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Abstract

Markov random field (MRF) model provides an elegant probabilistic framework to
formulate inter-dependency between a large number of random variables. In this the-
sis, we present a new approximation algorithm for computing Maximum a Posteriori
(MAP) and the log-partition function for arbitrary positive pair-wise MRF defined
on a graph G. Our algorithm is based on decomnposition of G into appropriately cho-
sen small coInmponents; then computing estimates locally in each of these comlponents
and then producing a good global solution. We show that if either G excludes some
finite-sized graph as its minor (e.g. planar graph) and has a constant degree bound,
or G is a polynoinially growing graph, then our algorithmn produce solutions for both
questions within arbitrary accuracy. The running time of the algorithm is linear on
the number of nodes in G, with constant dependent on the accuracy.

We apply our algorithm for MAP computation to the problem of learning the
capacity region of wireless networks. We consider wireless networks of nodes placed
in some geographic area in an arbitrary manner under interference constraints. We
propose a polynomial time approximate algorithm to determine whether a, given vec-
tor of end-to-end rates between various source-destination pairs can be supported by
the network through a combination of routing and scheduling decisions.

Lastly, we investigate the problem of computing loss probabilities of routes in
a stochastic loss network, which is equivalent to computing the partition function
of the corresponding MRF for the exact stationary distribution. We show that the
very popular Erlang approximation provide relatively poor performance estimates,
especially for loss networks in the critically loaded regime. Then we propose a novel
algorithm for estimating the stationary loss probabilities, which is shown to always
converge, exponentially fast, to the asymptotically exact results.

Thesis Supervisor: Devavrat Shah
Title: Jamieson Career Development Assistant Professor of Electrical Engineering
and Computer Science
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Chapter 1

Introduction

A Markov random field (MRF) is an abstraction that utilizes graphical represen-

tation to capture inter-dependency between a large number of random variables.

MRF provides a convenient and consistent way to model context-dependent entities

such as network nodes with interference and correlated features. This is achieved by

characterizing mutual influences among such entities. The MRF based models have

been utilized successfully in the context of coding (e.g. the low density parity check

code [51]), statistical physics (e.g. the Ising model [11]), natural language process-

ing [43] and image processing in computer vision [36,42, 64]. The key property of

this representation lies in the fact that the probability distribution over the random

variables factorizes.

The key questions of interest in most of these applications are that of inferring

the most likely, or Maximum A-Posteriori (MAP), assignment, and computing the

normalizing constant of the probability distribution, or the partition function. For

example, in coding, the transmitted message is decoded as the most likely code word

from the received message. This problem corresponds to computing MAP assignment

in an induced MRF in the context of graphical codes (aka LDPC codes). These two

problems are NP-hard in general. However, in practice, the underlying graphical

structure of MRF is not adversarial and hence can yield to simple structure aware

approximations. In this dissertation, we identify new classes of structural properties

of MRFs that yield to simple, and efficient algorithms for these problems. These



algorithms and presented in Chapter 2.

Then we present application of our algorithms to networks. In wireless network

settings, in essence we have a network of n nodes where nodes are communicating

over a common wireless medium using a certain standard communication protocol

(e.g. IEEE 802.11 standard). Under any such protocol, transmission between a pair

of nodes is successful if and only if none of the nearby or interfering nodes are trans-

mitting sinmultaneously. Any such interference model is equivalent to an independent

set interference model over the graph of interfering communication links. In this

model, the well known "maximum weight scheduling" introduced by Tassiulas and

Ephrenides [61] is equivalent to the computation of maximurm weight independent

set by considering each node's queue size as its weight. In Chapter 3, by consider-

ing the maximum weight independent set problem as computation of MAP for the

corresponding MRF and applying our approximate MAP algorithm, we propose an

algorithm for learning the capacity region of a wireless network.

Finally, in Chapter 4, we investigate the problem of computing loss probabilities

of routes in a stochastic loss network, which is equivalent to computing log-partition

functions of the corresponding MRF for the exact stationary distribution. For this

problem, we propose a novel algorithm for estimating the stationary loss probabilities

in stochastic loss networks, and show that our algorithm always converges, exponen-

tially fast, to the asymptotically exact solutions.

1.1 Markov random field

An MRF is a probability distribution defined on an undirected graph G = (V, E) in

the following manner. For each v E V, let X, be a random variable taking values in

some finite valued space E,,. Without loss of generality, assume that E, = E for all

v E V. Let X = (X 1 ,..., X,) be collection of these random variables taking values

in EC . For any subset A C V, we let XA denote {X,,v E A}. We call a subset

S C V a cut of G if by its removal from G the graph decomposes into two or more

disconnected components. That is, V\S = A U B with An B = 0, A, B 0 ( and for



any a E A,b E B, (a, b) 0 E.

Definition 1 The probability distribution X is called a Markov random field, if for

any cut S C V, XA and XB are conditionally independent given Xs, where V\S =

AUB.

By the Hammersley-Clifford theorem [22], any positive Markov random field, i.e.

P[X = x] > 0 for all x E E", can be defined in terms of a decomposition of the

distribution over cliques of the graph. That is, let CG be the collection of the cliques

of G, and T, be a positive real valued potential function defined on a clique c E CG.

Then the MRF X can be represented by

P [X=x] oc r (x).

In Chapters 2 and Chapter 3, we will restrict our attention to pair-wise MRFs, i.e.

MRFs having the above potential functions decomposition with cliques only on the

vertices and the edges of G. This does not incur loss of generality for the following

reason. A distributional representation that decomposes in terms of distribution over

cliques can be represented through a factor graph over discrete variables. Any factor

graph over discrete variables can be transformed into a pair-wise Markov random field

(see, [66] for example) by introducing auxiliary variables. Now, we present a, precise

definition of the pair-wise Markov random field.

Definition 2 For each vertex v E V and edge (u, v) E E, let there be a corresponding

potential function I,, : E --+ R+ and u,, : E2 -- R+. The distribution of X for x E E"

which has the following form is called a pair-wise Markov random field.

P[X=x] oc '(X) 1- ItV(x,,zX,). (1.1)
vEV (u,v)EE

In Chapter 4, we will study a class of non pair-wise MRF with application to a

stochastic loss network. Its definition is explained in Section 1.3.3.



1.2 Problems of interest

In this section, we present the two most important operational questions of interest

for a pair-wise MRF : computing most likely assignment of unknown variables, and

computation of probability of assignment given partial observations.

1.2.1 MAP assignment

The maximum a posteriori (MAP) assignment x* is an assignment with maximal

probability, i.e.

x* E arg max P[X = x].
xEEr

In many inference problems, the best estimator is the Maximum Likelihood (ML)

estimator. In the MRF model, this solution corresponds to a MAP assignment.

Computing a MAP assignment is of interest in a wide variety of applications. In the

context of error-correcting codes it corresponds to decoding the received noisy code-

word, and in image processing, it can be used as the basis for image segmentation

techniques. In the statistical physics applications, the MAP assignment corresponds

to the ground state, or a state with minimum energy. In discrete optimization ap-

plications, including computation of a maximum weight independent set, the MAP

assignment corresponds to the optimal solution.

In our pair-wise MRF setup, a MAP assignment x* is defined as

1.2.2 Partition function

The normalization constant in the definition (1.1) of distribution is called the partition

function denoted by Z. Specifically,

xcErL 1En v (u,v)EE



Notice that Z is dependent on the potential function expression, which may not be

unique for the given MRF distribution (for example, by adding constants to is).

Clearly, the knowledge of Z is necessary in order to evaluate probability distri-

bution or to compute marginal probabilities, i.e. P(X, = x,) for v E V. Under the

polynomial (over n) time computational power, computing Z is equivalent to com-

puting P[X = x] for any x E E". In applications in statistical physics, logarithm of Z

provides free-energy, and in reversible stochastic networks, Z provides loss probability

for evaluating quality of service (see Chapter 4).

1.3 Examples of MRF

In this section we provide some examples of the MRF in the statistical physics and

the network world. Some of which will be useful later in the thesis.

1.3.1 Ising model

The Ising model, introduced by Ernst Ising [20] is a mathematical model to under-

stand structure of spinglass material in statistical physics [59]. In essence, the model

is a binary pairwise MRF defined as follows. Let V be a collection of vertices, each

corresponding to a "spin". For v E V, let X, denote its spin value in {-1, 1}. Let

E E V x V be collection of edges capturing pair-wise interaction between spins. Then

the total energy of the system for each spin configuration x E {-1, 1}Ivl is given as

follows.

For x E {-1, 1}IVI,

E(x) oc - J,xx,, (1.2)
(u,v)EE

where J,, E R are constants. For each pair (u, v) E E, if J,, > 0, the interaction is

called ferromagnetic. If J, < 0, then the interaction is called antiferromagnetic.

Notice that the above energy function itself does not form an MRF, but exp(E)



does form an pair-wise MRF defined on G := (V, E). Let the inverse temperature be

1

kBT'

where kB is the Boltzmann's constant, and T is the temperature of the system. Then

the partition function of the following pair-wise MRF

Z= E E(13x) (1.3)
xE{-1,1}"

corresponds to the thermodynamic total energy of the system [11], which allows us to

calculate all the other thermodynamic properties of the system. For this MRF, the

MAP assignment corresponds to the ground state, or the state with minimum energy.

As an approximation model, Ising model defined on finite dimensional grid graphs,

especially on 2-dimensional or 3-dimensional grid graphs are widely used. Generalized

forms of Ising model which also contain potential functions for single spins, are widely

used for applications in computer vision including image segmentation problems [36].

1.3.2 Wireless network

The primary purpose of a communication network is to satiate heterogeneous demands

of various network users while utilizing network resources efficiently. The key algorith-

mic tasks in a communication network pertain scheduling (physical layer) and conges-

tion control (network layer). Recent exciting progress has led to the understanding

that good algorithmic solution for joint scheduling and congestion control can be ob-

tained via the "maximum weight scheduling" of Tassiulas and Ephremides [61]. In

Chapter 3, we will investigate this scheduling algorithm extensively.

Consider a wireless network on n nodes defined by a directed graph G = (V, E)

with IVI = n, E Ij = L. For any e E E, let a(e), f(e) denote respectively the origin

and destination vertices of the edge e. The edges denote potential wireless links, and

only the subsets of the edges so that any pairs of the edges in it do not interfere can



be simultaneously active. We say two edges interfere when they share a vertex. Let

S = {e E {0, 1}L : e is the adjacency vector for a non-interfering subset of E}

Note that S is the collection of the independent sets of E by considering interference

among el E E and e2 E E as the edge between them.

Consider m distinct source destination pairs of the network, (sl, dl),..., (sn, d,,)

and an end to end rate vector, r = (r1 , r2, ... , rm) E [0, 1]m .Let t be an index ranging

over integers, to be interpreted as slotted time. Define Vi(t) E R+ as the packet mass

at node i destined for node dj at time t (for 1 < i < n, 1 < j < m). Define a weight

matrix at time t, W(t), of dimension L x m via its (I, j)th element (1 < 1 < L and

1 < j < M):

w' (t) = qa(1)(t) - q0(1)(t). (1.4)

The weight vector of dimension L, W(t), is then defined with its Ith element (corre-

sponding to link 1, 1 < I < L) as

W(t) = max{W/ (t)}. (1.5)

Let a-b denote the standard inner product of a and b. Then let the maximum

weight independent set (MWIS) of links be

.i (t) = max e - W(t). (1.6)
eES

We will define an MRF so that computing MAP in the MRF is equivalent to com-

puting MWIS of the network. In general, given a graph G = (V, E) and node weights

given by w = (wil,..., wiv) E +V, a, subset x of V is said to be an independent set if

no two vertices of x have common edge. let Z(G) be set of all independent sets of G. A

maximum weight independent set x* is defined by x* = argmax (wT x: x E Z(G) },

where we consider w as an element of {0, 1}IV.

As explained in [61], the scheduling algorithm choosing the above maximum weight



independent set of links for each time t is throughput optimal. However, it is well

known that finding maximunm weight independent set in general graph is NP-hard [1]

and even hard to approximate within ln
-
O

(1) factor (B/20 (v °'
ogB) factor for degree B

graph) [60].

Consider a subset of V as a binary string x E {0, 1}( . The following pair-wise

MRF model is widely used to design approximate solution of the maximum weight

independent set (MWIS) for many class of networks, where the weight W0  of node 'v

is defined as in (1.5).

(1.7)

where I is defined so that 'I'(X1, X2 ) = 0 if x 1 = £2 = 1, and T(xl, x 2) = 1 otherwise.

For the above MRF, note that W4/(x) is 0 if x is not an independent set of G.

When x is an independent set of G, W(x) is proportional to the exponent of total

weight of x. Hence, computation of MAP assignment for the above MRF corresponds

to computation of the MWIS. Details of this model will be discussed in Chapter 3.

1.3.3 Stochastic loss network

For almost a century, starting with the seminal work of Erlang [8], stochastic loss

networks have been widely studied as models of many diverse computer and com-

munication systems in which different types of resources are used to serve various

classes of customers involving simultaneous resource possession and non-backlogging

workloads. Examples include telephone networks, mobile cellular systems, ATM net-

works, broadl)and telecommunication networks, optical wavelength-division multi-

plexing networks, wireless networks, distributed computing, database systems, data,

centers, and multi-item inventory systems. see, e.g., [21,28 31,44, 45, 53, 54, 68, 69].

Loss networks have been used recently for resource planning in the IT services in-

dustry, where a collection of IT service products are offered each requiring a set of

resources with certain capabilities [4, 39]. In each case, the stochastic loss network

W(x) c exp WH(r -x, - (xI xV),
LVJ (u,v)EE



is used to capture the dynamics and uncertainty of the computer/communication

application being modeled.

In Chapter 4, we investigate stochastic loss networks with fixed routing, by con-

sidering the Markov random field for its stationary distribution. Consider a network

with J links, labeled 1, 2,..., J. Each link j has C units of capacity. There is a set

of K distinct (pre-determined) routes, denoted by R = {1,..., K}. A call on route r

requires Aj, units of capacity on link j, Ai, > 0. Calls on route r arrive according to

an independent Poisson process of rate r, with v = (v1,..., iK) denoting the vector

of these rates. The dynamics of the network are such that an arriving call on route

r is admitted to the network if sufficient capacity is available on all links used by

route r; else, the call is dropped (or lost). To simplify the exposition, we will assume

that the call service times are i.i.d. exponential random variables with unit mean.

It is important to note, however, that our results in this thesis are not limited to

these service time assumptions since the quantities of interest remain unchanged in

the stationary regime under general service time distributions due to the well-known

insensitivity property [63] of this class of stationary loss networks.

Let n(t) = (nl(t),...,nK(t)) E NK be the vector of the number of active calls in

the network at time t. By definition, we have that n(t) E S(C) where

S(C) = {n E ZKjn 0,An < C ,

and C = (C 1,..., Cj) denotes the vector of link capacities. Within this framework,

the network is Markov with respect to the state n(t). It has been well established

that the network is a reversible multidimensional Markov process with a, product-form

stationary distribution [27]. Namely, there is a unique stationary distribution 7r on

the state space S(C) such that for n E S(C),

r(i) = G(C) - 1 ] (1.8)
rE l r



where G(C) is the normalizing constant, or the partition function

G(C)= .
nES(C) rER Z -

Let M be an upper bound on the number of active route calls for all routes. Then

the distribution (1.8) can be understood as the following Markov random field defined

for n E M'.

i(LI) 0C v" (1.9)
r'R R j=1

where Rj is the set of routes that uses link j, and gj(.) is a potential function

defined as

J if Z.'Rj A].ni. < C
gj(nR,) = if E A (1.10)

0 otherwise

The underlying graph of the above MRF is the factor graph of 7r.

Definition 3 A factor graph is a bipartite graph that expresses the factorization

structure of a multivariate function as 7r defined in (1.9): 1) it has a variable node

for each variable n,.; 2) it has a factor node for each local function gj; 3) there is an

edge connecting variable node 71r to factor node gj if and only if nr is an argument of

gj -

For this model, a main algorithmic question of interest is computing the probability

over time that a call on a route will be lost. This probability is called the loss

probability of the route. In Chapter 4, we will discuss a well known approach for

this computation called Erlang's fixed-point approximation, and its limitation. Then

we will provide a novel algorithm for this problem and its comparison with Erlang's

approximation.



1.4 Main contributions of this thesis

Exact computation of MAP assignment and log-partition function for an MRF on

general graph are known to be NP-hard, and sometimes they are even hard to ap-

proximate within nl-o (1) factor [1, 60]. However, applications require solving this

problem using very simple algorithms. Hence designing efficient and easily imple-

mentable approximate algorithms for those problems for practical MRFs is of main

algorithmic challenge.

One popular approach in the literature is that of the Belief Propagation algorithm

and its deviations including Tree-reweighted algorithm, which exploit large "girth"

(i.e. lack of short cycles) of the graphical structure. While these algorithms have been

successful in situations like error-correcting codes where one has "freedom" to design

the graph of code, in applications like wireless network, stochastic loss network, image

processing, and statistical physics, this is not the case. Specifically, popular graphical

models for wireless network, and image processing do have lots of short cycles.

In this thesis, we identify a new class of structural properties of MRF, that yield

to simple, and efficient algorithms. Specifically, for MRFs defined on graphs that

have some "geometry" (which we call as graphs with polynomial growth, see Section

2.3.1) or graphs which are minor-excluded (for example, planar graphs, see Section

2.3.2) with bounded degree, we design almost linear time algorithms for approxi-

mate computation of MAP assignment and log-partition function within arbitrary

accuracy. The graphical models arising in wireless networks, statistical physics, and

image processing do possess such graphical structure. We also provide a simple novel

algorithm for MAP computation based on local updates of a, MAP assignment. Our

algorithm can be implemented in a distributed manner, and we show that for graphs

with polynomial growth, our algorithm computes approximate MAP within arbitrary

accuracy. These algorithms are presented in Chapter 2. A subset of the results of

Chapter 2 appeared in [25].

Next, we turn our attention to the application of our algorithms to network prob-

lems. In Chapter 3, we consider a wireless network of n nodes placed in some ge-



ographic area in an arbitrary manner. These nodes communicate over a common

wireless medium under some interference constraints. Our work is motivated by the

need for an efficient algorithm to determine the n2 dimensional unicast capacity re-

gion of such a wireless network. Equivalently, we consider the problem of determining

whether a given vector of end-to-end rates between various source-destination pairs

can be supported by the network through a combination of routing and scheduling

decisions among more than exponentially many possible choices in n.

This question is known to be NP-hard and hard to even approximate within

nl-o( 1) factor for general graphs [57]. We consider wireless networks which are usually

formed between nodes that are placed in a geographic area, and come endowed with

a certain "geometry", and show that such situations do lead to approximations to

the MWIS problem by applying our approximate computation of MAP algorithm

to the corresponding MRF. Consequently, this gives us distributed polynomial time

algorithm to approximate the capacity of wireless networks to arbitrary accuracy.

This result hence, is in sharp contrast with previous works that provide centralized

algorithms with at least a constant factor loss. Results reported in this Chapter

appeared in [13,14,26].

In Chapter 4, we investigate the problem of computing loss probabilities of routes

in a stochastic loss network, which is equivalent to computing partition function of

the corresponding MRF for the exact stationary distribution. We show that the

very popular Erlang fixed-point approximation provides relatively poor performance

estimates, especially when the loss network is critically loaded. Then based on the

structural property of the corresponding MRF, we propose a novel algorithm for

estimating the stationary loss probabilities in stochastic loss networks, and show

that our algorithm always converges exponentially fast to the asymptotically exact

solutions. Using a variational characterization of the stationary distribution, we also

provide an alternative proof for an error upper bound of the Erlang approximation.

A previous version of this Chapter appeared in [24].

Finally, Chapter 5 concludes with a summary and directions for the future work.



Chapter 2

Approximate Inference Algorithm

In this Chapter, we present new approximate inference algorithms for computation

of MAP assignment and log-partition function for two important classes of pairwise

MRFs based on the underlying graph structure of the MRF. The first class is the

graphs that are polynomially growing, and the second one is the graphs that exclude

a finite-sized graph as a minor and has a constant vertex degree bound. For the class

of polynomially growing graph, we also provide an intuitively pleasing sequential

randomized algorithm for efficient inference of MAP.

2.1 Previous work

A plausible approach for designing simple algorithms for computation of MAP and

log-partition function is as follows. First, identify a wide class of graphs that have

simple algorithms for computing MAP and log-partition function. Then, for any

given graph, approximately compute a solution by possibly solving multiple sub-

problems that have good graph structures and then combining the results from these

sub-problems to obtain a, global solution.

Such an approach has resulted in many interesting recent results starting from

the Belief Propagation (BP) algorithm designed for tree graphs [49]. Since there

is a vast literature on this topic, we will recall only few results. Two important

algorithms are the generalized belief propagation (BP) [71] and the tree-reweighted



algorithm (TRW) [65-67]. Key properties of interest for these iterative procedures

are the correctness of fixed points and convergence. Many results characterizing

properties of the fixed points are known starting [71]. Various sufficient conditions

for their convergence are known starting [62]. However, simultaneous convergence and

correctness of such algorithms are established for only specific problems, e.g. [3,34,46].

