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Abstract

Markov random field (MRF) model provides an elegant probabilistic framework to
formulate inter-dependency between a large number of random variables. In this the-
sis, we present a new approximation algorithm for computing Maximum a Posteriori
(MAP) and the log-partition function for arbitrary positive pair-wise MRF defined
on a graph G. Our algorithm is based on decomposition of G into appropriately cho-
sen small components; then computing estimates locally in each of these components
and then producing a good global solution. We show that if either G excludes some
finite-sized graph as its minor (e.g. planar graph) and has a constant degree bound,
or (G is a polynomially growing graph, then our algorithm produce solutions for both
questions within arbitrary accuracy. The running time of the algorithm is linear on
the number of nodes in G, with constant dependent on the accuracy.

We apply our algorithm for MAP computation to the problem of learning the
capacity region of wireless networks. We consider wireless networks of nodes placed
in some geographic area in an arbitrary manner under interference constraints. We
propose a polynomial time approximate algorithm to determine whether a given vec-
tor of end-to-end rates between various source-destination pairs can be supported by
the network through a combination of routing and scheduling decisions.

Lastly, we investigate the problem of computing loss probabilities of routes in
a stochastic loss network, which is equivalent to computing the partition function
of the corresponding MRF for the exact stationary distribution. We show that the
very popular Erlang approximation provide relatively poor performance estimates,
especially for loss networks in the critically loaded regime. Then we propose a novel
algorithm for estimating the stationary loss probabilities, which is shown to always
converge, exponentially fast, to the asymptotically exact results.

Thesis Supervisor: Devavrat Shah
Title: Jamieson Career Development Assistant Professor of Electrical Engineering
and Computer Science
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Chapter 1

Introduction

A Markov random field (MRF) is an abstraction that utilizes graphical represen-
tation to capture inter-dependency between a large number of random variables.
MRF provides a convenient and consistent way to model context-dependent entities
such as network nodes with interference and correlated features. This is achieved by
characterizing mutual influences among such entities. The MRF hased models have
been utilized successfully in the context of coding (e.g. the low density parity check
code [51]), statistical physics (e.g. the Ising model {11}), natural language process-
ing [43] and image processing in computer vision [36,42,64]. The key property of
this representation lies in the fact that the probability distribution over the random
variables factorizes.

The key questions of interest in most of these applications are that of inferring
the most likely, or Maximum A-Posteriori (MAP), assignment, and computing the
normalizing constant of the probability distribution, or the partition function. For
example, in coding, the transmitted message is decoded as the most likely code word
from the received message. This problem corresponds to computing MAP assignment
in an induced MRF in the context of graphical codes (aka LDPC codes). These two
problems are NP-hard in general. However, in practice, the underlying graphical
structure of MRF is not adversarial and hence can yield to simple structure aware
approximations. In this dissertation, we identify new classes of structural properties

of MRFs that yield to simple, and efficient algorithms for these problems. These
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algorithms and presented in Chapter 2.

Then we present application of our algorithms to networks. In wireless network
settings, in essence we have a network of n nodes where nodes are communicating
over a common wireless medium using a certain standard communication protocol
(e.g. IEEE 802.11 standard). Under any such protocol, transmission between a pair
of nodes is successful if and only if none of the nearby or interfering nodes are trans-
mitting simultaneously. Any such interference model is equivalent to an independent
set interference model over the graph of interfering communication links. In this
model, the well known “maximum weight scheduling” introduced by Tassiulas and
Ephremides [61] is equivalent to the computation of mazimum weight independent
set by considering each node’s queue size as its weight. In Chapter 3, by consider-
ing the maximum weight independent set problem as computation of MAP for the
corresponding MRF and applying our approximate MAP algorithm, we propose an
algorithm for learning the capacity region of a wireless network.

Finally, in Chapter 4, we investigate the problem of computing loss probabilities
of routes in a stochastic loss network, which is equivalent to computing log-partition
functions of the corresponding MRF for the exact stationary distribution. For this
problem, we propose a novel algorithm for estimating the stationary loss probabilities
in stochastic loss networks, and show that our algorithm always converges, exponen-

tially fast, to the asymptotically exact solutions.

