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Abstract

To understand the extremely complex hydrodynamics of fish swimming, it is desirable to build a
mechanical prototype. This allows better cooperation of the "vehicle" under study than would be
allowed with a live specimen. Draper Laboratory has undertaken the design and construction of
a free-swimming fish robot called the Vorticity Control Unmanned Undersea Vehicle (VCUUV),
patterned and scaled after a yellowfin tuna. The mechanical and electronic design of the VCUUV is
versatile to allow ready variation of swimming parameters. Tests can be performed that will reveal
the importance of each swimming pattern and how it contributes to the potentially superior efficiency
of fish propulsion and how, ultimately, this mode of propulsion can be adapted to man-made vehicles.

In this case of a mechanically complex and versatile robotic fish, a sophisticated control system
algorithm is needed to ensure the motion closely approximates that of a live fish. Modeling and
control of a hydrodynamic system is a difficult task, especially when the exact hydrodynamics have
not yet been captured in a mathematical model. Based on some simplifying assumptions, a linear
system model for the VCUUV is derived. Using state-space methods, a simulated controller is
designed to govern this model. The ability of the controller to produce the desired system response
is demonstrated, as well as robustness of the control algorithm in the presence of environmental
disturbances and system model errors.
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Chapter 1

Introduction

1.1 Background

Almost 30 years ago, M.J. Lighthill published a study of the superior hydrodynamic

efficiency of aquatic animal propulsion [9]. Since that time, there has been a growing

effort to capture the benefits of fish-like modes of propulsion for use in man-made

vehicles. Most recently, the effort has intensified with the achievement of a robotic

fish ("RoboTuna") at MIT by M. S. Triantafyllou, et al [12]. It is generally undis-

puted that the fish-like propulsive motion is possibly superior in efficiency relative

to propellers, yet it has not been attempted in the design of large scale submersible

vehicles. In fact, modern submarine design has focused on reducing the disturbance

of the flow around the hull, whereas fish create large disturbances in the water. This

incredible, unintuitive design demands our attention and makes the study of fish-like

propulsion very interesting and worthwhile studying. If the essence of the propulsive

motion that achieves this high efficiency in fish can be captured and understood, then

it can be implemented in vehicles such as manned and unmanned submarines or even

surface ships. There is a growing need for higher efficiency, longer range ocean-going

vessels.



In order to study the motion of fish in a scientific scientific, where variables in

the swimming motion can be controlled, it is necessary that a fish-like robot be built.

This way, the motions essential to efficient propulsion can be isolated and their effects

understood. Building a robot for the study also demonstrates that the swimming

motion can be implemented in a man-made vehicle. Simulating the motion of a fish

requires a sophisticated mechanical design and control system algorithm.

The Vorticity Control Unmanned Undersea Vehicle (VCUUV) Project at Draper

Laboratory is attempting to find answers to the questions raised about the superior

performance of "fish-like," or biological propulsion. An eight-foot autonomous me-

chanical yellowfin tuna has been designed and constructed for testing. The following

thesis describes the system modeling and controller design for the VCUUV. A picture

of the VCUUV is shown in Figure 1-1. Due to the complex nature of the mechanical

system, the thesis focuses on developing a linear system model using robot dynamics

derivation and then adding nonlinear effects in a logical manner to the model while

in simulation. The simulation method is Simulink, in which I also implemented my

control algorithm. The control algorithm was derived using state space methods. The

general approach that I used to complete my thesis is the following:

* Developed a linear system model of the robot fish based on physical data, dy-

namics analysis and engineering assumptions.

* Implemented the model in Simulink.

* Used state space and nonlinear methods to design a controller.

* Implemented the controller in the Simulink model.

* Modeled and include significant nonlinear effects such as friction, deadband and



Electronics assembly Hydraulic power unit

Free-flooded tail

Tail exostructure

Pressure hull Battries

Main ballasst Driven link assembly

Figure 1-1: Vorticity Control Unmanned Undersea Vehicle (VCUUV)



actuator saturation.

* Tested the controller for robustness by varying model parameters.

* Optimized the controller.

* Described a method to implement the controller.

In order to implement a control system, it is useful to develop a system model in

the form of equations of motion (i.e., inertia, spring, damping and input forces). I

developed my model by defining the dynamics of the tail portion of the VCUUV as

a hydraulically powered robot arm [3, 8]. The model includes my estimates, using

Lighthill's Elongated Body Theory (EBT) [9], of the inertia due to the added mass,

and the damping and spring forces.

I used a state space approach for the controller design. The format of the first

controller design attempt is a linear quadratic regulator (LQR). "Linear", because

the system is linearized, "quadratic" due to the quadratic cost function used for opti-

mization, and "regulator" since the system is set up to regulate to a reference input.

The quadratic cost function is discussed in Section 3.3. The cost function is an op-

timization tool for developing a controller that best meets the design specifications.

The second design attempt is a "computed torque" controller which uses the same

state space system model, but a different approach altogether. The input torques are

calculated from the state space system equations and input directly into the system

while position and velocity errors are used for feedback. The controller commands

joint positions to mimic the configuration of the tail at each swimming instant. The

objective is simply to match the biological fish's swimming motion and produce an

accurate trajectory whenever swimming parameters are changed for testing. Vehi-



cle heading control will be left to a next-generation controller due to the extremely

complex relationship between the tail motion and the heading.

1.2 Thesis Motivation and Goal

The motivation for this thesis comes from the now widespread desire to unlock the

secrets of biologic propulsion, namely the mechanisms by which fish can swim so

fast, both in spurts and for distances with relatively small power input. In his famous

study, Sir James Gray determined that the power density of a dolphin's muscles would

have to be seven times that of measured land mammals' muscles in order to explain

the superior efficiency of an assumed "dead body" drag resistance for the swimming

dolphin (commonly referred to as "Gray's Paradox") [7]. Due to the unlikelihood of

such superior muscle power density, it is hypothesized that the swimming action is

responsible for a significant drag reduction. As will be explained later in Section 1.4,

the majority of body motion of a swimming carangiform , under which category the

tuna falls, is in the aft I to 2 of the fish. Therefore, the VCUUV was designed with

the linkages in the aft 1 of the body, and the system model of the propulsion system

addressed in this thesis deals with the activated portion of the fish - the tail linkage,

which is shown in Figure 2.2.

My goal in this thesis is to explain the derivation of the system model, asssump-

tions and simplification in a manner that will aid future work in the area of fish-like

propulsion and control of multiple degree-of-freedom systems. I will also demonstrate

the use of several computer programs that are useful in this work.



1.3 Mechanical Summary

The vehicle design is approximately 2.4m (8ft) in length, scaled and modeled after an

actual yellowfin tuna. In order to closely approximate the curve followed by the spine

of the biological fish as the tail undulates, it was determined that three joints would

be required, plus an independent caudal fin. The linkage is shown in Figure 2.2.

The tail spine is an upper and lower support made of G-10 fiberglass. The G-10

spine is able to help support, along with the pin joints, the large weight of the tail

structure, but flexes in the yaw plane to allow the undulatory swimming motion. The

tail joints are powered by servovalve controlled hydraulic pistons, and a hydraulic

power unit consisting of a DC motor powering a hydraulic pump is employed. The

tail has a number of "ribs" connected to the spine, each made of a sturdy PVC

foam. Fiberglass "scales" are attached to the ribs to keep the nylon outer "skin"

from collapsing between ribs, which would cause flow-disturbing pockets on the tail

surface. The body forward of the tail is a pressure hull made of carbon fiber, which

houses the electronics, inertial measurement unit (IMU) and the hydraulic power

plant in a dry environment. The major components that make up the VCUUV are:

* Composite Pressure Hull

Hydraulic Power Unit (HPU)

Computer

Lead-Acid batteries

Inertial Measurement Unit (IMU)

* Tail Mechanical Linkage

Three Aluminum Links

Composite Caudal Fin



Hydraulic Power Pistons

Bridge-attaches tail linkage to pressure hull

* Tail Exostructure

G-10 flexible spine

Ribs

Scales

Neoprene Skin

The tail linkage is made up of three aluminum links and the caudal fin making

a four degree-of-freedom robot arm. The aluminum links attach as a unit to the

VCUUV pressure hull by a rigid connector called the "bridge." Power to the tail

links is supplied by hydraulic pistons as shown in Figure 2.2. To move the fish tail

"envelope" while maintaining it's correct shape, ribs surround the tail linkage and

attach to the thin G-10 fiberglass (upper and lower) "spine." The G-10 fiberglass

supports most of the weight of the tail system when the VCUUV is out of water,

but while submerged, the structure, including the linkage and actuators, is nearly

neutrally bouyant. This is due to the low density PVC foam used for the ribs.

Finally, the rib structure attaches to the tail linkage at four points to transfer the

force from the linkage to the ribs, the skin, and ultimately to the water.

For the purposes of feedback control, sensors that have been included in the design

or that were present in commercial systems are: DC motor speed, hydraulic system

pressure, joint angular position and speed, and leak detection. Additionally, load cells

have been incorporated in the design to gather propulsion efficiency data for analysis.

The tail mechanical system must be modeled due to the inertial forces the actuators

must overcome to properly position the tail linkage. The inertial forces are mainly

due to the free-flood mass of water contained within the tail exostructure. To be



used in a state-space control system, the final mechanical linkage dynamics model

must be both linear and a function of the state variables and torque inputs. First,

a Lagrangian dynamics approach [1] was used to develop the equations of motion

for the four link system. Then, following several simplifying assumptions, the model

was linearized and the results were compared to determine if the assumptions were

acceptable. The derivation is explained in Section 2.2.

1.4 Hydrodynamic Summary

The approach taken for hydrodynamics in the system model was a discretized version

of Lighthill's Elongated Body Theory (EBT) [9]. C.M. Breder [4] describes three

different types of biological swimming motions, categorized by the relative length

of the portion of the body involved in the undulatory motion. The basic types are

anguilliform, carangiform and thunniform, in order of decreasing fraction of body in

motion (illustrated in Figure 1-2).

(a) (b) (c)

Figure 1-2: Modes of swimming in fishes: (a) "angulliform"; (b) "carangiform"; (c) "thunniform"
(From Life in Moving Fluids, Vogel [14])



Anguilliform, or eel-like motion involves almost the entire body length in the

propulsion, carangiform, about half the body length, and thunniform one-third or

less. The VCUUV most closely resembles the carangiform since approximately half

of the body is involved in the undulatory motion. The VCUUV may, however, be

optionally operated as thunniform as it is really a subset of carangiform motion. It

should be noted that most live tuna more closely resemble the thunniform mode. The

mode of swimming assumed is important in the development of my system model only

to the extent that Lighthill's assumptions will be either obeyed or violated, which I

explain further in Section 2.3.

Lighthill refers to the very elegant design of the carangiform swimming body [9].

Refer to Figure 1-3. This swimming mode and body form work closely together to pro-

duce extremely efficient propulsion. Although the complete hydrodynamic mechanism

is not completely understood, three well recognized hydrodynamic characteristics can

be summarized here:

1. A carangiform has a deep, massive anterior. The inertia of the forebody plus its

added mass prevent excessive yawing motion while the tail undulates.

2. The posterior decreases dramatically in depth toward the caudal fin in order

to reduce inertia the tail must overcome as undulatory amplitude increases.

Immediately before the caudal fin, the depth of the body reaches a minimum.

3. The tall lunate caudal fin extends into the body wake and may react with vortex

sheets shed from the body to recapture wake momentum and produce propulsion

"jets."

To be used in a state-space control system, the final hydrodynamic model must be



2. Body slopes
dramatically to a minimum

7A

3. Tall lunate caudal fi

Figure 1-3: Profile View of a Carangiform Swimmer (Skipjack Tuna)

both linear and a function of the state variables and torque inputs. First, Lighthill's

EBT was used to estimate the torques on each joint during swimming motion. This

model was not in a form that was compatible with linearization, nor was it a function

of the state variables. The purpose of developing this model was to use it to compare

torques with a linearized model of the tail system, which was developed separately

using a discrete application of Lighthill's EBT [9]. The derivation is explained in

Section 2.3.2.



Chapter

System Modeling

2.1 Approach to Model Derivation

In general, the spine displacement, y(x, t) from a neutral (straight-body) position of a

carangiform swimmer can be described by the following equation given by Barrett [2]:

y(x, t) = a(x)sin(kx - wt) (2.1)

as shown in Figure 2-1, where a(x) is given by:

a(x) = ClX + C2
2 (2.2)

The caudal fin motion is extremely important, as it has been theorized that most

of the thrust is produced by it. The angular motion of the caudal fin has a special

phase relationship with the body motion described by:

Otail(t) = Oosin(wt + ¢) (2.3)

David Barrett derived self-propelled optimal values for "RoboTuna" at MIT [2] for the

kinematic variables in the above equations. The values are listed in Table 2.1. Using



y(x,t)=a(x)sin(kx-ot)
a(x,t)=clx+c 2x 2

Otail= Oo(Ot+O)

Figure 2-1: General Carangiform Swimming Motion



Variable Description Value

U Swimming Speed (Body 0.65

Lengths/Second)

St Strouhal Number: f ATP 0.156U
ATIP Peak-to-Peak Amplitude 0.115

of Caudal Fin Tip (Body

Lengths)

a Maximum Angle of Attack 16.20

of Caudal Fin

Phase of Caudal Fin Motion 75 - 950

With Respect to Body Mo-

tion

A Propulsive Wavelength 1.27

(Body Lengths)

Cl Coefficient of Linear Term .00372

c2 Coefficient of Quadratic .002

Term

Table 2.1: Optimal Swimming Parameters Derived by Barrett [2]



the parameters given in Table 2.1, the motion of the VCUUV tail over one period is

shown in Figure 2-2. My approach to developing a linearized dynamic model of the

VCUUV tail system was to first derive the full nonlinear model, then linearize it and

compare the results to see if the difference between them was negligible. The two

major sections of my model are:

1. Lagrangian Dynamics Model: The dynamics due to inertia of the free-flood

water entrained in the VCUUV tail exostructure.

2. Lighthill Hydrodynamics Model: The dynamics due to hydrodynamic forces

on the exterior of the VCUUV tail exostructure.

Figure 2-3 summarizes my approach.