Now, we discuss two results relevant to this chapter. The first result is about prop-

erties of TRW. The TRW algorithm provides proval:le upper bound on log-partition

function for arbitrary graph [67]. However, to the best of our knowledge the error

is not quantified. The TRW for MAP estimation has a strong connection to specific

Linear Programming (LP) relaxation of the problem [66]. This was made precise in

a sequence of work by Kolmogorov [33], Kolmogorov and Wainwright [34] for binary

MRF. It is worth noting that LP relaxation can be poor even for simple problems.

Another work is an approximation algorithm proposed by Globerson and Jaakkola

[12] to compute log-partition function using Planar graph decomnposition (PDC). PDC

uses techniques of [67] in conjunction with known result about exact computation of

partition function for binary MRF when G is Planar and the exponential family

has very specific form. Their algorithm provides provable upper bound for arbitrary

graph. However, they do not quantify the error incurred. Further, their algorithm is

limited to binary MRFs.

2.2 Outline of our algorithm

We propose a novel local algorithm for approximate computation of MAP and log-

partition function. For any e > 0, our algorithm can produce an E-approximnate

solution for MAP and log-partition function for arbitrary positive MRF G as long as

G has either of these two properties:

* G is a polynomially growing graph (see Section 2.3.1, Theorems 2 and 6),

* G excludes a finite-sized graph as a minor (see Theorems 3 and 7) and has

constant maximum degree.



We say MRF X is a positive MRF when X is given as follows: for x E E7',

P[X = x] oc exp ,(x,) (X+ E,, ;x ) (2.1)
vEV (U,V)EE

where $, : E -- R+ and 4u , : E 2 -- IR+. We note that the assumption of 0, V,,

being non-negative does not incur loss of generality for the following reasons: (a)

the distribution remains the same if we consider potential functions 0, + C,, ,,, +

Cv, for all v E V, (u, v) E E with constants C, C,,; and (b) by selecting large

enough constant, the modified functions will become non-negative as they are defined

over finite discrete domain. The representation (2.1) is called a exponential family

distribution.

Our algorithm is primarily based on the following steps.

* First, decompose G into small-size connected components say G1,..., Gk by

removing few edges of G.

* Second, compute estimates (either MAP or log-partition) in each of Gi sepa-

rately.

* Third, combine these estimates to produce a global estimate while taking care

of the effect induced by removed edges.

In general, our algorithm works for any G and we can quantify bound on the error

incurred by our algorithm. It is worth noting that our algorithm provides a provable

lower bound on log-partition function as well unlike many of previous works. We

show that the error in the estimate depends only on the edges removed. This error

bound characterization is applicable for arbitrary graph.

For obtaining sharp error bounds, we need good graph decomposition schemes.

Specifically, we use a simple and very intuitive randomized decomposition scheme for

graphs with polynomial growth. This decomposition is described in Section 2.4.2. For

minor-excluded graphs, we use a simple scheme based on work by Klein, Plotkin and

Rao [32] and Rao [50] that they had introduced to study the gap between max-flow



and miin-cut for multicornmmodity flows. This decomposition scheme is described in

Section 2.4.3. In general, as long as G allows for such good edge-set for decomposing

G into small components, our algorithm will provide a good estimate.

To compute estimates in individual components, we use dynamic programming.

Since each component is small, it is not computationally burdensome. However, one

may obtain further simpler heuristics by replacing dynamic programming by other

method such as BP or TRW for computation in the components.

The running time of our algorithms are 0(n), with the constant dependent on e

and (a) growing rate for polynomially growing graph, or (b) maximum vertex degree

and size of the graph that is excluded as minor for minor-excluded graphs. For

example, for 2-dimensional grid graph, which has growth rate 0(1), the algorithm

takes C(e)n time, where loglogC(e) = 0(1/e). On the other hand, for a planar

graph with constant maximum vertex degree, the algorithm takes C'(e)n time, with

log log C'(e) = 0(1/e).

In Section 2.5.5, we develop an intuitively pleasing sequential randomized algo-

rithm for approximate MAP computation for polynomially growing graphs. This is

motivated by the property of the decomposition scheme for that graph class. This

algorithm can be implemented in a distributed manner in a natural way. We strongly

believe that this algorithm will have great practical impact.

In Section 2.7, as an unexpected consequence of these algorithmic results, we

obtain a method to establish existence of asymptotic limits of free energy for a class of

MRF. Specifically, we show that if the MRF is d-dimensional grid, and all node, edge

potential functions are identical, then the free-energy (i.e. normalized log-partition

function) converges to a limit as the size of the grid grows to infinity. In general,

such approach is likely to extend for any regular enough MRF for proving existence

of such limit: for example, the result will immediately extend when one replaces the

node, edge potential being exactly the same by they being chosen from a common

distribution in an i.i.d. fashion.

Finally, in Section 2.8, we present numerical experiments which convincingly show

that our algorithms are very competitive to other recently successful algorithms in-



cluding TRW and PDC.

2.3 Graph classes

In this section, we explain the two class of graphs for which we obtain approximate

inference algorithms.

2.3.1 Polynomially growing graph

Definition 4 Let dG be the shortest path distance metric of a given graph G, and let

BG(v,r) = {w E VldG(w,v) < r}. If there are constants C > 0 and p > 0 so that

for any v E V and r E N,

IBc(v, r) < C - r",

then we say G is polynomially growing with growth rate p and corresponding constant

C.

Practical applications of MRF model including the following geometric network graphs

and doubling dimensional graphs, satisfy the above property.

Example 1 : Geometric Graph. Consider a wireless network with n nodes rep-

resented by the vertices V = {1,..., n} placed in a 2-dimensional geographic region

given by the /7 x vi square of area n1 in an arbitrary manner (not necessarily

random). Let E be the set of edges between nodes indicating which pair of nodes can

communicate. Let dE(., -) be the Euclidean distance of the Euclidean space. Given

a vertex v E V, let BE(v, r) = {u E V : dE(u, v) < r}. We assume that the wireless

network satisfies the following simple assumptions.

1. There is an R > 0 such that no two nodes having distance larger than R

'Placing the nodes in the specified square is for simple presentation. The same result holds when
the nodes are placed in any Euclidean rectangle, and when the nodes are place in any region of
k-dimensional Euclidean space.



can establish a communication edge with each other 2 where R is called the

transmission radius.

2. Graph G has bounded density D > 0, i.e. for all v E V, BE(v,R)l < D.

A geometric random graph obtained by placing n nodes in the V x f square uni-

formly at random and connecting two nodes that are within distance R = O(Vogn)

of each other satisfies the previous assumptions with high probability.

Lemma 1 Any geometric graphs satisfying the above two assumptions are polynomi-

ally growing with growth rate 2.

Proof. Let G be a geometric graph with a transmission radius R and a bounded

density D. First, note that in the Euclidean space, for any r > R, BE(v, r) can be

covered by 6 ((_)2) many balls of radius R. Hence, together with the definition of

the bounded density D, there is a constant D' > 0 so that for all v E V and r > R,

BE(,r)I < D. (2.2)
r
2

Now, for a given two connected vertices v, w E V of G, let v = vo, v, v2 ... , ve = w

be a shortest path in G. By the definition of the transmission radius, for all i =

0, 1..., (V- 1),

dE(Vi, Vi+1) < R.

By the triangular inequality in the Euclidean metric,

dE(v, w) dE(Vi, vi+ 1) < R.- .
i=O

So we obtain

dE(v, w) < Re = R . dG(v, w).

2It does not imply that nodes within distance R must communicate.



Hence, for any v E V and r E N,

BG(v, r) C BE(v, Rr).

From (2.2),

IBa(v, r) I IBE(v, RTr) < (D'R2) r 2,

which shows that the growth rate of G is 2.

Example 2 : Doubling Dimensional Graph. A graph is said to have a doubling

dimension p > 0 if any ball of radius 2r (w.r.t. the shortest path metric) in G can

be covered by at most 2w many balls of radius r for any r E N. A graph with a

constant doubling dimension is called a doubling dimensional graph. The notion of

doubling dimensional graphs was first introduced in [2, 15, 17]. It is easy to check

that a grid graph Zd has doubling dimension d. Clearly, any graph with n nodes

has doubling dimension at most 0(log2 n). The following Lemma shows that any

doubling dimensional graph is polynomially growing.

Lemma 2 A graph with a constant doubling dimension o is polynomially growing

with growth rate p.

Proof. First, we will show that for any x E V and any t E Z+,

IBc(x, 2t) I < 2t .  (2.3)

The proof of (2.3) is by induction on t E Z+. For the base case, consider t = 0. Now,

BG(x, 20) is essentially the set of all points which are at distance less than 1 from

x by the definition. Since it is metric with distance being integer, this means that

BG(x, 1) = {x}. Hence, IB(x, 1)1 = 1 < 2oxp(M) for all x E X.

Now suppose that the claim of Lemma is true for all t < k and all x E X. Consider

t = k +1 and any x E X. By definition of the doubling dimension, there exists e < 2



balls of radius 2 k , say BG(yj, 2 k) with yj E X for 1 < j f {, such that

Bc(x, 2k+l) C u= 1,BG(yj, 2k).

Therefore.

IBc(x, 2 k+1) 1

e

< Z IBG(yj, 2k).
j= 1

By inductive hypothesis, for 1 < j < f,

BcG(yj, 2k)I < 2k p.

Since we have £ < 2( , we obtain

IBG(x, 2k + l ) < 2 kp < 2 (k+1)W

This completes the proof of inductive step, and that of (2.3).

Now, for any r E N, and any x E V, let 2
t < r < 2

t+1 for t E Z+. From (2.3), we

obtain that

IBG(x, r) IBG(x, 2t+1)l < 2(t+ l ) = 2 - (2 t)O < 2O r~ , (2.4)

which shows the Lemma.

Property of polynomially growing graphs. The following Lemma shows that

any subgraph of a polynomnially growing graph is also a polynomially growing graph.

Lemma 3 If G is polynomially growing with growth rate p, any subgraph G = (V, E)

of G obtained by removing some edges and vertices of G is also polynomially growing

"with growth rate at rmost p.

Proof. For any vertex v, w E V, note that

d,(v, w) > dc(v, uw),



since any path in G from v to w is also a path in G. Hence, for any v E V and r E N,

Be(v, r) C Bc(v, r).

Hence,

[Be(v, r) < IBG(V, r)lT < r p ,

which shows the Lemma from the definition 4. For example, any subgraph of a grid

graph is a polynomially growing graph.

2.3.2 Minor-excluded graph

Next, we introduce a class of graphs known as minor-excluded graphs (see a series of

publications by Roberston and Seymour under the graph minor theory project [52]).

A graph H is called minor of G if we can transform G into H through an arbitrary

sequence of the following two operations:

* removal of an edge.

* merge two connected vertices u, v: that is, remove edge (u, v) as well as vertices

u and v; add a new vertex and make all edges incident on this new vertex that

were incident on u or v.

Now, if H is not a minor of G then we say that G excludes H as a minor.

The explanation of the following statement may help to understand the definition

better: any graph H with r nodes is a minor of K,, where Kr is a complete graph

of r nodes. This is true because one may obtain H by removing edges from Kr that

are absent in H. More generally, if G is a subgraph of G' and G has H as a minor,

then G' has H as its minor. Let Kr,r, denote a complete bipartite graph with r nodes

in each partition. Then Kr is a minor of Kr,r. Hence, any graph H with r nodes is

a, minor of Kr,r. An important implication of this is as follows: to prove property P

for graph G that excludes H, of size r, as a minor, it is sufficient to prove that any

graph that excludes Kr,r as a minor has property P. This fact was cleverly used by



Klein et. al. [32]. In what follows and the rest of the paper, we will always assume r

to be some finite number that does not scale with n (the number of nodes in G).

2.4 Graph decomposition

In this section, we introduce notion of our graph decomposition. We describe very

simple algorithms for obtaining decomposition for graphs with polynomial growth

and minor-excluded graphs.

2.4.1 (e, A) decomposition

Given , A > 0, we define notion of (e, A) decomposition for a graph G = (V, E).

This notion can be stated in terms of vertex-based decomposition or edge-based de-

composition.

Definition 5 We call a random subset of vertices B C V as (E, A) vertex-decomposition

of G if the followings hold:

(a) For any v E V, P(v E B) < e.

(b) Let S1,... , Se be the connected components of graph G' = (V', E') where V' =

V\B and E' = {(u,v) E E : u,v E V'}. Then, maXl<k<I Skl < A with

probability 1.

Note that the (e, A) vertex-decomposition B forms the union of boundary vertices of

each connected components.

Definition 6 Similarly, a random subset of edges B c E is called an (e, A) edge-

decomposition of G if the following holds:

(a) For any e E E, P(e E B) < e.

(b) Let S1,..., SK be connected components of graph G' = (V', E') where V' = V

and E' = E\B. Then, maxl<k<K ISki < A with probability 1.



2.4.2 Graph decomposition for polynomially growing graphs

This section presents (e, A) decomposition algorithm for polynomially growing graphs

for various choice of e and A. We will describe algorithm for node-based (e, A)

decomposition. This will immediately imply algorithm for edge-based decomposition

for the following reason: given G = (V, E) with growth rate p(G), consider a graph

of its edges g = (E, 8) where (e, e') E E if e, e' shared a vertex in G. It is easy to

check that p(g) _ p(G). Therefore, running algorithm for node-based decomposition

on g will provide an edge-based decomposition.

The node-based decomposition algorithm for G will be described for the metric

space on V with respect to the shortest path metric dG introduced earlier. Clearly, it

is not possible to have (e, A) decomposition for any e and A values. As will become

clear later, it is important to have such decomposition for e and A being not too

large. Therefore, we describe algorithm for any e > 0 and an operational parameter

K, which will depend on e and the growth rate p and the corresponding constant

C of the graph. We will show that our algorithm will output (e, A)-decomposition

where A will depend on e and K.

Given e and K, define a random variable Q over {1,..., K} as

[ (l-s) i- E iflli<K
P[Q = i] = 1

(1 -) K - 1 ifi=K

The graph decomposition algorithm POLY-V (e, K) described next essentially

does the following. The algorithm performs iteratively. Initially, all vertices are

colored white. If there is any white vertex, choose any of them arbitrarily. Let u

be the chosen vertex. Draw an independent random number Q as per distribution

Q. Select all white vertices that are at distance Q from u in B and color them blue;

color all white vertices at distance < Q from u (including u itself) as red. Repeat this

process until no more white vertices are left. Output B (i.e. blue nodes).



POLY-V (e, K)

(1) Initially, set W = V, B = 0 and R = 0.

(2) Repeat the following till W $ 0:

(a) Choose an element u E W uniformly at random.

(b) Draw a random number Q independently according to the distribution
Q.

(c) Update

(i) B+-BU {wldG(u,w) =Q and wE W},
(ii) 7I R U {wldG(u, w) < Q and w E W},

(iii) W - W n (B U R) .

(3) Output B.

Figure 2-1: Vertex-decomposition for polynomially growing graphs

Precise description of the algorithm is in Figure 2-1. We will set

K = K(e, p, C) = 8Plog + - logC + log +2.

This definition is exploited in the proof of Lemma 4. Figure 2-2 explains the algorithm

POLY-V up to three choices of u.

Lemma 4 Given graph G with growth rate p = p(G) and the corresponding constant

C, and E E (0,1), the output of the POLY-V(e, K) becomes a (2e, CKP) vertez-

decomposition of G.

Proof. To prove that the random output set B C V of the algorithm with parameters

(E, K(e, p)) we need to establish properties (a) and (b) of Definition 5.

Proof of (a). To prove (a), we state and prove the following Claim.

Claim 1 Consider metric space g = (V, dG) with IVI = n. Let B C V be the

random set that is output of POLY-V with parameter (e, K) applied to Q. Then, for



Remove vertices

Pr[Q=i]=(1-) - for i=1,2,3...,(K-1)

Figure 2-2: The first three iterations in the execution of POLY-V.

any v E V,

P[v e B] 5 e + PKIBG(v, K)I,

where BG(v, K) is the ball of radius K in g with respect to the dG, and PK

(1 - e)K- 1

Proof. The proof is by induction on the number of points n over which the metric

space is defined. When n = 1, the algorithm chooses only point as uo in the initial

iteration and hence it can not be part of the output set B. That is, for this only

point, say v,

P[v e B] = 0 < E + PKIB(v, K)I.

Thus, we have verified the base case for induction (n = 1).

As induction hypothesis, suppose that the Claim 1 is true for any metric space

on n points with n < N for some N > 2. As the induction step, we wish to establish

that for a metric space = (V, dG) with IVI = N, the Claim 1 is true. For this,

consider any point v E V. Now consider the first iteration of the POLY-V applied

to g. The algorithm picks u0 E V uniformly at random in the first iteration. Given



v, depending on the choice of uo we consider four different cases (or events). We will

show that in these four cases,

P[v 1B] E + PK IBG(v, K)

holds.

Case 1. This case corresponds to event El where the chosen random uo is equal to

point v of our interest. By definition of the algorithm, under the event El, v will

never be part of output set B. That is,

P[v BE 11] = 0 < E + PIB(v, K)j.

Case 2. Now, suppose uo is such that v u uo and dG(uo, v) < K. Call this event E2-

Further, depending on choice of random number Qo, define the following events

E21 = {dG(UO, v) < Qo}, E22 = {dG(uLO, v) = Q0}, and E23 = {dG ('o, v) > Qo} -

By definition of the algorithm, when E21 happens, v is selected as part of R 1 and

hence v can never be a part of output B. When E22 happens, v is selected as part of

B1 and hence it is definitely a part of output set B. When E23 happens, v is neither

selected in set R 1 nor selected in set B 1. It is left as an element of the set W 1. This

new set W1 has points less than N. The original metric dG is still the metric on the

points3 of W1. By definition, the algorithm only cares about (W1, dG) in the future

and it is not affected by its decisions in past. Therefore, we can invoke induction

hypothesis which implies that if event E23 happens then the probability of v E B is

bounded above by e+PK IB(v, K) . Finally, let us relate the P[E21 E2] with P[E 22 E2].

Suppose dG(uo, v) = e < K. By definition of probability distribution of Q, we have

P[E22 E2 = E( -)1 , (2.5)

3 Note the following subtle but crucial point. We are not changing the metric de after we remove
points from original set of points as part of the POLY-V.



P[E211E2] =

K-1

j=() +
j=f.+l

- (1- e).

P[E 22 E2] = 1 [E21IE2].1-E

A
Let q - IP[E2 1!E2]. Then,

[v E BIE 2] = P[v e BIE 21 n E2]P[E21IE2] + P[v e BlE 22 n E2 ]P[E 221E2]

+ P[v E B lE 23 n E2]P[E 23 IE2]

0 x q+1 x + ( + PKIB(v, K)) 1 -

= e + PKIB(v, K)I + 1 (e - e - PK B(v, K)I)
1-E
qPKB(v,K)

1-6
< E + PKIB(v, K)I.

Case 3. Now, suppose uo 3 v is such that dc(uo, v) = K. We will call this event E3 .

Further, define the event E 31 = {Qo = K}. Due to the independence of selection of

Qo, P[E31 IE3] = PK. Under the event E3 n E 3, v E B with probability 1. Therefore,

P[v E BI]E3 ] = P[v e BIE 3 n E3 ]P[EaiIE] + P[v E BIE n E3]P[E. 1IE3]

= 1 x PK + P[v E BIEI n E3](1 - PK).

Under the event E3, nE 3 , we have v E W1, and the remaining metric space (W1 , dG).

This metric space has < N points. Further, the ball of radius K around v with

respect to this new metric space has at most IB(v, K)I - 1 points (this ball is with

respect to the original metric space g on N points). Now we can invoke the induction

hypothesis for this new metric space to obtain

P[v E BJEg n E~1 ] 5 e+PK(IB(v, K)I - 1).

That is,

(2.6)

(2.7)

(2.8)

(2.9)



From (2.8) and (2.9), we have

P[v i3E BE 3] < PK + (1 - Pij-)(- + PK(I B(u, K)I - 1))

- (1 - PK) PI B(v, K)I + PK(1 - IB(v, K) )

< E + PKIB(v,K)I.

Case 4. Finally, let E4 be the event that dG (0, v) > K. Then, at the end of the first

iteration of the algorithm, we again have the remaining metric space (W1, dG) such

that 1W1 I < N. Hence, as before, by induction hypothesis we have

P[v E BIE 4] < E + PKIB(v, K)i.

Now, the four cases are exhaustive and disjoint. That is, U4=E, is the universe.

Based on the above discussion, we obtain the following.

P[v cE 8]
-= P[ E BIE ]W[Ei

i= 1

S(m'axP[v E BIE])
\i=1

" E + PKIB(v, K)I.

This completes the proof of Claim 1.

Now, we will use Claim 1 to complete the proof

rate implies that,

(P[Ej]
(2.10)

of (a). The definition of growth

IB(v, K) I < C -K P.

From the definition PK = (1 - )'-l we have

Pc IB(v, K')I C(1 - E)K-1KP.

Therefore, to show (a) of Definition 5, it is sufficient to show that our definition of K

satisfies the following Lemma.