1.1 Markov random field

An MRF is a probability distribution defined on an undirected graph G = (V, E) in
the following manner. For each v € V| let X, be a random variable taking values in
some finite valued space ¥,. Without loss of generality, assume that £, = ¥ for all
veV. Let X = (Xj,...,X,) be collection of these random variables taking values
in =" For any subset A C V, we let X4 denote {X,|v € A}. We call a subset
S C V a cut of G if by its removal from G the graph decomposes into two or more

disconnected components. That is, V\S = AU B with ANB =0, A, B # 0 and for
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any a € A,b € B, (a,b) ¢ E.

Definition 1 The probability distribution X is called a Markov random field, if for
any cut S C V, X4 and Xp are conditionally independent given Xg, where V\S =
AUB.

By the Hammersley-Clifford theorem [22], any positive Markov random field, i.e.
PX = x| > 0 for all x € £", can be defined in terms of a decomposition of the
distribution over cliques of the graph. That is, let Cg be the collection of the cliques
of G, and ¥, be a positive real valued potential function defined on a clique ¢ € Cg.

Then the MRF X can be represented by

PX=x] o« [] Zelz.).
ceCq
In Chapters 2 and Chapter 3, we will restrict our attention to pair-wise MRFs, i.e.
MRFs having the above potential functions decomposition with cliques only on the
vertices and the edges of G. This does not incur loss of generality for the following
reason. A distributional representation that decomposes in terms of distribution over
cliques can be represented through a factor graph over discrete variables. Any factor
graph over discrete variables can be transformed into a pair-wise Markov random field
(see, [66] for example) by introducing auxiliary variables. Now, we present a precise

definition of the pair-wise Markov random field.

Definition 2 For each vertexv € V and edge (u,v) € E, let there be a corresponding
potential function ¥, : & — Ry and ¥, : 2 — R,. The distribution of X forx € "

which has the following form is called a pair-wise Markov random field.

P[sz] X H\I’v(xv) H ‘Pu'v(xu,xv)- (11)

veVvV (u,v)EE

In Chapter 4, we will study a class of non pair-wise MRF with application to a

stochastic loss network. Its definition is explained in Section 1.3.3.
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1.2 Problems of interest

In this section, we present the two most important operational questions of interest
for a pair-wise MRF : computing most likely assignment of unknown variables, and

computation of probability of assignment given partial observations.

1.2.1 MAP assignment

The maximum a posteriori (MAP) assignment x* is an assignment with maximal
probability, i.e.

x" € argmaxP[X = x].

xeL™

In many inference problems, the best estimator is the Maximum Likelihood (ML)
estimator. In the MRF model, this solution corresponds to a MAP assignment.
Computing a MAP assignment is of interest in a wide variety of applications. In the
context of error-correcting codes it corresponds to decoding the received noisy code-
word, and in image processing, it can be used as the basis for image segmentation
techniques. In the statistical physics applications, the MAP assignment corresponds
to the ground state, or a state with minimum energy. In discrete optimization ap-
plications, including computation of a maximum weight independent set, the MAP
assignment corresponds to the optimal solution.

In our pair-wise MRF setup, a MAP assignment x* is defined as
x* € arg max H U, () H Vo (24, )
vev (u,v)EFR
1.2.2 Partition function

The normalization constant in the definition (1.1) of distribution is called the partition

function denoted by Z. Specifically,

Z = Z H U, (z,) - H Uoo(0, Ty)

xexrn vel’ (uv)elE
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Notice that Z is dependent on the potential function expression, which may not be
unique for the given MRF distribution (for example, by adding constants to Us).
Clearly, the knowledge of Z is necessary in order to evaluate probability distri-
bution or to compute marginal probabilities, i.e. P(X, = z,) for v € V. Under the
polynomial (over n) time computational power, computing Z is equivalent to com-
puting P[X = x] for any x € £". In applications in statistical physics, logarithm of Z
provides free-energy, and in reversible stochastic networks, Z provides loss probability

for evaluating quality of service (see Chapter 4).

1.3 Examples of MRF

In this section we provide some examples of the MRF in the statistical physics and

the network world. Some of which will be useful later in the thesis.

1.3.1 Ising model

The Ising model, introduced by Ernst Ising [20] is a mathematical model to under-
stand structure of spinglass material in statistical physics [59]. In essence, the model
is a binary pairwise MRF defined as follows. Let V' be a collection of vertices, each
corresponding to a “spin”. For v € V, let X, denote its spin value in {—1,1}. Let
E € V xV be collection of edges capturing pair-wise interaction between spins. Then
the total energy of the system for each spin configuration x € {—1,1}V! is given as
follows.

