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Abstract

Given limited and noisy data, identifying the transfer function of a complex aerospace
system may prove difficult. In order to obtain a clean transfer function estimate
despite noisy data, a time-frequency analysis approach to system identification has
been developed. The method is based on the observation that for a linear system,
an input at a given frequency should result in a response at the same frequency,
and a time localized frequency input should result in a response that is nearby in
time to the input. Using these principles, the noise in the response can be separated
from the physical dynamics. In addition, the impulse response of the system can
be restricted to be causal and of limited duration, thereby reducing the number of
degrees of freedom in the estimation problem.

The estimation method consists of finding a rough estimate of the impulse response
from the sampled input and output data. The impulse response estimate is then
transformed to a two dimensional time-frequency mapping. The mapping provides a
clear graphical method for distinguishing the noise from the system dynamics. The
information believed to correspond to noise is discarded and a cleaner estimate of
the impulse response is obtained from the remaining information. The new impulse
response estimate is then used to obtain the transfer function estimate.

The results indicate that the time-frequency transfer function estimation method
can provide estimates that are often less noisy than those obtained from other methods
such as the Empirical Transfer Function Estimate and Welch's Averaged Periodogram
Method.

Thesis Supervisor: Steven R. Hall
Title: Associate Professor
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Notation

amplitudes of basis functions used in constructing g

al , -- , a,a polynomial coefficients of A(q)

Au, Toeplitz matrix of sample autocorrelation vector

A(q) parameter polynomial (parametric estimation methods)

B(q) parameter polynomial (parametric estimation methods)

C(q) parameter polynomial (parametric estimation methods)

D(q) parameter polynomial (parametric estimation methods)

F(q) parameter polynomial (parametric estimation methods)

e disturbance or measurement noise

e vector of sampled measurement noise

E expected value

f frequency (Hz)

fR frequency resolution of time-frequency mapping (Hz)

F, sampling frequency (Hz)

T Fourier transform

g impulse response

g vector of sampled impulse response

Simpulse response estimate

G input to output transfer function

Sestimate of input to output transfer function

g time-frequency transform of impulse response, g(t)

H disturbance to output transfer function

I information matrix

Jp performance cost function which weights the difference in the points as opposed

to the difference in the area under the curve

JA performance cost function which weights the difference in the area under the

curve as opposed to the difference in the points

K total number of points in a hanning window



m number of previous data points the impulse response depends on

(determines duration of the impulse response in time)

n index indicating the nth data point in a sampled signal

ns number of data points in a data block

N total number of measurements or data points

Nw number of windows or data blocks

p index indicating the pth of Nw windows

q shift operator (q = ejw)

s Laplace transform (s = jw)

t time (seconds)

tR time resolution of time-frequency mapping (seconds)

T end time of data (seconds)

T transformation matrix of basis functions

u system input

u vector of sampled system input

U convolution matrix of sampled inputs

Ue extra terms in input convolution matrix

UN Fourier transform of input u(t)

VN parametric estimation error criterion

w window such as Hanning or boxcar

x signal in the time domain

X signal in the frequency domain

y system output

y vector of sampled system output

ye extra terms in vector of sampled system output

YN Fourier transform of output y(t)

6mn dirac delta function

Aff frequency resolution of transfer function estimate (Hz)

At sampling interval (seconds)



0 set of parameters to be estimated (parametric estimation methods)

o variance of noise

7 time (seconds)

basis function

sample autocorrelation vector of u

Oyu sample cross-correlation vector of y and u

4 U power spectral density of u

4yP cross-spectral density of y and u

X information vector

w frequency (rad/second)

( )s relating to symmetric data set

( )a relating to asymmetric data set



Chapter 1

Introduction

1.1 Motivation

When working with complex aerospace systems such as airplanes and helicopters,

system identification is an important tool for identifying the system dynamics. Accu-

rate identification is crucial in such procedures as safety flight testing or in designing

controllers. However, these systems are often nonlinear and tend to operate in en-

vironments with large disturbances such as turbulence, which in addition to sensor

noise, can lead to very noisy test data. Furthermore, flight testing and wind tunnel

testing is extremely costly and because there is often limited time at a test facility,

the amount of available data is limited. Even when a linear analysis is valid, given the

limited and noisy data, obtaining an accurate estimate of a system transfer function

can be difficult. Therefore, there is a need for a method that will quickly estimate the

transfer function despite these limitations. An efficient and reliable method for more

accurate estimation would not only save testing time but also reduce testing costs.

1.1.1 System Identification Techniques

Although there are many transfer function estimation techniques available, given data

limitations, these may yield poor results. One such method is the Empirical Transfer

Function Estimate (ETFE), which estimates the transfer function by taking the ratios



of the Fourier transforms of the output y(t) and the input u(t). The estimate is given

by

(w)= (y(t)) (1.1)

If the data set is noisy, the resulting estimate is also noisy. Unfortunately, taking

more data points does not help. The variance does not decrease as the number of

data points increase because there is no feature of information compression. There

are as many independent estimates as there are data points [1].

Parametric estimation methods are another class of system identification tech-

niques. The motivation behind these methods is to be able to find an estimate or

model of the system in terms of a small number (compared to the number of measure-

ments) of numerical values or parameters, 0. A linear system is typically represented

by

y(t) = G(q)u(t) + H(q)e(t) (1.2)

where e(t) is the disturbance, G(q) is the transfer function from input to output,

H(q) is the transfer function from disturbance to output, and q is the shift operator

(q = eji) used when dealing with discrete systems. The most generalized model

structure is

A(q)y(t) = B(q) u(t) + C(q) (1.3)
F(q) D(q)

where A(q), B(q), C(q), D(q), F(q) are all parameter polynomials to be estimated.

For example,

A(q) = 1 + alq- 1  . + an.o q - n"  (1.4)

The coefficients of all the polynomials make up the set of parameters to be estimated,

0. By using some of the polynomials and setting the others equal to 1, popular

estimation model structures such as ARX (Autoregressive Extra Input), ARMA (Au-

toregressive Moving Average), and OE (Output Error) can be obtained. However,

when using these methods, the estimate can be poor at low frequencies. For example,



the ARX method is given by

A(q)y(t) = B(q)u(t) + e(t) (1.5)

In estimating the parameters 0, the error criterion to be minimized is

VN(O) = A(ej')YN(w) - B(eW)UN(w) 2  (1.6)

where YN and UN are Fourier transforms of y(t) and u(t). If the error criterion is

rewritten as
Y I(w) 2

VN(O) = YN(W) (ejw,0) 2U(W)2 A(ew) (1.7)
UN (w)

it becomes evident that the minimization is being weighted by 0A(ej") 2 . Typically,

system transfer functions roll off at higher frequencies. Conversely, the denominator

A(e3w) would increase at higher frequencies, as shown in Figure 1-1. Therefore, the

error criterion is weighted more heavily at higher frequencies causing the transfer

function to be estimated poorly at low frequencies [1, 2]. In addition, obtaining an

estimate using these parametric estimation methods can be very time consuming for

the engineer.

Because of problems using these methods to estimate transfer functions from noisy

data sets, new methods are being explored.

160

140 -

120 -

100  ..... .

2 80

60 -----

100 101 102
Frequency (rad/sec)

Figure 1-1: Typical transfer function denominator



Time-Frequency Analysis Techniques

In working to identify F-18 flutter boundaries, a new way of estimating transfer func-

tions using a time-frequency analysis approach was developed recently by Paternot

[3], Feron et al. [4], and Turevskiy [5]. The F-18 flight tests used a chirp excitation

signal, a signal of sinusoidal shape with linear or logarithmic modulated frequency.

In a time-frequency mapping, the chirp signal transforms very clearly, as shown in

Figure 1-2. The darkest band corresponds to the frequency sweep, whereas the other

bands are secondary harmonics. Any other spots are due to noise. A straight band

indicates that the frequency sweep was linear in this data set. If the band were curved,

this would indicate a logarithmic sweep. Since the system to be identified is assumed

to be linear, any information in the output signal that occurred at a certain time and

frequency must correspond to input information at the same time and frequency. If

not, it is most likely an artifact of noise. Therefore, one can visually determine which

information is due to system dynamics and which is due to noise. The input and

output data is then cleaned of the identified noise, thereby allowing for an enhanced

transfer function estimate. Feron et al. found that the time-frequency estimation

method performed better than other system identification techniques such as Fourier

analysis, Prediction Error Method (PEM), and subspace identification [4].

input signal output signal

50 50

40 40

30 30
o

Cr 20 C- 20

10 10

0 0
0 5 10 15 0 5 10 15

time (s) time (s)

Figure 1-2: Time-frequency mapping of chirp signal and output



1.2 Thesis Objective and Overview

Feron et al. succeeded in obtaining cleaner transfer function estimates by making

two important observations regarding the response of a linear system: an input at

a given frequency should result in a response at the same frequency, and a time

localized frequency input should result in a response that is nearby in time to the

input. Therefore, any part of the response of a linear system that doesn't follow these

observations must be due to the influence of noise. Based on these principles, they

developed a time-frequency analysis method that utilized the structure of a chirp

input signal to distinguish the system dynamics from the noise.

The objective of this thesis is to further the work of Feron et al. by developing

a more generalized approach to time-frequency transfer function estimation that will

accept data sets with any type of input signal. The method is demonstrated on a

numerical example as well as experimental data both of which are identical to those

used in the literature [3, 4, 5]. In addition, the performance is compared with other

popular transfer function estimation techniques.

The subjects contained specifically in each chapter are as follows. Chapter 2

presents the theory behind the time-frequency analysis and demonstrates the method

using a numerical example. A trade-off study is presented to give insight into how to

set the method parameters. The results are compared with those obtained from other

system identification methods. Chapter 3 demonstrates the method on experimental

multi-input data. Finally, Chapter 4 discusses the results and makes suggestions

for further improvements to the method. The time-frequency analysis method was

implemented as a tool in MATLAB. The code and instructions can be found in the

Appendices.
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Chapter 2

Transfer Function Estimation

2.1 Time-Frequency Signal Analysis

A common and useful way to determine the frequency content of a sampled signal is

to take the discrete Fourier transform

00

X(f) = E xe-j2 At (2.1)
Ln= -oo

where xn = x(nAt) and At is the sampling rate. Since test data sets are finite, it is

assumed that the only non-zero data is during the test when t = [0, T]. Therefore,

the discrete Fourier transform of the signal becomes

N-1

X(f)= - Xn e - j 2 rf n At (2.2)
n=O

where N is the total number of data points. By the nature of the time to frequency

transformation, the resulting X(f) only contains information about the frequency

content of the signal x and therefore obscures the time behavior.

However, there are some situations where it is useful to have temporal information

about a signal's frequency content. An example from everyday life is music. We

perceive the music both in terms of time and frequency, notes of given duration

and frequency. Analyzing such a signal purely in the time domain or purely in the



frequency domain surely misses some important information.

Estimating the transfer function and impulse response of a system from test data is

another situation where is is useful to have simultaneous time and frequency informa-

tion. When estimating the impulse response, it is reasonable to make the restriction

that the impulse response be causal and time limited. In addition, the frequency con-

tent of the transfer function should only include those frequencies that are physical

realizations of the system, as opposed to noise or outside disturbances. Therefore, in

order to restrict both the time and frequency characteristics of the data, there is a

need for a time-frequency representation.

The general representation of a time-frequency transform is

NW N-1

X(f,p) = _ E (xn Wpn)e - j 27rf nAt (2.3)
p=1 n=0O

where wp is a set of Nw windows that filter sections of x. The set of windows

essentially divide the signal into several segments or data blocks. The resulting rep-

resentation of x is in matrix form, containing frequency content information for each

windowed segment of the signal. (The details of the windowing method are discussed

in Section 2.2.2.) This time-frequency transform can be used to provide simultaneous

time and frequency information about a signal, thereby enabling the engineer to make

the necessary restrictions for producing an enhanced transfer function estimate.

2.2 Transfer Function Estimation

The proposed method for system identification using a time-frequency analysis ap-

proach is briefly described below, followed by a detailed presentation of the theory.

The time-frequency analysis method starts by finding a rough estimate of the

impulse response. This estimate is then mapped to a time-frequency representation

using the transform of Equation 2.3. The mapping is used to distinguish the signal

information that is due to system dynamics from that due to noise or disturbances.

The information that is a physical realization of the system is retained, while infor-



mation believed to be due to noise is discarded. The remaining signal information is

used to reconstruct a cleaner estimate of the impulse response, which in turn can be

used to obtain a transfer function estimate.

2.2.1 Estimating the Impulse Response

The impulse response is related to the system input and output by

y(t) = g(t) * u(t) + e(t) (2.4)

= f! g()(t - T)dT+ e(t)

where * is the convolution operator, y(t) is the output, g(t) is the impulse response,

u(t) is the input, and e(t) is the disturbance or noise. Because the input and out-

put data is sampled and finite, the convolution integral of Equation 2.4 must be

approximated in discrete time as the sum

m-1

Yn = gkUn-kAt + en n = m - 1, .. , N - 1 (2.5)
k=0

where each output data point depends on m previous input data points, N is the

total number of sampled data points and the noise, en, is assumed to be white noise

with zero mean and variance a2 . The convolution of Equation 2.5 can be rewritten

in matrix form as

Ym-1 Um-1 Um-2 " e m-1
go

Ym Um Urn-1 " U1 em

Ym+1 = At um+1 Um ... U2 91 + e m+1

9,-1 (2.6)
YN-1 UN-1 UN-2 " UN-m eN-1

or

y = U g + e



An estimate of the impulse response g that minimizes the squared estimation error

ly - Ug12 is desired. The least squares estimate is found by taking the pseudo-inverse,

which is given by

g = (U T U)-1 (UT y) (2.7)

and can be rewritten as

g = (z)- X (2.8)

where I and X are the information matrix and vector respectively. They are defined

as

I= UTU (2.9)

X = UTy (2.10)

When the data sets (and therefore m and N) become large, the solution of Equa-

tion 2.7 becomes computationally expensive. In order to compute UTU, it takes

approximately N multiplications to calculate each of the m 2 terms. Reducing the

number of multiplications would reduce the cost of the calculation, which could make

working with large data sets more manageable. Writing out the terms of UTU as

UiUi Ui- 1li .. Ui-(m-1)Ui

N-1
uTu (

A t )2  
Uii-1 "i-1i-1 " Ui-(m-1)Ui-1UU = (at) (2.11)

i=m-1

UiUi-(m-1) Ui-lUi-(m-1) Ui-(m-1)Ui-(m-1)

it is evident that UTU is almost Toeplitz. In fact, UTU would be a Toeplitz matrix

if the limits of the sum in Equation 2.11 were changed to be

UiUi U[--1]U ...' U[i-(m-1)]Ui

N-1

UTU A, - (At)2 Ui[i-] [-][i-1 "' U[i--(m--1)[i--1 (2.12)
i=O

uzu[i-(m-1)] U[i-1]U[i-(m-1)] " U[i-(m-1)]U[i-(m-1)]

where a bracket around an index indicates that the index is evaluated mod N. For



example, if i = 1 then u[i-2] = u-1 = UN-1. Equation 2.12 can be simplified to

N-1

AU, = (At) 2

i=O

uiui

uiU[i+i]

UiU[i+(m-1)]

uiu[i+l]

uiui

UiU[i+(m-2)]

" UiU[i+(m-1)]

• " UiU[i+(m-2)]

... Uiui

by a change of index variable for each term of the matrix. The first column of Auu

is recognized to be NAt times the sample autocorrelation vector of u, which is given

1 N-1

(u)f' = N 1 uku[n+k]At
k=O

(2.14)

Therefore, it is possible that the sample autocorrelation vector could be used to

calculate UTU more efficiently. Due to the symmetries of the Toeplitz matrix of

Equation 2.13, only m terms would have to be calculated as opposed to m 2 . However,

a correction term is needed, since Au, and UTU are not exactly equal. Rewriting

Equation 2.6 to include the first m - 1 terms of y, the convolution matrix becomes

Um-2 Um-3

Um1

U m+1

Um-2

Um-1

UM

UN-1 UN--2

... UN-m+1

... UN

. Ul

... U2

... UN-rn

Ue

U

where Ye and Ue denote the extra m - 1 terms. The information matrix I corre-

(2.13)

= At

90

91

9m-1

em-2

em

emN-1

eN-1

(2.15)

+ e



sponding to Equation 2.15 is given by

i=[ Ue U U = U u + TU (2.16)
U

and turns out to be exactly equal to Auu as given by Equation 2.13. Therefore, UTU

can be related to Auu by

UTU = A,, - U Ue (2.17)

UTy can be calculated in a similar fashion using the sample cross-correlation

vector, defined by

1 N-1

(yu) - N ykU[n+k]At n = 0, ... -, N - 1 (2.18)
k=O

The relationship between UTy and ,yu is given by

UTy = ,yu - U ye (2.19)

In computing Au,, there are N . m multiplications and in computing UTUe there

are m - m 2 multiplications, as opposed to the N - m 2 multiplications in computing

UTU. Since N is generally at least an order of magnitude larger than m, computing

the information matrix using Equation 2.17 can amount to substantial savings in

computation time. Therefore, substituting Equations 2.17 and 2.19 into Equation 2.7

provides a more computationally inexpensive estimate of the impulse response.

Note that the Fourier transforms of the correlations, Oy and ou, are the cross-

spectral density yu, and the power spectral density 4u,. Since calculating the infor-

mation matrix and vector of Equation 2.9 and Equation 2.10 is very close to calcu-

lating the correlations, yu, and ¢u, it follows that estimating the impulse response

in the time domain using

S= (uTu)-(UTy) (2.20)

is analogous to using spectral analysis in the frequency domain to calculate the Em-



pirical Transfer Function Estimate (ETFE) given by

G(w) = 4)u(w)-14u(w) (2.21)

Multi-Input Systems

The methodology for estimating the impulse response can be expanded to include

multi-input systems. If

y(t) = 91(t) * u1(t) + g2(t) * U2(t) + e(t) (2.22)

then Equation 2.6 becomes

U2

and Equation 2.7 becomes

uTu1

91 + e
g2

uTU2

UU 2U2u

uT

UT
L 2

(2.23)

Y (2.24)

Therefore, Equations 2.17 and 2.19 become

UTUi UTU2
UU 1 UT U2

Aulul AU1 u2

Au Au2
L 22U1 U2U2 j

UTy

U U1,
le

U[ e
le

UTlU 2e

U U 2eU
(2.25)

(2.26)

Substituting Equations 2.25 and 2.26 into Equation 2.24 provides the estimates of

the impulse responses for multi-input systems.

