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ABSTRACT

The application of intense accelerator based neutron sources has been hampered in the
past by the material properties of the target system and the requirements of passing the
accelerated beam from the vacuum environment of the accelerator to the target. This
investigation examines two different methods which remove the limitations of the
window in gas target systems.

The first system was initially developed by Iverson at MIT and relied upon low
conductance nozzles and rotating disks which opened and closed the beam line. This
system achieved pressures up to 75 mbar in the target chamber with pressures below 10-3

mbar in the first pumping chamber. Similar experiments conducted by Guzek, Tapper,
and Watterson, at Schonland Research Centre at the University of Witwatersrand, were
able to reach three atmospheres of pressure in the target chamber. Re-design efforts were
conducted to improve the Iverson design and increase the stability of the rotating disks as
well as increase the pressure in the target chamber.

The second system examined utilized a "Plasma Porthole" developed by Hershcovitch of
Brookhaven National Laboratory. This system relies upon the high pressure and high
viscosity of a stabilized plasma arc to support the large pressure differential between the
target chamber and first vacuum chamber. Previous experiments conducted by
Hershcovitch had supported pressure differences of over 3.5 atmospheres. A system was
assembled to fully test the performance of the plasma porthole and compare it against the
mechanical system.

With the utilization of windowless gas target systems, the limitations on beam current,
energy focusing, and overall power output have been removed. This greatly increases the
performance of many applications such as bomb detection in luggage, nuclear stockpile
stewardship, and Accelerator-driven Transmutation of Waste (ATW).
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Chapter 1. Introduction

Since the first discovery of radiation, mankind has been finding new and

innovative ways of making use of this new tool. While people currently accept x-ray

machines, CAT scans, and many other applications as routine, devices using neutrons

have yet to become common place. Neutron imaging and analysis techniques can be

used in a wide range of applications including bomb detection in luggage, hydrogen

embrittlement in aircraft components, material analysis on both a small and large scale,

and many more. In the past, implementation of neutron based technology has been

limited by the characteristics of the neutron sources. In order to better utilize neutron

based techniques, neutron sources must first be improved.

1.1 Neutron Sources

The three main types of neutron sources regularly used are the nuclear reactor,

radioactive isotopes, and accelerator based systems. Each of these systems differ vastly

in their implementation and each has its own advantages and disadvantages.

Reactors

The most widely recognized of all neutron sources is the nuclear reactor.

Research reactors have been set up across the nation and the world in many colleges,

national laboratories, and some private businesses. As an example, the latest research

reactor at an U. S. university was built at the University of Texas at Austin and first went

critical in 1992. This reactor can produce 1.1 MWs of thermal heat energy and stands



three stories tall. Like most research reactors, long tubes or beam ports are passed

through the majority of the shielding surrounding the core of the reactor to allow

sufficient radiation to escape for experiments to be conducted. In conjunction with these

beam ports, sealed samples can be lowered directly into the core of many research

reactors when higher radiation concentrations are required. In general, reactors using

235U fission have a neutron energy spectrum that ranges from a few keV to over 10 MeV

with an average of about 2 MeV [1]. Since some amount of shielding must always be

present between a beam port and the reactor core, it is difficult to extract high energy

neutrons from the core of the reactors. The neutrons that are extracted are present in a

large background of radiation consisting of gammas, betas, and heavy charged ions.

Isotopes

The simplest of all sources are radioactive isotope sources. These sources can be

conveniently categorized into either a spontaneous fission or a mixed isotope group. The

primary spontaneous fission isotopes include 254Cf, 252Cf 244Cm, 242Cm, 238Pu, and 232U.

Most of these isotopes primarily alpha decay with only a very small percentage of

fissions. The exception is 254Cf, which decays almost completely by fission with a half-

life of 60 days [1]. While it is highly desirable to have this high fission percentage, the

half-life is so short that the source is rendered unusable in a very short amount of time.

Due to this, the most commonly used fission source is 2 52Cf. It has a half-life of 2.65

years for fission but only has one neutron decay for every 32 alpha decays. The neutrons

emitted from this source have a wide range of energies that are centered between 0.5 and

1 MeV and peak as high as 8 to 10 MeV (Figure 1-1) [2].
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Figure 1-1: Neutron energy spread from 252Cf spontaneous fission [2].

The mixed isotope group contains a variety of different pairs of isotopes

combined together where one isotope decays and emits radiation which is then absorbed

by the second isotope. This absorbed radiation causes the second isotope to decay and

give off one or more neutrons. The type of radiation the first particle gives off can

further categorize these types of sources. One of the more common types of these

sources uses the (ca,n) reaction with beryllium as the most common second isotope. The

most common (uo,n) source overall uses plutonium 239 as the first isotope and beryllium

as the second. A major drawback of these sources is that the alpha particles slow down



greatly in the source before being absorbed by the beryllium. This causes a wide spread

in the neutron energy from below 1 MeV to above 10 MeV [2]. A second type of mixed

isotope source uses a gamma emitter as the first isotope. These sources have the

advantage of being able to emit single energy neutrons. In order for this to happen, the

first isotope must emit gammas of only a single energy. The most commonly used

isotopes for this are 226Ra, 124Sb, 72GA, 140La, and 24Na. In addition to having only one

gamma energy being emitted, the second isotope must not be allowed to end up in an

excited state after the release of the neutron. This is accomplished by choosing light

target isotopes such as 9Be and 2H [2]. While this system will produce neutrons through

the (y,n) reaction, it will also emit a large background of gamma rays close to 1000 times

that of the neutrons [1].

Accelerators

The third and final category of neutron sources is the accelerator-based system.

The exact size of an accelerator can vary greatly from the size of a table top to larger than

a football field depending on the type of system being used. The main underlying

principle of the accelerator system is to use a combination of magnetic and electric fields

to accelerate a beam of charged particles into a target. The accelerated particles will then

interact with the target nuclei and produce neutrons. While there are many methods to

accelerate charged particles, the primary ones are Cockroft-Walton machines, Van de

Graff accelerators, linear accelerators, cyclotrons, and synchrotrons. Like the (y,n)

sources, it is desirable to avoid excited states in the target in order to produce

monoenergetic neutrons. Some of the common reactions used to produce monoenergetic



neutrons are given in Table 1-1. The most common types of compact accelerator systems

rely upon the deuterium on tritium (D-T) or the deuterium on deuterium (D-D) reaction.

These systems also have the advantage of having a very small Coulombic barrier which

requires minimal particle acceleration between 100 to 300 keV. This is small compared

to the Q value of the reactions (17.6 and 3.26 MeV respectively) and allows for easily

achieved monoenergetic neutrons. The other reactions listed in Table 1-1 all have larger

Coulombic barriers which require the particles to be accelerated to higher energies before

entering the target. The choice of accelerated particles and target material also greatly

affects the neutron yield (Figure 1-2) [2, 3].