For x € {-1,1}V,

E(X) X = Z Juvxul"va (12)

(u,v)eE

where Jy, € R are constants. For each pair (u,v) € E, if J,, > 0, the interaction is
called ferromagnetic. If J,, < 0, then the interaction is called antiferromagnetic.

Notice that the above energy function itself does not form an MRF, but exp(FE)
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does form an pair-wise MRF defined on G := (V, E). Let the inverse temperature be

where kp is the Boltzmann’s constant, and T is the temperature of the system. Then

the partition function of the following pair-wise MRF

Z= Y E(Bx) (1.3)
xe{-1,1}"

corresponds to the thermodynamic total energy of the system [11], which allows us to
calculate all the other thermodynamic properties of the system. For this MRF, the
MAP assignment corresponds to the ground state, or the state with minimum energy.
As an approximation model, Ising model defined on finite dimensional grid graphs,
especially on 2-dimensional or 3-dimensional grid graphs are widely used. Generalized
forms of Ising model which also contain potential functions for single spins, are widely

used for applications in computer vision including image segmentation problems [36].

1.3.2 Wireless network

The primary purpose of a communication network is to satiate heterogeneous demands
of various network users while utilizing network resources efficiently. The key algorith-
mic tasks in a communication network pertain scheduling (physical layer) and conges-
tion control (network layer). Recent exciting progress has led to the understanding
that good algorithmic solution for joint scheduling and congestion control can be ob-
tained via the “maximum weight scheduling” of Tassiulas and Ephremides [61]. In

Chapter 3, we will investigate this scheduling algorithm extensively.

Consider a wireless network on n nodes defined by a directed graph G = (V, E)
with |V| = n,|E| = L. For any e € E, let a(e), 3(e) denote respectively the origin
and destination vertices of the edge e. The edges denote potential wireless links, and

only the subsets of the edges so that any pairs of the edges in it do not interfere can
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be simultaneously active. We say two edges interfere when they share a vertex. Let
S = {e € {0,1}* : e is the adjacency vector for a non-interfering subset of E}

Note that S is the collection of the independent sets of E by considering interference

among e; € F and e; € E as the edge between them.

Consider m distinct source destination pairs of the network, (s1,d1), ..., ($m,dm)
and an end to end rate vector, r = (r1,79,...,Tm) € [0,1]™. Let t be an index ranging
over integers, to be interpreted as slotted time. Define ¢/(t) € R, as the packet mass
at node ¢ destined for node d; at time ¢t (for 1 <i < n,1 < j < m). Define a weight
matriz at time ¢, W(t), of dimension L x m via its (I, )" element (1 <[ < L and
1<j<m):

Wi(t) = ‘Li(l)(t) - q;(z)(t)- (L.4)

The weight vector of dimension L, W(t), is then defined with its [** element (corre-

sponding to link [,1 <! < L) as

Wi(t) = max{W](¢)} (1.5)

Let a-b denote the standard inner product of a and b. Then let the maximum

weight independent set (MWIS) of links be

M(t) = maxe- W(t). (1.6)

We will define an MRF so that computing MAP in the MRF is equivalent to com-
puting MWIS of the network. In general, given a graph G = (V, E) and node weights
given by w = (wy,...,wy)) € RL‘_/I, a subset x of V is said to be an independent set if
no two vertices of x have common edge. let Z(G) be set of all independent sets of G. A
mazimum weight independent set x* is defined by x* = argmax {wT x:x€I(G)},

where we consider w as an element of {0, 1}/V1.,

As explained in [61], the scheduling algorithm choosing the above maximum weight
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independent set of links for each time ¢ is throughput optimal. However, it is well
known that finding maximum weight independent set in general graph is NP-hard [1]
and even hard to approximate within n!=°( factor (B/2°00V°eB) factor for degree B
graph) [60].

Consider a subset of V' as a binary string x € {0,1}". The following pair-wise
MRF model is widely used to design approximate solution of the maximum weight
independent set (MWIS) for many class of networks, where the weight W, of node v

is defined as in (1.5).

Wi(x) o exp {Z Wo(7) - arl} . H U(zy,z,), (1.7)

vev (uv)EE

where ¥ is defined so that ¥(zy,22) = 0if 27 = 29 = 1, and ¥(x1,22) = 1 otherwise.
For the above MRF, note that W(x) is 0 if x is not an independent set of G.

When x is an independent set of G, W(x) is proportional to the exponent of total

weight of x. Hence, computation of MAP assignment for the above MRF corresponds

to computation of the MWIS. Details of this model will be discussed in Chapter 3.

