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Abstract

Growing demand and increased diversity of telecommunication services, combined
with recent advances in transmission and switching technologies, are
revolutionizing the telecommunications industry. As part of the changes in the
industry, telecommunication companies are rapidly expanding and modernizing the
communication network hierarchy. This paper develops and tests a decomposition
methodology to generate cost-effective expansion plans, with performance
guarantees, for one major component of this hierarchy-the local access network
connecting customers to the local switching center. The model captures essential
tradeoffs between installing concentrators and expanding cables to accomodate
demand growth; it also addresses economies of scale in facility costs. By exploiting
the special structure of the expansion planning problem, our solution method
integrates two major solution strategies from mathematical programming-the use
of valid inequalities, obtained by studying a problem's polyhedral structure, and
dynamic programming, which can be used to solve an uncapacitated version of the
local access network expansion planning problem. The computational results for
three actual test networks demonstrate that this enhanced dynamic programming
algorithm, when embedded in a Lagrangian relaxation scheme (with problem
preprocessing and local improvement), is very effective in generating good upper
and lower bounds: implemented on a personal computer, the method was able to
generate solutions guaranteed to be within 1.2 - 7.2% of optimality. Apart from
developing a successful solution methodology for a practical problem, this paper
illustrates the possibility of effectively combining decomposition methods and
polyhedral approaches.

Keywords: Integer programming decomposition, concentrator location,
telecommunications planning, polyhedral methods



1. Introduction

The telecommunication industry is changing rapidly. In particular, recent
advances in digital switching and transmission technologies combined with
deregulation of the industry have created many opportunities for telephone
companies to diversify their basic services, from traditional voice transmission to
data, video, telemetry and other communication services. To exploit the increased
demand that these opportunities will stimulate, telephone companies are actively
modernizing and expanding their transmission facilities. Since these investments
are so very expensive, network expansion planning is a prime candidate for analysis
via optimization-based decision support systems. Because the significant fixed costs
for installing switching and transmission resources necessitate discrete choice
decisions, network planning is a complex and challenging task involving large-scale
combinatorial optimization. This paper develops and tests an optimization-based
methodology for developing a cost-effective expansion strategy for one portion of the
overall telecommunication system, the local access network.

The local access network connects customer nodes to a local switching center
which, in turn, communicates with other switching centers via the inter-office and
backbone networks. Most existing local access networks have a tree structure, i.e., a
unique path connects each customer node to its assigned switching center. The U. S.
telephone system contains over 10,000 local access networks, and approximately 60%
of the 100 billion dollars invested in U. S. telecommunication facilities resides in
these networks. Thus, effective local network design and expansion planning can
have a significant economic impact.

Local access networks are not as technologically advanced as other
components (the inter-office and long-distance networks) of the telecommunication
system. For instance, although the telecommunication industry has moved rapidly
to invest in digital transmission, electronic switching, and fiber optic transmission in
long-distance networks, over 80% of the local networks continue to use only analog
transmission over copper cables. However, the large anticipated growth in demand
and increasing diversity of services is accelerating the introduction of newer
technologies in the local network such as electronic multiplexers, remote switches,
and digital transmission. These technologies provide alternative means to increase
capacity and complement the conventional expansion strategy of installing more
copper cables. Correspondingly, network planners now require more sophisticated
decision support tools to incorporate the additional capacity expansion options and
the spatial couplings that the new devices introduce. An earlier survey paper
(Balakrishnan, Magnanti, Shulman, and Wong [1991a]) reviews the evolution of
local access networks, and motivates various approaches for modeling contemporary
network expansion planning problems.
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This paper describes an optimization methodology for planning local access
network expansion, and reports on computational experience using this
methodology. In a companion paper (Balakrishnan, Magnanti, and Wong [1991b]),
we proposed an integer programming model for planning capacity expansion in
local access networks, and partially characterized the polyhedral structure of this
formulation. The model captures the essential tradeoffs between concentrator
location and cable expansion, and accomodates economies of scale in investment
and operating costs. We identified several different classes of valid inequalities that
strengthen the linear programming relaxation of the problem formulation. In
developing these inequalities, our aim was to use stronger problem formulations to
achieve improvements in algorithmic performance. The current paper builds upon
these modeling results to develop a decomposition algorithm for solving the local
access network planning problem. Our method combines Lagrangian relaxation
with a dynamic programming algorithm that incorporates some of the valid
inequalities identified in our previous study. Using data derived from three actual
local access networks, we demonstrate the effectiveness of the valid inequalities in
generating good upper and lower bounds.

This paper makes three contributions: (i) it develops an effective method for
solving the important practical problem of local access network design; (ii) it adds to
the growing literature demonstrating the usefulness of polyhedral methods for
solving difficult, large-scale combinatorial problems; and (iii) unlike other cutting
plane methods that use general purpose linear programming codes to solve
successively stronger relaxations, this research demonstrates how to tailor a
dynamic programming algorithm to directly incorporate valid inequalities.

The rest of this paper is organized as follows: Section 2 presents a formal
definition of the local access network planning problem, reviews our modeling
assumptions, and describes a basic mixed-integer programming formulation.
Section 3 describes the Lagrangian relaxation scheme for the basic model, develops a
dynamic programming algorithm to solve the main subproblem, and outlines a
procedure to construct heuristic expansion plans from the Lagrangian solution. In
Section 4 we describe two algorithmic enhancements--a problem preprocessing
procedure to eliminate variables, and a coefficient reduction method to strengthen
the problem formulation. Section 5 shows how to modify the dynamic program to
incorporate several classes of valid inequalities. Section 6 describes our
implementation, and presents computational results for three test problems
obtained from real data. We illustrate how the valid inequalities dramatically
improve the lower bounds (by about 80%) relative to the basic model, and we study
the robustness of the method to changes in demand and cost parameters. Our results
show that the combination of Lagrangian relaxation, dynamic programming, and
polyhedral methods permits us to efficiently find solutions guaranteed to be within
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about 4% of optimality, and using a personal computer. Section 7 identifies
directions for further work.

2. The Basic Local Access Network Expansion Model

This section presents a f rmal definition of the problem and reviews our
modeling assumptions. Balakrishnan et al. [1991b] provide more detailed
discussions and justification of the model and its assumptions.

2.1 Problem description

The local access network connects customer nodes (in telecommunication
parlance called control or distribution points) to the switching center. Each customer
node is a "collection point" for 20 to 200 individual customers connected via a
subsidiary distribution network. Each switching center serves all the customer nodes
(ranging from 10 to more than 50) in a predetermined geographical region. In the
basic network without remote switches, all communications (both within and
outside the local switching region) to and from each customer node flow through
the assigned switching center; a unique circuit, i.e., an electrical transmission path,
connects each customer to the switching center. We associate a demand with each
customer node. This demand represents the required number of circuits from the
customer node to the switching center; it depends on the number and type (e.g.,
residential or commercial) of customers assigned to that customer node. The local
access network can "satisfy" this demand in two ways: either provide a dedicated
cable (from the customer node to the switching center) for each required circuit, or
route the circuits through a traffic compression device called a concentrator.
Concentrators are electronic devices that compress incoming traffic, i.e., they
combine incoming signals on multiple lines into a single composite (higher
frequency) signal that requires only one outgoing line. In practice, a variety of
devices can perform traffic compression: multiplexers (time division or frequency
division), concentrators (which dynamically allocate output lines to incoming
circuits), remote switches, and fiber optic terminals. For convenience, we
collectively refer to all these devices as concentrators since they perform essentially
equivalent functions.

