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Abstract

The ability to autonomously assemble large structures in space is desirable for the con-
struction of large orbiting solar arrays, interplanetary spacecraft, or space telescopes.
One technique uses free-flying satellites to manipulate and connect elements of the
structure. Since these elements are often flexible and lack embedded actuators and
sensors, the assembly robot must use its own actuators and onboard measurements
to suppress vibrations during transportation maneuvers. This thesis will examine
the dynamic modeling of a free-flying robot attached to a flexible beam-like element,
vision-based estimation of vibrational motion, and trajectory control for assembly of
a space structure.
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Chapter 1

Introduction

1.1 Motivation

From the dawn of the space era, satellites and orbiting structures have been con-

strained to a launch faring or a payload bay. Aside from deploying solar panels or

other extendable appendages, satellites today must be designed to fit neatly into the

available space. Furthermore, most satellites are launched as a pre-assembled struc-

ture that integrates all components for operation. However, even a brief look at the

complicated sequence of unfolding petals planned for the deployment of the James

Webb Space Telescope' suggests that we are reaching the limits of technology for

deploying a satellite from a single structure.

Since modern engineering is unlikely to significantly increase available launch vol-

ume, any attempts to build large structures in orbit will require better utilization

of existing payload space. A promising strategy is to fill the volume with parts of a

structure and assemble them after launch. The few missions in space history that have

stepped beyond a monolithic structure give a preview of how future space systems

might take advantage of orbital assembly. For example, the Apollo program used

two separate modules, the Command/Service Module and Lunar Module, to build a

spacecraft on orbit capable of landing on the surface of the moon and returning to

Earth. Space construction projects, such as Mir or the International Space Station

1http://www.nasa.gov/topics/universe/features/jwst_animation.html



(ISS), have been assembled from many individual modules to create a more capable

structure. Unfortunately, the success of these projects required colossal efforts of

entire space agencies, large expenditures, multiple launches to build and maintain,

and human crews for assembly in space. Modern space assembly projects require

cost efficient and reliable methods that do not involve the complexities of human

operations.

Developing autonomous robots for the assembly of structures in space will pro-

vide a key technology for a new generation of large spacecraft. For light-gathering

satellites such as space telescopes or orbiting solar arrays, on-orbit assembly provides

the attractive opportunity of vastly increasing the surface area available from a sin-

gle launch vehicle. Instead of relying on a chain of deployment mechanisms, a large

array could be assembled by a small helper robot that joins pieces of the structure to-

gether. The structures could be assembled over the period of several weeks or months,

supervised by a ground team instead of a costly human construction crew.

Due to the use of lightweight materials, construction of large space structures will

likely involve the manipulation of flexible elements such as trusses or solar panels. The

objective of an assembly robot will be to position and join these components without

inducing large vibrations that could disrupt assembly or damage the components.

Therefore, it will be critical to consider flexibility in the development of a control and

estimation system for autonomous on-orbit assembly.

1.2 On-Orbit Assembly of Flexible Structures

1.2.1 Propulsion Tug Assembly

An orbiting structure might start as an array of parts tightly packed in a palette on

a launch vehicle or freely floating after being deposited by several separate launches.

From this point, an assembly robot joins the pieces together in their proper configu-

ration. This study considers the assembly of an orbiting space structure with the use

of a small robot called a "propulsion tug," such as the vehicle pictured in Figure 1.1.



Figure 1.1: A propulsion tug assembles mirror segments of a large space telescope.

The tug adds mobility to passive structural elements by docking to them or grasping

them with a manipulator arm. Once attached, the tug uses its thrusters and moment

generating devices to maneuver the component into position and join it to the rest of

the structure. We will assume from this point forward that a docking mechanism is

used to attach the components.

1.2.2 Collocated and Noncollocated Docking

For the purposes of this study we shall consider the maneuvering and docking of a

long, flexible beam-like element with a propulsion tug attached at one end. There are

two approaches to docking the flexible beam, diagrammed in Figure 1.2, and defined

below:

Collocated Docking The docking attachment is located on the same side as the

propulsion module. The mechanism may be located above or below the beam,

or in some scenarios, the robot may serve as a docking mechanism and become

part of the structure after docking.

Noncollocated Docking The docking attachment is located at the far side of the

beam. The goal of the propulsion tug is to guide the far end of the beam into

the target docking port.

The choice of terms for defining the docking configurations reflects the nature of the

control problem for maneuvering the docking mechanism. Collocated control implies



Figure 1.2: In a collocated docking scenario, the propulsion tug is rigidly attached
to a docking mechanism, while in the noncollocated case, the docking mechanism is
attached to the end of a flexible structure.

that actuators are located in the same location as the outputs or measurements to be

regulated, whereas noncollocated control implies that outputs are located elsewhere.

Noncollocated docking is particularly challenging when docking a flexible beam

because it requires the manipulation of the free end of the beam using control in-

puts that are propagated through the flexible dynamics. Instead of attempting to

directly steer the end of the beam, we take an alternate approach by recasting the

noncollocated docking problem into a collocated one. If a trajectory is selected for

the propulsion tug to follow while it simultaneously rejects beam oscillations, we can

achieve docking by commanding the propulsion tug directly. The simplest approach

to accomplishing this goal is alternating between a transit maneuver that excites the

beam dynamics and a damping maneuver that eliminates residual vibrations. Higher

level approaches may be added in the form of pre-planned trajectories or control

inputs designed to minimize vibrations.

O)
Collocated Docking

Noncollocated Docking



Q -tApproach

.- Berthing

O>-4o Capture

Figure 1.3: To perform beam docking, the tug maneuvers close to the target in the
approach phase, damps out beam vibrations in the berthing phase, then completes
the docking in the capture phase.

1.2.3 Sequencing of Assembly Events

If vibrations are properly eliminated prior to docking, the set of maneuvers for as-

sembling a flexible structure with a space tug is similar to autonomous docking of

two rigid spacecraft [18]. Docking proceeds in approximately three phases, pictured

in Figure 1.3:

Approach The tug translates and rotates the flexible element into position at a

safe distance from the target. If possible, the element should be positioned to

minimize any excitation during the final maneuvers. During this phase, residual

vibrations are attenuated before continuing to the next maneuver.

Berthing The tug proceeds to within a few centimeters of docking and executes a

final fine alignment with the docking mechanism. Though it may be possible to

proceed directly from the end of the approach phase to final docking, this ma-

neuver is performed to eliminate positioning errors and small vibrations induced

during the slow approach to the target.

Capture A terminal thrust command is issued to establish a closing velocity between

the end of the flexible element and the target docking port. As soon as contact

is established, the docking mechanism closes to secure the element to the rest

of the structure.



Figure 1.4: The SWARM propulsion module maneuvers a flexible beam element
toward a fixed target on the right.

1.3 SWARM and SPHERES Testbeds

Hardware demonstrations for this study were carried out on the Self-Assembling Wire-

less Autonomous Reconfigurable Modules (SWARM) testbed developed by the MIT

Space Systems Laboratory (SSL). SWARM leverages the capabilities of the Syn-

chronized Position Hold Engage Reorient Experimental Satellites (SPHERES) (see

[11, 201) to demonstrate tug-based assembly on a 2D air bearing floor.

1.3.1 SPHERES

The SPHERES program was created to reduce risk in the development of advanced

satellite technologies for formation flight, docking, and on-orbit assembly with a low-

risk, experiment-driven testing environment. The testbed consists of multiple repro-

grammable nanosatellites (4 kg), complete with power, processing, communications,

navigation, and propulsion subsystems, and capable of performing full 6 degrees of

freedom (6DOF) maneuvers. Ground experiments are performed with air bearing

carriages to simulate a frictionless environment in 2D, and flight experiments are

conducted in 6DOF on reduced gravity aircraft as well as aboard the International

Space Station. For the SWARM project, a satellite is attached to external hardware

to augment its capabilities for the task of assembling a structure.



Force per thruster (SPHERES) 0.10 N
Force per thruster (Prop module) 0.10 N

Total force 0.60 N
Total torque 0.10 N-m

Table 1.3.1: SWARM Propulsion Module Thrust Capabilities

1.3.2 SWARM Hardware

Since the project started in 2006, SWARM has had several major hardware revisions,

with two major research phases. Phase I investigated the construction of a sparse-

aperture space telescope using rigidly connected hardware elements. A SPHERES

satellite mounted on an air carriage with two docking ports was used to maneuver and

attach components of the structure. Phase II made major hardware improvements to

the Phase I components and considered the construction of a structure with flexible

elements. The Phase II hardware was used in this study and is summarized below:

Propulsion Module In Phase I, SPHERES thrusters alone were inadequate for

overcoming friction while moving an assembled structure on the flat floor. To

alleviate this problem, a propulsion module was designed that augments the

SPHERES thrusters with 16 additional thrusters located in pairs at each cor-

ner of a square mounting plate. Together, the propulsion module and SPHERES

satellite simulate the propulsion system of a small assembly tug. The approx-

imate thrust capabilities of the propulsion module are summarized in Table

1.3.1.

Flexible Beam A key objective of the SWARM project is the demonstration of

on-orbit assembly in the presence of flexibility, but simulating large flexible

structures in a gravitational field is challenging because they are prone to sag-

ging or buckling. To address this issue, the SWARM team designed a beam

composed of several rigid links connected by flexible joints, shown in Figure

1.6. The structure is a physical approximation to a homogeneous beam similar

to a lumped approximation model in flexible dynamics simulation. Chapter 2

will explore the dynamics of the flexible beam as well as analogies that can be



Figure 1.5: The SWARM propulsion module adds additional thrusters and a universal

docking port to the SPHERES satellite.

drawn from this model.

Universal Docking Port (UDP) Both the SWARM propulsion module and the

ends of the flexible beam are equipped with docking mechanisms by which the

elements can be joined together. The UDP is genderless, which allows either

end of the beam to be manipulated by or joined to other copies of the docking

port. Requirements and specifications for the UDP can be found in [12, 19].

Digital Video Camera The SWARM propulsion module is equipped with a Sur-

veyor Corporation SRV-1 digital video camera. The camera includes an Analog

Devices Blackfin digital signal processor for pre-processing camera information

before forwarding information via serial port to the satellite. As shown in Fig-

ure 1.8, the camera is mounted just above the docking port where it is used to

observe the dynamics of the flexible beam.

1.3.3 Global Estimation System

Global position measurements establish the position and orientation of the robot in

a pre-defined reference frame. In an on-orbit assembly scenario these measurements



Figure 1.6: The SWARM flexible beam mounted to two air carriages.

Alaminum Channel
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Figure 1.7: The SWARM Universal Docking Port with highlighted features. The UDP
on the right has a ring of ultrasound beacons and receivers for relative metrology.



Figure 1.8: A Surveyor Corp. SRV-1 digital camera mounted above the UDP is used

to observe the motion of the flexible beam.

may be provided by the GPS satellite constellation or differential position estimates

calculated using sensors in the assembly workspace. The SWARM propulsion module

uses the SPHERES pseudo-GPS global metrology system [18] for estimating its global

position and orientation on the 2D flat floor.

The metrology system consists of 5 ultrasound beacons placed at the perimeter of

the work area in known reference positions. During a measurement cycle, the satellite

combines time of flight information from each of the beacons in an Extended Kalman

Filter (EKF) to produce a global position and orientation estimate.

During typical operations aboard the International Space Station, the global

metrology beacons are arranged to form two intersecting planes as shown in 1.9a.

This configuration aids the estimator in determining a consistent 6DOF state es-

timate. For the SWARM experiment, three beacons are sufficient to initialize the

2D position estimate, and two beacons are sufficient to maintain it. The beacons

are placed to maximize the coverage area formed by three overlapping beacons as

shown in 1.9b. Each beacon projects a swath 3m long and 600 wide onto the floor

corresponding to the maximum range and bearing for ultrasound measurements.

No additional modifications to the SPHERES global estimator were made to ac-

count for operation on the 2D flat floor. Several careful tests were performed to verify

consistent convergence within the 2- and 3-beacon overlap zones. Typical position
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(a) 5 beacons on the ISS are arranged (b) The 5-beacon arrangement for the
in three dimensions for 6DOF measure- SWARM flat floor maximizes the 2- and
ments [18]. 3-beacon coverage area.

Figure 1.9: Global metrology configuration for ISS and SWARM using 5 beacons.

errors of 0.5-1.5cm were on the order of those expected for the global metrology sys-

tem. Had it been necessary to constrain the state estimate to the 2D surface of the

flat floor to improve accuracy, two options could have been pursued: 1) develop a

new estimator that only calculates the position and orientation state (Xb, Yb 8b), or

2) implement state constraints in the global estimator. For the second option, Simon

and Chia suggest in [24] that an acceptable solution is to simply reset the known

elements of the state vector, such as the height above the floor, to their know values

at every estimation cycle.

1.4 Literature Review

The control of flexible structures has been explored from many different perspectives

which might be classified in one of three major areas: flexible structure control,

industrial robotics, and space-based robotic assembly.

Flexible structure control has the objective of eliminating structural vibrations to

prevent damage or improve the performance of scientific instruments. Flexible space

structures such as the International Space Station or communications satellites rely

on flexibility control to stabilize their motion and suppress vibrations. For maneu-



vering, flexible structure control is primarily concerned with, at most, reorientation

or following attitude trajectory profiles but is not focused on relative positioning in

a workspace. For assembly of flexible structures, established techniques for vibration

suppression, such as sliding mode control [25] and input shaping [15] contribute useful

ideas.

Industrial assembly plants for automobiles and consumer products make exten-

sive use of robotic manipulators. A wide body of literature has been developed for

improving the performance of robotic manipulators in the presence of load uncer-

tainty and manipulator flexibility. On-orbit assembly shares many similarities with

the tasks performed by industrial robots, including transportation and precise posi-

tioning of parts. Some assembly scenarios even envision the use of lightweight versions

of industrial robots. Given these similarities, it is useful to draw upon the techniques

developed for industrial robots when implementing control and estimation algorithms

for assembly spacecraft.

A particularly useful technology in industrial robotics is adaptive control. Given

the kinematic layout of a manipulator (link lengths and relative orientations), adap-

tive controllers are capable of asymptotically tracking desired trajectories as if the

dynamic parameters (masses and inertias) are known. With an established history in

the world of rigid robot manipulators, extensions have been proposed for the control

of robots with flexible joints [8] and even robots with uncertain kinematic properties

[2]. Adaptive control for flexible systems is still a developing field because the problem

falls in the realm of underactuated control, where the number of degrees of freedom

exceeds the number of actuators. Many control techniques for underactuated control,

such as partial feedback linearization [27] require a model inversion to calculate the

required control commands. Inverting the model disrupts the important linear-in-

the-parameters property that is exploited in many adaptive techniques, and therefore

most methods rely on function approximation techniques like neural networks [21, 28]

or basis functions 110] to perform the adaptation. The approach used in this study

avoids the model inversion using a normal form augmentation approach proposed by

Gu and Xu in [9] but includes additional insight from the feedback linearization and



function approximation methods.

The third area is the topic under consideration, the assembly of flexible structures.

This area has elements of both of the two preceding groups. As a rigid body attached

to a flexible appendage, the assembly robot has the same topology as a generic flexible

satellite, but like a robotic manipulator, the robot must also maneuver its payload

along a desired trajectory while compensating for vibrational disturbances. Some

useful analogies exist, such as the Space Shuttle Remote Manipulator System, as well

as a number of studies on free-flying and free-floating robot manipulator systems.

Dubowsky et al. have conducted several laboratory studies, which include control

[14], estimation [16], and cooperative assembly [6] of flexible structures using multiple

free-flying robots. This study will use a single robot to perform the tasks of vibration

estimation and flexibility control.