1.3.3 Stochastic loss network

For almost a century, starting with the seminal work of Erlang [8], stochastic loss
networks have been widely studied as models of many diverse computer and com-
munication systems in which different types of resources are used to serve various
classes of customers involving simultaneous resource possession and non-backlogging
workloads. Examples include telephone networks, mobile cellular systems, ATM net-
works, broadband telecommunication networks, optical wavelength-division multi-
plexing networks, wireless networks, distributed computing, database systems, data
centers, and multi-item inventory systems. see, e.g., [21,28-31,44, 45,53, 54, 68, 69].
Loss networks have been used recently for resource planning in the IT services in-
dustry, where a collection of IT service products are offered each requiring a set of

resources with certain capabilities [4,39]. In each case, the stochastic loss network
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is used to capture the dynamics and uncertainty of the computer/communication

application being modeled.

In Chapter 4, we investigate stochastic loss networks with fixed routing, by con-
sidering the Markov random field for its stationary distribution. Consider a network
with J links, labeled 1,2,...,J. Each link j has C; units of capacity. There is a set
of K distinct (pre-determined) routes, denoted by R = {1,..., K}. A call on route r
requires Aj, units of capacity on link j, A; > 0. Calls on route r arrive according to
an independent Poisson process of rate v,., with v = (14, ..., vk) denoting the vector
of these rates. The dynamics of the network are such that an arriving call on route
r is admitted to the network if sufficient capacity is available on all links used by
route 7; else, the call is dropped (or lost). To simplify the exposition, we will assume
that the call service times are i.i.d. exponential random variables with unit mean.
It is important to note, however, that our results in this thesis are not limited to
these service time assumptions since the quantities of interest remain unchanged in
the stationary regime under general service time distributions due to the well-known

insensitivity property [63] of this class of stationary loss networks.

Let n(t) = (n1(t),...,nk(t)) € NX be the vector of the number of active calls in

the network at time ¢. By definition, we have that n(t) € S(C) where
S(C)={nezn>0,4n < C},

and C = (Ch,...,C;) denotes the vector of link capacities. Within this framework,
the network is Markov with respect to the state n(t). It has been well established
that the network is a reversible multidimensional Markov process with a product-form
stationary distribution [27]. Namely, there is a unique stationary distribution 7 on
the state space S(C) such that for n € §(C),

v

(1.8)

'7
nr.

m(n) =GO ]
ré€R
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where G(C') is the normalizing constant, or the partition function

- > 0%

neS(C) reR Ry

Let M be an upper bound on the number of active route calls for all routes. Then
the distribution (1.8) can be understood as the following Markov random field defined

forn € M¥.

l AN

J
H (n,), (1.9)

r ]“—'I

DIl

where R; is the set of routes that uses link j, and g;(-) is a potential function

defined as

1 if Zr R Ajr’llr S Cj
95(nw,) = = . (1.10)
0  otherwise

The underlying graph of the above MRF is the factor graph of 7.

Definition 3 A factor graph is o bipartite graph that expresses the factorization
structure of a multivarate function as m defined in (1.9): 1) it has a variable node
for each variable n,; 2) it has a factor node for each local function g;; 3) there is an
edge connecting variable node n, to factor node g; if and only if n, is an argument of

gj-

For this model, a main algorithmic question of interest is computing the probability
over time that a call on a route will be lost. This probability is called the loss
probability of the route. In Chapter 4, we will discuss a well known approach for
this computation called Erlang’s fixed-point approximation, and its limitation. Then
we will provide a novel algorithm for this problem and its comparison with Erlang’s

approximation.
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1.4 Main contributions of this thesis

Exact computation of MAP assignment and log-partition function for an MRF on
general graph are known to be NP-hard, and sometimes they are even hard to ap-
proximate within n!=°(!) factor [1,60]. However, applications require solving this
problem using very simple algorithms. Hence designing efficient and easily imple-
mentable approximate algorithms for those problems for practical MRF's is of main

algorithmic challenge.

One popular approach in the literature is that of the Belief Propagation algorithm
and its deviations including Tree-reweighted algorithm, which exploit large “girth”
(i.e. lack of short cycles) of the graphical structure. While these algorithms have been
successful in situations like error-correcting codes where one has “freedom” to design
the graph of code, in applications like wireless network, stochastic loss network, image
processing, and statistical physics, this is not the case. Specifically, popular graphical

models for wireless network, and image processing do have lots of short cycles.

