
V MISCELIANEOUS PROBLEMS

A LOCKING PH~NOMENa IN R-& OSCILLATORS

Staff Professor J B Wiesner
3 3 David, Jr

Descriution of Project The purpose of this project is to investigate the locking

phenomena between coupled microwave oscillators

Status The behavior of two -w magnetrons operating into a single load has been inves-

tigated experimentally Results agreed well with theoretical expectations both in the

locked and unlocked conditions The predicted locking spectrum and power transfer

between tubes were observed No power exchange was apparent when the tubes were tuned to

ident.cal frequencies and, in this condition, each magnetron was operating into a matched

load Line lengths between tubes was found not to be critical so long as the system

remained symmetrical

In order to study locking phenomena in greater detail, the behavior of a

klystron locked to an attenuated magnetron signal will be studied By this arrangement,

mutual effects between tubes are eliminated Further study of the closely coupled oscil-

lators will be attempted at a later date

B ELECTRONIO DIFFERENTIAL ANALYZER

Staff Professor H allman
A B Macnee
R 3 Scott

Introduction This project is concerned with the development of an all-electronic, high

speed differential analyzer The work in progress may be divided into two general

problems

(1) The investigation of multiplying circuits

(2) The investigation of the problems of initial conditions and

stability for some simple ordinary differential equations with

constant coefficients

Multilieri Two multiplying circuits have been built, based on the difference-of-

squares scheme described in the last Progress Report These circuits differ only in the

square law devices used

The first circuit uses crystal diodes type Sylvania 1J34, to give the neces-

sary square law characteristic This multiplier has a range of two decades in the

output and a percentage error of from 5 to 10 per cent depending upon the amplitude of

the output signal The primary limitations is found to be the characteristic of the

crystal diodes If a more satisfactory two-terminal square law element can be found,

having a larger square law range and better uniformity this circuit would be usable

The special high vacuum square-law diodes have been abandoned because of the large

number of floating power supplies required for their use Thyrite is being considered

as an alternative square-law element

The second circuit tested uses a push-push triode circuit to obtain the neces-

sary square-law characteristic This multiplier has a range in the output of two decades

with a percentage error of less than 5 per cent The range limitation in this case is in
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the phase inverters rather than the square-law circuit A new unit is being made up to

overcome this difficulty The circuit however suffers from drift in the balancing

adjustment of the push-push squarers The use of a self-balancing scheme to overcome

this difficulty is being considered

Differential Equations A number of time integrators and differentiators have been

built up and used to solve three simple equations given below

AZ = AY++() (1)
dt

2
SAy -+ I() (2)

t dt

d = + ky (3)dt

The units were set up to solve these equations at a repetition rate of 60 ops,

and the solutions were displayed on the face of a cathode-ray tube Only simple func-

tions such as sine waves, square waves, and impulse functions were used for F(t) It

was found that although either integrating or differentiating units could be used to

solve Eqs (1) and (2), Eq (3) could be solved only with integrators, for the

following reason Any available differentiator will have a high frequency root because

of the finiteness of its amplifier passband If such a differentiator is used to solve

Eq (3), the solution is dominated by this high frequency root rather than the desired

root of the equation itself For this reason it is now felt that differentiators will

have only a limited application in a general electronic differential analyser

Initial Conditions There are two aspects to the problem of inserting inital conditions

in an electronic differential analyzer The first is to obtain the correct initial

voltages for the variables, and the second is to return the circuit to its original

condition so that a repetitive solution may be obtained

(1) Methods of Obtaining Initial Yoltaes Fundamentally the initial values

of the variables must be in the form of charges stored upon condensers in the circuit

In practice this gives two possibilities Either the condensers in the integrators may

be charged initially, or a battery may be placed in series with each unchar od integrator

at the initial instant These two methods are illustrated in Fig 1 o

(a) C I,-ydt

ON y RON
AMP ON

JOFF FF

1

Figure 1 Solution of the equation + y = 0 (a) By means of an initially charged
condenser of voltage V=y 0 , (b) by means of a series battery of voltage V=yo
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Both of these methods have been tried The time constant for charging the

condenser 0 in Pig la is R0

(2) Methods of ReturninA the Solution to the Initial State In a repetitive

system it is necessary to return the circuit to its initial condition before a second

solution may start This has been done by

a Switching methods which force the variables to assume their

initial values

b Reversing the independent variable

If the initial conditions are applied by charging the condenser, as in Pig la ,

the circuit will return to its initial condition when the switches are in the OFF position