1.5 Summary of Approach

This thesis is divided into five chapters covering the development of a control and

estimation system for the manipulation of a 2D flexible beam element. Chapter 2

constructs a dynamic model for an assembly robot attached to a flexible beam struc-

ture, along with simplified representations of the dynamics used in the remaining

chapters. Chapter 3 introduces a vision-based estimation system for estimating the

vibrational dynamics of the flexible beam as well as a simplified estimator for di-

rect measurement of beam deflection. Chapter 4 presents three control approaches

for maneuvering the beam along predefined trajectories. Chapter 5 concludes with

observations and recommendations for future work.
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Chapter 2

Dynamic Models

2.1 Overview

Before developing a control and estimation system for an assembly satellite, it is

important to understand the dynamics of a translating, rotating base connected to

a flexible structure. This chapter contains three main sections. The first derives

a dynamic model for the SWARM segmented flexible beam and relates it to other

flexible systems. The second section introduces a linearized model and a simplified

model based on the full dynamic model, and the last section examines the models in

simulation and hardware testing.

2.2 Derivation of Beam Dynamics

2.2.1 Review of the Euler-Lagrange Method

This section reviews the Euler-Lagrange method used in a wide variety of dynamics

and control problems. The structure of the resulting equations have many useful

features that are used throughout this study.

Given the Lagrangian,

L= T- V (2.1)

with the kinetic energy T and potential energy V expressed in generalized coordinates



q E R n , the equations of motion can be developed from

d OL dLd= 7.L L (2.2)
dt 0q Oq

The generalized force T E R n is the input to the system. Dynamics derived from (2.2)

are frequently arranged into the form

M(q)FI + C(q, q)q + G(q) = 7. (2.3)

The matrix M E RlRnx is a generalized inertia matrix that represents the masses and

inertias of the links along with their dynamic couplings, C E Rnx represents velocity-

dependent, or Coriolis, terms, and G E Rn" contains position-dependent torques such

as from gravity or bending. For C defined as

=1 n M,. 1 j Mik OMjk4C k = q~ + qi Jk (2.4)
k=1 k=1

this representation has a skew-symmetry property [26] such that M - 2C is skew-

symmetric. Therefore, for all q

IT(M - 2C) = 0. (2.5)

This well known property of (2.3) is the result of energy conservation and is frequently

used in the development of nonlinear control laws for physical systems.

When developing the symbolic representation of (2.3) it is convenient to use the

following relationships

Sa4 (2.6)

G = (2.7)
aq

Nonconservative forces can also be inserted as a fourth matrix D. For example viscous



damping might be added as

D(q)

M(q)4 + C(q, 4)q + D(4) + G(q)

= diag(dl, d2, ... ,dn)4

= 7.

2.2.2 Dynamics of the Flexible Segmented Beam

In this section the 2D dynamics of a free-floating planar robot connected to a flexible

segmented beam are developed using the Euler-Lagrange method. Figure 2.1 displays

the physical states involved in the dynamics of the 4-link SWARM robot. Defining( ) T
Xb = Xb Yb Ob as the global position and orientation of the robot base, and

6 = ( 6 3 as the joint deflections relative to the previous link, a candidate

generalized coordinate system is

Xb

Yb

61

62

53

(2.10)

This separation of coordinates has significance in the analogy between the seg-

mented beam model and the Euler-Bernoulli model discussed in Section 2.2.4. The

Lagrangian can be constructed by viewing the system as a series of connected rigid

bodies, each with a center of mass mi located at ri. Starting with the base position

ro and assuming the links are uniform and axially symmetric, the position of each

(2.8)

(2.9)

q Xb



Xb

Figure 2.1: The important states
orientation of the robot base and

X
XX

of the SWARM system are the global position and
the deflection angles of each of the joints.

center of mass in the global frame is

ro =

ri =ro+

1li cos(0i) +
i-1

lk
k=l
i-1

1li sin(0i) + Elk
k=1

COS(0k)

sin(k)

(2.11)

(2.12)

(2.13)
k-1

= Oo E 6

with lk representing the length of link k. Differentiating these expressions with respect

to time yields the translational and angular velocity of each body

- li sin(0i) i - Elk sin(k) k
k=l
i-1

1li cos(0i + lk COS k) k
k=1

ro = b

i'i = ro +

Wi = Oi

(2.14)

(2.15)

(2.16)

11-0 963



Combining the terms for rotational and linear velocity, the kinetic energy is

n

T = +m i r Iw 2 (2.17)
i=0

where, mi is the mass of body i, and I, is the moment of inertia of body i about its

center of mass.

In 2D, the only potential energy in the system is stored in the bending of the

torsional spring, and there is no gravitational potential energy. As a function of the

link deflection, Ji, and the spring constant ki, the total potential energy is

3

v = 6 (2.18)
i=1

With both terms of the Lagrangian, Equations (2.6), (2.4), and (2.7) can be applied

to extract the symbolic representations of M, C, and G. A MATLAB® script for

performing this calculation is included in Appendix B.

2.2.3 Underactuated Dynamics

Having derived the left hand side of (2.3) in the previous section, we turn our attention

to the right hand side. The thrusters for the SWARM robot can apply a force in the

x and y directions as well as a torque about the base of the robot. Since there are no

actuators in the flexible beam, the generalized force vector has the form

0

Systems of this form are referred to as underactuated because there are fewer actuators

than degrees of freedom. With this in mind, (2.3) can be partitioned into submatrices



Yb -

Figure 2.2: Translating and rotating base connected to an Euler-Bernoulli beam

corresponding to the actuated coordinates, x, and the unactuated coordinates, 3.

MXX

Mbx MX6 :6/
CXz
C'sx

Cz6
CJJ

xo 0 
+ =0 (2.19)

The spring torques in G(6) are proportional to joint deflections 6 and can be fac-

tored as G(6) = Kf6 where Kf = diag(kl, k2, k3 ) is a matrix of spring constants.

Substituting into (2.19) results in

MxX MX
M6x M66

As shown in the next

bility.

C5

C6S

C xx

CC6 x

section, this structure

(x + oq=
0 Kf 0

(2.20)

is common to many systems with flexi-

2.2.4 Relation to Euler-Bernoulli Beam Dynamics

Though the segmented beam only approximates the dynamics of a structure with

distributed flexibility, the dynamic model in Equation (2.20) is nearly identical to the

assumed modes method sometimes used for the analysis of flexible structures. To see

the relationship between the two models, we consider a thin flexible beam of length L

of uniform density per unit length p and bending stiffness EI connected to a moving

base as shown in Figure 2.2. If the time-varying deflection from the body x-axis of

the robot base is expressed as w(xa, t), the position of an arbitrary point on the beam



in the global frame is

r(xa) = + 0 -sin0 0  (2.21)
Yb sin 0 cos 80 J (W(Xa, t)

To form the Lagrangian, the discrete sum over velocities of rigid links in Equation

(2.17) becomes a continuous integral over infinitesimal mass elements

T = 1  L iT(xa)i(xa)dXa (2.22)

and Equation (2.18) becomes an integral representing the elastic energy stored in

bending
vlfL (2w 2

V - E dx (2.23)

Before developing the equations of motion, w(xa, t) is separated into temporal and

spatial components

W(Xa, t)= Z ii(Xa) i(t) (2.24)
i=l

where Oi(Xb) are assumed mode shapes and 6i(t) are their time-varying amplitudes.

For a true flexible structure n = oo, but the model is usually truncated after the

first few modes for control design. The mode shapes ¢i in this system are chosen

based on clamped-free boundary conditions because the beam is rigidly clamped to

the robot base. The resulting equations of motion can be arranged in a form similar to

Equation (2.20), with the elements of M and C determined from integral expressions

of the mode shapes and their amplitudes. A thorough derivation for the dynamics of

translating and rotating flexible beam using this method can be found in 131].

Given the shared structure between the segmented beam dynamics and the Euler-

Bernoulli beam dynamics, the control and estimation algorithms presented in this

study are applicable to both systems. We can also apply techniques from the large

body of flexible dynamics research to the process of simplifying the dynamic model,

as presented in the next section.



2.3 Simplified Dynamic Models

Though the modeling process above attempts to capture a detailed description of the

flexible dynamics, certain simplifications can be introduced to aid the development

of control and estimation algorithms. This section will examine two important model

simplifications that will be used for further study in the next chapters. The first

model is a linearized version of the true dynamic model to be used in a full state

estimator, and the second is a simplified lumping approximation for further use in

both estimation and control.

2.3.1 Linearized Dynamics

After developing the nonlinear dynamics in (2.20), the model can be linearized by

substituting the equilibrium point (q, t) = 0 into the matrices M and C. Since

C = 0,,, at the equilibrium and M is always invertible, the linear dynamics in

state-space form are

x = Ax+ Bu

O I
A= and B= I (2.25)

0

The structure of the matrix A can be further refined by substituting K = diag(0, 0, 0, kl, k2, k3)

which eliminates the first three columns of M -1 .

A = 6 3 06x3 16x6 (2.26)
06x3 H 06x6

with H as the nonzero columns of -M- 1K. This form is particularly important for

the observability characteristics of the full state estimator discussed in Section 3.3.

The lower right submatrix may also be modified if the system includes any velocity-



dependent damping terms. Adding viscous damping as in Equation (2.8) adds the

term -M-1D to the lower-right submatrix.

06X3 06x3 16x6A = L0 H J(2.27)
06x3  H -M- 1 D

Since we can only consider the linear model to reflect the behavior of the dynamics

for small perturbations about the linearization point, we lose several important rela-

tionships between the rigid body dynamics and the beam dynamics. The dynamics of

the Xb coordinate are decoupled from all dynamics except the Fx actuator command,

and applying a body torque does not result in a translation of the base as we would

expect. Applying a force, Fy, causes a rotation, but the Xb coordinate is unaffected.

Unless we choose an alternate coordinate frame for developing the linear model, the

linearized dynamics should not be used to simulate global motion with large expected

rotations.

As shown in Section 2.4.1, the vibrational dynamics are better represented in

the linear model because the beam deflections tend to stay within the range of the

small angle assumptions, and in the case of no damping, they are not affected by the

translational dynamics. Therefore, we conclude that the linear model is primarily

useful as a tool for modeling the flexible dynamics.

2.3.2 Lumped Flexibility Model

In this section, we consider a dynamic model of the flexible beam system with all

flexible dynamics lumped into a single flexible joint as shown in Figure 2.3. This

simplification is sometimes made in the analysis of satellites with flexible appendages

or for a simplified approach to modeling flexible structures. For the purposes of

docking the free end of the flexible beam we are primarily concerned with eliminating

the deflection of the tip of the beam, so this approximation is a compact way of

capturing the important behavior of the system. There is an implicit assumption

that the behavior is well represented by a single vibrational mode though controllers
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Figure 2.3: In the simplified flexibility model, all flexible dynamics are lumped into
a single torsional spring attached to the rigid body of the satellite.

and estimators may still extract information about the other modes from the tip

deflection because it is a weighted sum of the mode amplitudes.

A second motivation for developing a reduced model is parameter uncertainty. The

flexible dynamics presented in the previous sections have assumed the availability of

certain physical parameters such as link lengths, moments of inertia, and stiffnesses.

These parameters may vary significantly across the variety of structural elements

used for the assembly of a space structure, and even identical components may have

different dynamic behavior if they are manipulated from different directions. This

parameter uncertainty motivates the exploration of adaptive control techniques in

Section 4.4 and the development of a single model with a small set of parameters that

represents the important flexible dynamics for multiple systems.

Developing the dynamics of the simplified model, requires a guess for the spring

constant, k, that approximates the behavior of the true model. The simplification

presented here is similar to the method shown in [7] in which the spring constant

is determined by matching the potential energy stored in a static deflection of the

true flexible beam. To apply this method to the SWARM beam, we start with an

expression for the tip deflection, yt, as a function of the joint deflection angles 6 =



T

( 62 63 Tand the link lengths

Yt = 12 sin (61) + 12 sin (61 + 62) 24 sin (61 + 62 + 63) (2.28)

For small angles, the deflection is linear in 6

L = [(12+13+4) (1314) 14 (2.29)

yt = L6 (2.30)

and the simplified joint angle deflection, f, is approximately

Y =Y (2.31)

The potential energy in the true flexible beam can now be related to the potential

energy stored in the torsional spring by

TK3-- = k - (2.32)

This equation is underdetermined, but it can be solved by assuming the beam is tem-

porarily in a static condition and therefore 5 minimizes the stored potential energy.

After imposing the constraint from (2.30) so that the deflection matches the intended

tip position, 6 is calculated by solving the following optimization

min 1 [6TKf + A (L6 - yt)] (2.33)

which has the solution

-Yt
LK-lLT

K-1
6 = K (L yt) (2.34)

LKJ'LT
f



Substituting into the left hand side of (2.32)

1 6TKf 1 T (LTyt)

2 2 LK-ILT
I

1 L K'LT

2 iLKf LT LKf'LT

y LK (2.35)

Comparing to the right hand side, the spring constant is

k = 12 (2.36)
LK1LT

This completes the derivation of the potential energy term required for the calculation

of the Lagrangian dynamics. It is important to note this approach is only an initial

guess for a spring constant. Additional techniques such as system identification can

be used to refine the estimate.

For the kinetic energy term, we will assume that the mass and inertia properties

of the second link in the simplified model are the same as if the remaining links in the

original model were a rigid rod. From here, the derivation of the dynamics follows the

same procedure as Section 2.2.2. The resulting equations have a reduced generalized

coordinate system

q = b Yb 8b )T (2.37)

as well as a smaller partitioned dynamics

Mx Ms . CzC 1 0 TX
q q+ q= (2.38)

M x m66 C5X Cs 0 k j0

2.4 Model Verification

This section presents several comparisons in simulation between the models presented

above and hardware tests to assess the models. All simulation tests were performed
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Figure 2.4: The simulation model is constructed from 6 bodies, shown here with their
physical properties.

Property
[ l 12 13 14

Description
length of links
radius of prop. module

[ mi m2m m 4 ] link masses (ml includes UDP)

mb prop. module mass
me UDP and end air carriage mass
[ I 12 13 14] rotational inertia of links

Ie rot. inertia of UDP & carriage
[k k k2 k3 ] torsional spring constants

Table 2.4.1: Summary of the physical properties used

Value
[0.28 0.38 0.38 0.05]
0.27m
[ 6.64 0.18 0.18 0.03]
19.2 kg
6.5 kg
[ 0.1 0.002 0.002 5E-
0.1 kg -m 2

[0.2 0.2 0.2 0.2 ] od

for SWARM simulations

with the same physical properties, shown in Table 2.4.1, which approximately match

the measured values for the SWARM hardware. A diagram of the hardware and the

associated physical properties is shown in Figure 2.4. Each center of mass marker

represents a separate body with a mass and moment of inertia. 1

2.4.1 Simulation Testing

For simulation testing, a nonlinear multi-body baseline simulation was implemented

in Simulink® SimMechanicsTM. As in the analytical dynamic model, the first link

is rigidly connected to the propulsion module, and each of the successive links are

connected by torsional springs. The last link is rigidly connected to a final body that

represents the UDP and end air carriage. This model serves as the "true" dynamics

and the remaining dynamic models are compared to this model for accuracy.

1Link 14 is shorter than the other links because the docking port and air carriage at the end of
the beam are considered a separate body.

m

kg

5 ] kg . m 2
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Figure 2.5: (a)Two torque profiles and (b) translation profile applied to the models
for comparison. The short torque profile is representative of short bursts during a
control cycle, and the longer profile is intended to show model differences.