REACTION Q VALUE (MEV)

H(d,n)4He 17.6
2H(d,n) 3He 3.27

12C(d,n)13N -0.281

3H(p,n) 3He -0.764

7Li(p,n)7Be -1.65

9Be(p,n)9B -1.9

9Be(d,n)'°B 4.4a

aThe 'lB nucleus has excited levels for which Q<0.

Table 1-1: Reactions used to produce monoenergetic neutrons [1,4].
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Figure 1-2: Neutron yields for different systems [5].

1.2. Accelerator Targets

Regardless of the method used to accelerate the charged particles, they all rely on the

interaction of the particles with a target to produce neutrons. It is during this interaction

that some of the major limiting factors for the entire accelerator system are caused. The

largest limiting factors are the heat added to the target system as the particles slow down

and the spreading of the particle energy during the interaction. If too much heat is added

to the target system, it could cause the system to fail, possibly catastrophically. This

limitation of dissipated heat limits the amount of charged particles as well as the energy

of the particles which enter the target system. The spreading of the particle energy in the



target system causes a subsequent spread in the neutron energy which is often

undesirable. Many different designs of target systems have been developed to remove

these limitations with varying degrees of success. The primary methods investigated

involve either solid targets, liquid targets, or gas targets.

Solid Targets

The simplest type of target system for an accelerator is a solid target. This target

is made by joining the desired target atoms to a structural material. For tritium targets

this is usually accomplished by infusing tritium into titanium with a ratio of 1.7 tritium

atoms to titanium atoms. During the use of this type of target, the neutron yield falls

dramatically for several different reasons. First, the tritium involved in the neutron

producing reaction is no longer present for future reactions. Also, as the target is heated,

the tritium and other metals begin to break chemical bonds and infuse out of the target.

Sputtering from the beam also reduces the thickness of the target which decreases the

percentage of beam that interacts. Oxidation and chemical deposits on the target change

the effective energy of the beam and can hamper heat removal [6]. Due to the large heat

deposition, some type of cooling is always needed with solid targets. For a typical target

of titanium-tritium layer on a copper or molybdenum backing, a traditional water-cooling

system is able to remove heat for beams only up to I kW/cm2 . This limits the minimum

size of the beam spot as well as reducing the neutron yield to a maximum of 10" n/s [6].

The primary attempt to modify the solid target has been to rotate the target during

irradiation. This process spreads the beam spot over a larger portion of the target and

lessens many of the problems mentioned above. One such target system is the RTNS-I

and then later the RTNS-II located at Lawrence Livermore National Laboratory. By



rotating the target at speeds between 3500 and 5000 rpm, they were able to utilize a 150

mA beam current with approximately 100 kW/cm 2 and extract 3.7x1013 n/s [6, 7, 8].

Liquid target

Another type of target system utilizes a liquid target for the accelerator. This

flowing target is easier to cool and, due to the constant circulation, it is able to present a

continuous fresh target to the beam. One such system was the FMIT and the SUPER-

FMIT made by Westinghouse which employed a liquid lithium target. This target

streamed a jet of lithium along a slightly curved backwall inside a vacuum chamber. The

curvature of the steel backwall applied a compression force on the lithium which aided in

preventing the lithium from evaporating. The FMIT was tested with a deuteron beam of

0.1 A and a neutron flux of over 1014 n/cm 2. With slight modifications the SUPER-FMIT

will be able to use a beam current of 1 A and produce a flux of 1016 n/cm2s over a small

region [9].

Gas Targets

The third group of targets for accelerators is the gas target system. Since gas has

good heat removal properties and can be constantly replenished, the system limitations

stem instead from the containment of the gas.

The typical method used to contain the target gas places a thin foil window

between the accelerator and the target chamber. These thin windows are designed to pass

as much beam through the window as possible while maintaining the structural integrity

of the pressurized target chamber. These two different objectives require a compromise

in the thickness of the window to be used. In order to maximize the amount of beam that



can pass through, it is desirable to have as thin of a window as possible. However, too

thin of a window will not be able to withstand the pressure differential between the

vacuum chamber and target chamber.

As the accelerated beam passes through the window, the particles will lose

energy, primarily through ionization loss, which causes a spreading in the beam energy

and a large heat transfer to the window. This energy loss is more evident in lower energy

beams (about 1 MeV or less) since the ionization loss is greater with low energy beams as

is shown by the Bethe-Bloch and other relationships. Even with a wide range of different

cooling systems, these windows are only able to withstand beam currents in the

microAmp range. The initial failure of these windows is a small pinhole leak where the

gas diffuses through and into the vacuum chamber. These leaks often reseal after the

window returns to room temperature. If the windows are operated too far beyond pinhole

leak stage, a permanent leak could be created or total rupture could occur [10, 11, 12, 13].

In a similar method to the rotating solid target, a rotating window system has been

designed at Los Alamos. This method extends the life of the total window system but is

unable to increase the beam current. As such, it only provides a marginal improvement

in the gas target system [14].

Another method to circumvent the limitations of the physical boundary between

the high pressure target chamber and the accelerator vacuum chamber has been to remove

the physical boundary all together. Since the gas is simple to cool, the problem of heat

deposition has been eliminated with the removal of the physical boundary. In this way,

higher beam currents and energies can be used and neutron production of 10"1 to 1016 n/s

is possible [15]. Many different methods have been tried to accomplish this and most



rely upon the flow characteristics of a jet of gas to support the pressure differential.

Trials have been conducted with subsonic, transonic, and hypersonic gas jets along with

differentially pumped chambers with flow restricting apertures [15, 16, 17].

1.3. Scope of Study

This study will investigate two separate methods of confining a high pressure gas

target chamber from a low pressure accelerator chamber. The first method was initially

developed by Iverson [4] and will be reexamined and modified during this investigation.

This method utilizes differentially pumped chambers, flow limiting nozzles, and rotating

shutters to limit the flow of gas out of the target chamber. The second method

investigated utilizes a controlled plasma arc between the target chamber and the vacuum

chamber. The high pressure and high viscosity of the plasma will be relied upon to

sustain the high pressure differential.



Chapter 2. Existing System

Attempts have already been made by Iverson to create a windowless gas target

system. This work relied upon differentially pumped chambers with low conductance

tubes in-between and rotating shutters. While this work failed to reach the desired

pressures in the target chamber, it did prove the validity of the theory and served as a

starting point for this project. The validity of the theory was further proven by

experiments that were carried out by Guzek, Tapper, and Watterson which produced

target pressures of three atmospheres [18].

2.1. Accelerator Specifications

The starting point for any design of an accelerator based system must begin with

the accelerator itself. The accelerator chosen for this experiment was manufactured by

AccSys Technology, Inc. and is Model DL-1. It is a radio frequency quadropole (RFQ)

linear accelerator which accelerates deuterium particles (Table 2-1). The most critical

specifications that directly impact the design of the target system include the maximum

duty factor of 2.25%, final deuterium ion energy of 900 keV, and the divergence of the

emitted beam.