In this thesis, we identify a new class of structural properties of MRF, that yield
to simple, and efficient algorithms. Specifically, for MRFs defined on graphs that
have some “geometry” (which we call as graphs with polynomial growth, see Section
2.3.1) or graphs which are minor-excluded (for example, planar graphs, see Section
2.3.2) with bounded degree, we design almost linear time algorithms for approxi-
mate computation of MAP assignment and log-partition function within arbitrary
accuracy. The graphical models arising in wireless networks, statistical physics, and
image processing do possess such graphical structure. We also provide a simple novel
algorithm for MAP computation based on local updates of a MAP assignment. Our
algorithm can be implemented in a distributed manner, and we show that for graphs
with polynomial growth, our algorithm computes approximate MAP within arbitrary
accuracy. These algorithms are presented in Chapter 2. A subset of the results of

Chapter 2 appeared in [25].

Next, we turn our attention to the application of our algorithms to network prob-

lems. In Chapter 3, we consider a wireless network of n nodes placed in some ge-
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ographic area in an arbitrary manner. These nodes communicate over a common
wireless medium under some interference constraints. Our work is motivated by the
need for an efficient algorithm to determine the n? dimensional unicast capacity re-
gion of such a wireless network. Equivalently, we consider the problem of determining
whether a given vector of end-to-end rates between various source-destination pairs
can be supported by the network through a combination of routing and scheduling
decisions among more than exponentially many possible choices in 7.

This question is known to be NP-hard and hard to even approximate within
n1~°() factor for general graphs [57]. We consider wireless networks which are usually
formed between nodes that are placed in a geographic area and come endowed with
a certain “geometry”, and show that such situations do lead to approximations to
the MWIS problem by applying our approximate computation of MAP algorithm
to the corresponding MRF. Consequently, this gives us distributed polynomial time
algorithm to approximate the capacity of wireless networks to arbitrary accuracy.
This result hence, is in sharp contrast with previous works that provide centralized
algorithms with at least a constant factor loss. Results reported in this Chapter
appeared in [13, 14, 26).

In Chapter 4, we investigate the problem of computing loss probabilities of routes
in a stochastic loss network, which is equivalent to computing partition function of
the corresponding MRF for the exact stationary distribution. We show that the
very popular Erlang fixed-point approximation provides relatively poor performance
estimates, especially when the loss network is critically loaded. Then based on the
structural property of the corresponding MRF, we propose a novel algorithm for
estimating the stationary loss probabilities in stochastic loss networks, and show
that our algorithm always converges exponentially fast to the asymptotically exact
solutions. Using a variational characterization of the stationary distribution, we also
provide an alternative proof for an error upper bound of the Erlang approximation.
A previous version of this Chapter appeared in [24].

Finally, Chapter 5 concludes with a summary and directions for the future work.
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Chapter 2

Approximate Inference Algorithm

In this Chapter, we present new approximate inference algorithms for computation
of MAP assignment and log-partition function for two important classes of pairwise
MRFs based on the underlying graph structure of the MRF. The first class is the
graphs that are polynomially growing, and the second one is the graphs that exclude
a finite-sized graph as a minor and has a constant vertex degree bound. For the class
of polynomially growing graph, we also provide an intuitively pleasing sequential

randomized algorithm for efficient inference of MAP.

2.1 Previous work

A plausible approach for designing simple algorithms for computation of MAP and
log-partition function is as follows. First, identify a wide class of graphs that have
simple algorithms for computing MAP and log-partition function. Then, for any
given graph, approximately compute a solution by possibly solving multiple sub-
problems that have good graph structures and then combining the results from these
sub-problems to obtain a global solution.

Such an approach has resulted in many interesting recent results starting from
the Belief Propagation (BP) algorithm designed for tree graphs [49]. Since there
is a vast literature on this topic, we will recall only few results. Two important