The following sections compare the simulated responses for each system to the

two torque inputs shown in Figure 2.5. The first input is a short torque pulse of 0.4

seconds that excites beam dynamics but keeps the response within the realm of small

deflections, and the second profile is a longer pulse of 2 seconds that causes large

deflections. Both torque pulses simulate the approximate strength of the SWARM

thrusters at 0.1 N.m. The translation input simulates a linear thrust input with a

1 second pulse in the direction transverse to the beam. Though the true hardware

system is heavily damped due to friction on the flat floor surface, these simulations are

presented without damping to compare the vibration response in each of the dynamic

models.

Joint Dynamics Comparison

These tests examine the ability of the linear model to approximate the joint dynamics

of the nonlinear model. The simplified model is omitted because it only contains one

flexible joint. Figure 2.6 compares the response of the linear and nonlinear models

in response to the two torque profiles for each of the internal joint variables 6 =



61 62 63 . Under small deflections up to about 5 degrees for each joint, the

linear model agrees very closely with the nonlinear model. With the longer torque

profile, the linear model begins to show some discrepancies as deflection magnitudes

exceed 10 degrees (0.17 rad). From these results we can conclude that the linear

model will serve well for approximating the nonlinear flexible dynamics in the small

angle regime.

0.3

0.2

0.1
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Figure 2.6: (a) The linear model follows the nonlinear model well for deflections under
5 deg (0.09 rad). (b) For larger deflections above about 10 deg (0.17 rad) there are
noticeable differences in amplitude and frequency.
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Figure 2.7: Simulated response of (a) rotation angle and (b) deflection angle to a 0.4
second torque input.

Rotation and Deflection Response

Figure 2.7 compares the responses of the simplified model, the linearized model, and

the nonlinear model to the two torque signals. All models track the rigid body

rotation induced by the torque input as shown by the increasing trend in Figure 2.7a,

but the simplified model exhibits a slightly lower frequency vibration response. This

is also evident in the comparison of tip deflection angles in Figure 2.7b, suggesting

that the approximation for k in Equation 2.36 may need to be refined. For both

measurements, the linear model is a very good approximation.

For the longer profile, we can examine the model accuracy for larger tip deflections.

In Figure 2.8 the linear model begins to show some discrepancies as deflections exceed

about 15 degrees (0.26 rad), while the simplified model continues to lag the true

response. Again, we see that the linear model holds for smaller deflections.

Translation Response

Figure 2.9 examines the response of the models to a translation force input applied

in the y direction, which is perpendicular to the beam direction. All models respond

appropriately in the y direction, but the linearized model does not accurately reflect

the movement in the x direction. This is expected because the global positions in



1.0 ' 0.4
-Nonlinear
--- Linearized

I -- -Simplified 0.2

0.5
0

-0.2

-0.5 -0.4
0 10 20 30 40 0 10 20 30 4

t (S) t (S)

(a) (b)

Figure 2.8: Simulated response of (a) rotation angle and (b) deflection angle to a 2
second torque input

the linearized model are decoupled from the rotational dynamics. If a more accurate

global linear model were required, a better choice of reference frame might be the

center of mass frame where the translational forces can be integrated independently

from the vibrational dynamics. Since the vibrational dynamics remain reasonably

accurate, the base position could be determined by applying a transformation from

the center of mass frame to the base frame as a function of the joint angles and

physical parameters.

Examining the response of the simplified model, we can see that the nonlinear

coupling is maintained for translation. There are small errors in the exact position of

the base, but the model continues to capture the primary dynamic behavior.

Simplified Model with System Identification

Simulation results in the previous sections suggest that the expression for the spring

constant (2.36) is only a rough approximation of the best fit for the nonlinear dy-

namics. Using the input/output data generated from the simulations along with the

symbolic expressions for the simplified beam dynamics it is possible to run a grey-box

system identification for the uncertain parameters. In this case we are interested in

identifying the spring constant k, and we add a fictitious end mass me to account for
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Figure 2.9: Translational response in the x and y directions

kinetic energy errors introduced by the single link approximation. Figure 2.10 shows

the improvement in the response of the simplified model to the short torque profile. In

particular, the frequency of oscillation more closely matches the full dynamic model.

While it is important that a set of parameters can be found to match a specific

system response, we must also check that the parameters apply to other profiles

and other system outputs. In Figure 2.11, the identified model is subjected to the

long torque profile and the translation input. In these tests, the model continues to

provide a good approximation. This suggests that the identified parameters provide

the correct values for the approximate dynamic model.

We have now shown that the linear model provides good estimates of the internal

dynamics of the flexible beam but does not capture the dynamic behavior under large

motions. This makes the linear model suitable for a beam dynamics estimator but not

for a trajectory controller. The simplified nonlinear model manages to capture the

primary flexible behavior as well as the couplings with rigid motion. These attributes

make the simplified model desirable as a template for a model-based control system.

2.4.2 Hardware Testing

The purpose of the testing was to ensure that the simplified model could represent

the flexible dynamics of a physical system in two different configurations. Under the
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limitation of using only beam deflection angle and SPHERES sensors as a measure-

ment, the best model for comparison is the simplified beam model. To account for

friction, an additional viscous damping term is added to the equations of motion as

in Equation (2.8). This approach is consistent with previous friction modeling for

SPHERES [4].

The testing environment for SWARM includes several challenges:

* Friction The air-bearing carriages used to support the propulsion module and

beam are subject to friction due to drag, surface irregularities, and any small

particles that may be present on the sliding surface. The main effect on the

dynamics is the addition of significant damping, though occasional sticking can

result in large step disturbances.

* Parameter Uncertainty Though most of the components in the system were

measured for key parameters such as moment of inertia and mass, other param-

eters such as center of mass location and spring constants are uncertain.

* Measurement Uncertainty As shown in Chapter 3, with addition of unknown

damping effects and parameter uncertainty, it is particularly difficult to develop

an estimate for the joint deflections of the vibrating beam from the measure-

ments available to SWARM. For hardware testing, the beam deflection angle is

measured instead using the beam deflection estimator presented in Section 3.4.

* Thruster Uncertainty The thruster performance for SPHERES satellites has

been thoroughly studied in [3], but is not as well known for the SWARM propul-

sion module due to a different physical layout and significantly higher mass flow

rates. The estimates for thruster performance (in Table 1.3.1) were calculated

from several short tests of angular acceleration.

Clamped Vibration Response

In this test, the free end of the beam was allowed to float on an air carriage while the

end attached to the propulsion module was fixed in place. In this configuration, the
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Figure 2.12: Simulation of the first second order system in Equation (2.39) vs. the
actual responses for the clamped beam.

simplified beam dynamics reduce to a linear system

16 + b6f + kf = 0 (2.39)

where I is the equivalent moment of inertia of the beam about the rotation point.

Assuming that the moment of inertia is known, the test provides candidate values

for the damping and spring constant terms after fitting the model to the data. Fig-

ure (2.12) compares the actual and simulated responses after fitting. The best-fit

parameters for this test are b = 0.02 Nm-" and k = 0.14 Nm for an inertia value of
rad rad

4.8 kg -m 2

Free-Free Vibration Response

For this test the propulsion module was allowed to float freely, and an oscillation was

started by hand. To determine the parameters for this system, the spring constant,

the damping constant, and the end mass were allowed to vary in the parameter

identification. Figure 2.13 shows the response of the model for beam deflection and

angular rate after fitting. The best-fit parameters are different in this test, as shown in

Table 2.4.2, but the simulation and model are in close agreement. There are several

possibilities for the discrepancies between the two test responses. Both data sets

supply only a single frequency, so there may not be sufficient excitation to identify all

parameters. Redundant parameters can also cause identification errors, as in the case



Table 2.4.2: Parameters for Free-Free Vibration Response
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above where uncertainty in the inertia approximation will corrupt the accuracy of the

damping and spring constant estimates. Only the ratio between these quantities can

be determined from the test. Ultimately, however, knowing the exact values of the

parameters is not necessarily essential to providing accurate control. For adaptive

control, as long as a parameter set can be adjusted to achieve the desired behavior,

the exact values of the parameters are not needed. In this sense, the simplified model

provides a compact form for representing a variety of systems.

2.5 Conclusions

Several models of varying complexity have been developed using the Euler-Lagrange

method. The forms of these models have applicability beyond the segmented beam

model of the SWARM hardware, and in particular with the Euler-Bernoulli model of



a uniform flexible beam. The segmented model itself lends some interesting insight

into approximations for flexible dynamics, specifically the utility of a simplified model

with a single flexible joint.

Simulation results show that a linear model is quite accurate in the small deflec-

tion angle regime. Given sufficient knowledge of the system parameters, we could use

the model along with the wealth of tools in linear control analysis to build a control

solution. However, as shown in the SWARM hardware testing, thoroughly identifying

physical parameters requires more than a set of simple open loop tests and may not

be feasible for a large number of distinct components. We are also fundamentally lim-

ited to performing initial analysis of the system on the ground where the laboratory

environment introduces unwanted disturbances. While disturbances and uncertain-

ties are detrimental to comparing models, they are analogs for the uncertainty faced

while manipulating multiple components during an on-orbit assembly. As we saw in

both the simulation and hardware testing, the simplified model has the important

characteristic of being able to match a variety of flexible systems with the update

of only a few parameters. This characteristic suggests the simplified model will be

useful in an on-line adaptive control system that may be able to compensate for the

uncertainty between components. Given the single measurement required to deter-

mine the beam deflection angle, the simplified model is also attractive for minimizing

the sensor count and estimation complexity.
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Chapter 3

Vision-Based Estimation for Flexible

Space Structures

3.1 Overview

While manipulating a flexible element, an assembly vehicle requires knowledge of

its position within the assembly workspace as well as an estimate of the vibrational

dynamics of the element, as shown in Figure 3.1. Collecting this information is chal-

lenging because the use of a propulsion tug for assembly poses restrictions on the

manner in which flexible vibration measurements can be collected. Unless power and

data connections are included in the docking interface or a wireless sensor network is

constructed, it is not possible to embed active sensors in the structural element. This

chapter presents methods for estimating flexible dynamics using vision-based and in-

ertial sensors attached to the assembly robot. This method is capable of estimating

the internal beam dynamics although it is sensitive to disturbances and to an uncer-

tain physical model of the beam dynamics. To address robustness issues and reduce

the estimator complexity, a simplified filter for estimating beam deflection angle is

also presented.
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Figure 3.1: Global states determine the position and orientation of the robot in the
workspace while the beam states determine the beam shape.

3.2 Beam Measurements

3.2.1 Vision-Based Beam Measurements

To allow for docking and undocking, all sensors involved in estimating the state of

the flexible beam must be mounted to the propulsion tug. Cameras provide a cheap,

lightweight method for passively extracting information about motion in a scene. For

vibration estimation, the camera can provide position or angular measurements for

uniquely identified features attached to the oscillating body. The SWARM testbed

uses a camera to observe the motion of a small infrared LED at the tip of the flexible

beam. A tip-mounted LED is useful for supplying information about vibrational

motion as well as positioning for docking. Practical implementations could use fiducial

markers or reflectors, which have been used in vision applications on-orbit, or even

an LED powered by a small solar panel.

The first steps of the camera measurement process are shown in Figure 3.2. Beam

measurements start as grayscale pixel intensity values referenced from the upper left

corner of the image plane. Digital imaging CCDs are very sensitive to the infrared

spectrum, and the light from the LED easily saturates the pixels near its position

in the image frame. By adjusting the camera exposure and admitting only pixel

intensities above a certain threshold, the LED can be made to appear as a dot in the

Be.amI Statecs
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Figure 3.2: An example of the centroidng process: (a) An initial image is acquired
with a low exposure, then (b) all pixels below a threshold are set to 0, and finally, (c)
the centroid coordinates are determined from the remaining pixels (shown zoomed in
on the LED)

image plane. The center of area of the dot can be found with accuracy less than or

equal to a single pixel using a common centroiding algorithm such as

E -. I',

i,j

y = (3.1)

i,j

The LED center position (T, y) is calculated by weighting each pixel coordinate with

its intensity I , and dividing by the total intensity of the image. This is equivalent

to calculating the first moment of intensity about the origin of the image plane.
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Figure 3.3: Camera measurements start as pixel intensities measured in the image
frame and end as a beam deflection in the camera frame.

Next, the perspective projection (pinhole camera) equations [13] are applied to

the image to convert from image frame pixel coordinates to camera frame distances.

Y' y - Yo
z = - (3.3)

Z' f

Subtracting the center of projection (x 0o, Yo) shifts the centroid coordinates from the

top-left reference frame to an image-center reference frame where they are scaled to

a distance by the pixel size 0. The remaining parts of equations (3.2) and (3.3) come

from the similar triangles that share a common vertex at the focal point. Examining

Figure 3.3, we can see that the ratio of the image plane coordinate to the focal length

f is the same as the ratio of the camera frame coordinate to the depth Z'. At this

point it is important to note that the perspective projection equations are 2 equations

in 3 unknowns, so the camera frame distances (X', Y') are only known to within a

scale factor. There are two ways of recovering the beam deflection X6cam, both of

which require a known measurement.



Y' known The first method is to use the known vertical displacement between the

camera and the LED, which corresponds to the distance Y'. With Y' and y,

(3.3) can be solved for Z' to recover the scale factor in Equation (3.2).

Z' known The second approach makes the assumption that the depth of the LED

in the camera frame Z' remains roughly constant and is equal to the length of

the beam. In this case, the X' and Y' distances can be solved separately by

substituting Z6eam for Z'.

During SWARM testing, the first approach was initially attractive because the Y'

distance should remain constant for 2D beam deflections. However, small rotations

of the camera about the X' axis can cause large changes in the true Y' distance, and

the method becomes particularly sensitive to small camera misalignment errors and

vibrations of the camera mount. This leaves the second approach using the constant

depth assumption. Equation (3.4) and Table (3.2.1) examine the error introduced by

assuming a constant depth when the camera observes a deflection by 0 degrees in the

(X', Z') plane.

Xctual - Xest = (1 - cos 0) (3.4)
Xactual

For a 1 meter beam, deflections of up to 20 centimeters will cause a measurement

error of less than a millimeter. With this calculation in mind it is reasonable to

conclude that the approximation will not introduce significant error in the estimation

of beam deflection. Other sources of error such as image noise are more likely to

have a direct effect on the beam measurements. For instance, a 1 meter beam with

a typical image noise of 0.8 pixel standard deviation will result in a deflection error

with 1.5 millimeter standard deviation.

The last step of the measurement process is to transform from the camera frame

to the body frame of the vehicle. Depending on the camera mounting arrangement

both a rotation and a translation may be required. The relationship between a set of

camera coordinates x' [ X' Y' Z' and body coordinates x = [X Y Z



Deflection (deg) Error (%)
5 0.4
10 1.5
15 3.4
20 6.0

Table 3.2.1: Error introduced by assuming a constant LED depth.

is expressed by the linear transformation:

x' = R (x + ro) (3.5)

and the inverse transform:

x' = RTx ' - p. (3.6)

R is the rotation matrix that rotates body frame coordinates into camera frame

coordinates, and ro is the position of the camera in the body frame.

The SWARM system uses a simple configuration with the Z' axis along the body

X axis of the propulsion module (aligned with the beam). In this arrangement, the

beam deflection in the body frame, Y, is given by (3.8).

O 0 1

x = -1 0 0 x'- roc (3.7)

0 -1 0

Y = -X' (3.8)

3.2.2 Other Sources of Measurement

Vision-based methods are not the only way to passively collect information about

the beam dynamics. With one end rigidly clamped to the satellite, the beam is

dynamically coupled to the satellite, and vibrations cause translations and rotations

of the satellite base. Both motions can be measured by any inertial sensors that

may be part of the robot's internal navigation system. Rotations of the base can

be measured by gyros and translational accelerations by accelerometers. For this



study, only gyro measurements are considered because they are linearly involved in

the state estimate, and they provide a high frequency measurement. Global position

measurements such as the ultrasound metrology system in the SWARM project can

also be used to observe both the rigid body motion and the effects of flexibility, but

they tend to be low frequency and often involve nonlinear measurements. Other

researchers have considered additional sensors, such as force-torque sensors at the

interface between the assembly robot and the flexible structure [14].