As demands at the customer nodes increase (for example, due to new
construction, customer movement, or new services), the existing cables and
concentrators can no longer accomodate the required number of circuits from each
customer node. The expansion planning problem then consists of strategically
locating new concentrators, selectively expanding cable capacities, and rerouting
traffic from customer nodes via concentrators in order to satisfy demand at
minimum total network expansion cost. Observe that by routing traffic through
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concentrators we reduce the downstream cable requirements. This tradeoff between
installing concentrators and expanding cable capacities is central to the local access
network expansion problem. We next introduce some notation and formally
describe the expansion planning model and its assumptions.

Problem parameters
Our capacity expansion model applies to local access telecommunication

networks that have a tree topology. Let the root node of the tree represent the
switching center. All other nodes of this tree represent customer nodes and/or
potential concentrator locations. The edges of the tree correspond to physical cable
sections connecting adjacent nodes; by joining cables in successive sections, we can
create an electrical path between non-adjacent nodes. Let T denote the given
(undirected) rooted tree over which the local access network expansion problem is
defined. We index the set of nodes N of this tree from 0 to n, with the root node 0
representing the switching center. Every customer node i of the network has a
known projected demand, denoted as di , which represents the number of circuits

from node i to the switching center required at the end of the planning horizon. For
simplicity, all our subsequent discussions assume that the existing network does not
contain any concentrators, even though our method extends easily to problems with
existing concentrators. We treat the number of currently existing cables (e.g., twisted
wire pairs) connecting adjacent nodes i and j as the existing capacity Bij of the edge

(i,j) in the tree.

Consider a "conventional" network that does not employ any concentrators.
Let Pij denote the (unique) path connecting any pair of nodes i and j. To provide one

circuit from node i to the switching center, we must allocate one cable belonging to
each intermediate section along the path Pi0; joining the selected cable at each

intermediate node creates the required (physical) circuit. Since the existing network
does not have adequate capacity to meet the projected demand, one or more sections
in the curent network must have projected exhaust, i.e., the number of available
cables in that section is less than the total demand for all nodes communicating
through that section to the switching center. To meet this demand, the network
planner can either (i) expand cable capacities on sections with projected exhaust, or
(ii) install concentrators at selected locations to relieve the exhaust. Observe that we
permit cable expansion only along currently existing sections, i.e., the expansion plan
must preserve the tree structure. In practice, creating new cable sections is very
expensive because of the costs of acquiring land and building needed infrastructure.

Cost structure
To make tradeoffs between concentrator location and cable expansion, our

model accounts for three types of costs: cable costs, concentrator costs, and node-to-
concentrator connection or rerouting costs. Cable expansion costs might vary by
section (typically, the expansion cost depends on the length and location of the
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section), and consist of fixed as well as variable components. The fixed cable cost Gij

(also called the cable installation cost) for section (i,j) represents the expenses for
digging trenches, laying pipes, and other costs incurred between locations i and j.
The variable cable cost eij is proportional to the number of cables that are added; this

cost might consist of the investment in cables as well as operating expenses for
maintenance. Concentrator costs also consist of fixed and variable components, and
might vary by location. The fixed concentrator cost Fj models land acquisition and

infrastructure investments at node j, while the variable (i.e., throughput-dependent)
cost c reflects the purchase price and operating expenses of electronic concentrator

modules. Our solution procedure can accomodate a more general piecewise-linear,
concave cost structure as shown in Figure 1 that might represent, for instance,
alternative technologies or economies of scale in cable and concentrator costs. (This
figure represents the cost structure for a cable or concentrator with four alternate
technologies, each with its own fixed plus variable cost.) For expositional ease in
describing the model formulation and solution algorithm, we will assume the
simpler fixed plus variable cost structure for both cable expansion and concentrator
location. We indicate how to extend the solution procedure to the more general cost
structure, and our implementation solves test problems with concave concentrator
costs. Observe that the true cost of, say, installing a concentrator might be a step
function of the required capacity since concentrator modules are available only in
discrete units. Thus, even the concave cost function might only approximate the
true cost. However, our discussions with network planners and some preliminary
data analysis of actual cost functions suggested that the concave approximation is
adequate for long-term capacity planning purposes.

In addition to the cable and concentrator costs, our model also incorporates a
connection or rerouting cost Aij for every node pair i, j. We incur this connection

cost if the network expansion strategy reroutes the circuits from node i through a
concentrator located at node j. This cost includes the cost of disconnecting the
current circuit (from the switching center) and the cost of reconnecting the circuit
through node j. The cost might vary from node to node because of varying demands
and circuit distances. We can also use this cost parameter to prohibit certain routing
patterns (for instance, to avoid deterioration in transmission quality) by setting the
corresponding connection cost to a very high value.

2.2 Modeling assumptions

To reduce the complexity of managing and maintaining the local access
telecommunication network, planners often impose several restrictions on the
permissible expansion options and routing patterns. To keep the problem tractable,
we also make an additional assumption (assumption A4) regarding the cost for
transmitting concentrated traffic. Discussions with planners in industry suggest that
the following four modeling assumptions reflect or adequately approximate current
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practice. Balakrishnan et al. [1991b] discuss these modeling assumptions in greater
detail.

Assumption Al: Single-level concentration
Traffic originating at any node of the network is concentrated at most once before
reaching the switching center.

Assumption A2: Non-bifurcated routing
Traffic from each node follows a unique route to the switching center, i.e., all circuits
from each customer node use the same cable sections, and a common concentrator if
necessary.

Assumption A3: Contiguity restriction
Every concentrator serves a contiguous region surrounding it, i.e., if node i's traffic is
compressed by a concentrator located at node j, then this concentrator also
compresses traffic from all the nodes lying on the path Pij connecting nodes i and j

(including node j itself).

Assumption A4: Transmission cost for concentrated traffic
The (fixed and capacity-dependent) cost of transmitting concentrated traffic (from the
concentrator to the switching center) is separable by concentrator location, i.e.,
concentrated traffic either consumes a negligible amount of existing cable capacity
(and, hence, entails negligible transmission cost), or uses an umbilical (dedicated)
connection to the switching center.

Notice that, since the local access network has a tree structure, assumptions
Al and A2 together imply that selecting a concentrator location j for each node i
completely specifies the routing pattern in the network. We say that node i homes
on node j if a concentrator located at node j processes node i's traffic; in this case, the
route from node i to the switching center consists of the unique path Pij connecting
node i to node j, followed by path P0j connecting node j to the switching center. Any

node whose traffic is not concentrated is said to home on the switching center. The
contiguity assumption (A3) reduces the concentrator assignment (and, hence,
routing) decision to a problem of decomposing (and covering) the tree into subtrees,
and selecting one concentrator location within each subtree to serve its traffic
requirements. We use this assumption to efficiently solve an uncapacitated
subproblem using dynamic programming. Assumption A4 enables us to include the
cost of transmitting concentrated traffic from any node j to the switching center in
the total concentrator cost for node j.

Observe that, even with these restrictions, the final plan might involve
complex routings. For instance, we assume that cables are bidirectional, and we
permit backfeed or flow away from the switching center. Thus, to avoid cable
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expansion, node i may home on a node j that does not lie on the path Pi0 connecting

node i to the switching center (node 0). Next, we present the basic mixed-integer
programming formulation for the local access network expansion problem.

2.3 Basic Integer Programming Formulation

Given the projected demand at each customer node, the existing cable capacity
in each section, and the costs for rerouting, for adding cables, and for installing
concentrators at each location, the local network expansion planning task consists of
deciding:

* where to locate concentrators, and with what capacity;
* which cable sections to expand, and by how much; and,
* how to route the traffic from each node to the switching center.