Lemma 5 We have that

C(1 - E)K-1KP < E.

Proof. We will show the following equivalent inequality.

1
(K - 1) log(1 - e)-1' p log K + log C + log-.

First, note that for all e E (0, 1),

log(l - e)-' > log(l + e) > -.
2

Hence to prove (2.11), it is sufficient to show that

2p 2 2 1
K> 2 log K + - log C + - log - + 1.

8 6 6 E

Recall that

K = K(E, p) = log ( )LP fp
4

+ -
4

log C + -
8

1
log +2.

-

From the definition of K, we will show that

K 2pK 2p log K
2 E

and
2

> - log C
8

2 1
+ -log- + 1,

E E

which will prove (2.12).

The following is trivial.

K 2
- > - log
2 e

2 1
C + -log- + 1.

Ee

Now, let K = 8 log (§) . Then

(2.11)

(2.12)

(2.13)



S- ogp lo
2 E E

2p log
E (

8p)
E}

That is, k - log K > 0. Since the function (p(x) x _ log x is an increasing

function of x when x > L and from the fact that K > K > , we have

K 2pK > 2p log K.
2 -E

(2.14)

From (2.13) and (2.14), we have (2.12), which completes the proof of Lemma 5.

Proof of (b). First we give some notations. Define Rt = Rt -Rt-_1, Bt = St- Bt-_1,

and

OR = {v E V : v Rt and I v' E R s.t. dG(v, ) = 1}.

Then the followings are straightforward observations implied by the POLY-V. For

any t > 0, (i) Rt n 7 Rt-1 = 0,

(ii) Bt n B-I = 0,

(iii) Rt C B(ut 1_, Qt- 1),

(iv) B t C B(ut-1, Qt-1 + 1) - B(u.t-1, Qt-i).

Now, we state and prove a crucial claim for proving (b).

Claim 2 For all t >2 O, ORt C Bt.

Proof. We prove the Claim 2 by induction. Initially, ORo = Bo = 0 and hence the

claim is trivial. At the end of the first iteration, by the definition of the algorithm,

R, = R, = B(uo, Qo), and B1 = B1 = B(uo, Qo + 1) - B(uo, Qo).

Therefore, by definition, OR1 = B 1. Thus, the base case of induction is verified. Now,

as the hypothesis for induction, suppose that dR t C Bt for all t < F, for some f > 1.

As induction step, we will establish that aRl+ C Be+1.

+ log log8p ) 2p log



Suppose to the contrary, that ORe+1 t Be+1. That is, there exists v E ORe+1 such

that v 0 Be. By definition of the algorithm, we have

Re+l = B(ue, Qe) - (IRe U Be).

Therefore,

ORe+1 C (B(ue, Qe + 1) - B(ue, Qe)) U RZe U Be.

Again, by the definition of the algorithm we have

Be+1 = B(ue, Qe + 1) - B(ue, Qe) - Re - Be.

Therefore, v E Be+l or v E Re U Be. Recall that by the definition of algorithm

Be n IZ = 0. Since we have assumed that v Be+1, it must be that v E Re. That is,

there exists e' < e such that v E Re,. Now since v E Re+1 by assumption, it must be

that there exists v' E Re+l such that dG(v, v') = 1. Since by definition Re+ n Re = 0),

we have v' E ORe,. By induction hypothesis, this implies that v' E Be, C Be. That is,

Be n Re+1 f 0, which is a contradiction to the definition of our algorithm. That is,

our assumption that ORe+l - Be+1 is false. Thus, we have established the inductive

step. This completes the induction argument and proof of the Claim 2. Now when

the algorithm terminates (which must happen within n iterations), say the output set

is BT and V - BT = lZT for some T. As noted above, ZT is a union of disjoint sets

R 1,..., RT. We want to show that Ri, Rj are disconnected for any 1 < i < j 5 T

using Claim 2. Suppose to the contrary that they are connected. That is, there exists

v E R and v' E R, such that dG(v, v') = 1. Since Ri n Rj = 0, it must be that

v' E dRi, v e ORj. From Claim 2 and fact that Bt C Bt+1 for all t, we have that

Ri n B # 0, Rj n B # 0. This is contrary to the definition of the algorithm. Thus, we

have established that Ri,..., RT are disconnected components whose union is V - BT.

By definition, each of Ri C B(ui- 1, K). Thus, we have established that V - BT is

made of connected components, each of which is contained inside balls of radius K

with respect to dG. From the definition of the growth rate of a graph, this completes



POLY-E(e, K)

(1) Initially, set W = V, B = 0 and ? = 0.

(2) Repeat the following till W 4 0:

(a) Choose an element u. E W uniformly at random.

(b) Draw a random number Q independently according to the distribution
Q.

(c) Update

(i) B +-BU {wc V'|dG(iu,w) =Q and w cW},

(ii) 7 +- RU {w E V dG(u, w) < Q and w E },

(iii) W -- W Z n R

(3) Output B.

Figure 2-3: Edge-decomposition for polynomially growing graphs

the proof of (b) and that of Lemma 4.

Now, in a similar fashion we obtain a (2e, CKP) edge-decomposition of G. Let

G' = (V', E') be the graph obtained from G by adding one vertex at the center of each

edges of G. If G is a polynomially growing graph p and the corresponding constant

C, then G' is also a polynomially growing graph p and the corresponding constant C.

As before we set

8p p( 4 4 1
K = K(E, p, C) = log + -log C + log- +2.

Then define a random variable Q' over {1, 3, 5,..., 2K - 1} as

[Q = i] (1 - )(i-1)/2 if 1 < i < 2K - 1

(1 - E)K - 1  if i = 2K - 1

Let V be the set of vertices of G, which is a subset of V'. Then figure 2-3 describes

the edge-decomposition algorithm POLY-E.

Note that the output of POLY-E consists of vertices of G' that does not belong



to V, i.e. vertices of G' that correspond to edges of G. By applying Lemma 4 to G',

we obtain the following Lemma.

Lemma 6 Given graph G with growth rate p = p(G) and the corresponding constant

C, and E E (0, 1), the output of the POLY-E (e, K) becomes a (2e, CKP) edge-

decomposition of G.

2.4.3 Graph decomposition for minor-excluded graphs

In this section we describe a simple and explicit construction of decomposition for

graphs that exclude certain finite sized graphs as their minor. This scheme is a

direct adaptation of a scheme proposed by Klein, Plotkin, Rao [32] and Rao [50].

We describe an (e, A) node-decomposition scheme. Later, we describe how it can be

modified to obtain (e, A) edge-decomposition.

Suppose, we are given a graph G that excludes the graph K,.,,. as minor. Recall

that if a graph excludes some graph G,. of r nodes as its minor then it excludes Kr,,.

as its minor as well. The algorithm described in Figure 2-4 for generating node-

decomposition uses a parameter A. Later we will relate the parameter A to the

decomposition property of the output.

As stated above, the basic idea is to use the following step recursively (upto depth

r of recursion): in each connected component, say S, choose a node arbitrarily and

create a breadth-first search tree, say T. Choose a number, say L, uniformly at

random from {0,... , A - 1}. Remove (and add to B) all nodes that are at level L +

kA, k > 0 in T. Clearly, the total running time of such an algorithm is O(r(n + IEl))

for a graph G = (V, E) with IVI = n; with possible parallel implementation across

different connected components.

Figure 2-5 explains the algorithm for a line-graph of n = 9 nodes, which excludes

K2,2 as a minor. The example is about a sample run of MINOR-V(G, 2, 3) (Figure

2-5 shows the first iteration of the algorithm).

In [50], Rao proves the following Lemma.



MINOR-V(G, r, A)

(0) Input is graph G = (V, E) and r, A E N. Initially, i = 0, Go = G, B = 0.

(1) For i = 0,... , r - 1, do the following.

(a) Let S, . . , S be the connected components of Gi.

(b) For each S,, 1 < j _ ki, pick an arbitrary node vj E SJ.
o Create a breadth-first search tree Ti rooted at vj in S).
o Choose a number L. uniformly at random from {0,..., A - 1}.

o Let Bi be the set of nodes at level Li, A + Li, 2A + Li,... in T i.

o Update B = B U 1 B.

(c) set i = i + 1.

(3) Output B and graph G' = (V, E\B).

Figure 2-4: Vertex-decomposition for minor-excluded graphs

Lemma 7 If G excludes K.,, as a minor. Let B be the output of MINOR-V(G, r, A).

Then each connected component of V - B has diameter of size O(A).

Now using Lemma 7, we obtain the following Lemma.

Lemma 8 Suppose G excludes Kr,r,, as a minor. Let d* be maximum vertex degree

of nodes in G. Then algorithm MINOR-V(G, r, A) outputs B which is (r/A, d*o(A))

node-decomposition of G.

Proof. Let R be a connected component of V - B. From Lemma 7, the diameter

of R is O(A). Since d* is the maximum vertex degree of nodes of G, the number of

nodes in R is bounded above by d*o(A).

To show that P(v E B) < r/A, consider a vertex v E V. If v B in the beginning

of an iteration 0 < i < r - 1, then it will present in exactly one breadth-first search

tree, say Tj. This vertex v will be chosen in B, only if it is at level kA + L for

some integer k > 0. The probability of this event is at most 1/A since Li is chosen

uniformly at random from {0, 1...,A - 1}. By union bound, it follows that the

probability that a vertex is chosen to be in B in any of the r iterations is at most

r/A. This completes the proof of Lemma 8.
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Figure 2-5: The first two iterations in execution of MINOR-V(G, 2, 3).

It is known that Planar graph excludes K3,3 as a, minor. Hence, Lemma 8 implies

the following.

Corollary 1 Given a planar graph G with maximum vertex degree d*, then the algo-

rithm MINOR-V(G, 3, A) produces (3/A, d*o(A)) node-decomposition for any A > 1.

We describe slight modification of MINOR-V to obtain algorithm that produces

edge-decomposition in Figure 2-6. Note that the only change compared to MINOR-

V is the selection of edges rather than vertices to create the decomposition.

Lemma 9 Suppose G excludes K,.,, as a minor. Let d* be maximum vertex degree

of nodes in G. Then algorithm MINOR-E(G, r, A) outputs B which is (r/A, d*A+)

edge-decomposition of G.

Proof. Let G* be a graph that is obtained from G by adding center vertex to each edge

of G. Then, execution of MINOR-E(G, r, A) can be viewed as executing MINOR-

V(G*, r, 2A-1) so that we choose L 's uniformly at random from {1, 3,5,...2A- 1}.

Hence by the same argument as in the proof of Lemma. 8, we obtain Lemma 9.



MINOR-E(G, r, A)

(0) Input is graph G = (V, E) and r, A E N. Initially, i = 0, Go = G, B = 0.

(1) For i = 0, ... , r - 1, do the following.

(a) Let S ,..., S i be the connected components of G,.

(b) For each S), 1 < j < k,, pick an arbitrary node vy E Sj.

o Create a breadth-first search tree Tji rooted at vj in S,.
o Choose a number L' uniformly at random from {0,..., A - 1}.

o Let B be the set of edges at level L A + L, 2A + L ,... in Tji

0 Update B = B U I B .

(c) set i i + 1.

(3) Output B and graph G' = (V, E\B).

Figure 2-6: Edge-decomposition for ininor-excluded graphs

Figure 2-7 explains the algorithm for a line-graph of n = 9 nodes, which excludes

K 2 ,2 as a. minor. The example is about a sample run of MINOR-E(G, 2, 3) (Figure

2-7 shows the first iteration of the algorithm).

2.5 Approximate MAP

Now, we describe our algorithm to compute MAP approximately. The algorithm uses

an edge-decomposition algorithm as a sub-routine. Given G, decompose it into small

components S1, ... , SK by removing edges B c E. Then, compute an approximate

MAP assignment by computing exact MAP restricted to the components. We first

describe our algorithm for any graph G in Figure 2-8; which will be specialized for

graphs with polynomial growth and graphs that exclude minor by using the appro-

priate edge-decomposition schemes described in the previous sections. In Figure 2-8,

we use term DECOMP for a generic edge-decomposition algorithm. For polynomi-

ally growing graph, we use algorithm POLY-E and for graph that excludes Kr,. as

minor for some r, we use the algorithm MINOR-E. The approximation guarantee

of the output of the algorithm and its computation time depend on the property of
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Figure 2-7: The first two iterations in execution of MINOR-E(G, 2, 3).

DECOMP.

2.5.1 Analysis of MAP: General G

Here, we analyze performance of MAP for any G. Later, we will specialize our

analysis for graph with polynomial growth and minor excluded graphs. Let '1v =

max(j,Xj)Er2 ij(xi, xj), and V)L = min(x,Xwj)E~2 4j (xi, xj).

Theorem 1 Given an MRF G described by (2.1), the MAP algorithm produces

output x* such that:

H(x*) - E ('Ou - O, ) < H(*) <<H(x*).
(i,j)EB

The algorithm takes 0 (IEIKI Is*I) +TDECOMP time to produce this estimate, where

IS*I = maxK-1S Ij with DECOMP producing a decomposition of G into S1,..., SK

in time TDECOMP.

6 7 8

7 8 9

S3



MAP(G)

Figure 2-8: Algorithm for MAP computation

Proof. By definition of MAP x*, we have 7-(x*) < 7-(x*).

following.

Now, consider the

max ( )

iEV

EV

< max [ i(xi)
SxE n

LEV

l max
xjEiS 1j

+ E ij(Xi' Xj)
(i,j)EE

+ E O (Xi,
(i,j)EE\B

+ C i~zl

(0) Input is MRF G = (V, E) with i(), i E V, ij(', ), (i,j) E E.

(1) Use DECOMP(G) to obtain B C E such that

(a) G' = (V, E\B) is made of connected components S1,..., SK.

(2) For each connected component Sy, 1 < j < K, do the following:

(a) Through dynamic programming (or exhaustive computation) find exact
MAP x*,j for component Sj, where x*,j = (x*")iEs.

(3) Produce output x*, which is obtained by assigning values to nodes using
x*,J 1 < j < K.

(i,j)EB

N-(x)1 + E
-(i,j)ES

(i,j+ )
(ij)EB

ij
Z1(x*i)± +
j=1 (ij)ES

(x*+(i Uj) _
-(ilj)EB

(2.15)

ij (Xi, j)]j) +



We justify (a)-(d) as follows: (a) holds because for each edge (i, j) E B, we have

replaced its effect by maximal value ,!u; (b) holds because by placing constant value

ViU over (i, j) E B, the maximization over G decomposes into maximization over the

connected components of G' = (V, E\B); (c) holds by definition of x*'J and (d) holds

because when we obtain global assignment x* from x* J, 1 < j < K and compute its

global value, the additional terms get added for each (i, j) e B which add at least VL

amount.

For running time analysis, note that MAP performs two main tasks: (i) Decom-

posing G using DECOMP algorithm, which by definition take TDECOMP time. (ii)

Computing x*,J for each component Sy through exhaustive computation, which takes

O(IEI E I I l) time, and producing x* takes addition IVI operations at the most. Since

there are K components in total with max-size of component being IS*I, we obtain

that the running time for task (ii) is O(IEIKIEIIS*I). Putting (i) and (ii) together, we

obtain the desired bound. This completes the proof of Theorem 1.

2.5.2 Some preliminaries

This section presents some results about the property of MAP solution that will be

useful in obtaining tight approximation guarantees later. First, consider the following.

Lemma 10 If G has maximum vertex degree d*, then

7'(x*) d* + 1 1 ij
(i,j)EE

> E V V (2.16)
(ij)EE

Proof. Assign weight wij = V_! to an edge (i, j) E E. Since graph G has maximum

vertex degree d*, by Vizing's theorem there exists an edge-coloring of the graph using

at most d*+1 colors. Edges with the same color form a matching of the G. A standard

application of Pigeon-hole's principle implies that there is a color with weight at least



d*1 (E(i,j)eE wj). Let M c E denote these set of edges. Then

(ij)EM (i, j)EE

Now, consider an assignment xA as follows: for each (i, j) E A set (xM , Xj 1)

arg max(x,x,)Ez2 '.'.ij (x, x'); for remaining i E V, set xim to some value in E arbitrarily.

Note that for above assignment to be possible, we have used matching property of

M. Therefore, we have

Z i ± ( , .)
iEV (i,j)EE

(,) > A)+ >3 V +Oij xi )
iEV (i,j)EE\M (ij)EM

(a) v, , I

(i,j)E M

(ij) E A

- d* + 1 
(9

(ij)EE

Here (a) follows because Vljj, ~j are non-negative valued functions. Since H(x*) >

7H(x") and > 2 0 for all (i,j) E E, we obtain the Lemma 10.

Lemma 11 If G has maximum vertex degree d* and the DECOMP(G) produces B

that is (E, A) edge-decomposition, then

E [-(x*) - N(x*)] < e(d* + 1)H(x*),

where expectation is w.r.t. the randomnness in B. Further, MAP takes time O(nd* IE )+

TDECOMP.

Proof. From Theorem 1, Lemma 10 and definition of (e, A) edge-decomposition, we

have the following.



E [H(x*) 7-t(x )] E (O j -01B)

= z ((i,j) E B)(V)iU - L)

(i,j)EE

[(i,j)EE
E(d* + 1)-(x*). (2.18)

Now to estimate the running time, note that under (e, A) edge-decomposition B,

with probability 1 the G' = (V, E\B) is divided into connected components with at

most A nodes. Therefore, the running time bound of Theorem 1 implies the desired

result.

2.5.3 Analysis of MAP: polynomially growing G

Here we interpret result obtained in Theorem 1 and Lemma 11, for polynomrnially

growing G and uses decomposition scheme POLY-E.

Theorem 2 Let MRF graph G of n nodes with growth rate p and corresponding

constant C be given. Consider any constant E E (0, 1), and define o = c. Then

MAP using POLY-E( , K(V, p, C)) produces an assignment x* such that

E [(x*) - 7-<(x)] < E(x*).

Further, the algorithm takes O(n) amount of time.

Proof. First, POLY-E(p, K(p, p)) produces (p, O(1)) edge-decomposition from

Lemma 6.

Note that the maximum vertex degree d* of G is less than 2PC by the definition

of polynomially growing graph. Therefore, by Lemma 11, the output produced by



the MAP algorithm is such that

E [-(x*) - 7-(x)] < (d* + 1) ' n(x*)
2PC

< EH(x*), (2.19)

Further, the running time of the algorithm is O(nd*I EK(,,p)) ± TDECOMP = O(n).

This completes the proof of Theorem 2.

2.5.4 Analysis of MAP: Minor-excluded G

When G is a minor excluded graph with bounded vertex degree, we use MINOR-

E for the edge-decomposition. We apply Theorem 1 and Lemma 11 to obtain the

following result.

Theorem 3 Let MRF graph G of n nodes exclude KI,,,. as its minor. Let d* be

the maximum vertex degree in G. Given constant E > 0, use MAP algorithm with

MINOR-E(G, r, A) where A = [r-1 ]. Then, MAP produces an assignment x*

such that

E [H(x*) - <(x*)] E (x*).

The algorithm takes O(n) time.

Proof. From Lenimma 9 about the MINOR-E algorithm, we have that with choice

of A = rr(d*+ 1] the algorithm produces (i, A) edge-decomposition where A =

d*o(A). Since its an (d*l, A) edge-decomposition, from Lemma 11 it follows that

E [-H(x*) - -((*)] < E- (x*).

Now, by Lemma 11 the algorithm running time is O(nd*I E ) + TDECOMP. As

discussed earlier in Lemma 9, the algorithm MINOR-E takes O(r E ) = O(nrd*)

operations. That is, TDECOMP = O(n). Now, A = d*o(A) and A < r(d* + 1)/e + 1.

Therefore, the first term of the computation time bound O(nd*IE|A) = O(n). Hence

the running time of MAP is O(n). This completes the proof of Theorem 3.



2.5.5 Sequential MAP: tight approximation for polynomially

growing G

The main drawback of the algorithm MAP is that it ignores the effects of the bound-

ary edge potentials, instead of utilizing the boundary potentials. In this section, we

provide a modification of MAP for the case when G is a polynomially growing graph,

which utilizes the boundary information. The main idea of the modified algorithm

SEQ-MAP is as follows. In SEQ-MAP, we will update our solution x* of MAP

assignment over time. That is, instead of performing the whole edge-decomposition

POLY-E of the graph and computing the MAP for each components at the same

time, we will take balls of radius Q one by one, where Q is taken independently

according to the distribution Q as in POLY-E. At each time, compute a MAP as-

signment within the chosen ball while fixing all the other current assignment value of

x* for the vertices outside the ball. Then change the value of x* for the vertices within

the chosen ball by the computed MAP. Do this process until all the vertices of G will

be chosen as a center vertex of a ball at least once. By using a coupling argument, in

Theorem 4 we will provide a similar error bound for SEQ-MAP as that of MAP.

Precise description of the algorithm is in Figure 2-9. Given a constant e E (0, 1)

and a polynomially growing graph G with growth rate p and the corresponding con-

stant C, we set o = 5 , and

K= K(p,pC) -= -log + -log C + log- +2,

and define a random variable Q' over {1, 2, 3,..., K} as

P[Q = i] (1- p)'-1 if 1 < i < K

(1 - O)K-l if i = K

Figure 2-10 describes a difference between POLY-E and SEQ-MAP.