ACCELERATOR SPECIFICATIONS

Accelerated particle d+

Operating frequency 425 Mhz

Input ion energy 25 keV

Final ion energy 900 keV

Acceptance (normalized) 0.04 itcm-mrad

Current limit 21 mA

Final synchronous phase -28.0 degrees

Average bore radius 1.60 mm

Maximum vane modulation 2.26

Intervane voltage 45.0 kV

Maximum surface gradient 38 MV/m (1.92xKP)

Cavity RF power (w/o beam) 39.5 kW

Vane length 72.6 cm

Total length 1.016 m

RF drive loop 1 5/8" coaxial

System weight (approximately) 450 lbs

Vacuum pumps (2) 8" cryopump

Design input current 5-15 mA

Input emittance (normalized) 0.02 ncm-mrad

Beam transmission at 10 mA >90 %

Output energy spread (90%) <±15 keV

Beam pulse length 5-100 psec

Cavity fill time 2 gtsec

Pulse repetition rate (max) 640 Hz

Total RF power (peak) 48 kW

RF duty factor (maximum) 2.25 %

Table 2-1: Accelerator system specifications from manual [19]



The two main reactions used with a deuteron accelerator are the D-D reaction and

the D-T reaction. Since tritium is radioactive, special precautions must be taken at all

times during its handling. These extra precautions and added risk are not desirable

during these experiments and so the D-D interaction is the only practical choice. Once

the system is ready for full implementation, it may be desirable to switch to tritium gas in

the target chamber since the D-T reaction is more energetic (17.6 MeV for D-T, 3.27

MeV for D-D). This switch will have a negligible effect on the target system since

tritium and deuterium have similar transport characteristics but the safety precautions

necessary for handling tritium may preclude this.

The use of the D-D interaction will allow for the selection of specific neutron

energies to be emitted. The reaction has a Q of 3.26 MeV and is as follows:

21H + 21H ---> 32He + 'on (2.1)

From the kinetics of the interactions we can solve for the dependence of the exiting

neutron energy and get

mamTa.cos(0) + mambTacos)2 (m+ )"[m -Q  m - m T

(2.2)

where:

ma = mass of deuteron Ta = energy of incoming deuteron

my = mass of helium Q = energy released, 3.26 MeV

mb = mass of neutron Tb = energy of outgoing neutron

0 = angle of outgoing neutron with respect to incoming deuteron.



The solution of equation 2.2 over a range of incoming deuteron energies and exiting

neutron angles is given in Figure 2-1. This clearly shows that neutron energy can be

chosen by fixing the incoming deuteron energy and the exiting angle. Unfortunately, s

the deuterons begin to scatter inside the target, ionizing losses will cause their energies to

decrease and begin to spread, thus spreading the final neutron energies. This effect is

dependent on the thickness of the target and will be greater in thicker targets [2].

1 2 3 4 5 6

Incoming Deuteron Energy (MeV)

7 8 9

Figure 2-1: Energies of neutron from D-D reaction.

2.2. Previous System Theory

The target system had already undergone two generations of designs before this

latest redesign effort began. The initial design attempted to implement a system of pipes

in which blocked flow occurred. Blocked flow is the condition where the gas attempts to
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flow faster then the speed of sound but is prevented by the buildup of the pressure waves

inside the tubes.

The presence of blocked flow inside a tube is dependent on the geometry of the

tube, characteristics of the gas, and the pressure differential across the tube. For viscous

laminar flow in a tube, the critical exit pressure is given by

Pc d2
-. 2.3 -- p
p 1 (2.3)

where:

Pc = critical exit pressure p = inlet pressure

1 = length of tube d = diameter of tube [4].

The flow of air under these blocked conditions is given by

d3 p2_ ( pc2
qc" 135.d--

1 2 (2.4)

where qc is given in millibar-liters per second [4]. If the flow in the tube is turbulent

rather then viscous (Reynolds number greater then 4000) then the critical pressure is

given by

4

4.51.p 2
Pc \ 2-1

p d-p (2.5)

and the flow of air is given by



2-1 (2.6) [4].

2.3. Summary of Implementation (Iverson)

After initial testing of several different combinations of pipe lengths and inner

diameters, a large four chamber system was created to fully test the design. The system

had one target chamber for the pressurized gas and three chambers that would each be

evacuated by a pump. The chambers were connected through 5 mm inner diameter pipes

which were 10 cm in length (Figure 2-2).

The first chamber to be evacuated was connected to a Roots blower (Pfeiffer

WKP 1000). This pump is capable of large flow rates with a lower vacuum limit in the

range of 10-4 mbar. The Roots blower is incapable of exhausting to atmospheric pressure

and is therefore backed up by a large rotary vane pump (Pfeiffer DUO 120A). Together

they combine to make the pumping station Pfeiffer WOD-900B. See Appendix A for

further pump information. The exhaust of the rotary vane pump is then pumped back into

the target chamber with some additional gas added to compensate for leakage.

The second and third pumping chambers are both evacuated by turbomolecular

pumps which were chosen for their relatively high flow rates at low achievable pressures.

The second pumping chamber is connected to a Pfeiffer TMU 520 and the third chamber

is connected to a Pfeiffer TMU 260. They are capable of pumping at 520 liters per

second and 260 liters per second respectively (Appendix A) [20]. These pumps are



capable of reaching pressures below 105 mbar and both are backed by a single rotary

vane pump (Trivac D16). This backing pump is then exhausted to the room.

Rotated 90 degrees
for clarity

Pump
Stage 3

Pump Target
Stage 1 Chamber

Pump
Stage PI-

Beam FLow

Figure 2-2: Initial design with only pipes.

While initial tests proved promising, it became clear upon implementation that

blocked flow was not achieved. The assumption that the pipes could be approximated as

long tubes (relative to their diameter) apparently was incorrect. The appropriate

assumption now appears to be treating the pipes as exit nozzles from one section to the

other [4]. This failure to achieve blocked flow resulted in a vastly increased flow

between chambers and greatly reduced the achievable pressure differential throughout the

system.



While one option to correct this would have been to elongate the tubes, this would

have required that the entire system be lengthened, which was not desirable and any

additions to the length would increase the difficulties of the beam optics design. Another

option was to have the connections between chambers open only during the pulse of the

accelerator. This is possible given that the accelerator has a 2.25% maximum duty cycle.

The implementation is made difficult by the high pulse repetition rate of up to 640 Hz. In

order to achieve such a high rate of opening and closing of the tubes, it was determined

that a system using rotating disks would be the best. As the disks rotate, holes in the

disks will line up with the tubes, giving a clear path for the beam to travel during the

pulse. The disks would then continue to rotate and thus close off the tubes as the holes

no longer line up. Since the beam width is fixed by the duty factor and pulse rate of the

accelerator, this establishes the timing for the beam. This timing can then be used to

determine the size of the holes in the disks and the overall relationship between the disks

and accelerator. This system was implemented with two rotating disks in the first

pumping chamber (Figure 2-3). In order to make room for the disks, the tube between

the target chamber and first pumping chamber had to be removed.