As we noted in Section 2.2, our assumptions reduce the traffic routing decision to
selecting the homing node for each customer node (i.e., choosing a concentrator or
the switching center to process each node's traffic). Consequently, our formulation
uses binary decision variables, called assignment variables, to assign homing nodes.
In addition, it uses binary variables to determine concentrator locations
(concentrator location variables), and binary and continuous variables for adding
cables (cable installation and cable expansion variables, respectively). We define
these variables as follows:

Assignment xij = 1 if node i homes on node j,
variable 0 otherwise;

Concentrator yj = 1 if we install a concentrator at node j,
Location 0 otherwise;
variable

Cable ij (ji) = 1 if we expand cable capacity from node i to node j

Installation (node j to node i),
variable 0 otherwise; and,

Cable sij (sj) = number of cables added from node i to node j (j to i).

Expansion
variable

Observe that we have used directed variables for modeling cable installation and
expansion. Therefore, on any cable section connecting nodes i and j, we distinguish
between expansion in the i-to-j direction from expansion in the j-to-i direction even
though cables are bidirectional (i.e., transmission is permitted in either direction on
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existing cables). Using undirected cable installation and expansion variables gives an
equivalent mixed-integer formulation with fewer decision variables. However, as
we shall see later, the use of directed cable addition variables enables us to strengthen
the model's linear programming relaxation. To emphasize the direction of flow, we
will consider two directed arcs, denoted as <i,j> and <j,i>, corresponding to each
original undirected edge (i,j), and we redefine Pij as the directed path from node i to

node j in the tree.

In terms of the decision variables x, y, z, and s, the Local Access Network
Expansion Planning Problem has the following basic mixed-integer programming
formulation:

Network Expansion Planning Model [LAN1]

E Aij xi +
iE NjE N j

E Fyj +
eN

Z Z (dic) xi
iE Tj T

+ Gij (zij +zji)
(i,j)E T

eii (sij + sji)
(i,j)E T

subject to

Assignment constraints

Xij =
jeN

Concentrator location constraints

yj=

xij 

1

Xj

Xkij'J

X dk Xkl
k,leODij

Cable installation-forcing constraints

Sij <

Sji <

Arc orientation constraints

zij + Zji 

Bij + Sij + ji

Mij Zij

Mji ji

all (i,j) T,

all (i,j) E T,

all (i,j) E T, and1

-8-

minimize

+ (2.1)

all i N, (2.2)

Contiguity restrictions

all je N,

Cable capacity constraints

(2.3)

all i,j e N, (2.4)

(2.5)

(2.6a)

(2.6b)

(2.7)



Integrality/Nonnegativity constraints

Yj Xi z Z Zj = Oorl all je N, (i,j) T, and (2.8)
sNY si 0 all (i,j) E T. (2.9)

In this formulation,

ki. is the node adjacent to node i on the path Pij from node i to node j,
Obij is the set of node pairs k, whose path Pk contains edge (i,j), and
Mij (Mji) is an upper bound on the maximum required cable expansion on

section (i,j) in the i-to-j (j-to-i) direction.

The objective function (2.1) seeks to minimize the sum of the node-to-
concentrator connection costs, the fixed and variable concentrator costs, and the cable
installation and expansion costs. Observe that, although we use the same fixed and
variable cable costs (Gij and eij) in both directions on each edge, the model and our
solution approach permit different costs in the two directions. Constraints (2.2)
specify that the solution must assign each node i to exactly one concentrator or to the
switching center (the latter decision corresponds to setting xij = 1). Equation (2.3)
specifies that node i must contain a concentrator (yj = 1) if and only if this node
homes on itself (i.e., xjj = 1). This restriction, in conjunction with the contiguity

constraints (2.4), ensures that node j contains a concentrator whenever any other
node homes on this node j. Constraints (2.4) state that if node i homes on node j,
then node i's immediate neighbor kij on the path Pij (connecting node i to node j)
must also home on j. Including these constraints for all node pairs i,j ensures that
each concentrator serves a (surrounding) contiguous subtree. We model the cable
capacity constraints as inequalities (2.5). The left-hand side of the capacity restriction
for section (i,j) corresponds to the total flow on edge (i,j) expressed in terms of the
assignment variables xkl for all node pairs k,l e ODij that communicate via this edge.

Constraints (2.6) are forcing constraints that relate the binary cable installation
variables zij to the continuous expansion variables sij. If the amount of cable
expansion sij (in the i-to-j direction) is positive, this constraint forces the installation
variable zij to assume a value of 1, thus absorbing the fixed cable expansion cost Gi
in the objective function. The parameter Mij (Mji) in the right-hand side of this

constraint represents the maximum cable expansion that section (i,j) can possibly
require in the i-to-j (j-to-i) direction in any feasible solution. Constraint (2.7)
specifies that section (i,j) can be expanded either in the i-to-j or j-to-i direction, but
not both.

We refer to Mij as the cable expansion bound from node i to node j. To
compute this parameter, consider the following naive method: When we remove
edge (i,j), the original tree T decomposes into two subtrees, say, T' and T'. Suppose
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T' contains node i and T' contains node j, and let D' and D" represent the sum of
nodal demands in the respective subtrees. Then, the maximum possible flow in the
i-to-j (j-to-i) direction is D' (D"); thus, we can set Mij = Max (0, (D'-Bij)) and Mji = Max
(0, (D"-Bij)). Later (in Section 4.2), we indicate how to obtain tighter values for Mij
and Mji.

Formulation [LAN1] is a large-scale mixed-integer program, whose size
(number of variables and constraints) increases quadratically with the number of
nodes. Like many other design problems, this problem is NP-complete
(Balakrishnan et al. [1991b]). Thus, finding the optimal local network expansion plan
is a computationally difficult task. However, as we show in Section 3, a dynamic
programming algorithm will permit us to solve the expansion problem in
polynomial time if the network does not contain any existing cable capacities. We
propose a decomposition approach to exploit this observation. In the next three
sections, we describe the basic solution procedure for the problem and several
enhancement techniques for improving algorithmic performance.

3. Decomposition Algorithm for the Basic Local Access Network
Planning Model

This section outlines our approach for solving the basic [LAN1] model. The
method consists of three components: (i) preprocessing and coefficient reduction, i.e.,
performing some prior analysis to reduce the problem size and strengthen the
formulation; (ii) solving the Lagrangian subproblems to generate lower bounds on
the optimal cost; and (iii) generating good heuristic solutions from the Lagrangian
subproblem solutions. We describe the second and third components in this section.
In subsequent sections, we describe the preprocessing and coefficient reduction
methods, and propose various additional formulation and algorithmic
enhancements to improve the method's performance.

3.1 The Lagrangian Relaxation Scheme

The uncapacitated local access network planning problem, which assumes
that the given network has no current cable capacity, is easy to solve optimally using
dynamic programming. To exploit this property, we use a Lagrangian relaxation
scheme that dualizes the cable capacity constraints (2.5) using Lagrange multipliers
#ij for all edges (i,j) e T (see, for instance, Fisher [1981] for a review of the Lagrangian
relaxation method). The resulting Lagrangian problem becomes:
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minimize Z Z Aij( ))xij + Z Fjyj + Gij (zij+ zji)
i N jN jeN (i,j)e T

+ (eij - gi ) (sij + sji) - ij Bij

(i,j)e T (i,j) T

subject to: constraints (2.2) - (2.4) and (2.6) - (2.9).

In this formulation, we have consolidated all the cost coefficients of the
assignment variable xij into an assignment cost Aij(L) defined as:

Aij() = Aij + di ( ,Lkl) + dicj foralli, j N. (3.1)
(k,l)e Pij

This cost represents a fixed charge for assigning node i to a concentrator at node j.
Intuitively, the cost Rkl represents an imputed variable or marginal cost for using

capacity on arc (k,l). Thus, the second term in the right-hand side of equation (3.1)
represents an imputed incremental cable cost when we route node i's demand to a
concentrator at node j. Similarly, we account for the variable concentrator cost
incurred when node j serves the demand at node i by including the third term di c

in the i-to-j homing cost Aij(g). The transformation in equation (3.1) thus converts

all the cable expansion and concentrator variable costs into equivalent fixed
assignment costs.