Theorem 4 Let an MRF defined on a graph G of n nodes with growth rate p and

the corresponding constant C be given. Consider any constant e E (0, 1). Then



SEQ-MAP(e, K)

(0) Input is an MRF G = (V, E) with €i(.),i E V, Oij(-, .), (i,j) E E.

(1) Set x* with a random assignment.

(2) Let W +- V.

(3) Do the following procedure while W e :

(a) Choose an element 'i E V uniformly at random.

(b) Draw a random number Q according to the distribution Q.

(c) Let +- {w E Vld(u, w) < Q}.

(d) Through dynamic programming (or exhaustive computation) find an ex-
act MAP x* ' for R while fixing all the other assignment of x* value
outside R.

(e) Change values of x for R by x*',.

(f) Let W +- W - {u}.

(4) Output x*.

Figure 2-9: A Sequential Algorithm for MAP computation

SEQ-MAP produces an assignment x* such that

E [N(x*) - l( )] < EN(x*).

The algorithm takes O(n log n) time in expectation.

Proof. From the Coupon collector's problem [9], it immediately follows that with

high probability as well as in expectation,the number of iterations of SEQ-MAP is

O(n log n). The running time of one iteration of SEQ-MAP is 0(1) since p, C, and

e are constants. Hence we obtain that the expected running time of SEQ-MAP is

O(n log n).

Now we show the error bound of SEQ-MAP. First, we prove the following lemma

that will be used in the proof of the error bound.



(a) Execution of
POLY-E

Graph G

(b) Execution of
SEQ-MAP

Figure 2-10: Comparison of POLY-E versus SEQ-MAP.

Lemma 12 Let X 1 and X2 be two MRFs defined on a same graph G' = (V', E').

Assume that the edge potential functions for X 1 and X 2 are identically given by

(iij(, .)}, and let {0(.)} and {O(.-)} be the vertex potentials for X 1 and X 2 re-

spectively. For each vertex i E V', let

x EE x

be the maximum difference of qi. For e = 1, 2, let

He(x) = Z ,(xi) + E Oij(xi,,),
iEV' (i,j)EE'

and let xe be a MAP assignment of Xt. Then we have

IHI (xI) - R1 (x2)1 < 2 O P.
iEV'



Proof. Let

= max IR(x) - R2(X) .
xEEIV'I

Then we have

= max ]I-li(x) - R-2(x)
xEEI"'I

max (i) +
xEEIV' IiEV' ~l~ (ij)EE'

xEE!V'I i V'
iEV' iEV'

< max I4(x) - 4 (xi)l

iEV'

iEV'

Now, from the definition of y,

IH2 (X2) -- i1(x2)j < .

From the fact that xl is a MAP assignment of X1,

'1 (X 2) 71 T(Xl)"

Hence we obtain that

R 2 (X 2 ) tl(Xl) + -y.

Similarly, from I-HI(xl) - 7- 2 (xl)I I : , and 7- 2(X1 ) < -2 (x 2 ), we obtain

1(x1 ) -'2(x2) + y.

ie(xi) +
iE V' (ij)EE'

(2.20)

(2.21)

(2.22)

(2.23)



From (2.22) and (2.23), we have

1-i (x1) - 7-f2(X2) I 7. (2.24)

Now from (2.20), (2.21) and (2.24),

lHi (Xl) - I(X 2 ) - .(X1) - H-2(X2)I + th(X2) - RX2 (X 2 )I 2-y _ 2 ,

iEV'

which proves Lemma 12.

To show the error bound of SEQ-MAP, we will imaginarily construct an edge

decomposition that is similar to the output of POLY-E. The main idea is to consider

the ball selection procedure (3) of SEQ-MAP in the reverse order. Formally, imagine

that the procedure (3) of SEQ-MAP is done with an iteration parameter t E Z+.

Then for each vertex w e V, we assign the largest iteration number t such that the

chosen ball R at the iteration t contains w. That is,

T(w) = inax{t E Z+I SEQ-MAP chooses tw as a member of ? at iteration t.}.

This is well defined, since we run the algorithm till each node becomes center of a

ball at least once. Now define the imaginary boundary set of SEQ-MAP be

= { ('u, w) E EIT(u) € T(w)}.

Notice that all the vertices v in a connected component of G' = (V, E - B) has

same T(v) value. Let SI,..., SAK be the connected components of G' = (V, E - B) so

that vertices in S, has the largest T(-) value, vertices in S2 has the second largest T(.)

value, and so on. Let T(Sk) be the corresponding iteration number of the vertices in

Sk .

Now the above procedure that generates B is identical to the procedure POLY-E

that generates an edge-decomposition of G, except the fact that the above procedure

allows center vertices to be chosen from any vertices, whereas POLY-E allows only



the vertices in W to be chosen as center vertices. This fact does not affect the proof

of Lemma 4 and Lemma 6. Hence from Lemma 4 and Lemma 6, we obtain that the

random set 8 is a, (2e, CKP) edge-decomposition of G.

Recall that the maximum vertex degree d* of G is less than 2PC by the definition

of polynomially growing graph. This fact together with Lemma 10, the following

Lemma 13, and the fact that B is a (2e, CKP) edge-decomposition of G, proves the

error bound of SEQ-MAP.

Lemma 13 Given an MRF X defined on graph G described by (2.1), the SEQ-

MAP produces an output x* such that:

I((x*)- N(x) < 5
(i,j)GB

where B is the imaginary boundary set of SEQ-MAP.

Proof. Let x* be a MAP assignment of the MRF X defined on G. Given an

assignment x E EIVI defined on a. graph G = (V, E) and a subgraph S = (W, E')

of G, let an assignment x' E Elwl be called a restriction ofx to S if x'(v) = x(v) for

all v E W. Let x be the restriction of x* to the component Sk.

Let Xk be the restriction of the MRF X to Gk = (Sk, Ek), where Ek = {(u, w) E

Eiu, w E Sk}. Then, since x* is a MAP assignment of X, x is a MAP assignment of

Xk.

Let "* be the output of SEQ-MAP, and let x̂ * be the restriction of i* to the

component Sk. From the definition of Sk, note that 4. is a MAP assignment of Sk

under a condition of fixed assignment for all the vertices outside Sk. Let

Bk = {(u,w) E Blu E Sk}

be the edge boundary of Sk, and let

OSk = {u E SkI(u, w) E B for some w E V}



be the set of boundary vertices of Sk. Then the condition that all the vertices outside

Sk are fixed to an assignment is equivalent to changing the vertex potential functions

on OSk due to the fixed end point edge potentials of Bk, and removing the edge

potentials of Bk. Let Xk be the MRF obtained from X by restricting to Gk, then

changing the boundary vertex potentials due to the fixed assignment outside Sk at

the iteration T(Sk) of SEQ-MAP. Let {¢ (')}iSk be the vertex potential functions

of Xk. For i E Sk, let

,D = max I i(i) i

Then, from the potential change of 4 , we have

oD < (v/{- 7L). (2.25)
i (u,w)E3,

For Xk E EISkI, define

Hk(Xk) = (x) + 5 j l(X, j).

iE (ij)EEk

Now, we have

K

I~(*) -*) (*) < Nk X ) - ik(x)I + E Iji - ,j(Xix)I
k=1 (i,j)ES

K

<5 k I'X*k)- (x) + ( - )kXk)
k=1 (i,j)EB

k=1 ieSk (, )e

5 .( (2.26)
(ij)ES

Here, (a) follows from Lemma 12, (b) follows from (2.25), and (c) follows from

the fact that each edge in B belongs to exactly two Bk. This completes the proof of



Lemma 13.

2.6 Approximate log Z

In this section, first we describe algorithm for approximate computation of log Z for

any graph G. The algorithm uses an edge-decomposition algorithm as a sub-routine.

Our algorithm provides provable upper and lower bound on log Z for any graph G. In

order to obtain tight approximation guarantee, we will use specific graph structures

as in the polynomially growing graph and the minor-excluded graph.

2.6.1 Algorithm

As in the MAP, we use the term DECOMP for a generic edge-decomposition algo-

rithm. The approximation guarantee of the output of the algorithm and its compu-

tation time depend on the property of DECOMP. For polynomially growing graph,

we use algorithm POLY-E and for graph that excludes K,.r, as minor for some r, we

use algorithm MINOR-E. Figure 2-11 describes the algorithm for computation of

log Z.

In words, Log Partition(G) produces upper and lower bound on log Z of MRF G

as follows: decompose graph G into (small) components S1 , .... , Si l)y removing (few)

edges B c E using DECOMP(G). Comnpute exact log-partition function in each

of the components. To produce bounds log ZLB, log ZUB take the summation of thus

computed component-wise log-partition function along with minimal and maximal

effect of edges from B.

2.6.2 Analysis of Log Partition: General G

Here, we analyze performance of Log Partition for any G. Later, we will use

property of the specific graph structures to obtain sharper approximation guarantees.

Theorem 5 Given a pair-wise MRF G, the Log Partition produces log ZRB, log ZUB



Log Partition(G)

(1) Use DECOMP(G) to obtain B C E such that

(a) G' = (V, E\B) is made of connected components S1, ..,SK.

(2) For each connected component S, 1 < j < K, do the following:

(a,) Compute partition function Zj restricted to Sj by dynamic programming
(or exhaustive computation).

(3) Let _ = min(,X)E 2 Vij(x, , ) = mnax(,X2)E 2 ij (x, x'). Then

K

logZUB = Elog Zj + E u.
j=1 (i,j)eB

(4) Output: lower bound log ZLB and upper bound log ZUB.

Figure 2-11: Algorithm for log-partition function computation

such that

log ZLB log Z < log ZUB,

log ZJ - log LB =
(ij)EB

It takes 0 (IEjKIE|1s*I) + TDECOMP time to produce this estimate, where IS*| =

maxi= 1 Sl with DECOMP producing decomposition of G into Si,..., SK in time

TDECOMP.

Proof. First, we prove properties of log ZLB, log ZUB as follows:

K

E log Z
j=1

+ E I
(ij)EB

(a) log
xE"

exp i (xi) +
ieV

S O (xi, xj) +
(ij)EE\B

log ZLB = E log Zj
j=1

(V !; - )

log ZLB

+ E 4
(ij)EB

(ij)EB



xerE iEV (i,j)EE\B (i,j)8E

= log Z

< log [E exp ( i(xi)+ >3 ij(xi, xj)+ >E ?tU

xEEr  
iEV (i,j)EE\B (i,j)EB

K

1 >log z + > o
j=1 (i,j)EB

= log ZUB.

We justify (a)-(d) as follows: (a) holds because by removal of edges B, the G de-

composes into disjoint connected components S1, ... SK; (b) holds because of the

definition of ~(); (c) holds by definition 4J and (d) holds for a similar reason as (a).

The claim about difference log ZuB - log ZLB in the statement of Theorem 5 follows

directly from definitions (i.e. subtract RHS (o) from (d)). This completes proof of

claimed relation between bounds log ZLB, log ZUB.

For running time analysis, note that Log Partition performs two main tasks:

(i) Decomposing G using DECOMP algorithm, which by definition take TDECOMP

time. (ii) Computing Zj for each component S through exhaustive computation,

which takes O(IEIIEI' 5s I) time, and producing log ZLB, logZUB takes addition IVI

operations at the most. Since there are K components in total with max-size of

component being 15*1 we obtain that running time for task (ii) is O(IEIKI II'I).

Putting (i) and (ii) together, we obtain the desired bound. This completes the proof

of Theorem 5.

2.6.3 Some preliminaries

Before stating precise approximation bound of Log Partition algorithm for polyno-

mially growing graphs and graphs that exclude minors, we state two useful Lemmas

about log Z for any graph.



Lemma 14 If G has maximum vertex degree d* then,

log Z > o - oL
(i,j)EE

Proof. Assign weight wj = V - to an edge (i, j) E E. Since graph G has

maximum vertex degree d*, by Vizing's theorem there exists an edge-coloring of the

graph using at most d* + 1 colors. Edges with the same color form a matching of

the G. A standard application of Pigeon-hole's principle implies that there is a color

with weight at leastd1 (Z(i,)EE ~ij). Let M C E denote these set of edges. That

is,

(V) _ L.) > --- )
(i,j)EM (i,j)EE

Now, consider a Q C En of size 21 MI created as follows. For (i, j) E M let

(xU, x) E arg max(,x,)Er2 ij(,x'). For each i E V, choose xL E E arbitrarily.

Then,

Q = {x E E ": V (i, j) E M, (xi, x) = (xi , x ) or

(4, x);for all other i E V, xi = xL}.

Note that we have used the fact that M is a matching for Q to be well-defined.

By definition ij, ,ij are non-negative function (hence, their exponents are at least

1). Using this property, we have the following:

xEQ iEV (ij)EE

-XEQx ((i,j)EMC Djzj)



(a) exp(4i)

,> 21AI H(ij) EM

(C)(c) H exp - W)
(ij)GAI

F eXp(''~)

. )) exp(Vi')

exp (ij)E (2.27)

Justification of (o)-(c): (o) follows since iij, Oi are non-negative functions. (a) con-

sider the following probabilistic experiment: assign (xi, xj) for each (i, j) E M equal

to (x", ,) or (X', X) with probability 1/2 each. Under this experiment, the expected

value of the exp(E(ij)EM , ij(xi, xj)), which is (j)M exp(VJ(x ))+exp( qJ(x",)) is

equal to 2i" [IIXeQ exp(Z(jj)E ji ,j (xi, xj))]. Now, use the fact that Iij(x" x%) >

sL.'j (b) follows from simple algebra and (c) follows by using non-negativity of function

'ij. Therefore,

logZ ) j ij

1
> d*+l 

((ij)CE

(vU
13j id ) (2.28)

using fact about weight of AlM. This completes the proof of Lemma 14.

Lemma 15 If G has maximum vertex degree d* and the DECOMP(G) produces B

that is (e, A) edge-decomposition, then

E [log ZUB - log ZLB] < e(d* + 1) log Z,

with respect to the randomness in B, and the Log Partition takes time O(nd*|E| )+

TDECOMP.

'o v /



Proof. From Theorem 5, Lemma 14 and the definition of (e, A) edge-decomposition,

we have the following.

[log ZU - log ZLB E - )
= S

(i,j)E

(ij)EE

Se(d* + 1)logZ.

Now to estimate the running time, note that under (e, A) decomposition B, with

probability 1 the G' = (V, E\B) is divided into connected components with at most

A nodes. Therefore, the running time bound of Theorem 5 implies the desired result.

2.6.4 Analysis of Log Partition: Polynomially growing G

Here we interpret result obtained in Theorem 5 and Lemma 15, for polynomially

growing G and uses edge-decomposition scheme POLY-E.

Theorem 6 Let MRF graph G of n nodes with growth rate p and corresponding

constant C be given. Consider any constant e E (0, 1), and define (p = '. Then

Log Partition using POLY-E(p, K(p, p, C)) produces bounds log ZLB, log ZUB such

that

E [log ZuB - log ZLB] < E log Z.

Further, the algorithm takes O(n) amount of time to obtain these estimates.

Proof. First, POLY-E(p, K( , p)) produces ( o, 0(1)) edge-decomposition from

Lemma, 6.

Note that the maximum vertex degree d* of G is less than 2PC by the definition

of polynomially growing graph. Therefore, by Lemma 15, the output produced by



the MAP algorithm is such that

E[log ZuB - log ZLB] < 2-p- 2(d* + 1) logZ

< - log Z, (2.29)

Further, the running time of the algorithm is O(nd*I K(p,p)) + TDECOMP = O(n).

This completes the proof of Theorem 6.

2.6.5 Analysis of Log Partition: Minor-excluded G

When G is a minor excluded graph with bounded vertex degree, we use MINOR-

E for the edge-decomposition. We apply Theorem 1 and Lemma 11 to obtain the

following result.

Theorem 7 Let MRF graph G of n nodes exclude K,., as its minor. Let d* be the

rnaximnum vertex degree in G. Given a constant E > 0, use Log Partition algorithm

with MINOR-E(G,r, A) where A = [r(d-1) Then, Log Partition produces

bounds such that

log ZLB < log Z log ZuB; and

E log Zu - log ZLB E log Z.

The algorithm takes O(n) time.

Proof. From Lemma 9 about the MINOR-E algorithm, we have that with choice

of A = (d+l)], the algorithm produces ( d , A) edge-decomposition where A =

d*O(A) . Since it is an (;-, A) edge-decomposition, the upper bound and the lower

bound, log ZUB, log ZLB, for the value produced by the algorithm are within (1 ±

E) log Z by Lemma 15.

Now, by Lemma 15 the algorithm running time is O(nd*IE A) + TDECOMP. As

discussed earlier in Lemma 9, the algorithm MINOR-E takes O(r E ) = O(nrd*)

operations. That is, TDECOMP = 0(n). Now, A = d*o(A) and A < r(d* + 1)/E + 1.



Therefore, the first term of the computation time bound O(nd* ElA) = O(n). Hence

the running time of MAP is O(n). This completes the proof of Theorem 7.

2.7 An unexpected implication: existence of limit

This section describes an important and somewhat unexpected implication of our

result, specifically Lemma 15. In the context of regular MRF, such as an MRF on Zd

(of nd nodes) with same node and edge potential functions for all nodes and edges, we

will show that (non-trivial) limit - log Z exists as n -- + oo. We believe that its proof

method is likely to allow for establishing such existence for a more general class of

problems. As an example, the theorem will hold even when node and edge potentials

are not the same but are chosen from a class of such potential as per some distribution

in an i.i.d. fashion. Now, we state the result.

Theorem 8 Consider a regular MRF of n nnodes on d-dimensional grid Zn = (V, En):

let bi)j 4', i for all i E V, (i, j) E En with 0 : E 2 -- R+, O: E - +. Let Zn

be partition function of this MRF. Then, the following limit exists:

limn I log Z, = A(d, ¢, ¢) E (0, oo).
n--c n

2.7.1 Proof of Theorem 8

The proof of Theorem 8 is stated for d = 2 and E = {0, 1} case. Proof for d > 3 and

E with IEI 2 can be proved using exactly the same argument. The proof will use

the following Lemmas.

Lemma 16 Let d = 2 and 0* = maxaE{o,1} k(a), V* = mInax(,a,)E{o,}2 )(a, a'). Then,

n2 < log Z an2

where a = log 2 + log 0* + 4 log *.



Lemma 17 Define an = 1 log Zn. Now, given k > 0, there exists 'n(k) largye enough

such that for' any m, r. > n(k),

Sr - O +f min{m, n}

Proof. (Theoremrr 8) We state the proof of Theorem 8, before proving the above

stated Lemmas. First note that, by Lemma 16, the elements of sequence an =

n-2 log Z take value in [1, a]. Now, suppose the claim of theorem is false. That

is, sequence ar does not converge as n -- oc. That is, there exists 6 > 0 such for any

choice of no, there are rn > n > no such that

arr, - an I > 8.

By Lemma 17, we can select k large enough and later n o > n(k) large enough such

that for any m, n > no,

am- anl < 6.

But this is a contradiction to our assumption that an does not converge to a limit.

That is, we have established that a,, converges to a non-trivial limit in [1, ct] as desired.

This completes the proof of Theorem 8.

2.7.2 Proof of Lemmas

Proof. (Lemma 16) Consider the following.

2n2 =  1 1 l 1

xE {0,1},,
2 iE ;, (i,j)EEn

< S fexp((x 2 )) ]7 exp(V'(xj, xj))
xE0,1L}

n  
iEVn (i,j)EEn

Zn

<b : exp(*) exp(/*). (2.30)
xE{O,1)n

2 iE Vn (i,j)EEn



Here, (a) follows from the fact that 0, ¢ are non-negative valued functions and (b)

follows from definitions of 0*, V/*. Now, taking logarithm on both sides implies the

Lemma 16.

Proof. (Lemma 17) Given k > 0, consider n large enough (will be decided later).

Consider Z' = (V,, E,) and let it be laid out on X - Y plane so that its node in

V,, occupy the integral locations : (i, j), 0 < i < n- 1,0 < j < n - 1. Now, we

describe a scheme to obtain a (O(1/k), O(k 2)) edge-decomposition of Z2 . For this,

choose el, e2 E {0,..., k - 1} independently and uniformly at random. Select edges

to form B to obtain edge-decomposition as follows: select vertical edges with bottom

vertex having Y coordinate e2 + jk, j > 0, and select horizontal edges with left vertex

having X coordinate fl + jk, j > 0. That is,

B = {(u, v) E En: u = (i,j), v = (i + 1, j), i mod k = el }

U {(u,v) En : u = (i,j),v = (i,j + 1),j mod k = e2}.

It is easy to check that this is (O(1/k), O(k 2)) edge-decomposition due to uniform se-

lection of fl, e2 from {0,..., k - 1}. Therefore, by Lemma 15, we can obtain estimates

that are (1 + O(1/k)) log Zn using our algorithm.