The disadvantages of this method are that the charging tine constant must be long compared

to the solution time and that a separate switch is required for each integrator

If the initial conditions are applied by means of series batteries, as in

Fig lb it is necessary to open the loop at the adder and to discharge the condensers

in order to return the circuit to its initial condition

The second method by which the circuit may be returned to its initial state is

by reversing the independent variable If an integrator were available which would

integrate with respect to an arbitrary voltage, this method could be used If a satis-

factory multiplier were available, such an integrator could be developed from a time

integrator according to the following equation

y xdo = x x dt

At the present time a satisfactory multiplier is not available, but if a function 0 is

chosen, as in Pig 2b whose derivative is alternately plus or minus one, the multi-

plication by can be performed by switching an inverter in and out of the circuit

Because the independent variable is now a cyclic function, the solution automatically

returns to its initial values once every cycle The circuit for solving a simle

equation by this method is shown in Fig 2a

-ydt

(a) ircuit for solving the equation (b) The solution obtained as

I t jvdt +yo displayed in real time

Figure 2

The trouble with all switching methods is in obtaining a reliable switch

Mechanical and electronic switches both have their disadvantages If a general
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integrator were available, it would be possible to use other voltages (e.g sin waves) as

the independent variable and to eliminate the need for any switches at all This is one

reason why attention is still being directed to the development of a satisfactory

multiplier

0 ELECTRONIO POTENTIAL MAPPING

Staff: Dr S Goldman
H N Bowes

Description of Project The purpose of this project is to develop a pictorial display

for surface distributions of potentials It is expected that when developed, this equip-

ment will be an aid in medical diagnosis

Status Deflection coils and synchronizing and sweep circuits for the 16-element pickup

and scanning tube mentioned in the last Progress Report have been built The over-all

system, both pickup and display, is now in operation When different d-c potentials are

put on the different pickup grids, a checkerboard pattern is obtained on the display

tube Studies of the scanning process in this type of system are now in progress

D TRANSIENT PHENOEMA IN WAVEGUIDES

Staff ?rofessor E A Guillemin
Dr L J Chu
M V errillo
D F - Winter

For the narrow-band application of waveguides, the propagation of signals is

characterized by the group velocity, and there is very little distortion of the signal

When a pulse or other wide-band signal is transmitted through a considerable length of

waveguide, it is deformed on account of the non-linear variation of the phase velocity

with respect to the frequency A theoretical study of the transient phenomena in wave-

guides was started a year ago by Cerrillo and considerable progress has been made toward

the understanding and prediction of such phenomena The experimental work was started

by Winter recently using a special hard tube pulser to modulate the magnetron, a 336-foot

section of S-band waveguide and the Fast Sweep Synchroscope

Consider a waveguide of a simple cross section extending from x3 = 0 to X 3 o
An arbitrary signal is applied at x3 = 0 through a probe, an iris or from an adjoining

section of waveguide The propagation phenomena of the signal can be described as a

linear superposition of an infinite number of modes of which, only the dominant one, or

in the case of over-size waveguides, the few lowest ones are of importance The

theoretical study can therefore be confined to one mode initially

If the six components of field were known as functions of time at the input

point x3 = 0, Ie could determine the frequency spectrum of the signal by Fourier

analysis At any one frequency, these six components are not independent To find the

frequency spectrum of the signal at x, we have to multiply the components at 3 = 0 in

the frequency domain by an exponential to take care of the phase shift In practice the

applied signal is usually quite complicated and unknown To make the calculation

feasible, we must make reasonable assumptions about the input signal The theoretical

limitation of the input signal is that with p >. the field components in the frequency
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domain behave as rP in amplitude when the frequency approaches infinity where

w = 2f x frequency

Any one of the field components in the frequency domain at x3 can be expressed

as ) e

where 7(ess2+1) is usually the ratio of two polynomials in s and ,'e2+1,

K is a linear function of x3 and the cutoff frequency

s = frequency/cutoff frequency

To find the inverse transforms of (1), we first use the complex transformation

z = 1-: +1 Substitute the above expression in F(sX +1) and obtain

G(s) I(, 1

z

which is the ratio of two polynomials in z Compute the roots of the denominator of

G(z) and expand G(z) in partial fractions If G(z) has simple poles only it can be

expressed as U

k=1 zZk

where zk is the kth root and Rk is the residue at the pole k
The inverse transform of (1) for simple poles consists of two parts

0, for '< K

k= au(f) T)+Ju1 (fl T) -R Jo(T)

Both summations are over roots sk for Iskl ( 1 The Lommel's functions, Vo , V1t U2,

and Ul, are defined in Watsonls "Theory of Bessel Punctions" p 537 Also

K = 2fTx/cutoff wavelength

T = ~rt x cutoff frequency

and =

The available tables for Lommells functions are unfortunately not of any use

in these transient expressions It was necessary to obtain the appropriate expansions

for numerical computation

Asymptotic expansions and a simple graphical method were developed to construct

the envelopes and phase functions of the waves corresponding to the typical inverse

transforms This method will be discussed in a report on this subject
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The above theory was applied to the TE01 wave in the standard S-band rectangU-

lar waveguide, and some of the results are shown in Fig 1 The column to the left gives