Note that the Lagrangian problem decomposes into two subproblems: an
uncapacitated local access network expansion subproblem [ULAN1 ()] containing
only the x and y variables, and an easily solved cable expansion subproblem [CES(g)]
containing the s and z variables. The sum of the optimal values of these two
Lagrangian subproblems provides a lower bound on the optimal cost of [LAN1]. We
use subgradient optimization (see, for instance, Held, Wolfe, and Crowder [1974] or
Fisher [1981]) to heuristically maximize the Lagrangian lower bound by finding a
near-optimal set of Lagrange multipliers. We note that both our Lagrangian
subproblems satisfy Geoffrion's [1970] integrality property (i.e., the linear
programming relaxations of both subproblems have integer optimal solutions);
therefore, the best possible Lagrangian lower bound cannot exceed the optimal value
of the linear programming relaxation of formulation [LANI]. We next discuss
efficient methods to solve the two Lagrangian subproblems at each subgradient
iteration.
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3.1.1 The Cable Expansion Subproblem

Given a set of Lagrange multipliers {FijJ, the cable expansion subproblem,

denoted as lCES(u)], determines the optimal values of the cable installation and
expansion variables, zij and sij, for all arcs <i,j>. This subproblem has the following

form:

[CES()]

minimize Gij (zij + Zji) + (eij - upij) (sij + sji ) (3.2)
(i,j)e T (i,j)e T

subject to:
sij < Mij zij

Si i Mji zi all (i,j) E T, (3.3)
zij + Zji < 1 all (i,j) E T, and (3.4)

Ziy Zji = 0or 
sq, sji > 0 all (i,j) E T. (3.5)

Observe that this subproblem decomposes by edge, and is easy to solve. For each
edge (i,j), we can solve the problem in two stages. First, we set:

sij = sji = 0 if (eij - pjj) > 0, and

sij = Mij zij sji = Mji jiif (eij -j) < 0.

If we make these substitutions for s and s, the problem reduces to a formulation in
only the installation variables zij and zji. Yhe cost coefficients for zij and zji become:

Gij(A) _ Gij + Mij min eij - gij, 0, and
Gi() - Gij + Mjj min (eij - ij, 0}.

If both these coefficients are nonnegative, we set zij = zji = 0. Otherwise, we set zij = 1

and zji = 0 if Gij(g) < Gji(), and zij = 0 and zi = 1 if Gji(g) < Gij(g). As a consequence,

the objective function value of the subproblem [CES(g)] is

I min {0, Gij(p), Gji())
(i,j)e T

Let us briefly indicate how to incorporate piecewise-linear, concave cable
expansion cost functions (as shown in Figure 1) instead of the simple fixed plus
linear cable expansion cost we have assumed so far. Suppose the cost function
consists of M linear segments, with increasing intercepts Gijm and decreasing slopes
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eijm for m = 1,2,...M. To capture the different fixed and variable costs (Gijm and ei.m)
for each segment, we replace zij and si with disaggregate cable installation and
expansion variables zijm and sijm for each range m = 1,2,...,M. The binary variable
Zijm is 1 if the solution chooses segment m on arc <i,j>, and 0 otherwise, while sijm
denotes the amount of cable expansion (its value must lie in the range

corresponding to the m th segment). Accordingly, we modify the cable capacity
constraints (2.5), the cable forcing constraints (2.6), and the arc orientation constraints
(2.7) (the revised form of constraint (2.7) selects at most one segment in either
direction on every edge). Because the cable expansion cost function is concave, we
do not require any additional constraints (for example, variable lower bounds on the
sijm variables). Clearly, these changes in the formulation affect only the cable
expansion subproblem. For each edge (i,j) E T, this subproblem must now decide
whether to set zijijm = jm = 0 for all m = 1,2,...,M (i.e., do not expand any cables) or
select exactly one range m*, and set Zijm* = 1, sijm* = Mijm* for this range (with zijm =

sijm = 0 for all m * m*.) The optimal choice depends on the value of
Gijm() = Gijm + Mijm min {eij - ij 0).

If Gijm(g) > 0 for all m = 1,2,...M, then Zijm = sijm = 0 is the optimal solution to the
cable expansion subproblem. Otherwise, we select the index m* with the most
negative value of Gijm(g), and set Zijm* = 1, sijm* = Mijm* . Thus, incorporating

piecewise-linear, concave cable expansion cost functions in the Lagrangian
subproblem is relatively easy.

3.1.2 Uncapacitated Local Access Network Expansion Subproblem

The uncapacitated local access network expansion subproblem, denoted as
[ULAN1 (g)], determines the values of the assignment variables xij and the
concentrator location variables yj, assuming that the network does not contain any

existing cables or concentrators (the model still restricts cable installation to the edges
of the given tree network).

Let us consider a more general uncapacitated tree location (UTL) model with
fixed concentrator costs (Fj), assignment costs (aij), and fixed cable installation costs

(bij). Subproblem ULANI($) is a special case of UTL with zero fixed cable installation

costs. The dynamic programming algorithm we use to solve ULAN1(g) applies to
the general formulation (and, in fact, we use the more general model in Section 5.4
when we consider enhancements to improve the algorithm's performance). The
uncapacitated tree location model has the following formulation:

[UTLI

minimize Fj yj + aij xij + ; bij (zij+zji) (3.6)
jEN ie N j N (i,j) T
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subject to:
Node assignment constraints (2.2),
Concentrator location constraints (2.3),
Contiguity restrictions (2.4),

Arc installation-forcing constraints:
xij • Zik for all i E N, all k Pij, (3.7)

yj,xij = O or 1 for all i, j N, and

zij = Oor 1 for all (i,j) E T.

The arc installation-forcing constraints (3.7) capture the fixed costs bij for all edges

(i,j) E T. In the uncapacitated Lagrangian subproblem ULAN1(1), the assignment
cost aij equals Aij(g), as defined by equation (3.1), and bij = 0; so we can set every zij =

1, and remove the arc installation-forcing constraints.

3.2 Solving the Uncapacitated Local Access Network Planning Problem

To solve subproblem UTL for a tree with n nodes, we employ a dynamic
programming algorithm that requires O(n2 ) operations. The method exploits and
relies heavily on the tree structure and the contiguity property. This algorithm is a
modest extension of methods previously proposed by Kariv and Hakimi [1979] for
the p-median problem on a tree, and by Barany, Edmonds and Wolsey [1986] for
optimally covering a tree by subtrees. (These two previous algorithms are
themselves closely related and use a similar dynamic programming solution
strategy.) We first describe the method's underlying principle before presenting it
formally.

First, let us introduce some notation and conventions. We define the level of
a node i as the number of edges lying on the path Pi0 connecting that node to the

switching center. Thus, the root node (node 0) has level 0, its immediate successors
have level 1, and so on. For convenience, we index the nodes in increasing order of
their levels. For notational simplicity, we assume, without loss of generality, that
each node of the given tree T either has exactly two successors or is a leaf node (i.e.,
the node has no successors).. Splitting nodes with more than two successors, or
adding a dummy node to each single-successor node satisfies this assumption (and
adds no more than n dummy nodes). For any node i (i O0) in the tree, let Pi denote
its predecessor; if node i is not a leaf node, let li be its left successor, and ri its right
successor. (By our node indexing convention, pi < i < li, ri.) Let T(i) denote the
subtree rooted at node i when we delete edge (pi,i) from tree T.
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Starting with node n at the bottom of the tree, the dynamic programming
algorithm sequentially considers nodes in decreasing order of node index, and hence
in decreasing order of node levels. For each node i, the procedure recursively
calculates the optimal total (cable expansion + concentrator + connection) cost of
covering all nodes within subtree T(i) (i.e., serving the subtree's demand) using only
concentrators that are located within this subtree. We denote this total cost as TC(i)
(TC denotes Tree Cost); it includes the cost of locating concentrators within the
subtree T(i), the cost of assigning all the nodes in the subtree to their respective
concentrators, and the cost of expanding cables to provide adequate transmission
capacity between each node and its assigned concentrator. The value TC(O),
corresponding to the switching center (i.e., the root node 0), gives the optimal cost of
UTL.