Let m = [n/k]. Under the decomposition B as described above, there are at least

(m - 1)2 connected components that are MRF on Zk. Also, all the connected com-

ponents can be covered by at most (m + 1)2 identical MRFs oil Zk. Using arguments

similar to those employed in calculations of Theorem 5 (using non-negativity of 0, 1/),

it can be shown that the estimate produced by our algorithm is lower bounded as

(1 - O( ))(m - 1)2 log Zk 2  x (1 - O(1/k) - O(k/n)),

and is upper bounded as

(1 + (1/k))(m+ 1)2 log Z = n2Z (1+ 0(k/n) + O(1/k)).
k2x(~~ll)t~ll~)



Grid Cris

Figure 2-12: Example of grid graph (left) and cris-cross graph (right) with n = 4.

Therefore, from above discussion we obtain that

1 Zk
2 log Z = kZ (1 + O(k/n) ± O(1/k)).

Therefore, recalling notation of a,, we have that

Iam - an = akO mm i,}+ akO(1/k).
min Irr, rT}

Since, ak E [1, a] for all k, we obtain the desired result of Lemma 17.

2.8 Experiments

Our algorithm provides provably good approximation for any positive MRF defined on

a graph G that is either polynomially growing or minor-excluded with bounded degree.

We present simulation results on the grid graphs, which satisfies both conditions.

Grid graph appears in many application of MRF including Ising model and computer

graphics. We will use the decomposition algorithm MINOR-E to obtain our results.

Now we will present detailed setups and experimental results.

Ilkw
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Figure 2-13: Comparison of TRW, PDC and our algorithm for grid graph with n = 7 with
respect to error in log Z. Our algorithm outperforms TRW and is competitive with respect
to PDC.

2.8.1 Setup 1

Consider4 the following binary (i.e. E =- {0, 1}) NIRF on an /, x x g'rid G . (lV E):

P(x) x exp 0i.1i + E i. 'i" for x E {j0, 1'
(i.j)cE

Figure 2-12 shows a lattice or grid graph with 'n = 4 (on the left side). There are

two scenarios for choosing parameters (with notation U1[a, b] being uniform distribu-

tion over interval [a, b]):

4 Though t his setup has Pi, t-'ij takiing niegative values, they are equivaleit, to thle setup colsidered

in the paper as the function values are lower hounded and hence affinIe shift will make thllel hlln-

negative without changing the distribution.
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Figure 2-14: The theoretically computable error bounds for log Z under our algorithm for
grid with oI = 100 and o = 1000 under varying interaction and varying field model. This
clearly shows scalability of our algorithm.

(1) Varying interaction. 0, is chosen independently from distribution &[-0.05, 0.05]

and , chosen independent from o[-a, ] with o E {0.2, 0.4, ... ,2}.

(2) Varying field. OBj is chosen independently from distribution U[-0.5, 0.5] and

08 chosen independently from LU[-i, o] with o E { 0.2. 0.4,... ,2}.

WVe run our algorithms Log Partition and MAP, with decomposition scheme

MINOR-E(G, 3, A), A c {3.4,5}. We consider two mieasures to evaluate perfor-

niance: error in log Z, defined as I log Z alg - log Z;: and error in E(x*), defined as

I IE(xalg - E(x*)1.

We compare our algorithm for error in log Z with the two recently very successful

algorithms -Tree re-weighted algorithm (TRWI) and planar decomposition algorithm
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(PDC). The collparisonl is plottedl in Figure 2-13 where n -. 7 and the results are

averages over 40 trials. The Figure (A) plots error with respect to varying interaction

while Figure (B) plots error with respect to varying field strength. Our algorithm,

essentially outperforms TRW for these values of A and perform very competitively

with respect to PDC.

The key feature of our algorithm is scalability. Specifically, runnning time of our

algorithm with a given parameter value A scales linearly in n,, while keeping the

relative error bound exactly the same. To explain this feature, we plot the upper

bound on error in log Z in Figure 2-14 with tags (A), (B) and (C). Note that the

error bound plot is the same for n = 100 (A) and n = 1000 (B). Clearly, actual

error is likely to be smaller than these theoretically plotted bounds. We note that



(A) Cross Edge Graph, n=100
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Figure 2-16: The theoretically computable error bounds for log Z under our algorithm for
cris-cross with n = 100 and n = 1000 under varying interaction and varying field model.
This clearly shows scalability of our algorithm and robustness to graph structure.

these bounds only depend on the interaction strengths and not on the values of fields

strengths (C).

Results similar to of Log Partitioni are expected from MAP. We plot the the-

oretically evaluated bounds on the error in MAP in Figure 2-15 with tags (A), (B)

and (C). Again. the bound on MAP relative error for given A parameter remains the

same for all values of n as shown in (A) for n, = 100 and (B) for 1n = 1000. There is

no change in error bound with respect to the field strength (C).

2.8.2 Setup 2

Everything is exactly the same as the above setup with the only difference that

grid graph is replaced by cris-cross graph which is obtained by adding extra four

neighboring edges per node (exception of boundary nodes). Figure 2-12 shows cris-

cross graph with n = 4 (on the right side). We again run the same algorithm as above

0
S
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Figure 2-17: The theoretically computable error bounds for MAP under our algorithm for
cris-cross with n = 100 and n = 1000 under varying interaction and varying field model.

setup on this graph. For cris-cross graph, which is a polynomially growing graph with

growth rate 2, we obtained its graph decomposition from the same decomposition we

have obtained for its grid sub-graph. Therefore , the running time of our algorithm

remains the same (in order) as that of grid graph and error bound will become only 3

times weaker than that of the grid graph. We compute these theoretical error bounds

for log Z and MAP which is plotted in Figure 2-16 and 2-17. These figures are similar

to the Figures 2-14 and 2-15 for the grid graphs.
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Chapter 3

Application of MAP : Wireless

Network

3.1 Capacity region of wireless network

Wireless networks are becoming the architecture of choice for designing many of the

emerging communication networks such as mesh networks to provide infrastructure

in metro areas, peer-to-peer networks, and to provide infrastructure free interactions

between handheld devices in popular locations like shopping malls or movie theaters,

mobile ad-hoc network between vehicles for IVHS, etc. In all such settings, in essence

we have a wireless network of n nodes where nodes are communicating over a common

wireless medium using a certain standard communication protocol (e.g. IEEE 802.11

standard). Under any such protocol, transmission between a pair of nodes is successful

iff none of the nearby or interfering nodes are transmitting simultaneously. Any such

interference model is equivalent to an independent set interference model over the

graph of interfering communication links.

A key operational question in any such network (e.g. a mesh network in a, metro

area) is that of determining whether a, given set of end-to-end rates between various

source destination pairs is simultaneously supportable by the network. That is, one

wishes to determine the n2 dimensional unicast capacity region of such a wireless

network of n nodes. An algorithm for determining this feasibility must be distributed



(i.e. operation at a node utilizes only the information of the node's neighbors) and

very efficient in order to be implementable.

However, an algorithm for determining feasibility of end-to-end rates has to explore

over exponentially large space of joint routing and scheduling decisions under the

wireless network interference constraints. This makes the question of designing such

an efficient, distributed algorithm potentially very hard. Indeed, this question is

known to be NP-hard and hard to approximation within 71-o(1) factor for general

graphs [57].

But since wireless networks are usually formed between nodes that are placed in a

geographic area, they possess a natural geometry. Therefore, a natural question arises:

is it possible to design efficient algorithms for checking end-to-end rate feasibility for

a wireless network arising in practice (i.e. possessing geometry)?

3.2 Previous works

In past decade or so, emergence of wireless network architectures have led various

researchers to take two different approaches to design efficient algorithms for checking

feasibility of end-to-end rates.

The first approach is inspired by the possibility of deriving explicit simple bounds.

Specifically, starting work by Gupta and Kumar [16] significant effort has been put

in to derive simple scaling laws for large random wireless network for random traffic

demands. In essence, this result implies that under such a random regular setup, per

source supportable rate scales like 1/\/i in the network of n nodes. Thus, if such a

random setting is a good approximation of the network operating in practice, then

one can utilize this 1/1it formula to determine approximate feasibility. The possible

effectiveness of such an approach has led to an extensive study of a related notion of

transport capacity, introduced in [16], over the past decade. For example, see works

by [10,23,41] and many others. We also refer an interested reader to a comprehensive

survey by Xue and Kumar [70]. More recently, a complete information theoretic

characterization of random traffic demand were obtained for random node placement



by Ozgur, Tse and Leveque [48] and for arbitrary node placement by Niesen, Gupta

and Shah [47].

The second approach is based on determining the exact or approximate feasibility

for a given arbitrary wireless network operating under a, specific interference model.

The question of determining feasibility of end-to-end rates is equivalent to checking

feasibility of a solution of a certain Linear Program (LP). However, this LP is very high

dimensional (due to exponentially many routing and scheduling choices) and hence

exact solutions like simplex algorithm for this LP are inefficient. Various authors have

provided approaches to design approximation algorithm with constant factor loss for

such an LP with the constant factor loss being a function of the degree of nodes in

the interference graph.

In general, given a specific network and a, vector of end-to-end rates between

various source destination pairs, the problem of determining their feasibility is NP-

hard. In [13], the problem of determining feasibility of rates when sources wishes to

send data to their neighbors directly was considered, i.e. the problem of feasibility of

rates for a single hop network. A polynomial time approximation was developed for

this problem when the network possesses geometry. As explained earlier, the single

hop rate feasibility algorithm does not lead to feasibility of end-to-end rate feasibility

primarily due to additional freedom of routing over exponentially many choices. It

is also important to note that the multi-hop routing version is not a generalization

of the single hop problem. This is because, even if we consider all source destination

pairs as 1-hop neighbors, it is possible that the rates are feasible through a multi-hop

routing scheme while the trivial single hop routing itself is infeasible. In that sense,

the two problems, though related, are in fact, not generalizations of one another.

3.3 Our contributions

As our main result, we take a different approach to directly tackle the multihop

problem. A well known result of Tassiulas and Ephremides [61], says that if the

given end-to-end rates are feasible, then a network with i.i.d. arrivals of mean equal



to these rates (and of bounded second moment) under the maximum weight based

combined scheduling and routing policy will lead to a stable Markov process of the

queue lengths. The maximum weight scheduling algorithm is required to determine

schedule of nodes subject to network scheduling constraints that are imposed by the

network physical layer.

Although the maxinmum weight scheduling problem may become NP hard, the

hardness result is an adversarial or a worst-case result. Therefore, it is natural to

inquire whether there is a large class of network structure for which such impossibility

result does not hold. Implicitly, such line of query was pursued in some of the recent

works for very specific graph structures. Specifically, work by Hunt et. al. [19]

provides an approximation algorithm for maximum weight independent set for unit

disk graphs. This was utilized by Sharma, Mazumdar and Shroff [58] in their work to

identify that max-weight scheduling with K-hop matching. A similar approach was

employed in another recent work by Sarkar and Ray [55] for a very restricted class

of graph structures. However, identification of a broad class of graph structures that

posses such property has remained unknown.

As explained in Section 1.3.2, the following pair-wise MRF model is widely used

to express the MWIS for network scheduling.

W(x) oc exp WV(r) . xV , - (x, 1x), 7(3.1)
vEV (u,v)EE

where T is defined so that (xl, x 2) = 0 if 21 = X2 = 1, and qI'(x 1 , X2) = 1 otherwise.

In most of the applications, practical network graphs have the following geometry.

The size of the local neighborhood of each node in the network grows polynornially,

i.e. they are polynomnially growing graphs. As we have shown in Section 2.3.1, many

of the popular graph models are special instances of our thus identified structure.

For example, popular wireless network model of geometric random graph (e.g. Gupta

and Kumar [16]) or popular computational geometric graph model of finite doubling

dimension graphs are special instances of our polynomially growing graphs. Notice

that (3.1) is not a positive MRF, hence we cannot apply our MAP algorithm directly.



In Section 3.5, we provide a randomized algorithm that computes approximate MWIS

within any accuracy.

Now, provided the network constraint graph allows for efficient approximation to

the MWIS problem, we suggest the following vaguely stated approach for a feasibility

test of end to end rates : Simulate a network with fixed packet arrival of the given end-

to-end rates, and use the given approximate MWIS algorithm for the packet transmit

scheduling. Hopefully, if the queues remain "stable" then the rates are approximately

feasible or else they are approximately infeasible. This is the basic idea, behind our

approach. However, in order to make this approach 'feasible', we need to deal with a,

host of non-trivial issues that are stated below:

* Even if one had an efficient exact MWIS algorithm, its popular analysis (as

in [61]) provides bounds on the queue lengths of the stationary distribution,

not for any time. Hence we need to characterize the queue lengths explicitly for

any time in order to be able to design an algorithm.

* The queue length bounds obtained by using the standard Foster's criterion

and moment bounds are only statements on the equilibrium distribution. This

means that in order to establish an absolute bound, one might need to estimate

the rates of convergence and we would have a polynomial algorithm if this

convergence is quick enough. We take somewhat novel approach where we

iterate analysis with the design along with the use of real valued queue lengths

with deterministic fractional arrivals. By doing so, the queue-size vector does

not remain a Markov chain on integer state space but, our direct analysis leads

to bounds that are sufficient for our purposes and leads to the approximate

correctness property of the algorithm that we propose.

3.4 Model and main results

In this section, we explain the mathematical model of the network we consider, and

state our main results. Consider a wireless network on n nodes defined by a directed



graph G = (V, E) with IVI = n, El = L. For any e E E, let a(e), /3(e) denote

respectively the origin and destination vertices of the edge e. The edges denote

potential wireless links, and only the subsets of the edges that do not interfere can

be simultaneously active. We say two edges interfere when they share a vertex. Let

S = {e E {0, 1}L : e is the adjacency vector for a non-interfering subset of E}

Note that S is the collection of the independent sets of E by considering interference

among el E E and e2 E E as the edge between them. Given a graph G = (1, E) on

L nodes and node weights given by w = (wl1 ... , WL) E R", a subset x of V is said

to be an independent set if no two vertices of x have a common edge. Let Z(G) be

the set of all independent sets of G. A maximumrn weight independent set (MWIS) x*

of a vertex weighted graph is defined by x* = argmax {wTx : x E Z(G) } where we

consider w as an element of {0, 1}I'.

The convex hull of S, denoted by co(S) in RL represents the link rate feasibility

region. Typically, the set co(S) is complicated to describe (and exponential in size).

Determining membership in co(S) was a problem shown to be NP-hard by [1] under

general interference constraints.

In this chapter, we consider mr distinct source destination pairs, (sl, d), . . ., (s,, dm)

and an end to end rate vector, r = (rl, r2 ,..., r,m) E [0, 1]m . We will use the index j

to range over the Source-Destination pairs in the following discourse.

Definition 7 The rate vector r = (r1 ,...,rm) E [0, 1] corresponding to the Sour'ce-

Destination pairs (5sl, dl),..., (sm , d) is said to be 'feasible ", if there exist flows,

(f,. . . , f) such that

* f routes a flow of at least ry from sj to dj for 1 < j < m<n

* The net flow on the links induced, f E m, f belongs to co(S), i.e. in other

words, it can be scheduled under the interference const'rnints with a schedule of

at most unit length.



The equations that specify the notion of "flows routing r" are given later in (3.14)

via (3.6) and (3.12). Let

,7 = {r E [0, 1]"' : r is "feasible"}

be the set of all feasible end to end rate vectors. Our primary results are the followings.

Definition 8 Given a constant e > 0 and a graph G with a vertex weight w =

(wl,..., w,) E Rn, we say a randomized algorithm is an e-approximation algorithm

of MWIS of G if it outputs an independent set i E Z(G) that satisfies

E[w'T] > (1 - e)WTx*.

Theorem 9 Let the interference graph of the network be a polynomially growing

graph. Then for any constant e > 0, there is an e-approximation algorithm of MWIS

that runs in 0(n) time.

Theorem 10 Assume we have a randomized e-approximation algorithm of MWIS

for a wireless network for 0 < e < 1/4. Then, there exists a randomized polynomial

time algorithm to determine the approximate rate feasibility of a given end to end rate

vector r in the following sense: If (1 + 2e)r E Y, then the algorithm outputs a 'YES'

with high probability. Conversely, if (1 - 2e)r .F, then the algorithm outputs a 'NO'

with high probability. Else, the answer could be arbitrary.

3.5 Approximate MWIS for polynomially growing

graphs

In this section, we present a randomized algorithm MWIS that computes an e-

approximation of MWIS for any polynomially growing graph and constant e > 0. Let

a graph G = (V, E) is given with vertex weights w = (wl, ... , w.) E Rn. Assume

that G is a polynomially growing graph with growth rate p and the corresponding

constant C.



MWIS(e, K)

(1) For the given graph G, use POLY-V(e, K) to obtain a vertex decolmposition
of G.

(a) Let B be the output of the decomposition algorithm.

(b) V - B is divided into connected components with vertex sets 7 1,..., R
(j is some integer).

(c) Let G1 = (R, E), . . ., GL = (j, Ej) be the corresponding disjoint sub-
graphs of G.

(d) Let I(G),.., Z(Gj) be set of independent sets of G1,. ., Gj respectively.

(2) For = 1.... j find

x*(Ge) E arg max (w'x : x E Z(G)} .

(a) The above computation can be done by dynamic programming or exhaus-
tive computation in 0(2R el) operations for graph Ge.

(3) Output ck = U =,x*(Ge) as an approximate MWIS of G.

Figure 3-1: Randomized algorithm for approximate MWIS

The main procedure of the algorithm MWIS is similar to that of MAP, except

that MWIS uses vertex decomposition POLY-V for its graph decomposition sub-

routine unlike the fact that MAP uses POLY-E. This is to make sure that the

merged solution of the independent sets computed within each components is also an

independent set of G. Figure 3-1 describes the algorithm MWIS.

First, we state and prove a Lemma that evaluates the performance of MWIS for

any graph.

Lemma 18 Given a vertex weighted graph G, E > 0 and K, the output "^ of the

MWIS (E, K) has the following property:

E [wT] > wTx* [

where PK = (1 - S)K-1

Proof. Let the POLY-V applied to G produce a random subset B c V as its output

-E- PK Inax |B(v, K) ,
vE I/



and V - B be divided into connected components, Z,,..., R j. As described in the

POLY-V, we have induced (disconnected) subgraphs Ge = ( e, Ee), 1 < < j. The

output of the MWIS is

* = _, x*(Ge),

where x*(G) is the solution of maximum weight independent set in the subgraph Ge.

In the above expression, the U operation of x*(Ge)'s means the standard union of

sets. Note that x*(Ge) are disjoint sets since Ge are disconnected graphs. Therefore,

w '  = w 7w'x*(Ge).

e=1
(3.2)

Now consider any maximum weight independent set x*, i.e. x* E arg max {wTx : x E Z(G) }.

The x* corresponds to a subset of vertices V of G. The intersection of x* and Re

induces an independent set in Ge. Let

X = x* n R.

Since x*(Ge) is a maximum weight independent set in Ge, we have

wTx*(Ge) _ w Xe. (3.3)

Finally, denote x* = x* n B. Since V = B U

disjoint, we have

W7'* 7= w'xw X W wX 8

(Ui=lRe) and all sets B, R Ri,. . RL are

L

wTx

f=1

(3.4)

From (3.2)-(3.4), we obtain

w"' > w'x* - w x*.

Therefore, with respect to the randomness in the POLY-V (using Lemma 4), we



have

E [wTk] > WTX* - wPv B] > WTX* - (z V + PK (max B(v, K)))

Ex* F( , x *

= wx* 1-E-P- P ax B(vK) (3.5)
This completes the proof of Lemma 18.

Before we state the error bound of MWIS for polynomially growing graph G, we

give some definitions. Given a graph with growth rate p and corresponding constant

C, and a constant 6 E (0, 1), let

6 16p 16 8 8 2
E(6) = and K(5) = log + log C + log - + 2.

2 6 6 6 5 6

Lemma 19 Let 6 E (0, 1), p and C be constants. Then MWIS with parameters

(E(5), K(6)) computes an 6-approximation of MWIS of G in expectation, and its run-

ning time is O(n).

Proof. From Lemma 18, we obtain that our algorithm outputs a random independent

set x such that

E [wrk] > w'x*(1 - ),

where p = e + PK (mnax,,v IB(v, K)I) .

For a graph G with growth ratio p and corresponding constant C, from the defi-

nition K = K(6) = 1 log (1) + log C + log + 2, and Lemma, 5, we have

,= E+ PK (max B(v, K)l) 2E.

Hence 5 < 2E = 5, which shows that our algorithm with parameter (e(6), K(6))

generates independent set with average weight at least (1 - 6)wTx*.

To show that our algorithm runs in O(n) time, note that by Definition 4 and

Lemma 4, (CK) is an upper bound on the size of each connected component obtained



by the MWIS. Then the running time for each connected component is at most

O (2 (CK)P). Since K is a constant when p, C and 6 are constants, the total running

time of the MWIS is O (n2(CK)P) - O(n). This completes the proof of Lemma 19.

Here we note that from the standard Markov's inequality, by running MWIS for

O(log n) many times and taking the independent set with highest weight as the out-

put, we can obtain an algorithm that outputs i that satisfies

wT > (1 - E)wTx *

with probability at least 1 - '- for any constant h.