Pump
Stage 2

Beam Gas Flow

Figure 2-3: Cross section of previous system [4].

The attainable pressure differential in the system is now dependent on the

efficiency of the valves. This efficiency was determined by the leak rate of gas around

the disks while the disks were in the closed position (holes not lined up). While in the

closed position, the gas is able to flow in the space between the disk and the inside wall

of the chamber and can escape either around the edges of the disks or through the

aperture holes in the disks. To reduce this effect, the disks where machined to fit as

tightly as possible into the chamber, thus reducing the gap for the gas to flow between the

disks and the walls. Also, the disks were made with only two aperture holes, thus

preserving the balance while minimizing the number of paths for the gas to leak.



2.4. Pressure Trials

Once the system was fully assembled and ready for operation, tests were run in

order to ascertain the maximum target pressure achievable. These tests were performed

first with the beam off and then with the beam on and the pressure results appear in Table

2-2. These experiments demonstrated that the limiting factor was the stability of the

rotating disk assembly and not any of the pumps as expected. The pressure in the target

chamber could not be increased above 75 mbar without the disk assembly vibrating

violently. This instability was mostly due to the pulsing effect created by the jets of gas

hitting the disks each time the pathway was opened and closed. As the pressure in the

target chamber increased, the force of the jets of air increased, thus limiting the allowable

target chamber pressure. Other factors affecting the performance of the spinning disks

will be discussed further in Chapter 3.

PRESSURE IN MBAR
CHAMBER Beam off Beam on

Target 5.0 x 10+1 4.9 x 10+1

1 3.8 x 10-' 5.1 x 10-1

2 below 1 x 10-3  below 1 x 10-3

3 7.7 x 10-7  8.6 x 10-7

Target 7.3 x 10+1 7.5 x 10+1

1 1.0 x 10+0  9.2 x 10-'

2 below x 10-3  below 1 x 10-3

3 1.1 x 10-6  1.2 x 10-6

Table 2-2: Chamber pressures with disk assembly rotating [4].



The same pressure measurements were run again but with the disk assembly no

longer rotating. This experiment showed what the next limiting factor in the system

would be if the disk assembly was sufficiently improved. As the pressure was increased,

the second stage pump (TMU 520) was the first to have problems and could not maintain

the required flow rate with a target pressure greater than 20 mbar. The pressure results

for this experiment appear in Table 2-3.

PRESSURE IN MBAR
CHAMBER Beam off Beam on

Target 2.0 x 10+1  2.0 x 10+'

1 5.7 x 10 5.3 x 10-'

2 5.4 x 10.3  6.7 x 10-3

3 3.3 x 10-7  3.1 x 10-7

Table 2-3: Chamber pressures without disk assembly rotating [4].

During the previous experiment that utilized the rotating disks, the second stage

pump (TMU 520) drew less than half the maximum allowable current. This would

indicate that in this situation, the target pressure could be operated three to four times

higher before the second pump limited the system [4].



Chapter 3. Redesign Efforts

While the final work by Iverson failed to reach the desired pressure range in the

target chamber, it did manage to prove the validity of the idea of exit nozzles and

spinning disks. The largest improvements in the system will be gained by improving the

weakest part of the system, the design of the spinning disks. Other improvements in the

overall performance of the system will also be gained through modifying the pumping

system.

3.1. Mechanical Changes to System

As stated before, the instability of the disks at pressures above 75 mbar was

primarily caused by the pulsing effects of the jets of gas created each time the pathway

was opened and closed. While it is impossible to remove these jets, it is possible to

improve the structural characteristics of the spinning disk assembly to better resist these

effects.

The primary weakness in the spinning disk assembly is the structural support of

the shaft at either end. The existing design of the spinning disks has both disks attached

to a rotating 9.5 mm diameter shaft. The shaft is decreased in size at both ends to 3.2 mm

diameter and is supported by small bearings (Figure 3-1).

A magnetic clutch assembly controls the rotation of the shaft. In this assembly,

one side of the magnetic clutch is imbedded in the first spinning disk. On the other side

of the target chamber plate, the second half of the magnetic clutch assembly is mounted.

In this way, the second half is exposed to atmosphere and can be rotated by a standard

electric motor. While this method preserves the integrity of the plate and removes the



need for any feedthroughs, it limited the rotational speed of the assembly to 750 rpm.

Since there are only two holes in the disks, this reduces the pulse rate of the accelerator

from 640 Hz to 25 Hz [4].
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Figure 3-1: Close up view of rotating disks.

Since the magnetic clutch system is unable to rotate the system at sufficient

speeds, it was determined that a direct drive system would be better. The simplest

implementation of such a system involves replacing the magnetic clutch with a rotary

feedthrough. This allows for one solid shaft to pass through the target plate while

maintaining the vacuum seal. In order to achieve the maximum pulse rate of 640 Hz with

only two holes in the disks, the assembly must be rotated at about 6,000 rpm. This high

rotational speed presents a challenge for maintaining the vacuum seal around the rotating

7777Wm



shaft in the feedthrough. This can be accomplished by using rotary seals which employ a

magnetic fluid to achieve a seal. A feedthrough capable of such high speeds was

procured from Ferrofluidics after some adaptations were performed to allow it to mate

with the rest of the system [21].

In order to stop the disk assembly from vibrating, the 9.5 mm diameter shaft and

support system were replaced. The shaft diameter was increased to 12.7 mm. This added

rigidity should reduce flexing in the shaft and dampen oscillations. With the increase of

the shaft and the addition of a feedthrough into the system, it was now possible to pass

the shaft through all three pumping chambers and then out into atmosphere. This allows

for the expansion of the two spinning disk system to include a third spinning disk in the

third pumping chamber. This additional disk will greatly reduce the flow of gas from the

second pumping chamber and improve the overall performance of the system (Figure 3-

2).
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Figure 3-2: New disk assembly.

The two small 3.2 mm bearings that were supporting the original shaft have been

completely removed. The shaft is now supported at one end by the feedthrough and at

the other end by a 12.7 mm inner diameter bearing. No supports were included in the

inside walls of the chamber to avoid possible misalignment that would cause stress on the

shaft. Instead, exclusion seals from Ferrofluidics provide a stress free seal that prevents

leakage of gas around the shaft from one chamber to the next.

The thickness of the first disk was increased to 25.4 mm in order to limit the

leakage of gas around it. This increase creates a longer path that any gas must take as it

leaks around the edge of the plate. This longer path restricts the flow and should greatly

reduce leakage around the disk. In order to save weight, material is removed from the



side of the disk away from the wall. Unfortunately, the thickness of the second and third

disks could not be increased without obstructing the side pipes which connect to vacuum

pumps. As such, these two disks are made in a similar manner to the second disk in the

original design. See Appendix B for further information on system components.