To calculate TC(i), we must first determine where node i should home within
its subtree T(i). Let HC(i,j), standing for homing cost or HC, denote the cost of
covering all nodes within subtree T(i), assuming node i homes on some node j (for
this definition, node j need not necessarily belong to T(i)). Then,

TC(i) = minimum HC(i,j), (3.8)
j E T(i)

i.e., the cost TC(i) of covering all nodes in subtree T(i) as a stand-alone tree is the
smallest value of HC(i,j) over all homing nodes within T(i). Within the dynamic
programming algorithm, we will iteratively (from the bottom of the tree to the top)
compute the HC(i,j) values. To calculate HC(i,j) we exploit the following two
observations, both stemming from the contiguity property:

Observation 1: Converting fixed concentrator and cable costs to Homing costs
The UTL model has three types of costs: fixed assignment costs (aij), fixed
concentrator costs (Fj), and fixed cable installation costs (bij). We can simplify this

cost structure by including the fixed cable and concentrator costs in appropriate
homing costs. First, if we assume all fixed cable costs are positive, then the
contiguity property implies that any optimal solution to UTL installs cable on arc
<i,kij> if and only if node i homes on node j (recall that kij is node i's neighbor on
the path Pij connecting node i to node j). Thus, we can include the fixed arc cost biki

in the i-to-j homing cost. Since we assign node i to exactly one node, we avoid
double counting the fixed arc costs. Similarly, if concentrator costs are positive, the
optimal solution installs a concentrator at node j if and only if some node homes on
node j and, by contiguity, node j must home on itself before any other node can
home on it. Thus, we can include the fixed concentrator cost Fj in the j-to-j homing
cost.

-15-



Because of these two simplifications, UTL contains only a single cost type,
namely, an adjusted i-to-j homing cost dij for each node pair i,j that is defined as

follows:
dij = aij + biij if i j, and

aj1 + F ifi=j. (3.9)

The total cost of any uncapacitated tree expansion solution equals the sum of the
adjusted homing costs for all the node assignments selected by that solution. Recall
that, for the local access subproblem ULANI(g), the assignment cost aij in (3.9) equals

Aij(p) and includes the connection cost, variable concentrator cost, and variable cable
expansion cost (see equation (3.1)). As we show next, transforming all the fixed and
variable cable and concentrator costs into node-to-concentrator homing costs for the
uncapacitated problem enables us to decompose and recursively compute the tree
covering costs TC(i) and HC(i,j).

Observation 2: Decomposition of Tree Covering costs
If node i homes on node j, the contiguity property restricts the possible homing
patterns for node i's successors. In particular, consider the possible homing node for
the left successor i of node i. If node j belongs to the left subtree T(li), then by the
contiguity property, node i must also home on node j since path Pij contains i; in
this case, we must include the (previously computed) cost HC(li,j) in HC(i,j).

Otherwise, (if j T(li)) node i must either home on node j or on an internal node
within its own subtree T(li). In this case, the best choice for li's homing node
depends on whether HC(li,j) is less than TC(li) (the optimal cost of covering all
nodes in T(li) using only internal concentrators). We can apply a similar argument

to determine the best homing node for the right successor ri: if j E T(ri), node ri
must also home on j and we include the value of HC(ri,j) in HC(i,j); otherwise, ri

homes on j or on an internal node within the right subtree T(ri) depending on
whether HC(ri,j) is smaller than or exceeds TC(ri).

This decomposition of homing patterns suggests that we can recursively
calculate HC(i,j) for intermediate nodes i using the following equations:

HC(i,j) = dij + min{HC(Ii,j), TC(i)} + minHC(ri,j), TC(ri) if j=i or j T(i), (3.10a)

HC(i,j) = dij + HC(i,j ) + min(HC(ri,j), TC(ri)} if j e T(li), and (3.10b)

HC(i,j) = dij + min{HC(li,j), TC(li)) + HC(ri,j) if j T(ri). (3.10c)

If node i is a leaf node of T, HC(i,j) equals dij.
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Equations (3.8) and (3.10) are the underlying recursive equations for the UTL
dynamic programming algorithm. To ensure that the required quantities on the
right-hand side of equations (3.10) are available when needed, we must properly
sequence the computations of HC(i,j). As mentioned before, the decreasing order of
node indices (and hence decreasing level of the nodes) defines an appropriate
bottom-to-top sequence.

The DP algorithm, thus, consists of (n+l) stages, one corresponding to each
node k in the tree. At stage k, for k = n, (n-l), ..., 0, we consider the subtree T(k)
rooted at node k. In this stage, we first compute HC(i,j) for every node pair i,j e T(k)
that communicate via node k, i.e., with either nodes i and j lying in opposite
subtrees T(lk) and T(rk), or i = k and j e T(k), or i e T(lk) u T(rk) and j = k. To

compute the values of the homing costs HC(i,j), we consider nodes i in order of
decreasing index; we can consider target nodes j in any order. At the end of stage k,
the procedure has computed HC(i,j) for all i,j e T(k). Using this information, we can
apply equation (3.8) to calculate TC(k), the optimal cost of serving all nodes of subtree
T(k) using only internal concentrators belonging to this subtree. The final value
TC(0) that we calculate at stage 0 gives the optimal value of the UTL problem. (By
convention, at the final stage k = 0, we assume that node 0 can home only on itself,
i.e., the connection cost A0j is set equal to a very large value for all j • 0.) The usual

dynamic programming backtracking procedure gives the optimal concentrator
location and node assignment strategy. A formal description of the dynamic
programming algorithm follows:

DP Algorithm for the Basic UTL model: [DP1]

For k = n,n-l,...,O
if k is a leaf node,

HC(k,j) - dkj forall je N

TC(k) - HC(k,k) = dkk

else
for i = n, n-1,...,k+l, with i T(k)

for j = n, n-1,...,k, with j e T(k) and k e Pij

compute HC(i,j) using equation (3.10a)
next j;

next i;
for j = n, n-1,...,k-1, with j e T(k)

compute HC(k,j) using equation (3.10b) if j E T(lk)

compute HC(k,j) using equation (3.10c) if j E T(rk)
next j;
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compute HC(k,k) using equation (3.10a)

TC(k) - Minimum HC(k,j)
j T(k)

next k;

The method examines each node pair i,j exactly once to calculate HC(i,j).
Since each HC(i,j) calculation requires constant time, the overall computational
complexity of the dynamic programming algorithm is O(n2 ) operations. We note
that, after our cost transformation (3.9), the dynamic program is identical to Barany
et al.'s [1986] method for covering a tree with subtrees. Their method, in turn, could
be viewed as an adaptation of Kariv and Hakimi's [1979] p-median algorithm. In the
UTL context, if I N(i) I is the number of nodes in the rooted subtree T(i), the Kariv-
Hakimi algorithm recursively evaluates the tree cost value TC(i,v) for v = 1, 2,...,
I N(i) I which is defined as the total cost of covering all nodes in T(i) using exactly v
internal concentrators. Thus, we can use the Kariv-Hakimi algorithm to solve UTL
by setting:

TC(i) = min {TC(i,v): v = 1, 2, ..., I N(i) I }.