3.6 Proof of Theorem 10

To prove Theorem 10, we describe the algorithm first with some parameters the

algorithm uses to compute its answer. Let t be an index ranging over integers, to be

interpreted as slotted time. Define q(t) E R as the 'packet mass' at node i destined

for node dj at time t (for 1 < i < n, 1 < j _ m). Define m 'routing matrices', each

of dimension n x L with the jth matrix, R j defined as follows via its (i, 1)th element

(1 < i < n, and 1 <l < L):

01-1 if a(1) = i, dj # i

Rl,t = 1 if 3(1) = i, di 5 i (3.6)

0 otherwise

Define a 'weight matrix' at time t, W(t), of dimension L x m via its (1, j)th element

(1 < 1 < L and 1 < j m):

wj (t) = qaj (t) - q1 (3.7)

In vector notation1, we have for 1 < j < m:

10Omitting a subscript for a previously defined scalar represents the corresponding column vector.



- w (t)T = q (t)TR , (3.8)

The weight vector of dimension L, W(t), is then defined with its 1t' element

(corresponding to link 1, 1 < 1 < L) as

W,(t) max{W(t))}. (3.9)

Finally, let the Maximum weight of the non interfering set of links be 2

M(t) = maxe.W(t). (3.10)
eES

Let e-MWIS be the given randomized E-approximation algorithm of MWIS for

the wireless network. The following is a direct consequence.

Property 11 e-MWIS returns some e(t) E S with the following property for each

given t:

e(t). W(t) _ (1 - E)M(t). (3.11)

The 'link activation matrix', S(t) E {0, 1}Lm, of dimension L x in, will now be

defined using the vector 6(t) obtained above for a fixed t. The (1, j)th element, E3 (t) =

1 is to be interpreted as activating link I to transfer a unit packet mass corresponding

to S-D pair j at the beginning of time slot t + 1. Note that the MWIS approximation

algorithm itself is oblivious to the various types of packets in the networks. So, we

need to convert the set 6(t) into specific information on which class of S-D pair packets

that it needs to serve, which will be accomplished while defining the link activation

matrix below.

Definition 9 (Link Activation Matrix) We write 9(t) = [El(t) ... E(t)], and

define the columns, E j 's in what follows. For 1 < j < m, let:

S {l : ,(t) = 1, W(t) = 1(t) and W'(t) < W(t),j' < j}.

2a.b denotes the standard vector dot product of a and b.



Sj 's are all disjoint sets by definition and Um=Si is a subset of E with adjacency

vector e(t). Ej(t) is then defined to be the adjacency vector of some maximal subset

of S j that can be activated, subject to the following constraint:

Property 12 (activation constraint) The total number of activated links point-

ing out of node i in the activation set represented by E(t) is at most qj(t) for

1 < i < n.

Remark 13 The above constraint is included to ensure that the queue sizes do not

become negative because of activating too many links while having too less queue size

at any given node. Because of this, the MWIS algorithm is supplied with positive

weights, and the analysis below can assume that q (t) > 0, Vt.

Let E(t) be the net activation vector: E(t) = C=1 E(t). It has the following

property:

Property 14 W(t).E(t) > (1 - e))M(t) - n3 .

Proof. W(t).E(t) = W(t).6(t) - W(t).(e(t) - E(t)) > (1 - E)M(t) - nL (the bound

for the first term follows from Property 11, and for the second term since for any

1 < 1 < L, 61(t) - El(t) = 1 =* W14(t) < n based on the activation constraint above.)

Now, figure 3-2 describes the actual queue computations performed by the algo-

rithm.

We'll now model the process specified above. Towards this, define rm 'arrival

vectors', aj for 1 < j 5 m, each of dimension L as (corresponding to step 1):

j = rj if i = sj (3.12)
0 otherwise

The queue dynamics then follows:

q (t + 1) = qj(t) + R 3E(t) + a. (3.13)



Queue computations

* Initialize all the mn queues, q, 1 < i < n, 1 < j < m to zero ma.ss at t = 0.
Subsequently, at each discrete time slot, do the following:

(1) Add (a 'packet mass' of) rk to qjk'

(2) Compute the weight matrix, W(t) via. equations 3.7, 3.9.

(3) Invoke the e-MWIS algorithm with weights W(t), which results in 6(t)
satisfying Property 11.

(4) Decide the link activation matrix, 9(t) E {0, 1}Lm using the specification in
definition 9 (such that it satisfies Property 12)

(5) For each activated link, 1, with Ej(t) = 1, move a unit queue mass from q (9

to q3. In other words, make the following updates:

S(t + 1) = q( (t 1) - 1

and
9 ()(t + 1) = q ()(t) + 1

Figure 3-2: Queue computations done by the algorithm

Let, the maximum queue size observed across the network at time t be:

qmax(t) = maxq (t).
(ij)

We can then prove the following Lemma:

Lemma 20 If (1 + 2e)r E 7, then qmax(t) < 1r, - 5 for all t > 0 and 0 < E < 1/4.

Proof. Consider the standard quadratic potential function V(t) = .i,i (qj(t)) 2.

Then,

AV(t) = V(t + 1) - V(t)

= Z(RE (t) + aJ).(RJEj(t) + aj + 2qj(t))
J



= (REJ (t) + a ).(REj (t) + aj )

+2 qj(t).(RE j (t) + a)

S(n + 1)2a + 2 q (t). R E (t) + q (t). aj

S2n4 + 2(A + B),

where, we now bound the terms A and B, starting with A first:

m m

A = -(q(t))TREJ(t) = - W(t)TE (t)
j=1 j=1

m
(a) _ W(t)T EJ(t)

j=1

(b) -W(t).E(t) -(1 - E)M(t) + n3 .

Here (a) holds since E 7 0 -= W 1 = W , and (b) holds from Proposition 14.

Now we bound term B. Note that a 'flow vector', f E RL routes a flow r. for the

S-D pair j, if the following holds:

a3 = -R-F for 1 < j < m. (3.14)

Let (fl,. . . fm) 'route' r for the rn S-D pairs. The net flow on the links is given by:

j=1

Claim 3 If (1 + 2E)r E F, then there exist flows (, . . . ,n) that route r such that

for the net flow, f, the following relation holds: (1 + 2e)fe co(S).

Proof. Since, (1 + 2e)r E F, there exist flows (gl, ... gn) that route (1 + 2e)r with

SE co(S). Define F = ' g. Since ai's are linear in r (eq. 3.12), we see (from eq.

3.14) that, if (g1, ... gim) route (1 + 2e)r, then (fl, . f"') = 1 )(gl,... gm) route r.

Also, from linearity of f in terms of (f1,... ,f), it follows that (1 + 2E) = E co(S).



Now, assuming that (1 + 2e)r E F,

B = q(t).a

= - (q(t))TRJf ( where (1 + 2e) E co(S))

= W (t)Tf < W(t)T f = w(t)..
J a

Since (1 + 2e)f E co(S), let

Is'
(1 + 2e)f= Aic where each ci E S (3.15)

i=1

for some non negative Ai such that Ai < - 1. Then,

B -l 1+ AiW(t).c
i= 1

1
- 1 + 2e

Therefore, we have the following bound on AV(t):

AV(t) < 2n4+ 2 n + M(t)( 12 -

< 3n4 -- M(t) for 0 < e < 1/4.
3

Next note that we could assume without loss of generality that the network graph is

connected. If this is not the case, we can always analyze the capacity regions of each

connected component separately. Upon this, we can get the simple bound that:

1 /V(t) > (t)
M > V mn - n

To see the above bound, let (a, b) = argmax(i,j)q . Then q, > v( and since the

network is connected, on any path from a to db (of length at most L), there exists at



least one link, 1 such that W (t) = q( ) (t)- ) which is clearly

a lower bound for M(t).

Therefore, we have the following bound

AV(t) < 3n - V (3.16)
3 n3. 5

which in turn implies that

V(t) < 3n + (9- < 15 Vt > 0.

Hence,

max q(t) < 10n75 Vt > 0.

Lemma 21 If (1 - 2e)r ( F, then qmax(t) Tt for all t > 0.

Proof. First, we begin by showing the following claim:

Claim 4 if (1 - 2e)r F, then for any given m link rate vectors, (gl,... gm) with

:= Ej g E co(S), there is j E [m] such that the followings hold:

(a) The graph with edge capacities given by gi has a maximum flow of value at most

(1 - E)rj from sj to dj.

(b) r > I .

Proof. Suppose that Claim 4 is not true. Then, let

i= {i E [m] ri > }.

By the assumption, for all i E i, there exists a flow of value at least (1 - e)ri from si

to di for edge capacities defined according to g'. Now consider m link rate vectors,

(h',... hm ) with h ' E RL defined below. Let Ri be some fixed arbitrary path from si

to di:



(1 - E)' if i Ei, E E

h= ifiiand1eR, (3.17)

0 otherwise

That is, for i E i, hi = (1 - e)g and otherwise, the value of h' on all the edges in

the path Ri is equal to , while the value on any edge not in Ri is defined to be 0.

We will now argue that the net link rate, h = j h' E co(S) by producing a schedule

for h of unit length.

Note that for i E [mn] n iF, h' can be scheduled under any interference constraint

using L x n amount of time, as there are at most n links in the path Ri. Thus, the

link rate vector, E E[,]ni~ h' can be scheduled in at most rn x < e time.

Next, iEh = (1 - E) iEi g' (1 - E) gi = (1 - E)g. Since, E co(S),

this implies that Eii hi can be scheduled in a total of (1 - e) time.

Hence, h = --E[m] h i = Eii hi + EiE[mini h' can be scheduled in (1 - E) + s,

which is unit time and thus we have hf E co(S).

Now, consider the graph with edge capacities hi. If i E i, the max flow from si to

di is at least (1 - e) 2 r > (1 - 2E)ri by the definition of h'. Else, if i E [m] n ic, then

the max flow is again at least E, which is bigger than (1- 2E)ri by the definition of i.

This implies that for each i E [m7], there exists a flow 4" which routes at least (1 -2e)ri

from si to di, while satisfying (componentwise), < h'. Thus, the vector of flows,

(1,. . ., <m.) routes (1 - 2E)r with the net flow, 6 < h E co(S) Hence, (1 - 2E)r E F,

contradicting our assumption and we obtain Claim 4.

Now, for any t > 0, define (g'(t),... g"(t)), as the link rates for each packet type

obtained by considering the actual schedules. More precisely, For j E [in], define

1
giEl = -( {t E(t) = 1}1)  (3.18)

t

Clearly, g(t) E co(S), and we can apply Claim 4 to it. Thus, there exists j E [Mn]

such that rj > 11- and the max flow from sa to dj is at most (1 - e)rj in the graph
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with edge capacities gJ (t). Applying the max-flow min-cut theorem, observe that

there is a cut (S, T) of the vertex set V such that sj E S, tj E T and c(S, T) =

EIEE:a(1)ES,j(1)ET g (t) is equal to the max flow from sj to tj, which is at most (1 - )rj.

From equation 3.18, observe that the total amount of packet mass of type j that

was moved from S to T during the t time slots is at most l ZE:a(I)ES,O(I)ET t X (t),

which is at most t x (1 - e)rj. Since the amount of packets of type j that were added

during these time slots is t x ri, we have:

iES

Therefore,
EiEs qjI(t) E-t t2max q(t) > > >

(iI) IS - n n

Theorem 10 is now a direct consequence of Lemmas 20 and 21 since the max queue

size grows at least linearly with time if (1 - 2e)r F and is polynomially bounded if

(1 + 2E)r E $, so the two cases can be clearly distinguished in the worst case before

t = 'on'L 5 time slots of simulation. Note that the Maximum queue size can be spread

across the network in a distributed manner easily. Further, the queue computation

updates are also essentially distributed computations. Hence, the feasibility test is

completely distributed.

3.7 Algorithm

Combining the above Lemmas, we have the following results based on the Maximum

queue size observed at each time upon simulating the virtual queue computations

using approximate max weight scheduling and routing described.

Let event El be defined as observing

qmax(t) > 10-n5 for some t > 0.
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Similarly, define event E 2 as observing

qflax (t) < 4 t for some t > 0.

We run the algorithm till a time T where:

T = min{E1 or E2 occurs).
t

Note that either E1 or E2 has to occur eventually (in the worst case, before t = Lon11.5

by definition of El and E2, so T is clearly polynomial)

We can then declare the following 2e-approximate statements (for arbitrarily

small e > 0, ) on the membership of r in F by observing qmax ().

* If El, then declare (1 + 2E)r F.

* If E2, then declare (1 - 2e)r E F.

The consistency of the above statements is a direct consequence of the definitions

of El, E2 and T. Note that it is also possible that both E1 and E2 hold simultaneously

without any contradiction, which just means that r is within an 1 ± 2e factor close

to the boundary of the capacity region.

Alternately, one may not have any E pre-specified to begin with and the interest is

simply in making the best possible approximate statement after running the algorithm

for a certain amount of time. We also have such a possibility resulting from the above

analysis:

Towards this, define:

S(t) = 2 min 2 qmax(t)

Then, the above discussion implies that whenever F(t) < 1/2, one can correctly

declare the feasibility of a rate vector that is a 1 ± e(t) factor of the given vector.
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Figure 3-3: An illustration of the cyclical network with 2-hop interference.

3.8 Numerical experiment

The analysis guarantees that given any E > 0, we will have e(t) < E for a poly-

nomnially bounded t. We simulated the algorithm on a directed cyclical network

of 10 nodes with 2-hop interference constraints, shown in Figure 3.8. In the net-

work, 4 different rate vectors with coordinates corresponding to flows between nodes

1 --+ 5, 5 --+ 1,4 -+ 8,8 - 4 were considered. We did simulation by using stan-

dard software for solving Integer Linear Programs for the approximate MWIS. We

note that it solves the given MWIS exactly. There were assumed to be 4 flows

as explained above. Figure 3.8 describes the maximum queue size qma"(t) over

time t on the network described in Figure 3.8 for 6 different rate vectors given

by rl = [0.2 0.1 0.2 0.1],r 2 = [0.23 0.13 0.2 0.1],r3 = [0.1 0.15 0.1 0.15],r 4 =

[0.1 0.16 0.1 0.16],r 5 = [0.1 0.17 0.1 0.17], and r6 = [0.1 0.18 0.1 0.18]. As we can

see, qm" grows roughly linearly forr 2, r5 , and r6 whereas it stabilizes fairly quickly at

around t=500 for rl, r3 and r4. While our proofs give precise bounds and guarantees

regarding polynomial time distinguishability, these experimental plots suggest that

103



Max queue

Rate 2

1 ..... .. ....... ................ .... .........- --.-.-------- .. ..--

10 .. ..

8 - - - .- - . - - -.- -.... .....

imeS ........... ...................... ..... .............. .r ... .. -F .. 6 R a te 6

6 - Rate4
2-- . / . Rate 3

0 .--...- . ..... /. .. .- ...... ,. Rate

100 200 300 400 500 600 700 800 900 1000
Time

Figure 3-4: A plot of qmax(t) versus t oni the network in Figure 3.8 for 6 different rate

vectors.

in practice they are likely to be distinguished fairly quickly.
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Chapter 4

Application of Partition Function :

Stochastic Loss Network

The question of allocating common resources for various entities accessing them, is

central to many applications arising in diverse scenarios including telephone networks,

broadband telecommunication networks, ATM networks, and workforce management.

In such applications, the canonical dynamic model is the stochastic loss network.

The key algorithmic question in this setup concerns evaluation of what is called

"loss probability", or the inability to serve a request. This algorithmic question is

equivalent to computation of the partition function of the corresponding MRF model

for the stochastic loss network as described in Section 1.3.3.

Historically, a simple mechanism known as Erlang fixed-point approximation has

been extensively utilized for application in telephone networks since early 1960's

[29,30]. This approximation works very well when network is "underloaded" or "over-

loaded". However, we prove that when it is critically loaded, it performs very poorly.

Indeed, in most applications one would like to operate a network near its capacity,

i.e. under critical loading. Motivated by this, we also provide a, novel approxima-

tion method which we call the "slice method" after its geometrical interpretation.

We establish asymptotic correctness of our approach along with a exponentially fast

convergence property.
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4.1 Stochastic loss network

As the complexities of computer and communication systems continue to grow at

a rapid pace, performance modeling, analysis and optimization are playing an in-

creasingly important role in the design and implementation of such complex systems.

Central to these research studies are the models of the various applications of interest.

For over decades, stochastic loss networks have been widely investigated as mod-

els of diverse computer and communication systems in which different types of re-

sources are used to serve various classes of customers involving simultaneous re-

source possession and non-backlogging workloads. Such examples include telephone

networks, mobile cellular systems, broadband telecommunication networks, ATM

networks, optical wavelength-division multiplexing networks, wireless networks, dis-

tributed computing, database systems, data centers, and multi-itein inventory sys-

temis [21, 28, 30, 31,44, 45, 53, 54, 68, 69].

Loss networks also have even been used recently for resource planning within the

context of workforce management in the information technology services industry,

where a collection of IT service products are offered each requiring a set of resources

with certain capabilities [4, 39].

4.2 Previous works

One of the most important objectives in analyzing such loss networks is to deter-

mine performance measures of interest, most notably the stationary loss probability

for each customer class. The classical Erlang formula, which has been thoroughly

studied and widely applied in many fields of research, provides the probabilistic char-

acterization of these loss probabilities. More specifically, given a stochastic network

and a multiclass customer workload, the formula renders the stationary probability

that a customer will be lost due to insufficient capacity for at least one resource type.

While the initial results of Erlang [8] were for the particular case of Poisson arrivals

and exponential service times, Sevastyanov [56] demonstrates that the Erlang formula
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holds under general finite-mean distributions for the customer service times. The re-

sults are also known to hold in the presence of dependencies among service times for

a specific class [7]. Recent results [5] suggest that relaxations can be made to the

customer arrival process, merely requiring that customers generate sessions according

to a Poisson process and, within each session, blocked customers may retry with a

fixed probability after an idle period of random length. A multi-period version of the

Erlang loss model has also been recently studied [4].

Unfortunately, the computational complexity of the exact Erlang formula and

related measures is known to be OP-complete in the size of the network [38], thus

rendering the exact formula of limited use for many networks in practice. The well-

known Erlang fixed-point approximation has been developed to address this problem

of complexity through a set of product-form expressions for the blocking probabilities

of the individual resources that map the blocking probability of each resource to

the blocking probabilities of other resources. In other words, it is as if customer

losses are caused by independent blocking events on each of the resources used by

the customer class based on the one-dimensional Erlang function. The Erlang fixed-

point approximation has been frequently used and extensively studied as a tractable

approach for calculating performance measures associated with the stochastic loss

network, including estimates for stationary loss probabilities. Moreover, the Erlang

fixed-point approximation has been shown to be asymptotically exact in two limiting

regimes, one based on increasing the traffic intensities and resource capacities in a

proportional manner [29,30], and the other based on increasing the number of resource

types and number of customer classes [68, 72].

4.3 Our contributions

We make several important contributions in our work. Despite being asymptotically

exact in certain limiting regimes, it is equally well known that the Erlang fixed-point

approximation can provide relatively poor performance estimates in various cases.

The stochastic loss networks that model many computer and communication systems
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often operate naturally in a so-called "critically loaded" regime [18]. Somewhat sur-

prisingly, first we find that, even though the Erlang fixed-point approximation can

perform quite well in underloaded and overloaded conditions, the fixed-point approx-

imation can provide relatively poor loss probability estimates when the network is

critically loaded. We establish such qualitative results by means of estimating the

convergence rate of the Erlang fixed-point approximation toward the exact solution

under large network scalings. This motivates the need to design better algorithms for

estimating loss probabilities.

Then we propose a novel algorithm for computing the stationary loss probabilities

in stochastic loss networks, which we call the "slice method" because the algorithm

exploits structural properties of the exact stationary distribution along "slices" of the

polytope over which it is defined. Our algorithm is shown to always converge and

to do so exponentially fast. Through a variational characterization of the stationary

distribution, we establish that the results from our algorithm are asymptotically ex-

act. We further estimate the convergence rate of our algorithm, where comparisons

between the convergence rates of the Erlang fixed-point approximation and the slice

method favors our approach.

Using this variational characterization, we also provide an alternative proof of

the main Theorem in [29], which is much simpler and may be of interest in its own

right. A collection of numerical experiments, especially for real world applications to

IT services industry, further investigates the effectiveness of our algorithm where it

convincingly outperforms the Erlang fixed-point approximation for loss networks in

the critically loaded regime.

4.4 Setup

In this Section, we explain the mathematical model and the problem of interest. In

our analysis of algorithms, we consider a scaling of the stochastic loss network to

model the type of large networks that arise in various applications. In Section 4.4.3,

we explain the scaled version of the network.
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4.4.1 Model

We investigate general stochastic loss networks with fixed routing, using the standard

terminology in the literature based on routes (customer classes) and links (resource

types); see, e.g., [31]. Consider a network with J links, labeled 1, 2, .. ., J. Each

link j has Cj units of capacity. There is a set of K distinct (pre-determined) routes,

denoted by R = {1,..., K}. A call on route r requires Air units of capacity on link

j, Air > 0. Calls on route r arrive according to an independent Poisson process of

rate i,, with v = (Vl,... , VIK) denoting the vector of these rates. The dynamics of

the network are such that an arriving call on route r is admitted to the network if

sufficient capacity is available on all links used by route r; else, the call is dropped. To

simplify the exposition, we will assume that the call service times are i.i.d. exponential

random variables with unit mean. However, our results are true under general service

time distributions due to the well-known insensitivity property [63] of this class of

stationary loss networks.