3.3 Linear Kalman Filter

In addition to measuring the deflection of the flexible element, it is important for

many control systems to provide a complete state estimate that includes the state

variables of the flexible dynamics. For a generic flexible system, this amounts to

estimating the time-varying amplitudes of the flexible modes, 6i(t) (see Equation

(2.24)), in the truncated dynamic model, and for the SWARM testbed, estimating

the deflection angles, 6, of the flexible joints. As we saw in Chapter 2, in the small

deflection angle regime, the linearized dynamic model is a good approximation for

the nonlinear dynamics. This feature will be used to develop a traditional linear

Kalman Filter that extracts the internal beam dynamics from tip motion and gyro

measurements.

3.3.1 Measurement Equations

Section 3.2 detailed the transformation from camera measurements to beam deflec-

tion, but a linear measurement model must still be derived that relates the beam

deflection to the estimated states. The objective is to determine the matrix C in the

measurement equation

y = Cx.

1Here y represents the vector of outputs, not to be confused with the vertical image position y
or the body frame deflection Y.



For an Euler-Bernoulli beam, the linear measurement model uses the shape modes

from Equation (2.24) evaluated at the end of the beam:

S= [ 1 (L) ... n(L) (3.9)

Y = OT6 (3.10)

C = T (3.11)

For the segmented beam deflection measurement equation, we start with the expres-

sion for the tip deflection from Section 2.3.2, assuming the LED is mounted at the

end of 14

Y = 12 sin (61) +2 1sin (61 + 2) +4 sin (61 + 2 + 63) (3.12)

where 1i is the length of link i. After expanding the angle sum and assuming the

angles 61, 62, and 63 are small,

Y ' (/2 13 14) 61 (/3 4) 62 1463 (3.13)

Therefore, the linear measurement matrix for the SWARM beam states is

= [(12 + 13 +14) (3 4) 14 0 0 0 (3.14)

for the state vector x = (61 62 63 1 2 63 . If the rate gyro is also measured,

y = Y Ob )T and the matrix becomes

C = (12 314) (13 14) 4 0 0 0 0 (3.15)0 0 01 000
for the state vector x = ( 62 63 0 b 61 62 63 Note that the state is only a

subset of the full state vector defined in Section 2.2, implying that the measurements

are only tied to a portion of the complete robot-beam state. This raises the important

question of observability in the estimation problem: can any additional states be



estimated using the dynamic model of the beam, and is there sufficient information

to estimate those states?

3.3.2 Observable States

With the linear measurement relationship defined, we would like to see if it is possible

to extract state information from the measurements collected by the camera and the

rate gyro. For a linear system, this is the question of observability: given the matrix

pair (A, C) of the linear system

x = Ax+Bu

y = Cx

can the initial state x(O) (and therefore, through the known dynamics, all future

states) be determined from a sequence of measurements y? According to the well-

known observability condition, for A E R x", the pair (A, C) is observable if and

only if the observability matrix

On

C

CA

CAn-1

has rank n.

The linear dynamics for the assembly robot with

from Section 2.3 are repeated below:

A = 
0 6x3 06x3 16x6

06x3 H 06x6

statevariablesx= [x 1]I

(3.16)

Which of these states are observable from beam deflection and gyro measurements?

From the definition of observability, xo, yo, and 0o are unobservable because it is



impossible to determine the initial position and orientation of the robot by observ-

ing beam deflection and rotation rate. The global translation velocities 'o and yo

are similarly unavailable because the beam dynamics are the same regardless of the

global translational velocity of the system. Both of these statements are evident by

examining (3.16) and noticing that the block 0 matrices decouple the flexible dynam-

ics from the global position and velocity states.2 Since the states do not affect the

flexible dynamics, an observable linear system for the estimator can be constructed

by simply removing their rows and columns from the dynamic equations. It is im-

portant to note that while the beam dynamics are not coupled to the states xo and

co, these states are coupled to the beam dynamics through H. The coupling allows

us to observe the beam oscillation by measuring 9 b through the rate gyro.

Removing the unobservable states, we are left with the following state vector, as

conjectured in the previous section:

x 61 62 63 0
b 61 2 c3 T (3.17)

The resulting observable pair is C from Equation (3.15) and

A = 03x4 33318)
H 8  0424

where H0a E I4"3 is H with the appropriate rows removed. The beam model may

also include viscous damping, which adds a matrix D to the lower right block:

A = 034 133 (3.19)
H 0 6 D

2This statement must be modified when the global velocity states have velocity-dependent damp-
ing. Though it would be difficult to accurately estimate the global velocity states through a viscous
friction model, the base velocity would be coupled to the beam dynamics. For a space application,
there will not be any global velocity damping, so we proceed by ignoring this effect.



3.3.3 Filter Equations

Now that we have developed observable state dynamics, the next step is to design a

filter to extract state information from the measurements. Given a linear dynamic

process corrupted by white Gaussian process noise w with E [wkW [ ] = Qk and lin-

ear measurements of the states corrupted by white Gaussian sensor noise v with

E [vkT] = Rk, the Kalman filter provides an optimal estimate of the system state.

The Kalman filter is particularly useful in the context of assembly of flexible struc-

tures because it allows for time-varying dynamics. In principle, the matrix Ak could

be adjusted on-line with an external parameter estimator, allowing for simultane-

ous system identification and estimation. The discrete form of the Kalman filter is

summarized below:

Xklk-1 = AkXk + Bkuk (3.20)

Xk = Xklk-1 + Lk (Yk - CkXkk-1) (3.21)

Lk =Ptt- 1  [CkPklk-I + Rk] (3.22)

Pk = (I- LkCk) Pkk-1l (3.23)

Pk+llk = AkPkAT + Qk (3.24)

was implemented on the SWARM testbed, but the online parameter estimator remains

as future work.

Equation (3.20) propagates the state forward using the estimator's internal model

of the dynamics along with the commanded input to the system, and Equation (3.21)

performs an update of the estimate using available measurements and the optimal

gain calculated in Equation (3.22). The remaining equations update and propagate

the error covariance of the state estimate. When the sequence of matrices Ak and

Bk is known, the time history of the gain and covariance is deterministic and reaches

a stable steady-state. The steady-state gain can be used instead of the time-varying

gain in many applications, but we retain the time varying form to allow for future

system identification as described above.



Figure 3.4: Simplified Beam Measurements

3.4 Simplified Beam Deflection Estimator

The simplified dynamic model developed in Section 2.3 has a reduced state vector

x=[XO Yo 0 6 f X0o o o 6,1  (3.25)

This representation greatly simplifies the estimation problem because the first three

state variables and their derivatives are provided by the global estimator, and the

beam deflection angle by can be directly measured by the camera. The following

sections develop an estimator for filtering and differentiating the deflection angle, by,

to provide the remaining state bf.

3.4.1 Measurement Equations

If the camera is not collocated with the flexible joint, a small transformation must

be made to estimate the deflection angle. Starting with the perspective projection

equations from (3.2),
Y xC

tan0c -= 0- (3.26)
11 + 12 f

Noting that the two triangles in Figure (3.4) share the beam deflection, Y, as a

common side and substituting the equation above:

Y
tan 6f= -

12
11 + 12

= tan0c
12

) (11 +12) (3.27)
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Assuming 6f is small,

6f _() (11+2) . (3.28)

Length 11 represents the distance from the focal point of the camera to the flexible

joint. 12 is set to the length of the beam and assumed to be constant for small angles.

Equation (3.27) shows that the primary limit on angular resolution of the camera

is the ratio of the pixel size, 3, to the focal length, f. This result is intuitively correct

because a camera with a larger focal length observes a narrower field of view for a

the same number of pixels, and smaller pixel size implies that there are more pixels

available to represent a given field of view. Although the deflection angle accuracy

is not sensitive to the length of the beam, the deflection magnitude scales, to first

order, with the length of the beam. Longer beams, therefore, require either a more

tightly focused camera lens or a higher resolution camera to maintain the accuracy

required for docking.

3.4.2 Linear Quadratic Estimator for Beam Angle

In section 3.3.3 a time varying implementation of the Kalman filter was used to

retain the possibility of updating the beam dynamics through an external parameter

estimator. Direct measurement of the beam deflection angle introduces a significant

simplification because it is no longer necessary to embed the beam dynamic model

in the estimator to extract the deflection angle 6f. Without a need for updating the

dynamics, a steady-state filter such as the Linear Quadratic Estimator (LQE) is a

good choice for tracking the angle states.

For a full state estimate, it is still necessary to determine the angular velocity 61,

which can be found by constructing an observer from the second order dynamics:

01
A = (3.29)

0 0

with state x = 5I 5f The model assumes a constant velocity and lumps



the beam deflection dynamics into process noise. In the SWARM system, this is

a reasonable assumption because the camera samples at approximately 25 Hz and

large deflection beam dynamics are on the order of 0.1 Hz.. The discrete time model

representation of the dynamics is

Xk+1 [ t1  Xk + Wk (3.30)
0 1

with process noise wk. For the estimator output equation, Equation (3.28) is inverted

to show camera measurement as a function of beam angle:

Yk = (3.31)

= - 12) ]Xk + Vk (3.32)

with measurement noise, vk.

The LQE uses a set of equations similar to the Kalman filter in 3.3.3, except that

the innovations gain Lk is replaced with the steady-state gain L found by solving the

well-known Discrete Algebraic Riccati Equation below

Ps, =Qk +Ak ss- PssCT [CP CT R] 1 )C P  AT (3.33)

L = PsCTR-  (3.34)

In steady-state, L is optimal for noise covariance characteristics specified by E [wk ] =

Qk and E [v2] = R. The remaining equations are the same as 3.20 and 3.21 with

Bk = 0 and Ak = for the discrete-time representation of (3.29).
0 1



Measurement a2

Ximg 0.02 pixel2

Ob 7.6x10 - 7 (rad)

Table 3.5.1: Noise Variances for Gyro and Camera

3.5 Estimator Performance

3.5.1 Kalman Filter Simulation

This section will examine the performance of the full state filter under a set of in-

creasingly challenging conditions while the system performs a representative assembly

maneuver. For each test, the baseline nonlinear simulation was held constant with

the same parameters as those used for the dynamic model simulations (see Table

2.4.1), except for a small amount of representative damping of b = 0. 0 0 5 Nm-. Therad

test maneuver consists of a simple rotation of 30 degrees under closed loop PD con-

trol, which was tuned to be slightly underdamped to examine the beam oscillations.

None of the estimated joint variables are used for control so the maneuver is indepen-

dent of the estimator performance. After 90 seconds the maneuver starts to repeat

in the opposite direction to show the estimator response to a large deflection after

convergence.

The camera system is modeled by applying the perspective projection equations

to the simulated positions of the camera and LED, and Gaussian noise is added to

the pixel measurements to corrupt the measurement. The rate gyro measurement

from the rotation rate of the robot base is similarly augmented. Both noise variances

were determined from measurements of the hardware sensors under static conditions

and are listed in Table 3.5.1. Process noise is not explicitly added to the simula-

tion though nonlinearities and the test conditions described below impose unmodeled

disturbances. In each simulation the estimator is initialized with zero initial condi-

tions and activated 5 seconds after the maneuver begins to demonstrate convergence

properties.
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Figure 3.5: Deflection angle estimates (dashed lines) agree closely when the model is
well known.

Nominal Case

For the first test, the estimator was configured with the true linearization of the

beam dynamics using Equation (2.25) with the appropriate damping term. In this

configuration we expect reasonably good performance because the open loop linear

model is in close agreement with the nonlinear model. Figure 3.5 compares the

nonlinear model to the estimated states, and as expected, the nominal case shows

good performance even when the estimator starts with a large initial error. Likewise,

the velocity states, shown in Figure 3.6, show a good estimate.

Uncertain Model

In this test, the estimator dynamics were configured with an incorrect linear model

to test performance in the case when the true model is not exactly known. All spring

constants were set to k = 0.3 Nm, the damping was increased to b = 0.01 Nm-s andrad rad '

the mass of the air carriage and docking port at the end of the beam were lowered

from 6.5 kg to 4 kg . These modifications represent the propulsion tug docking to a

new element of similar configuration but with slightly different physical properties.

As Figure 3.7 shows, the velocity estimate is not quite as accurate as previous tests,

particularly in representing higher frequency dynamics. Examining the velocity es-
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Figure 3.6: Velocity estimates (dashed lines) are also estimated accurately for the
nominal model.

timates in Figure 3.8, the velocity estimate is rather poorly approximating the true

state with a significant amount of noise. This sensitivity to model changes indicates

that the estimator requires a very good dynamic model to provide accurate estimates

of velocity.

Approximate Thrust Input Knowledge

Although it is frequently used for thruster reaction control, pulse width approximation

is a source of error in the beam estimation system. This test simulates the uncertainty

in the input caused by using a pulsed thruster system for approximating a continuous

control signal. Thruster pulses are calculated by attempting to match the impulse that

would have been delivered by the force command over a specified control period and

are limited to a total percentage of the period to leave space for global ultrasound

estimation. In Figure 3.9, an example thruster profile from a portion of the test

maneuver are shown for a control period of 400ms with a duty cycle of 50 percent.

The varying heights of the thruster pulses correspond to different numbers of active

thrusters, with a single thruster providing approximately 0.006 N - m of torque.

In the simulation test, the estimator was configured to propagate the desired

torque command from the controller, but thruster pulses were applied to the beam
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Figure 3.9: Example thruster pulses calculated from the commanded thrust profile.

dynamics. The nominal linear model was used in the estimator dynamics. Figures

3.10 and 3.11 show the resulting angle and angular velocity estimates. The true an-

gle and angular velocity states show a high frequency oscillation due to the applied

thruster pulses, but the tracking performance is reasonably accurate. The last frame

of Figure 3.11 plots the desired torque command on the same axis as the third deflec-

tion angle. As shown by the flat regions in the control command, velocity errors are

most prominent during high torque phases of maneuver when the commanded torque

was intentionally saturated at 0.05 N -m. The equivalent impulse for this command

exceeds the maximum available firing time and leads to a mismatch between the actual

thrust and the propagated thrust command. While thrust information contributes

valuable information to the state estimate, it is important to provide accurate thrust

values, especially when saturation effects are present. In addition, modeling errors,

such as incorrect estimates of mass and inertia, can also cause large discrepancies

when propagating expected thrust values.

3.5.2 Camera Calibration

3.5.3 LQE Testing

To compare the deflection angle estimator to the full state Kalman filter, the simulated

rotation maneuver was repeated with the LQE observing the beam motion. Figure

3.12 compares the deflection angle and angular velocity estimate to the true value.
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0.1

.4

120

40 60 80 100 120

100 120

-0.1
0 20 40 60 80 100 120

Figure 3.11: Velocity estimates show errors when the commanded thrust (dash-dot)
saturates the thruster.

0
I

-U.1

At

.0

q m m m B E W

I I- " _-- .. ., ,

BEll -|

S0

Vg

0



0.5

-0.51
0 20 40 60 80 100

0.2

0

-0.2
0 20 40 60 80 100

t(s)

Figure 3.12: Deflection angle and velocity estimate (dashed) for the LQE estimator.

The deflection angle estimate tracks closely, even with deflection angles reaching 15

degrees. There is a large spike in the velocity estimate during the initial convergence

period due to the relatively high filter gains and large initial error. With a short

convergence period on the order of 0.5 seconds, the spike can be ignored as long as we

require that no control should be active during the convergence period. An alternate

restriction would be to initialize the filter with small initial deflections.