2.2 Tail Free-Flood Dynamics Model

The dynamics of any rigid body can be completely described by the translation of

the centroid and the rotation of the body about its centroid. The dynamics equations

for the four link system described in Section 1.3 are derived by defining the inertia

torques of each link and the reaction torques from the connecting links. This leads to

the ability to derive the actuator torques necessary to produce the tail motion that

is desired. The links are interdependent in two major respects:

* The torque produced on or by a link produces a reaction torque on the other

links.

* The motion of the links changes the shape of the linkage, which changes the

inertia seen by previous links (links closer to the bridge).
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Therefore, the result for the four link system is a rather complicated interdepen-

dent set of dynamics equations. There are two basic approaches to deriving the

dynamics equations, the Newton-Euler and the Lagrangian approach, each having its

advantages and disadvantages listed below:

Method Advantages Disadvantages

Newton-Euler Uses intuitive concepts of Resultant set of equations

torque balance and free- not in "closed form"

body diagram

Lagrangian Resultant set of equations Energy method approach

in "closed form" not as intuitive as Newton-

Euler

In the Newton-Euler formulation, a "free-body" approach is taken in the classi-

cal dynamics sense where the linkage is conceptually disassembled and torques are

balanced about each joint pivot, taking into account the torques caused by inertia,

centrifugal and Coriolis forces. External forces such as reactions from other joints,

gravity, and actuator forces are also accounted for. The resultant intermediate equa-

tions are not in a useful form, however, as they do not involve the actuator torques

explicitly, but instead contain the forces of constraint between joints. These must be

eliminated by back-substitution to arrive at the useful form called the "closed form"

dynamics equations.

Due to the shortcomings in this case for the Newton-Euler approach, the La-

grangian approach was used according to Asada and Slotine [1]. The Lagrangian

approach to dynamics involves energy methods; namely, the system is first described

by the work and energy stored therein. Deriving the work and energy of the system as



a whole is a relatively simple undertaking and although the dynamics equations are

still complicated, the closed form dynamics equations are quickly produced without

having to back-substitute to eliminate the constraint forces.

Figure 2-4 is a schematic of the VCUUV tail linkage, showing the relative angular

displacement between each link, qj and the length of each link, 1i. These parameters,

along with those of the free-flood water parameters in Table 2.1 will be used in the

system model derivation. The state variables in the system are the angular positions

and velocities of each link relative to the previous link. In terms of the global variable

(Oi):

01 = q1; 02 = 1 + q2 ; 3 = + q2 +q 3; 04 = 1 +2 + q3 + 4  (2.4)

The purpose of the derivation of the dynamics equations is to obtain a system

model that can be used to design a controller in computer simulation, leading to

control of the actual VCUUV prototype. The first hurdle to overcome was modeling

the inertia of the mass of water within the skin and tail exostructure, and also the

inertia of the caudal fin, which is not free-flood. The second hurdle to overcome

was modeling the hydrodynamics of the surrounding water as the tail moves in an

undulatory motion. The first part is addressed here and the second part is addressed

in Section 2.3.2.

To derive the dynamics of the water entrained in the tail free-flood volume, the

general form of the VCUUV tail dynamics equations must be derived. Then, the

mass and moment of inertia of specific sections of the tail can be ascribed to each

link. There are two major assumptions that have gone into this derivation:

* The section of the tail surrounding each link moves rigidly with its corresponding
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link and the effect of any curvature of the spine on the dynamics is negligible.

In the initial design stages of the VCUUV, three links were determined to

closely approximate the ideal curvature of the spine, so the very slight deviation

from ideal can be neglected. Also, slight curvature of the tail sections will have

no effect on the mass of those sections and very little effect on the moment-of-

inertia with respect to each joint pivot.

* For the purposes of mass and moment-of-inertia calculations, the tail free-flood

water, actuators, rib structure, and spine mass can be lumped, thus approximat-

ing the entire tail volume as water mass.

Since the VCUUV was designed for neutral bouancy and zero trim, the

complete tail assembly is essentially the same density as water. The tail actuators

are relatively small, but quite a bit denser than water, while the rib structures

are quite large and slightly bouyant. Overall, the tail is neutrally bouyant and

the mass is relatively homogeneous; therefore, the mass can be lumped. Also,

circulation flows inside the tail structure, if any, will have a net force on the

linkage of approximately zero and will be damped considerably by the internals.

The masses, moments of inertia and centroid distances were derived by a numerical

calculation using the VCUUV hull envelope data. Figure 2-5 illustrates the four

sections of the tail that are ascribed to each of the four links. The values for each

parameter of the tail linkage are listed in Table 2.2.

To derive the Lagrangian dynamics equations, the geometry of the linkage must

be defined by the Jacobian relationships. The linear velocities of the centroids of

each link in the global reference frame (the stationary reference frame attached to the

'Inertia is taken about a vertical axis at the centroid of each link
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Figure 2-5: VCUUV Tail Mass Ascribed to Each Link

Link 1 Link 2 Link 3 Link 4

Mass, m (ibm) 58.6 18.2 4.32 1.69

Inertia', (Ic lbm -in 2) 787 185 44.0 8.00

Length, L (in) 11.45 11.20 10.33 15.50

Centroid, L, (in) 5.01 4.18 4.47 4.72

Table 2.2: Parameters of the VCUUV Tail Free-Flood Water Ascribed to Each Link

Link 1 -- >

-10-

-20
0

I



bridge) can be described by the linear Jacobian relationship shown in the following

equations:

vl = J ()q (2.5)

Vc2 = J 4 (2.6)

vc = J(3)4 (2.7)

Vc 4 = J()4 (2.8)

here J, (2), (3), and ) are defined in Appendix A. The somewhat complex

derivation of these matrices is confined to Appendix A for the reader's convenience.

Likewise, the angular velocities of each link in the global reference frame are simply:

wl = J 4 q

W2 = JA4

W3 = J)q

W4 = J4)q

Appendix A also defines P )2), j(3), and J(4).

(2.9)

(2.10)

(2.11)

(2.12)



The above Jacobian relationships simply describe the velocity (either linear or

angular) of each link with respect to the global reference frame as a function of the

relative (local) angular velocities (4i) of the other links.

With the linear and angular velocity relationships of the links now derived, the

energy stored in each link in the form of translational kinetic (!mqTJiJLA) and

rotational kinetic (1 JT IJAq) to determine the total energy of the four arm linkage:

T = (mi L J L T iJO)4 ) (2.13)
i=1

From the total energy equation, the inertia tensor 4 x 4 matrix can be extracted

by removing the 1 4 T 4 from the elements, leaving only the inertia:

4

H = L(miJj)Tj() + j(i)Tjj(i) (2.14)
i=1

The Jacobian matrices in the formula account for the change in the moment of

inertia the linkage experiences as it changes shape ( i.e. as q changes ).

The Coriolis and centrifugal effect inertia elements can be derived by the following

relation [1]:

hijk = ij 1H j k (2.15)
Oqk 2 &qi

As can easily be observed, the Coriolis and centrifugal effects are nonlinear, being

products of the velocity terms. The dynamics equations become the summation of

the inertia terms and the Coriolis and centrifugal terms, as shown in Equation 2.16.

4 44

1 = HI 1q + E hijkj k+ Gi (2.16)
j= 1

j= 1 k=1



Where Gi, the torque due to gravity on the links, is zero in the VCUUV horizontal

planar linkage. The complete derivation of the closed form dynamics equations using

the Lagrangian method is shown in Appendix A.

2.3 Hydrodynamics Model

M.J. Lighthill has done extensive work in capturing an expression to estimate the

efficiency of the fish propulsion motion. In his work, he describes a "first principles"

approach that incorporates basic dynamics with some well-known hydrodynamics as-

sumptions to derive an equation for output power into the water. In doing so, he

derives an expression for momentum of the water adjacent to the body as the tail

undulates. According to Newton's Law, the derivative of the momentum gives the

force, and torque on the body can be calculated knowing the moment arm of the force.

Since the fish has forward velocity, the relative velocity between the free stream and

the angled fish body must be accounted for in the momentum expression. Similarly,

the time derivative of momentum of the water must account for the change expe-

rienced as the changing fish body travels past the water slice in question. This is

known as the "substantial derivative" and is described in Section 2.3.2. In order to

derive a useful hydrodynamics model for my control algorithm, the VCUUV conti-

nous, flexible tail system must be discretized into a four link model that is in terms

of the state variables.

Two major assumptions made in EBT are as follows:

1. The body slope (Oz-) from fore to aft is negligible.

2. The added mass of fish sections are approximately the same for a rigid cylinder

of the same cross-section if the undulation wavelength A is at least 5 times



the section depth (s). This assumes that (1) the effect of different sections

pushing the fluid at different velocities and (2) the cross-sections being non-

uniform produces negligible differences from the rigid cylinder case as long as

A < 5s.

The following is a description of adherence (or lack thereof) in my model to Lighthill's

EBT. The body of the VCUUV has considerable slope compared to an eel-like body

(anguilliform) and would fail Lighthill's assumptions. The assumption is based on

the spatial derivative of the added mass being too large and the body, instead of

pushing the fluid, will allow some to pass over and under the body as it propels

forward while undulating. The VCUUV body slope is not extreme, however, and

the added mass will be slightly overestimated rather than underestimated, which is

conservative. Overall, this is a good engineering approximation.

The undulation wavelength is, indeed, 5 times the section depth (s). The VCUUV

A at a swimming frequency of .93 Hz is 109.2 inches. The maximum depth (s) of the

VCUUV is 19.54 inches. 5s is 97.7 inches, less than the undulation wavelength, so

the rigid cylinder approximation (discussed above) is good.

2.3.1 Lighthill's Theory Applied to a Swimming Fish

Lighthill's theory is a very solid first principles approach to this extremely complicated

hydrodynamic problem. If energy stored in vortex sheets can be neglected, and the

added mass can be treated as that due to a rigid cylinder, the substantial derivative

of the momentum of the fluid along the body can be integrated to determine the total

force on the body. For the interest of the VCUUV tail actuation system, the torques

at each joint can be calculated by integrating the force ( {ma(x, t)w(x, t)}) timesDt



the moment arm (x) over the body. Where , the substantial derivative operator, is

denoted by:

D _ &-- -+ U
Dt dt Ox

A flexible, undulating fish body has local spine lateral displacement, y(x, t) as shown

in Figure 2-6, and it is swimming into undisturbed water with forward velocity U.

The lateral velocity of a cross-section of the tail with respect to the water slice it is

pushing, denoted by w,(x, t) can be written:

U
y(x,t) = a(x) sin(kx-cot)
a(x)= czx + c2x2

U Spine

30 40 50 60 70 80 90
x (inches)

Figure 2-6: Lighthill EBT Theory Applied to a Swimming Fish

(, t) = (, t)
at + U , )

OX

-10

-20

-30

(2.17)



The momentum in the lateral direction of each water slice is simply the added mass

of each fish section multiplied by the relative velocity of the tail:

M(x, t) = m,a(x)w(x, t)

where

ma() = 4prs(x)2

wher s is the body depth at section x. Now, calculate the change in momentum of

each water "slice" as it passes by with velocity U. Integrating xdF over link "i" gives

the total torque on that link:

T(X, t) - x M (x, t) (2.19)

(2.18)

2.3.2 Lighthill's Theory Applied to the Tail System

Referring to Figure 2-7, the kinematics of a particular link "i" can be described as a

function of xi and time as follows:

yi(xi, t) - Y(t) - 1 () xi + i-1 (t) (2.20)

Assuming small displacements, this can be linearized as follows:

yJ(x, t) = Oi(t)z; + Yi- (t) (2.21)

The lateral velocity of a cross-section of the tail with respect to the water slice it is

pushing, denoted by w, (xi, t) can be written:

W, (x, t) =
Oyi (xit) +U x, t)

+ U O
Ot 8xi

(2.22)
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Figure 2-7: Lighthill EBT Theory Applied to the VCUUV Linkage

The fish is traveling at speed U which Dewar and Graham [5] have shown, is strongly

dependent on tail undualation frequency. For a frequency of 1.0 Hz, an estimate of

U is 0.656 body lengths/second. Substituting Equation (2.21) and expanding:

Wn (y, t) = (t)x -i Y 4 (t) + UOj(t) (2.23)

Now, calculate the differential force on each water "slice" as it passes by with velocity

U:

dF(xi, t) =
D

(m a (Xi) W , ( i, t)) d xiDt
(2.24)

Where

D

Dt
+ Uf

at OXa )

L'T'



Now, expand out to view all the terms:

dFi(xi, t) = - a(x) ixi + i_ (t) + U9i)

_r U 
( X i )

" U O xi ixi + i- (t) + UOi)

+ ma(xi)Oi dxi (2.25)

1(t) = xdF1 -l (x 2 + 1)dF2 - '(x 3 + 12 + )dF 3

S14(X4 13 13 1 2  1i)dF 4  
(2.26)

2(t) = - x 2 dF2 - (13 3 + 12)dF 3 - (X 4 + 13 + 12)dF 4  (2.27)

73(t) = - x 3 dF 3 - j(X4 + 14 )dF4  (2.28)
0 f 0

T4 (t)= - iX4dF4  (2.29)

To illustrate the derivation of the hydrodynamics of the links, I will work through the

torque on the fourth link (caudal fin). My approach is taken from Triantafyllou [13],

where the integration of EBT forces over a rigid body results in distinct hydrodynamic

coefficients. The tail fin (looking from above) is shown in Figure 2-8. First of all, the

torque on the joint for link 4 is shown in Equation 2.29. Expanding the equation:

T4(t) -j X 4 {ma4 (X 4 ) ( 4 X4 + 3 U4)

+ a 4 () ( 4 x 4  3 + U0 4 )
&x 4

+ ma 4 (X 4 )04 d 4  (2.30)

Expanding this out:



U 14ma (14) 3

m 2 6 Y 3

m 6 6 04

U (14) 2 ma (14) 64

04

(U 2 14 ma4( 14)- U2 m 22) 04

Figure 2-8: Hydrodynamic Torques on the Caudal Fin

Coefficient

4 4 xm 4 dX4

Simplified (Refer to Newman [10])

= i 6 6 4

04 Ux (2m'm a(x 4 ) +

4 4 U 2 Om4 ( 4 )
03 4 f X4 a4

Y3 f 14 X4ma4 (X4)dx

o4 U.4 (

dm xa4 dx 4

dx 4

Dma 4 (24 dx 4
9X4

= Ulaa 4 (14)

- U 2 14ma4 (4) - U2M224

Sm264

= Ul 4ma 4(1 4 )

Substitution must now be made with the state variables, given in Equation 2.4 and

assuming small angular displacements such that sin(0i) ' Oi:

Yo = o; Yo = 0; Yo = 0

Variable



Y1 110 1 Yi l 101; Yi 1101

Y2  11 0 1 + /2 02 ; Y2 
- 101 + 20 2; 2  1 +11 -1202

Y 3 1101 + 1202 + 1303; Y3 - 111 + /282 + /383; Y3 4 I11 + 1/22 + 1/303

Y4 1101 + 1202 + 1303 + 1404; Y4 ? 1161 + 1202 + 1363 + 1464; Y4 l 1 + 12A + 13 3 + 14 4

The complete derivation of the four link system is shown in Appendix B.