Note that this algorithm requires O(n2p) operations.

Next, we briefly outline the modest modifications required to the UTL
solution method to incorporate multiple concentrator technologies, and so the
piecewise-linear, concave concentrator cost function shown in Figure 1.

As before, let M denote the number of linear segments in the piecewise-linear
concentrator cost function. Conceptually, we view the piecewise-linear cost function
as the lower envelope of a set of M fixed plus linear cost functions, each
corresponding to a different concentrator technology. (In reality, different segments
might model the same physical technology, say, multiplexers but with different fixed
and variable costs). Let Fjm and cjm denote, respectively, the fixed cost (or intercept)

and variable cost (or slope) of the mth technology for m = 1,2,...,M. Fjm increases and
Cjm decreases as m increases; consequently, when we minimize total cost, the model
will automatically select the correct technology corresponding to the required
concentrator throughput.

To account for this concave concentrator cost function, we model the problem
with M alternative concentrators at every node j, each with different fixed and
variable costs. Correspondingly, we define M different assignment costs Aijm(g)

(using the variable cost cjm instead of cj in equation (3.1)) for every pair of nodes i, j E
N; we, therefore, obtain M adjusted homing costs dijm . For every node j, the
adjusted homing cost djjm includes the fixed cost Fjm of the type m concentrator (see
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equation (3.9)). At each stage, the DP algorithm now recursively computes HC(i,j,m),
the total cost of covering all nodes of T(i), using equation (3.10) assuming node i
homes on a type m concentrator at node j, for m = 1,2,...,M. We now define TC(i) as
min HC(i,j,m): j E T(i), m = 1,2,...,M). As before, TC(0) gives the optimal value of
UTL. If M is the maximum number of segments in the concentrator cost function
over all nodes of the network, these enhancements increase the computational

complexity of the DP algorithm to O(n2M).

3.3 Lagrangian-based Heuristic

By iteratively adjusting the Lagrange multipliers using subgradient
optimization (see, for example, Fisher [1981]), and solving the Cable Expansion and
Uncapacitated Tree Location Lagrangian subproblems at each iteration, we generate
lower bounds on the optimal network expansion cost. The Lagrangian relaxation
scheme also generates good starting solutions for a heuristic improvement
procedure. Our Lagrangian-based heuristic procedure uses the optimal solution to
the uncapacitated tree location subproblem to generate a feasible starting solution.
The method then iteratively improves this starting solution by interchanging node
assignments.

Recall that the UTL subproblem determines the optimal node-to-concentrator
assignments (i.e., values for the xij variables) and the corresponding concentrator
location strategy (yj variables), assuming that the network contains no existing cable

capacities. To obtain a heuristic expansion plan, we complete the UTL solution by
determining the actual number of additional cables required to accomodate the
selected node-to-concentrator assignments.

We then apply a myopic improvement strategy called the Greedy
Reassignment Heuristic to the starting solution. This method attempts to iteratively
reassign nodes to concentrators, one at a time, without violating the contiguity
condition. Note that, to preserve contiguity at every stage, each node has at most
three alternate homing nodes, i.e., the homing nodes of its neighbors. At each
iteration, the greedy heuristic: (i) evaluates the cost impact of all "feasible" changes
in node-to-concentrator assignments (i.e., those that preserve the contiguity
property); and, (ii) performs the best change, i.e., the reassignment that gives the
greatest reduction in total cost (concentrator + cable expansion cost). If all feasible
reassignments increase total cost, the local improvement procedure terminates.

To reduce computational time, instead of improving the Lagrangian-based
starting solution at every iteration of the subgradient optimization solution
procedure, our implementation applies the greedy method only intermittently (e.g.,
when the current starting solution has lower cost than the previous best starting
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solution). We also use the greedy heuristic to generate an initial upper bound,
before initiating the subgradient procedure. For this purpose, we consider two
different starting solutions-the centralized solution that homes all demand nodes
on the root node (ie., this solution employs only cable expansion to satisfy projected
demand), and the distributed solution that locates a concentrator at each node. After
applying the greedy reassignment heuristic to each of these two solutions, we choose
the solution with the lower cost as the initial upper bound.

In summary, this section has described the algorithm to generate upper and
lower bounds for the basic problem formulation [LAN1]. The next two sections
describe methods for improving the lower bounds in several ways: through problem
preprocessing, tightening the constraints of formulation [LAN1], and adding new
inequalities to strengthen the Lagrangian relaxation.

4. Modeling and Algorithmic Enhancements I: Variable Elimination
and Coefficient Reduction

Our preliminary computational experience with the Lagrangian relaxation
algorithm of Section 3 for the basic [LAN1] model suggested that, while the heuristic
method generates very good solutions, the Lagrangian lower bounds are very weak,
as evidenced by large gaps between the upper and lower bounds on the optimal
objective value. Section 6.2 summarizes these computational results. To improve
the lower bounds, we developed various modeling and algorithmic enhancements.
This section describes two types of improvements: problem preprocessing to
eliminate certain assignment variables, and reducing the values of the cable
expansion bounds in order to tighten the forcing constraints (2.6) in formulation
[LAN1].

4.1 Variable Elimination by Problem Preprocessing

To reduce the size of problem [LANI], we employ a tradeoff analysis that
identifies, based on the given problem data (i.e., demands, costs, and capacities),
node-to-concentrator assignments that do not occur in an optimal solution. We
prohibit such assignments by eliminating the corresponding assignment variables xij

from the problem formulation. This variable elimination process not only reduces
the problem size, and hence the computational effort, but might also improve the
lower and upper bounds.

For convenience, we will assume in the following discussion that, for each
node i, the connection cost Aij is the same for all homing nodes j. The preprocessing
method extends easily to problems with varying connection costs. To identify
suboptimal node-to-concentrator assignments, we employ the following principle:
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Consider any node pair i,j, and suppose we wish to prove, if possible, that node i
does not home on node j in an optimal expansion plan. For this purpose, we
compute a lower bound Lij on the incremental cost of assigning node i to node j. (By

incremental cost, we mean the cable expansion and concentrator cost that can be
attributed solely to the i-to-j asssignment.) We then compare this lower bound to an
upper bound Uii on the cost of locating a concentrator at node i (and homing node i
on this concentrator). If Lij > Uii, the i-to-j assignment is provably suboptimal, and
we can eliminate the assignment variable xi. from formulation [LAN1]. Next, we
describe a simple method to estimate Lij and Uii.

The lower bound Lij on the incremental cost of assigning node i to node j

consists of two components: an incremental cable expansion cost, and an
incremental concentrator cost. To calculate the incremental cable expansion cost,
consider the path Pij connecting node i to node j, and let <k,l> be any arc on this

path. By the contiguity property, if node i homes on node j, then every node on the
subpath Pik (from i to k) must also home on node j. Thus, the total demand, say,
Dik of all nodes on the path Pik (including node i's and node k's demand) must flow
through arc <k,l> if i homes on j. If Dik is less than or equal to Bkl, the existing

capacity of edge (k,l), then we do not incur any cable expansion cost on edge (k,l).
Otherwise, we incur both a fixed cost Gk and a per unit cost ekl for each unit of flow

exceeding Bk. Let Okl = Max { [Dik-Bkl], 0} denote the excess flow on edge (k,l).