It is not necessary to compare the uncertain model case for deflection angle es-

timator because it does not use an internal model, but it is possible to examine the

response for the pulsed thruster maneuver. As Figure 3.13 shows, the estimator is

not sensitive to input uncertainty because it does not integrate thrust commands.

3.6 Conclusions

This chapter examined two estimator techniques for the flexible beam system: a

full state Kalman filter, and a simplified deflection angle estimator. As a model-

based estimator, the Kalman filter displays the best performance for cases where the

dynamic model is well known. It has the important advantage of providing a more

detailed estimate of the vibrational dynamics, including multiple vibrational modes.

There are two major drawback to using the Kalman filter: first, as shown in simulation
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Figure 3.13: Deflection angle and velocity estimate (dashed) when the maneuver is
performed with pulsed thrusters.

testing, uncertainties in the model degrade the accuracy of the estimate, and second,

even if the model is well known, we must carry the dynamic model for every potential

system to be manipulated. For an assembly task with small but significant variations

between elements this approach may become infeasible. One solution to this problem

is to perform online system identification in parallel with estimation, though this

remains as future work.

As with the simplified dynamic model, the deflection angle estimator is desirable

for on-orbit assembly because it has a simple parameterization. For observing planar

oscillation, only the length of the beam is necessary for obtaining a very accurate

estimate of the deflection angle and its derivative, and this information is sufficient

to provide full state feedback for the simplified dynamic model. The compact repre-

sentation comes at the cost of ignoring some of the vibrational dynamics at the level

of the estimator. Note that the deflection angle is another form of the beam deflec-

tion measurement provided to the Kalman filter, and as shown in in the estimator

derivation, contains information about the full state. Depending on the form of the

controller, this information may still be used to eliminate vibration.

Although we have examined the performance of both estimators in the context of

a simple closed-loop maneuver, they will be best evaluated in concert with the control



techniques developed in the following chapter.
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Chapter 4

Flexible Beam Control for Assembly

4.1 Overview

With a set of dynamic models from Chapter 2, and estimators from Chapter 3, we are

ready to tackle the task of maneuvering a flexible structure. This chapter examines

three types of controllers that take different approaches to trajectory tracking and

stabilization. The first case is a simple PD controller, which will serve as a baseline

for comparison with the other two controllers. The second controller is a Partial

Feedback Linearization (PFL) controller, commonly used for underactuated robots,

and the final controller is a nonlinear adaptive controller which will be implemented

to compensate for model uncertainty.

4.2 PD Control

PD control is among the simplest and most widely used techniques used for controlling

dynamical systems. For planar rigid robot manipulators, PD setpoint control has been

shown to provide global asymptotic stability [26], and this result has been extended

to multi-link flexible manipulators 132]. In this section, stability is shown for a PD

setpoint controller operating only on the actuated states of the segmented beam

system. This is a type of collocated controller because the controlled outputs are

directly measured.



4.2.1 Damped Case

Starting with the partitioned dynamics from (2.20), we initially assume that the

system also includes a viscous damping term, Dq,

[Mxx 1 + C C 1( + D q+ qo= .

M 6x M66 6 Cx Ca6 6 0 Kf 0
(4.1)

This system is open loop stable, but we wish to show that the system is stable under

PD control. The input torque Tx is determined by a setpoint PD controller for the

desired state q,,d

Ta= -Kpx - KdX (4.2)

where the error between the current position and the desired setpoint is R = x - Xd.

K, and Kd are selected as positive definite proportional and derivative gain matrices.

To show the stability of this control law, the following energy-like Lyapunov function

is proposed

V = 2 [qrTM + 6TKf 6 + iTKp]. (4.3)

The first two terms are the kinetic and potential energy of the system respectively,

and the last term is the virtual potential energy stored in the proportional term of

the control law. The time-derivative of V is

i = (TM 2 q- MqI + I TKf6± Kpx

T [ (C + D)q- O) +
0 Kf6

1TqIM + TKf6 + 'K,p. (4.4)

Applying the skew symmetry property from (2.5), T (1M - 2C) q = 0, and substi-

tuting the control law from equation (4.2),

V (=--TKf6 - XTKp - xTKdx - qTDl) + 6TKf3 + ITKp . (4.5)



Most of the remaining terms cancel, leaving

V = -XTK - TD < 0 (4.6)

To show that this results in global stability, we must examine the dynamics in the

case of iV = 0. Since Kda and D are assumed to be positive definite, V = 0 implies

S= 0. (4.7)

Substituting this into the robot dynamics

q = M-1 - K , ( x - x d ) -Kf (4.8)

Since M, K,, and Kf are all positive definite, the only steady state for which i = 0

is x = Xd and 6 = 0.

4.2.2 Undamped Case

The above result depends on the presence of damping in at least the flexible dynamics

to show asymptotic convergence. For operations in a laboratory this is a reasonable

assumption, but structures in space may be very lightly damped. The stability of a

PD control law for an undamped flexible beam in a gravity field was shown in 15] and

the result is extended here for an undamped segmented flexible beam.

If we assume that the kinetic energy of the system is represented by the beam in

its undeformed state (6 = 0), then we can consider the matrix M as a function of x

only, and it has the structure

M [ M(x) M~6(x) (4.9)M = . (4.9)
Ms6(x) M66

An important result of the assumption is that the lower right submatrix M6 is

constant. Keeping the definition of C from (2.4), the M and C maintain their skew-



symmetry property, but now C = 0 whenever x = 0.

Repeating the procedure in the previous section without the damping term results

in

S= -XTKd < 0 (4.10)

Now i = 0 implies only that

x = x = 0. (4.11)

Substituting this condition into the dynamics,

Ms(x)6 = -Kp (x- Xd) (4.12)

M 6 6 -+ Kf = 0. (4.13)

The set of coupled, constant coefficient, linear, homogeneous equations (4.13) suggest

that 6 has a solution that is a function of time, which we can substitute in (4.12):

-Mz(x)M 1'Kf 6(t) = -K (x - Xd). (4.14)

Due to equation (4.11), the right side of this equation is constant, but the left hand

side is also constant. In [5], De Luca shows that equation (4.14) is a contradiction

because it equates the sum of independent time-varying functions with a constant.

The equation can only be satisfied if 6(t) = 0 and x = Xd. With this result, we

conclude that the setpoint error and the joint deflections are globally asymptotically

stable without damping.

4.2.3 Discussion

The previous two sections suggest that collocated PD control is globally asymptot-

ically stable for any choice of gains Kd and KP. In practice, however, additional

unmodeled effects such as time delays and discretization can easily introduce insta-

bilities. Furthermore, the stability results only imply asymptotic stability in the limit



of t - oo, and do not provide direct results about the convergence rate. As noted

by Talebi et al. in 128], collocated PD control only weakly affects the flexible dy-

namics, resulting in long convergence times. It is also important to note that the

results above apply only to fixed setpoints. Tracking control imposes more serious

limitations on the simultaneous convergence of the flexible and rigid dynamics, which

will be examined further in the next section. With this in mind, we use PD control

as it is often used in the literature, as a benchmark or as a stabilizing component of

a more complicated control law.

4.3 Partial Feedback Linearization Control

Feedback linearizing control laws make use of a nonlinear control feedback term to

cause the dynamics of a nonlinear system to follow the behavior of a simple linear

system. Underactuated systems, such as the Acrobot [27], inverted pendula, or flexible

manipulators, are not feedback linearizable, but it is possible to perform a similar

approach such that a subset of the dynamics are linearized by feedback. This approach

is referred to as Partial Feedback Linearization (PFL) control and has been applied

successfully to a number of classic underactuated problems 127]. This section will

develop a PFL controller for the flexible beam maneuvering problem.

4.3.1 Partial Feedback Linearization for Beam Maneuvering

Starting with the partitioned nonlinear dynamics, we will treat the actuated and

unactuated parts as separate equations

Mxxi + MeX6 + Cx(i) = -X (4.15)

M6xi + M66 + C6(q) + Kf3 = 0. (4.16)



The subset of the state to be feedback linearized, also referred to as the task space,

is defined by an output function of the state

y = f(q) (4.17)

where y E RJm with m < dim(T). The objective of the PFL controller is to design IT

as a function of a new input v in such a way that the dynamics of y are simply

:y = v. (4.18)

To find the appropriate control law, we start by differentiating the output equation

twice,

y = J4

y; = j4+J+J5. (4.19)

The Jacobian of the task space, J = o, is partitioned in the same way as the

dynamics, into actuated and unactuated components:

J=[J J,] (4.20)=[ .

We also define the generalized Jacobian

J = Jx - J6M-1 M 6 .

Solving the unactuated dynamics in Equation (4.16) for 6,

6 = -M6- (M 6 K + C6 (4) + Kf 6)

(4.21)

(4.22)



and substituting into Equation 4.19

; = JQi + JxR - J6 M-1 (M6,K + C(4) + Kf6)

= + JR - J6M- 1 (C(q) + Kf6) . (4.23)

Suppose a controller is selected such that the actuated dynamics to satisfy

x 3+ [v - J 4+ JM~M1 (C (4) + Kf6)] (4.24)

where J+ is the right pseudo-inverse

+ = 3T (JJT) - 1 (4.25)

subject to the rank condition

rank (J) = p. (4.26)

Substituting Equation (4.24) into Equation (4.23) results in

y = V.

The new control input v can be calculated using a simple linear control law, such as

a PD controller with trajectory acceleration feed-forward,

V = yd - Kdy - Kpy (4.27)

where (o) = (*) - (), is the error between an output and the desired trajectory.

Subtracting the right side results in the error dynamics

y + Kd~ + Kpy = 0. (4.28)

If the gain matrices KP and Kd, are selected to make equation (4.28) stable, the

trajectory error will be stable. The only remaining step is to extract T,, from v,

which is achieved by substituting Equation (4.24) into Equations (4.22) and (4.15)



and equating the actuator command to Equation (4.15).

The preceding derivation shows that a control solution can be selected to achieve

perfect tracking of the selected output equation as long as the the rank condition in

(4.26) is satisfied. Unfortunately, perfect tracking of the output equation does not

guarantee that the entire system is closed-loop stable and stability is closely tied to

the choice of the task space.

4.3.2 Choice of Task

Shkolnik and Tedrake note that the task space can be thought of as a fully actuated

template dynamical system that is embedded in the higher dimensional underactuated

dynamics [23]. For the swing-up problem of a multi-link inverted pendulum with a

single actuator, the template system might consist of a rigid rod that rotates from

the hanging to the upright position. In this case, the single actuator controls one

degree of freedom, the angular position of the rod. With more actuators available,

the template model may contain more degrees of freedom, such as angular position

and length.

For an assembly operation, the objective is to move a flexible structure with

minimal excitation. The task space can consist of, at most, 3 dimensions, and this

restriction poses the subtle challenge of finding a representation that simultaneously

captures the 3D rigid body state and the desire to prevent oscillations. One candidate

template model is simply a rigid beam for which reference trajectories are selected

as combination of rigid body rotations and translations. This representation is a

collocated task space because the output variables are the same as the actuated states,

and therefore

y = x. (4.29)

To control vibrations, we might instead select the unactuated, or non-collocated, states

as the outputs

y = 6. (4.30)

Both outputs satisfy the conditions from the previous section for achieving perfect



tracking, but neither accomplish the goals for maneuvering the flexible beam. To see

why, consider the behavior of the system after the output converges to the desired tra-

jectory. For the collocated case, the beam position and rotation will be constrained to

their targets, but the beam may still oscillate freely. For the non-collocated case, the

beam oscillations can be eliminated, but the global position is free to drift. Clearly,

the task space must include elements of both output equations, but it is not immedi-

ately clear how to combine them.

The preceding examples are related to the concept of zero dynamics, the remaining

dynamic behavior when the output variables are held at zero. For a nonlinear sys-

tem, asymptotically stable zero dynamics imply that the system is minimum phase,

otherwise the system is non-minimum phase. Most studies of feedback linearization

applied to flexible manipulators focus on the selection of a set of outputs that achieve

minimum phase behavior and therefore result in global stability. The key for deter-

mining the task space for the robot-beam system will be choosing a set of outputs

that is minimum phase.

The first two outputs must be used to constrain the x and y positions of the

robot base in the workspace, and the remaining output will be used for orientation

and beam control. Arisoy et al. consider switching back and forth between Equations

(4.29) and (4.30) to damp the beam after the trajectory has reached its target [1], but

the objective of this study is to develop a controller that is also capable of attenuating

oscillations while following a trajectory. The approach used here is similar to the one

presented by Talebi et al. in 128], where the output is defined as a weighted combina-

tion of the base rotation angle, Ob, and the beam deflection angle, b , calculated from

Equation (2.31) or taken directly from the simplified beam model

Ybeam -= b + a6f. (4.31)

The weighting factor, -1 < a < 1, can be viewed as a redefinition of the tip position

to another location on the beam. For small values of a, the tip is relocated near the

base, and for negative values of a, the tip is reflected about the length of the beam. As



shown in [28], there exists a critical value, a*, such that all outputs for -1 < a < a*

are minimum phase, provided that the system has at least some damping of the

flexible dynamics.

As an example of how this modification affects system dynamics, consider the

transfer function from the base torque input, u = Tb to the total angular beam

deflection y = Ob + 6f in the linearized dynamics. Using a representative linearization

from the SWARM hardware with beam damping (see Equation (2.27) and Table

2.4.1), the transfer function is

Y(s) -0.3989s6 - 0.742s 5 - 29.72s 4 - 3.053s3 - 61.05s2 + 0.325s + 4.334

U(s) s8 + 2.578s 7 + 77.14s6 + 61.07s 5 + 209.7s 4 + 119.4s 3 + 48.72s 2 + 4.334s
(4.32)

for which the pole-zero map is shown in Figure 4.1a. This system is non-minimum

phase, as evidenced by the zero in the right half-plane. If instead, we consider the

transfer function from u = Tb to the augmented output y = Ob + a 6f, then the transfer

function is

Y(s) 0.1427s6 + 0.2641s 5 + 10.58s 4 + 1.368s3 + 27.36s2 + 0.325s + 4.334

U(s) s8 + 2.578s7 + 77.14s6 + 61.07s5 + 209.7s 4 + 119.4s 3 + 48.72s 2 + 4.334s
(4.33)

for a = 0.5. The pole-zero map shown in Figure 4.1b shows that the transfer function

for the augmented output is minimum phase because there are no zeros in the right

half-plane. The process of selecting an appropriate a and extending the minimum

phase result to the full nonlinear dynamics can be found in [28]. We assume for the

remainder of the discussion that an appropriate value of a is selected. Supplying a

base orientation trajectory for Ybeam results in asymptotic tracking by the combined

output, and after the target is reached, the beam dynamics should decay due to the

stable zero-dynamics.
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4.3.3 Discussion

To summarize the PFL control law,

Xb

Yb

Ob + oa6f

(4.34)

defines the task space as the Cartesian base positions and a weighted deflection angle

measurement, and

v = yd - Kdk- KPk

defines the input to the feedback linearized subsystem.