Let n(t) = (nl(t),... ,nK(t)) E NK be the vector of the number of active calls in

the network at time t. By definition, we have that n(t) E S(C) where

S(C) = E Z n > 0, An< C ,

and C = (C1,..., Cj) denotes the vector of link capacities. Within this framework,

the network is Markov with respect to state n(t). It has been well established that

the network is a reversible multidimensional Markov process with a product-form

stationary distribution [27]. Namely, there is a unique stationary distribution 7r on

the state space S(C) such that for n E S(C),

()= G(C) f r! (4.1)
T r

where G(C) is the partition function

cc)= 1 ri
nES(C) rEJ -r'
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Let M be an upper bound on the number of active route calls for all routes. Then the

distribution (4.1) can be understood as the following Markov random field defined on

the factor graph of r for ?i E MK.

r ( I gj(nT), (4.2)
rERI j=l

where 7 j is the set of routes that uses link j, and gj(.) is defined as

gj(n 3) = 1 if ErEz Ajrn.rn, < C

0 otherwise

4.4.2 Problem

A primary performance measure in loss networks is the per-route stationary loss

probability, the fraction of calls on route r in equilibrium that are dropped or lost,

denoted by L. It can be easily verified that Lr is well-defined in the above model.

This model can be thought of as a stable system where admitted calls experience an

average delay of 1 (their service requirement) and lost calls experience a delay of 0

(their immediate departure). Therefore, the average delay experienced by calls on

route r is given by

Dr = (1 - Lr) x 1+ Lr x O = (1 - Lr).

Upon applying Little's law [37] to this stable system (with respect to route r), we

obtain

vrDr = E[nr]

which yields

1 - L= E[n,] (4.3)

Thus, computing Lr is equivalent to computing the expected value of the number

of active calls on route r with respect to the stationary distribution of the network.
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Even though we have an explicit formula, the computational complexity of the exact

stationary distribution, known to be P-complete in general [38], renders its direct

use of limited value in practice. Also notice that from the definition of the expectation

of nr over the stationary distribution (4.1),

ZnES(C) H~ER L"!
E[nr] --

ZnES(C) usER n,,

Hence the computation of the E[nr] is equivalent to computing the partition function

of the corresponding MRF given by (4.2).

By exploiting these structural properties, we will design a family of simple iterative

algorithms for approximate computation of the stationary loss probability that also

have provably good accuracy properties.

4.4.3 Scaling

We consider a scaling of the stochastic loss network to model the type of large networks

that arise in various applications. Although it has been well studied (see, e.g., [29]),

we will use this scaling both to evaluate analytically the performance of different

approximation algorithms for computing loss probabilities and to obtain the capacity

region for satisfying a set of loss probabilities.

Given a stochastic loss network with parameters C, A and v, a scaled version of

the system is defined by the scaled capacities

C N - NC = (NC,..., NCK)

and the scaled arrival rates

hN = N_ = (Nm,...,NuK),

where N E N is the system scaling parameter. The corresponding feasible region of
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calls is given by S(NC). Now consider a normalized version of this region defined as

SN(C)= In: n E S(NC).

Then the following continuous approximation of SN(C) emerges in the large N limit:

S(C)= {x: A< C, x E K

4.5 Algorithms

We now describe three algorithms for computing the stationary loss probabilities L =

(Lr) E [0, 1 ]K. The well-known Erlang fixed-point approximation is presented first,

followed by a "1-point approximation" based on the concentration of the stationary

distribution around its mode in large networks. The third algorithm is our new family

of "slice methods" that attempts to compute the average number of active calls on

different routes via an efficient exploration through "slices" of the admissible polytope

S(C).

4.5.1 Erlang fixed-point approximation

The well-known Erlang formula [8] for a single-link, single-route network with capacity

C and arrival rate v states that the loss probability, denoted by E(v, C), is given by

V C [ C -1

E(v, C)=
i=0

Based on this simple formula, the Erlang fixed-point approximation for multi-link,

multi-route networks arose from the hypothesis that calls are lost due to independent

blocking events on each link in the route. More formally, this hypothesis implies that

the loss probabilities of routes L = (L 1,..., LK) and blocking probabilities of links
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Erlang fixed-point approximation

(1) Denote by t the iteration of the algorithm, with t = 0 initially. Start with
E- ) = 0.5 for all 1 < j < J.

(2) In iteration t + 1, update E(t+l) according to

E(t+I) = E(p t),Cj)

where

(t) (1 - Ect))-' v,.Aj, r1( - Et)

r:jEr i:iEr

(3) Upon convergence per appropriate stopping conditions, denote the resulting
values by Ef for 1 < j < J. Compute the loss probabilities from the Erlang
fixed-point approximation, L6, r E 7, as

1 - L( = I(1 - E ) Ajr

J

Figure 4-1: An iterative algorithm to obtain a solution to the fixed-point equations
(4.4).

E = (El,..., Ej) satisfy the set of fixed-point equations

Ej = E(pj, Cj),

PJ - 1Ej lAjrI(l

1- Lr = ](1 - E.)A jr, (4.4)

for j = 1,..., J and rE R.

Figure 4-1 describes a natural iterative algorithm that attempts to obtain a solu-

tion to the above fixed-point equations.

4.5.2 1-point approximation

Kelly [29] established the asymptotic exactness of the Erlang fixed-point approxima-

tion in a large network limiting regime by showing that the stationary distribution
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1-point approximation

(1) Denote by t the iteration of the algorithm, with t = 0 initially. Start with
zP.) = 0.5 for all 1 < j < J.

(2) In iteration t + 1, determine z(t+1) as follows:

(a) Choose coordinates from 1,., J in a round-robin manner.

(b) Update zjt+1) by solving the equation

g( (x) = min CI, g')(1)},

where g( () = , Ajrvr ,. zqAi with

i 't+l )  for i < j,
zi= x for i =j,

z(t) for i > j.

Thus, g) (x) is the evaluation of part of the function g(.) corresponding
to the j"h coordinate with values of components < j being from iteration
t + 1, values of components > j from iteration t, and component j being
the variable itself.

(3) Upon convergence per appropriate stopping conditions, denote the resulting
values by zj* for 1 < j < J. Compute the loss probabilities from the 1-point
approximation, L*, rE 7, as

1 - Lr = H(z;)Ar.

Figure 4-2: An coordinate descent algorithm for obtaining a dual optimum.
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concentrates around its mode n* given by

n* E arg max 7r(n).
- ES(C)

Such concentration suggests the following approach which is the premise of the 1-

point approximation: Compute the mode n* = (n*) of the distribution and use n* as

a surrogate for E[nr] in the computation of Lr via equation (4.3). Before presenting

our specific iterative algorithm, we consider some related optimization problems upon

which it is based.

The definition of the stationary distribution 7r(.) suggests that the mode n* cor-

responds to a solution of the optimization problem

maximize nr log vr - log nr!
r

over n E S(C).

By Stirling's approximation, log nr! = n, log nr - n, + O(log nr). Using this and

ignoring the O(log n,) term, the above optimization problem reduces to

maximize nr log v,. + n, - nr log nr
r

over nE S(C).

A natural continuous relaxation of n E S(C) is

S(C)= { RK : Ax < C},

which yields the following primal problem (P):

maximize x r log vU + x, - Xr log Xr
r

over xE S(C).

The above relaxation becomes a good approximation of the original problem when
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all components of C are large. In order to design a simple iterative algorithm, we

consider the Lagrangian dual (D) to the primal problem P where standard calculations

yield

minimize v. exp [ yAir + yjCj

over y > O.

Define the dual cost function g(y) as

9(y) = Z rexp [- YAr +yjCj.

By Slater's condition, the strong duality holds and hence the optimal cost of P and D

are the same. Standard Karush-Kuhn-Tucker conditions imply the following: Letting

(x*, y*) be a pair of optimal solutions to P and D, then

(a) For each link j,
0 g(y*) 9g(y*)g = 0 or y-* - 0 &- < 0.
dyj ayj-

Equivalently,

SAjrVr exp - y;Ajl = C & y; > 0,

or, Ajrur exp - yAr C & yj = 0.

(b) For each route r,

x* = vr exp - yj Air •

The above conditions suggest the following approach: Obtain a dual optimal

solution, say y*, use it to obtain x*, and then compute the loss probability as 1- L,. =

x*/vr. Figure 4-2 describes an iterative, coordinate descent algorithm for obtaining

y*. In what follows, we will use the transformation zj = exp(-yj) given its similarity

with the Erlang fixed-point approximation. Note that zi is 1 minus the blocking
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probability for link j, Ej.

4.5.3 Slice method

The Erlang fixed-point approximation and the 1-point approximation essentially at-

tempt to use the mode of the stationary distribution as a surrogate for the mean,

which works quite well when the distribution is concentrated (near its mode). While

this concentration holds for asymptotically large networks, it otherwise can be an

important source of error and therefore we seek to obtain a new family of methods

that provide better approximations.

The main premise of our slice methods follows from the fact that computing the

loss probability Lr is equivalent to computing the expected number of calls E[n,.] via

equation (4.3). By definition,

00oo

E[n,] = kP[n, = k]
k=0

and thus E[n,] can be obtained through approximations of P[nr = k] rather than by

the mode value n,*. Note that P[n,. = k] corresponds to the probability mass along

the "slice" of the polytope defined by nr = k. An exact solution for E[n,] can be

obtained with our slice method by using the exact values of P[nr = k], but obtaining

the probability mass along a "slice" can be as computationally hard as the original

problem. Hence, our family of slice methods is based on approximations for P[nr = k].

To do so, we will exploit similar insights from previous approaches: Most of the mass

along each slice is concentrated around the mode of the distribution restricted to the

slice. This approximation is better than the "1-point approximation" since it uses

the "l-point approximation" many times (once for each slice) in order to obtain a

more accurate solution. Figure 4-3 formally describes the algorithm, where the cost

function of the primal problem P is denoted by

q(x) = E x,. log ur + xr - x,. log ,..
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Slice method

Compute L,. for route r E 1Z as follows:

(1) For each value of k E {nr : e S(C)}, use the "l-point approximation" to
compute x*(k, r) as the solution of the optimization problem

maximize q(x) over x E S(C) & Xr = k.

(2) Estimate E[n,.] as

Ek k exp(q(j*(k, r)))

= k exp(q(x*(k, r)))

(3) Generate Lr = 1 -

Figure 4-3: Description of the slice method.

4.5.4 3-point slice method

In the general slice method, for each route r, we apply the 1-point approximation

to each slice defined by n,. = k, k {n,. : n E S(C)}. In the scaled system, this

requires O(N) applications of the "l-point approximation" for each route. Recall

that, in contrast, the Erlang approximation (or 1-point approximation) requires only

0(1) applications of the iterative algorithm. To obtain a variation of the general slice

method with similar computational complexity, we introduce another slice method

"approximation" whose basic premise is as follows: Instead of computing x*(k, r) for

all k E {n, : n E S(C)}, we approximate x*(k, r) by linear interpolation between

pairs of 3 points.

For a given route r, first apply the 1-point approximation for the entire polytope

S(C) to obtain the mode of distribution x*. Define

nm7"(r) A max{nr : n E S(C)}.

Next, obtain x*(nml"(r), r), the mode of distribution in the slice n, = nml(r), using

the 1-point approximation as in the general slice method. Finally, obtain x* (0, r), the

118



mode of distribution in the slice n, = 0, using the 1-point approximation. Now for

k E {nr : E S(C)}, unlike in the general slice method, we will use an interpolation

scheme to compute x*(k, r) as follows:

(a) If k < x*, then
k z* - k

x*(k, r) = x* - *+ x*(0, r) *
r Xr

That is, x*(k, r) is the point of intersection (in the space RK ) of the slice xr = k

with the line passing through the two points x* and x*(0, r).

(b) For x, < k < nax, let

k - x* nm'& (r) - k
*(k, r) = (max(r), r). nm(r + *-nmax(r) - z* -nmax(r) *

Note that due to the convexity of the polytope S(C), the interpolated x*(k, r) are

inside the polytope. Now, as in the general slice method, we use these x*(k, r) to

compute the approximation of E[nr] and subsequently Lr. A pseudo-code for the

3-point slice method can be found in [24].

4.6 Error in 1-point approximation

Consider a stochastic loss network with parameters A, C and v that is scaled by N

as defined in Section 4.4. Kelly [29] obtained a fundamental result which shows that,

in the scaled system, the stationary probability distribution concentrates around its

mode. Therefore, the results of the 1-point approximation are asymptotically exact.

In this Section, we reprove this result using a variational characterization of the

stationary distribution, which yields a much simpler (and possibly more insightful)

set of arguments.

Theorem 15 Consider a loss network scaled by parameter N. Let LN be the exact

loss probability of route r E R. Then

(1 - L N) =o N) (4.5)
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Kelly established the asymptotic exactness of the Erlang fixed-point approximation

by using the above result together with the fact that the Erlang fixed-point approxi-

mation for a scaled system essentially solves the dual D as N increases.

Proof. Recall that the stationary distribution 7 is represented as

(n) := G(C) exp(Q('n)), exp(Q(n))= I nr!
G(C) '0 r

for n G S(C). Define M(C) as the space of distributions on S(C). Clearly, ir E

M(C). For p E M(C), define

neS(C) neS(C)

= E,(Q) + H(p).

Next, we state a, variational characterization of 7r, which will be extremely useful

throughout. This characterization essentially states that 7 is characterized uniquely

as the maximizer of F(.) over M (C).

Lemma 22 For all p E A4(C),

F( ) > F(p).

The equality holds iff p = 7r. Further, F(7) = log G(C).

Proof. From the definition of Q(.), we have

Q(n) = log r(n) + log G(C).

Consider the following sequence of inequalities, which essentially use Jensen's inequal-

ity together with the above definition of Q(.):
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F(E) = /j (n)Q(n)- 1 / (ri) log p( )
nES(C) nES(C)

E p(n)(log7r(a) + log G(C))
nES(C)

- p (n) log p (n)
nES(C)

= bt(T) log i ) + log G(C)

I

W log a) + log G(C)

nS(C)

log 1 + log G(C) = F(r).

The only inequality above is tight iff p = r. This completes the proof of the Lemma,

22. Now, consider the scaled system with parameter N. For any a_ E S(NC), this is

equivalent to considering -n E SN(C). Then, 7 for a scaled system is equivalent to

the distribution 7rN on SN(C) defined, for x E SN(C), as

1
7rN(_) = 7r(Nx) exp(Q(Nx)).

G(NC)

Upon considering Q(Nx), we have

exp(Q(Nx)) = r (Nv7 .)'
(Nx,)!

Sexp Nzx,. log NVr - log(Nxr)!

Sexp N log N x, + N zxr log vr - log (Nr)!
r 7. r
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= exp N log N a, + N x, log V,
I' r

- NE X, log Nx,. + E Nxr.

= expN x, log ur -

+ O(log Nx,)

N E x, log Xr

+N x, + (log Nx,)

where the above calculations make use of Stirling's approximation:

log M! = lM log M - M + O(log AM).

It then follows from these calculations that

1
1 Q(N )N

= x log ,re
1+

(log 
N)

q() = ~x log r
Xr

where

Given the above calculations, we further obtain the following concentration for

the distribution 7rN, which will be crucial in proving Theorem 15.

Lemma 23 Given any E > 0, define the set

AE = {yE SNv(C) : IIy - x* > E

where a* - arg maxxe(c) q(x:). Then

7rx(A,) = 0 (-2 log NN-).'
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Proof. From the definition of q(.), it can be verified that this is a strongly concave

function on the set S(C). Further, the constraint set S(C) is closed and convex.

Therefore, there exists a unique optimal solution x* of the optimization problem

maximize q(x) over x E S(C).

By the optimality and uniqueness of x*, we have for any y E S(C)

Vq(_*)T(y - x*) < 0.

Now consider Taylor's expansion of q(.) at some y E S(C) at x*

q(y) = q(x*) + Vq(x*)(y - x*) + (y - x*)V 2 q(z)(y - x*),

where z = ax* + (1 - a)y, a E [0, 1]. Using the optimality condition, we have

q(y) < q(x*) + (y- x*)V2 q(z)(y -x*). (4.8)

Next, in order to evaluate the bound of (4.8), we will compute the Hessian V2q(z).

For this, recall that

q() = EXr(1 + log vr) - X, log ,.
r

Then the first partial derivative is given by

8q(x)
Oxr = 1 + log10, - 1 - log x, = log yr - log xr,

and the second order partial derivatives are given by

&2q(x) 0, ifr #s

&Xq -1 1 if r = sZ;.'
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Therefore, the Hessian V2q(.) is a diagonal matrix of the form

V 2q()=[ I2q

1

0

0

0 0
0

0 ]
XK

(4.9)

Next, for any z E S(C), by definition for any r E 7

1 1
0< z,. 5< C, - >-

Zr C- c

where we recall that C, = maxj Cj. Using this bound, the definition of the Hessian

and (4.8), we obtain the following lernma.

Lemma 24 For any y E S(C),

q(y) _ q(j*)

Proof.

q(y)_ q(x*)- (y - ) 2
Zr

1
q(x*)-,

((Yr
- x) )

Now, given x* E S(C), there exists 2* E SN(C) such that

II*- x* = (1) and q(*) q(x*)- O

Consider a special distribution fp over SN(C) as

P(x) = 1=j=,,

NI).

for xE SN(C).
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Namely, fp puts all of its mass on element Z*. Note that the entropy of the single-point

distribution is zero, i.e., H(f)) = 0. By Lemma 22 and the definition of 7rN, we obtain

that lrN optimizes F(.). Therefore,

11 F(N) > -F(p)
N-> Q(N*)+ H(log NN

0q(x) (log N (4.11)

Next, suppose that rN puts some mass, say 7N(Ae), over set A, as defined in Lemma

23. It then follows from Lemma 22 that

F(TrN) = E [Q(N.)] + -H( ). (4.12)
N N N

The support of 7rN is over at most O(NK) elements. By standard bounds on entropy,

we have H(rN) = O(log N). Using this and inequality (4.10) in (4.12), it follows that

F(rN) q(x*) + loN (A (4.13)
N N C*

From (4.11) and (4.13), we have

7rN(AE) = - 2log N (4.14)

which completes the proof of Lemma 23.

Now, we will complete the proof of Theorem 15. Using 6 k = k N for the value

of e in the conclusion of Lemma 23, from (4.14) we obtain

rN (x, - Xr*I > Ek) = O( , (4.15)

which immediately implies
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E[Ixr-x ] =N) xO ) o =N)

Thus,

E[,.- X. I] = 0 N

and since L, = 1 - E .we have

F- [IXr-X1 _ (I log N

This completes the proof of Theorem 15.

4.7 Error in Erlang fixed-point approximation

The Erlang fixed-point approximation is quite popular due to its natural iterative

solution algorithm and its asymptotic exactness in the limiting regime. However,

it is also well known that the Erlang fixed-point approximation can perform poorly

in various cases. In this Section, we prove that Erlang fixed-point approximation

perform poorly especially when the load vector vi is such that it falls on the boundary

of S(C), i.e., the stochastic loss network is in the critically loaded regime. More

precisely, this means 1i is such that at least one of the constraints in Av < C is

tight. It can be readily verified (at least for simple examples) that, when v is strictly

inside or strictly outside S(C), then the error in the Erlang fixed-point approximation

for the scaled network is O(1/N). However, for the boundary, the qualitative error

behavior changes, and in particular we prove the following result.

Theorem 16 When the vector v lies on the boundary of S(C),

IIL" - LN 2 = 2 ) , (4.16)

where L''"N = (LQN") is the vector of loss probabilities from the Erlang fixed-point
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approximation and LN = (L') is the vector of exact loss probabilities, both for a loss

network scaled by N.

Kelly proves in [29) that, for any route r,

I1(1 - Lr'N) - " 1= O .( (4.17)

Hence, the following Lemma together with (4.3) and (4.17) proves Theorem 16.

Lemma 25 When the vector v lies on the boundary of S(C),

r II = (4.18)
where (ENI) ( E ,...) is the vector consisting of the expectations for the

routes in the scaled (discrete) system with parameter N, and ()r = (1, ")

Proof. We shall briefly summarize a few of the technical details, referring to [24]

for the complete proof of Lemma 25. Let us start with the following Claim, the proof

of which is provided in [24].

Claim 5 For any r E R,

I E,,N[r] - EN[xr] = O ( .