Y =[U

yu

Oyu2



2.2.2 Time-Frequency Decomposition

After obtaining an estimate of the impulse response, it is mapped from a one di-

mensional representation in time to a two dimensional representation in time and

frequency. In order to achieve this, the time-frequency transform of Equation 2.3 is

used. The transform of the impulse response is given by

NW N-1

g(f,p) = E E (gn wpn)e-j 2 f nAt (2.27)
p=1 n=O

The purpose of the set of windows, wp, is to divide the impulse response into Nw

segments or data blocks and to simultaneously filter each block.

Figure 2-1 illustrates the various ways the signal could be segmented. The basic

decomposition method is to divide the signal into adjacent data blocks as shown

in Figure 2-la. In each block, any choice of filters or windowing techniques could

be used. The simplest is a boxcar window. However, when the Fourier transform

of each segment is taken, frequency spreading is introduced into the results due to

the discontinuities at the ends of each segment. In order to smooth out this effect, a

Hanning window may be used instead, as shown in Figure 2-lb. The Hanning window

is described by

Hanning(k; K) = [1 - cos ( )] k = 0, 1, - - , K - 1 (2.28)

Because each segment of the signal decays continuously to zero at each side of the data

block, the Fourier transform frequency spreading is eliminated. However, a Hanning

window forces the signal to equal zero at the junctions of each block. In order to allow

for non-zero values at these boundaries, a second set of overlapping segments can be

added as shown in Figure 2-1c. Notice that the first and last blocks are only half the

size of the others in order to allow for nonzero values at the beginning and end of

the impulse response. For the time-frequency analysis used in this thesis, overlapping

Hanning windows were used.

Using the expression for a Hanning window given in Equation 2.28, the set of



Figure 2-1: Division of impulse response into data blocks

overlapping windows can be represented mathematically by

=1

WHanning (n + ; n
Wpn =

SO<n< n.ee 2

else

p= 2,'".,Nw- 1

WHanning n - (p - 2)4 ___ n < p

else

N- < n < N2

else

WHanning (rn

WPn =

p = Nw

Wpn =

where n = 0, ... , N - 1. The number of data points in a segment, ns, is determined

by

m

Nw

2 )

if adjacent data blocks (Figure 2-la,b)

if overlapping data blocks (Figure 2-1c)
(2.30)

(2.29)

n, =

(P - 2)-
2 Ts

(N -&);n,)



Figure 2-2: Set of Hanning windows used in the time-frequency decomposition

This set of overlapping Hanning windows is represented graphically in Figure 2-2.

The time-frequency transform may be represented graphically as shown in Fig-

ure 2-3, in which the magnitude of each time-frequency pair is represented by the

intensity of that bin. The magnitude of each bin is given by the absolute value of

the Fourier coefficient for that segment of the impulse response at that particular

frequency. The time-frequency mapping provides an easy way to view the energy of

the signal. For example, in Figure 2-3 there is energy around 5-10 Hz. Note that this

band of bright squares looks organized and decays in an exponential fashion, which

is what one would expect for an impulse response. The bright bins near the top look

random, and are probably due to noise in the signal.

Each bin of the time-frequency mapping has a basis function associated with it.

Regrouping the terms in Equation 2.27, the time-frequency transform can be rewritten

as
NW N-1

Gk,p - E gn(wp, e - j  )  (2.31)
p=l n=0

making it evident that the time-frequency transform projects the impulse response

onto windowed sinusoidal basis functions. These basis functions are defined by

2xwkn

Ok,p = w - e N (2.32)

Figure 2-4 shows the first five basis functions of the second data block for the boxcar

windowed and Hanning windowed segments of Figure 2-1.
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Figure 2-3: Two dimensional time-frequency mapping of a signal

2.2.3 Signal Noise Removal and Transfer Function Estimation

By looking at the time-frequency mapping of the signal, decisions can be made to

determine which bins to keep and which to throw out. For example, in Figure 2-3,

the band of bright bins at the bottom would be kept because the resonances there are

most likely from the system dynamics, whereas the bright bins near the top would be

thrown out because they are most likely due to noise.

After choosing which bins to keep, a new estimate impulse response must be

reconstructed. By throwing out some of the degrees of freedom, the magnitudes of

the Fourier coefficients for each bin will change along with the information matrix and

vector, I and X. The new magnitudes, information matrix and vector can be found

from the old via a transformation matrix made up of the basis functions corresponding

to the degrees of freedom that are kept. The transformation matrix is

T = [ 02 0p,] (2.33)



a) b)

Figure 2-4: Example basis functions: a) boxcar window b) Hanning window

where p is the number of basis functions used, and ni are the indices of the retained

basis functions. In the case of multi-input systems, the transformation matrix is given

by

T = T,, O(2.34)T= T' 1 (2.34)
0 T92

where T91 is a set of basis functions corresponding to gl and T 9 2 is a set corresponding

to g2. The new information matrix and vector are then

S= TTT

-= TT

(2.35)

(2.36)

and the new amplitudes are

Therefore, the new estimate of the impulse response is

g = Ti

The estimate of the transfer function is then obtained by

(2.37)

(2.38)

(2.39)

I I

---,n/--------------

G^( f) =_ F (1))



2.2.4 Specifying Method Parameters

In using the time-frequency method, there are two parameters to be set. The first

parameter is m, the number of previous input data points each output data point

depends on. In other words, m is the number of data points that the impulse response

estimate will have, and therefore determines the duration of the impulse response.

The second parameter is Nw, which determines the number of segments or data

blocks of the impulse response. As defined in Equation 2.30, Nw also determines the

number of data points, ns, in each data block.

At the start of the estimation problem, there are as many degrees of freedom

to estimate as there are data points in the sampled input and output data. After

setting the parameter m, the duration of the impulse response is restricted to mAt

and therefore, there are only m degrees of freedom in the estimation problem.

After setting Nw, the signal is split into data blocks and then transformed to the

time-frequency mapping. When adjacent data blocks are used, the mapping will be a

matrix of bins that is y rows by Nw columns. When overlapping segments are used,

there are Nw columns with - rows in each column with the exception of the first

and last which have only & rows. This is because the first and last columns represent

the half-size data blocks located at the beginning and end of the impulse response.

The frequency and time resolutions, fR and tR, of the time-frequency mapping

are therefore determined by the choices of m and Nw. The resolutions are given by

fR = F t R = nAt (2.40)

where F, is the sampling frequency and n, is a function of m as defined in Equa-

tion 2.30. Note that in the time-frequency transformation, the number of degrees

of freedom is preserved. The time-frequency mapping matrix has a total of ! bins

where each bin represents two basis functions (a windowed sine and cosine) for a total

of m degrees of freedom.

Therefore, in choosing m and Nw, there is a tradeoff between frequency resolution

and time resolution. Which resolution to favor depends on the estimation problem.



For example, in estimating a transfer function that has two peaks that are close in

frequency w, with small and approximately equal damping (, it may be better to favor

frequency resolution. Because the peaks are close in frequency, a course frequency

resolution would merge the information corresponding to each peak. In addition, the

decay of the vibrations at each natural frequency is governed by e-Ct and since the

natural frequency and damping of both resonances are approximately the same, the

vibrations at each frequency will decay at approximately the same rate. Therefore, a

time resolution that captures the information corresponding to one of the peaks will

also be able to capture the other.

However, if the transfer function to be estimated has peaks spaced further apart

with a large difference in damping, it may be better to favor time resolution. Because

the vibrations due to one of the resonances will decay much faster, inadequate time

resolution could result in missing the second peak.

Two transfer functions like those described are shown in Figure 2-5. Below each

transfer function are their time-frequency mappings using two data blocks and then

six data blocks. The transfer function on the left has two peaks close in frequency

with the same damping for each. When two data blocks are used, there is very

good frequency resolution and it is easy to tell from the time-frequency mapping that

there are two distinct peaks. However, when six data blocks are used, the frequency

resolution is not as fine, making it hard to distinguish that there are two peaks.

Therefore, it is better in this case to choose frequency resolution over time resolution.

The transfer function on the right has two peaks further apart in frequency, and

the second peak has a higher damping ratio than the first. When two data blocks

are used, the information corresponding to the second peak is missed, because the

associated resonances decay so quickly. However, if less frequency resolution is used

in favor of more time resolution, the information corresponding to the second peak

becomes visible.

The choice of m also affects the frequency resolution of the transfer function

estimate. The estimated impulse response, g, will have m data points. As defined

in Equation 2.39, the transfer function estimate G is found by taking the Fourier



transform of the impulse response. The Fourier transform only provides frequency

content information up to the Nyquist frequency. Therefore, the frequency resolution

of the transfer function estimate is given by

Af6 = Fs (2.41)
m

Due to these tradeoffs in time and frequency resolution, the user may need to

iteratively adjust m and Nw in order to get the best estimate of the transfer function

using the time-frequency analysis.
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2.3 Method Validation

In order to validate the method, as well as compare it to other transfer function

estimation procedures, a numerical example was used as a trial case. This numerical

example is the same example used by Turevskiy [5] and is a fourth-order system

whose dynamics are very similar to the F-18 experimental data set of Chapter 3.

The numerical example's transfer function is meant to match the F-18 experimental

transfer function from right wing input to the left wing sensor. The transfer function

is given by

-200(s 2 + 2s(0.05)(50.26) + (50.26)2) (2.42)

(S) 2 + 2s(0.02)(40.85) + (40.85) 2)(s 2 + 2s(0.02)(56.56) + (56.56)2)

and is plotted in Figure 2-6. The system has a zero at 8 Hz and two lightly damped

poles at 6.5 and 9 Hz.

0 2 4 6 8 10 12 14 16
I I I I I I

-200
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U -300

-400
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Frequency (Hz)

Figure 2-6: Transfer function of numerical example

In order to demonstrate the versatility of the time-frequency analysis method,

the trial case was run using two different inputs to the system. Approximating the

experimental data, the numerical system was first simulated with a linear sweep input

signal given by

u, = 1.5 sin(2.51(nAt) 2) (2.43)



The second run used white noise w, with unit intensity for the input. For both runs,

the system was simulated for 30 seconds with a 200 Hz sampling rate.

The output of the system is given by

Yn = gn * un + en (2.44)

where en represents sensor noise. It is assumed that e(t) is a broadband random

process with bandwidth much greater than the sampling frequency. Since the random

process is highly uncorrelated, the expected value of en is defined as

E [emen] = U256mn (2.45)

where em and en are any two data points of the noise and 6 mn is the dirac delta

function.

Transfer functions were estimated using both the chirp signal input and the white

noise input for several levels of sensor noise as shown in Figure 2-7. The results

are presented in Section 2.3.2 after a discussion of the estimation methods used for

comparison.

2.3.1 Estimation Methods for Comparison

The results of the time-frequency estimation method are compared with several other

system identification methods in order to give an indication of its performance. The

system identification methods used for comparison are:

Empirical Transfer Function Estimate. This method, as described in Section

1.1.1, estimates the transfer function by taking the ratio of the Fourier trans-

forms of the output and input. It is implemented using the etfe.m command

in MATLAB's system identification toolbox.

Welch's Averaged Periodogram. This method is an improvement on the Em-

pirical Transfer Function Estimate and has some similarities with the time-

frequency analysis method. The variance of the ETFE can be reduced if the
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signals, u(t) and y(t), are broken into sections or data blocks, and the peri-

odograms of each section are averaged. The result is called an averaged peri-

odogram. Welch proposed a variation to the averaged periodogram in which

the data blocks are overlapped and a window, such as the Hanning window, is

used to filter each block. By overlapping the blocks, usually by 50% or 75%,

some extra variance reduction is achieved [6]. It is implemented using the tf e. m

command in MATLAB's signal processing toolbox.

Note that Welch's method is different from the time-frequency method, in that

it treats the signals u(t) and y(t) separately and then the ratio of their pe-

riodograms is taken, whereas the time-frequency method works directly with

the impulse response, g(t). Also, Welch's method reduces the effect of noise

by averaging all the data blocks, whereas the time-frequency method reduces

the effect of noise by throwing out the information in the bins corresponding to

S0
S-_2

-4
0



noise. The information from each data block is not averaged, but rather used

to reconstruct a better estimate of the impulse response.

Because this estimation problem is a numerical example, there is knowledge of the

exact transfer function. Therefore, the estimated transfer functions can be compared

against the transfer function given in Equation 2.42. With experimental data, this

form of performance evaluation could not be used. The performance cost function to

be minimized is

1Hz G(f) - G(f df (2.46)

and is evaluated over the frequency range of 5 to 12 Hz since this is where the reso-

nances to be identified are located. Depending on how this cost function is computed,

very different results may be obtained. One way of calculating the transfer function

is to take the points of the estimated transfer function and compare them to the

exact transfer function only at those same frequencies. This way of estimating the

cost weights the actual points of the estimate more heavily than the shape of the

curve formed by the points. Another way to calculate the cost is to take the points

of the estimated transfer function and linearly interpolate between them such that

curve of the estimate can be compared to the exact curve. This method weights the

area under the curve more than the actual points in the curve. The first method will

be denoted Jp since it uses the discrete points of the estimate to find the cost. The

second method will be denoted JA since it uses the area under the curve to find the

cost.

To illustrate the difference between the two methods, Figure 2-8 shows a transfer

function and two estimates, one represented by x's and the other by o's. The cost Jp

would indicate that the estimate represented by x's is the better estimate whereas

the cost JA would indicate that the * estimate is the better one. The advantage of the

cost JA is that a transfer function estimate which misses a peak would perform poorly

whereas the cost JP would indicate good performance as long as each point was a good

estimate. However, the cost JA could also be misleading if for example, one peak was

estimated to be much larger while another was estimated to be much smaller. The



added area under the curve from the large peak would make up for the missing area

under the small peak and therefore JA would still indicate good performance. In this

case, however, J, would be a good indicator of the performance because it would be

comparing each point of the estimate with the actual transfer function. Because of

these ambiguities, the cost defined in Equation 2.46 can only be used as an indicator

of the value of each estimation method. In evaluating the estimation methods, both

Jp and JA were used. A very good estimate would be one that minimizes both costs.

1.5

j 1

0.5

5 6 7 8 9 10 11 12
Frequency (Hz)

Figure 2-8: Methods of calculating the cost function

2.3.2 Numerical Example Results

The time-frequency analysis method was tested on six estimation problems. The

input was either a chirp signal or white noise and the measurement noise had variance

a2=.02, a 2 =.2 or a2=2.

Case 1: Chirp input signal, o2=0.02. The results for the case with a chirp sig-

nal input and sensor noise with variance a 2 =0.02 are reported in Table 2.1 and

Figure 2-9. The best estimate using Welch's method was found by breaking

the data into 3 data blocks. The time-frequency estimate was found by setting

m=1200 and dividing the data into 2 data blocks. From the time-frequency

mapping, it was very clear which bins were noise and at which frequencies the

system resonances were located. Only the bins corresponding to these reso-

nances were kept in the reconstruction of the impulse response. According to



the cost J,, the time-frequency method performed well against the other meth-

ods. However, according to the cost JA, the time-frequency estimate was the

worst of the three. In terms of appearance, the time-frequency estimate looks

to be the cleanest estimate of the transfer function.

Case 2: Chirp input signal, a 2=0.2. The results for the case with a chirp sig-

nal input and sensor noise with variance U2=0.2 are reported in Table 2.2 and

Figure 2-10. As the sensor noise was increased, all of the transfer function es-

timates, especially the ETFE, became less smooth than in the previous case.

The estimate using Welch's method was found by breaking the data into 3 data

blocks. The time-frequency method parameter m was set to 1200 and the data

was divided into 2 data blocks. Again, the system resonances were distinguish-

able from the noise in the time-frequency mapping. Only the bins corresponding

to the resonances were kept. The time-frequency estimate performed well by

both cost functions indicating that the estimate is better than those by the

other two methods. In addition, by visual inspection it appears cleaner than

the other estimates.

Case 3: Chirp input signal, a 2=2. The results for the case with a chirp signal in-

put and sensor noise with variance a2=2 are reported in Table 2.3 and Figure 2-

11. With large amounts of noise, the ETFE became very corrupted although

it is still possible to guess at the resonances. Welch's method still produced a

relatively clean transfer function by breaking the data into 5 segments. How-

ever, as a result, the transfer function is somewhat choppy. The time-frequency

estimate was found by setting m=400 and dividing the data into 2 data blocks.

This time, the time-frequency mapping was not able to pick out information

corresponding to the physical system because the noise was dominating. How-

ever, if some a priori knowledge about the system is known, the time-frequency

mapping can still be used to obtain a cleaned estimate of the transfer function.

For example, in this case, it it was known that the system resonances were be-

low 15 Hz. Therefore, all the information above this frequency could be thrown



out and attributed to noise. By keeping only the bins with frequency content

below 15 Hz, the time-frequency estimate was obtained. The time-frequency

estimate performed better than the ETFE but not as well as Welch's methods.

Note that the time-frequency estimate is very choppy due to m being small.

When the frequency resolution of the transfer function estimate is so poor, it is

possible that the estimate could have missed a peak. Also, the time-frequency

method did not estimate the phase well.

Case 4: Noise input signal, a2=0.02. The results for the case with a white noise

input signal and sensor noise with variance a 2 =0.02 are reported in Table 2.4

and Figure 2-12. The Welch's method estimate was obtained by dividing the

data into 2 segments. The time-frequency method was obtained using m=1200

and 2 data blocks. As with Case 1, the time-frequency mapping made it easy to

distinguish the bins associated with the system resonances from those associated

with noise. Only those believed to be associated with the system resonances

were retained. The resulting transfer function estimate outperforms the other

two in terms of the cost functions and in terms of appearance.

Case 5: Noise input signal, a 2=0.2. The results for the case with a white noise

input signal and sensor noise with variance a 2=0.2 are reported in Table 2.5 and

Figure 2-13. For this noise level, the ETFE does not provide a reliable transfer

function estimate. The Welch's method estimate is fair but underestimates the

second peak. It was found using 4 data blocks. The time-frequency estimate

looks clean comparatively and performs better by both cost functions. This

time-frequency estimate was found by setting m=1200 and using 2 data blocks.