:=+ [v - Jq + J6MJ + (C6(q)+ K )]

and

S= -My, (Mx2 + C(l(4) + K 6)

are used to calculate the actuator command using

xO:

...... 0 ....

xo

xo

x

xO

(4.35)

(4.36)

(4.37)



rX = M, + MX + Cz(q). (4.38)

PFL control represents a significant improvement over the PD control law devel-

oped in Section 4.2 because it explicitly incorporates stable trajectory tracking and

provides improved damping of the flexible beam. The added performance can be

attributed to utilizing a priori knowledge of the system dynamics from the embedded

model in the control law. Unfortunately, the model must be known, and as shown in

the simulation results in Section (4.5), uncertainties in the dynamic model can have

a significant effect on control performance. In the context of an assembly operation,

the PFL controller requires a thoroughly identified dynamic model for every unique

structural element. Furthermore, the controller assumes the availability of the full

state (q, 4l), which requires a state estimator with its own dynamic model for each el-

ement. It may be possible to find common parameterizations between the the control

and estimation models as well as approximations like the simplified beam model to

reduce complexity, but the problem of obtaining an accurate model remains. There-

fore, we will consider PFL as a stepping stone in the design of a more robust and

practical control system. In particular, the design of the PFL controller offers the

following insights:

Task Space Tradeoff An underactuated controller can only exactly track a sub-

space of the full state of the robot, limited in size by the number of actuators.

This lesson is helpful for designing other controllers that may not explicitly

state this restriction.

Output Selection The outputs for tracking control must be carefully selected to

ensure minimum phase behavior. To achieve a minimum phase system, we lose

perfect tracking ability of the beam tip position but gain the ability to damp

out vibrations quickly. Setpoint control of the tip position is still possible by

rotating the base and damping out residual oscillations.



4.4 Adaptive Control

In this section an adaptive controller is constructed for the control of a flexible beam.

Traditional adaptive control for robot manipulators requires a fully actuated dynamic

model, which is reviewed in the first section. The second section covers a modification

of the fully actuated model called normal form augmentation [9], which allows for

underactuated control under restrictions similar to the PFL controller.

4.4.1 Review of Adaptive Control for Fully Actuated Systems

The following is a summary of the adaptive trajectory control for robotic manipulators

presented in [26] and applies to many systems with the dynamics of the form shown

in Equation (2.3) and below:

M(q)j + C(q, q)c + G(q) = 7. (4.39)

Here, q E R, and unlike in previous sections, we assume the control input, T, has no

zero elements. The control law makes use of a sliding variable, s E R, which is the

weighted sum of velocity and position errors

s = q + A4 (4.40)

with qi = q - qd and Ais a positive definite weighting matrix. The objective of the

controller is to constrain the dynamics to the surface s =0, after which the tracking

error converges with the behavior of a first order linear system. Rearranging Equation

(4.40), s can also be interpreted as a velocity error

s = q- r (4.41)

4r = a- A4 (4.42)

where 4r represents a special reference velocity weighted by position tracking error.

The dynamics for any mechanical system depend linearly on a set of constant



physical parameters, a E ]RP, that represent combinations of masses, inertias and link

lengths. Using this property, the left hand side of Equation (4.39) can be rewritten

as

Ya = M(q)ii + C(q, ql) + G(q). (4.43)

The matrix Y E Rnxp is known as a dynamic regressor and contains the nonlinear

terms of the dynamics. Details on calculating the dynamic regressor can be found in

[17].

To derive the adaptive control law, we start with the following Lyapunov function

V =1 [sTMs + aTr-l&]
2=-

(4.44)

with a = a - a. Differentiating with respect to time

V = MS- 1sTMs +
2

= s (q 1 Ts= s q - r)M-- s.
2

(4.45)

Substituting the dynamics from (4.39)

1 T
VST(TM~~C ~ ST) S M±Trl1.-M4, - Ce - G) - 2 s + a r- a. (4.46)

Using q = s + q, and the skew-symmetry property

(4.47)

Now, suppose we introduce a control law of the form

7 = Ya - KDS (4.48)

where A is the estimate of the parameter vector, and the dynamic regressor is redefined

slightly such that

Ya = Mqir, + Cqr + . (4.49)



Substituting this control into Equation (4.47) gives an expression for 1V as

V = sTyi - STKDS + ?Tr-la. (4.50)

Defining an adaptation law for the parameters as

a = -FYTs (4.51)

with a positive definite adaptation gain matrix,r E Rpxp, the last term of (4.50)

cancels with the first term, leaving

V = -sTKDs _ 0. (4.52)

The remainder of the proof, detailed in [26] and shown below for the flexible controller,

invokes Barbalat's lemma to show that s -+ 0 as t -- oo, which implies, through the

structure of the sliding variable, that the tracking error l and 4 go to 0 as well.

An important aspect of the stability argument is the availability of a fully actuated

control input, r. Without full actuation, the control input can only implement part

of the feedforward acceleration provided by Ya, and therefore the simplification from

Equation (4.47) to (4.50) is no longer possible. Therefore, in its current form, the

control law is not suited for underactuated systems. The next section presents an

alternative form that helps to address this problem.

4.4.2 Adaptive Control for Flexible Beam Maneuvering

Recalling the lessons learned from the design of the PFL controller, a fully actuated

adaptive controller does not work for an underactuated system because it attempts

to achieve perfect tracking for all states simultaneously. From this perspective, an

adaptive method for the robot-beam system should incorporate the idea of a lower

dimensional task space. One method for incorporating a task space representation

called normal form augmentation is proposed by Gu et al. for adaptive control of

free-floating robotic manipulators in Cartesian space [9]. The idea is extended here



to accommodate the task space defined in Equation (4.34) for the PFL controller. To

simplify the derivation and develop a controller with a compact representation, the

simplified beam model is used for the dynamics.

Starting with a desired output equation y = h(q) E Rm , where m is the dimension

of the control input, we augment the output with the unactuated coordinates

Ya Y (4.53)

Now Ya E R" has the same dimension as the coordinate vector q. Differentiating

Equation (4.53), we obtain an expressions for the velocity and acceleration of the

augmented output in terms of the robot coordinates

Ya J= [ J6 ()l Jsq (4.54)

ya = Jsq 4+jsqq (4.55)

A new Jacobian, Jsq, transforms robot coordinate velocities to augmented output

velocities. For the remainder of the derivation, it is assumed that the output function

is the same as Equation (4.34), and the simplified beam model is used to represent

the dynamics. The augmented output vector and Jacobian for this combination is

[ 1T
Ya = x y (Ob + aSf) 6f (4.56)

1000

0100
Jsq = (4.57)

001a

0001

and Jsq = 0. The Jacobian is full rank, so the relationship between robot coordinates

and augmented output can be inverted to give

q= J~'ya and = ja. (4.58)



Defining M = J-TMJ-1, and C = J-TCJ-1, the robot dynamics are rewritten in

the augmented output coordinates as1

Mya + Cra + Kya = J-,Tr. (4.59)

To develop an adaptive controller from these dynamics, we start by defining the

trajectory. The desired trajectory for the augmented output is modified slightly to

produce

(Ya)d - (z)
Instead of explicitly defining a trajectory for 6f as we would have in the fully actuated

case, the desired trajectory in this case is the current measured value. In this way we

let the dynamics "compute" the appropriate value of bf. from the current trajectory.

The sliding variable, s, is defined, as before, as a filtered tracking error

s = ya+Aya= y - Ay (4.60)

The velocity error representation, s = ra - (Ya), results in

( a Yd - Ay . Yd - Ay
()r = ( and (a) = ( (4.61)

The controller derivation can now proceed as in Equations (4.44) through (4.52).

Starting with the Lyapunov candidate

V = [STMS + ATI'1A]  (4.62)

1K is not modified because it only multiplies 6f, which remains in the same position in the
augmented output vector



and differentiating with respect to time, we have

V = s T j-T - (ya)r - C(a)r - Ky,) + iTr-la.

The control law from 19] is defined as

j-(

with the dynamic regressor

Y (q, iY, Ya, (ra)r, (ka)r) a = M(ka)r + C(ka)r + KYa

The term ( is added for notational convenience to allow the bottom part of

=-1 sq

L ~

KD (y - Ay)

to evaluate to 0 and does not enter into the control law. Substituting into Equation

(4.63),

V = sTya - T ( (4.65)

Applying the same adaptation law as Equation (4.51), the result is

V = -S T KD (y - AS)

)= - (y -A:) KD (y - A:) < 0

To show that the output tracking tends to zero, we must invoke Barbalat's lemma.

Following the approach in [26], we differentiate again to obtain

V = -2sTKD~

(4.63)

(4.64)

(4.66)

= Y a ( K D (Y - Ay )

KD (T- A) +]

(4.67)



Since V is positive everywhere except s = 0 and d = 0, if V is shown to be bounded,

then

Vbounded =1 -- 0 = s -+ 0

With V < 0 and V > 0, V is bounded, which implies that both s and d are bounded

from the definition of V in Equation (4.62), so V is bounded as well. Therefore, we

can conclude that the output tracking error converges to 0. For global stability of

the dynamics, we must add the additional condition that the zero dynamics related

to the output equation are stable, just as was required for the PFL controller.

As a consequence of adding the measured value of J6 to the desired trajectory,

the reference acceleration, (Ya),, now requires a value for 6 f . There are several

approaches to obtaining this measurement:

Differentiation By augmenting the beam angle estimator from Section 3.4 with an-

other layer of differentiation, the deflection angle acceleration can be computed

from the beam measurements of 6f.

Calculation Using an assumed model of the dynamics, the partial feedback lin-

earization from Equation (4.37) can be used to compute the deflection angle

acceleration from the measured values of 6~, 3I, and the output reference accel-

eration, jr,

Elimination Considering the acceleration contribution to be small, we may neglect

it completely.

The first technique is subject to high noise levels due to the repeated differentiation.

In simulation, eliminating the acceleration does not appear to adversely affect the

tracking performance, and this approach is used for implementations of the control

law in this study. A proof of stability with the acceleration removed remains as future

work.

The final component of the adaptive control law is an update method for tuning

the weighting parameter a online. In 128], Talebi et al. use a gradient learning method



based on the beam deflection. Defining the output error

e = Ybeam - (Ybeam), (4.68)

and a cost function

E= e2 (4.69)

we can implement a learning rule of the form

aE7 = -a (4.70)

where q is a type of gain called the learning rate. Taking the partial derivative results

in

a = - e61 . (4.71)

This update modifies a whenever there is output tracking error and there is a nonzero

beam deflection. In simulation results, adding this adaptation improved the damping

performance of the adaptive controller.

4.4.3 Adaptive Control with the Simplified Beam Model

An important benefit of using the simplified model as a template comes from the way

rigid bodies are represented in the adaptive control law. In 2D, a single rigid body has

four physical parameters: mass, inertia, and the two center of mass coordinates rela-

tive to the origin of the body. The simplified beam model consists of two rigid bodies

connected by a spring with an unknown spring constant, for a total of 9 parameters,

each of which are adapted in the control law to achieve a tracking goal. For the first

body (the base of the robot), we must know a priori the point where the second body

(the beam) connects to determine the effect of forces caused by the beam's motion.

This is not a significant restriction because we assume that the physical layout of the

assembly vehicle is known beforehand and that the beam attaches to a pre-defined

location. More importantly, we do not need any additional information about the



second body because the parameters responsible for its dynamic interaction with the

first body are all part of the adaptive control law. In industrial robotics the same

property is used to adapt for unknown payloads carried by manipulators, which are

essentially extensions of the last link of the robot arm.

Provided the simplified dynamic model continues to be a good approximation

to the selected structural element and a trajectory is chosen that satisfies actuator

limitations, the adaptive control system should be capable of stably manipulating

beams of a variety of lengths without modification. In the same way, the controller is

also capable of maneuvering an arbitrary rigid structure attached to the robot base.

4.5 Simulation Results

4.5.1 Baseline Trajectories

As described in Section 1.2, there are three phases in the docking process: approach,

berthing, and capture. The first two phases are most significant for beam maneu-

vering because they require trajectory tracking and stabilization. Trajectories for

these maneuvers are typically generated in a high level path planner, and clever path

planning can result in significant vibration reduction. The precise shape of optimal

maneuvers is beyond the scope of this study, but all maneuvers are fundamentally

constructed from a combination of translations and rotations of the flexible element.

The performance of each controller is evaluated in terms of its ability to track these

two basic maneuvers.

To simulate a large angle reorientation of the beam, the rotation maneuver rotates

the flexible element by 60 degrees (1.05 rad). In translation, we may choose any

direction, but the best test is movement (0.75 m) in a direction perpendicular to

the beam axis where beam oscillations are most strongly excited by a linear motion.

The baseline trajectories are diagrammed in 4.2, and Figure 4.3 displays them as

a function of time. Both trajectories follow a bang-off-bang profile, where an initial

acceleration period initiates the movement, followed by a coasting section, and ending
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Figure 4.2: The two baseline trajectories: (a) A rotation maneuver in which the
satellite rotates by 60 deg. (b) A 0.5 m translation perpendicular to the beam to
excite beam dynamics

with a deceleration at the desired target. Bang-off-bang profiles are an optimal path

for a rigid body with a mixed time and fuel constraint, and they are used here to

show the performance of the controllers both during transit and at the end of the

maneuver.

The simulation models for both profiles are initialized with a small initial tracking

error (5 degrees (0.1 rad) for the rotation maneuver and 0.1 meters for the translation

maneuver) to show convergence to the desired trajectory. Rotation plots display the

angle of the robot base, Ob and not the augmented task space, ybeam = 9 b O+ Of.

This allows us to see if the tracking controllers complete their trajectories at the

desired rotation angle. In the following figures, the trajectory tracking performance

is displayed along with the internal beam deflections as an indication of the damping

performance. 61 is shown with dashes, 62 is shown with a solid line, and 63 is a dash-

dot line. Finally, in this section, only rotation plots will be displayed to highlight

important aspects of the controller performance. The remaining translation plots are

located in Appendix A.
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Figure 4.3: Baseline Trajectories vs. Time

PD PFL Adaptive
K, diag(0.58, 0.58, 0.32) KP diag(0.64, 0.64, 0.04) KD diag(2, 2, 2)
Kd diag(7.7, 7.7, 4.28) Kd diag(2.4, 2.4, 0.6) A diag(0.35, 0.350.1)

a 0.5 r 1000 - I9x9

Table 4.5.1: Control Parameters for Nominal Test

4.5.2 Nominal Model Tracking Performance

To compare the fundamental performance of the controllers, this set of simulations

uses a known dynamic model with perfect state information. The PFL controller is

constructed from the true nonlinear model, and the adaptive controller is initialized

using the best guess for the simplified model approximations for inertia and spring

constants from Chapter 2. A set of PD gains have been selected to achieve critical

damping and a closed loop bandwidth of approximately 0.15 rad/s. To model the

thrusters with limited disruptions to the ideal dynamics, applied forces and torques

have been saturated at 0.025 N and 0.025 N - m and sampled at 0.4 Hz. A pulsed

thruster model is used in the remaining sections. The key parameters for each con-

troller are displayed in Table 4.5.1.

From the rotation trajectories displayed in Figure 4.4, we can see that the two

tracking controllers provide good path following performance, but the adaptive con-

troller has significantly better damping at the end of the trajectory. Though damping



was added to the simulation, the PFL controller is still quite oscillatory. To see why,

we can examine the trajectory tracking performance in the task space, as shown in

Figure 4.5. In the task space, the controller has nearly perfect tracking, which results

in the system relying on the zero dynamics to decay slowly away after the target is

reached. The adaptive controller performs much better overall even though it has a

similar tracking goal. One explanation is the longer time to convergence in the task

space. During this time, the controller adjusts its parameters to better attenuate

vibrations or focuses more heavily on reducing the base rotation rate.

From these profiles, we already see that the adaptive control method is a promis-

ing control solution, possessing both tracking and vibration damping characteristics,

but the performance must be viewed in the context of the idealized model. In par-

ticular, with no noise and a simple thruster model, we can use relatively high gains

to achieve better tracking and damping performance. The next sections examines a

more realistic case.