At the high revolution speed of 6,000 rpm, balancing the disk assembly becomes

critical. While the disks have been designed and machined to maintain this balance,

further balancing is still needed. Once the entire system has been assembled, it will be

brought to an appropriate machine shop, rotated at high speeds, and professionally

balanced. This will remove any minor imperfections that would create problems at high

rates of revolutions.

3.2. Vacuum Pump Alterations

The initial Roots blower system utilized for the first pumping stage relied upon a

rotary vane pump (Pfeiffer DUO 120A) to provide backing pressure for the Roots blower

(Appendix A) [20]. This rotary vane pump contains oil in the pumping chamber which

was then introduced into the re-circulated deuteron gas. In order to prevent this the vane

pump was replaced with the UniDry 050 dry pump from Pfeiffer vacuum (Appendix A)

[20]. This pump is specifically designed for high volume flow rates and is ideal as a

backing pump for the Roots blower. The combination of the existing Roots blower and

the UniDry 050 pump allows for the same high volumetric flow rate as with the rotary

vane pump, but with totally dry pumping chambers.

A major design consideration of the windowless gas target system is the re-

circulation of all of the gas that leaks out of the target chamber. While this re-circulation



is critical in the first pumping stage, which has the highest flow rates, it is also beneficial

in the second and third stages. The current design of the system utilizes a rotary vane

pump (Trivac D 16A) as a backing pump for the turbomolecular pumps (Pfeiffer TMU

520 and TMU 260, Appendix A) in chambers two and three [20]. This rotary vane pump

exhausts the deuterium gas, which is expensive and explosive, into the room. The loss of

gas was acceptable at the low flow rates previously achieved, but may prove

unacceptable when the target pressure is raised higher. In order to re-circulate the gas,

the rotary vane pump will be replaced with a dry pump and connected back into the target

chamber. While another dry backing pump could be purchased, the simplest solution is

to utilize the same UniDry 050 for the Roots blower and both turbomolecular pumps.

This is possible because of the high flow rate capability of the UniDry 050, but the

increased load from the turbomolecular pumps will decrease the flow rate through the

Roots blower [22]. This decrease will be marginal since the turbomolecular pumps can

only pump a fraction of the capacity of the Roots blower.



Chapter 4. Plasma Arc Theory

Another promising method to support a large pressure differential has been

investigated by Herschovitch at Brookhaven National Laboratory. This method creates a

plasma arc between the high pressure target chamber and the first vacuum chamber.

Since the plasma is at very high temperatures, its pressure is equal to that of the target

chamber while its density is reduced by the ratio of arc to target temperature. The high

viscosity of such a system greatly limits flow through the plasma chamber and serves to

confine the gas inside the target chamber. Experiments by Herschovitch have resulted in

pressure differentials of close to four atmospheres with minimal pumping from the

vacuum chamber. The theory of the plasma porthole and the implementation of it into a

pumping system will be discussed in this and following chapters [23, 24, 25, 26].

4.1 Pressure and Density of Plasma Arc

The plasma arc to be used in this experiment will have a temperature ranging

from around 15000 K in the center to around 12000 K at the edges [23]. For a general

approximation, we can treat the plasma as an ideal gas and use the ideal gas equation

P-p.R.T (4.1)

with:

P = pressure T = temperature

p = density R = ideal gas constant.

Using this equation to compare the density of the plasma arc at 12000 K to the

density of the gas in the target chamber at 300 K, it is clear that the plasma is 40 times



less dense while at the same pressure. This low density at high pressures will be key in

allowing the plasma to support a large pressure differential while still allowing the

accelerated deuteron beam to pass through with minimal interactions.

4.2 Plasma Flow

The pressure differential that the plasma arc will be able to support is determined

by the amount of flow of the plasma. This flow is highly dependent on the physical

boundaries of the system as well as the physical characteristics of the plasma.

The system is composed of a two millimeter diameter, six centimeter long pipe.

As will be shown shortly, the flow of the plasma through the pipe can be approximated as

an ideal gas. For low flow through a small thin tube, the flow rate can be given by

7t-R4 dp
Q-

8Q=7 dx/ (4.2)

where:

Q = flow rate R = ideal gas constant

4 = viscosity dp/dx = pressure difference in pipe.

It is clear from the above formula that in order to minimize the flow through the pipe

while maximizing the pressure differential, it is desirable to increase the viscosity as

much as possible [23, 24, 27].

While a complete derivation of the viscosity of the plasma arc would be beyond

the scope of this report, a more approximate derivation of the viscosity of gases will be

shown.

The type of interactions that are dominant in a gas or plasma system can be

estimated by the Knudsen number, Kn, for the system



Kn= (4.3)
L

where:

S= the mean free path L = a characteristic length for the system.

A Knudsen number of much less than one implies a flow regime dominated by

intermolecular collisions. This type of flow is deemed viscous and is common at normal

pressures. A Knudsen number much greater than one implies a system where

intermolecular collisions are highly infrequent and the molecules act independent of each

other. This type flow is termed molecular flow and is present in high vacuum systems.

The third type of flow is when the Knudsen number is around one and this is termed

transition or slip flow conditions [28].

For this system, L is the diameter of the pipe, 2 mm. The mean free path can be

found from the simple relationship

- 1 (4.4)
n-

where:

n = molecular density of the gas

a = cross section of intermolecular collisions.

For this system, n can be found from the ideal gas equation for a gas at 12000 K and a

pressure of 2 atm (4.1). A typical value for y is 10-19 m2 [28]. Hence, the mean free path

is 1.6*10 -5 m. This gives a Knudsen number of 0.007, which is much less than one, and

implies that the plasma present is dominated by intermolecular collisions. Due to this,

the plasma can be approximated as a high temperature ideal gas with little loss of

accuracy [29].



Treating the plasma as a high temperature gas simplifies the treatment of the

system. Typical fluid mechanics shows that viscosity is directly proportional to the

square root of temperature [28, 27].

As the plasma gas is raised in temperature and the intermolecular collisions

become less of a factor, this approximation begins to fail. Eventually, the plasma can be

treated as fully ionized, at which point the viscosity becomes directly proportional to

temperature [30]. It is important to note that this plasma is in the absence of any applied

magnetic field.

4.3 Focusing Effect

An added benefit gained from the use of the plasma window is a focusing effect

of the deuteron beam. As current flows in the plasma arc it creates a circular magnetic

field around the center of the plasma which results in a field in the 0 direction. As the

positively charged deuteron particles pass through the plasma they interact with the

magnetic field and feel a force towards the center of the tube which can be determined by

F=q.VxB
(4.5)

where:

q = charge of the deuteron v = velocity

B = induced magnetic field.

This focusing effect on accelerated beams has been investigated as a replacement for

other beam optics [31, 32]. These "plasma lenses" are able to focus the beam in the x and

y direction simultaneously while other methods, such as permanent magnet quadropoles



(PMQs), can only focus the beam on one axis while increasing the beam on the other.

