TABLE OF CONTENTS

Personnel

Publications and Reports

Introduction

I. Physical Electronics
   A. Electron Emission Problems
      1. Work Functions and Electrical Conductivity of Oxide-Coated Cathodes
      2. Determination of the Thermionic-Emission Properties of Single Tungsten Crystals by a Photometric Method
      3. Determination of the Field-Emission Properties of Single Tungsten Crystals by a Photometric Method
   B. Studies with Gaseous Discharges
      1. Hot Cathode Arc in Cesium Vapor
   C. Experimental Techniques
      1. Spectral Emissivity of Tungsten
      2. Ionization Gauge and High-Vacuum Studies
      3. Survey of Methods Used to Determine the Optical Properties of Phosphors

II. Microwave Gaseous Discharges
   A. A-C Breakdown
   B. Microwave Breakdown in Helium
   C. Transient-Discharge Characteristics: Ambipolar Diffusion and Electron-Ion Recombination

III. Solid State Physics
   A. Properties of Matter at Low Temperatures
      1. Helium Liquefiers
      2. Microwave Surface Impedance of Normal Conductors
      3. Microwave Surface Impedance of Superconductors
      4. Elastic and Inelastic Behaviour of Metals at Low Temperatures
      5. Magnetic Cooling
      6. Theory of Liquid Helium
   B. High-Frequency Ultrasonics
   C. Phase Transitions
   D. Ultrasonic Scattering
   E. A Vacuum Spectrograph

IV. Radio-Frequency Spectroscopy
   A. Molecular-Beam Research
      1. Theory of Nuclear Effects in Microwave Spectra
      2. Theory of Nuclear Electric Quadrupole Moments
   B. Magnetic Nuclear Resonance
      1. Nuclear Resonances at Low Temperatures
      2. Nuclear Resonances at Room Temperatures
      3. Deuteron-Proton Moment Ratio
   C. Paramagnetic Relaxation
      1. Resonance Absorption
      2. Absorption in the Absence of a Static Magnetic Field
   D. Microwave Spectroscopy
      1. General
      2. Spin of Boron
      3. Hyperfine Structure of Atomic Hydrogen
      4. The Asymmetric Rotor

V. The Linear Accelerator Program

-v-

-vii-

-viii-

-iii-
VI. Magnetron Development
A. Ten-Megawatt Magnetron
B. Ceramic Windows
C. Thoria Cathodes
D. Mode Stability
E. Noise Generation in the Pre-Oscillating Magnetron
F. Steady-State Space-Charge Distribution in a Magnetron
G. Noise Properties of the "Non-Oscillating" Magnetron

VII. Traveling-Wave Tubes
A. Three-Cm Traveling-Wave Amplifier Tubes
   1. Helix Studies
   2. Redesign of 3-Cm Traveling-Wave Tube
B. Velocity-Modulated-Input Traveling-Wave Amplifier
C. Eight-Mm Traveling-Wave Oscillator

VIII. Communications Research
A. Multipath Transmission
   1. Speech and Music
   2. Television
B. Microwave Modulation Techniques
   1. Double-Tuned Oscillators
   2. Investigation of Frequency Modulation, Reflex Klystron
   3. Magnetron Reactance Tube
C. Statistical Theory of Communication
   1. Autocorrelation Function
      a. Autocorrelation Functions of Random Noise
      b. Digital Electronic Correlator
   2. Probability Distributions
   3. Optimum Prediction
   4. Theory of the Transmission of Information
   5. Pulse Modulation
   6. Storage of Pulse-Coded Information
   7. "Felix" (Sensory Replacement)
   8. Low-Frequency Output Spectrum of Lock-In Amplifier
   9. Pulse Code Magnetic Recorder
D. Transient Problems
   1. Envelope Studies
   2. Transient Theories
   3. Synthesis of Networks for Specific Transient Response
E. Active Networks
   1. General Theory
   2. Broadband Amplifiers with Active Interstages
   3. Sinusoidal Oscillations in Nonlinear Systems
F. Higher Mode Problems
   1. Steady-State Propagation of Electromagnetic Waves
      Along Cylindrical Structures
   2. Techniques for Millimeter-Wave Transmission
G. Locking Phenomenon in Microwave Oscillators

IX. Miscellaneous Problems
A. Electronic Differential Analyzer
   1. Computing Elements
   2. Differential Equations
B. An Automatic Impedance-Function Analyzer
   1. Analysis of the Errors in the Method
   2. Commutator Construction
   3. Construction of the Mk. 4 Machine
C. Proton-Velocity Meter
D. Electronic-Potential Mapping
E. Tube Laboratory
   1. Resistance Thermometer for Temperature Control
F. Tube Laboratory - (Chemical Section)
   1. Aluminum Bonds to Glass, Quartz and Steatite