4.5.3 Performance with Estimated States

The simulation model presented in this section incorporates several details to improve

accuracy. Thrusters are modeled with the pulse modulation described in Chapter 2,

and the estimators from Chapter 3 are included to supply state information to the

controllers. The PFL controller uses the full state Kalman filter from Section 3.3,

and the adaptive controller uses the simplified deflection angle estimator from Section

3.4. For all controllers, including the PD controller, the global state measurements,

(Zb, Yb, Ob), and their derivatives are corrupted with white noise to simulated the

global estimation system.

To achieve stability, the PFL controller uses a different gain set, listed in Table

4.5.2. The adaptive and PD controllers did not require an adjustment. These gains

are frozen for the next simulation where the controllers are compared against an

uncertain model.

Both the Adaptive controller and the PD controller achieve similar performance to

the previous section. We expect this behavior because the PD controller should not
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PD PFL Adaptive
K, diag(0.58, 0.58, 0.32) Kp diag(0.04, 0.04, 0.04) KD diag(2, 2, 2)
Kd diag(7.7, 7.7, 4.28) Kd diag(0.6, 0.6, 0.6) A diag(0.35, 0.350.1)

a 0.3 F 1000 -19O 9

Table 4.5.2: Control Parameters for Model Uncertainty Test

be significantly affected by the global estimation noise or the thruster approximation,

and the adaptive controller can adjust to the mismatch between expected forces and

actuated thrust.

The PFL controller shows much more oscillatory behavior, to which any of the

following potential sources could contribute. Firstly, connecting the estimator to the

PFL control signal tended to result in instabilities of the state estimate. The issue was

avoided by disconnecting the control signal and using observations only to estimate

the state. Since the PFL controller relies on a full state estimate, the approximate

knowledge of the state may affect performance. Second, the PFL model has no way

of compensating for the model uncertainties introduced by the thruster pulses. For

stability, we end up relying on robustness characteristics of the controller that are

not guaranteed to exist. Finally, the gain tuning performed for the PFL controller

was aimed at producing a stable result, not an optimal solution. This approach

is in line with the assumption that the objects being manipulated during assembly

are uncertain and rigorous gain tuning prior to operations would not be available.

We can conclude, as we have suspected before, that partial feedback linearization

without additional augmentations is primarily useful when the model is well known

and accurately estimated.

4.5.4 Performance with an Uncertain Model

Using the gains and and trajectories shown in the previous sections, the controllers are

presented with a model containing large uncertainty in the total length of the beam.

Each of the three outboard links of the beam was extend by 1.8 times its length with

the remaining properties of the system held constant. Figure 4.7 shows the tracking

performance, where we see that the PD controller is no longer properly tuned well
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Figure 4.6: This figure shows tracking performance for a rotation profile when states
are provided by a state estimator. PD uses global information, PFL uses the full
state Kalman filter, and the Adaptive controller uses the beam deflection estimator.
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for the dynamics. Though the properly tuned PD controller has compared favorably

with the other controllers, we see that it is also susceptible to model changes.

The PFL controller appears to fare somewhat better in this test, likely because

of the slower dynamics. An interesting point for future research is that the embed-

ded model for the full state estimator in this scenario remained unchanged. This

appears to have actually improved the performance of the PFL controller slightly,

which warrants a closer look. Nonetheless, the PFL controller still suffers from signif-

icant overshoot compared to the adaptive controller, which manages to settle to the

target position within about 50 seconds. The PFL profile also has a small, though

sustained, oscillation in the beam angles present at the end of maneuver. As with

the previous test, this test shows unreliable performance of the PFL controller under

model uncertainty.

4.6 Hardware Results

Limited hardware testing was performed with a simpler version of the Adaptive con-

trol law to verify its damping performance in comparison to a PD controller. The

controller is of the form /0
T. = Y.a - KDS - 0 K6bf (4.72)

1

where s, is the sliding variable for the actuated states, and Y, is the regressor for

the actuated dynamics. This form is used for adaptive control of robots with flexible

joints such as in [8]. Figure 4.8 compares an open loop damping decay profile to active

control by a PD controller and the adaptive controller. Both controllers show active

control of the beam vibrations, and the adaptive controller shows a faster response.

This test gives promise for future implementation of the tracking controller presented

above.
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Figure 4.8: Adaptive control and PD control in hardware testing show active dampingA -

suffers in performance when used for plants that vary significantly from the initial

task space for an underactuated tracking controller. In terms of performance, PFL

achieves excellent tracking for a known model, but it has marginal vibration attenu-

performance and not usually implemented for stabilization. Shkolnik implements aswitching logic that engages a linear controller activater the system has been navigated

into the region of attraction 1231. This approach was the original path for imple-menting a PFL controller on the SWARM robot, but the adaptive control technique50t (S)
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proved to provide better performance and more versatility.

Adaptive control shows the best performance in simulation testing and initial

hardware testing with good trajectory tracking, damping performance on par with or

better than the PD controller, and most importantly, the ability to compensate for

model uncertainty.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis presented the components of an estimation and control system for the

assembly of flexible elements of a large space structure. In each chapter several

approaches were examined to create a method capable of manipulating a variety of

flexible payloads.

To develop an understanding of the behavior of flexible dynamic systems and pro-

vide a template for the control system design, Chapter 2 presented a dynamic model

of a segmented beam using an Euler-Lagrange analysis. The nonlinear equations of

motion were arranged in a form that shares similarities with homogeneous flexible

beams and robot manipulators. From the full nonlinear dynamics, a linearized model

and a single joint flexible beam model were introduced as simplifications. The sim-

plified model proved to show good performance as a template for estimation and

control.

Chapter 3 introduced two estimation systems, based on the simplified dynamic

models, for observing the dynamics of a flexible beam using vision measurements.

A linear Kalman filter approach was used to extract estimates of the internal beam

joint angles, while a steady-state filter was used to estimate the angular position

and angular velocity of the total beam deflection. With the Kalman filter it was

determined that the full state of a vibrating beam can be extracted from observations
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of the tip movement and gyro measurements, but adding model uncertainty can

disrupt the state estimates. Without making model updates to the estimator, it is

difficult to maintain consistent performance. The best performance was obtained with

the beam deflection filter, which measures the beam deflection directly and provides

of filtered differentiation of the beam deflection angle.

Chapter 4 examined three approaches for using measurement and model informa-

tion to compute a control signal. PD control, Partial Feedback Linearization, and

Adaptive control were compared for their performance in trajectory tracking and vi-

bration suppression. The partial feedback linearization approach for control shares

some of the same model uncertainty issues as the beam estimator. Though the PFL

controller shows excellent tracking of a selected task space trajectory with a known

model and good measurements, it requires full state information and a reasonably

accurate model to control the beam. Applying the control law with estimated states

from the linear Kalman filter and pulsed thrusters resulted in unpredictable perfor-

mance. Therefore, unless there is strong confidence in the dynamic model, the PFL

control law should not be used. Although the PFL approach is not well suited for

implementation, examining the choice of task space provides an interesting insight

into vibration control. Choosing a combination of base rotation angle and weighted

deflection angle results in a measurement with stable zero dynamics.

In contrast to PFL, the adaptive control law paired with the deflection angle

estimator shows consistent performance in scenarios incorporating model uncertainty

and realistic measurements. These characteristics match well with the requirements

for on-orbit assembly, where the ability to adjust to system properties allows for

minimal reconfiguration of the control system. Adaptive controllers show promise in

initial hardware testing and will be used for future investigations.
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5.2 Future Work

5.2.1 Extending to 3D

As a first attempt for demonstrating robotic assembly in a hardware demonstration,

the estimation and control laws presented in this study were developed for a 2D planar

robot. Extensions to three dimensions and 6DOF maneuvers presents many additional

challenges, though they may still be addressed using the framework presented here.

The vision-based measurements of beam deflection covered in Chapter 3 can be ex-

tended to three dimensions by including a calculation of both the X' and Y' distances

in Equations (3.2) and (3.3), shown below:

X' x - Xo

Z' f
Y' y - yo
Z' f

Whereas in Section 3.2 either the depth measurement, Z', or Y' had to be known, in

this case, Z' must be known beforehand. Calculating both X' and Y' provides the

3D location of the beam tip in the camera frame.

The controls and dynamics for 3D motion are more complicated. Rotational

motion becomes nonlinear, and the vibrational dynamics of the beam are coupled to

more degrees of freedom. We may continue to use the useful analogies provided by

industrial robotics to develop the full equations of motion for the 3D system, and

the Euler-Lagrange derivation is still applicable. Several researchers (e.g. [91) have

considered the problem of moving a robot arm in space with an unactuated base, and

this problem is similar except that the arm is unactuated. Slotine and Li proposed

an adaptive algorithm for spacecraft attitude control in 1261, and using the modeling

approach in Chapter 2, it should be possible to extend this model with a flexible

appendage. From there the adaptive control law can be modified with the normal

form augmentation method shown in Chapter 4.
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Figure 5.1: The vibration mode shown above does not cause a large deflection of the
endpoint.

5.2.2 Estimator Improvements

Camera Corrections

It is possible to perform image calibrations that determine a camera's pixel size, focal

length, and lens distortion. Obtaining more accurate values for the pixel size and focal

length, and applying corrections to compensate for lens distortions would improve the

quality of beam measurements.

Multiple Beam LEDs

Although tip deflection measurements provide observability of the beam state, the

measurement accuracy and sensitivity to noise could be significantly improved by

adding one or more LEDs to other locations on the beam. In particular, consider the

diagram in Figure 5.1. The vibration of the middle segments of the beam does not

cause a large deflection of the tip of the beam and therefore is not easily observable

from the tip LED. Placing an LED in the center of the beam would add much more

information about this vibration. For implementation with a true flexible beam,

several LEDs may be necessary.

Multiple LEDs require minimal modification to the control and estimation schemes

presented in Chapter 3. The image processing algorithm must be augmented with

a method for dividing the field of view into several regions, each of which contain a

single dot. After isolating the individual LEDs, the positions can be determined using

the centroiding algorithm. For the Kalman filter measurement equations, a new row

is added to the C matrix for each of the new LEDs reflecting the position as a linear

function of the beam angles.

112



Adaptive Estimation

An important simplifying assumption in the development of the control system pre-

sented in this thesis was the accuracy of the simplified dynamic model in representing

the main dynamic behavior of the flexible beam. If this model did not produce a

sufficient representation of the beam dynamics, it would be necessary to use more

detailed models of the dynamics along with controllers that are either model-free or

capable of incorporating the detailed models. Unfortunately, using a detailed model

destroys some of the versatility gained by using an adaptive controller, particularly

if there are multiple structures to maneuver that require unique but detailed models.

The problem extends to producing an accurate state estimate in the event that a full

state measurement is required.

One solution for addressing this problem is to extend the idea of adaptive control

to an adaptive estimation system. By parameterizing the embedded model in the

estimator, it may be possible to use an external parameter identification scheme to

make updates to the embedded model. This approach would likely require an initial

excitation phase where the control system applies a set of persistently exciting open

loop signals to determine the relevant dynamics. After identification, the model could

be used to synthesize a controller online.

Nonlinear Observers

The estimators explored in this thesis are all based on linear models, but nonlinear

estimators may be required for more aggressive maneuvers and full 6DOF motion.

The Extendend Kalman Filter (EKF) would be a first step to update the linear filters

presented in this study. The EKF uses update equations based on the linearization

of the equations of motion about the current state estimate. Given the symbolic

linearizations of the beam dynamics, it would be possible to construct a filter that

uses both nonlinear dynamics and nonlinear measurements, thereby eliminating the

small angle assumptions used in Section 3.2.
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5.2.3 Controller Improvements

Discrete Time Compensation

The controllers implemented in Chapter 4 used continuous-time control laws sampled

at discrete intervals. Though simulations showed this method was stable and achieved

reasonable results, the stability proofs do not extend to sampled data systems. In

[30], Warshaw proposed a modification of Slotine's adaptive control architecture along

with a stability proof for sampled data systems. The modification adds an additional

term to the control law to compensate for the discretization. Talebi et al. proposed

a neural network architecture in [29that operates directly in discrete time and thus

avoid the need for a continuous time compensation. Both approaches should be

considered for adding stability guarantees to the control law.

Composite Adaptation

Though adaptive control allows the manipulation of a variety of structures, the adap-

tation law presented in this thesis is driven only by trajectory tracking error and

therefore only modifies the adaptive parameters until the tracking error is small.

With this form of update, the parameters only converge to their true values in the

case where the trajectory is "sufficiently rich" to require all parameters to be correct

for perfect tracking. For many applications, this property is considered a feature

because the parameter knowledge only needs to be good enough to follow the desired

trajectory and does not require the energy for a full system identification.

A modified approach, called composite adaptation [26], adds another layer of adap-

tation by using prediction error as a second source of information. Instead of only

relying on the adaptive model to calculate forces and torques from the tracking error,

we may also use the model to predict forces and torques from measured motion:

At = Y(q, q, q)i.

After filtering the control prediction to remove the need for joint acceleration, we can
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compare with the the calculated control signal, using the error in a second update to

drive the adaptation law. In this way we take advantage of both the trajectory track-

ing error and the model prediction error to improve the estimate of the parameters.

Additional implementation details may be found in 126].

Robust Control

The exploration of model uncertainty in this study focused on errors caused by poorly

known parameters. In addition to parameter uncertainty, errors in modeling of the

dynamics may also contribute significantly to tracking error and vibration control.

For example, the simplified beam model approximates a flexible beam with a single

flexible joint, which does not exactly represent the true dynamics. Truncated models

for an Euler-Bernoulli beam make similar errors by representing the infinite number

of vibrational modes with a finite number.

Robust control attempts to address model uncertainty by placing a bound on

the expected error and applying a compensator to account for the error. A popular

approach for nonlinear systems is sliding mode control[26, 25], which has a control

law of the form

S= H q, +C +G

S= + - ksgn(s)

Where - is an estimated control input based on an approximate model of the system,

and k is a gain term such that

ki > 1~14, + C, + G

A control law of this form can be shown to asymptotically drive the tracking error s

to zero. Extensions can be derived for adaptive control, where the adaptive control

law is modified with a deadband to prevent adaptation from noisy or uncertain data.
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Figure 5.2: The error between the measured output of the plant and NN2 is used to
train NN2, and the error from the reference signal is used to train NN1.

Neural Control

Though this study took a model-based approach, function approximation techniques

such as neural network control may be a promising alternative for providing a versatile

control system. Instead of using a model of the system to calculate control inputs, a

neural approach would use a network of nonlinear functions

Ti = Evijf (x, wj)

where vij are weights on the functions f, and wi are weights on the inputs x. The

network weights are often trained either online or offline using a technique called

backpropagation, which adjusts the weights in order to reduce an error function re-

lated to the output of the network. For instance, while controlling the flexible beam

we may choose the squared beam deflection as an output of interest and train the

network to reduce the error while manipulating the beam. This requires knowledge

of the relationship between the output of the network (the control input) and the

beam deflection determined by the plant dynamics. One approach is to use a second

neural network to approximate the plant as shown in Figure 5.2. In [28], Talebi et al.,

present a variety of methods using neural networks for control of a single link flexible

manipulator, and many of the techniques could be applied to the beam manipulation

problem.
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Appendix A

Additional Simulation and Hardware

Testing

A.1 Simulated Translation Profiles

PFL
A 1
E

o 0.5

L-

On
50 100 150

t (s)

Adaptive

150 150

Figure A.1: Tracking Performance for Translation with Nominal Model

117



Adaptive

0.1 0.1 0.1

0.05 0.05 • 0.05

0 0 0

-0.05 ' -0.05 -0.05

-0.1 -0.1 -0.1

0 50 100 150 0 50 100 150 0 50 100 150
t (s)

Figure A.2: Angle Deflections for Translation with Nominal Model
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Figure A.3: Translation Profile with Estimated States
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Figure A.4: Angle Deflections for Translation with Estimated States
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Figure A.6: Angle Deflections for Long Beam Translation

A.2 Hardware Testing

A.2.1 SWARM Assembly Scenarios

The SWARM Phase II test program consisted of several tests designed to demonstrate

key aspects of the assembly process. As shown in Figure A.7, testing started with

a demonstration of controlled maneuvering of the flexible element and culminated in

a full assembly of a simple structure consisting of two satellites joined by a flexible

beam. The tests are summarized below:

Test 1 demonstrated rotation and translation maneuvers for a beam docked to the

propulsion module.
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© SPH1(Prop Module) II FB (Flexible Beam) O SPH2 (Target)

Figure A.7: A graphical summary of the SWARM Phase II test program.