2.4 Hydraulic Plant Model

The state space VCUUV tail model has torque input with angular position and veloc-

ity output. In the VCUUV prototype, however, the input to the system is electrical

current to the hydraulic servovalves and the outputs are linear position and velocity of

the hydraulic pistons. Therefore, for implementation, the torque control signal must

be converted to a servovalve current input. The relationship between desired torque

and servovalve current is a nonlinear relationship that can not be modeled in a state-

space system without large linearization error. A schematic of the VCUUV hydraulic

system is shown in Figure 2-9; the link system is shown with dimensions in Figure

2-4. To calculate the linear position and velocity of each piston, the positions of the

attachment points must be known. From the figure, the following dimensions can be

taken: The change in piston end points can be defined by the following geometric

relationships:

XA = XAo

YA = YAo

XB - XBo COS(0 1 ) - YB sin(0 1)



Hydraulic Actuators

Accumulator

:or

Accumulator

Figure 2-9: VCUUV Hydraulic Plant Schematic

Point xo (in) Yo (in)

(measured from
previous joint)

A 0.0 2.3

B 10.75 2.3

C 1.54 -2.144

D 0.0 -2.144

E 1.85 1.5

F 0.0 1.19

G 1.10 0

H 0 .953

Table 2.3: Linkage Dimensions From Figure 2-10

Servovalves



Figure 2-10: VCUUV Tail Linkage Assembly With Dimensions
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YB - XBo sin(O1) + YBo cos(0 1)

XC = XCo cos(9 1) - YCo sin(O1)

YC = Xzc sin(01) + Yco cos(O1)

D = L 1 cos(01) + XDo COS(O1) - YDo sin(01)

YD = LI sin(O1) + XDo sin(O1) + YDo COS(O1)

XE = L 1 cos(0 1 ) + XE o cos(01) - YEo sin(O1)

YE = LI sin(01) + XEo sin(01) + YE o COS(01)

XF = L 1 cos(OI) + L 2 COS(0 2 ) + XFo COS(O1) - YFo sin(01)

YF = L 1 sin(01) + L 2 sin(02) + XFo sin(01) + YFo cos(01)

XG = L 1 cos(01) + L 2 COS(0 2 ) + XG Cos(0 1) - YaG sin(01)

YG = L 1 sin(01) + L 2 sin(0 2) + XGo sin(01) + Yco COS(01)

XH = L 1 cos(01) + L 2 COS(0 2) + L3 COS(0 3) + XHo COS(01) - YHo sin(0)

YH = L 1 sin(0 1) + L 2 sin(02 ) + L 3 sin(03) + XHo sin(01) + YH o COS(01)

The linear position for each piston is then simply:

- XB) 2 + (YC - B ) 2

- XD) 2 + (YE - YD) 2

- XG) 2 + (YH - YG) 2

- V(XBo

~o

- XAo) 2 + (YBo - YAo) 2

- XBO)2 + (YCo - YBo)2

- (xEo - Do) ' (YEo - YDo)

- /(XHo - XGo) + (YHo - YGo)2

si = V(XB - XA) 2 + (YB - YA) 2

S2 = Vx

84s= (ZEX

S4 H I

I



Linear velocity can be obtained by taking the derivative of the positions:

aXA
VAx =0

at

aYA
VA 0

at

V _ atO -X o sin(O1)O1 - YB, cos(O)O1

V y = xB cos(O1)01 - YB, sin(0)O1

St

Oyc
VCy - t - cos(0 1 )0 1 - Yc, sin(0)O

VDx OD -L 1 sin(0 1)01 - XDo sin(01)81 - YDo COS(0) 1aD

VDY = = L1 cos(01)O9 1D o COS(0 1 ) 1 - YDo sin(0)81

VEx _ OXE - -L 1 sin(0 1)0 1 - ZEo sin(0 1)0 1 - YE o COS(0) 18t

OYE
VEY t = L 1 cos(O1)O1XEo COS(0 1)0 1 - YEo sin(0)0 1

vF, XF - L 1 sin(01) 1 - L 2 sin(0 2) 2 - XFo sin(01)1 - yFo cos(0)01v at

VF OY =L 1 cos(0 1)01 + L2 cos(0 2)62 + XFo COS(0 1)0 1  YFo Sin(O)0 1

vGx G -L sin(01)01 - L 2 sin(02) 2 - XGo sin(0 1)8 1 - YGo cos(0)O1at

vG= YG= LI cos(01)0 1 + L 2 cos(02 )6 2 + XG o COS(01)6 1  YG0o sin(O)01

Hx - H - -L 1 sin(01) 1 - L 2 sin(02 )0 2 - L3 sin(03)( - 1 sin(l)l1 - YHo cos()1

H YH
VH - - L 1 cos(01 )0 1 + L 2 cos(0 2 )0 2 + L 3 cos(0 3 )0 3 + H o cos(O01)O - YHo sin(O)0 1V Hy O



To determine the linear velocity numerically, the dot product was taken between each

position velocity vector and the vector defined by the two points and the difference

calculated:

I1 = (VB, AB) - (vA, AB)

2 = (VD, CD) - (vc, CD)

3 = (vF,EF) - (vE, EF)

84 = (VH, GH) - (vo, GH)

The results for the swimming motion, again with parameters from Table 2-1 is shown

in Figures 2-11 and 2-12. Now that the linear positions and velocities of the pistons

have been calculated, the flowrate, fi for each the cylinder can be determined at any

time by multiplying the piston area, Apistj by the linear velocity, 9i:

fi - 8iAvisti

The pressure, Pi, necessary to produce the desired torque, Ti, can be calculated as

follows:

* Calculate force, Fi by dividing the torque by the moment arm, di:

F = i
di

" Calculate pressure by dividing force by dividing force by piston area:

F-
APi = --

Apist
i
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Figure 2-11: Piston Linear, s, and Link Angular, q, Position
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Figure 2-12: Piston Linear, ds/dt, and Link Angular, dq/dt, Velocity



The flowrate through the servovalve is driven by the differential pressure across it,

along with the valve spool position, which is current controlled. The servovalve

"gain," K, is defined by the current required to produce a flow, f, at the reference

pressure, Pef; K = fi/Ii. A schematic of one of the servovalves used in the VCUUV

is shown in Figure 2-13. For flow through an orifice, Darcy's formula gives a good

Motor Spool

Eccentricity
movement

High Pressure Control Ports Low Pressure

Figure 2-13: Servovalve Schematic (HR Textron)

estimate of the pressure drop:

AP oc f 2



. With this relation, the pressure drop can be scaled if the flow is known. The required

current, Is,, can then be calculated for each servovalve by the following relation:

APf

Where APi = Psystem - Pi. This current command can be fed to the servovalves,

giving the required spool position that will produce the required torque on the link.

2.5 Conclusions

For the models to be compared, there must be a given swimming motion to follow;

then torques will be generated (numerically) by the models and the differences com-

pared. I chose to use link angular positions and velocities that will give the motion

using parameters from Table 2.1 and I also chose 1.0 Hz as the undulation frequency.

The link angular displacements over one cycle used for the comparison are plotted

in Figure 2-14. Figure 2-15, top, shows the estimated torque on each joint over two

cycles of swimming motion at 1.0 Hz for the Lagrange Dynamics Model represented

by block "A" in Figure 2-3. Compare with Figure 2-15, bottom, in which the La-

grange Linearized Model (represented by block "B" in Figure 2-3) is run with the

same input parameters. As can be seen, there is no detectable difference between the

ouputs of the two models. The nonlinear effects are due to the Coriolis and centrifigal

forces, and those terms which are products of joint angular velocities, are very low

in the swimming motion. The torques produced by the nonlinear terms are shown

in Figure 2-16. Note how small the magnitude is compared to the linearized torque

model output in Figure 2-15, bottom.

The parameters used for the motion in all of the outputs shown here are those of
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Figure 2-14: Relative Joint Angles During Swimming Cycle (swimming parameters from Table 2.1)



Table 2.1. The undulation frequency of 1.0 Hz is considered near maximum speed and

therefore, a case where the differences between the non-linear and linearized models

would become apparent.

Shown in Figure 2-17, top, are the estimated torques on the joints for the Lighthill

EBT Continous Model represented by block "C" in Figure 2-3. Figure 2-17, bottom,

is the output of the Discretized Lighthill Hydrodynamics Model represented by block

"D" of Figure 2-3. The difference can be seen in joint 1 since force errors in the model

will be magnified to torque on the hip joint (#1) by the distance to the force error.

The discretized model is a reasonably good approximation and is useful in that it

has allowed the representation of the hydrodynamics in terms of the state variables,

which the continuous model would not do. The differences in the EBT discrete and

continuous models are mitigated somewhat when the free-flood dynamic inertias are

added to produce the overall system model. Because of the slight phase differences

between the hydrodynamics models, the addition of the free-flood inertia brings the

two models closer (see Figure 2-18).

Finally, the combined linear and combined nonlinear models can be compared.

Since the tail is a linear system, the torque outputs can be added to produce the

total torque on each joint at a given time instant. Figure 2-18, top, representing

block "E" in Figure 2-3 shows the combined torques from blocks "A" (Figure 2-15),

top and "C" (Figure 2-15), bottom. These torque outputs from the nonlinear models

can be compared with Figure 2-18, bottom, which represents block "F" in Figure 2-3.

The results show that the linearized system model is a reasonably good approxima-

tion of the full nonlinear model. However, the assumptions made in the full nonlinear

model must not soon be forgotten:
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Torques Due To Centrifugal & Coriolis Effects
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Figure 2-18: Torque Outputs From the Full Nonlinear VCUUV System Model ("E" in Figure 2-3),
Top and From the Linearized VCUUV System Model ("F" in Figure 2-3), Bottom
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* Neglects the effect of VCUUV anterior yawing.

Due to the effects discussed in Section 1.4, the yawing motion should be very

small, anyway. Also, initial testing of the VCUUV has shown that the yawing

motion is extremely small at 1.0 Hz swimming frequency, which is considered to

be near maximum speed for our design.

* Neglects energy stored in wake vortex sheets shed by the body.

The vortices shed have an unknown effect on the body and caudal fin, and

modeling unsteady forces would be extremely complex. The controller simulation

demonstrates that the controller is robust enough to handle the unsteady forces,

which are modeled as disturbances.

* Assumes VCUUV sections surrounding each link are homogeneous masses that

move as rigid bodies.

The water entrained in the tail by the nylon/neoprene skin is essentially

trapped and will not exchange with the free-stream. Therefore, modeling the

water as a rigid mass is a good approximation.

* Assumes VCUUV spine motion follows Equation 2.1.

Early in the design, it was determined that three body links would closely

approximate the continuous motion described by Equation 2.1. Furthermore,

the tail exostructure is able to flex between the attachment points to form a

splined curve that even more closely approximates the desired shape.

* Assumes small angular displacements (i.e. cos(q) - 1 and sin(q) 1 0).

The carangiform motion used for normal swimming motion only requires the

relative joint angles to reach 7 - 100 and the caudal fin relative angle to reach



160 maximum (see Figure 2-14). The caudal fin relative angle amplitude, which

is necessary for the proper phase relationship to the body motion, reaches a

maximum of a 16'. Although this angle seems rather large, the error associated

with the small angle approximation is only:

16 7 - sin(16 ) 0 0  1.3
s 180 100% = 1.3%
sin(16 P0)

The approximation will break down for larger displacements, such as motions

used for starting or turning, but it is not as crucial for this motion to be exact,

as it does not affect efficiency over a mission.

Neglects tail fin circulation dependent forces.

The tail fin hydrodynamics as well as circulatory forces associated with the

generation of lift include the tail's (possible) reaction with vortices shed by the

VCUUV body. This reaction will serve to create greater forces than have been

modeled in the linear system model. The forces will also be unsteady and acting

far from the center of gravity, will cause possible cause problems with control.

Once again, however, in my simulation, I modeled the unsteady forces as torque

disturbances and have shown sufficient robustness.



Chapter 3

Controller Design

The controller design was done in two approaches, both following a general state

space format. The first approach, in which the system gains are calculated using the

LQR method, defined in Section 1.1 results in a controller that commands the links

with reference inputs each sample time to new desired positions along the desired

link trajectories. The feedback signal is composed of a proportional, derivative and

integral signal driven by the respective errors in the outputs. The second approach,

in which the system gains are calculated in the same way as the first approach,

uses the system model to "back-calculate" the desired input from the known desired

states. The system is then driven by the calculated inputs, while the gains operate

on the errors of the system. Although the first approach was abandoned and not fully

developed, it can be seen that the second approach is more intuitive, gives tighter

control, more robustness, is well suited to the application, and is easier to implement.

3.1 Approach

The controller design process proceeded as follows:



1. Develop state-space system of equations of the form

c = Ax + Bu (3.1)

y = Cx (3.2)

2. Augment the system with integrator states

Xaug = AaugXaug + BaugU (3.3)

Yaug = CaugXaug (3.4)

3. Solve for gains using LQR method

4. Demonstrate phase lag, attenuation with LQR method

5. Develop "computed torque" controller

6. Demonstrate satisfactory tracking with computed torque method

State space methods require a linear system model, which I have derived in Chapter 2.

The VCUUV tail system model is a multiple-input, multiple-output (MIMO) system.