The time-frequency mapping still clearly distinguished the noise from the system

dynamics.

Case 6: Noise input signal, 2=-2. The results for the case with a white noise

input signal and sensor noise with variance a 2=2 are reported in Table 2.6 and

Figure 2-14. In this case, neither the ETFE nor Welch's method performed

well. The Welch's method estimate was found using 12 data blocks. The trans-



fer function estimate was found using m=800 and 2 data blocks. Even though

there was a lot of noise in the time-frequency mapping, a band of bins corre-

sponding to the resonances was still distinguishable. Keeping these bins only,

the transfer function estimate was obtained. The estimate indicates at what fre-

quencies the resonances occur, but underestimates the size of the first peak and

overestimates the second. According to the cost functions, the time-frequency

method performed better than the ETFE but not as well as Welch's Method.

However, visual inspection of the estimates contradicts this result. This case

is a good example of how the cost functions can only be used as indicators of

performance as opposed to absolute measures.

Overall, the time-frequency estimation method performed well. In all cases, the

estimate closely resembled the exact transfer function and was visually comparable

or better than the other methods. In addition, the cost function performance was

often better than the performance of ETFE or Welch's Method. An important result

was also demonstrated by Case 3, which showed that it is not necessary to always be

able to distinguish the noise from the dynamics in the time-frequency mapping. If

the engineer has an idea of what frequency range the resonances should be in, then

the bins outside of the range can be discarded, thereby eliminating some of the noise

in the data.



Table 2.1: Performance of the estimation methods for the case with a chirp signal
input and measurement noise of variance U2=0.02.

u=chirp signal a"2=0.02

Jp A

ETFE 0.0260 0.0173
Welch's Method 0.0214 0.0240
Time-Frequency Method 0.0078 0.0504

Exact
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Figure 2-9: Comparison of the estimation methods for the case with a chirp signal
input and measurement noise of variance cr2=0.02.
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Table 2.2: Performance of the estimation methods for the case with a chirp signal
input and measurement noise of variance u2=0.2.

u=chirp signal 0.2=0.2

Jp JA
ETFE 0.2579 0.1699
Welch's Method 0.0626 0.0497
Time-Frequency Method 0.0222 0.0406

Exact
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Figure 2-10: Comparison of the estimation methods for the case with a chirp signal
input and measurement noise of variance U2=0.2.



Table 2.3: Performance of the estimation methods for the case with a chirp signal
input and measurement noise of variance r2=2.

u=chirp signal a2= 2

Jp A
ETFE 2.5759 1.6932
Welch's Method 0.2144 0.1972
Time-Frequency Method 0.2456 0.4212

Exact ETFE
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Figure 2-11: Comparison of the estimation methods for the case with a chirp signal
input and measurement noise of variance g2=2.
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Table 2.4: Performance of the estimation methods for the case with a white noise
input and measurement noise of variance o2=0.02.

u=noise a"2 =0.02

Jp JA

ETFE 3.3268 2.2411
Welch's Method 0.0806 0.0601
Time-Frequency Method 0.0237 0.0484

Exact
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Figure 2-12: Comparison of the estimation methods for the case with a white noise
input and measurement noise of variance U2=0.02.



Table 2.5: Performance of the estimation methods for
input and measurement noise of variance a 2=0.2.

the case with a white noise

u=noise 0 2=0.2

Jp JA
ETFE 32.8913 22.1636
Welch's Method 0.2374 0.2235
Time-Frequency Method 0.1483 0.1454

Exact ETFE
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Figure 2-13: Comparison of the estimation methods
input and measurement noise of variance u2=0.2.
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Table 2.6: Performance of the estimation methods for
input and measurement noise of variance ar2= 2.

the case with a white noise

u=noise a 2=2

Jp JA

ETFE 328.4647 221.3725
Welch's Method 0.7812 0.7415
Time-Frequency Method 1.0644 0.8386

Exact
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Figure 2-14: Comparison of the
input and measurement noise of

estimation methods
variance a 2=-2.
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Chapter 3

Application to Experimental Data

The proposed time-frequency estimation method is illustrated by applying it to the

experimental data from the F18-SRA flight tests at the NASA Dryden Flight Re-

search Center. This is the same data that was used by references [3, 4, 5] to develop

the time-frequency analysis method for data sets with chirp input signals. For the

purposes of this application, the F18 system can be considered a multi-input (2),

single output system. An exciter was mounted on each wing of the F-18 and would

produce sinusoidal variations in the force at the tip of the wing. These variations were

modulated both linearly and logarithmically to provide a chirp or frequency sweep

input signal. Two load sensors measured the input force on the wings. The output of

interest is an accelerometer located on the forward left wingtip. Being consistent with

the literature, the task is to estimate the transfer functions from the left and right

exciters to the forward left wingtip accelerometer over the frequency range spanning

from 5 to 12 Hz.

In order to distinguish the influence of the two inputs, it was necessary to have

symmetrical tests where the inputs were the same, and asymmetrical tests where the

inputs had a 180 degree phase difference. These cases are used together in identifying

the transfer functions.



3.1 Single Input Data Set

Even though the experimental data is really multi-input, for the purpose of compar-

ing the identified transfer function against the estimate given by ETFE and Welch's

Method, a single input case was approximated by averaging the two inputs and aver-

aging the two outputs from the symmetric test. The resulting input and output are

shown in Figure 3-1. Note that the noise level on the output looks very similar to the

numerical test case that was simulated with a sensor noise variance of a2=0.02.

20

. 0

-20
0 5 10 15 20 25 30

1

0

-1
0 5 10 15 20 25 30

time (s)

Figure 3-1: Input and output of SISO experimental data

The estimated transfer functions are shown in Figure 3-2. No performance costs

of the estimates are given, of course, because the response is unknown. Because the

two inputs and two outputs are averaged, only one of the two system peaks shows up

in the estimated transfer function. This is because the second natural frequency is

due to an asymmetric bending mode of the wings. Therefore, adding the two inputs

makes the second mode unobservable.

According to the highest point in the magnitude estimate, the Empirical Transfer

Function Estimate identifies a peak at 6.57 Hz. However, the general shape of the

estimate suggests a resonance of about 6.4 Hz. The phase identified supports the

magnitude estimate, in that there is a 180 degree phase shift at the same frequency.

Unfortunately, the ETFE result is noisy.

The best estimate using Welch's method was obtained by dividing the impulse



response into 5 data blocks. The resulting estimate identified a 6.36 Hz resonance.

The estimate is very clean, but because of the amount of averaging that was necessary,

is also a little choppy. In fact, the peak appears to be lopsided to the left, which

indicates that data points in the estimate have missed the tip of the peak. Therefore,

the resonance is probably a little higher in frequency.

In estimating the transfer function using the time-frequency approach, the pa-

rameter m was set to 1312, and the signal was divided into 4 data blocks. The level

of noise in the measurement is apparently low, as it was very clear which bins in

the time-frequency mapping contained information corresponding to the system res-

onance. The time-frequency analysis method identified a peak at 6.4 Hz. The time-

frequency estimate is smoother than Welch's Method, and cleaner than the ETFE,

giving a better estimation of the dynamics of the system.

3.2 Multi-Input Data Set

In order to properly identify the multi-input F18 system, the symmetric and asymmet-

ric data sets have to be used simultaneously. To do this, the information matrix and

vector of each data set is calculated according to Equations 2.25 and 2.26. Informa-

tion can be added, so the resulting information matrix and vector for the multi-data

set is given by

-I -s +a (3.1)
X = Xs + Xa

where the subscripts ( ), and ( )a indicate information corresponding to the symmet-

ric and asymmetric data sets, respectively. The impulse response estimate is then

calculated according to Equation 2.8.

The transfer function estimates are shown in Figure 3-3. To obtain this estimate,

m was set to 1600 and the data was divided into 4 data blocks. The left input to left

output transfer was identified to have a peak at 6.38 Hz and 9.12 Hz. The right input

to left output transfer function has a peak at 6.38 and 9.00 Hz. Because both the

symmetric and asymmetric data sets were used simultaneously, both the symmetric
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Figure 3-2: Transfer function estimates for single-input case



and asymmetric modes are observable and show up as two peaks in the transfer

function estimate. Note that the transfer function from left input to left output has

a zero between the two poles, as would be expected for a collocated measurement.

Also, note that that because the inputs and outputs were added to create the single

input case, the magnitudes of the single input transfer function are twice as large as

the magnitudes for the two input case, as would be expected.
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Figure 3-3: Transfer function estimates for multi-input case

Both the single input transfer function estimate and the multi-input transfer func-

tion estimate give a clean estimate of the system dynamics that match the results

obtained by Feron et al. [4].





Chapter 4

Conclusions

4.1 Conclusions

Based on the work of Feron et al. [4], the time-frequency analysis method for trans-

fer function estimation was generalized to include data sets with any type of input,

rather than just chirp signals. The method is based on the observation that for a

linear system, the output of the system should be at the same frequency as the input

to the system and that the output should happen nearby in time to the corresponding

input. In addition, the degrees of freedom of the estimation problem are reduced by

restricting the impulse response to be causal and limited in duration. After using a

time-frequency transform to map the impulse response of the system to a two dimen-

sional representation in time and frequency, these principles were used to distinguish

the noise in the response from the system's physical dynamics. By discarding the

information in the impulse response that corresponds to the noise, a cleaner estimate

of the impulse response was found and was then used to obtain the transfer function

estimate.

The efficacy of the method was demonstrated on both a numerical example and

experimental data from F18 flight testing. The time-frequency approach was shown

to reduce the effect of noise in the transfer function estimate even in the presence

of high levels of noise. In addition, it often performed better than the Empirical

Transfer Function Estimate or Welch's Averaged Periodogram method.



4.2 Recommendations

There are several areas that could be explored to improve upon the time-frequency

analysis method presented in this thesis. These areas are discussed below.

Using all output data in estimation method

Because the output depends on m number of previous input data points, the first m

output data points cannot be used for estimating the transfer method unless a way

to include them is developed. Currently, the only way the time-frequency tool can

include those points is by assuming that the input and output are zero before the test.

Under this assumption, the data can be padded with m zeros at the beginning. As a

result, the first point of the sampled output data is dependent on the first sampled

input data point plus m - 1 of the padded zeros. The results of the estimation

method could possibly be improved if a more clever way of including the first m

output data points were developed. One possibility would be to estimate the response

of the system to the initial state using an auto-regressive estimation approach, while

estimating the forced response using time-frequency analysis.

Windowing methods

It is possible that better results could be obtained using another type of window

to filter the segments when performing the time-frequency decomposition. Using

the windowing technique presented, there is constant frequency resolution, fR, and

time resolution, tR, across the entire time-frequency mapping. A filtering method

that allows variations in fR and tR over a time-frequency mapping might provide for

better signal reconstruction.

Algorithm optimization

As the number of desired data points, m, in the impulse response estimate become

large, so does the information matrix, I, of Equation 2.9. The information matrix

has m 2 elements when the data set has only one input and nr2m 2 elements for a data



set with n inputs. Storing this matrix takes a lot of memory, and manipulating the

matrix takes many operations. Therefore, the size of m is limited by the memory of

the computer.

Since the frequency resolution of the transfer function estimate is determined by

m, the smoothness of the estimated transfer function is also limited by the memory

of the computer. Therefore, it would be advantageous to look into ways to optimize

the routines for more efficient data storage and manipulation.

Method combination

Finally, the time-frequency analysis method presented was shown to be effective in

reducing the noise in a transfer function estimate. Further improvements in transfer

function estimation might be obtained if the concepts of the time-frequency anal-

ysis were used in combination with other system identification techniques, such as

parametric identification or subspace identification. For example, the time-frequency

method could be used to estimate the system frequency response from the noise, and

then a parametric technique could be used to fit a model to the system.
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Appendix A

Using the MATLAB

Time-Frequency Analysis Tool

A tool to implement the time-frequency estimation method was developed in MAT-

LAB 5.1. The user interface of the tool is shown in Figure A-1. The tool first presents

the time-frequency mapping of the impulse response. The user can then choose which

bins to keep using the graphical user interface. After bins are chosen, the estimate

of the impulse response and transfer function are calculated and plotted. The cost

function is also evaluated and the performance of the current estimate is displayed.

The tool also allows the user to modify the bin choices. To aid in the modification,

the tool will indicate with a O which bin to add or subtract in order to best reduce the

cost function. The new estimate of the impulse response is then plotted and compared

against the previous estimate. A record of the cost function for each iteration is

displayed on the left side of the tool interface.

The code for the tool is presented in Appendix B. Before the tool can be run, the

information matrix and information vector must be calculated. This is done using

the codes:

mainnum. m single input numerical example

mainsiso.m single input experimental data

mainmiso.m multi-input experimental data



The information matrix and vector are stored in a .mat file and then loaded by the

tool. The code for the tool is:

tvf_tool. m

tvf_toolmiso. m

single input numerical example or experimental data

multi-input experimental data
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Appendix B

MATLAB Code

Y main_num.m

% Corinne Ilvedson

% Last Modified 7/23/98

% Calculates the information matrix M from a numerical example

% information vector V

close all
clear all

fig=1;

u_input='n'

plots=l;

% c=chirp signal input
% n=white noise input
% 1=plot results

% O=don't plot results

% Code parameters
noisevariance = 4;--------------------------
noisevariance = 4;

%--------------------------------
% Impulse Parameters

m=640;--------------------------
m=640;

% the variance of sensor noise

% to add to the measuremement

% (10^-(noise_variance))/dt

% unless equal to zero then

% variance equals zero

% # of previous input pts the
% response depends on



% --------------------------------
% Define numerical system
% --------------------------------

wl=50.26;

w2=40.85;

w3=56.56;

num = -200*[1 2*.05*wl w^2] ;
den1 = [1 2*.02*w2 w2^2] ;
den2 = [1 2*.02*w3 w3^2];
den = conv(denl,den2);

% zero frequency (rad/s)
% 1st peak frequency (rad/s)
% 2nd peak frequency (rad/s)
% transfer function numerator
% transfer function denominator part 1
% transfer function denominator part 2
% transfer function denominator

clear denl den2 wl w2 w3

% --------------------------------
% Plot exact transfer function of
% numerical example
% --------------------------------
w=linspace(0,16*2*pi,500);

[mag,ph,w]=bode(num,den,w);

f=w/(2*pi);

% frequency (rad/s)
% magnitude and phase of numerical example
% frequency (Hz)

if plots
figure(fig)
set(fig,'Position',[548 389 560 440])
fig=fig+1;

subplot(211)
plot(f,mag)

axis([0 16 0 2])
grid

ylabel('Gain')
title('Transfer Function of Numerical Example')

subplot (212)
plot(f,ph)

axis([0 16 -400 -150])
grid
xlabel('Frequency (Hz)')
ylabel('Phase (deg)')

end

% Create input and find system
% response to input
% --------------------------------
Ts=200;

tend=30;

n=tend*Ts+l;

t = [linspace(0,tend,n)]';

dt=t(2);

if strcmp(u_input,'n')

u=rand_input(n,dt,35*2*pi);

% sampling rate (Hz)
% simulation end time (s)
% total # of points
% time vector (s)
% time step (s)

% NOISE INPUT
% create noise input



y=lsim(num,den,u,t);

elseif strcmp(u_input, 'c')

u=1.5*sin(2.51*t. 2);

u=[zeros(m,1); u; zeros(m,l)];
t=[t; t(2:2*m+l)+t(n)];

n=length(u);

y = isim(num,den,u(m+l:n),t(1:n-m));
y = [zeros(m, 1); y];

end

N=n;

if noise_variance==0

Nvar=O;
else

Nvar=(1/dt)*10^(-noisevariance);
end

if Nvar -= 0
randn('seed',42);
v=randn(n, )*sqrt(Nvar);

y=y+v;

% CHIRP INPUT

% pad front with m zeros

% adjust time vector accordingly

% number of data points in data

% to consider

% system response
% pad response w/zeros

% number of data point in data

% variance of the noise

X create sensor noise
% initialize random number generator
% sensor noise

X add sensor noise to output
end

% --------------------------------
% Plot input and output

% --------------------------------
if plots
figure(fig)

set(fig,'Position',[548 389 560 440])

fig=fig+1;

subplot(211)

plot(t,u)

grid
ylabel('INPUT u')

subplot(212)

plot(t,y)

grid
xlabel('time (s)')

ylabel('OUTPUT y')

end

% --------------------------------
% Find exact impulse response
% using MATLAB's impulse.m

% --------------------------------
ttime=clock;

[g_matlab,t_matlab]=impulse(num,den,t(l:m));

gmatlab=gmatlab';

% time the calculation

% exact impulse response

% system response



tgone=etime(clock,ttime);

fprintf('Impulse Matlab : %2.4f s\n',tgone)

% --------------------------------
% Find information matrix, vector
% and impulse response using
% impest.m
% --------------------------------
ttime=clock;

[Minfo,Vinfo,g]=impest(y,u,m,N);

tgone=etime(clock,ttime);

fprintf('Impulse Estimate : 2.4f

% --------------------------------
% Plot exact and esimate impulse

% response

%--------------------------------

% time the calculation
% info matrix, vector and

% impulse resonse estimate

s\n',tgone)

if plots
figure(fig)
set(fig,'Position',[548 389 560 440])
fig=fig+1;

subplot(211)

plot(g_matlab,'r-.')

ylabel('g, exact impulse response')
title('Exact and Estimate Impulse Response')
ax=axis;

subplot(212)
plot (g)

xlabel('data pt. #')

ylabel('g, estimate impulse response')
ax2=axis;
ax2=[ax(1) ax(2) ax2(3) ax2(4)];

axis(ax2);
end

% estimate TF from g estimate
% --------------------------------
ttime=clock;

[mag_g,phg]=g2tf (g);
tgone=etime(clock,ttime);

fprintf('Estimate TF from g %2.4f

freq=[0:m-1] ./(dt*m);

% time the calculation

% magnitude and phase

s\n',tgone)

% frequency (Hz)