Then from Claim 5, to prove Lemma 25, it suffices to show that

IEj,[Xr] - V112 (4.19)

Define

S {v E SK : (C) n (V + tv) ~ for some t > 0} ,

where SK is the unit sphere in RK. Now, for a given v E S and t E [0, t,,) where

t,, = sup{t E R+ : (v + tv) E S(C)}, define

gN(v,t) A exp(qN(N(v+ tv))).
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Then from spherical integration, we obtain

N fS'"(v + t)gN(v, t)tK-ldt dv
Sfsfovt 9N(V, t)tK-ldt dv

fs v f ' gN(v, t)tKdt dv
v+ fsf o g (v, t)tK-ldt dv'

and thus

fs v fo" gN(v, t)tKdt dv
EfrW V1 f g(v, t)tK-dt dv (4.20)

Next, we introduce the following Lemma, which will be crucial in proving (4.19).

Lemma 26 Let the polytope S(C) and an integer £ be given. If N is large enough,

then for all v E S

ftv (

gN(v, t)tedt = N- exp(NK) e)

where r(.) is the Gamma function, and the constant hidden in 0(.) is uniformly

bounded over all v E S.

Proof. First, note that since S(C) is a polytope having finitely many faces, there

exists a constant 6 > 0 such that for all v E S, and t E (0, 6), v + tv E S(C). Now,

gN(v,t) = exp(N (vr + vrt)(1 + log(Nv,))

-N Z(v + vrt)(log N + log(v, + vut))
1

- Zlog N(v,. + v,.t))
r

= exp(N (vr + vrt)(1 + logvr - log(vr +rt))
r

K log N - E log(v + 'rt))
2

r

exp(Nq(v + tv) - log N - E log(vr + v,t)),
T-
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where

q(x) = Z (Xr + xr log r - x,. log Xr).
r

Then by Lemma 24, we obtain that for all v E S, and t E (0, tv),

= N-K/ 2 (r(V + V"t)

= N-K/2(Jr)+0O(tN 0(

(exp(Nq(v + tv)))

+ tK)) (exp(Nq(v + tv)))

< N - K /2 (1 + O0 (t + tK)) exp(Nq(u)) exp(-Nt2/C*)

= gN(v, 0) exp (-Nt2/C*) (1 + O0 (t + tK)) ,

where C* = max{Cj}. Now we will set 6 = N- - °0 1 . Then when N is sufficiently

large, for all v E S and t E (6, t,),

gN(v, t) 5 gN(v, 0) exp (-N62/(2C*)). (4.21)

Therefore,

J iv ( ' gN(v, t)t'dt) .gN(v, t)t'dt = E (4.22)

Now for all t E [0, 6],

gN(v, t) = exp(N E(r + v,.t)(1 + log ur - log(vr + v,.t))

2 log N - log(vr + vrt))
7'

= N-§ f(4 + t)
r

N- (1 + O(t)) exp
(N

- vt + v 2 /2 + o (t3))

(1 - v t2 /2 + O (6)))
r r /2P

= N (1 + 0(6)) exp (KN - t2N/2 + N O (63)) .
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Hence the following holds for any sufficiently large N and for all v E S.

SgN(, t)t'dt = 0 (N- exp(KN)

Now if N is sufficiently large,

Sexp(-t 2 N)tdt = 0 (0exp(-t2 N)tedt) (4.24)

And from the formula

F(z) = 2 exp(-y 2)y 2 Zl- dy,

by substituting y = //2t we obtain that

/oo (e +l
exp(_t 2N)tedt0 N- 2

(4.25)

From (4.22), (4.23), (4.24) and (4.25), we prove Lemma 26.

Finally, let T be a, tangent plane of S(C) at the point v and let w E SK be a unit

vector that is perpendicular to T and that satisfies v - w > 0, for any v E S. Then,

from (4.20), we have

IIE~r , [j, ] - 1"112
d'u

dv 2

. w dv

ON- exp(NK)& ) f 1 dv
N7 ) f l d

(4.26)
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> i. f .To' gN(v, t)t Kdt dv
f, fy gN(v, t)tK- ldt dv

-s w . -v f g,(v. t)tKdt dv

.fs f" N(V, t)tK-ldt dv

E (N-2 exp(NK) ) s v'

IV t V gA, Y(.U t)tK dt

Jo' g(v, t)t'1dt

0 exp(-t 2N)t dt).



.1,,. u,a r(K+ 1 (( ).where we used Lemma 26 and the facts that , v = E(1) and r()= (1).

From (4.26) we obtain (4.19), which completes the proof of Lemma 25.

4.8 Accuracy of the slice method

The drastically poorer accuracy of the Erlang fixed-point approximation at the bound-

ary (i.e., in the critical regime) from Theorem 16 strongly motivates the need for new

and better loss probability approximations. This led to our development of the general

"slice method" described in Section 4.5.3. In this Section, we establish its asymptotic

exactness using the variational characterization of the stationary distribution.

Theorem 17 For each route r E 1, let LS'N be the loss probability estimate obtained

from the general slice method for the system scaled with parameter N. Let LN be the

corresponding exact loss probability. Then, for any system parameter values, we have

IL N L - L$ I= o (4.27)k N

This result establishes the asymptotic exactness of the slice method over all ranges

of parameters. The proven error bound, which essentially scales as O(1/v'-), does

not imply that it is strictly better than the Erlang fixed-point approximation. We

are unable to establish strict dominance of the slice method, but numerical results in

Section 4.10 illustrate that the slice method can convincingly outperform the Erlang

fixed-point approximation under critical loading.

Proof. Theorem 15 implies that the actual loss probability LN r E T, is given by

L = 1 _ + 0

Therefore, the proof of Theorem 17 will be implied by showing that for all r E R

L N = 1- + O . (4.28)
Vr N
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This result is established next where the proof crucially exploits our concentration

Lemma 23.

From the definition of the "slice method", the estimated loss probability Ls 'N is

defined as

LS,Nr
1 Ek kexp(q(x*(k,r)))= 1-

VT k exp(q(*(k, r)))
(4.29)

Recall that x*(k, r) is the solution of the optimization problem

maximize q(x)

over x E S(C) & Xr = k,

further recalling the definition of the function q(.) as

q(x) = .,r log ur + X,. - x, log ,..

Now, consider a route r E R. In the rest of the proof, we will use

2C* log N

N

where C, = maxj Cj. Further define the following useful subsets

S(r,N) {n,.: n E SN(C)},

S,(r, N) {k e S(r, N) II*(k, r) - x*ll < e,

Se(r, N) a {k E S(r, N) I: I*(k, r) - 1*I > ~}.

Next, we note two facts that will be used to prove appropriate lower and upper bounds

which yield the desired result (4.28). First, Lemma 24 and the above definitions imply

that, for k E Sc(r, N),

exp (Nq(__))
1

< -- exp (Nq(x*)) (4.30)
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Second, it is easy to see there exists k E S,(r, N) such that

I*(k, r) - * = 0 .

For this k, we have

exp(Nq(*(k, r))) = ( (exp(Nq(x*))). (4.31)

Since IS(r, N) = O(N) in the scaled system, (4.30) and (4.31) imply that

Z: exp(Nq(x* (k, r)))
kESC(r,N)

=0(exp(Nq(x*)))

N
< O( Sy exp(Nq(x*(k,r))) . (4.32)

From (4.32), the value of e and the above subset definitions, we obtain the following

sequence of inequalities:

-kES(r,N) k exp(Nq(x* (k, r)))

ZkES(r,N) exp(Nq(x*(k, r)))

SkES.(r,N) k exp(Nq(x*(k, r)))

- kES(r,N) exp(Nq(x*(k, r)))

EkESe(r,N) k exp(Nq(x*(k, r)))

(1 + 0(1/N)) (EkES(r,N) exp(Nq(x*(k, r))))
1

> -(x* - E)
- 1+ O(1/N) )

= * - 0 .og (4.33)
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For all k E S (r, N), |k is bounded b)y some constant, and therefore we have

S7 kexp(Nq(x*(k, r)))
kESc(r,N)

=0(exp(Nq (x*))N
< O 1 exp(Nq(x*(k,r)) (4.34)

kES(r,N)

From (4.34) and the definition of e, we obtain

EkES(r,N) k exp(Nq(x*(k, r)))

ZkES(r,N) exp(Nq(x*(k, r)))

EkES(rN) k exp(Nq(x*(k, r)))

- kES,(r,.N) exp)(Nq((x*(k, r)))

< (1 + (1/N)) kS,(r,N) k exp(Nq(x*(k, r)))
< (1 + O(1/N))

ZkES,(r,N) exp(Nq(x*(k, r)))

K (1 + O(1/N))(x* + E)

= x + o . (4.35)

Finally, equations (4.33) and (4.35) together with (4.29) imply (4.28), thus completing

the proof of Theorem 17.

4.9 Convergence of algorithms

So far, certain accuracy properties have been estal:)lished for the iterative algorithms.

In this Section, we establish the exponential convergence of the iterative algorithm

for the general slice method. It is sufficient to state the convergence of the 1-point

approximation, since this is used as a subroutine in our slice methods.

Theorem 18 Given a loss network with parameter ,4, C and v, let z(t) be the vector

produced by the 1-point approximation at the end of iteration t. Assume that each
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link is utilized by some route in the matrix A. Let y* be the set of optimal solutions

of the dual problem D, and let Z* = {(z*) : z7 = exp(-y,), y* E y*}. Then,

d(z(t), Z *) < a. exp (-3t) ,

where a, 3 are positive constants which depend on the problem parameters, and d(., Z*)

is distance to the set Z*.

Moreover, there is a unique primal optimum x* and for all z* E Z*, x* =

(ir l, (z)Air). And

(r J(zt) )Ar) x a'exp(-3't),

for some positive constants a' and 0'.

Proof. The proof of the convergence of the "round-robin" coordinate descent al-

gorithm used to find the optimal solution of the dual problem D will follow from a

result of Luo and Tseng [40]. We first recall their precise result and then show how

it implies Theorem 18.

In order to state the result in [401, some notations need to be introduced. Consider

a real valued function : R" - ]R defined as

n

(x) = (Ex) + wixi, (4.36)
i=1

where E E R1'n is an m x n matrix with no zero column (i.e., all coordinates of x

are useful), w = (wi) E Rn is a given fixed vector, and : Rm -+ R is a strongly

convex function on its domain

DV = {y E Rm :(y) E (-oo, oo)}.

We have De being open and let &DV, denote its boundary. We also have that, along

any sequence yk such that yk -4 ODV, (i.e., approaches boundary of D,), (yk) -+0.
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The goal is to solve the optimization problem

minimize O()

over E X,

where we assume that X is of box-type, i.e.,

x= [1i, u], ei u ERU o.
i=1

(4.37)

Let X* be the set of all optimal solutions of the problem (4.37). The "round-robin" or

"cyclic" coordinate descent algorithm for this problem has the following convergence

property, as proved in Theorem 6.2 of [40].

Lemma 27 There exist constants ao and o0 which may depend on the problem pa-

rameters in terms of g, E, w such that starting from the initial value x0, we have in

iteration t of the algorithm

d(It, X*) : ao exp (-ot) d(xO, X*).

Here, d(., X*) denotes distance to the optimal set X*.

Now, to prove Theorem 18, we will apply Lemma 27.

The coordinate descent algorithm is equivalent to

imation" algorithm without the transformation iJ =

consider the original dual problem D:

running the "1-point approx-

exp(-yj). Therefore, we can

minimize g(y)

over y > 0.

Now, the above problem, similar to (4.37), has a box-type domain set: RK.

136



The function g(.) has the form

g(Y) = ur exp - yjAj, + yjCj.
r L i j

Assuming that each link is utilized by some route in the matrix A, it can be easily

verified that g(.) can be written in the desired form (4.36) of the cost function of

the optimization problem (4.37). Therefore, the setup of Theorem 18 satisfies the

conditions of Lemma 27. Since for each j E J, the transform yj - exp(-yj) has

bounded derivative when (yj) E R', we have

d(z(), Z *) < a exp (-3t)

for some positive constants (v and /3.

Since the primal cost function is strictly concave, there is a unique primal optimum

x*. Hence, by the strong duality, we have that for all z* E Z*, x* = (Vr HIj(z)Ajr).

Now, for each r E R the transform (z)j -_ vr ,Ij(z)Air has bounded gradient

when(zj)j E [0, 1]'. Hence we have

(Vr M( t)Ajr) < exp (-/3't),

for some positive constants ' and /3'.

4.10 Experiments

The main contributions of this paper are the theoretical results presented in Sec-

tions 4.5 -- 4.9. However, to illustrate and quantify the performance of our family of

slice methods, in this Section, we consider two different sets of numerical experiments.

The first is based on a small canonical loss network topology that is used to investi-

gate the fundamental properties of our slice methods and previous approaches with

respect to the scaling parameter N. Then we turn to consider a large set of numerical
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Link 1

Route 2

Link 2 Link 3

Figure 4-4: Illustration of the small canonical network model.

experiments based on workforce management applications in the IT services industry

using real-world data.

4.10.1 Small loss networks

We consider a small canonical loss network topology comprised of two routes and

three links, as illustrated in Figure 4-4. Both routes share link 2 with links 1 and 3

dedicated to routes 1 and 2, respectively. More precisely, the network is defined by

A = 1 1 and C =

Figure 4-4 describes this network model.

In our first collection of experiments, we set pl = 2, p2 = 1. The loss probabilities

for this network model instance are then computed using our general slice method, the

Erlang fixed-point method, and the 1-point approximation, where the loss probabili-

ties in each case are considered as a function of the scaling parameter N. Note that,

in this small model, the results from the 3-point slice method are identical to those

from the general slice method, since the trace of the maximizer point for each slice

in the general slice method indeed forms a linear interpolation of the three points.

We also directly compute the exact loss probability by brute force and then obtain

the average error (over both routes) for each method. These results are presented in

Figure 4-5.
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Figure 4-5: Average error of loss probabilities computed for each method as a function
of the scaling parameter N.

First, we observe that the slice method performs better than the 1-point approx-

imation method for every scaling value N. This result is as expected since the slice

method utilizes more information about the probability distribution of the under-

lying polytope than the 1-point method. Second, it is quite interesting to observe

that the Erlang fixed-point method initially performs better than the slice method

in the small scaling region, whereas the slice method eventually provides the best

performance among the approximation methods in the larger scaling region and the

performance ordering among the methods shown for N = 70 continues to hold for

N > 70. To understand this phenomena, note that as a function of the scaling with

respect to N, the output of the Erlang fixed-point method converges to that of the

1-point approximation method on the order of O (k) and the errors of the 1-point

approximation method are given by Q ( V ), as established in Theorem 16. More-

over, when N becomes larger the error of the slice method becomes smaller than

that of the Erlang fixed-point method because the error of the 1-point approximation
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method is roughly a constant times that of the slice method for every sufficiently

large N (as seen in Figure 4-5). Finally, while the asymptotic exactness of the Erlang

fixed-point approximation is associated with the 1-point approximation method, Fig-

ure 4-5 also illustrates some of the complex characteristics of the Erlang fixed-point

approximation in the non-limiting regime.

We also consider a second collection of experiments representing the symmetric

case of pi = P2 = 1.5. These results exhibit the same trends as in the asymmetric

case, and hence are omitted.

4.10.2 Larger real-world networks

In this section, numerical experiments were also conducted for a large number of

real-world loss network instances taken from various resource planning applications

within the context of workforce management in the IT services industry. In each

of these applications, the network routes represent various IT service products and

the network links represent different IT resource capabilities. The various data sets

comprising these model instances were obtained from actual IT service companies.

First, we generally note that our results from such real-world model instances exhibit

trends with respect to the scaling parameter N that are similar to those presented

in Section 4.10.1 for a much simpler canonical model which captures fundamental

properties of loss networks.

We shall focus on two representative model instances and present our comparative

findings among the slice methods and previous approaches. The first model instance

consists of 37 routes and 84 links, whereas the second model instance consists 110

routes and 132 links. In both data sets, the arrival rate vector v happens to lie on

the boundary of S(C).

The loss probabilities are computed for each loss network model instance using our

general slice method, our 3-point interpolation slice method, and the Erlang fixed-

point method. Since all of the real-world model instances are too large to numerically

compute the exact solution, we use simulation of the corresponding loss network to

estimate the exact loss probabilities within tight confidence intervals. The average
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error (over all routes) and the individual per-route errors are then computed for each

method in comparison with the exact loss probabilities, where the former results are

summarized in Table 4.1.

Erlang slice method 3-point slice

Model instance 1 0.3357 0.1720 0.1720
Model instance 2 0.3847 0.0923 0.1148

Table 4.1: Average error of loss probabilities for each method.

It can be clearly observed from the results in Table 4.1 that the average relative

improvements of our slice methods over the Erlang fixed-point rnethod are quite sig-

nificant. Even more importantly, we observe that the relative improvements for the

individual routes are consistently and significantly better under both slice methods.

In particular, the general (resp., 3-point) slice method provides the exact loss proba-

bilities for 98 (resp., 93) of the 110 routes, while the Erlang fixed-point method never

provides exact results, in model instance 2 and the 3-point slice method provides the

exact loss probabilities for 10 of the 37 routes, while the Erlang fixed-point method

provides the exact results for 5 of these 10 routes, in model instance 1. Note that

when L s = L,., the relative error for the Erlang fixed-point method, L'/L,., is equal

to 1 + 2 (resp., 1 - 21,.) when L, > L,. (resp., L6 < L,). In all of the cases where

1, = 1.0, which represents a considerable number of routes in model instance 1 and

the overwhelming majority of routes in model instance 2, both slice methods pro-

vide the exact loss probability for route r while the Erlang fixed-point method yields

L = 0, even though the exact loss probabilities for these routes span the full range

of values in (0, 1). The loss probability estimates for a few routes are better under the

Erlang fixed-point method than under the slice methods, but such routes are clearly

in the minority representing a single route in model instance 1 and less than 6.5% of

the routes in model instance 2.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, we have studied the Markov random field (MRF) model with respect to

the two main problems of computing MAP and log-partition function. In Chapter 2,

we have identified new classes of structural properties of MRF, that yield to simple,

and efficient algorithms for approximate computation of MAP assignment and log-

partition function. Specifically, for MRFs defined on graphs with polynomial growth,

or graphs which are minor-excluded with bounded degree, we have designed efficient

algorithms for approximate computation of MAP assignment and log-partition func-

tion within arbitrary accuracy. The running time of our algorithms are O(n), where

n is the number of nodes in G, with constant dependent on the accuracy. The graph-

ical models arising in wireless networks, statistical physics, and image processing do

possess such graphical structure.

Then in Chapter 3, we applied our MAP computation algorithms to wireless

network problems. We considered a wireless network of n nodes placed in some

geographic area in an arbitrary manner. These nodes communicate over a common

wireless medium under some interference constraints. We considered the problem

of determining whether a given vector of end-to-end rates between various source-

destination pairs can be supported by the network through a combination of routing

and scheduling decisions among more than exponentially many possible choices in n.
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We showed that such network graphs in geographic area do lead to a polynomial time

algorithm to approximate the capacity of wireless networks to arbitrary accuracy,

by applying our approximate computation of MAP algorithm to the corresponding

MRF.

In Chapter 4, we studied the problem of computing loss probabilities of routes in a

stochastic loss network, which is equivalent to computing the log-partition function of

the corresponding MRF for the exact stationary distribution. We showed that when

the loss network is critically loaded, the popular Erlang fixed-point approximation

provides relatively poor performance. Then we proposed a novel algorithm, which

we called "slice method", for estimating the stationary loss probabilities in stochastic

loss networks based on structural properties of the exact stationary distribution, and

showed that our algorithm always converges exponentially fast to the asymptotically

correct solution. we also provided an alternative proof for an error upper bound

of the Erlang fixed-point approximation using a variational characterization of the

stationary distribution.

5.2 Future Work

We conclude this dissertation by providing some directions for future work. First

we suggest an important class of problems for which application of our approximate

inference algorithms is favorable. In the computer vision, the image segmentation

problem has always remained an iconic problem [36]. Given a 2-dimensional or 3-

dimensional (video) image, the goal of the problem is to cut, or segment, a specific

part of the image. Examples include face recognition [64], disease detection problem in

medical image processing [35], etc. The past few years have seen rapid progress made

on this problem driven by the emergence of powerful optimization algorithms such as

graph cuts [6]. The image segmentation problem is commonly formulated using the

MRF model described in Chapter 1.1 defined on a 2-dimensional or 3-dimensional

grid graph. In the model, segmenting an image with required property is expressed

as the MAP computation problem of the MRF. In the context of image segmentation,
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the vertex set corresponds to the set of all image pixels, and the value x, denotes

the labeling of the pixel v in the image. Similarly, other important problems in

computer vision including image denoising are formulated by an MRF model defined

on a grid graph [42]. Since the grid graphs are polynomially growing graphs, we can

effectively apply our algorithms for these problems. As our future work we will apply

our approximate MAP algorithms to these problems in computer vision.

In Section 2.7, we have shown that there exists a limit - log Z as n --+ oc, when

the MRF is defined on a grid graph Z' (of nd nodes) with identical node and edge

potential functions for all nodes and edges. We believe that our proof method can be

applied to a more general class of MRFs where the underlying graph is a geometric

random graph placed in an Euclidean space, and the node and the edge potential

functions are drawn as per a distribution of the potential functions in an i.i.d. fashion.

An important such example includes the Ising model of statistical physics. As our

future work we will investigate the existence of a limit of log Z in this class of MRF.
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