The techniques for control system design can be more challenging than for single-

input, single-output (SISO) systems due to coupling between degrees of freedom,

which complicates the problem in several ways. First, the system has gain matrices,

rather than simply scalars. Link#1 will receive a command signal based upon errors in

link#2, link#3, and link#4 in addition to it's own errors. This makes the closed loop

dynamics hard to comprehend. Second, the as will be explained below, the system of

equations for calculating gains in MIMO systems is indeterminate and minimization

principles must be used. As difficult as MIMO systems can be to understand, with



an accurate system model, they can be controlled much more accurately, since they

account for the coupling between state variables.

3.2 LQR Feedback Control

For SISO system control, the proper gain can be easily chosen by pole-placement

techniques. With the SISO system given as

x = Ax + Bu

y = Cx

and using Ackerman's formula, Equation 3.5, poles can be chosen for the system, giv-

ing the gain (K) necessary to achieve the desired response. The "desired response"

can mean the system meets system step response maximum rise times, settling times,

overshoots, or it can mean keeping the system output errors within some maximum

specified values in the case of trajectory following. Both these types of system speci-

fications are considered in this design, but the one more applicable to the tail system

model is the trajectory following one.

K= [0...0 1] [B AB A 2 B...A"n-B]I lc(A) (3.5)

Controllability Matrix

Where

ac(A) = A" + A n - + a 2 A n - 2 + . + aI,

n is the number of state elements, and the aL's are the coefficients of the characteristic

equation.



However, for a MIMO system, the system of equations derived for pole placement

will be indeterminate. In other words, there will be multiple gain matrix solutions that

will satisfy the system equations, but will not necessarily meet the system response

specifications. Therefore, Lagrangian minimization principles are used to find the

optimum gains [6].

3.3 Cost Function

The Lagrangian minimization function J or "cost" function includes two "weighting

functions," Q and R, with the following form:

J = 1 (xWQx + UTRu)dt (3.6)

subject to the constraint that

-x + Ax + Bu = 0 (3.7)

The Q matrix weights the state variables, and the R matrix weights the actuation. In

this way, the optimum tradeoff can be made between actuator saturation prevention

and fast system response. The solution to the "Ricatti" equations is the steady-state

answer to the minimization problem [6]:

ATP + PA + Q - PBR-1BTP = 0 (3.8)

and

K = -PBR - 1 (3.9)



3.4 Development of the State Space System

To develop the state-space equations, I combined the dynamic system models derived

in Sections 2.2 and 2.3.2

Thd = Aq* + t + Eq (3.10)

which is the linearized hydrodynamic system model using the Lighthill EBT approach,

where A is the inertia coefficient matrix, QZ is the damping coefficient matrix and E

is the spring coefficient matrix. Since the system is linear, it can be added to

Tff = Hq (3.11)

which is the linearized inertia dynamics equations due to the free flood water mass

entrained in the tail. H is the inertia coefficient matrix. Adding equations 3.10 and

3.11 together, the total linearized system is:

Ttotal = Thd + Tff = (A + H)ij + Qt + Eq (3.12)

Separating the state variables,

4 = -(A + H)-1~4 + -(A + H)- 1 eq + (A + H)-1Ttotal



state-space system looks like:

q1

q2

q3

d q4

dt
91

q2

q3

q4

Therefore,

L
the A and B matrices are:

-(A + H)- 1

A =[ 0(4x4) I(4x4)

-(A + H)-18 -(A + H)-1~

(3.13)

B =0(4x4) (3.14)

-(A + H) - 1

In a system with no integrator control, there will be steady state error present when

the system reaches equilibrium with the external forces. To avoid any steady state

error, I have implemented an integrator into the system as shown in Figure 3-1. To

design an LQR optimized controller, the system must be augmented to include the

integrator. This is done by adding states that correspond to the integral terms. For

example, the integrator will sum the error between the reference input, qr, and the

Overall, the

-(A + H)-1 -(A + H)-l O



Derivative
Gain



actual position state q(t).

qi(t) -= f(qr - q(t))dt

The derivative of the qi state neglects the reference input, which is considered un-

changing with time.

dqi(t) = -q(t)
dt

Overall, the augmented state-space system looks like:

1 0 0

0 1 0

0 0 1

0 0 0
000

-1 0 0 0

0 -1 0 0

0 0 -1 0

0 0 0 -1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

00000 0 0 0

q,

q2

q3

q4

qi

q2

q3

q4

qz

qz

q

q
42

The augmented A and B matrices are:

0(4x4) I(4x4) 0(4x4)

Aaug -(A + H)-'e -(A- H)-I2 0(4x4)

-I(4x4) 0(4x4) 0(4x4)

ql

q2

q3

q4

q1

q2

q3

q4
4

qz

qq2

qi33

qi
44

-(A + H) - 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

(3.15)

-(A + H)-1 -(A + H)-IQ



0(4x4)

Baug = -(A + H)- 1  (3.16)

0(4x4)

3.5 LQR Approach

Now, the proper gains must be chosen. For a MIMO system, the selection of optimum

gains is difficult, since the system has many interdependencies. For example, the

system shown in Equations 3.15 and 3.16 has 4 inputs and 12 outputs. This leads

to 4 x 12 = 48 dynamic relationships, 48 Bode plots, 48 root locus plots, etc. The

optimal solution is not clear. A good place to start is given by the "Bryson" rule [6],

where the Q weighting matrix is given diagonal values equal to the square of the

inverse of the maximum actuation effort available:

1
Qi,i = 

Likewise, the R weighting matrix diagonals are given by the maximum allowable state

error:

m
i

Once determined, these values can be used in the cost function, Equation 3.6 and solve

for the near-optimum gains using the Matlab LQR function. Matlab solves the Ricatti

equations given the system dynamics matrices and the Lagrangian weighting matrices.

The maximum effort the actuators in the VCUUV tail system are able to apply at a

system pressure of 700 psi is given by the following: The analog-to-digital converter

for the linkage sensors has 12 bits available, which makes for a 1/212 = .000244

resolution. Therefore, I made a reasonable estimate of the maximum allowable error



Actuator Piston Diameter (inches) Umax (inch-lbf)

1 1.0 1265

2 0.75 661.8

3 0.5 163.6

4 0.5 131.0

in position of 0.01 radians and 0.1 radians/second for the velocity states, allowing for

noise and quantization effects. For the integral state, I used 0.01 radians also, since

it is a position measure. After some experimentation, I found that 0.1 radians for

position, velocity, and integral maximum allowed error was optimum. For a first check

of the system response, I ran the Simulink simulation of the model in Figure 3-1 with

a step input. The results are shown in Figure 3-2; The system has a fair step response

using just the Bryson thumbrule. The plot shows the step input of 0.1 radians has

been applied to joint#1, the hip joint. The rise time is about .35 seconds and the

overshoot is 22%, which gives a natural frequency of approximately 10 radians/second

and a damping ratio of ( = .43, which is somewhat low. These results are not exact,

as the integrator is the cause for some of the overshoot. The three remaining links

can be seen attempting to regulate their relative angles at zero. The tail fin initially

tries to follow the hip joint, rather than the expected reaction force, but this is simply

a function of the controller gains and the command signal's dependence on the errors

of all the joints. Before beginning to optimize this controller, it was checked with

a sinusoidal input to see how it tracks an actual VCUUV command. Figures 3-3

and 3-4 show the positions and velocities, respectively of the joints plotted with the

desired positions and velocities. The desired positions and velocities in every case

lead in phase and have greater magnitude, which is expected, as this is simply a time
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Figure 3-2: Response of Linkage to a Step Input of 0.1 Radians to Link #1.
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domain illustration of a Bode plot, where attenuation and phase lag are visible in the

output. The initial results are unacceptable for two reasons:

* The output magnitude must equal the desired magnitude in order to precisely

place the robot linkage. Since the state variables are relative angular positions

and velocities, the errors in the global position of the links add to produce large

errors at the caudal fin. These errors in heave and angle of attack of the caudal

fin, where it is hypothesized most of the thrust is produced, could destroy the

hydrodynamic benefit of the desired motion.

* The phase shift, although it appears to be equal for each link, will change as

undulating frequency changes and therefore will be unpredictable and inaccurate.

The control effort for the links is plotted in Figure 3-5, and it can be seen that the

maximums are less than expected to move the linkage. There is still much actuator

effort available to tune the controller with; as it stands it is very badly tuned. The

output errors are plotted in Figure 3-6 and appear at first glance to be very large.

The error is somewhat deceiving, however, in that the controller might be acceptable

if phase shift was not important (i.e. most of the error is due to the phase shift,

not attenuation). There was some effort made to optimize this controller, but the

resulting difference between the optimal and the results presented was negligible.

There are other methods that could be used to tune the controller, none of which

are very intuitive. However, there are also other control design methods altogether.

In the next section I discuss a different approach that is easier, more intuitive, gives

more accurate results, and is more robust.
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3.6 "Computed Torque" Approach

Another method of control system design more suitable for this application is outlined

by Slotine in Applied Nonlinear Control [11]. Although Slotine presents the concept

as a nonlinear technique, it is also well suited for linear system applications. It is

clear that for the prescribed motion of the spine to follow Equation 2.1,

y(x, t) = a(x)sin(kx - wt)

the links must also follow sinusoidal motions that can be solved for analytically,

but are most easily derived numerically by calculating the amplitudes and phase

differences between them. Since the links do follow sinusoids, the derivatives are

smooth and continuous. Therefore, for normal swimming motion, the state vector

is known for all time and the input can be solved for in the state space system

(Equation 3.13):

x = Ax + Bu

as follows:

Bu = x - Ax (3.17)

using Gaussian elimination or any other method. The u that is calculated, if input

to the system, should give exactly the desired state output at every time instant.

The problem, however, is that the plant is second order, acting as a double integra-

tor. Therefore, the open loop system cannot track position or velocity, which are

unknown integration constants. Proportional/derivative (PD) control can be used to

provide position and velocity tracking control. It is appropriate now to declare some

controller performance specifications. Certainly, the most important specification for



this system is that it mimic the live fish motion accurately enough so as to make the

difference negligible in the testing environment. A challenging tracking specification

would be 1% in position and velocity error magnitude, which is approximately 0.3

radians (caudal fin maximum) x 1% = .003 radians of average error. The velocity

specification is similar: 0.3 (radians) x 27 (radians/sec) x l% = .019 radians/sec of

average velocity error. Admittedly, I would not have chosen such ambitious control

specifications if I had not seen the results of this design approach, but as will be

shown, the specifications are met. The final controller design in shown in Figure

3-7. The input is u, computed using Equation 3.17 and the desired position, Pd and

velocity, Vd are fed into the system as infinitely fast observers. The error signals are

multiplied by the gains calculated using the LQR method outlined in Section 3.2.

The actual gains calculated are displayed here for curiosity's sake:

11591 -5561 -1613 385

2241 5209 -3828 596
gprop

899 1068 1520 252

175 161 248 1519

11026 -5938 -1972 38

1991 4859 -4130 246
Kderiv

767 874 1266 -35

87 30 75 1308
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After receiving the calculated torque input, the controller is now using the error in

the control law for the error as a disturbance on the system:

X = A + Bfi

and since the system matrices (A, B) do not change, the dynamics of the system

of course, do not change and the controller gains can be calculated the same way

as in Section 3.2. No integral term is desired, in the controller since the system is

following a sinusoidal input and an integral will just add unwanted dynamics. Steady-

state error does not need to be minimized, as the system is not intended to actually

regulate for any length of time to a reference input. Figures 3-8 and 3-9 show the

system outputs plotted with the desired outputs. shows the excellent performance

of the controller. The actual and desired positions are plotting very nearly on top of

one another. In order to view the error, it is plotted separately in Figure 3-10. The

error is so small as to be insignificant in this application. The total control efforts are

plotted in Figure 3-11. and it can be seen that they fall easily within the available

actuator efforts in Table 3.5. The testing that I have done to my model is all at 1.0Hz,

which is near maximum frequency for the system and considered to be a good metric

value for stressing the system. Also, the system diagram does not include transforms

between linear and angular positions, etc., or servovalve current to torque since the

former transform has been shown to be easily linearized to a simply scalar function

and the latter transformation is simply algebraic with no dynamics. The performance

results are not affected, and it is a simple matter to code the transformation along

with the control algorithm when implementing it in the VCUUV.
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3.6.1 Disturbance and Noise Rejection

The computed torque control method can be shown to be excellent at disturbance

and noise rejection. The actual VCUUV prototype has additional sources of nonlinear

effects that are neglected here:

* Sensor quantization and zero order hold

The quantization is small and will pose no serious consequence to the sys-

tem by itself; however, the zero order hold of the digital sampling system at a

sample frequency of 100 Hz, which is low, may have a significant effect. This

was not looked at in this study due to time constraints and available analysis

tools. Simulink did not handle the zero order hold well in the model using any

integration method. In order to show some robustness at the sensors, I placed

noise appropriately, and I discuss this later.

* The derivative taken at the position sensor to calculate velocity

Once again, Simulink did not handle the derivative well. Noise was applied

to the sensors to determine the ability of the system to reject noise. Shown in

Figure 3-12 is the noise applied to the position sensor in Figure 3-7 and the

velocity sensor. The noise represents, as best as possible, the quantization error,

zero order hold effect, and the derivative applied to the position in the actual

prototype to obtain velocity.

Further justification for my assumptions listed above is the fact that the VCUUV

prototype has operated with a decoupled (SISO for each link) PD control that has

shown little problem with zero order hold or noise. In this simulation, I have placed

a 150 inch-lbf torque disturbance on the caudal fin to investigate the effect of the

i"J+r- --- ~-~--~~~~~ ~



fin's possible reaction with shed vortices from the body. In order for the VCUUV to

properly simulate the live tuna, the tail must not have a significant deviation from

these torque disturbances. The disturbance was also tested on other links which

always resulted in lesser effects. As can be seen by the output in Figures 3-14 and 3-

Sensor Noise

0.5 1 1.5 2 2.5 3 3.5 4 4.

Figure 3-12: Noise Applied to Position Sensor and Velocity Sensor

15, the system responds well to the noise and disturbance with errors on the order of

.006 radians (e .350) and .13 radians/second (r 7.40/second), the peak errors being

caused by the input disturbance torque of 150 inch-lbf applied to the caudal fin as

shown in Figure 3-13. The position and velocity errors are shown in Figure 3-16.