% --------------------------------
% Plot TF estimate and compare to
% exact

% --------------------------------
if plots

figure(fig)



set(fig,'Position',[548 389 560 440])

fig=fig+1;

subplot(211)

plot(f,mag,freq,mag_g, 'r--')

axis([0 16 0 2])
grid

ylabel('Gain')

title('Transfer Function Estimate')

subplot(212)

plot(f,ph,freq,ph_g-360,'r--')

axis([0 16 -400 0])

grid
xlabel('Frequency (Hz)')

ylabel('Phase (deg)')

ll=legend('Exact TF','Estimate TF');

clear 11

end

% --------------------------------
% Save information to .mat file

% for use with tvftool.m

% --------------------------------
filename=['main_m' num2str(m) '_' u_input num2str(noisevariance)]

eval(['save ' filename .
' Minfo Vinfo dt g g_matlab t f mag ph y u N m n Nvar num den noise_variance u_input'])



% main_siso.m

% Corinne Ilvedson

% Calculates the information matrix M from siso data
% information vector V

close all

clear all

fig=1;

load data

l=plot results

O=don't plot results

%--------------------------------
% Impulse Parameters

n--------------------------------

N=6400

m=640;

% --------------------------------
% Pad input and output data
% --------------------------------
u=u(l:N);

y=y(l:N);

t=t(l:N);

# data points in data

# data points to look at
# of previous input pts the

response depends on

% keep first N data points

n=N;

pad =sum(u(1:100,1))*ones(m,1)/100;
ypad=sum(y(1:100,1))*ones(m,l)/100;

% pad front of data w/ constant
% = avg value of data at beginning

u =[pad; u];
y =[ypad; y];

t=[t; t(2:m+l)+t(n)];

n=n+m;

N=n;

clear pad ypad

% --------------------------------
% Plot input and output data

% --------------------------------

if plots

figure(fig)

set(fig,'Position',[548 389 560 440])
fig=fig+1;

load f 18

plots=1;



subplot(211)

plot(t,u)

grid
ylabel('INPUT u')

subplot(212)
plot(t,y)

grid

xlabel('time (s)')

ylabel('OUTPUT y')
end

% --------------------------------
% Find information matrix, vector
X and impulse response using
% imp_est.m
% --------------------------------
ttime=clock; % time the calculation

[Minfo,Vinfo,g]=imp_est(y,u,m,N); % info matrix, vector and

tgone=etime(clock,ttime); X impulse resonse estimate
fprintf('Impulse 2 %2.4f s\n',tgone)

% --------------------------------
% Plot impulse response
%--------------------------------
if plots

figure(fig)

set(fig,'Position',[548 389 560 440])

fig=fig+l;

subplot(311)

plot(g)
xlabel('data pt. #')

ylabel('g, impulse response')

title('Impulse Response and Transfer Functions')

end

% estimate TF from g estimate--------------------------------
% estimate TF from g estimate

%--------------------------------
ttime=clock;

[mag_g,ph_g]=g2tf (g);
tgone=etime(clock,ttime);

fprintf('Estimate TF g

freq=[0:m-1] ./(dtm);

% time the calculation
% magnitude and phase

: %2.4f s\n',tgone)

% frequency (Hz)

% --------------------------------
% Plot TF estimate
% --------------------------------
if plots

subplot(312)

plot(freq,magg)

axis([0 16 0 .4])



grid
ylabel('Gain')

subplot (313)

plot (freq,ph_g-180)

axis([0 16 -400 200])

grid

xlabel('Frequency (Hz)')

ylabel('Phase (deg)')
end

% --------------------------------
% Save information to .mat file

% for use with tvf_tool.m

% --------------------------------
filename = ['mainl5_exp' num2str(m)]

eval(['save /var/tmp/' filename ' Minfo Vinfo dt g t y u N m n'])



% main_miso.m

% Corinne Ilvedson

% Calculates the information matrix M from miso data

% information vector V

close all

clear all

fig=1;

load fl8_mimo2_trend2 % load data

plots=l; % 1=plot results
% O=don't plot results

% ------------ "------------

% Impulse Parameters

% --------------------------------
N=n; X # data points to look at
m=320; % # of previous input pts the

% response depends on

% --------------------------------
% Pad input and output zeros with
% constant equal to average

% of beginning data points.

% --------------------------------

pad=[sum(u(1:100,1))*ones(m,1)/100 sum(u(1:100,2))*ones(m,1)/100];

pad2=[sum(u2(1:100,1))*ones(m,1)/100 sum(u2(1:100,2))*ones(m,1)/100];

ypad=sum(y(1:100,1))*ones(m,1)/100;

ypad2=sum(y2(1:100,1))*ones(m,1)/100;

u =[pad; u] ;
u2=[pad2; u2] ;

y =[ypad; y] ;
y2=[ypad2; y2];

t=[t; t(2:m+l)+t(n)];

n=n+m;
N=n;

clear pad pad2 ypad ypad2

% --------------------------------

% Plot input and output
% --------------------------------
if plots

figure(fig)

set(fig,'Position',[548 389 560 440])

fig=fig+1;



subplot(311)

plot(t,u(:,1))
grid

ylabel('INPUT u_{left}')

title('Symmetric')

subplot(312)

plot(t,u(:,2))

grid

ylabel('INPUT u_{right}')

subplot(313)

plot(t,y)

grid

xlabel('time (s)')
ylabel('OUTPUT y_{left}')

figure(fig)

set(fig,'Position',[548 389 560 440])
fig=fig+1;

subplot(311)

plot(t,u2(:,1))

grid
ylabel('INPUT u_{left}')
title('Asymmetric')

subplot(312)

plot(t,u2(:,2))

grid

ylabel('INPUT u_{right}')

subplot (313)
plot(t,y2)

grid
xlabel('time (s)')
ylabel('OUTPUT y_{left}')

end

% --------------------------------
% Find information matrix, vector
% and impulse response

% --------------------------------
save /var/tmp/templ y u y2 u2 m N

save /var/tmp/temp2
clear all

pack

load /var/tmp/templ

ttime=clock;

[Minfo,Vinfo,g]=imp_miso(y,u,y2,u2,m,N);
tgone=etime(clock,ttime);

fprintf('Impulse 2 %2.4f s\n',

% do this to clear out memory

% for calculating Minfo and Vinfo

% time the calculation
% info matrix, vector and
% impulse resonse estimate

tgone)



load /var/tmp/temp2

% --------------------------------
% Plot impulse response

% --------------------------------
if plots

figure(fig)

set(fig,'Position',[548 389 560 440])

fig=fig+1;

subplot(211)

plot(g(:,1))
xlabel('data pt. #')

ylabel('g, impulse response (L to L)')

ax2=axis;

subplot(212)

plot(g(:,2))
xlabel('data pt. #')
ylabel('g, impulse response (L to R)')

ax2=axis;
end

% --------------------------------
% estimate TF from g estimate

% --------------------------------
[magg1,ph_gl =g2tf (g(:,1)); magnitude and phase

[mag_g2,ph-g2]=g2tf(g(:,2));

freq=[0:m-11 ./(dt*m);

% --------------------------------
% Plot TF estimate

% --------------------------------
if plots
figure(fig)
set(fig,'Position',[548 389 560 440])
fig=fig+1;

subplot(221)
plot(freq,mag_gl)

axis([0 16 0 0.2])

grid

ylabel('Gain')
title('Left Input to Output')

subplot(223)

plot (freq,ph_gl)
axis([0 16 -900 100])
grid

xlabel('Frequency (Hz)')

ylabel('Phase (deg)')



subplot(222)

plot (freq,magg2)

axis([0 16 0 0.2])

grid

ylabel('Gain')

title('Right Input to Output')

subplot(224)

plot(freq,ph_g2)

axis([0 16 -900 100])
grid

xlabel('Frequency (Hz)')

ylabel('Phase (deg)')
end

% --------------------------------
% Save information to .mat file
% for use with tvf_tool_miso.m
% --------------------------------

filename = ['miso_m' num2str(m)] ;

eval(['save /var/tmp/' filename ' Minfo Vinfo dt g t y u m N n'])
eval(['save ' filename '_tf ph_gl ph g2 mag_gl mag_g2 freq'])



% rand_input.m

% Corinne Ilvedson

X Last Modified 7/13/98

X Generate White Noise Input with a frequency rolloff at a
% specified corner frequency.

% INPUT ARGUMENTS n :

% dt:

% wc::

% OUTPUT u :

# of points desired in input vector

time step

corner frequency for rolloff (rad/s)

input vector

% function Eu]=randinput(n,dt,wc)

function [u]=rand_input(n,dt,wc)

randn('seed',0)

u=randn(n,1); X random numbers

w=[-n/2:n/2-1] '*2*pi/(n*dt);

% ----------------------------
% Create filter with rolloff
% at wc rad/s
% ----------------------------

gain_num=1;

gain_den=[1/wc 1] ;
gain=nyquist(gainnum,gain_den,w);

gain=fftshift(gain);

f=[0:n-1] '/(n*dt) ;

u=real(ifft(fft(u).*gain));

% frequency (rad/s)

% the filter

% in case want to plot filter

% filter the random numbers
% to get input



% impest.m

% Corinne Ilvedson
% Last Modified 7/9/98

X Finds the impulse
% This code follows

% INPUT ARGUMENTS

% OUTPUTS

response, g via an information matrix/vector method
the math of Ilvedson MIT MS Thesis

"Transfer Function Estimation Using Time-Frequency
Analysis" 1998 Section 2.2.1

y : system output

u : system input

m : y depends on m previous u data points
N : will only consider first N data points of y and u

N >= m

Minfo: information matrix

Vinfo: information vector

g : impulse response estimate

% function [Minfo, Vinfo, g] = impest(y,u,m,N)

function [Minfo, Vinfo, g] = imp_est(y,u,m,N)

utemp=u(l:N);

phiuu=zeros(m,l);

phiuy=zeros(m,l);

% autocorrelation of u
% cross correlation of u and y

% --------------------------------------
%Calculate U'U and U'y the fast way

%--------------------------------------
for i=l:m

phiuu(i)=u(l:N)'*u_temp;
phiuy(i)=y(1:N)'*u_temp;

u_temp=[u_temp(N); u_temp(l:(N-1))]; % shift by one data point
end

A=toeplitz(phiuu);

% --------------------------------------
% Calculate extra terms

%--------------------------------------
u_temp=flipud(u(l:N));

for i=l:m-1;

u_temp=[u temp(N); u_temp(1:(N-1))];

W(i,:)=utemp(l:m)';

end

Minfo=A-W'*W;

Vinfo=phiuy-W'*y(l:m-1);

g=Minfo\Vinfo;

% shift by one data point

% information matrix

% information vector

% least squares estimate of
% impulse response



% imp_miso.m

% Corinne Ilvedson
X Last Modified 7/28/98

% Finds the impulse response, g via an information matrix/vector method

% Adds the information from two different data sets.

% This code follows

% INPUT ARGUMENTS

% OUTPUTS
X
X

the math of Ilvedson MIT MS Thesis

"Transfer Function Estimation Using Time-Frequency

Analysis" 1998 Section 2.2.1

y system output from 1st data set

u system input from 1st data set

y2 : system output from 2nd data set

u2 : system input from 2nd data set

m y depends on m previous u data points

N will only consider first N data points of y and u

N >= m

Minfo: information matrix

Vinfo: information vector

g : impulse responses (mx2 matrix)

% function [Minfo, Vinfo,g] = imp_miso(y,u,y2,u2,m,N)

function [Minfo, Vinfo,g] = imp_miso(y,u,y2,u2,m,N)

p=2 ; % number of inputs

% Symmetric

ttime=clock;

%Calculate U'U and U'y the fast way

u_temp=u(l:N,:);
phiuu=zeros(m,p,p);
phiuy=zeros(p*m,1);

A=zeros(p*m);

for i=l:m
for j=l:p

for k=l:p

phiuu(i,j,k)=u(l:N,j)'*u_temp(:,k);
end

phiuy((i+m*(j-1)),l)=y(l:N)'*u_temp(:,j);

end

u_temp=[u_temp(N,:); u_temp(1:(N-1),:)];

end

% time the calculation

autocorrelation of u

cross correlation of u and y

Toeplitz of phiuu

% shift by one data point

for i=l:p
for j=l:p



A((1:m)+m*(i-1),(l:m)+m*(j-1)) = toeplitz(phiuu(:,i,j));
end

end

'h Calculate extra terms
u_temp=flipud(u(1:N,:));

for i=1:m-1;

utemp=[u_temp(N,:); u_temp(l:(N-1),:)];
Ue(i,:)=u_temp(l:m,1)';
We(i,:)=utemp(l:m,2)';

end

Msubtract=[Ue'*Ue Ue'lWe;

We'*Ue We'*We] ;

Vsubtract= [Ue'*y(1:m-1);
We'*y(l:m-1)];

MinfoS=A-Msubtract;

VinfoS=phiuy-Vsubtract;

% shift by one data point

% extra terms

% information matrix
% information vector

clear Msubtract Vsubtract Ue We u_temp A phiuu phiuy u y

tgone=etime(clock,ttime);

fprintf('M V symm : %2.4f s\n',tgone)

I,-----------------------------------

% Anit-symmetric

ttime=clock; % time the calculation
u=u2;

y=y2;

%Calculate U'U and U'y the fast way

utemp=u(1:N,:);

phiuu=zeros(m,p,p);
phiuy=zeros(p*m,1);

A=zeros(p*m);

for i=l:m

for j=l:p
for k=l:p

phiuu(i,j,k)=u(l:N,j)'*u_temp(:,k);
end

phiuy((i+m*(j-1)),1)=y(1:N)' u_temp(:,j);
end

u_temp=[utemp(N,:); u_temp(l:(N-1),:)];
end

% autocorrelation of u
% cross correlation of u and y

% Toeplitz of phiuu

% shift by one data point

for i=l:p

for j=l:p

A((l:m)+m*(i-1),(1:m)+m*(j-1)) = toeplitz(phiuu(:,i,j));
end

end

% Calculate extra terms



u_temp=flipud(u(1:N,:));
for i=1:m-1;

u_temp=[u_temp(N,:); u_temp(l:(N-1),:)] ;

Ue(i,:)=utemp(1:m,1)';

We(i,:)=utemp(l:m,2)';
end

clear u_temp phiuu u u2 y2

Msubtract=[Ue'*Ue Ue'*We;

We'*Ue We'*We];

Vsubtract=[Ue'*y(l:m-1);
We'*y(l:m-l)];

MinfoA=A-Msubtract;

VinfoA=phiuy-Vsubtract;

clear Msubtract Vsubtract Ue We A phiuy y

tgone=etime(clock,ttime);
fprintf('M V asym : %2.4f s\n',tgone)

% Impulse

Minfo=MinfoS+MinfoA;
Vinfo=VinfoS+VinfoA;

clear MinfoS MinfoA VinfoS VinfoA

ttime=clock;

g=Minfo\Vinfo;

tgone=etime(clock,ttime);
fprintf('inv(M)V : %2.4f s\n',tgone)

% shift by one data point

X extra terms

% information matrix
X information vector

% add information from each
% data set

time the calculation

least squares estimate of

impulse response

g=[g(l:m) g(m+1:2*m)];



% g2tf.m

% Corinne Ilvedson
% Last Modified 7/29/98

% Computes transfer function from impulse response
% INPUT ARGUMENTS g : impulse response

% OUTPUT m : magnitude

% p : phase (degrees)

% function [m,p]=g2tf(g)

function [m,p]=g2tf(g)

tf_g=fft(g); %transfer function real and imag parts

m = abs(tf_g); % magnitude
p = unwrap(angle(tfg)); X phase (rad)
p = p*180/pi; % phase (degrees)

80



% tvf_tool.m

% Corinne Ilvedson
% Last Modified 8/4/98

% Transforms the impulse response to time frequency mapping and
% presents a tool for user to distinguish noise from physical dynamics

% of the system. A cleaned estimate of the transfer function is

% reconstructed and then used to obtain the transfer function estimate.

% Code loads a .mat file created by main_num.m or main_siso.m

close all

clear all

fig=1;

exp=1; % 1 = experimental data
% 0 = numerical example data

% --------------------------------
% Impulse Parameters

% --------------------------------
if exp==l

load /var/tmp/mainl5_exp640

else

load main_m640_n4
end

segments=5;

han = 1;

lap = 1;

cost = 'G';

if exp==l
cost = 'y';

end

% load .mat file created by main_num.m

% load .mat file created by main_num.m

% number of adjacent data blocks to

% break impulse response into

% if 1, use hanning windows
% if 0, use boxcar windows
% if 1, create additional overlapping

% data blocks

% type of cost function to use
% if y, J = integral ly - g*ul^2 dt

% if g,
% J = integral Ig exact - g estl^2 dt

% if G,
% J = integral IG exact - G estl^2 df

% This is the only choice for experimental

% data

%There must be a better way than these global variables but after hours

%of fighting with matlab, had to resort to them...

global ADDRD MODE PBDONE DJTEXT DJ EXIT JINFO JINFO2

global frameJ framel frame2 frame3 frame4 frame5

global JmatA JmatS track a

% -----------------------------Create window for tool
% Create window for tool



figure(fig)

set(fig,'Position',[32

fig=fig+1;

subplot(4,21,1:10)

if exp==1

pl=plot(g);

else

pl=plot(g_matlab*dt);

end

set(pl,'erasemode','xor')

ylabel('g, impulse response')

ax=axis;

ax=[0 m ax(3) ax(4)];
axis(ax)

% --------------------------------
% Divide g into data blocks
% --------------------------------
ns=m/segments;

hold on

vline=[];

hline=[];

for i=1:segments-1

vline=[vline [ax(3); ax(4)]]

hline=[hline [i*ns+l; i*ns+l]];
end

p2=plot(hline,vline,'r:');

set(p2,'erasemode','xor')

% --------------------------------
% Find t vs f mapping matrix
% --------------------------------

if lap==O
[a,ac,F] = tvf(g,segments,dt,han),

else

[a,ac,F] = tvf_lap(g,segments,dt,l
end

% rough initial estimate of impulse
% response
% exact impulse response

% # of data points in each data block

% draw divisions between data blocks

[hh,ww]=size(a);

revision=0;

exit=0;

% number of times going through the
% iterations of reconstructing g

% stop iterations when exit=l

while exit==0

% --------------------------------
% Plot t vs f matrix
%--------------------------------
if revision==0

track=[]; % matrix that keeps track of which bins to

328 1120 500])



% keep and which to throw away.