Then, node i's demand contributes a cost of at least 8kl = ekl Min{)kl, di) to the total

cable cost on edge (k,l). Adding the incremental costs Sk for all edges (k,l) of path Pij
gives the cable expansion cost component of the lower bound Lij. The concentrator
cost component is equal to cj d i, the demand at node i times the variable concentrator
cj at node j. Thus, the lower bound Lij on the incremental cost of assigning node i to

node j is

Lij : A kI + cjdi for all i,j e N. (4.1)
(k,l)E P..

If node i is a leaf node of T, and if the current capacity of the edge (i,kij) (incident to
node i on the path Pij) is less than node i's demand, we can improve the lower
bound Lij by adding the fixed cost Gikij to the right-hand side of (4.1).

The upper bound Uii on the incremental cost when node i homes on itself is

easy to compute; we set
Uii = Fi + cidi for all i N. (4.2)

If Lij > Uii, we prove suboptimality of the i-to-j assignment by contradiction.

Consider any optimal expansion plan, and suppose node i homes on node j in this
plan. First, consider the case when node i is a leaf node of the subtree tj induced by

the nodes that the concentrator at node j serves. Clearly, canceling the i-to-j
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assignment will save at least Lij, while installing a concentrator at node i (and
homing node i on this concentrator) will cost exactly Ui. Thus, if Lij > Ui, we can
improve the given solution, contradicting its optimality. Now, suppose that node i
is an interior node of subtree tj. In the given solution, let N(i,j) be the subset of
nodes (including node i) assigned to node j that communicate via node i. Observe
that if we cancel the k-to-j assignment for every node k E N(i,j), the total saving in
cable expansion and concentrator costs must be at least I N(i,j) I Lij, while I N(i,j) I Uii
overestimates the incremental cost of homing all these nodes to a new concentrator
at node i. (Here, we exploit the concavity of concentrator costs.) Thus, if Lij > Ui, we
can again improve the given solution, implying that this solution is not optimal.

This preprocessing technique of prohibiting all i-to-j assignments with Lij >
Uii extends easily to piecewise-linear, concave cost functions for cable expansion and
concentrators. The preprocessing method not only reduces the problem size (e.g., the
number of variables in the integer programming formulation) but also strengthens
it by decreasing the maximum possible flows through certain arcs <i,j>, thus
reducing the cable expansion bound Mij. Next, we describe another method to
reduce this parameter.

4.2 Tightening the Cable Forcing Constraints by Coefficient Reduction

To increase the relaxation lower bounds, we first attempted to improve
formulation [LAN] by tightening the cable installation-forcing constraints (2.6a) and
(2.6b). Recall that these forcing constraints relate the cable installation and cable
expansion variables, and have the following form:

sij < Mij Zij, and

Sji < Mji zji for each edge (i,j) E T.

In Section 2.3, we showed how to find valid values for the cable expansion bounds
Mij and Mji by considering the total demand that can enter or leave the subtree
formed by deleting edge (i,j). Let us refer to these bounds as demand-based cable
expansion bounds, and denote them as MO and M.

Since these demand-based bounds represent the worst-case cable expansion
requirements, their values are typically much larger than the actual flows routed on
each arc. Consequently, the cable installation variables zij often take small fractional
values in the optimal linear programming (or Lagrangian) solution. Our coefficient
reduction method uses a tradeoff between concentrator costs and cable expansion
costs to identify a tighter cost-based upper limit MC on cable expansion on every arc

<i,j>. We then set the right-hand side coefficient Mi in the forcing constraint (2.6a)
equal to min {Mr Mi}).
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We obtain the cost-based upper limit M; by comparing the cable expansion

cost on arc <i,j> with the concentrator cost at node i. Assume, for simplicity, that the
connection cost Akl is the same for all homing nodes 1. Suppose an optimal
expansion plan routes fi. units of traffic from i to j, and suppose f.. > Bi. edge (i,j)'s
current cable capacity. his solution incurs an expansion cost of at least CEij(fij) =

{Gij + (fij-Bij)*eij + fij Cmin; in this expression, cmin is the smallest variable

concentrator cost taken over all nodes at or beyond node j. Consider the alternate
solution obtained by installing a concentrator at node i, and rehoming all the traffic
that previously flowed through arc <i,j> on this concentrator. This solution incurs a
concentrator cost of CCi(fij) = {Fi + fij*ci}. Clearly, if CEij(fij) exceeds CCi(fij), then
installing a concentrator at node i improves the given solution.

Let Uij denote the flow value at which the cost functions CEij(f) and CCi(f)
intersect (assuming Gij < F. and ei . > cj), i.e., for flow values above the threshold
value Uij CEij(f) exceeds CC(f). Figure 2 shows this intersection. Our previous
argument implies that routing more than Uij units of flow on arc <i,j> is

suboptimal. Thus, the cost-based cable expansion bound is Mi = (Uij - Bij)

Similarly, by comparing the cost of locating a concentrator at node j with the cost of

expanding arc <j,i>, we can compute a cost-based bound MjC and strengthen the
forcing constraint (2.6b). With minor modifications, the method to calculate cost-
based upper limits also extends to problems with varying node-to-concentrator
connection costs, and piecewise-linear, concave cable expansion and concentrator
costs.

5. Modeling and Algorithmic Enhancements II: Incorporating Valid
Inequalities

This section describes further modeling and algorithmic enhancements to
improve the performance of our Lagrangian-based solution method for the local
access network expansion problem. We obtain these improvements by adding
certain valid inequalities, or cuts, to the original problem formulation so that we
reduce the feasible region for the Lagrangian (and linear programming) relaxation of
the integer formulation without eliminating the optimal integer solution. Since the
relaxation for the improved formulation has a smaller feasible region, the lower
bound it provides might possibly be better than the basic model (i.e., it might have a
larger optimal value). For a review of some of the basic ideas and successful
applications of this "polyhedral combinatorics" solution approach, the reader might
consult Hoffman and Padberg [1985] or Nemhauser and Wolsey [1988].
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In Balakrishnan et al. [1991b], we identified several classes of valid
inequalities for the local access network expansion problem, and proved results
concerning their polyhedral properties. In particular, under certain conditions, these
inequalities constitute facets of the integer programming polytope. In this paper, we
focus on a subset of our original valid inequalities; the inequalities that we chose
were easy to incorporate (with some modifications) in our dynamic programming
algorithm for the Lagrangian subproblem. These constraints attempt to relate the
assignment variables xij and the cable installation and expansion variables (zij and
sij) without appreciably increasing the computational complexity of the Lagrangian

subproblem. Adding these valid inequalities to the problem formulation results in a
single, comprehensive Lagrangian subproblem that simultaneously determines
homing assignments, concentrator locations, and cable additions.

We first describe and motivate (in Sections 5.1 to 5.3) the three classes of valid
inequalities that we implemented. Section 5.4 describes requisite modifications to
the dynamic programming method needed to accomodate these three types of
inequalities. Our computational experience indicates that the subset of valid
inequalities that we chose is very effective in reducing the gap between the
Lagrangian lower and upper bounds.

Throughout this discussion, recall that T(i) is the subtree of our given tree T
rooted at node i. Let D i denote the total demand in subtree T(i) (summed over all
nodes in T(i)). We let Pi denote the predecessor of node i, and if node i is not a leaf
node, we let ri and i denote its left and right successors. Recall that, by adding

dummy nodes if necessary, we are assuming that all intermediate nodes (i.e., nodes
other than the root and leaf nodes) have exactly two successors.

5.1 Assignment-forcing Arc Installation Inequalities

Our first class of valid inequalities exploits the contiguity property to relate
the assignment variables xij to the binary cable installation variables zij. The

inequalities are based on the following observation: Assuming that arc expansion
costs are positive, any optimal local network expansion plan expands arc <i,pi> only

if node i homes on some node 1 T(i) via its predecessor Pi. Similarly, a plan that
expands arc <pi,i> must assign node Pi to some concentrator within subtree T(i).