Control effort signals are shown in Figure 3-18; the noise definitely affects the signals,

but does not greatly affect the outputs. The overall control effort shows some effect

from the noise also, but not a significant amount (Figure 3-18). To explore the worst
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Figure 3-13: Input Disturbance Applied to Computed Torque Control System
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case for noise, I increased the noise levels at the position sensor and the velocity sensor

to .02 radians and .2 radians/second, respectively (see Figure 3-19). The same input

disturbance is still applied, but not shown here. The system performance begins to

degrade appreciably at this point, as can be seen in Figures 3-20 and 3-21.

Noise Applied to Position Sensor

Noise Applied to Velocity Sensor

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (sec)

Figure 3-19: Noise Applied to the Position Sensor, top, and Velocity Sensor, bottom

Thus, the system will be subject to a noisy environment, but the noise input here

is 0.02 radians ( 10) and .2 radians/second ( 10°/second) which is extremely large

and unlikely to be present at any time.

3.6.2 Model Error Sensitivity

To test the sensitivity of my system to model errors, I varied the values of the matrices

in my dynamics equations by ±25% to see how well the system tracked the desired
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sinusoid at 1.0 Hz. First, the model parameters were perturbed -25%. The position

and velocity outputs are shown in Figures 3-22 and 3-23. The errors are plotted in

Figure 3-24. As can be seen from the errors, the control system is robust enough
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Figure 3-22: Desired and Actual Positions of Links in the Presence of 25% Overestimation of Model
Dynamic Parameters

to handle such large model errors. Now, increasing my model parameters 25%, the

following trajectories are output (see Figures 3-25 and 3-26). Errors are plotted in

Figure 3-27, and again, the errors clearly meet the specification of 1% average.
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Chapter 4

Conclusions

4.1 Controller Performance and Robustness

Controller performance can be a difficult concept to quantify, especially in this case.

For instance, it was shown in Section 3.5 that a controller that does well in step

response may not do well in tracking a signal, particularly if the input is at a high

frequency relative to the bandwidth of the system. Overall, the computed torque

controller performs well in simulation. The system shows good noise and disturbance

rejection, and is tolerant to significant model error. In simulation, the control system

demonstrated the ability:

* to reject noise that is on the order of 20 quantization levels.

* to reject disturbances on the order of 15% of the input torque.

* to reject model parameter errors of 25%.

These were achieved with less than 1% average error in position and velocity output.

The computed torque method is very robust and also very simple to implement in the

VCUUV. The torque input can be computed before the start of a data run or mission,

and then the states and inputs placed into a look-up table that allows periodic and
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indefinite (the ability to repeat the motion by simply returning to the beginning of

the lookup table without any discontinuities) access to the trajectory data. Since the

estimation of the states is now given in a lookup table, the computations will go much

faster than other control methods and there will be no sample delay.

4.2 Summary

There are three major sections of this work, the first being the derivation of Lighthill's

EBT for the discrete tail system, the Lagrangian dynamics derivation of the free-flood

water, and the controller design. As it turns out, the control method will take care

of many approximations and compounding errors, but it is still necessary to have a

rough estimate of the loading in order to calculate the input torques. The control

method has it's disadvantages also, namely, that it is more difficult to prearrange

sudden or special maneuvers, such as starting or turning. Special care has to be

taken to ensure that the torque inputs calculated are not above the limitations of

the system. This should be easily taken care of in software with saturation, however.

Overall, the system model is reasonably accurate and the controller is very robust.

4.3 Future Work

The most obvious task to be performed next is to implement this algorithm in the

VCUUV. At the time of this writing, the VCUUV is undergoing initial testing with

a decoupled PD controller at the University of New Hampshire, Durham, and time

constraints preclude implementing the computed torque controller. One of my original

goals when selecting this thesis topic was to develop a heading control for the VCUUV.

After considering this possibility at length, it seemed like an extremely high-level task
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given the unsteady hydrodynamics are not well understood. When the vehicle is off-

course, what command could be given to the undulating motion to bring it back?

How is the vehicle commanded to a new heading? Although it was decided that the

heading control would be beyond the scope of this thesis, I have recognized possible

solutions to this challenging problem:

* Bias the tail motion to "center" around a new y = 0 line (see Figure 2-6).

* Bias the caudal fin motion to create a "net" angle of attack through the swim-

ming cycle. This could create a moment about the center of mass to bring the

vehicle back to the desired heading.

* Model the VCUUV as a five link arm, treating the rigid forebody as the fifth

link in the free-body system. To change heading, command the forebody to a

new relative angle. Once the system settles, reset the tail motion center in-line

with the forebody.

These suggestions could be looked at, and would be a logical extension of the work

I've done.

The final suggestion for future work is to perform a system identification on the

VCUUV to determine a very accurate system model. If this can be done, and it

should be possible, then the computed torque method will be even more accurate

and even more errors can be tolerated from noise in the sensors and analog-to-digital

conversion effects.
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Appendix A

Development of Dynamics

Equations in Maple V

A.1 Define the Linear Jacobian Matrices

-Lcl sin(0 1) 0 0 0
JL) 0 0 0

Lclcos(0l) 0 0 0

JL2  -L 1 sin(0 1) - Lc 2 sin(%1)

L 1 cos(0 1) + Lc 2 COs(%1)

%1 :=01 + 02

-Lc 2 sin(%l)

Lc 2 cos(%l1)

JL 3 :=

[-L 1 sin(0 1) - L 2 sin(%2) - Lc3 sin(%l) , -L 2 sin(%2) - Lc3 sin(%1), -Lc 3 sin(%l), q

[L1 cos(0 1 ) + L 2 cos(%2) + Lc 3 cos(%1), L2 cos(%2) + Lc 3 cos(%l), Lc 3 COS(%l), q

%1 := 01 + 02 + 03

%2 :=0 1 + 02

JL 4 :=

[- L 1 sin(01) - L 2 sin(%3) - L 3 sin(%2) - Lc4 sin(%1) ,

-L 2 sin(%3) - L 3 sin(%2) - Lc4 sin(%1) , -L 3 sin(%2) - Lc 4 sin(%1) , -Lc 4 sin(%1)]
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[L 1 cos(0 1 ) + L2 cos(%3) + L 3 COs(%2) + Lc4 cos(%1) ,

L2 cos(%3) + L 3 cos(%2) + Lc 4 COs(%1) , L 3 cos(%2) + Lc 4 cos(%1) , Lc 4 COS(%1)]

%1 := 01 02 + 03 + 04

%2 := 01 + 0 2 +03

%3 := 01 + 02

A.2 Define the Angular Jacobian Matrices

JA1 : [1

JA 2 :=[1

JA3 := [1

JA 4:= 1

o o o]

1 0 0]

1 1 0]

1 1 1]

A.3 Construct the H Matrix: Inertia Tensor

mi Lc l
2

0

0

0

0 0 0000

000

000

000

m 2 L 1
2 + 2 %1 + m 2 Lc 2

2

%1 + m 2 Lc2
2

0

0

%1 := m 2 L 1 Lc2 COS(0 2)

%1 + 2 Lc 2
2 0 0

m2 Lc 2
2  0 0

0 0 0

0 00

ma3 LC3
2 + m3 L 1

2 + m3 L 2
2 + 2%4 + 2%3 + 2%2 - 2%1,

ma LC3
2 + m3 L 2

2 + 2%4 + %3 + %2 - %1, m 3 LC3
2 + %4 + %3 - %1, O]

i 3 Lc3
2 + m3 L2

2 + 2%4 + %3 + %2 - %1, m 3 Lc 3
2 + m 3 L 2

2 + 2 %4, m3 Lc3
2 + %4,
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[n 3 Lc 3
2 + %4 + %3 - %1, m 3 Lc 3

2 + %4, m3 Lc3
2,

[0, 0, 0, 0]

%1 := m 3 L LC3 sin(02) sin(03)

%2 := m 3 L 1 L2 cos(0 2 )

%3 := m 3 L1 Lc3 cos(02) COS(0 3 )

%4 := m 3 L 2 Lc 3 cos(03 )

2 %11 + m 4 Lc4
2 + m4 L22 - 2 %10 + 2 %9 + 2 %8 - 2 %7 - 2 %6 + 2 %5 + 2 %4

+ m 4 L12 - 2%3 + 2%2 + m 4 L 32 + 2 %1, -%11 + m 4 Lc 4
2 + m4 L22 - 2%10 + 2%9

+ %8 - %7 - %6 + %5 + 2 %4 - %3 + %2+ m 4 L 3
2 + 2%1,

-%11 + m 4 Lc 4
2 - %10 + %9 + %8 - %7 - %6 + %5 + %4- %3 + m 4 L 3

2 + 2%1,

-%11 + m4 Lc42 - %10 + %9 + %8 - %7 - %3 + %1

[- %11 +m 4 Lc 4
2 + m 4 L2

2 - 2 %10 + 2 %9 + %8 - %7 - %6 + %5 + 2%4 - %3 + %2

+ m4 L 32 + 2 %1, m 4 Lc4
2 + m4 L 2

2 - 2 %10 + 2 %9 + 2 %4 + m 4 L 3
2 + 2%1,

m 4 Lc4
2 - %10 + %9 + %4 + m 4 L3

2 + 2 %1, m 4 Lc4
2 - %10 + %9 + %1]

- %11 +m 4 Lc 4
2 - %10 + %9 + %8 - %7 - %6 + %5 + %4 - %3 +m4 La2 + 2%1,

m 4 Lc4
2 - %10 + %9 + %4 + m 4 L3

2 + 2 %1, m 4 Lc4
2 + m 4 L 3

2 + 2 %1, m 4 Lc4
2 + %1]

- %11 + m 4 Lc 4
2 - %10 + %9 + %8 - %7 - %3 + %1, m 4 Lc 4

2 - %10 + %9 + %1,

m 4 Lc 4
2 + %1, m 4 Lc 42]

%1 := m 4 L 3 Lc4 COS(0 4 )

%2 := m 4 Li L2 COS( 2 )

%3 := m 4 L Lc4 sin(02) sin(03) cos(0 4)

%4 := m 4 L 2 L 3 cos(0 3)

%5 := m 4 L1 L3 cos(02) cos(9 3)

%6 := m 4 L 1 L3 sin(02) sin(03)

%7 := m 4 L 1 Lc 4 cOS(%) sin(02 ) sin(0 4 )

08 := m 4 L 1 Lc 4 COS(0 2 ) COS(0 3 ) COS(9 4 )

%9 := m 4 L 2 Lc 4 COS(0 3 ) COs(0 4 )

%10 := m 4 L 2 Lc 4 sin(0 3 ) sin(0 4 )

%11 := m 4 L 1 Lc 4 sin(0 2 ) cos(0 3 ) sin( 4 )
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He

Hf:=

Ic1

0

0

0

Ic2

Ic2

0

0

Ic3

Hg := Ic3

0

Ic4

Hh:=
IC 4

IC 4

0

0

0

0

Ic2

Ic2

0

0

Ic 3

Ic 3

Ic 3

0

00

0 0

00

00

0 0

0 0

00

00

Ic 3  0

Ic 3  0

IC3  0
00

IC 4  IC 4  IC 4

IC 4  IC 4  IC 4

IC 4  IC 4  IC 4

IC 4 IC 4 IC 4

H:= Ha+Hb+Hc+Hd+He+Hf +Hg+Hh

A.4 Construct the h Matrix: Centrifugal and Coriolis Effects

array(1..4, 1..4, 1..4, [

(1, 1,1)= 0

(1, 1, 2) = -2 %16 - 2 %12 - 2 %15 - 2 %13 - 2 %6 - 2 %7 + 2 %4 - 2 %10 - 2 %11

- 2%5 - 2%14

(1, 1, 3) = -2 %9 - 2 %13 - 2 %12 + 2 %4 - 2 %2 - 2 %3 - 2 %5 - 2 %6 - 2 %11

- 2%10- 2%8- 2%7

(1, 1, 4) = -2%7 - 2%3 - 2%2 - 2%6 - 2%5 + 2%4 - 2%1

(1, 2, 1) = 0

107

i~ ___1~____~1~1 1_11~~-



(1, 2, 2) = -%16 - %12 - %15 - %13 - %6 - %7 +%4 - %10 - %11 -%5 - %14

(1, 2, 3) =

-2 %9 - %13 - %12 + %4 - 2%2 - 2%3 - %5- %6- %11 - %10 - 2%8 - %7

(1, 2, 4) = -%7 - 2%3 - 2%2 - %6 - %5 +%4 - 2%1

(1, 3, 1) = 0

(1, 3, 2) = -%12 - %13 - %6- %7 + %4 - %10 - %11 - %5

(1, 3, 3) = -%9- %13 - %12 + %4 - %2 - %3 - %5- %6- %11 - %10 - %8- %7

(1, 3, 4) = -%7 - %3 - %2 - %6 - %5 + %4 - 2 %1

(1, 4, 1) = 0

(1, 4, 2) = -%6 - %7 + %4 - %5

(1, 4, 3) = %4 - %2 - %3 - %5 - %6 - %7

(1, 4, 4) = -%7 - %3 - %2 - %6- %5 + %4 - %1

(2, 1, 1) = %16 + %12 + %15 + %13 + %6 + %7 - %4 + %10 + %11 + %5 + %14

1 1 1 1 1
(2, 1, 2) = - %16 - - %12 - %15 - %13 - %6

2 2 2 2 2
1

- %14
2

1 1 1
-2%7+2%4--

1 1 1 11
(2, 1, 3) = -2 %9 - - %13 - - %12 + %4 - 2%2 - 2%3 - - %5

2 2 2 2 2
1 1

- -%10 - 2 %8 - %7
2 2

1 1 1
(2, 1,4) =-- %7- 2%3- 2%2- - %6- - %5

2 2 2

(2, 2, 1) =
1
S%16+
2

1
S%12+
2

11%15
2

1
+ %13+

2

1
+ 1 %4-2%1

2
1

%6 + 1%7
2

1
- 1 %4+

2

1
%10- 1%11

2

1
%6- %11

2

11%10 1
+ 1 %11

2
1 1

+ -%5 + -%14
2 2

(2, 2, 2)= 0

(2, 2, 3) = -2%9 - 2%2 - 2%3 - 2%8

(2, 2, 4) =
1

(2, 3, 1) =

(2, 3, 2)= 0

2%3 - 2%2 - 2%1
1

+2
%12

1
%13+ 1 %6

2

1
2

1
+ 21%7-

2

(2, 3, 3) = -%9 - %2

(2, 3, 4) = -%3- %2- 2%1
1 1 1 1

(2, 4,1)= -%6+ %7- %4+± %5
2 2 2 2

(2, 4, 2) = 0
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1
-%5
2

1
+ 1%10

1
+ 1 %11

1
+ 2 %52
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(2, 4, 3) = -%2 - %3