JmatA=[]; % matrix that looks at change in cost

% function if any one of discarded

% bins was added to those being kept

JmatS=[]; % matrix that looks at change in cost

% function if any one of bins kept

% was discarded.

end

track=tvf_mark(F,lap,revision,JmatA,JmatS); % choose bins to keep using

% graphical user interface

disp('processing bin choices')

exit=get(EXIT,'val'); % check on value of exit

if exit==0
% --------------------------------
% Process bins choices and then

% find new information matrix
% and vector
% --------------------------------
[T,Tkeep,unT,Ttoss]=Tbasis(track,ns,segments,han,lap);

% find transformation matrix

Minfo2=T'*Minfo*T;

Vinfo2=T'*Vinfo;

a_hat=Minfo2\Vinfo2;

g_hat=T*a_hat;

% new information matrix
% new information vector

% coefficients corresponding to the
% the basis functions kept

% new estimate of impulse response

% Plot new impulse response estimate
%--------------------------------
subplot(4,21,1:10)
if revision==0

p3=plot(ghat,'r-'); % estimate impulse response

set(p3,'erasemode','xor')

ylabel('Current Case: g')
axis(ax)

else

set(p3,'YData',g_hat)
end

gmax=max(g_hat); % set axis of plot

if gmax>ax(4)
ax2=[ax(1) ax(2) ax(3) gmax];

if isequal(axis,ax2)==0

axis(ax2)

end

else

if isequal(axis,ax)==0

axis(ax)

end

end



%Plot old impulse response estimate

% --------------------------------
subplot(4,21,22:31)

if revision-=O

if revision==1

if exp==l

p4=plot(g_hat,'r-'); %
else

p4=plot(g_matlab*dt); %
end

set(p4,'erasemode','xor')
hold on

p5=plot(g_old,'g-'); %
set(p5,'erasemode','xor')

p6=plot(hline,vline,'r:'); %
set(p6,'erasemode','xor')

xlabel('data pt. #')

ylabel('Previous Case: g')
else

if exp==l

set(p4,'YData',g_hat) %
end

set(p5,'YData',g_old) %
end

gmax=max(g_old); %
if gmax>ax(4)

ax2=[ax(1) ax(2) ax(3) gmax];

if isequal(axis,ax2)==O

axis(ax2)

current estimate of impulse response

exact impulse response

old esimate of impulse response

division between data block

current estimate of impulse response

old estimate of impulse response

set axis of plot

end

else

if isequal(axis,ax)==O

axis(ax)
end

end

end

% --------------------------------
% Find and Plot tf while comparing
% to exact transfer function
% --------------------------------

[mag_g_hat,ph_g_hat]=g2tf(ghat); % transfer function estimate
freq=[O:m-1]./(dt*m); % corresponding frequency vector (Hz)

subplot(4,21,43:52)

if revision==O

if exp~=l

p7=plot(f,mag);
set(p7,'erasemode', 'xor')
hold on

end

p8=plot(freq,mag_g_hat, 'r');

% exact transfer function

% estimate



set(p8,'erasemode', 'xor')
hold on

ylabel('Gain')
if exp==l

axis([O 16 0 .4])

else

axis([O 16 0 2])
end

grid
elseif revision==1

set(p8,'YData',mag_ghat)
p9=plot(freq,m_old, 'g');

set(p9,'erasemode', 'xor')

else

set(p8,'YData',magg-hat)

set(p9,'YData',m_old)
end

subplot(4,21,64:73)
if revision==0

if exp~=l

p10=plot(f,ph);
set(p10,'erasemode', 'xor')
hold on

% estimate
% old estimate

% estimate
% old estimate

% exact transfer function

end

pll=plot(freq,phghat,'r'); % esimate
set(pll,'erasemode','xor')
hold on

axis([0 16 -400 0])

grid

xlabel('Frequency (Hz)')

ylabel('Phase (deg)')

%12=legend('tf','tf_{hat}');
elseif revision==1

set(pll,'YData',ph_ghat) X estimate
p12=plot(freq,p_old,'g'); % old estima
set(p12,'erasemode','xor')

%12=legend('tf','tf_{hat}','prev tf_{hat}');
else

set(p1l,'YData',phg_hat) % estimate
set(pl2,'YData',p_old) % old estima

end

te

te

g_old=g_hat;
m_old=mag_g_hat;
p_old=ph_g_hat;

% old estimates

--------------------------------
% Cost Function
% -------------------------------
Jy=ycost(y,Vinfo2,a_hat,m,N,dt); % type y cost function
if exp~=l

Jg=gcost(g_matlab,g_hat,m,dt); % type g cost function

JG=Gcost_a(mag_g_hat,ph_g_hat,freq,num,den,5,12); %type G cost function



end
if revision+1<10

Jyinfo_mat(revision+l,:)=...

['0' num2str(revision+1) '
if exp~=l

Jginfo_mat(revision+l,:)=...

['0' num2str(revision+1) '
JGinfo_mat(revision+1,:)=...

['O' num2str(revision+1) '

% form vector of cost functions for each
% iteration

' num2str(Jy, '1.2e')] ;

' num2str(Jg,'%1.2e')];

' num2str(JG,'%1.2e')];
end

else

Jyinfo_mat(revision+l,:)=...

[num2str(revision+1) ' ' num2str(Jy, '%1.2e')] ;
if exp~=l

Jginfomat(revision+l,:)=...

[num2str(revision+1) ' ' num2str(Jg, '%1.2e')] ;
JGinfomat(revision+l,:)=...

[num2str(revision+1) ' ' num2str(JG,'%1.2e')];
end

end

if strcmp(cost,'y')

J=Jy;
Jinfo_mat=Jyinfo_mat;

elseif strcmp(cost,'g')

J=Jg;
Jinfo_mat=Jginfo_mat;

elseif strcmp(cost,'G')

J=JG;

Jinfo_mat=JGinfo_mat;
end

set(JINFO2,'str',Jinfo_mat)
%Tkeep

dof(revision+l)=length(T(1,:));

% display numbers of bins being kept
% number of dof's kept

titleJ = sprintf('J = %4.4e',J);
subplot(4,21,1: 10)
title(titleJ)

% --------------------------------
% Change in cost function if add
% or subract a bin?
% ---------------------------------
if exp==1

g_matlab=[] ;
num=[];

den=[];
end

[JmatA] = add_bin(J,Ttoss,T,unT,Minfo,Vinfo,Minfo2,Vinfo2,...

y,dt,N,m,segments,ns,F,lap,g_matlab,cost,num,den);

if strcmp(cost,'g') I strcmp(cost,'y') %sub_bin doesn't calculate G cost
[JmatS] = sub_bin(J,Tkeep,T,Minfo,Vinfo,y,dt,N,m,segments,..

ns,F,lap,gmatlab,cost);



else

JmatS=zeros(size(JmatA));
end

end

revision=revision+1;

%exit=l;

end

Jinfo=str2num(Jinfo_mat(:,5:end));

% uncomment this line if you don't
% want to iterate

% vector of cost function over the
% iterations

% --------------------------------
% Plot cost vs # dof's
% --------------------------------
if revision>1

figure

plot(dof,Jinfo)
xlabel('number of dof"s')

ylabel('J')
end

% --------------------------------
% Save reconstruction to .mat file

% --------------------------------
if exp==l

filename = ['mainl5_exp' num2str(m)]

else

filename = ['m' num2str(m) '_s' num2str(segments) '_n'

num2str(noise_variance) '_' u_input];
end

eval(['save ' filename ' dof Jinfo g_hat dt freq mag_ghat ph_ghat Tkeep'])

% Compare transfer function
% estimate with exact transfer
% function
% --------------------------------
if 1==1

if exp~=l
[zz,i4a] =min(abs(freq-5));

[zz,i4b]=min(abs(freq-12));
clear zz

% find freq pt closest to 5 Hz
% find freq pt closet to 12 Hz

fprintf('f(%d)=%4.4f Hz\n',i4a,freq(i4a))

fprintf('f(%d)=%4.4f Hz\n',i4b,freq(i4b))

Jp=Gcost_p(mag_g_hat(i4a:i4b),ph_g_hat(i4a:i4b),freq(i4a:i4b),num,den)

Ja=Gcost_a(mag_g_hat,ph_g_hat,freq,num,den,5,12)
end

end



% tvf_tool_miso.m

% Corinne Ilvedson

X Last Modified 8/4/98

% Transforms the impulse response to time frequency mapping and

% presents a tool for user to distinguish noise from physical dynamics
% of the system. A cleaned estimate of the transfer function is
% reconstructed and then used to obtain the transfer function estimate.

% Code loads a .mat file created by main_miso.m

close all

clear all

fig=1;

%--------------------------------
% Impulse Parameters

load /var/tmp/miso_m320 load .mat file created by main---------------------------miso.m
load misom320i_t % load .mat file created by main_miso.m

segments=4; % number of adjacent data blocks to

% break impulse response into
han = 1; % if 1, use hanning windows

% if 0, use boxcar windows
lap = 1; % if 1, create additional overlapping

% data blocks

% --------------------------------
% Plot new and old estimates of g

A--------------------------------
figure(fig)
orient landscape
set(fig,'Position',[548 389 560 440])

fig=fig+1;

subplot(311)

plot(g(:,l))
ylabel('g, impulse response')

titleg='LEFT Impulse Response : Reconstruction Using T Matrix';

title(titleg)

ax=axis;

figure(fig)

orient landscape

set(fig,'Position',[682 493 560 440])

fig=fig+1;

subplot(311)

plot(g(:,2))

ylabel('g')



titleg2='RIGHT Impulse Response :

title(titleg2)

ax2=axis;

% --------------------------------
% Divide g into data blocks

ns=m/segments;-
ns=m/segments;

vline=[]; %
hline=[] ;
vline2=[];

hline2=[];

for i=1:segments-1

vline=[vline [ax(3); ax(4)]];

hline=[hline [i*ns+l; i*ns+l]];

Reconstruction Using T Matrix';

% # of data points in each data block

draw divisions between data blocks

vline2=[vline2 [ax2(3); ax2(4)]];

hline2=[hline2 [i*ns+l; i*ns+l]];
end

figure(fig-2)

subplot(311)

hold on

plot(hline,vline,'r:')

figure(fig-1)

subplot (311)
hold on

plot(hline2,vline2,'r:')

% --------------------------------
% Find t vs f mapping matrix

% --------------------------------
if lap==O

[a,ac,F] = tvf(g(:,1),segments,dt,han);
[a2,ac2,F2] = tvf(g(:,2),segments,dt,han);

else
[a,ac,F] = tvf_lap(g(:,i),segments,dt,han);
[a2,ac2,F2] = tvf_lap(g(:,2),segments,dt,han);

end

[hh,ww]=size(a);

% --------------------------------
% Plot t vs f matrix and have
% user select bins

% --------------------------------

global ADDRD MODE PBDONE

[fig,track]=tvf_mark_miso(fig,a,F,lap);
[fig,track2l=tvf_mark_miso(fig,a2,F2,lap);



% Process bins choices and then

% find new information matrix
% and vector

% --------------------------------
% find transformation matrices

[T,Tkeep,unT,Ttoss]=Tbasis(track,ns,segments,han,lap);
[T2,Tkeep2,unT2,Ttoss2]=Tbasis(track2,ns,segments,han,lap);

T=[T zeros(size(T2)); % transformation matrix

zeros(size(T)) T2];

Minfo2=T'*Minfo*T; % new information matrix
Vinfo2=T'*Vinfo; % new information vector

a_hat=Minfo2\Vinfo2; % coefficients corresponding to the

% the basis functions kept

g_hat=T*a_hat; % new estimate of impulse response
g_hat=[g_hat(1:m) g_hat(m+1:2*m)];

% --------------------------------
% Plot new impulse response estimates

% --------------------------------
figure(fig-4)

subplot(312)

plot(g_hat(:, ))
hold on

plot(hline,vline,'r:')

ylabel('g_{hat}')

axis (ax)

figure(fig-3)

subplot(312)

plot(g_hat(:,2))
hold on

plot(hline2,vline2,'r:')

ylabel('g_{hat}')

axis (ax2)

figure(fig-4)

subplot(313)
plot(g(: ,1))
hold on

plot(g_hat(:,1),'m--')
plot(hline,vline,'r:')

l=legend('original','reconstructed');

xlabel('data pt. #')

ylabel('g')

axis (ax)

figure(fig-3)

subplot(313)

plot(g(: ,2))
hold on



plot(g_hat(:,2),'m--')

plot(hline2,vline2,'r:')

l=legend('original','reconstructed');
xlabel('data pt. #')

ylabel('g')

axis (ax2)

clear 1

% --------------------------------
% Plot tf estimate
% --------------------------------

[mag_g_hatl,phghatl] =g2tf(g_hat(:,1));
[mag_g_hat2,phg_hat2]=g2tf(g_hat (:,2));
freq=[0:m-1] ./(dt*m);

figure(fig)

set(fig,'Position',[682 493 560 440])

fig=fig+1;

subplot(221)

plot (freq,magg_hatl)

axis([0 16 0 .2])

grid

ylabel('Gain')

title('Left Input to Output')

subplot(222)

plot (freq,mag_ghat2)
axis([0 16 0 .2])

grid

ylabel('Gain')
title('Right Input to Output')

subplot(223)

plot(freq,phghatl)

axis([0 16 -800 200])
grid
xlabel('Frequency (Hz)')

ylabel('Phase (deg)')

subplot(224)

plot(freq,ph_g_hat2)
axis([0 16 -800 200])

grid

xlabel('Frequency (Hz)')

ylabel('Phase (deg)')

% --------------------------------
% Cost Function

% -------------------------------
if 1==0
J=ycost(y,Vinfo2,ahat,m,N,dt); % type y cost function



title_add = sprintf('

figure (fig-1)

subplot (221)
hold on

title([titletf title_add])

figure (f ig-2)

subplot (211)
hold on

title ( [titletf title_add])
figure (fig-3)

subplot (221)
hold on

title([titletf title_add])

figure (f ig-4)
subplot (221)
hold on

title( [titletf title_add])
figure(fig-5)

title(title_add(6:length(title_add)))
figure (fig-6)

title(title_add(6:length(title_add)))
figure (fig-7)

subplot (311)
hold on

title( [titleg2 title_add])

figure (f ig-8)
subplot (311)
hold on

title( [titleg title_add])
end

filename=['m' num2str(m) ' _s' num2str(segments) '_miso'];

eval(['save ' filename ...
' mag_g_hatl mag_g_hat2 phghatl phg_hat2 freq Tkeep Tkeep2 dt t u y g_hat'])

J = .4.4e',J);



% tvf.m

% Corinne Ilvedson
% Last Modified 7/13/98

% Divides impulse response into adjacent data blocks and then transforms
% to time frequency mapping

% INPUT ARGUMENTS

% OUTPUTS

g impulse response
segments : number of data blocks to divide g into

dt time step

win type of window to use

0 = boxcar, 1 = hanning
ac : matrix of fft coefficients (complex)

a : matrix of magnitude of fft coefficients (real)

F : corresponding frequency vector (Hz)

% function [a,ac,F] = tvf(g,segments,dt,win)

function [a,ac,F] = tvf(g,segments,dt,win)

%--------------------------------
% Divide g into segments

%--------------------------------
m=length(g);

ns=m/segments;

% --------------------------------
% Find t vs f matrix
% --------------------------------
ac=[] ;
han=[O; hanning(ns-l)];
for i=1:segments

temp=g((1:ns)+((i-1)*ns));
if win==1

temp=temp.*han;

end

temp=fft(temp)/ns;

temp=temp(1 :ns/2+1);

ac=[ac temp] ;
end

a=abs(ac);

F=[0:ns/2]./(dt*ns);

% # of previous input pts the
% response depends on

% # of data points in each data block

% matrix of fft coefficients (complex)
% hanning window

% a data block of g
% apply window to data block

% fourier coefficients of that data block
% throw away extra fft info

% above nyquist freq

% matrix of fft coefficients (complex)

% matrix of magnitude of fft

% coefficients (real)

% corresponding freq vector (Hz)



% tvf_lap.m

% Corinne Ilvedson
% Last Modified 7/21/98

X Divides impulse response into overlapping data blocks and then
% transforms to time frequency mapping

% INPUT ARGUMENTS

% OUTPUTS
X
X

g impulse response
segments : number of segments to divide g into

dt time step

win type of window to use

0 = boxcar, 1 = hanning

ac : matrix of fft coefficients (complex)

a : matrix of magnitude of fft coefficients (real)
F : corresponding frequency vector (Hz)

% function [a,ac,F] = tvf_1ap(g,segments,dt,win)

function [a,ac,F] = tvflap(g,segments,dt,win)

% Divide g into segments--------------------------------
% Divide g into segments
%--------------------------------

% # of previous input pts the
% response depends on

% # of data points in each data block

% --------------------------------
% Find t vs f matrix

% --------------------------------
ac= [] ;
han= [0; hanning(ns-1)];
for i=1:2*segments+1;

if i==1 i==(2*segments+1)
if i == 1
temp=g(l:ns/2);
if win==1

temp=temp.*han(ns/2+1:ns);

end

else

temp=g(m-ns/2+1:m);
if win==1

temp=temp.*han( :ns/2);

end

end

temp=fft(temp)/ns;

temp=temp(1 :ns/8+1);

temp=[temp; zeros(ns/8,1)];

% matrix of fft coefficients (complex)
% hanning window

% if the 1st or last data block (1/2 size)

% 1st data block of g (1/2 size)
% apply window to data block

% last data block of g (1/2 size)
% apply window to data block

% fourier coefficients of that data block
% throw away extra fft info

% above nyquist freq
% because data block is 1/2 size there are

% only 1/2 as many fourier coef's

m=length(g);

ns=m/segments;



else

temp=g((l:ns)+((i-2)*ns/2));
if win==1

temp=temp.*han;
end

temp=fft(temp)/ns;

temp=temp(l:ns/4+1);

end

ac=[ac temp] ;
end

a=abs(ac) ;

F=[O:ns/4]./(dt*ns);

so have to pad with zeros.

if all other data blocks...

a data block of g

apply window to data block

fourier coefficients of that data block

throw away extra fft info

above nyquist freq

matrix of fft coefficients (complex)

matrix of magnitude of fft

coefficients (real)

corresponding freq vector (Hz)

% Note that F would normally be [O:ns/2]./(dt*ns) however have to throw

% away more fft coefficients in order to preserve number of degrees of

% freedom in estimation problem. This is due to the overlapping bins.