algorithms are the generalized belief propagation (BP) [71] and the tree-reweighted
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algorithm (TRW) [65-67]. Key properties of interest for these iterative procedures
are the correctness of fixed points and convergence. Many results characterizing
properties of the fixed points are known starting [71]. Various sufficient conditions
for their convergence are known starting [62]. However, simultaneous convergence and
correctness of such algorithms are established for only specific problems, e.g. [3,34,46].
Now, we discuss two results relevant to this chapter. The first result is about prop-
erties of TRW. The TRW algorithm provides provable upper bound on log-partition
function for arbitrary graph [67]. However, to the best of our knowledge the error
is not quantified. The TRW for MAP estimation has a strong connection to specific
Linear Programming (LP) relaxation of the problem [66]. This was made precise in
a sequence of work by Kolmogorov [33], Kolmogorov and Wainwright [34] for binary
MREF. It is worth noting that LP relaxation can be poor even for simple problems.
Another work is an approximation algorithm proposed by Globerson and Jaakkola
[12] to compute log-partition function using Planar graph decomposition (PDC). PDC
uses techniques of [67] in conjunction with known result about exact computation of
partition function for binary MRF when G is Planar and the exponential family
has very specific form. Their algorithm provides provable upper bound for arbitrary
graph. However, they do not quantify the error incurred. Further, their algorithm is

limited to binary MRFs.

2.2 Outline of our algorithm

We propose a novel local algorithm for approximate computation of MAP and log-
partition function. For any € > 0, our algorithm can produce an e-approximate
solution for MAP and log-partition function for arbitrary positive MRF G as long as

G has either of these two properties:
e G is a polynomially growing graph (see Section 2.3.1, Theorems 2 and 6),

e G excludes a finite-sized graph as a minor (see Theorems 3 and 7) and has

constant maximum degree.
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We say MRF X is a positive MRF when X is given as follows: for x € 7,

PX=x o exp |y dul@)+ Y dulzn ) |, (21)
veV (wv)eE

where ¢, : & — Ry and ¥y, : 2 — R;. We note that the assumption of ¢y, Yy
being non-negative does not incur loss of generality for the following reasons: (a)
the distribution remains the same if we consider potential functions ¢, + C,, Y, +
Cuw, for all v € V,(u,v) € E with constants C,, Cyy; and (b) by selecting large
enough constant, the modified functions will become non-negative as they are defined
over finite discrete domain. The representation (2.1) is called a ezponential family
distribution.

Our algorithm is primarily based on the following steps.

o First, decompose G into small-size connected components say Gi,...,Gy by

removing few edges of G.

e Second, compute estimates (either MAP or log-partition) in each of G; sepa-

rately.

e Third, combine these estimates to produce a global estimate while taking care

of the effect induced by removed edges.

In general, our algorithm works for any G and we can quantify bound on the error
incurred by our algorithm. It is worth noting that our algorithm provides a provable
lower bound on log-partition function as well unlike many of previous works. We
show that the error in the estimate depends only on the edges removed. This error
bound characterization is applicable for arbitrary graph.

For obtaining sharp error bounds, we need good graph decomposition schemes.
Specifically, we use a simple and very intuitive randomized decomposition scheme for
graphs with polynomial growth. This decomposition is described in Section 2.4.2. For
minor-excluded graphs, we use a simple scheme based on work by Klein, Plotkin and

Rao [32] and Rao [50] that they had introduced to study the gap between max-flow
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and min-cut for multicommodity flows. This decomposition scheme is described in
Section 2.4.3. In general, as long as G allows for such good edge-set for decomposing
G into small components, our algorithm will provide a good estimate.

To compute estimates in individual components, we use dynamic programming.
Since each component is small, it is not computationally burdensome. However, one
may obtain further simpler heuristics by replacing dynamic programming by other
method such as BP or TRW for computation in the components.

The running time of our algorithms are ©(n), with the constant dependent on ¢
and (a) growing rate for polynomially growing graph, or (b) maximum vertex degree
and size of the graph that is excluded as minor for minor-excluded graphs. For
example, for 2-dimensional grid graph, which has growth rate O(1), the algorithm
takes C(e)n time, where loglogC(e) = O(1/e). On the other hand, for a planar
graph with constant maximum vertex degree, the algorithm takes C'(¢)n time, with
loglog C'(e) = O(1/¢).

In Section 2.5.5, we develop an intuitively pleasing sequential randomized algo-
rithm for approximate MAP computation for polynomially growing graphs. This is
motivated by the property of the decomposition scheme for that graph class. This
algorithm can be implemented in a distributed manner in a natural way. We strongly
believe that this algorithm will have great practical impact.