(2, 4, 4) = -%3 - %2 - %1

(3, 1, 1) =%9 + %13+%12 -%4+%2+%3+%5+%6+%11+ 10 + %8+%7
1 1

(3, 1, 2) =-- %12 - - %13 + %9 -
2 2

1
(3, 1, 3)= %9-

2
1 1
-%10- - %11 -
2 2

(3,1, 4) = -17 -
z

1
-%3 -
2
1
- %5
2
1
2

1 1 1 1 1
- %6 - %7+ - %4 - -%10 - -%11 -
2 2 2 2 2

1 1 1
%2 - -%12 - -%13 - - %6

2 2 2
1

- %7+
2

1%8- -
2

1
--%2-
2

(3, 2,1) =
1 1 1

%9 + - %13 + - %12 - - %4 + %2 + %3 +
2 2 2

(3, 2, 2) = %9 + %2 + %3 + %8
1
-%9
2
1

-- %3
2

1
-- 1%2

2
1
2

1
- -%2-2

2
1
2

1 1 1
+ - %10 + -%8 + -%7

2 2 2
1

(3, 3, 2)= %9 +
2

(3, 3, 3) = 0

(3, 3, 4) = -2%1

1
%13 +-

2

1
2

1
%3 - 1%8

2

%1

1
%12 - -%4

2

1
2%5+%2
2

1
2%4
2

-%6 - -%5 + -%4 - 2%1
2 2 2

1
S%5

2
1

+ 2%6
2

1
+ -%2

2

1
+ -%11

2

1
+ 2%3

2

1
+ -%10+%8+

2

1
+ %5

2
1

+ %6
2

1
+ 2%11

2

1
%3 + 1 %8

2

1-%7
2

(3, 4, 1) =
1
2%4
2

1
+ -%2

2
1

+ 2%3
2

1
+ %5

2
1 1

+ -%6 + -%7
2 2

1 1
(3, 4, 2) = %2 + %3

2 2
(3, 4, 3) = 0

(3, 4, 4) = -%

(4, 1, 1) =%7+%3+%2+%6+%5-%4+%1
1 1

-- 6 - -%7+
2 2

1
2%4
2

1

1
2-%7-
2

1
%2- -

2
1

%3-
2

1 1
-%4 - - %5 + %3+ %2 + %1
2 2

1
%3- -

2
1

%2-
2

1 1 1%7 + %3 + %2 + -%6 + -%5
2 2 2

1 1
%5 - -%6 - -%7 +%1

2 2
1 1 1 1
-%6 - %5 + -%4 - -%1
2 2 2 2

1
- -%4+%1

2
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(3, 2, 3) =

(3, 2, 4) =

(3, 3, 1) =
1
2%9
2

(4, 1, 2)=

(4, 1, 3)=

(4, 1, 4)=

(4, 2, 1)=
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= %3+ %2 + %1
1 1

= %2 - -%3 + %1
2 2
1 1 1

=-- %3 - - %2 - -%1
2 2 2

1 1 1 1 1 1
2= %7+ - 3 + - 2 + 2%6+ 2%5 - %4+ %1

1 1
= - %3 + - %2 + %1
=%1

1
= %1

2
1

= %37 +
2
1
21

= 0

-3 + -2 + 1%6 + -%5 - -4 + -%1
2 2 2 2 2 2
1 1
S%2 + -%1
2 2

%1 := m 4 L 3 Lc4 sin( 4)

%2 := m 4 L2 Lc4 COs(0 3) sin(04)

%3 := m 4 L2 Lc4 sin( 3 ) cos(04)

%4 := m 4 L 1 Lc4 sin(92) sin(03) sin( 4)

%5 := m 4 Li Lc4 COs( 2) sin( 3) cos(9 4)

%6 := m 4 L 1 Lc4 COs( 2) COS(6 3) sin(94)

%7 := m 4 L 1 Lc4 sin(02 ) cos(0 3) cos(0 4)

%8 := m4 L2 L3 sin(03 )

%9 := m 3 L2 Lc 3 sin(03)

%10 := m 4 L 1 L3 COS(0 2) sin( 3)

%11 := m 4 L1 L 3 sin(0 2) cos(0 3)

%12 := m 3 LC Lc 3 sin(0 2) cos(9 3 )

%13 := m 3 L1 Lc 3 cos(0 2) sin( 3 )

%14 := m 4 L 1 L 2 sin( 2 )

%15 := m3 L 1 L 2 sin( 2)

%16 := m 2 L Lc2 sin( 2 )
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(4, 2, 4)

3, 1)

3, 2)

3, 3)

3, 4)

4, 1)

4, 2)

4, 3)

4, 4)
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Appendix B

Lighthill EBT Derivation in Maple

V

B.1 Define the Arrays.

y := array(1..4, [])

e(t) := 1, ?, ?3, ?

q array(1..4, [])

1:= array(1..4, [])

ma := array(1..4, [])

m_22 := array(1..4, [])

m_26 := array(1..4, [])

m_66 := array(1..4, [])

dtau := array(1..4, [])

Y := array(0..4, [])

B.2 Define the Geometry of the Linkage.

01 (t) :-- ql (t)

F~ra --- ---- -- ---- ---- --- ----- --~eJ;



02(t) := q(t) + q2 (t)

e3(t) .= q (t) + q2 (t) + q3(t)

04(t) := q1(t) + q2 (t) + q3 (t) + q4 (t)

Yo(t) := O

Y (t) := q (t) 11

Y 2(t) := ql(t) 11 + (ql(t) + q2 (t)) 12

Y3 (t) q:= l(t) 11 + (q1(t) + q2 (t)) 12 + (ql(t) + q2(t) + q3 (t)) 13

Y 4(t) := q1 (t) 11+±(q1 (t)+q2(t)) 12+(q 1 (t)+q2 (t)+q3 (t)) 13+(q 1 (t)+q2 (t)+q3 (t)+q4 (t)) 14

B.3 Displacement of Links 1 Through 4.

Yl (l, t) := ql(t) xl

w1i(x 1, t) := ( ql(t)) x + U ql(t)

mom , t) ma ) (( ()) U ())
mom,(xi, t) := m-a1 (x 1 ) (( q(t))x, + U q(t))

92
(m_al(x) ((j q(t2)) 1 + U (a ql(t)))

a a
+ U(( mal(xi)) ((-a ql(t)) x, + Uql(t)) + mal(xl)

ax, atd

a 2

dFl(xi, t) := (m-al (xl) (- ql (t)) xl

a a
+ U (x m-al(xl)) ( ql(t)) zx

X1l at

a
at

(ql(t) + q2 (t))

( U
(a q2(t))) X2 + ( ql (t)) 11 + Uat at

dF 2(x 2, t) := (m-a 2 (X2) ((( a l(t) +
a 2

a a
+ U ((- ma 2(x 2)) (%1 x 2 + (- ql(t)) 11 + U

iX2 at

0 2

x2 + ( qq(t))ll + U%1)

(ql(t) + q2(t))) + m-a 2 (x 2) %1))dx

112

dFi(xl, t)

0
( ql(t))))dzat

a
+ 2 mal (xl) U ( ql (t))

a U2+ (- m-a l(xl)) q2 l(t))dx
±1

mom 2(x 2, t):=

y2 (x2, t): (q(t) + q2(t)) X 2 + q(t)11
a a a

at dat

(q1(t) + q2(t)))
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q1(t)) + ( q2 (t))
at

(02
(m-a2( ) 2 2

at2

02 02
ql(t)) + ma 2( 2 ) x 2 ( . q 2(t)) + m.a 2( 2) q1(t)) 11

+ 2 m_a 2(x 2) U (a ql(t)) + 2 m-a 2(x 2) U (- q2(t)) + U%0 x 2 ( ql(t))

0
+ U%1x 2 ( q2(t))

%1 := a m-a 2 ( 2 )
Ox 2

+ U%1 ( aql (t)) 11 + %1 U2 q(t) % Uq2(t)) dX
at

Y3 (x 3 , t) := (ql(t) + q2 (t) + q3 (t)) x 3 + ql(t) 11 + (q1 (t) + q2 (t)) 12

3(X3, t) := at
0

q1(t)) + (-q 2(t))
at

+ ( q3 (t))) X3 + ( ql(t)) 11 + ((a ql(t)
0

) +( q2(t))) 2at
+ U (ql(t) + q2 (t) + q3 (t))

mom 3 (x 3 , t) := m-a 3 ( 3 )(((-q l(t)) +
at

0
( q2 (t)) +

Ot

0 (
(a q3 (t))) X3 + ( q (t)) 11

rlt at
0

+ ((' ql(t))
at

0
+ (a q2 (t))) 12 + U (ql(t) + q2 (t) + q3 (t)))

at

02

at2
02

q1(t)) + (q 2(t))

0
(+x m-aa(x3)) (%1x3 +

+ ma3(x3)%1))dX

02 02
+ (- q3 (t))) 3 + (- q 1(t)) 1at2 at2

0
( ql(t))

02

+ (( (t))

0 (
S+ (( q, l(t)) + ( qt))) 2 + U (ql(t)

02
+ ( 2(t))) 2 + U%01)

+ q2(t) + q3 (t)))

0
+ ( a(t))

02 02
dF3 (x 3 , t) := (m-a 3(x 3) x3 - ql(t)) + m-a 3 ( 3) 3 ( q2(t)) +

t202 02
a2 a2

+ m-a3 (x 3)(- ql(t)) 11 + m-a 3(x 3) 12 (- q (t)) + m-a 3(x 3)

0 0
+ 2 ma 3 (x 3) U ( qi(t)) + 2 m-a 3 (x 3) U (a q2 (t)) + 2 ma 3 (at at

a 2

m-a 3(x 3) 3 (- q3(t))

d202
12 ( q2 (t))

x3) U ( q3 (t))

" U l 3 ( - 1(t)) + U%1 %1 3 (q q 2(t)) + U%1 ( q2 3 (- q3(t)) + U%1 ( q 1(t)) 11
+ U%12 (t)) +t %1 (t))
+ U% 12 (a ql(t)) + U 0J 12 ( a q2 (t)) + %1 U2 qi(t) + %1 U2 q2(t) + %1 U2 q3(t)) dxat at

113

0%1 :=( 9
at

dF 2( 2, t):=

dF 3(x 3, t) := (m-a 3(x 3)(

0a
%1 := (a ql(t))

at

0
S( q2(t))at



1 := m-a 3(x 3)

Y4(x 4, t)

(q (t) + q2 (t) + q3 (t) q4(t)) 4 + ql(t) 11 + (ql(t) + q2 (t)) 12 + (ql(t) + q2 (t) + q3(t)) 13

a
W(,t):= ((

+ (( q1(t))

q1(t)) +(2 (t)) + q3(t))+

+
+ ( q2(t))) 12 + ((a

at Yt

a8( 44t
4

q1(t)) + (-q 2(t)) +at

X4 + ( q (t)) 11

(a q3(t)))13

+ U (q, (t) + q2 (t) + q3 (t) + q4 (t))

a a

+ (( a qi(t) + (a q2(t))) 12 + (( ql(t))a aU at
+ U (ql(t) + q2(t) + q3(t) + q4 (t)))

a 2

(ma4(x4)((%2 + ( q2 (t)) +

,2
+ (%2 + ( q2(t))) 12 + (%2 +

0 2

( q2 (t)) +
at2

t)) + q3(t))+ (at ()

-(i

a 2

at2
a

2

( q3(t))) 13 + U %1)

%1 X4 1+ 19ql(t))1 + (( ql(t)) + (aq2(t))) 12 + ((1ql(t))
at at )t t

+ U (q (t) + q2 (t) + q3 (t) + q4 (t))) + m-a 4 ( 4) %01)) d

%1 :=( (t)) + ( q2(t))+ ( q3(t))+( 4(t))

a2
%2 := q(t)

&22

a

q4 (t))) x 4 +

a
+ U((x m-a 4(x 4))(

q2 (t)) + ( q3 (t))) 13at

a
d1

(2 m-a 4 ( 4 ) U (q 3at
8
2

t)) + ma 4(x 4 ) 13 (- 3 q3(&23 t)) + %1 U2 q1(t) + %1 U2 q2(t)

a 2

+ %1 U2 q3 (t) + %1 U2 q4 (t) + ma 4(x 4) x 4 %2 + m-a4 (x 4) X4 (- q2 (t))
+2E,

+ m-a 4(x 4 )
a 2  a 2

4 (a q3 (t)) + m-a 4(x 4) x4 2 q4(t)) + m-a4 (x 4 ) %2 11 + m-a 4(x 4) 12 %2

a 2  a 2

+ ma 4( 4) 12 (2 q2(t)) + m-a 4( 4 ) 13 %2 + m-a 4 (x 4) 13 (2 q2(t)) + 2 m-a 4(x 4) U

+ 2 ma 4 (x 4 ) U (- t q2 (t)) + 2 m-a4 (x 4) U q4(t)) + U %1 x 4  (t))
at at at

+ u %1 4 ( 2 q(t)) + U %01 4 ( q3(t)) + U %1x 4 ( a4 (t))at at aa
at
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dF 4 (x 4 , t)

a a
q2(t)) + q3(t)))13

a2

q3(t)) + (- q4(t))) 4 + %211
at2

dF 4( 4, t)

Sq(t))at
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0
+ U%112 ( q1(t)) + U%112

+ U%113 (- q3(t)))dX

%1 := m-a4(x4)
Ox4
a2

%2 := q(t)

B.4 Torque for Link 1

a q a( q2(t))+ U%01 13 q(t)) + U%013 ( q2 (t))at at at

dtaul(t) := xl(m-ai(xl) %3xl + 2 m-a 1 (xl) U (t ql(t)) + U (- m-al(X)) (-

+ ( x mal(xl)) U2 ql(t))dx + (2 1)(m-a 2(x 2 ) 2 %3 + m-a 2(x2 ) 2 %2

a a
+ m_a 2( 2) %311 + 2 ma2(2) U ( ql(t)) + 2 ma 2(x 2) U ( q2(t)) + U

Sq1(t)) xl

a
%5 X2 (5,(t))