The amount of focusing achieved is highly dependent on the power inside the plasma arc

as well as the characteristics of the beam. Figure 4-1 shows the results from an

experiment in which a 5 MeV proton beam was focused by a plasma lens of varying

voltages [31].

a b c

Figure 4-1: 5 MeV proton beam size (4.5 cm without focusing) after

focusing with various plasma voltages (a. 4 kV, b. 7 kV, c. 9 kV) [31].



Chapter 5. Implementation of Plasma Arc

The creation of a stable plasma arc requires more than the application of high

voltage between a cathode and an anode. The plasma arc will follow the path of least

resistance which, in a gas, is the path of highest temperature. Due to this, the arc will

move around as the thermal layers of the gas move. In order to stop this, the temperature

variations in the gas must be well controlled throughout the process. These requirements

are met by the "Plasma Porthole" created by Hershcovitch. The design and

implementation of this device will be discussed in this chapter.

5.1 Plasma Porthole

The plasma porthole was designed to stabilize a plasma arc down the center of a

small cylinder. This was accomplished by stacking thin copper plates (5 mm thick) with

thin plates of boron-nitride (1.3 mm) in-between (Figure 5-1). Each of the plates had a

small two mm hole drilled in the center and once all the plates were stacked, it formed a

six cm long cylinder. Copper was chosen for its high heat conductance rate and overall

heat characteristics. The plates were individually cooled by a chilled water supply and

served to cool the gas on the outer edges of the cylinder. The outer cooling causes the

warmest part of the gas to be at the center of the cylinder at all times. This stabilizes the

thermal layers of the gas which in turn stabilizes the plasma arc.

A second criteria for creating a plasma arc is the isolation of the voltage potential

through the gas. Since the current will seek out the least resistance possible, this isolation

prevents the current from flowing through the structure instead of the gas. The boron-

nitride plates between the copper cooling plates serve to isolate the plates from ground as



well as from each other. Care has been taken to prevent the plasma from coming in

contact with the insulating plates to prevent them from melting. Each of the three

structural bolts that hold the system together are covered by plastic sleeves and use

plastic washers at the end to prevent them from creating a short. The three cathode

holders are likewise isolated from the rest of the system by plastic sleeves.
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Figure 5-1: Cross section of plasma porthole [33].



5.2 System Installation

A new vacuum chamber system was assembled in order to test the plasma

porthole. This system was created similar to the system previously discussed in order to

allow for the use of the same vacuum pump arrangement. The previous vacuum chamber

could not be used since its beam line was off center while the plasma porthole beam line

is down the center. This new system was created by bolting three T-sections together to

create the three pumping chambers. A solid aluminum plate was placed between each of

the T-sections. Both plates had a thin tube (5 mm inner diameter, 96 mm long) attached

to allow for constricted flow between each chamber. An end blanking plate was

machined to mate to the plasma porthole and allow the device to be bolted to the last T-

section (Figure 5-2).
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eam igure 5-2: Plasma porthole system.as

Figure 5-2: Plasma porthole system.



Once the plasma porthole was connected to the vacuum chambers, final

connections were made. The target chamber was screwed into the front of the porthole

and the necessary gas connections were made. A coarse and a fine valve were included

in the gas line in a parallel arrangement. The fine valve was used to control the gas flow

before the arc was created and then the coarse valve was used to raise the pressure

afterward. Chilled water lines were connected to the system to provide cooling for the

cathodes, copper plates, and anode plate. Finally, electrical lines were connected from

the power supply to each of the cathode holders while the ground line was connected to

the anode plate.

5.3 Expected Results

From discussions with Hershcovitch, we expected to achieve three atmospheres of

pressure in the target chamber while maintaining 10-4 torr in the first vacuum chamber

[25]. This pressure differential is dependent on the amount of energy that is inputted into

the system. With higher energy, the temperature of the plasma gas is raised, thus raising

the viscosity of the gas and decreasing the plasma flow. This can be clearly seen from

previous experiments by Hershcovitch [26]. Since the electrons in hydrogen gas are

more tightly bound than in argon, it is harder to create a plasma arc in hydrogen. This

requires that a higher voltage be applied to achieve the same results.

VOLTAGE (V) CURRENT (AMPS) POWER (KW) APRESSURE (ATM)
193 50 9.7 3.1
208 50 10.4 3.8
158 50 7.9 1.3
196 40 7.9 3.4
203 50 10.2 3.5

Table 5-1: Pressure achieved at different power levels in argon [26].



Chapter 6. Applications

With the creation of a stable windowless target system, several of the previous

limitations on accelerators can be removed. These limitations on beam current, energy

focusing, and overall power output, have hampered many attempted accelerator

applications. These applications will now benefit greatly from the new windowless target

system.

6.1 Intense Fast Sources

With the removal of the limitations on the beam current and energy, it is now

possible to create high intensity fast neutrons. The high energy of the neutrons greatly

increases their range and allows for the imaging of larger objects. In a similar manner,

the high beam current increases the radiation reaching the detector and reduces the time

needed for recording data. This significant reduction in imaging time increases the

throughput time of the system that has previously served as a limiting factor in many

applications.

One program that will benefit greatly from both of these improvements is the

nuclear stockpile stewardship. This project requires an imaging technique that can detect

small defects in low-Z material that is surrounded by high-Z material in a nuclear device.

The goal is to capture a full tomographic image within a few hours while being able to

detect voids and other defects in the range of a cubic-mm. Previous experiments have

proven the feasibility of this project with neutrons of energies between 4 and 400 MeV.

These experiments drilled holes 4 to 12 mm in diameter in a 2.54 cm thick disk of LiD

and placed it between two blocks of uranium (Figure 6-1). Preliminary experiments have



shown that similar results can be achieved with lower energy neutrons between 10 and 15

MeV and about 1012/4ir n/sec/sr [34,31].

4 - 400 MeV phantom target assembly tungsten
neutron beanm (side) (front) transmitted beam converter

O --

2.54 cm thick 5.00 cm thick wire-chamber

LiD disk uranium slabs particle detector

Figure 6-1: Proof of principal experiment for imaging low-Z

material between blocks of high-Z material [35].

6.2 Monoenergetic Sources

Without a physical boundary to slow the accelerated particles down, the spread of

neutron energies is greatly reduced. As shown previously, by choosing the reaction,

characteristics of the accelerated beam, and the angle at which the neutrons are removed,

it is possible to choose the neutron energy. This beam of tightly focused specific energy

neutrons can be used to improve many imaging and detection techniques.