Test 2 demonstrated the ability of the propulsion module to dock to a beam and

engage the docking mechanism.

Test 3 demonstrated noncollocated docking of the beam end to a fixed target with

the beam clamped to the propulsion module.

Test 4 demonstrated a collocated docking of the propulsion module to a fixed target.

Test 5 (not shown) demonstrated another docking with the beam docked to the

propulsion module.

Test 6 demonstrated a complete assembly, starting with 3 separate pieces and fin-

ishing with an assembled structure.

A.2.2 Hardware Results

The plots below are results from hardware testing of the scenarios described above.

Test 1 is not included because the beam maneuvering results are available in the other

tests. The following guide can be used to interpret the results:
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* Vertical * symbols or thick vertical bars indicate a change of maneuver such as

switching from a approach to berthing or from a position hold to a translation

maneuver

* Horizontal * symbols or thick solid bars indicate the location in the X direction

or the Y direction where docking is expected to occur. Past this line is inside

the target.

* Desired trajectories can be distinguished from actual trajectories by the noise

and oscillation in the actual trajectories.

The path planner provided trajectories similar to the basic translation and rotation

trajectories presented in Chapter 4 at the beginning of each maneuver. Paths were

planned from the current position to the target position, which accounts for the jumps

in the desired trajectory at the beginning of each maneuver.

All tests were performed with an early version of adaptive control law based on a

method described by Shahravi in [221. The adaptive algorithm did not perform as well

as expected, and this, combined with a coding error, resulted in the controller relying

primarily on the PD terms of the control law for trajectory tracking. Therefore, the

tests below are most representative of the performance of a PD controller. Simulation

results from Chapter 4 indicate that the performance of the new controller will be

much better, but hardware tests remain as future work.

Test 3, shown in Figure A.9 shows one of the many challenges of testing on an air-

bearing floor as the satellite sticks in place until the final docking maneuver where a

successful docking occurred. Figure A.10 shows a successful perpendicular docking for

a demonstration of collocated docking. Figure A.11 shows an attempt at a complete

assembly demonstration, resulting in a very near miss of the docking port. In this

test the pin bounced off of the target docking port but failed to capture.
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Figure A.8: Test 2: The satellite docks with the beam at approximately 160 seconds.
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Figure A.9: Test 3: Satellite+Beam docking to fixed target occurs at approximately
200 seconds. The satellite clearly gets stuck to the floor at 130 seconds while following
the Y trajectory.
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Figure A.10: Test 4: Satellite+Beam dock perpendicularly to a target at approxi-
mately 250 seconds.
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Figure A.11: The propulsion module docks with the beam at 150 seconds, then
maneuvers the beam for a (missed) docking attempt at 425 seconds.
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Appendix B

Scripts for Symbolic Robot Dynamics

B.1 EulerLagrange.m

function [H,C,G] = EulerLagrange(T,V,q)

% Creates the symbolic manipulator equations from the Lagrangian T-V

% Inputs :

% T Kinetic energy

% V Potential energy

q vector of symbolic state variables (must be functions of time)

% Returns the coefficient matrices H, C, and G, for the

% the standard nonlinear manipulator equations:

% H(q)q_ddot + C(q,q_dot)q_dot + G(q) = Tau

W Create additional symbolic variables

syms t ;

Nstates = length(q);

for i = 1:Nstates

qdum(i) = sym([ 'q' num2str(i) '_sym']);

qddum(i) = sym(['q' num2str(i) 'd_sym']);

end

q_dot = diff(q,t);

%% Calculate H, C, and G

%Make a temporary copy of T and V

Ttemp = T;

Vtemp = V;

%Substitute functions of time for dummy

for j = 1:length(q);

left hand side of

variables DO VELOCITY FIRST!
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Ttemp=subs(Ttemp,q_dot(j) ,qddum(j));

Ttemp=subs(Ttemp,q(j) ,qdum(j));

Vtemp=subs(Vtemp,qdot(j),qddum(j));

Vtemp=subs (Vtemp, q ( j) ,qdum( j));

end

%Find H

%This is equivalent to partial ̂ 2/partial(qdot)^2 of T since the potential

%term of L is only dependent on q

H = jacobian (jacobian (Ttemp,qddum) ,qddum);

H=simple (H) ;

H=TrigSimple (H);

%Construct C explicitly from H

C = sym(zeros(length(q)));

for j = 1:length(q)

for i = 1:length(q)

for k = 1:length(q)

C(i,j) = C(i ,j)+0.5*diff(H(i,j),qdum(k))*qddum(k) + 0.5*(diff(H(i,k),qdum

(j))-diff(H(j ,k) ,qdum( i )))qddum(k);

end

end

end

C=simple (C);

%Construct G from V

G = jacobian (Vtemp,qdum) .';

G=simple (G);

%Replace functions of time

for j = 1:length(q);

YDo positions first

C = subs(C,qdum(j) ,q(j));

H = subs(H,qdum(j) ,q(j));

G = subs(G,qdum(j) ,q(j));

C = subs(C,qddum(j) ,q_dot(j));

H = subs(H,qddum(j) ,q_dot(j));

end

B.2 CreateSimFromDyn.m

function CreateSimFromDyn( filename ,H,C,G,q,params, vals)

% Creates a file called 'filename '.m that simulates the dynamics specified

% in H, C, and G, for the generalized coordinates q.
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% Inputs:

% filename desired name for the file

% H mass matrix (also known as M), H(q,qdot)

% C coriolis matrix, C(q,qdot)

% G potential terms, G(q)

% params symbolic parameters to be substituted

% vals values of symbolic parameters

% The generated file has the function signature:

% function xdot = filename(x,u)

X where z is the current state , u is the input, and xdot is the state

% derivative. The file is generated with a %#eml header so that it can be

% called from an EML block, or you can use ODE45 with a wrapper function.

%% Substitute for fcns of time

syms t;

qdot=diff(q,t);

Htemp = H;

Gtemp = G;

Ctemp = C;

%Iterate through state vector and replace (do vel. first!)

for i = 1:length(q)

Htemp=subs(Htemp,qdot(i) ,[ 'q' num2str(i) 'ds'j);

Htemp=subs(Htemp,q(i) ,[ 'q' num2str(i) 's']);

Ctemp=subs(Ctemp,qdot(i) ,[ 'q' num2str(i) 'ds']);

Ctemp=subs(Ctemp,q(i) ,['q' num2str(i) 's']);

Gtemp=subs(Gtemp,qdot(i) ,['q' num2str(i) 'ds']);

Gtemp=subs(Gtemp,q(i) ,['q' num2str(i) 's']);

end

syms t;

real_ary = SubstituteValues({Htemp,Ctemp,Gtemp},params,vals);

names = {'Hsim', 'Csim', 'Gsim'};

%% Write Code

disp([ 'Writing.equations.ofmotion.to.' filename '.m'])

handle=fopen([filename '.m' ], 'w--');

header = ['Y%%eml\n' 'function xdot.=.' filename '(x,u)\n'];

%Initialize matrices

qlen = num2str(length(q));

stlen = num2str(2*length(q));

header = [header 'Hsim.=.zeros(' qlen ',' qlen ');\n'];

header = [header 'Csim.=_zeros(' qlen ',' qlen ');\n'];
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header = [header 'Gsim-= zeros(' qlen ',1);\n'];

header = [header 'xdot-=zeros(' stlen ',1);\n'];

%Write header

fprintf(handle ,header);

%Print state variables

vars = [ ;

varcat = [];

vardcat = [];

for i = 1:length(q)

idx = num2str(i);

varstr = ['q' idx 's'];

vardstr = ['q' idx 'ds'];

d_idx = num2str(i+length(q));

vars = [vars 'q' idx 's.=-x(' idx ');\n'];

vars = [vars 'q' idx 'ds-.=x(' d_idx ');\n'];

varcat = [varcat '.' varstr];

vardcat = [vardcat '.' vardstrJ;

end

vars = [vars 'q=[' varcat ']'';\n'];

vars = [vars 'qd=[' vardcat ']";'];

fprintf(handle , vars);

for i = 1:3

%clean up weird substitution problem

real _ ary{i} = sym(real_ary{i});

code = ccode(real_ary{i});

code = strrep(code,'T',names{i});

%change to matlab indices

for k = 1:max(size(real_ary{i))

code=strrep(code,[ '[' num2str(k-1) ']'],['(' num2str(k) ')']);

code=strrep(code, ')(',',');

end

%add line breaks

code=strrep(code,';',';\n');

fprintf(handle ,[ '\n' code]);

end

qdstart = num2str(length(q)+1);

qdran = [qdstart ':end'];

footer=['xdot=- [x(' qdran '); Hsim\\(u - Gsim- Csim*qd)]; '];

fprintf(handle , footer) ;
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fclose (handle);

B.3 LinearizeBeam.m

function [Hlin,Clin,Glin] = LinearizeBeam(H,C,G,q,q_op,qd_op)

% Linearizes beam equations about q_op and qd_op so they are in the form

% H_lin*q_ddot + C_lin*qdot + G_lin*q

% Create q_dot vector

Nstates = length(q);

syms t ;

q_dot = diff(q,t);

% Form G matrix (was a vector)

Glin = sym(zeros(Nstates));

% Substitute for states in C and H

Clin = C;

Hlin = H;

for i = 1:Nstates

Clin=maple( 'eval',Clin ,[char(q_dot(i))

Clin=maple('eval',Clin,[char(q(i)) '='

Hlin=maple( 'eval ', Hlin ,[char(q_dot(i))

Hlin=maple('eval',Hlin ,[char(q(i)) '='

for j = 1:Nstates

qcoeff = maple('coeff',G(j),q(i));

Glin(i,j) = qcoeff;

end

end

Hlin=simple (Hlin);

Clin=simple (sym( Clin));

'=' num2str(qd_op(i) ,100)]);

num2str(q_op(i) ,100) ) ;

'=' num2str(qd_op(i) ,100)]);

num2str(q_op(i) ,100)1);

B.4 SymbolicBeamDynamics.m

This file wraps the previous files into a single script to generate symbolic and linearized

dynamics for the segmented beam model.

o%% Symbolic Dynamics for the Segmented Beam

% This file generates the symbolic dynamics and linear dynamics for the

% flexible beam. There are 5 major sections:

% 1. Builds symbolic variables and generates the Lagrangian

% 2. Calculates symbolic dynamics from the symbolic lagrangian

% 3. Generates a nonlinear beam simulation
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% 4. Linearizes the beam about the zero state

% 5. Creates a linear state space system

%% 1. Define Symbolic Variables and Create Lagrangian

%State is defined:

% X = [x y qO q1 q2 q3 zdot ydot qOdot q1dot q2dot q3dot]

%Input is defined:

% u = [Fz Fy Tau]

maple( 'restart ');

syms Ils 12s 13s 14s t;

syms m sphs mls m2s m3s m4s mdps;

syms r_swarms r_dps

syms I_ sphs Ils 12s I3s 14s I_dps

syms k1s k2s k3s;

%Make angle velocities explicit functions of time

x = sym(maple('x(t)'));

y = sym(maple('y(t)'));

qO = sym(maple('qO(t)'));

ql = sym(maple('ql(t)'));

q2 = sym(maple('q2(t)'));

q3 = sym(maple('q3(t)'));

q = [x;y;qO;ql;q2;q3];

%reate simple expressions for sin and cos of common angles

sO = sin(qO);

sO1 = sin(qO+ql);

s012 = sin(qO+ql+q2);

s0123 = sin(q0+ql+q2+q3);

cO = cos(qO);

cO1 = cos(qO+ql);

c012 = cos(qO+ql+q2);

c0123 = cos(qO+ql+q2+q3);

%Create angular velocities of each link

wO = diff(qO,t);

wl = wO + diff(ql,t);

w2 = wl + diff(q2,t);

w3 = w2 + diff(q3,t);

%Create positions of centers of mass

xO = [x;y];

xl = xO + (r_swarms+lls/2)*[cO;sO];

x2 = xO + (r_swarms+lls)*[cO;sO] + 12s/2*[cO1;sO1];

x3 = xO + (r swarms-lls)*[cO;sO] + 12s*[cO1;sO1] - 13s/2*[c012;s012];

132



x4 = xO + (r swarms+lls)*[c0;s0] + 12s*[c01;s01] + 13s*[c012;s012]+14s/2*[c0123;s0123

i;
x5 = xO + (r_swarms+lls)*[cO;s0] + 12s*[c01;s01] + 13s*[c012;s012]+(14s+r_dps/2)*[

c0123;s0123]; YDP position

X = [xO xl x2 x3 x4 x5];

X_dot = diff(X,t);

M = [m_sphs; m1s; m2s; m3s; m4s; m_dps];

I = [I_sphs; Ils; I2s; I3s; I4s; I_dps];

omega = [wO;wO;wl;w2;w3;w3];

%Create Kinetic Energy

T=0;

for i=l:size(X,2);

T = T+1/2.(M(i)*X_dot(:, i).'*X_dot(:, i) + omega(i)^2 I(i));

end

%Create potential energy function

V1 = 1/2*kls*q1^2;

V2 = 1/2*k2s*q2^2;

V3 = 1/2*k3s*q3^2;

V = V1+V2+V3;

%Compute Lagrangian

Lagr = T-V;

%% 2. Create nonlinear symbolic state matrices

[Hnl, Cnl, Gnl]= EulerLagrange (T,V,q);

Hnl=TrigSimple (Hnl);

Cnl=TrigSimple (Cnl);

%% Param Vecs

symvec = [M.' I.' Ils 12s 13s 14s k1s k2s k3s r_swarms r_dps];

realvec = [m SWARM mO ml m2 m3 m DP I SWARM(3,3) 10(3,3) 11(3,3) 12(3,3) 13(3,3)

I_DP(3,3) L(1) L(2) L(3) L(4) kI k2 k3 rSWARM r DP];

%% 3. Generate a Beam Simulation (BeamEOM.m)

CreateSimFromDyn( 'BeamEOM' ,Hnl, Cnl, Gnl, q, sym vec, real_ vec);

%% 4. Linearize about 0

[Hlin, Clin , Glin]=LinearizeBeam (Hnl ,Cnl ,Gnl,q,zeros(6,1) ,zeros(6,1));

%% Substitute Actual Values

real_ary = SubstituteValues({ Hlin ,Clin ,Glin},sym_vec,real_ vec);

Hreal = real ary{1};

Creal = real ary{2};
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Greal = real_ary{3};

clear real_ary;

%% 5. Create state space model with linearized dynamics

Ns = length(q); Yonumber of position states

Ni = 3; %number of inputs

Alin = eval([zeros(Ns) eye(Ns); -Hreal\Greal -Hreal\Creal]);

Blin = eval([zeros(Ns,Ni); Hreal\[eye(Ni); zeros(Ns-Ni,Ni)]]);

plant = ss(Alin ,Blin ,eye(size(Alin)) ,);

% create discrete model

plantd = c2d(plant ,1/20);

%% Save dynamics

save beam_dynamicsshort Alin Blin Hreal Creal Greal Hlin Clin Glin Hnl Cnl Gnl q

plantd plant;
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