% Can have a max of m degrees of freedom in estimating g.



% Tbasis.m

% Corinne Ilvedson
% Last Modified 7/27/98

% Find the transformation matrix and related info.

% INPUT ARGUMENTS

% OUTPUTS
X
X
X
Z
X

track : matrix that keeps track of which bins to
keep and which to throw away

ns : number of pts in each data block
segments : number of data blocks to divide g into
win : type of window to use

0 = boxcar, 1 = hanning
lap : 0 = adjacent bins

1 = overlapping bins
T transformation matrix of basis function

corresponding to bins being kept
Tkeep : list of bins being kept

unT : matrix of basis functions corresponding
to bins being discarded

Ttoss2 : list of bins being discarded

% function [T,Tkeep2,unT,Ttoss2] = Tbasis(track,ns,segments,win,lap)

function [T,Tkeep2,unT,Ttoss2] = Tbasis(track,ns,segments,win,lap)

% y depends on m previous u data

% points

% ---------------------------------------
% Find set of e^j(theta) basis functions
% ---------------------------------------

basis = fft(eye(ns));
if win==l

window=[O; hanning(ns-1)];
else

window = ones(ns,1);
end

% ---------------------------------------

% Convert to a matrix of sin and cos
% basis functions filtered by chosen

% window. This is the set of basis

% functions corresponding to one data
% block of g

% ---------------------------------------

nn=l;

Tsmall(:,nn) = real(basis(:,1)).*window;

nn=nn+1;

if lap==1
for i=2:ns/4

Tsmall(:,nn) = real(basis(:,i)).*window;

% set of basis functions

% hanning window

% boxcar window

% DC basis function ( cos(0) )

% cos basis function

m=ns*segments;



nn=nn+1;
Tsmall(:,nn) = imag(basis(:,i)).*window; % sin basis function

nn=nn+1;
end

else

for i=2:ns/2

Tsmall(:,nn)

nn=nn+1;

Tsmall(:,nn)
nn=nn+1;

end

end

= real(basis(:,i)).*window; % cos basis function

= imag(basis(:,i)).*window; % sin basis function

Tsmall(:,nn) = real(basis(:,i+l)).*window;

% ---------------------------------------

% Find basis functions for 1/2 data
% blocks at beginning and end of g
%---------------------------------------
if lap==l
Thalf =
Thalf2 =
Thalf =

end

% differential basis function
% (-1 1 -1 1 -1 1 etc...)

Tsmall(:,1:ns/4);

[zeros((m-ns/2),ns/4); Thalf(1:ns/2,:)];

[Thalf(ns/2+1:ns,:); zeros((m-ns/2),ns/4)];

% ---------------------------------------
% Make the big transformation matrix
% corresponding to all data blocks of g.
% This contains all m possible basis
% functions.
% --------------------------------
if segments==1

Tbig=Tsmall;

else

col=Tsmall;

for i=2:segments;

col=[col; zeros(size(Tsmall))];

end

if lap==1
Tbig=zeros(m,ns/2*(2*segments-1));

for i=1:2*segments-1;

Tbig(:,(i-l)*ns/2+1:i*ns/2)=col;

col=[col(m-ns/2+1:m,:); col(l:m-ns/2,:)];

end

else

Tbig=zeros(m);

for i=1:segments;

Tbig(:,(i-1)*ns+l:i*ns)=col;

col=[col(m-ns+l:m,:); col(l:m-ns,:)];

end

end

end

if lap==l

Tbig=[Thalf Tbig Thalf2];



end

% -----------------------------------------------
% Make list of all the bins to be kept.

% Tkeep2 and Ttoss2 contain the index
% of the bins being kept or discarded
% 1 = bin in lower left corner of time-frequency mapping
% 2 = bin directly above bin 1,
% etc.
X In the time-frequency mapping plot, this index increases as
% you go bottom to top, left to right.

X Each bin represents two basis functions (sin & cos) except
% first row (DC) and last row (differential). Therefore the
% index corresponding to the basis functions to be kept
% (Tkeep) or discarded (Ttoss) is slightly different
% than Tkeep2 and Ttoss2.

Slist of b---------------------------------------
Tkeep=[]; % list of b
Tkeep2=[]; % list of b
Ttoss=[]; % list of b
Ttoss2=[]; % list of b

tk=l;

tk2=1;
tt=l;

tt2=1;

if lap==l % if overla
for i=1:2*segments+l

for j=l:ns/4+1

if i == 1 1 i == 2*segments+l % if first

if j<=ns/8+1
if j == 1 I j == ns/8+1

if track(j,i)==1

Tkeep = [Tkeep tk];

Tkeep2 = [Tkeep2 tk2];
else

Ttoss = [Ttoss tt];

Ttoss2 = [Ttoss2 tt2];
end

tk=tk+1;

tk2=tk2+1;

tt=tt+l;

tt2=tt2+1;
else

if track(j,i)==1

Tkeep = [Tkeep tk tk+1];

Tkeep2 = [Tkeep2 tk2];
else

Ttoss = [Ttoss tt tt+1];

Ttoss2 = [Ttoss2 tt2];
end

tk=tk+2;

(1
if first

if DC or

asis functions to keep
ins to keep
asis functions to discard

ins to discard

pping bins

or last column of t-f map

/2 size bin)
column

differential row



tk2=tk2+1;

tt=tt+2;

tt2=tt2+1;
end

end

else

if j == 1 I j == ns/4+1
if track(j,i)==1

Tkeep = [Tkeep tk];

Tkeep2 = [Tkeep2 tk2];

else
Ttoss

Ttoss2

end

tk=tk+1;
tk2=tk2+1

tt=tt+l;

tt2=tt2+1
else

if track(

Tkeep

Tkeep2
else

Ttoss =

Ttoss2

end

tk=tk+2;
tk2=tk2+1

tt=tt+2;
tt2=tt2+1

end

= [Ttoss tt];
= [Ttoss2 tt2];

.j ,i)==1
= [Tkeep tk tk+1];

= [Tkeep2 tk2];

[Ttoss tt tt+1];

= [Ttoss2 tt2];

1;

end

end

end

else

for i=1:segments

for j=l:ns/2+1

if j == 1 I j == ns/2+1
if track(j,i)==1
Tkeep = [Tkeep tk];

Tkeep2 = [Tkeep2 tk2];

else

Ttoss =
Ttoss2 =

% if adjacent bins

% if DC or differential row

[Ttoss tt];

[Ttoss2 tt2];
end

tk=tk+1;

tk2=tk2+1;

tt=tt+l;

tt2=tt2+1;

else

if track(j,i)==1

Tkeep = [Tkeep tk tk+1];

Tkeep2 = [Tkeep2 tk2];

else



Ttoss = [Ttoss tt tt+l];
Ttoss2 = [Ttoss2 tt2];

end

tk=tk+2;
tk2=tk2+1;
tt=tt+2;

tt2=tt2+1;

end

end

end

end

% ---------------------------------------
% Find transformation matrices based on
% which bins were kept and which were

% discarded.

% ---------------------------------------
T=Tbig(:,Tkeep);

unT=Tbig(:,Ttoss);

% transformation matrix of basis
% function corresponding to bins
X being kept

% transformation matrix of basis
% function corresponding to bins
% being discarded
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% tvf_mark.m

% Corinne Ilvedson

% Last Modified 8/3/98

% Plot the time vs. frequency map. Create tool allowing user to

% select which bins to keep and discard.

% INPUT ARGUMENTS
6/

X

% OUTPUTS

oh0

F : corresponding frequency vector (Hz)

lap : 0 = adjacent bins

1 = overlapping bins

revision: number of iteration currently on

JmatA : a matrix containing the change in the

cost J for each bin if it was added

to the bins being kept

JmatS : a matrix containing the change in the

cost J for each bin if subtraced

from the bins being kept

track : a matrix indicating which bins were

kept. Is the same size as matrix [a]

and contains O's and 1's where 1

means that bin was kept.

% function [track]=tvf_mark(F,lap,revision,JmatA,JmatS)

function [track]=tvf_mark(F,lap,revision,JmatA,JmatS)

global ADDRD MODE PBDONE DJTEXT DJ EXIT JINFO JINFO2

global frameJ framel frame2 frame3 frame4 frame5

global pc JmatA_all JmatS_all a_all Fall track a Fall

% ---------------------------------------------------
% get matrices ready for plotting with pcolor.m

[h,w]=size(a); - [a] is the matrix of co-
[h,wl=size(a); % [a] is the matrix of cocefficient

% magnitudes corresponding to

% basis functions

% vector of data block index numberseg=l:w;

if revision==0

track=zeros(size(a));
end

a_all=a;

a_all(h+l,:)=zeros(l,w);

a_all(:,w+l)=zeros(h+1,1);

if revision~=0

[Amax,Aindex]=max(JmatA);

[Amax,Aindex2]=max(Amax);

JmatA_all=JmatA;

% pcolor.m leaves off last row and
% column of matrix it plots so have

% to add a bogus row and column for

% purpose of plotting [a]

% max value in JmatA

% add bogus row and column for plotting
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JmatA_all(h+l,:)=zeros(1,w);

JmatA_all(:,w+l)=zeros(h+1,1);

JmatS_all=JmatS; % add bogus row and column for plotting
JmatS_all(h+l,:)=zeros(1,w);

JmatS_all(:,w+1)=zeros(h+1,1);
end

seg_all=[seg seg(w)+1]; % add bogus term for plotting
Fall=[F F(h)+F(2)]; % add bogus term for plotting

% ---------------------------------------------------
% will be marking bins w/ x's but need to make sure the color of
% the x show up against pcolor plot. The following values
% determine if the x is white or black.
% ---------------------------------------------------
if revision==O

a_range=max(max(a))-min(min(a));
a_white=min(min(a))+.25*a_range;

a_white2=max(max(a))-.l*a_range;
else

a_range=max(max(JmatA))-min(min(JmatA));
a_white=min(min(JmatA))+.25*a_range;

a_white2=max(max(JmatA))-.l*a_range;
end

if revision~=O

A_range=max(max(JmatA))-min(min(JmatA));
A_white=min(min(JmatA))+.25*A_range;

Awhite2=max(max(JmatA))-. l*Arange;

S_range=max(max(JmatS))-min(min(JmatS));

S_white=min(min(JmatS))+.25*S_range;
S_white2=max(max(JmatS))-. *Srange;

end

% ---------------------------------------------------
% Plot either a or JmatA depending on iteration number
% ---------------------------------------------------
subplot(1,21,12:21)
if revision == 0
pc=pcolor(seg_all,Fall,a_all);

else

pc=pcolor(seg_all,Fall,JmatA_all);
end

set(pc,'EraseMode', 'none');
colorbar

ylabel('Hz')

xlabel('segments')
if revision==0

title('Mark the bins you would like to keep')
else

title('\DeltaJ if add bin (+ = reduction in cost) bins marked orig')
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end

hold on

% ---------------------------------------------------
% Mark areas of plot which don't contain info (only when have

% overlapping bins

% ---------------------------------------------------
if lap==l

xout =[1 2];
xout2=[w w+1];
yout=[Fall((h+3)/2) Fall(h+l)];

plot(xout,yout,'w')
plot(fliplr(xout),yout,'w')

plot(xout2,yout,'w')

plot(fliplr(xout2),yout,'w')
end

% ---------------------------------------------------
% Mark the bins that were kept in previous iteration

% ---------------------------------------------------
if revision=0O

for i=l:h

for j=l:w

if track(i,j)==1

if a(i,j)<=a_white I a(i,j)>=a_white2
plot(j+.5,(Fall(2)/2+Fall(i)),'wx', 'erasemode', 'none')

else

plot(j+.5,(Fall(2)/2+Fall(i)),'kx', 'erasemode', 'none')

end

end

if i==Aindex(Aindex2) & j==Aindex2

if JmatA(i,j)<=Awhite I JmatA(i,j)>=A_white2
plot(j+.5,(Fall(2)/2+Fall(i)),'wd', 'erasemode', 'none')

else

plot(j+.5,(Fall(2)/2+Fall(i)),'kd', 'erasemode', 'none')

end

%elseif JmatA(i,j)>O %This will mark bins that have positive values

% if JmatA(i,j)<=A_white I JmatA(i,j)>=A_white2
% plot(j+.5,(Fall(2)/2+Fall(i)),'ws', 'erasemode', 'none')

% else
% plot(j+.5,(Fall(2)/2+Fall(i)),'ks', 'erasemode', 'none')

% end
end

end

end

end

% ---------------------------------------------------
% Colormap information

% ---------------------------------------------------
[cmin cmaxl=caxis;

cm_length=length(colormap);

cm=colormap;

% ----------------------------------------------------
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% General callback used by most of the gui's
% Makes radio buttons mutually exclusive
% ---------------------------------------------------
if revision<=1

call=[...
'me=get(gcf,"CurrentObject'');,',...

'if(get(me,"'Value") == 1),',..
'set(get(me,"UserData),"Value",0),' ...
'else,',...

'set(me,"''Value'',1),',...

'end'];

end

% ---------------------------------------------------
% Create gui's
% ---------------------------------------------------
if revision==0

frameJ=uicontrol(gcf,...

'Sty','frame',...

'Pos',[0 60 95 420],...

'BackgroundColor',[.3 .3 1]);

JINFO=uicontrol(gcf,...

'Sty','text',...

'Pos',[5 465 85 15],...

'String','J Record',...

'hor','center',...

'BackgroundColor',[.3 .3 1],...
'ForegroundColor',[l 1 1]);

JINF02=uicontrol(gcf,...

'Sty','text',...

'Pos',[5 65 85 400],...

'String',' ,...
'hor','center');

framel=uicontrol(gcf,...

'Sty','frame',...
'Pos',[1035 245 85 65],...
'BackgroundColor',[.3 .3 1]);

ADDRD(1) = uicontrol(gcf,...

'Sty','radio',...

'Pos',[1040 280 75 25],...

'String','Mark',...

'Value',l);

ADDRD(2) = uicontrol(gcf,...

'Sty','radio',...

'Pos',[1040 250 75 25],...
'String','Erase',...

'Value',O);

% displays cost info

% Mark bins

% Erase bins

for i=1:2
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set(ADDRD(i),'UserData',ADDRD(:, [1:(i-1),(i+) :2]))

end

frame2=uicontrol(gcf,...

'Sty','frame',...

'Pos',[1035 145 85 95],...

'BackgroundColor',[.3 .3 1]);

MODE(1) = uicontrol(gcf,...

'Sty','radio',...

'Pos',[1040 210 75 25],...

'String','Row',...
'Hor','left',...

'Value',l);

MODE(2) = uicontrol(gcf,...

'Sty','radio',...

'Pos',[1040 180 75 25],...

'String','Column',...
'Hor','left',...

'Value',O);

MODE(3) = uicontrol(gcf,...

'Sty','radio',...

'Pos',[1040 150 75 25],...

'String','Bin',...

'Hor','left',...
'Value',0);

% Row mode

% Column mode

% Bin mode

for i=1:3

set(MODE(i),'UserData',MODE(:,[1:(i-1),(i+1):3]))

end

set(ADDRD,'CallBack',call);

set(MODE,'CallBack',call);

frame3=uicontrol(gcf,...

'Sty','frame',...
'Pos',[1035 105 85 35],...

'BackgroundColor',[.3 .3 1]);

PBDONE = uicontrol(gcf,... % Done
'Style','radio',...

'Pos',[1040 110 75 25],...

'String','Done',...

'Value',O,...

'Callback','set(PBDONE,"Value'',l)');

frame5=uicontrol(gcf,...

'Sty','frame',...

'Pos',[1035 65 85 35],...

'BackgroundColor',[1 .3 .3],...

'Visible','off');
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EXIT = uicontrol(gcf,... % Exit
'Sty','radio',...

'Pos',[1040 70 75 24],...

'Hor','center',...

'String','Exit',...

'Value',O,...
'Callback','set(EXIT,"Value",1)',...

'Visible','off');
else

set(MODE(1),'val',O)

set(MODE(3),'val',l)

set(PBDONE,'val',O)

set(frame5,'vis','on')

set(EXIT,'vis','on')
end

if revision==1

frame4=uicontrol(gcf,...

'Sty','frame',...

'Pos',[1035 320 85 110],...

'BackgroundColor',[.3 .3 1]);

DJTEXT=uicontrol(gcf,...

'Sty','text',...

'Pos', [1040 410 75 15],...

'String','View',...
'hor','center',...

'BackgroundColor',[.3 .3 1],...

'ForegroundColor',[ 1 1]);

DJ(1) = uicontrol(gcf,...

'Sty','radio',...

'Pos',[1040 385 75 25],... % plot bin magnitude

'String','Original',...
'Hor' ,'left',..

'Value',O);

DJ(2) = uicontrol(gcf,... % plot change in cost if add bin
'Sty','radio',...

'Pos',[1040 355 75 25],...
'String','+ Bin dJ',...
'Hor' ,'left',..

'Value',1);

DJ(3) = uicontrol(gcf,... % plot change in cost if subtract bin

'Sty','radio',...

'Pos',[1040 325 75 25],...

'String','- Bin dJ',...
'Hor','left',...

'Value',O);

for i=1:3

set(DJ(i),'UserData',DJ(: , [: (i-1),(i+) :3]))
end
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calldjl=[call ',',...
'djl, ',...
'title("The marked bins")'];

calldj2=[call ',',...
'dj2,',..
'title("\DeltaJ if add bin (+ = reduction in cost)")'];

calldj3=[call ',',...
'dj3,' ,...