In Section 2.7, as an unexpected consequence of these algorithmic results, we
obtain a method to establish existence of asymptotic limits of free energy for a class of
MRF. Specifically, we show that if the MRF is d-dimensional grid, and all node, edge
potential functions are identical, then the free-energy (i.e. normalized log-partition
function) converges to a limit as the size of the grid grows to infinity. In general,
such approach is likely to extend for any regular enough MRF for proving existence
of such limit: for example, the result will immediately extend when one replaces the
node, edge potential being exactly the same by they being chosen from a common
distribution in an i.i.d. fashion.

Finally, in Section 2.8, we present numerical experiments which convincingly show

that our algorithms are very competitive to other recently successful algorithms in-
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cluding TRW and PDC.

2.3 Graph classes

In this section, we explain the two class of graphs for which we obtain approximate

inference algorithms.

2.3.1 Polynomially growing graph

Definition 4 Let dg be the shortest path distance metric of a given graph G, and let
Beo(v,7) = {w € V|dg(w,v) < r}. If there are constants C > 0 and p > 0 so that
foranyv eV andr €N,

IBg(v,7)| < C - 7°,

then we say G is polynomially growing with growth rate p and corresponding constant

C.

Practical applications of MRF model including the following geometric network graphs

and doubling dimensional graphs, satisfy the above property.

Example 1 : Geometric Graph. Consider a wireless network with n nodes rep-
resented by the vertices V = {1,...,n} placed in a 2-dimensional geographic region

! in an arbitrary manner (not necessarily

given by the /n X y/n square of area n
random). Let E be the set of edges between nodes indicating which pair of nodes can
communicate. Let dg(-,-) be the Euclidean distance of the Euclidean space. Given
avertex v €V, let Bg(v,r) = {u €V : dg(u,v) < r}. We assume that the wireless

network satisfies the following simple assumptions.

1. There is an R > 0 such that no two nodes having distance larger than R

Placing the nodes in the specified square is for simple presentation. The same result holds when
the nodes are placed in any Euclidean rectangle, and when the nodes are place in any region of
k-dimensional Euclidean space.
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can establish a communication edge with each other? where R is called the

transmission radius.

2. Graph G has bounded density D > 0, i.e. for all v € V, m—E}%’—Rﬂ < D.

A geometric random graph obtained by placing n nodes in the v/n x \/n square uni-
formly at random and connecting two nodes that are within distance R = ©(+y/logn)

of each other satisfies the previous assumptions with high probability.

Lemma 1 Any geometric graphs satisfying the above two assumptions are polynomi-

ally growing with growth rate 2.

Proof. Let G be a geometric graph with a transmission radius R and a bounded
density D. First, note that in the Euclidean space, for any 7 > R, Bg(v,r) can be
covered by © ((%)2> many balls of radius R. Hence, together with the definition of
the bounded density D, there is a constant D’ > 0 so that for all v € V and r > R,

|BE(’U,T)|

<D (2.2)

Now, for a given two connected vertices v,w € V of G, let v = vy, v1,v2...,0¢ = W
be a shortest path in G. By the definition of the transmission radius, for all i =
0,1...,(¢-1),

dE(’Ui, Ui+1) S R.
By the triangular inequality in the Euclidean metric,
¢
de(v,w) <Y dg(vi,vis1) < R-L.
i=0

So we obtain

de(v,w) £ Rt = R -dg(v,w).

2Tt does not imply that nodes within distance R must communicate.
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Hence, for any v € V and r € N,
Bg(v,r) C Bg(v, Rr).

From (2.2),
IBg(v,7)| < |Bg(v, Rr)| < (D'R?) r?,

which shows that the growth rate of G is 2.

Example 2 : Doubling Dimensional Graph. A graph is said to have a doubling
dimension ¢ > 0 if any ball of radius 2r (w.r.t. the shortest path metric) in G can
be covered by at most 2¥ many balls of radius 7 for any € N. A graph with a
constant doubling dimension is called a doubling dimensional graph. The notion of
doubling dimensional graphs was first introduced in [2,15,17]. It is easy to check
that a grid graph Z? has doubling dimension d. Clearly, any graph with n nodes
has doubling dimension at most O(log,n). The following Lemma shows that any

doubling dimensional graph is polynomially growing.

Lemma 2 A graph with a constant doubling dimension ¢ is polynomially growing

with growth rate .

Proof. First, we will show that for any z € V and any t € Z,,
IBe(z,2°)| < 2%. (2.3)

The proof of (2.3) is by induction on t € Z,. For the base case, consider t = 0. Now,
Bg(z,2°) is essentially the set of all points which are at distance less than 1 from
z by the definition. Since it is metric with distance being integer, this means that
Be(z,1) = {z}. Hence, |B(z,1)| = 1 < 2°%¢M) for all z € X.