An important application that could take advantage of the energy focusing is the

imaging of luggage for possible explosives. Studies have been conducted that pass

neutron beams through luggage and analyze the transmitted spectrum. The neutron

energies range from around 0.8 MeV at the lower end with an upper level between 4 and

8 MeV, depending on the experiment. Beams with such wide ranges of energies are



called "white" sources. The luggage is divided into pixels and the transmitted spectrum

is analyzed for each pixel. The densities of H, C, N, and O are calculated with

contributions from all other elements grouped into a fictitious element X. Since plastic

explosives have high concentrations of N and 0, the density information is used to

establish a probability of the presence of plastic explosives. An improvement to this

system can be gained by comparing this "white" neutron transmission spectrum to the

transmission spectrum from a focused, monoenergetic neutron beam with energies

between 4 and 5 MeV. As can be seen from Figure 6-2, the nitrogen cross-section is

much higher for neutrons of this energy. By comparing these two transmitted spectrums,

the difference will highlight the presence of nitrogen and greatly improve the accuracy of

its density calculation [36, 37, 38, 39].
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Figure 6-2: Total nitrogen cross-section versus

neutron energy [40].



A second application that would gain from the comparison of "white" neutron

transmission and monoenergetic neutron transmission is the search for dense carbon in

unprocessed ore. In this system, small amounts of dense carbon are being removed from

large amounts of ore and the system must be able to quickly distinguish and sort out the

ore that contains the carbon. The total neutron cross-section for carbon contains a peak

between 7 and 9 MeV (Figure 6-3) which can be used to identify it [18].
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Figure 6-3: Total carbon cross-section versus

neutron energy [40]

Both of these applications will also benefit from the reduction in scanning time

that is gained from the increase in neutron flux as mentioned previously.
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6.3. Accelerator-driven Transmutation of Waste (ATW)

Research has been conducted at Los Alamos National Laboratory to solve the

problem of nuclear waste disposal by "burning" the long lived actinides in sub-critical

assemblies. An accelerator is used to inject neutrons into the assembly which cause the

long lived actinides to fission during sub-critical nuclear chain reactions. Multiple sub-

critical assemblies are driven by a high energy proton accelerator that utilizes a 1000

MeV proton beam at 40 mA (40 MW) and a 100% duty cycle. The beam is split into

different assemblies and in each it passes through a window and then into a liquid

spalation target of lead or lead-bismuth eutectic. The liquid lead target also serves as a

coolant for the sub-critical assembly and the window (Figure 6-4 and Figure 6-5).

Removal of the physical window would allow for greater beam currents as well as a

vastly improved life span for the target system [41, 42, 43].
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Figure 6-4: ATW target system [41].
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Figure 6-5: Enlarged view of window system with

cooling flow from liquid target [41].



Chapter 7. Conclusions and Future Work

Two separate windowless gas target systems have been investigated during this

research. While the theory of both systems has been proven, neither one fully met the

design goals of several atmospheres in the target chamber during previous experiments.

Through the development achieved during this research, it is hoped that both systems will

improve greatly in attainable pressures. It is at this point that we must ask whether one

system is more advantageous than the other, and where should future efforts be invested.

7.1 Comparison

As shown in this report, the two systems differ vastly in their guiding principles.

The mechanical system created by Iverson relies upon low conductance nozzles and

rotating disks which open and close the beam pathway. The second system developed by

Hershcovitch relies instead on the high pressure, low flow characteristics of a plasma arc

along with low flow nozzles between chambers. This great difference in underlying

principles results in vast differences in implementation.

The first and most obvious difference between the mechanical and plasma system

is that the plasma system requires no moving parts. This removes a large degree of

difficulty in design for the plasma window. The mechanical system will need to be

precisely balanced to allow it to rotate at speeds that match the accelerators 640 Hz pulse

rate. This also introduces difficulties in timing the accelerator pulse to the alignment of

the holes. Finally, the added complication of high speeds components results in a greater

likelihood that a part will break, possibly catastrophically. With the removal of moving

components for the plasma system, all of these concerns are removed.



The addition of the plasma arc to the system adds different complications. First,

the cooling requirements for the plasma channel must be met at all times during

operation. Possible melting of the boron-nitride plates and the metal components could

occur if there is an interruption in the chilled water supply. Cooling must also be

provided for the first vacuum chamber to counteract the heat deposited from the small

flow of plasma into the chamber. Without this cooling the chamber will be heated above

acceptable limits within ten minutes [26]. The plasma window also requires a large

power supply to strike and sustain the arc. Such a large power supply could be unwanted

in some circumstances.

In the end, there are two final deciding factors that makes the performance of the

plasma arc more desirable than the performance of the mechanical system. First, the

plasma arc is designed to be operated steady state and allows for accelerator duty cycles

of up to 100%. The mechanical system however relies upon the fact that the accelerator

has a 2.25% duty cycle. Increases in the duty cycle would require that the holes in the

disks be increased to allow for longer pulses which would reduce the efficiency of the

disks and thereby reduce the efficiency of the overall system. The second deciding factor

in favor of the plasma system is its favorable focusing effect on the deuteron beam. Such

an effect is highly desirable in many applications and would reduce the need for other

focusing devices.

While it is clear that the plasma arc system is more desirable than the mechanical

system, it must be pointed out that the two systems are not mutually exclusive. It is

possible to combine the two systems when higher target pressures are desired. Such a



system would combine the drawbacks of each system but may also allow for pressures

which neither system could reach independently.

7.2 Future Work

This research has investigated and designed two separate windowless gas target

systems for future experimentation. Some final assembly is required on each system

before testing may begin but this should be easily accomplished. Once the systems are

complete, tests should be run first with argon gas and without the accelerator beam

running to allow for simple first approximation runs on each system. Once these are

complete and the systems are well characterized, they should be aligned properly with the

beam and the pressure tests should be recreated with deuterium gas. Depending on the

results achieved from these initial runs, the beam should then be activated and the

neutron flux should be measured. The maximum neutron flux will most likely be limited

by radiation protection concerns rather then by any system constraints.



Appendix A. Pump Information

The following pages contain information on the WOD 900 B, TMU 520, TMU
260, and the UniDry 050. All of the information was taken from the Pfeiffer Vacuum
Technology catalog [20].



Roots Vacuum Pumping Station WOD 900B.

Ordering number:
Type designation:
Price:

PPS42010
WOD 900 B
on request

The compact, serial pumping station for all applications in the rough and medium
vacuum range.