'title("\DeltaJ if subtract bin (+ = reduction in cost)")'];

set(DJ(1),'CallBack',calldj );
set(DJ(2),'CallBack',calldj2);

set(DJ(3),'CallBack',calldj3);
elseif revision>1

set(DJ(1),'Value',O)

set(DJ(2),'Value',1)

set(DJ(3),'Value',O)
end

% ---------------------------------------------------
% User chooses bins

% ---------------------------------------------------
while get(PBDONE,'Value')==0 & get(EXIT,'Value')==O

if get(MODE(1),'Value')==1 % Row mode

[x,y]=ginput(1); % Get user input from mouse

y=y/F(2)+1;
if y>1 & y<h+l & x>1 % if user clicks outside of

if x>w+l % may have clicked done

pause(1) % pause so system sets done:

end % needs to

plot

=1 if

if revision~=O

if get(DJ(1),'Value')==1
mat=a;

white=a_white;

white2=a_white2;

elseif get(DJ(2),'Value')==1

mat=JmatA;
white=A_white;

white2=A_white2;

elseif get(DJ(3),'Value')==1

mat=JmatS;

white=S_white;

white2=S_white2;
end

else

mat=a;

white=a_white;

white2=a_white2;
end

if get(PBDONE,'Value')==O
if x<=w+l

y=floor(y);
for i=l:w

Determines color to plot x
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if get(ADDRD(1),'Value')==1 % Mark w/ 'x'
track(y,i)=1;

if mat(y,i)<=white I mat(y,i)>=white2
plot(i+.5,(y-.5)*F(2),'wx', 'erasemode', 'none')

else

plot(i+.5,(y-.5)*F(2),'kx', 'erasemode', 'none')
end

else % Erase the 'x'
track(y,i)=O; % (actually just plots over x with

% same color as bin)
index=fix((mat(y,i)-cmin)/(cmax-cmin)*cmlength) + 1;
if index>cm_length; index=cm_length; end

p=plot(i+.5,(y-.5)*F(2),'wx', 'erasemode', 'none');

set(p,'Color',cm(index,:))
end

end

end

end

end

end

if get(MODE(2),'Value')==1 % Column mode (see Row mode comments)
[x,y]=ginput(1);
y=y/F(2)+1;

if y>1 & y<h+l & x>1
if x>w+l

pause (1)
end

if revision-=O

if get(DJ(1),'Value')==1
mat=a;

white=a_white;

white2=a_white2;

elseif get(DJ(2),'Value')==1
mat=JmatA;
white=A_white;
white2=A_white2;

elseif get(DJ(3),'Value')==1
mat=JmatS;

white=S_white;

white2=S_white2;
end

else

mat=a;

white=a_white;

white2=a_white2;
end

if get(PBDONE,'Value')==O

if x<=w+l

x=floor(x);
for i=l:h

if get(ADDRD(1),'Value')==1

track(i,x)=l;

if mat(i,x)<=white I mat(i,x)>=white2
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plot(x+.5,(i-.5)*F(2),'wx', 'erasemode', 'none')

else

plot(x+.5,(i-.5)*F(2),'kx', 'erasemode', 'none')

end

else

track(i,x)=0;

index=fix((mat(i,x)-cmin)/(cmax-cmin)*cmlength) + 1;

if index>cm-length; index=cm_length; end

p=plot(x+.5,(i-.5)*F(2),'wx', 'erasemode', 'none');

set(p,'Color',cm(index,:))
end

end

end

end
end

end

if get(MODE(3),'Value')==1 % Bin mode (See row mode comments)

[x,y] =ginput(1);
y=y/F(2)+1;

if y>1 & y<h+l & x>1

if x>w+l

pause (1)
end

if revision=0O

if get(DJ(1),'Value')==1

mat=a;

white=a_white;
white2=a_white2;

elseif get(DJ(2),'Value')==1

mat=JmatA;

white=A_white;

white2=Awhite2;

elseif get(DJ(3),'Value')==1

mat=JmatS;

white=Swhite;

white2=Swhite2;
end

else

mat=a;
white=a_white;

white2=a_white2;

end

if get(PBDONE,'Value')==0
if x<=w+l

x=floor(x);

y=floor(y);

if get(ADDRD(1), 'Value')==1

track(y,x)=1;

if mat(y,x)<=white I mat(y,x)>=white2
plot(x+.5,(y-.5)*F(2),'wx', 'erasemode', 'none')

else

plot(x+.5,(y-.5)*F(2),'kx', 'erasemode', 'none')

end
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else

track(y,x)=0;

index=fix((mat(y,x)-cmin)/(cmax-cmin)*cm_length) + 1;
if index>cm_length; index=cm_length; end
p=plot(x+.5,(y-.5)*F(2),'kx', 'erasemode', 'none');
set(p, 'Color' ,cm(index,:))

end

end

end

end

end

end

if lap==l

track((h+3)/2:h,1)=zeros((h-1)/2,1);

track((h+3)/2:h,w)=zeros((h-l)/2,1);
end

% set parts of track that correspond
% to nonexistant basis functions to
% zero even if user chose those bins
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% tvf_mark_miso.m

% Corinne Ilvedson
% Last Modified 7/16/98

% Plot the time vs. frequency map. Create tool allowing use to select

% which bins to keep and discard.

% INPUT ARGUMENTS fig : current figure number

% a : matrix of magnitude of fft coefficients (real)

% F : corresponding frequency vector (Hz)

% lap : 0 = adjacent bins

%1 = overlapping bins

% OUTPUTS fig : updated figure number

% track : matrix that keeps track of which bins to

%keep and which to throw away

% function [fig,track]=tvf_mark_miso(fig,a,F,lap)

function [fig,track]=tvf mark_miso(fig,a,F,lap)

% get matrices ready for plotting with pcolor.m

% ---------------------------------------------------
[h,w]=size(a);

seg=l:w;

% [a] is the matrix of coefficient

% magnitudes corresponding to

% basis functions

X vector of data block index number

track=zeros(size(a));

aall=a;

a_all(h+1,:)=zeros(1,w);

a_all(:,w+l)=zeros(h+1,1);

segall=[seg seg(w)+1];

Fall=[F F(h)+F(2)];

% pcolor.m leaves off last row and
% column of matrix it plots so have

% to add a bogus row and column for

% purpose of plotting [a]

% add bogus term for plotting
% add bogus term for plotting

% ---------------------------------------------------
% Plot a
% ----------------------------------------------------
figure(fig)
set(fig,'Pos',[548 389 560 440])

fig=fig+1;

subplot(1,11,2:11)

pcolor(seg_all,Fall,a_all)

colorbar

ylabel('Hz')

xlabel('segments')

title('Mark the bins you would like to keep')
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hold on

% ---------------------------------------------------
% Mark areas of plot which don't contain info (only when have
% overlapping bins
% ----------------------------------------------------
if lap==l

xout =[1 2];

xout2=[w w+1] ;
yout=[Fall((h+3)/2) Fall(h+l)];

plot(xout,yout,'w')

plot(fliplr(xout),yout,'w')

plot(xout2,yout,'w')
plot(fliplr(xout2),yout,'w')

end

% ---------------------------------------------------
% Colormap information
% ----------------------------------------------------
[cmin cmax] =caxis;

cm_length=length(colormap);

cm=colormap;

% ----------------------------------------------------
% Create gui's

% ----------------------------------------------------
done=0; % This value is set to 1 after user

% chooses bins to keep
global ADDRD MODE PBDONE

framel=uicontrol(gcf,...

'Sty','frame',...

'Pos',[5 265 70 65],...
'BackgroundColor',[.3 .3 1]);

ADDRD(1) = uicontrol(gcf,... % Mark bins

'Sty','radio',...
'Pos',[10 300 60 25],...
'String','Mark',...
'Value' ,);

ADDRD(2) = uicontrol(gcf,... % Erase bins
'Sty','radio',...

'Pos',[10 270 60 25],...

'String','Erase',...

'Value',O);

for i=1:2
set(ADDRD(i),'UserData',ADDRD(:, [: (i-1),(i+1):2]))

end

frame2=uicontrol(gcf,...

'Sty','frame',...

'Pos',[5 165 70 95],...
'BackgroundColor',[.3 .3 1]);
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MODE(1) = uicontrol(gcf,...

'Sty','radio',...
'Pos',[10 230 60 25],...

'String','Row',...
'Hor','left',...

'Value',l);

MODE(2) = uicontrol(gcf,...

'Sty','radio',...
'Pos',[10 200 60 25],...

'String','Column',...
'Hor','left',...

'Value',O);

MODE(3) = uicontrol(gcf,...

'Sty','radio',...

'Pos',[10 170 60 25],...

'String','Bin',...

'Hor','left',...
'Value',0);

% Row mode

% Column mode

% Bin mode

for i=1:3

set(MODE(i),'UserData',MODE(:,[1:(i-1),(i+1):3]))
end

% General callback used by most of the gui's
% Makes radio buttons mutually exclusive
call=[...

'me=get(gcf,"CurrentObject'');,',...

'if(get(me,"Value") == 1),',..
'set(get(me,'UserData'),'Value'',0),',...
'else,',...

'set(me,''Value'',l),',...

'end'];

set(ADDRD,'CallBack',call);

set(MODE,'CallBack',call);

frame3=uicontrol(gcf,...
'Sty','frame',...
'Pos',[5 125 70 35],...

'BackgroundColor',[.3 .3 1]);

PBDONE = uicontrol(gcf,... % Done
'Style','radio',...

'Pos',[10 130 60 25],...
'String','Done',...

'Value',O,...

'Callback','set(PBDONE,''Value",l)');

% will be marking bins w/ x's but need to make sure the color of
% the x show up against pcolor plot. The following values
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X determine if the x is white or black.
% ---------------------------------------------------

a_range=max(max(a))-min(min(a));

a white=min(min(a))+.25*a_range;
a_white2=max(max(a))-.l*a_range;

% ---------------------------------------------------

% User chooses bins
% ---------------------------------------------------

while get(PBDONE,'Value')==O

if get(MODE(1),'Value')==1 % Row mode

[x,yl=ginput(1); % Get user input from
y=y/F(2)+1;

if y>1 & y<h+l & x<w+l % if user clicks outs:
if x<1 % may have clicked doi
pause(l) X pause so system set

i

mouse

de of plot
e
done=1 if

end % needs to
if get(PBDONE,'Value')==O

if x>=1

y=floor(y);
for i=l:w

if get(ADDRD(1),'Value')==1 % Mark w/ 'x'
track(y,i)=1;

if a(y,i)<=a_white I a(y,i)>=awhite2
plot(i+.5,(y-.5)*F(2),'wx', 'erasemode', 'none')

else

plot(i+.5,(y-.5)*F(2),'kx', 'erasemode', 'none')
end

else % Erase the 'x'
track(y,i)=O; % (actually just plots over x with

% same color as bin)
index=fix((a(y,i)-cmin)/(cmax-cmin)*cm_length) + 1;
if index>cm_length; index=cm_length; end

p=plot(i+.5,(y-.5)*F(2),'wx', 'erasemode', 'none');
set(p,'Color',cm(index,:))

end
end

end

end
end

end

if get(MODE(2),'Value')==1

[x,y]=ginput(1);
y=y/F(2)+1;

if y>1 & y<h+l & x<w+l
if x<1

pause(2)

end

if get(PBDONE,'Value')==O
if x>=1

x=floor(x);
for i=l:h

if get(ADDRD(1),'Value')==1

% Column mode (see Row mode comments)
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track(i,x)=l;

if a(i,x)<=a_white I a(i,x)>=a_white2
plot(x+.5,(i-.5)*F(2),'wx', 'erasemode', 'none')

else

plot(x+.5,(i-.5)*F(2),'kx', 'erasemode', 'none')

end

else

track(i,x)=0;

index=fix((a(i,x)-cmin)/(cmax-cmin)*cmlength) + 1;

if index>cm_length; index=cm_length; end

p=plot(x+.5,(i-.5)*F(2),'wx', 'erasemode', 'none');

set(p,'Color',cm(index,:))
end

end

end

end

end

end

if get(MODE(3),'Value')==1 % Bin mode (See row mode comments)

[x,y]=ginput(1);
y=y/F(2)+1;

if y>1 & y<h+l & x<w+l

if x<1

pause (2)
end

if get(PBDONE,'Value')==O

if x>=1

x=floor(x);

y=floor(y);
if get(ADDRD(1),'Value')==1

track(y,x)=1;
if a(y,x)<=a_white I a(y,x)>=a_white2
plot(x+.5,(y-.5)*F(2),'wx', 'erasemode', 'none')

else

plot(x+.5,(y-.5)*F(2),'kx', 'erasemode', 'none')

end

else

track(y,x)=0;

index=fix((a(y,x)-cmin)/(cmax-cmin)*cm_length) + 1;

if index>cm_length; index=cm_length; end

p=plot(x+.5,(y-.5)*F(2),'kx', 'erasemode', 'none');

set(p,'Color',cm(index,:))
end

end

end
end

end

end

if lap==l % set parts of track that correspond

track((h+3)/2:h,1)=zeros((h-1)/2,1); % to nonexistant basis functions to

track((h+3)/2:h,w)=zeros((h-l)/2,1); % zero even if user chose those bins

end
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% ginput.m

% Corinne Ilvedson's modification of MATLAB's ginput.m

X This is very similar to the matlab command - but had to change the
% line marked by: *****

% in order for it to look good with tool.

function [outl,out2,out3] = ginput(argl)
%GINPUT Graphical input from mouse.

% [X,Y] = GINPUT(N) gets N points from the current axes and returns

% the X- and Y-coordinates in length N vectors X and Y. The cursor

% can be positioned using a mouse (or by using the Arrow Keys on some

% systems). Data points are entered by pressing a mouse button
% or any key on the keyboard except carriage return, which terminates
% the input before N points are entered.

% [X,Y] = GINPUT gathers an unlimited number of points until the
% return key is pressed.

% [X,Y,BUTTON] = GINPUT(N) returns a third result, BUTTON, that

% contains a vector of integers specifying which mouse button was

% used (1,2,3 from left) or ASCII numbers if a key on the keyboard
% was used.

% Copyright (c) 1984-97 by The MathWorks, Inc.

% $Revision: 5.19 $ $Date: 1997/04/08 06:55:47 $

outl = []; out2 = []; out3 = []; y = [];
c = computer;

if -strcmp(c(1:2),'PC') & ~strcmp(c(1:2),'MA')

tp = get(0,'TerminalProtocol');
else

tp = 'micro';
end

if ~strcmp(tp,'none') & -strcmp(tp,'x') & -strcmp(tp,'micro'),
if nargout == 1,

if nargin == 1,
eval('outl = trmginput(argl);');

else

eval('outl = trmginput;');
end

elseif nargout == 2 1 nargout == 0,
if nargin == 1,

eval('[outl,out2] = trmginput(argl);');
else

eval('[outl,out2] = trmginput;');
end

if nargout == 0

outl = [ outl out2 1;
end
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elseif nargout == 3,
if nargin == 1,

eval('[outl,out2,out3] = trmginput(argl);');
else

eval('[outl,out2,out3] = trmginput;');
end

end

else

fig = gcf;
figure(gcf);

if nargin == 0
how_many = -1;
b= [];

else

how_many = argi;

b = [];

if isstr(howmany) ...

I size(howmany,l) ~= 1 I size(how_many,2) ~= 1 .

I (fix(how_many) == how_many) ...
I how_many < 0
error('Requires a positive integer.')

end

if how_many == 0
ptr_fig = 0;
while(ptr_fig -= fig)

ptr_fig = get(0,'PointerWindow');

end

scrn_pt = get(0,'PointerLocation');
loc = get(fig,'Position');
pt = [scrn_pt(1) - loc(1), scrn_pt(2) - loc(2)];

outl = pt(1); y = pt(2);
elseif how_many < 0

error('Argument must be a positive integer.')

end

end

pointer = get(gcf,'pointer');
% set(gcf,'pointer','fullcrosshair'); ,*****

set(gcf,'pointer', 'crosshair'); ,*****

fig_units = get(fig,'units');
char = 0;

while how_many -= 0

, Use no-side effect WAITFORBUTTONPRESS

waserr = 0;

eval('keydown = wfbp;', 'waserr = 1;');

if(waserr == 1)
if(ishandle(fig))

set(fig,'pointer',pointer,'units',fig_units);

error('Interrupted');
else

error('Interrupted by figure deletion');
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end

end

ptr_fig = get(O,'CurrentFigure');

if(ptr_fig == fig)

if keydown

char = get(fig, 'CurrentCharacter');
button = abs(get(fig, 'CurrentCharacter'));
scrn_pt = get(O, 'PointerLocation');
set(fig,'units','pixels')
loc = get(fig, 'Position');
pt = [scrn_pt(1) - loc(1), scrn_pt(2) - loc(2)];
set(fig,'CurrentPoint',pt);

else

button = get(fig, 'SelectionType');

if strcmp(button,'open')

button = b(length(b));
elseif strcmp(button,'normal')

button = 1;

elseif strcmp(button,'extend')
button = 2;

elseif strcmp(button,'alt')

button = 3;
else

error('Invalid mouse selection.')
end

end

pt = get(gca, 'CurrentPoint');

howmany = howmany - 1;

if(char == 13) % & how_many -= 0)
% if the return key was pressed, char will == 13,
% and that's our signal to break out of here whether
% or not we have collected all the requested data
% points.
% If this was an early breakout, don't include
. the <Return> key info in the return arrays.
% We will no longer count it if it's the last input.
break;

end

outi = [outl;pt(1,1)];

y = [y;pt(1,2)];
b = [b;button];

end

end

set(fig,'pointer',pointer,'units',fig_units);

if nargout > 1
out2 = y;

if nargout > 2

out3 = b;
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end

else

outi = [outl y];
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function key = wfbp

%WFBP Replacement for WAITFORBUTTONPRESS that has no side effects.

% Remove figure button functions
fprops = {'windowbuttonupfcn','buttondownfcn', ...