+ U%5 x 2 ( q2(t)) + U%5 (a q(t)) 11 +%5 U2 ql(t) + %5 U2 q2 (t))dX + (x 3 +11 + 12)(

02
ma 3(X3 ) x3 %3 + ma 3 (x 3) X3 %2 + ma 3 (X3) X3 ( q3 (t)) + m-a 3( 3) %311

a a
+ ma 3(x 3) 12 %3 + m-a 3 (x3) 12 %2 + 2 m-a3(x 3) U (- ql(t)) + 2 m-a 3 (x 3 ) U ( q2(t))t aa
+ 2 ma 3 (X 3) U ( q3(t)) + U %4X 3 ( q(t)) + U %4X 3 ( q2(t)) + U %4X2 3 (Uq3 (t))at at at at

+ U% 4 (a qM(t))I + U %412 ( a qi(t)) + U %412 ( a q2 (t)) + %4U 2 qi(t) + %4 U2 q2 (t)
at at at

+ %4 U 2 q3 (t))dx + (x 4 + 11 + 12 + 13)(2 m a4 ( 4 ) U ( q3(
982

t + ma4(X4)13 (- q3(t))at2

+ %1 U2 q1(t) + %1 U2 q2 (t) + %1 U2 q3(t) + %1 U2 q4(t) + m-a4 (x 4) 4 %3

a2  a2
+ m_a 4(x 4) x 4 %2 + m-a 4 (X4) X (2 q3(t)) + ma 4 (x4)X (92 q4(t)) + m a4 ( 4) %3 11
+ m-a 4 (x 4) 12 %3 + ma 4(x 4 ) 12 %2 + m-a 4(x 4 ) 13 %3 + ma 4(x 4) 13 %2

+ 2 m-am 4)U ( ql (t)) + 2 m a4 (4)U (- q2 (t)) + 2 m-a 4(x 4 ) U ( q4 (t))

+ U%1 4 (- ql(t)) + U%1 X4 (- q2(t)) + U%1 4 ( q3 (t)) + U%1 X4 (q 4(t))at at at at
+ U% (- q(t)) 11+ U%1 12 ( q(t)) + U%112 ( q2(t)) + U%113 ( 1(t))at at at at
+ U%113 (9 q2(t)) + U%113 (a q3(t)))dx

%1 := ma 4 (x 4)
Ox4

NNW~
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02

%2 := q2(t)
at 2

02
%3 := 2 1 (t)

%4 9:= m-a 3 (x 3 )
Ox3a

%5 := - ma 2 ( 2)
OX2

aa
x, (2 mal (xi) U + U ( mal(x)) xz) dx

+ (X 2 + 11) (2 m_a 2 (x 2 ) U + U %6x 2 + U%6 11 ) dx

+ %4 (U%5x 3 + U%512 + 2 m-a 3 (x 3 ) U + U%5 11) dx

+ %1 (U%3x 4 + U%312 + 2%2 + U%313 + U%311) dx)(a q(t)) + (mal (x) x 2 dx

+ (X2 + 11) (m-a 2(x 2) 11 + ma 2( 2) X2) dx

+ %4 (m-a 3 (x 3) x3 + m-a 3(x 3) 11 + m-a 3 (x 3) 12) dx
a2

+ %1 (ma 4(x 4 ) X4 + ma 4(X 4) 11 + m..a4(x 4) 12 + m-a4 ( 4 ) 13) dx)(jq,(t))

+ ((2 +1) %6 U 2 dx + %4 %5 U2 dx + %1%3 U 2 dx) q2 (t) + (

(x 2 + /1) (U %6x 2 + 2 m-a 2( 2)U) dx + %4 (U %5 3 + 2 ma 3 (x 3) U + U%512) dx

a+ %1 (U %313 + U %3x 4 + U %312 + 2 %2) dx)(- q2 (t)) + ((x 2 + 1) ma 2(x 2) x 2 dx

+ %4 (m_a 3 (x 3 ) x3 + ma(x 3 ) 12) dx + %1 (m-a 4(x 4) x 4 + m-a 4( 4 ) 12 + m-a 4(x 4 ) 13) dx)
02

(t2 q2(t)) + (%4 %5 U2 dx + %1 %3 U2 dx) q3(t)

+ (%4 (2 m_a 3( 3) U + U%5 3) dx + %1 (U%313 + U%3X4 + 2 %2) dx) ( q3 (t))

'2
+ (%4 m-a3 (x 3) x3 dx + %1 (ma 4(x 4) 13 + m-a 4(x 4) x4) dx) (92 q3(t)) + %1 %3 U2 dx q4(t)

0 2

+ %I (U%3X 4  2 %2) dx ( q4 (t)) + %1 m-a4(x4) 4 (- q4 (t)) dx

%1 := X4 + 11 + 12 + 13

%2 := m-a 4( 4)U

%3 := - ma 4(x 4 )
aX4

%4 := x3 + 11 + 12

%5 = ma 3 (X3 )
aX3

116

Ipapi--~-~-- ~-^"~-'~-^' ----- --- ~;l;li -- - -------- -- -- ; --- -- ;;VI-- --;-;1; -~- ; ;- ;;-;; ; --; ; -~; -i --- -- ^ ;- ---~



%6 := m _a2(x 2)
Ox2

B.5 Torque for Link 2

dtau2(t) := x 2(ma 2(x2 ) x2 2%3 + ma 2 (x2) x2 %2 + m a2(x 2) %311 + 2 m-a 2(x 2) U ql(t))

S2 ma 2( 2) ( q2(t)) + U %5 2 ( l(t)) + U 5 X2  q2(t)) + U %5 ( ql(t)) 11

+ %5 U2 ql(t) + %5 U2 q2(t))dx + (x 3 + 12 )(m-a 3(x 3 ) 3 %3 + m-a 3 (x 3 )3 3 %2

a2
+ m-a 3(x 3) 3 (- q3(t)) + m-a 3(x 3) %31 + m-a 3( 3) 12 %3 + m-a 3(x 3) 12 %2

0 a (
+ 2 ma3(x3) U (-9 qlq(t)) 2 m2 ma3(x3) U (q3(t))at at at

a a a a
+ U%4 x 3 ( ql(t)) + U %4 3 (- q2(t)) + U %4 x3 (a q3(t)) + U %4 ( ql(t)) 11at at at at

0 a 2
+U%412(- q1(t)) + U%412 ( q2(t)) + %4 U2 (t2() + %4 U2 q(t) %4 U2q3(t))dx +

(x 4 + 12 + /3)(2 m-a 4(x 4) U ( q3(t)) + m-a 4 (x 4) 13 ( q3 (t)) + %1 U2 ql(t) + %1 U2 q2 (t)

a2

+ %1 U2 q3 (t) + %1 2 
4 (t) + m-a 4 (x 4) x4 %3 + m-a4 (x 4) x4 %2 + m-a 4(x 4 ) x 4 ( q3 (t))

a2

+ m_ 4(x 4 )+ m-a4 (X4)%311 + m-a 4( 4) 12 %3 + ma 4(X 4) 2 %2
a a

+ ma 4(x 4) 13 %3 + m-a 4( 4) 13 %2 + 2 ma 4(x 4) U ( ql(t)) + 2 m-a 4(x 4 ) U (q 2 (t))at at

+ 2 m-a 4(x 4 ) U q4 (t)) + U %1 x 4  q(t)) U %1 4 ( 2 (t)) + U %1 x 4 (9 q3 (t))at at at at
+ U%1 x 4 ( q4 (t)) + U%1 (-a(t) 11()) + U%11 2 ( ql(t)) + U%112 ( q2(t))

a a a
+ U%113 ( qli(t)) + U%1 13 ( q2 (t)) + U%113 ( q3 (t)))d

%1 :=' ma 4(x 4)
ax 4

a2

%2 :=t q2(t)t2
a2%3 := q q(t)

%4 := m-a 3(x 3 )
ax3

%5 := ma 2(X 2)ax2
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(x2 %5 U2 dx + (x3 + 12) %4 U2 dx + %1 %3 U2 dx) ql (t) + (

x 2 (2 ma 2(x 2) U + U%5 2 + U %5 11) dx

+ (x 3 + /2) (U %4x 3 + U%412 + 2 m-a 3( 3 ) U + U%411) dx

+ %1 (U%3 4 + U%312 + 2%2 + U%313 + U%311) dx)( 0q,(t)) + (

x 2 (m-a 2(x 2) 1 + ma 2 (x 2) 2) dx + ( 3 + 12) (m-a 3(x 3) X3 + ma 3(x3 ) I1 + m-a 3(x 3) 2) dx
02

+ %1 (m-a 4 (x 4 ) 4 + m-a 4 (x 4 )11 + ma 4 (x 4 ) 12 + m-a 4 (x 4 ) 13) dx)2(- q (t))

+ (x2 %5 U2 dx + (x3 + 12) %4 U2 dx + %1 %3 U2 dx) q2(t) + (

x 2 (U %5 2 + 2 m-a 2(x 2) U) dx + (x 3 + 2) (U %4 z 3 + 2 m-a 3 (x 3) U + U %412) dx

+ %1 (U %313 + U%3 4 + U%312 2 %2) dx)(a q2(t)) + (m-a 2(x 2) x 2
2 dx

+ (x3 + 12) (m-a 3(x3) x 3 + ma 3(x 3) l2 ) dx
02

+ %1 (m-a 4(x 4 ) x 4 + m-a 4( 4 ) 12 + m-a 4( 4 ) 13) dx)( 2 q2 (t))

+ ((x 3 + 12) %4 U2 dx + %1 %3 U2 dx) q3(t)

+ ((x 3 + 12) (2 m-a 3( 3) U + U %4 x3) dx + %1 (U %31/3 + U%3 4 + 2 %2) dx) ( - q3 (t))
02

+ ((x 3 + 12) ma 3(X3) 3 dx + %1 (ma 4(x 4) 13 + m-a 4(x 4 ) x 4 ) dx) ( q3(t))

a 02
+ %1%3 U2 dx q4(t) + %1 (U %3 X4 + 2 %2) dx ( q4 (t)) + %1 m-a 4 (x 4) x 4 (2 q4 (t)) dx

%1 := X4 + 12 + 13

%2 := ma 4(X 4 ) U

%3 := m-a 4(x 4)Ox 4

%4:= a ma 3 (x 3)
ox 3

%5:=o ma 2 (X 2)

02

dtau3(t) := x 3(m-a 3( 3) 3 %3 + m-a 3(x 3) x3 %2 + m-a3 (x 3) 3 ( 2 q3 (t)) + ma 3(x 3) %3 11

a a
+ m-a 3(x 3) 2 %3 + m-a 3(x 3) 12 %2 + 2 m-a 3 ( 3) U ( ql(t)) + 2 m-a3 (x3) U q2 (t))

+ 2 m-a 3(x 3) U ( q3 (t)) + U %4 x 3 (- qi(t)) + U %4x 3 ( q2 (t)) + U %4x 3 (a q3 (t))at at at at
S19 U2 U2+U%4(- aql(t))ll +U%412 (-at-qql(t)) + U %412 (5q2(t)) + %4 qq,(t) + %4 q2 (t)
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U 02
+ %4 U2 q3(t)) d + (X4 + 13)(2 m-a 4 (x4) U q3(t)) + ma 4(x 4) 13 (2 q3 (t))

+ %1 U2 q1(t) + %1 U2 q2 (t) + %1 U2 q3(t) + %1 U2 q4(t) + m-a 4(x 4) x4 %3
a2  a2

+ ma 4 (x 4 ) x 4 %2 + ma 4 (X 4 ) X4 ( q3 (t)) + m4 -a 4 (x 4 ) x 4 ( q4 (t)) + m-a4 (x 4 ) %311

+ m-a 4( 4) 12 %3 + m-a4 (x 4) 12 %2 + m-a 4( 4) 13 %3 + ma 4 (x 4) 13 %2

+ 2 m-a 4(x 4) U ( q(t)) + 2 ma 4 ( 4 ) U q2 (t)) + 2 m-a 4(x 4) U q4(t))at t at
+ U%lx 4 (- ql(t))+ U%1at

at

+ U%13 ( q2(t))+ U%113at

a a
4 ( q2 (t)) + U %1 X4 (a q3 (t))

at at

( ql(t)) + U

( q3(t)))dx

%112 ( a q2(

%1 := ma 4 (x 4)
ax 4
a2

%2 := q2 (t)
at2
a2

%3 := Oq(t)at2
%4 : a m-a 3 (x 3)

ax 3

%4 q1(t) + (x 3 (U%3x 3 + U%312 + 2 ma 3(x3 ) U + U%311) dx

+ (X4 + 13) (U %2 x 4  1 + %2 12 2%1 + U%23 + U %2 11)

x3 (m-a 3(x 3) X3 + ma 3(x 3) 11 + m-a 3( 3) 12) dx

dx
dx)( a q,(t)) +(at

a2

+ (X 4 + 13) (m-a 4( 4 ) 4 + m-a 4( 4) 11 + -a 4 (x 4 ) 12 + ma 4 (x 4) 13) dx)( 0 ql(t))

+ ( 3 (U3 3 + 2 ma 3 (x 3) U + U%312) dx

+ (4 ) (U%2+U%2x4 + U%21 + 2%1) d)(t
(x 3 (ma 3(x 3 ) x 3 + m-a3 (x 3) /2) dx + (x 4 + 13) (m-a 4(x 4) x 4 + m-a 4( 4 ) 12 + m-a 4(x 4) 13) dx)

a2

(a2 q2(t))+ %4 q3 (t)(at2

+ (x3 (2 m-a 3(x 3) U + U %3 x3 ) dx + (x 4 + 13) (U%2 13 + U%2x 4 + 2%1) dx) (aq3(t))

+ (m-a 3 (x 3) x3
2 dx + (x 4 + 13) (m-a 4( 4) 3 + m-a 4(x 4 ) X4 ) dx) ( q3(t))

a+ (x4 + 13) %2U 2 dxq 4(t) + (x4 +13) (U%2x 4 + 2%1) dx (- q4(t))
a2

+ (X 4 + 13) m-a 4 (x 4 ) 4 (- q4 (t)) dx
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U%l 13 ( q1(t))
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%1 := m-a 4(x 4 ) U

