-Go program. It was used as a reference point to

compare the other, more promising algorithms.

Alpha-beta pruning expanded an order of magnitude less nodes than minimax. A

Go board changes slowly as play progresses, yet still provided alpha-beta with a great

deal of cutoffs. Although not shown in Section 7, each of these example problems were

analyzed from many different orientations. Altering the orientation of the problems

changes the order in which moves are searched, which has a big effect on how efficient

alpha-beta is. In the worst case, alpha-beta will do little better than minimax.

When we added a transposition table, the number of nodes searched decreased in

all the problems - usually less than half the nodes expanded in the plain alpha-beta

search. When augmented with a hash table, alpha-beta does not exhibit the wide

fluctuations in node counts as the board is scanned in different orientations. Some good

heuristics will also improve the alpha-beta algorithms, but even the simple heuristic

including in these algorithms - my opponent's best move may be my best move -

significantly increased the cutoff rate.

The MTD(f) algorithm beat out minimax and plain alpha-beta, but it was not quite

as dominate over the alpha-beta variant with a hash table. MTD(f) relies on a good initial

estimate of what the minimax value will be. In this program, we feed it the value of a Go

board with no enemy stones, 127. MTD(f) performed the worse when the actually

minimax value for the depth-limited tree was low. In the last example in Section 7,

MTD(f) performed a null-window alpha-beta search on 127, then 126, 125, 124, ..., until

it reached 113. Even with a memory enhanced alpha-beta algorithm, there was a great

deal of researching. In a real program, one would probably use iterative deepening by

first searching to depth 1, then feeding the result of that as the initial guess for a search of

depth 2, then depth 3, and so on.

8.2 Problem Areas

The largest problem in Tsume-Go is determining when to stop a search. This program

does not identify leaf nodes well, and consequently must search an absurd number of

nonsense lines of play in order to find an answer. Like many beginning Go players, this

program does not know when to give up on a line of play.

Another problem area is move generation. In our representation, the groups and

liberties of each are recalculated for each node. This is extremely wasteful, especially

since a Go board changes a relatively small amount between any two successive plays.

Some careful consideration about how stone groups grow in Go, and how adding a single

stone affects only a local region of the board, may well lead to much more efficient

analysis and move generation algorithms.

Finally, the node representation itself is somewhat cumbersome. Since we are

performing only depth-first search, the amount of space required grows linearly with the

search depth. Instead of constantly compressing and decompressing the game board

stored in each node, it would probably be faster to store an uncompressed Go board in

each node. This would only mean a minimal increase in space, especially when compared

to the size of a hash table. To simplify and speed up Ko detection, one could also use the

same hash function that is used in the hash table and store this small hash code in the

node structure.

8.3 Future Research

The memory-enhanced test driver algorithm seems promising in Tsume-Go. Zero-

window alpha-beta searches allow for the most cutoffs. Since we know what the minimax

value will be, we only need to call the alpha-beta-hash algorithm once to determine the

winning move. This approach assumes both a winning move does exist and that no

maximum depth cutoffs will occur. With an algorithm to detect alive/dead eye-spaces or

a database table of eye shapes, a variant on the MTD(f) algorithm may prove superior to

the conventional memory-enhanced alpha-beta routines currently used.

References

[Allis et al. 91]

[Burmeister/Wiles 95]

[Dyer 96]

[Jasiek 97]

[Levy 91]

[Mariano 97]

[Miller 95]

[Plaat et al. 94]

[Plaat 96]

[Plaat 97]

[Richards et al. 96]

[Silva 96]

[Winston 92]

[Wolf 96-7]

Which games survive? ALLIS, L.V., VAN DEN HERIK, H.J.,
HERSCHBERG, I.S. In: Heuristic Programming in Artificial
Intelligence 2. LEVY, D.N.L., and BEAL, D.F.(eds), pages 232-243,
Ellis Horwood, 1991.

An Introduction to the Computer Go Field and Associated Internet
Resources. BURMESITER, J., WILES, J., World-Wide-Web page
http://www.psv.uc.edu.au/-iay/, 1995.

Searches, Tree Pruning, and Tree Ordering in Go. DYER, D., World-
Wide-Web page
httpo:/www.andromeda.com/peoole/ddver/2o/search.html, 1997.

Ko Rules. JASIEK, R., World-Wide-Web
http://www.inx.de/-jasiek/korules.html, 1997.

page,

How Computers Play Chess. LEVY, D., and NEWBORN, M. W.H.
Freeman and Company, pages 153-224, New York, NY, 1991.

Go Frequently Asked Questions. MARIANO, A. FAQ posted on
internet newsgroup rec.games.go, 1997.

Computer Go as a Sum of Local Games: An Application of
Combinatorial Game Theory. MULLER, M. Thesis, Swiss Federal •
Institute of Technology, Zurich, 1997.

A New Paradigm for Minimax Search. PLAAT, A., SCHAEFFER, J.,
PIJLS, W., and Bruin, A, University of Alberta, Edmonton, 1994.

Research Re:Search & Re-search. PLAAT, A., PhD thesis, Erasmus
University, Rotterdam, Netherlands, 1996.

MTD(f) A Minimax Algorithm Faster than NegaScout. PLAAT, A.,
World-Wide-Web page, http://theory.lcs.mit.edu/-plaat/mtdf.html,
1997.

Evolving Neural Networks to Play Go. RICHARDS, N., MORIARTY,
D., MIIKKULAINEN, R., University of Texas as Austin, Austin, TX,
1996.

Go and Genetic Programming. Playing Go with Filter Functions.
SILVA, S.F., 1996.

Artificial Intelligence, 3rd Edition. WINSTON, P., Addison-Wesley
Publishing Company, pages 101-118, Reading, MA, 1992.

About Problems in Generalizing a TsumeGo Program to Open
Positions. WOLF, T., School of Mathematical Sciences, Queen Mary
and Westfield College, University of London, London, 1996.

The Program GoTools and its Computer-Generated Tsume Go
Database. WOLF, T., School of Mathematical Sciences, Queen Mary &
Westfield College, London, 1996.

GoTools - The Tsume-Go program. WOLF, T., World-Wide-Web
page http://alpha.gmw.ac.uk/~-ugah006/gotools/, 1997.

09 /2(

[Wolf 96-11]

[Wolf 97]