'windowbuttondownfcn','windowbuttonmotionfcn'};

fig = gcf;

fvals = get(fig,fprops);

set(fig,fprops,{'",'"',',"})

% Remove all other buttondown functions
ax = findobj(fig,'type','axes');

if isempty(ax)

ch = {};
else

ch = get(ax,{'Children'});
end

for i=l:length(ch),
ch{i} = ch{i}(:)';

end

h = [ax(:)',ch{:}];

vals = get(h,{'buttondownfcn'});

mt = repmat({''},size(vals));

set(h,{'buttondownfcn'},mt);

% Now wait for that buttonpress, and check for error conditions

waserr = 0;

eval(['if nargout==O,', .
' waitforbuttonpress,', .
'else,', .

keydown = waitforbuttonpress;',...
'end' 1, 'waserr = 1;');

% Put everything back
if(ishandle(fig))

set(fig,fprops,fvals)
set(h,{'buttondownfcn'},vals)

end

if(waserr == 1)

error('Interrupted');

end

if nargout>0, key = keydown; end

X%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% djl.m

% Corinne Ilvedson

% Callback function for push buttons of tvf_tool.m

% function []=djl()

function []=djl()

global pc a a_all Fall track

cmin=min(min(a));

cmax=max(max(a));

[h,w]=size(a);

range=cmax-cmin;

white=cmin+.25*range;

white2=cmax-.l*range;

for i=1:h

for j=1:w

if track(i,j)==1

if a(i,j)<=white I a(i,j)>=white2

plot(j+.5,(Fall(2)/2+Fall(i)),'wx', 'erasemode', 'none')
else

plot(j+.5,(Fall(2)/2+Fall(i)),'kx', 'erasemode', 'none')
end

end

end
end

set(pc,'cdata',a_all)
caxis( [cmin cmax])
colorbar
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% dj2.m

% Corinne Ilvedson

% Callback function for push buttons of tvf_tool.m

% function []=dj2()

function []=dj2()

global pc JmatA_all JmatA Fall track

cmin=min(min(JmatA));
cmax=max(max(JmatA));

[h,w]=size(JmatA);

range=cmax-cmin;

white=cmin+.25*range;
white2=cmax-. 1*range;

[Amax,index]=max(JmatA);

[Amax,index2]=max(Amax);

for i=1:h
for j=l:w

if track(i,j)==1
if JmatA(i,j)<=white I JmatA(i,j)>=white2
plot(j+.5,(Fall(2)/2+Fall(i)),'wx', 'erasemode', 'none')

else

plot(j+.5,(Fall(2)/2+Fall(i)),'kx', 'erasemode', 'none')

end
end

if i==index(index2) & j==index2
if JmatA(i,j)<=white I JmatA(i,j)>=white2
plot(j+.5,(Fall(2)/2+Fall(i)),'wd', 'erasemode', 'none')

else

plot(j+.5,(Fall(2)/2+Fall(i)),'kd', 'erasemode', 'none')

end
%elseif JmatA(i,j)>O %This will mark bins that have positive values

% if JmatA(i,j)<=white I JmatA(i,j)>=white2
% plot(j+.5,(Fall(2)/2+Fall(i)),'ws', 'erasemode', 'none')

% else
% plot(j+.5,(Fall(2)/2+Fall(i)),'ks', 'erasemode', 'none')

% end
end

end

end

set(pc,'cdata',JmatA_all)

caxis( [cmin cmax])
colorbar
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% dj3.m

% Corinne Ilvedson

% Callback function for cost push buttons of tvf_tool.m

% function []=dj3()

function []=dj3()

global pc JmatS_all JmatS Fall track

cmin=min(min(JmatS));
cmax=max(max(JmatS));

if cmin == 0 & cmax == 0 % for the case when cost = G, there is no

cmin=-le-14; % JmatS info. Therefore JmatS is a matrix of

cmax=le-14; % zeros. However, cmin and cmax cannot be equal

end % so will set to arbitray value to make matlab

% happy.
[h,w]=size(JmatS);

range=cmax-cmin;

white=cmin+.25*range;

white2=cmax-.l*range;

for i=l:h

for j=l:w
if track(i,j)==1

if JmatS(i,j)<=white I JmatS(i,j)>=white2
plot(j+.5,(Fall(2)/2+Fall(i)),'wx', 'erasemode', 'none')

else

plot(j+.5,(Fall(2)/2+Fall(i)),'kx', 'erasemode', 'none')
end

end
end

end

set(pc,'cdata',JmatS-all)

caxis( [cmin cmax])
colorbar
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% add_bin.m

% Corinne Ilvedson

% Last Modified 8/4/98

% Calculates the change in cost due to adding back just one of the bins

% that had been discarded. Will tell you which is the most important bin

% to add in order to further mimimize the cost.

%INPUT ARGUMENTS

% OUTPUTS

J : current value of cost function

Ttoss : a matrix of the containg the index of the bins

being discarded

T : the current transformation matrix

unT : matrix of basis functions not being used in

transformation matrix

Minfo : original information matrix

Vinfo : original information vector

Minfo2: new information matrix

Vinfo2: new information vector

y : output
dt : time step (sec)

N : number of pts of input output being kept

m : number of pts in impulse response

segments: number of data blocks

ns : number of pts in each data block

F : frequecny vector corresponding to time-frequency

mapping

lap : if 1 --> overlapping bins, if 0 --> adjacent bins

g_matlab : exact impulse response

cost : type of cost function (y, g or G)

num : numerator of exact transfer function

den : denominator of exact transfer function

Jmat : a matrix containing the change in the cost J for

each bin if it was added to the bins being kept

% function [Jmat] =
% add_bin(J,Ttoss,T,unT,Minfo,Vinfo,Minfo2,Vinfo2,y,dt,N,m,...

% segments,ns,F,lap,g_matlab,cost,num,den)

function [Jmat] =
add_bin(J,Ttoss,T,unT,Minfo,Vinfo,Minfo2,Vinfo2,y,dt,N,m,...

segments,ns,F,lap,g_matlab,cost,num,den)

bins_left=length(Ttoss);

if lap==1

Jtrack=zeros(1,(segments*2+1)*(ns/4+1));

else

Jtrack=zeros(l,segments*(ns/2+1));

end

% # of bins being discarded

% create matrix to keep track

% of the change in cost due

% to adding any particular bin
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% Use Matrix Inversion Lemma to make quick calculation of new information
% matrix and vector after adding one bin (and therefore 2 basis functions)

A = Minfo2;
Ai = inv(A);

Bpart = T'*Minfo;

kk=l;

for i=1:bins_left

if lap==l % USE THIS PART FOR OVERLAPPING BINS
if Ttoss(i)<=ns/8+1 % if bin is in first column

% corresponding to 1/2 size bin
if mod(Ttoss(i),ns/8+1)==O I mod((Ttoss(i)-1),ns/8+1)==0

% if DC or differential freq
phi = unT(:,kk); % basis function to add
kk=kk+l;

else

phi = unT(:,[kk kk+1]);
kk=kk+2;

en
else

if

I

% basis functions (sin and cos)
% to add

i

mod(Ttoss(i)-ns/8-1,ns/4+1)==O I .
mod((Ttoss(i)-ns/8-2),ns/4+1)==O I .

Ttoss(i)==(segments*2-1)*(ns/4+1)+2*(ns/8+1)

% if DC or differential freq bin
?hi = unT(:,kk); % basis function to add
kk=kk+1;

else

phi = unT(:,[kk kk+1]);

kk=kk+2;
end

end

if Ttoss(i)<=ns/8+1
sect=1;

index=l:ns/2;

% basis func's to add (sin&cos)

the section or column where

the added bin is located in

the time-frequency map
using sect, can figure

out where the basis function
is non-zero and where it is

zero. Then we can use the

structure of the basis

functions to speed up the
calculations

else
sect=ceil((Ttoss(i)+ns/8)/(ns/4+1));
if sect==2*segments+l

index=m-ns/2+1:m;
else

index=(1:ns)+((sect-2)*ns/2);
end

end
else % USE THIS PART FOR ADJACENT BINS
if mod(Ttoss(i),ns/2+1)==O I mod((Ttoss(i)-1),ns/2+1)==0
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phi = unT(:,kk);

kk=kk+1;
else

phi = unT(:,[kk kk+1]);
kk=kk+2;

end

sect=ceil(Ttoss(i)/(ns/2+1));

index= (1:ns)+((sect-1)*ns);
end

Tnew=[T phi];

% More Matrix Inversion Lemma
phi=phi(index,:);

% basis function to add

% basis func's to add (sin&cos)

% new transfomation matrix now that
% we have add one more bin

X only keep non-zero part of basis
% function in order to speed up

X calculation

phiT=phi';

CDpart=phiT*Minfo(index,:);

B = Bpart(:,index)*phi;

C = CDpart*T;

D = CDpart(:,index)*phi;

CABD = inv(C*Ai*B-D);

Mil=Ai*B*CABD;

Mi=[Ai-Mil*C*Ai Mil;

CABD*C*Ai -CABD];

Vnew=[Vinfo2; phiT*Vinfo(index,:)]; % new info v

a_new=Mi*Vnew; 7 new basis

if strcmp(cost,'y') % find new c

J2=ycost(y,Vnew,a_new,m,N,dt);
elseif strcmp(cost,'g')

g_new=Tnew*a_new;

J2=gcost(g_matlab,gnew,m,dt);

elseif strcmp(cost,'G')
g_new=Tnew*a_new;

[mag_gnew,ph_g_new]=g2tf(g_new);
freq=[0:m-1] ./(dt*m);
J2=Gcost_a(mag_g_new,ph_g_new,freq,num,den,5,12);

end

if lap==1
if Ttoss(i)<=ns/8+1

Jtrack(Ttoss(i))=J-J2;
else

Jtrack(Ttoss(i)+ns/8)=J-J2;

end
else

Jtrack(Ttoss(i))=J-J2;

end

end

ector including extra bin

function coefficients

ost

% compare new and old cost
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if lap==1

Jmat=reshape(Jtrack,ns/4+1,segments*2+1); % map delta cost into matrix
else % corresponding to time-frequency

Jmat=reshape(Jtrack,ns/2+1,segments); % matrix of bins
end
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% sub_bin.m

% Corinne Ilvedson

% Last Modified 8/4/98

% Calculates the change in cost due to subtracting just one of the bins

% that had been kept. Will tell you which is the most important bin

% to subtract in order to further mimimize the cost.

%INPUT ARGUMENTS

X

X

OUTPUTS

J : current value of cost function

Tkeep : a matrix of the containg the index of the bins

being kept

T : the current transformation matrix

Minfo : original information matrix

Vinfo : original information vector

y : output
dt : time step (sec)

N : number of pts of input output being kept

m : number of pts in impulse response

segments: number of data blocks

ns : number of pts in each data block

F : frequecny vector corresponding to time-frequency

mapping

lap : if 1 --> overlapping bins, if 0 --> adjacent bins

g_matlab : exact impulse response

cost : type of cost function (y, g)

Jmat : a matrix containing the change in the cost J for

each bin if subtracted from the bins being kept

% function [Jmat] = sub_bin(J,Tkeep,T,Minfo,Vinfo,y,dt,N,m,segments,ns,F,...

% lap,g_matlab,cost)

function [Jmat] = sub_bin(J,Tkeep,T,Minfo,Vinfo,y,dt,N,m,segments,ns,F,...

lap,g_matlab,cost)

bins_used=length(Tkeep);

if lap==1
Jtrack=zeros(1,(segments*2+1)*(ns/4+1));

else

Jtrack=zeros(1,segments*(ns/2+1));
end

[z,B]=size(T);

% # of bins being kept
% create matrix to keep track
% of the change in cost due to

% subtracting any particular bin

% size of transformation matrix

kk=l;

for i=l:binsused

if lap==1 % USE THIS PART FOR OVERLAPPING BINS

if Tkeep(i)<=ns/8+1 % if bin is in first column

% corresponding to 1/2 size bin

if mod(Tkeep(i),ns/8+1)==O I mod((Tkeep(i)-l),ns/8+1)==0
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Tnew=[T(:,l:kk-1) T(:,kk+l:B)];

kk=kk+1;

else

Tnew=[T(:,l:kk-1) T(:,kk+2:B)];

kk=kk+2;
end

else

if

% if DC or differential freq
% new transformation matrix (old
X minus dc or diff basis
% function)

% index of basis functions to be
% new transformation matrix (old
% minus sin&cos basis function)

mod(Tkeep(i)-ns/8-1,ns/4+1)==O I ...
mod((Tkeep(i)-ns/8-2),ns/4+1)==O I ...
Tkeep(i)==(segments*2-1)*(ns/4+1)+2*(ns/8+1)

% if DC or differential freq bin
Tnew=[T(:,l:kk-1) T(:,kk+l:B)];

kk=kk+1;
else

Tnew=[T(:,l:kk-1) T(:,kk+2:B)];

kk=kk+2;
end

end

else % USE THIS PART FOR ADJACENT BINS
if mod(Tkeep(i),ns/2+1)==O I mod((Tkeep(i)-1),ns/2+1)==0

Tnew=[T(:,l:kk-1) T(:,kk+l:B)];

kk=kk+1;
else

Tnew=[T(:,l:kk-1) T(:,kk+2:B)];

kk=kk+2;
end

end

Mnew=Tnew'*Minfo*Tnew;

Vnew=Tnew'*Vinfo;

a_new=Mnew\Vnew;

if strcmp(cost,'y')
J2=ycost(y,Vnew,a_new,m,N,dt);

elseif strcmp(cost,'g')

g_new=Tnew*a_new;

J2=gcost(g_matlab,g_new,m,dt);
end

if lap==1

if Tkeep(i)<=ns/8+1

Jtrack(Tkeep(i))=J-J2;

else

Jtrack(Tkeep(i)+ns/8)=J-J2;
end

else

Jtrack(Tkeep(i))=J-J2;
end

end

if lap==1

% new info matrix
% new info vector

% new basis function coef's

% new cost

% compare new and old cost
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Jmat=reshape(Jtrack,ns/4+1,segments*2+1); X map delta cost into matrix
else % corresponding to time-frequency

Jmat=reshape(Jtrack,ns/2+1,segments); % matrix of bins

end
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% ycost.m

% Corinne Ilvedson
% Last Modified 8/4/98

% Calculates cost that minimizes ly-g*ul^2 (convolution) divided by number
% of data points

% INPUT ARGUMENTS

% OUTPUT
X

y
Vinfo2

a_hat

m
N
dt

J

output
new information vector
magnitude coefficients corresponding to basis
functions kept in reconstruction of g
number of points in impulse response g
number of data points keeping from input & output
time step
cost

% function J=ycost(y,Vinfo2,ahat,m,N,dt)

function J=ycost(y,Vinfo2,a_hat,m,N,dt)

y2=y(m:N)'*y(m:N);

J=abs(y2-Vinfo2 ' *a_hat)*dt/(N-m+l);
% output squared

% cost
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Y gcost.m

% Corinne Ilvedson
% Last Modified 8/4/98

% Calculates performance cost that minimizes Ig_exact - g_estl^2

% INPUT ARGUMENTS g_matlab : exact impulse response via impulse.m

% g_hat estimate of impulse response

% m number of points in impulse response

% dt time step

% OUTPUT J cost

% function J=gcost(g_matlab,g_hat,m,dt)

function J=gcost(g_matlab,ghat,m,dt)

integrand=abs(g_matlab*dt-ghat').^2;

J=(sum(integrand)-integrand(1)/2-integrand(m)/2)*dt;
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% Gcost_p.m

% Corinne Ilvedson
% Last Modified 8/11/98

% Calculates performance cost which minimizes the difference between
% the exact transfer function and the estimate. Cost calculated using
% methods that weights points of estimate more heavily than shape of
% curve.

% See Section 2.3.1 of Ilvedson MIT MS Thesis, "Transfer Function
% Estimation Using Time-Frequency Analysis"

% INPUT ARGUMENTS m

% p

% f

% OUTPUT

num :

den :
J

magnitude of estimate

phase of estimate (degrees)
freq vector of estimate (Hz)
(cost function is evaluated over this
frequency span)
numerator of exact transfer function
denominator of exact transfer function

cost integral of IG_exact - G estl^2 df

% function J=Gcost_p(m,p,f,num,den)

function J=Gcost_p(m,p,f,num,den)

[a_tru,b_tru]=nyquist(num,den,f*2*pi);

a_est=m.*cos(p*pi/180);

b_est=m.*sin(p*pi/180);

Gtru=a_tru+i*b_tru;
Gest=a_est+i*b_est;

integrand=abs(Gtru-Gest).^2;

J=int_sum(integrand,f);

% real and imag part of exact tf

% real part of tf estimate
% imag part of tf estimate

% exact tf
% estimate tf

% integrand of cost function

% cost
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% Gcost_a.m

% Corinne Ilvedson
X Last Modified 8/12/98

% Calculates performance cost which minimizes the difference between

% the exact transfer function and the estimate. Cost calculated using

% methods that weights shape of curve more heavily than the actual points of

% curve. Obtains shape by linearly interpolating between pts of curve.

% See Section 2.3.1 of Ilvedson MIT MS Thesis, "Transfer Function

% Estimation Using Time-Frequency Analysis"

% INPUT ARGUMENTS

% OUTPUT

m magnitude of estimate

p phase of estimate (degrees)

f : freq vector of estimate (Hz)

num : numerator of exact transfer function

den : denominator of exact transfer function

fl lower limit of integral

f2 upper limit of integral

J cost integral of IG_exact - Gestl^2 df

% function J=Gcost_a(m,p,f,num,den,fl,f2)

function J=Gcost_a(m,p,f,num,den,fl,f2)

w2=linspace(fl*2*pi,f2*2*pi,5000);

f2=w2/(2*pi);

[a_tru,b_tru]=nyquist(num,den,w2);

a_est=m.*cos(p*pi/180);

b_est=m.*sin(p*pi/180);

% freq pts of curve (rad/s)

% (Hz)

% real and imag part of exact tf

% real part of tf estimate
% imag part of tf estimate

a_est=a_est(:); % make sure all are column vectors

best=best(:);

a_tru=a_tru(:);

b_tru=btru(:);

a_est2=interpl(f,a_est,f2);

b_est2=interpl(f,b_est,f2);

a_est2=a_est2(:);

b_est2=b_est2(:);

Gtru=a_tru+i*b_tru;

Gest=a_est+i*b_est;

Gest2=a_est2+i*b_est2;

integrand=abs(Gtru-Gest2).^2;

J=int_sum(integrand,f2);

% linearly interpolate to find curve

% of tf estimate

% make sure all are column vectors

% exact tf
% estimate tf

% curve of estimate tf

% integrand of cost function

% cost

133



% int_sum.m

% Corinne Ilvedson
% Last Modified 8/11/98

X Numerical Integration
% INPUT ARGUMENTS x : signal to be integrated

% t : t or freq vector over which to be integrated
% OUTPUT y : value of integral

% function y=intsum(x,t)

function y=int_sum(x,t)

l=length(x);

y=0;
for i=1:(1-1)

x_ave=(x(i)+x(i+1))/2;
dt=t(i+l)-t(i);
y=y+x_ave*dt;

end
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