Now suppose that the claim of Lemma is true for all t < k and all x € X’. Consider

t =k+1and any z € X. By definition of the doubling dimension, there exists £ < 2¥
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balls of radius 2¥, say Bg(y;, 2%) with y; € X for 1 < j < ¢, such that
Bc(‘l‘, 2k+1) C UﬁleG('y]‘s Qk)
Therefore,

¢
Ba(z, 28] <) [Ba(y;, 28))-

i=1

By inductive hypothesis, for 1 < j < ¥,
Ba(y;,2°)] < 2.
Since we have £ < 2%, we obtain
Bo(z, 28| < 028 < 20tDe,

This completes the proof of inductive step, and that of (2.3).

Now, for any 7 € N, and any z € V, let 2! <r < 2! for t € Z,. From (2.3), we
obtain that

|Be(z,7)| < |Be(z, 2¢1)] < 209 = 20 . (24)9 < 29 . p¥, (2.4)

which shows the Lemma.

Property of polynomially growing graphs. The following Lemma shows that

any subgraph of a polynomially growing graph is also a polynomially growing graph.

Lemma 3 If G is polynomially growing with growth rate p, any subgraph G = (V, E)
of G obtained by removing some edges and vertices of G is also polynomially growing

with growth rate at most p.

Proof. For any vertex v,w € V, note that

d(_‘;(’l}, ”LU) > d(;(U,‘W),
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since any path in GG from v to w is also a path in G. Hence, for any v € V and r € N,

Bs(v, ) C Be(v, ).

Hence,

IBG('U,T)I < |BG(Uar)[ < ,rp,

which shows the Lemma from the definition 4. For example, any subgraph of a grid

graph is a polynomially growing graph.

2.3.2 Minor-excluded graph

Next, we introduce a class of graphs known as minor-ezcluded graphs (see a series of
publications by Roberston and Seymour under the graph minor theory project [52]).
A graph H is called minor of G if we can transform G into H through an arbitrary

sequence of the following two operations:

e removal of an edge.

e merge two connected vertices u,v: that is, remove edge (u, v) as well as vertices
u and v; add a new vertex and make all edges incident on this new vertex that

were incident on u or v.

Now, if H is not a minor of G then we say that G excludes H as a minor.

The explanation of the following statement may help to understand the definition
better: any graph H with r nodes is a minor of K,, where K, is a complete graph
of 7 nodes. This is true because one may obtain H by removing edges from K, that
are absent in H. More generally, if G is a subgraph of G’ and G has H as a minor,
then G’ has H as its minor. Let K, denote a complete bipartite graph with r nodes
in each partition. Then K, is a minor of K, ,. Hence, any graph H with r nodes is
a minor of K,,. An important implication of this is as follows: to prove property P
for graph G that excludes H, of size r, as a minor, it is sufficient to prove that any

graph that excludes K, as a minor has property P. This fact was cleverly used by
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Klein et. al. [32]. In what follows and the rest of the paper, we will always assume r

to be some finite number that does not scale with n (the number of nodes in G).

2.4 Graph decomposition

In this section, we introduce notion of our graph decomposition. We describe very
simple algorithms for obtaining decomposition for graphs with polynomial growth

and minor-excluded graphs.

2.4.1 (e,A) decomposition

Given &, A > 0, we define notion of (¢, A) decomposition for a graph G = (V, E).
This notion can be stated in terms of vertex-based decomposition or edge-based de-

composition.

Definition 5 We call a random subset of vertices B C V as (¢, A) vertex-decomposition

of G if the followings hold:
(@) ForanyveV,PlveB)<e.

(b) Let Sy,...,Se be the connected components of graph G' = (V', E') where V' =
V\B and E' = {(u,v) € E : u,v € V'}. Then, maxick<e|Sk| < A with
probability 1.

Note that the (¢, A) vertex-decomposition B forms the union of boundary vertices of

each connected components.

Definition 6 Similarly, a random subset of edges B C E is called an (g,A) edge-
decomposition of G if the following holds:

(a) Foranye€ E,P(ee B) <e.

(b) Let Sy,...,Sk be connected components of graph G' = (V', E’) where V! =V
and E' = E\B. Then, maxi<x<k |Sk| < A with probability 1.
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2.4.2 Graph decomposition for polynomially growing graphs

This section p