%2 := ma 4(x 4 )
Ox 4

%3:= : m-a3 (x 3 )
Ox 3

%4 := x 3 %3 U 2 dx + (x 4 + 13) %2 U 2 dx

B.7 Torque for Link 4.

dtau4(t) := x4(2 m a4(x 4) U q3(t))
'92

+ ma 4(x 4) 13 ( q3(t)) + %1 U2 ql(t) +%1 U2 q2(t)

'92
+ %1 U2 q3(t) + %1 U2 q4 (t) + m-a 4(x 4) x 4 %2 + m-a 4(x 4) X4 ( q2 (t))

92 92

+ m-a 4(x 4) x 4 ( q3 (t)) + m-a4 (x 4) X 4 ( q4 (t)) + m-a 4(x 4 ) %2 11 + m-a 4(x 4 ) 12 %2
at2 t

+ ma 4(x 4) 12 ( 2 q2(t)) + ma 4( 4 ) 13 %2 + ma 4(x 4) 13 ( q2(t)) + 2 m-a 4(x 4 )
+ 2 m-a 4(x 4) U ( 44 (t))

- 2 m-a4(4)U (- q2(t)) + 2 m-a 4(x 4)U (- q4 (t)) + U %1 x4 l(t))

'9
+ U%1x 4 (q 2(t)) + Ul4 (-~ q 3 (t))-

O '9
+ U%112 ( q(t))+ U%1 12 ( q2 (t)) +

+ U%11 3 (a q3 (t)))dx

%1 := m-a 4(x 4)
'X 4

- U%1x 4 (a q4(t)) +

U%113 ( a ql(t)) + U
at

U%1( ql(t))ll

%13 ( a q2(t))
att

%2 := q(t)at2

dx 4 %2 U2 ql(t) + x 4 (U %2 4 + U%212 + 2%1 + U%21 + U%2 11) dx (8- ql(t))

82
+ x4 (ma 4 (x 4) x4 + m a4 (x 4) 11 + ma 4(x 4) 12 + m_a4(x 4) 13) dx ( ql(t))

+ d x 4 %2 U 2 q2 (t) + x 4 (U %2 13 + U%2 4 + U%212 + 2 %1)dx ( aq 2(t))at
92

+ X4 (m-a 4 (x 4) x 4 + m-a 4(x 4) 12 + m-a 4(x 4) 13) dx ( q2 (t)) + dx x 4 %2 U 2 q3 (t)

+ X4 (U %213 + U%2 x4 + 2%1) d ( q3(t))

92
+ X4 (ma 4(x 4) 13 + m -a 4 (x 4 ) x 4 ) dx (- 3 (t)) + dx x 4 %2 U2 q4 (t)

at2
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0 02
+ x 4 (U%2x 4 + 2%1) dx ( q4(t)) + dx ma 4 (x 4 ) 4

2 (2 q4(t))

%1 := m-_a 4(x 4 ) U

%2 := m-a 4 ( 4 )
0x4

121

-------- -- ---- -; I- ---- --Yil---;-.;--.--...-i-i- CI -s



Appendix C

VCUUV Hydraulic Propulsion

Plant Simulation

C.1 Introduction

The Vorticity Controlled Unmanned Undersea Vehicle (VCUUV) Project at Draper

Laboratories is an effort to design and build the first free-swimming fish-like UUV. The

initial stage of this project involved a feasibility study for various propulsion plants;

this paper deals with only the hydraulic plant feasibility study and simulation.

The simulation was performed using MATLAB to calculate the hydraulic and

motive power over a time period of swimming motion using the estimated torques

and angular motions at each of four body joints as input.

C.2 Component Selection

Although the VCUUV prototype is expected to be over 6 feet in length, it will require

minimum size components to achieve neutral buoyancy and to allow room for other

propulsion, processing components and possibly a payload. Oildyne Corporation

manufactures compact hydraulic cylinders that are suitable for this use that also
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Vendor Component [Use Specifications [Cost I Wight Comments

Oildyne Hydraulic Force 0.5" up to 2.0" $850 each 2.5 lbs Has many options for po-
Cylinders Actuators diameters. 0.5" with posi- each sition sensing (Linear Re-

has up to 9" tion sensors sistance Transducer) and
stroke length. $200 with- mounting styles. Price
5000 psi maxi- out position varies widely. Waterproof
mum pressure. sensors connectors are available.

Oildyne Hydraulic System Model HP2500 $303 2.10 lbs Many different pump sizes
Pump Hydraulic 0.4 gpm 0 350 available.

Power psi and 2000
Source rpm 7,m = 78%

3000 psi max
continuous

York In- High Pressure Surge En- Dependent on fi- $435 3.20 lbs
dustries Accumulator ergy Stor- nal size required

age

HR Tex- Hydroelectric Cylinder 2000 psi maxi- 4081050 = .78 lbs Higher capacity servo-
tron Servovalves Control mum pressure. $4200 each valves available; 0.9, 1.8

50 mA gives 0.4 and 3.5 gpm.
gpm flowrate 0
1000 psi

Table C.1: Hydraulic Plant Concept Component Summary

carry the option of position sensing integral with the actuator. The cylinder stroke

length can also be specified, which can further allow minimization of the size of these

components. HR Textron manufactures hydroelectric servovalves that offer a very

linear response and this has been confirmed by actual manufacturer's engineering data

plots. The smallest model available would be suitable for the VCUUV, and offers a 0.4

gpm flowrate at 50mA control current. Oildyne also makes a very compact hydraulic

pump capable of supplying the system's average flowrate. Due to the large pressure

surges caused by the nature of the VCUUV's motion, a high pressure accumulator

will be required to act as an energy storage device. A summary of the components is

provided in Table C.1.

C.3 Development of the Model

The approach for the numerical solution was to reproduce the simulate the body

joints' positions and torques over a time period with sufficiently small time increments

to give the desired graphical resolution and solution accuracy.

First, the joint angular displacements were translated into hydraulic piston linear

position by taking the sine of the maximum angular deflection and multiplying it
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by an estimated moment arm of the piston actuator. The size of the moment arm

available for the hydraulic piston is limited by the actual half-width of the VCUUV

body at each joint, and the distance used for the calculation was estimated from the

VCUUV's transverse offsets at the longitudinal position of each joint. This was done

assuming the hydraulic pistons will be placed in such a way that they move parallel

to the spine, except for the tail joint, where there is an extremely small moment

arm available and a relatively high torque required. For this reason, the tail joint

was given a moment arm larger than the half-width of the body. The mechanical

arrangement of the tail actuator will have to be designed to allow a moment arm at

the tail joint of approximately 2 inches, probably a forward extension into the body

with the piston motion perpendicular to the spine. The maximum force required

for each linear actuator was derived from the maximum moment required divided

by the moment arm. To reproduce the swimming motion, each successive joint has

a 30 degree phase lag, which can be seen in the graphical output titled "Piston

Displacement and Velocity" in Figure C-1. I assumed a tail beat frequency of 0.5 Hz.

Next, the pressure required to produce the forces at each joint were calculated

by dividing force by the area of the piston at each successive time step. There is a

very obvious nonlinearity in the pressure input, which can be seen in the plot titled

"Pressure Drop Across Servovalve and Piston" in Figure C-2. This abrupt change

in pressure required is due to the difference in area on each side of the hydraulic

piston, due to the reduced effective area of the tailrod side of the piston. Likewise,

the hydraulic fluid flowrate through each cylinder is a function of the piston area

(multiplied by velocity) and also exhibits this nonlinearity. I used standard cylinder

sizes and the areas given for each side of the piston from Oildyne's catalog of small
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Ram Displacement

Ram Velocity

0.2 0.4 0.6 0.8 1
time (sec)

1.4 1.6 1.8 2

Figure C-1: Piston Displacement And Velocity
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Pressure Drop across ServoValve
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Pressure Drop across Cylinder
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Figure C-2: Pressure Drop Across Servovalve and Piston
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cylinders. I included several different standard sizes in my simulation to experiment

with the model. As can be seen in the graphs in Figure C-2, the pressure drop across

the piston and the pressure drop across the servovalve add up to the main header

pressure from the pump. These two components give the total pressure drop across

the system. The servovalve control current to produce the instantaneous flowrate

required is calculated from the linear gain relationship given by the manufacturer, and

is adjusted using Darcy's formula; namely that flowrate is proportional to the square

root of pressure differential. The dual nonlinear effect of the piston area difference

on flowrate and pressure required is reflected in the servovalve control current, as

can be seen in Figure C-3. After some experimentation, it became apparent that

the nonlinear effect of the difference in piston areas was the cause of large total

pressure peaks and flowrates in the system. It is possible, and desirable, to reverse

the direction of 2 of the 4 pistons, so the system is acting on half the full area sides

of the actuators and half of the tailrod sides of the actuators, which evens the system

peaks considerably. I incorporated the ability to model this in the MATLAB file, and

my final output utilizes this arrangement.

Finally, efficiency is calculated from the total power input; hydraulic header pres-

sure times total flowrate (shown in Figure C-6, and total power output; which is

calculated as the sum of the piston forces times their respective velocities. Graphical

output of the instantaneous efficiency is given in Figure C-5.

C.4 Development of the System

Initially, I chose the smallest of the Oildyne cylinders, which are 0.5 inches in diam-

eter, with a 0.243 inch tailrod diameter. Using the estimated torques and maximum
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Figure C-3: Fluid Flow And Servovalve Current
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Hydraulic Ram Force
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Figure C-4: Piston Force And Joint Moment
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Total Power In, Total Power Out

Plant Mechanical Efficiency
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Figure C-5: Total System Power And Efficiency
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Total Flowrate

Total Servo Current
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Figure C-6: Total Flowrate and Total Servovalve Current
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angular positions, I ran the model and observed that, due to the small cylinders,

a high system pressure was required to drive the hip joint, which has a maximum

torque of 950 in-lbf. For the remaining lower torque cylinders, there was a lower

pressure required and a corresponding large pressure drop realized across their asso-

ciated servovalves. This translates into low efficiency, since the pressure drop across

the servovalve can be considered wasted energy. The solution was to increase the hip

joint and second joint cylinder sizes to allow lower system pressure to produce the

required force. This produced two beneficial results:

* greater efficiency due to a lower percentage of the pressure drop occurring across

the servovalve where it is wasted

* lower system pressure, which is better from a practical standpoint to minimize

system hydraulic seal tightness requirements, etc.

Eventually, this led to greater cylinder sizes for all cylinders, up to 1 inch diameter

cylinder for the hip joint and 0.75 inch diameter for the remaining cylinders. The

limit for increasing cylinder size was the servovalve current (a 50mA) and flowrate

limitations versus dramatically increased flowrate (oc D2 ) required to drive the pis-

tons. It should be noted that HR Textron has higher capacity servovalves available

which could be used to reduce system pressure even more, with a minor increase in

efficiency at the expense of increased electrical current required.

C.5 Conclusions

The system pressure, efficiency, cylinder sizes, and servovalve sizes rely heavily on the

tail beat frequency of the system ( system flowrate) and the maximum torque ( system
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pressure). The control system can be designed to optimize efficiency by adjusting

system pressure for different operating conditions or for simplicity, the system can be

optimized for a single predominant operating point. The final optimized system is

shown in Table C.5

Number of Joints 4 (including tail)

Cylinder Diameters hip joint: 1" remaining joints: 0.75"

Cylinder Arrangement alternating orientation

Avg System Efficiency 39%

Input Power 64.5 Watts peak 48.7 Watts average

Output Power 23.5 Watts peak 18.7 Watts average

Maximum Torques 950 in-lbf (hip) 500 in-lbf (#2) 200 in-lbf (#3) 150 in-lbf (tail)

Moment Arms 4.76" (hip) 4.76" (#2) 3.18" (#3) 1.59" (tail)

System Flowrate .46 gpm max .35 gpm average

System Pressure 320 psi

Tail Beat Frequency 0.5 Hz

Control Current 136 mA peak 110 mA average

Table C.2: Hydraulic Plant Final Summary

133

111- ------------ -- = - - -- -- -- - ---- --- ----------~r



Bibliography

[1] Haruhiko Asada and Jean-Jacques E. Slotine. Robot Analysis and Control. John

Wiley & Sons, Inc., New York, 1986.

[2] David S. Barrett. Propulsive Efficiency of a Flexible Hull Underwater Vehicle.

PhD thesis, Massachusetts Institute of Technology, 1996.

[3] J. E. Bobrow et al. Adaptive, high bandwidth control of a hydraulic actuator.

Transactions of the ASME, 118:714-720, 1996.

[4] C.M. Breder. The locomotion of fishes. Zoologica (N. Y.), 4:159-256, 1926.

[5] Heidi Dewar and Jeffrey B. Graham. Studies of tropical tuna swimming perfor-

mance in a large water tunnel. J. exp. Biol., 192:45-59, 1994.

[6] Powell Franklin and Workman. Digital Control of Dynamic Systems. Addison-

Wesley, 1991.

[7] Sir James Gray. Studies in animal locomotion: The propulsive powers of the

dolphin. Journal of Experimental Biology, XIII(2):192-199, 1936.

[8] D. M. Lane et al. Motion planning and contact control for a tele-assisted hydraulic

underwater robot. Kluwer Academic Publishers, 1996.

[9] M. J. Lighthill. Aquatic animal propulsion of high hydrodynamic efficiency.

Journal of Fluid Mechanics, 44:265-301, 1970.

[10] J.N. Newman. Marine Hydrodynamics. MIT Press, 1977.

[11] Jean-Jacques E. Slotine and Weiping Li. Applied Nonlinear Control. Prentice

Hall, 1991.

[12] Michael S. Triantafyllou and George S. Triantafyllou. An efficient swimming

machine. Scientific American, 272(3):64-70, March 1995.

[13] M.S. Triantafyllou. Maneuvering and control of surface and undersea vehicles.

Class Notes, MIT Course 13.49.

134

a Mpr



[14] Steven Vogel. Life in Moving Fluids. Princeton University Press, 2 edition, 1994.

135

iirar-- ----------- -- ---- ----- --;-- --; -------- ---------- --- -- ---------- i --- --- ----- -- uln