Characteristics:
Flange (in)
Flange (out)
Nominal pumping speed
Ultimate pressure: Total without gas ballast, smaller
Ultimate pressure: Total with gas ballast, smaller
Mains requirement: Voltage (selectable)
Control cabinet
Version

WOD 900 B (50 Hz)

101

if~

DN 160 ISO-F
DN 63 ISO-KF
900 m3/h
7.52-10-05 Torr
7.52-10-05 Torr
230/400 V, 50 Hz
no
With two stage backing pump
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____ __ __.. ... ... ... ... __ ___ ___

14 V0:2
p(m bar)

DN1 = DN 160 ISO-F
DN2 = DN 63 ISO-KF
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A = 1280 mm
C = 1330 mm
E = 1045 mm
G = 400 mm

Technical data:
Pumping station components

Pumping speed
Switch on pressure
Ultimate pressure: Total without gas ballast,
smaller
Ultimate pressure: Total with gas ballast, smaller
Water vapor tolerance
Pump fluid filling
Pump fluid filling
Motor rating total
Motor rating total
Mains requirement: Voltage (selectable)
Mains requirement: Voltage (selectable)
Weight
Weight

WKP 1000 A, ONF 063, DUO
120 A
900 m3/h
761.66 Torr
3.76.10 -o05 Torr

3.76-10 -03 Torr
24.82 Torr
4.23 gal (U.S.)
4.23 gal (U.S.)
7 kW
7 kW
230/400 V, 50 Hz, IP54
230/400 V, 50 Hz, IP54
1168.43 lb
1168.43 lb

L B - --

B = 790
D = 430
F = 230
H = 175

mm
mm
mm
mm



Turbomolecular Drag Pump TMU 520.

Ordering number:
Type designation:
Price:

PMP02430
TMU 520
13 200.00 US

The turbo drag pump with the edge in pumping speeds.

Industries
* Process Technology
* Lamps etc.
* Transportation
* Scientific

Characteristics:
Flange (in)
Flange (out)
Pumping speed: for N2
Ultimate pressure with sin
Ultimate pressure with dia
Gas throughput for N2
Fore vacuum max. for N2
Sealing gas connection

gle stage rotary vane pump
phragm pump

DN 160 CF-F
DN 25 ISO-KF
500 1/s
< 7.52.10-11 Torr
< 7.52.10-11 Torr
236.69 sccm
12.03 Torr
no



600

ta 500

400
300

200

100

0

10o

DN1 = DN 160 CF-F
DN2 = DN 25 ISO-KF

S,------

_f ,;:" - _. ''  i

K-i

A = 224 mm
C = 122 mm
E = 170 mm
G = 166 mm
K =86mm

B = 115 mm
D = 64 mm
F = 127 mm
H = 119 mm

® High vacuum connection
( Venting connection

Air cooling

.v! Fore vacuum connection
(i Power connection

- Water connection

10mba
p(mbar)

TMU 520 M, DN 160



Technical data:
Pumping speed: for N2

Pumping speed: for He
Pumping speed: for H2

Compression ratio for N2
Compression ratio for He
Compression ratio for H2
Gas throughput for N2

Gas throughput for He
Gas throughput for H2

Ultimate pressure with single stage rotary vane pump
Ultimate pressure with diaphragm pump
Recommended roughing pump
Rotational speed +-2%
Rotational speed: Stand-by
Run-up time with TCP 600
Cooling method, standard
Cooling water consumption
Weight

500 1/s
500 1/s
480 1/s
1.00-1012
5.00.1007
5.00.1006
236.69 sccm
414.21 sccm
532.55 sccm
< 7.52.10 -1 Torr
< 7.52.10-10 Torr
MD 4T, DUO 010 M, UniDry
50000 rpm
33000 rpm
5 min
water
15 1/h
27.56 lb



Turbomolecular Drag Pump TMU 260.

Ordering number:
Type designation:
Price:

PMP02135
TMU 260
6 610.00 US

The turbo drag pump designed for a wide field of applications in industry and research.

Industries
* Process Technology
* Lamps etc.
* Transportation
* Scientific
* Analytical

Characteristics:
Flange (in)
Flange (out)
Pumping speed: for N2
Ultimate pressure with single stage rotary vane pump
Ultimate pressure with diaphragm pump
Gas throughput for N2

Fore vacuum max. for N2

Sealing gas connection

DN 100 CF-F
DN 25 ISO-KF
210 1/s
< 7.52.10 -11 Torr
< 7.52-10 -09 Torr
147.93 sccm
7.52 Torr
no



TMU 260, DN 100

250

200

150

100

50

0

10 10-4

DN1 = DN 100 CF-F
DN2 = DN 25 ISO-KF

194.5 mm
82.0 mm
135.0 mm
128.5 mm
86.0 mm

= 115.0 mm
= 64.0 mm
= 127.0 mm
= 95.0 mm

High vacuum connection
Fore vacuum connection
Venting connection
Power connection
Air cooling
Water connection

10-2 10-1

p(mbar)

(V+



Technical data:
Pumping speed: for N2

Pumping speed: for He
Pumping speed: for H2
Compression ratio for N2

Compression ratio for He
Compression ratio for H2

Gas throughput for N2

Gas throughput for He
Gas throughput for H2
Ultimate pressure with single stage rotary vane pump
Ultimate pressure with diaphragm pump
Recommended roughing pump
Rotational speed +-2%
Rotational speed: Stand-by
Run-up time with TCP 380
Cooling method, standard
Cooling water consumption
Weight

210 1/s
220 1/s
180 1/s
1.00-1009
3.00.100'
13000
147.93 sccm
147.93 sccm
118.35 sccm
< 7.52.10 -1 Torr
< 7.52-10 -09 Torr
MZ 2T, UNO 005 A
60000 rpm
40000 rpm
1.5 min
water
15 1/h
19.85 lb



UniDryTM 050

Ordering number:
Type designation:
Price:

PKT1 1101
UniDryTM 050-4
on request

Standards:
- casing: nodular cast iron GGG 40.3
- casing seals: Viton
- radial shaft seals: PTFE
- operating fluid for gear box: F5 (filling not included)

Characteristics:
Flange (out)
Version
Ultimate pressure, smaller
Mains requirement: Voltage (range)
Pumping speed

DN 25 ISO-KF
with standard motor
3.76.10 -02 Torr
230/400 V, 50 Hz
50 m3/h



Technical data:
Number of stages
Pumping speed at 50 Hz
Pumping speed at 60 Hz
Ultimate pressure
Intake pressure max.
Leak rate
Motor rating
Power consumption
Rotational speed at 50 Hz
Rotational speed at 60 Hz
Cooling water consumption max.
Cooling water consumption at intake pressure
Cooling water temperature max.
Cooling water pressure
Cooling water connection, female thread
Cooling water connection
Noise level with connected exhaust line
Lubricant amount in gear
Ambient temperature
Weight: without motor
Weight: with motor

4 pcs
50 m3/h
60 m3/h
< 3.76.10-02 Torr
751.88 Torr
5.92 sccm
3 kW
1.3 W
3000 rpm
3600 rpm
3 1/h
25 1/h
25 oC
2-10 bar
DIN ISO 228 G 1/2"
0.48 inch
< 68 dB (A)
8.45-10-02 gal (U.S.)
5-40 oC
253.53 lb
297.62 lb



Appendix B. Diagrams of Mechanical System

The following pages contain drawings of the re-designed mechanical system. All
measurements are given in inches and no tolerances are shown. Section views are
provided.
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Appendix C. Diagram of Plasma Window System

The following pages contain drawings of the Plasma Porthole system. All measurements
are given in inches except when stated, and no tolerances are shown. Section views are
provided.
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Plasma Window
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