INPUT OUTPUT AT A CT

Figure 1 Theoretical wave forms of the input and output signals

the envelopes of the input functions at the beginning of the waveguide and the column to
the right gives the envelopes of the corresponding output function at the end of 336 feet

of waveguide The time scale is approximately 2 5 x 10-8see/inch For an input

represented by a step function, the distortion of the signal at the output is shown in

Fig la For the same input waveform the distortion varies with the wavelength (Fig lb
lc ld), the distortion is more prominent at wavelengths near cutoff At shorter wave-

lengths, as the initial slope of the input envelope increases (Fig la, lb) there appears

a number of oscillations in the envelope at the output The same phenomenon exists as

the applied wavelength is reduced

The experimental arrangement follows A special hard tube pulser (see the

Quarterly Progress Report, October 15, 1946 pp 6-40) was used to modulate a magnetron

The magnetron output was fed into a 336-foot length of S-band rectangular waveguide

terminated in a matched load The standing-wave ratio in the guide was less than 1 1

for the frequency band that could be covered by the magnetrons available The r-f pulse

was observed on the Fast Sweep Synchroscope (see RLE Report No 27) A probe was

inserted in the waveguide at the input end The voltage picked up by this probe was

connected to the deflecting plates of the cathode-ray tube through a 25-foot length of
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cable (6 db loss one way). The same probe was used to observe the r-f pulse after it

had traveled 336 feet of waveguide.

The pictures shown in Jig. 2 were obtained from the experimental arrangement

described above. It will be observed that there is a definite trend in the direction

indicated in the curves of Jig. 1. Within the experimental limitations of this experi-

ment it may be said that there is substantial agreement between experiment and theory.

TIME SCALE

INPUT

1 1P1T11,1 t - -

0 I 2 3 4 5 x 10-u sec.

OUTPUT AT 336 FT.

X= I 1.3 cm

X = 10.8 cm

k 9.2

Figure 2. Observed waveforms of the input and output signals.
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V E BROADBANDING OF ARBITRARY IMPEDANCES

Staff R M Fana

The theoretical limitations on the broadband matching of arbitrary impedances

have been investigated The results of this work will be presented in a forthcoming

RLE technical report

F ELEMENTARY PROPERTIES OF THE PARTITION FUNCTION IN THE ORDER-DISORDER PROBLEM

Staff J M Luttinger
R Y Redheffer

In connection with the order-disorder problem in binary alloys, one attempts

to solve the problem rigorously for special models Examples of these are the square

and cubic arrays Here the only difficulties in calculating the partition function of

the system lie in finding the number of arrangements of A+B atoms so that there is a

definite number of A-A and B-B pairs of nearest neighbors Such pairs may be called

"bonas"

If W(n x) represents the number of arrangements in an n-point lattice, each

arrangement having x bonds, we form the functions f( ) a E W(n,x) x and

F() = lim 1 log f() In the two-dimensional case it was shown that any boundary may
be slightly deformed, in such a way as to make W(x,n)=0O for all odd x If the number of
arrangements is not zero for some odd x, however, there will then be the same number for

ver and odd x The latter situation always prevails in three dimensions These

results the first of which was obtained previously by van der Waerden show that f( )
aoes not behave in a simple way as n -9 ao in two dimensions Nevertheless we have

W(n,x/4) > W(n x) if x < n/2 with the reverse inequality when x 3n/2, for suitable
boundaries

The first three derivatives of F(k) are zero at the origin and the fourth is
4', ir two dimensions, in three, the first five derivatives are zero and the sixth is 6'
We have F'(1) = 1 or 3/2 in two or three dimensions, with 7(1) = log 2 in either case
In two dimensions we have 0<F( ) < log(19+) on the real axis and 0(F7'() 4 2/; for

> 0, more generally one may write f (r) (dg)n(n/4) (-iZ 7)n In three
dimensions we have O,F()< log(l+ 3 ) and O '(()< 3/ for P-1 and ~ 0, respectively.
For all ,, in the two cases, () satisfies the equation 7) - F( ) = log or log

G REMARKS ON APPROXIM&TION OF A SPECIFIED AMPLITUDE AND PHASE BY A LINEAR NETWORK
Staff R M Redheffer

If the real or imaginary part of an impedance is specified as a function of
frequency then the other part is completely determined Hence it is generally impos-
sible to specify both the real and imaginary parts exactly over any interval, no matter
how small In connection with such problems as feedback amplifiers, for example, the
question arises* "How shall we adjust the constants of the network to approximate a
prescribed real and imaginary part simultaneously, and what is the minimum error for the
optimum network?" This question was suggested by Guillemin To minimize the sum of the
mean square errors, one finds that the constants must be solutions of a certain set of
linear equations If there are n constants, there are n equations, and the value of the
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minimum error may be expressed without finding the constants as a determinant of

order n+1 The conditions have been proved sufficient as well as necessary provided

a certain n t h order determinant does not vanish This determinant depends only on

the range over which the functions are to be approximated, not on the functions them-

selves, and its seros if there are any, are isolated
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