This relationship between the assignment and cable installation variables motivates
the following 2(n-1) assignment-forcing arc installation inequalities:

Xil > zipi, and (5.1a)
I T(i)
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xjl > Zpii for all (i,j) E T. (5.lb)
I E T(i)

Balakrishnan et al. [1991b] generalize these constraints to cutsets of the tree T.

5.2 Bottleneck-Arc Installation and Expansion Inequalities

Our next class of inequalities relate the concentrator location decisions to the
cable installation and expansion decisions. We refer to arc <i,pi> as a BOTTLENECK
ARC if the total demand Di for all nodes in subtree T(i) exceeds the arc's current

capacity Bipi

Let IB be the set of bottleneck nodes, i.e., for each node i e IB, the total

demand in the corresponding rooted subtree T(i) exceeds the capacity of the incident
arc <i,pi>. We can then add the following valid bottleneck-arc installation and

expansion inequalities to the problem formulation:

A, Yk + Zipi 2 1 for all i E IB, and (5.2)
ke T(i)

(DiBip)( Yk + ipi D-Bip for alli IB . (5.3)
kE T(i)

Constraint (5.2) states that the expansion plan must either install at least one
concentrator within the subtree T(i) or expand arc <i,pi> (or both). Constraint (5.3)
forces the amount of cable expansion Sipi to be at least (D i - Bip i) if T(i) does not

contain any concentrator. (Since the cable installation-forcing constraint (2.6) of the
original formulation [LAN] imposes an upper bound of Mipi= D i - Bipion Sip i, if

T(i) has no concentrators, constraints (5.3) and (2.6) together ensure that ipi = D i -

Bipi.) Observe also that, if arc <i,pi> is not a bottleneck arc, then we can eliminate

the installation and expansion variables ipi and sipi from the problem formulation.

Stronger version of Bottleneck-Arc Installation Inequalities
If node i is a bottleneck node, and its rooted subtree T(i) does not contain any

concentrator, constraint (5.2) forces the solution to expand only the incident arc
<i,pi>. However, if T(i) does not contain any concentrators, then neither does any

subtree T(k) within T(i), for all nodes k E T(i). Therefore, we must also expand all
other bottleneck arcs <k,pk> within subtree T(i). Let AB(i) denote the set of
bottleneck arcs within subtree T(i); for notational convenience, we also include arc
<i,pi> in this set. We then have the enhanced bottleneck-arc installation
inequalities:
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Yk + ({ z kpk / AB(i)} 1 forall i IB. (5.4)
k E T(i) (kPk)AB(i)

Observe that aggregating the constraints (5.2) for all arcs <k,pk> E AB(i) gives a

weaker constraint than (5.4). Balakrishnan et al. [1991b] generalize constraints (5.4) to
apply to any arbitrary (bottleneck) subtree of T.

5.3 Subtree-splitting Arc Installation and Expansion Inequalities

The bottleneck-arc installation and expansion inequalities exploit one
opportunity for determining the exact arc flow, namely, if T(i) does not contain any
concentrator, then all its nodes home outside T(i), and the total flow on arc <i,Pi>
must exactly equal the total demand Di within that subtree. To identify additional

valid inequalities, we consider the following extension of the bottleneck-arc
inequalities' underlying principle. Suppose, instead of knowing the exact flow
value, we can compute either upper or lower bounds on the flow on arc <i,j> for
certain assignment and concentrator location patterns. If the upper bound (lower
bound) is less (more) than arc <i,j>'s capacity Bij, then we can specify that solutions
that contain the special patterns do not (do) expand arc <i,j>. This principle suggests
several new classes of valid inequalities which we call the Subtree-splitting Arc
Installation and Expansion Inequalities. This class of inequalities exploits the
natural decomposition of homing patterns (stemming from the contiguity property)
used in the dynamic programming algorithm for the UTL subproblem. The
decomposition splits each subtree into its left and right components, motivating the
name for this constraint class.

For any intermediate node k of T, let dmink denote the smallest nodal

demand among all lef nodes of the rooted subtree T(k). Observe that, if T(k)
contains one (or more) concentrator, the concentrator throughput must be at least
dmink since the non-bifurcated routing assumption (assumption A2) implies that

the concentrator must serve the entire demand for at least one node, and by the
contiguity property, at least one leaf node homes on this concentrator.
Consequently, at most (D k - dmink) units of traffic can flow out of subtree T(k).

Consider some intermediate node i. We wish to generate upper and lower
bounds on the flow emanating from this node for various possible homing patterns.
Let k be one of the three nodes, i, ri, or li, adjacent to node i. We will denote the
upper and lower bounds on flow on arc <i,k> as fmaxik and fminik, respectively.

To systematically consider various possible node assignment and
concentrator location decisions, we first broadly partition the alternative homing
patterns into four cases:
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Case 1: Node i homes on a node j outside subtree T(i);
Case 2: Node i homes on a node within its right subtree T(ri);
Case 3: Node i homes on a node within its left subtree T(li); and,

Case 4: Node i homes on itself, i.e., node i contains a concentrator.

The upper and lower bounds on arc flow for Case 2 also apply to Case 3; and, for Case
4, the flow on all arcs emanating from node i must be zero. Our subsequent
discussions will, therefore, focus on Cases 1 and 2.

We use the contiguity property to further partition the possible homing
patterns in each case. For example, consider the situation, Case 1, in which node i
homes on a node j that is outside the rooted subtree T(i). By contiguity, each
successor of node i, say, ri must either home on node j or home on a node within its
rooted subtree T(ri). This type of observation leads to the subcase entries given in

Table 1 which are a natural partition of the the possible homing patterns in subtree
T(i).

We next illlustrate a representative case for computing upper and lower
bounds on the flow from node i. Table 1 summarizes the bounds for all the possible
cases.

Case 1.2.2: Node i homes on a node j outside T(i); r i and 1i also home on node j; T(ri)

does not contain any concentrator; T(li) contains at least one
concentrator.

In this case, we wish to compute upper and lower bounds (fmaxip i and fminip i ) on

the flow on arc <i,pi>. First, observe that arc <i,pi> must carry at least the demands
at nodes i, ri, and i. Furthermore, since T(r i) does not contain any concentrator, the
demands for all nodes within T(r i) must also necessarily flow via arc <i,pi> (since all

these nodes also home on node j, outside T(i), by the contiguity property). Thus, the
lower bound for the flow on arc <i,pi> is

fminipi = d i + d + Dri (5.5a)

(Recall that Dri is the total demand for all nodes within the right subtree T(ri), and

includes the demand at node ri.) To obtain an upper bound fmaxipi on the flow, we

observe that the throughput of the concentrator(s) within the left subtree T(li) must
be at least dminli (the smallest leaf node demand in subtree T(li)). Therefore, at

most (Di - dmini) units can flow out of T(li) and via arc <i,pi>. Thus,

fmaxipi = di + Dri + (Dli- dmin i). (5.5b)Ipi 1 1~~~~~~~~~~~~~5.b

-27-



Using similar arguments, we can determine the upper and lower bounds
shown in Table 1 for the remaining cases. Notice that, because we have expressed all
the bounds in terms of the given node demands, we can compute the values of
fmaxik and fminik at the outset, prior to solving the problem.

Thus far we have discussed bounds on the flows and homing patterns for
only intermediate nodes. For leaf nodes, we need to consider only two cases:

(i) node i homes on itself: The flow on arc <i,pi> must be zero in this case;
therefore, fmaxipi = fminipi = 0; or

(ii) node i homes on a downstream node: Arc <i,pi> carries exactly d i units in

this case, i.e., fmaxipi = fminip i = d i.

Suppose, using Table 1 and our previous observations, we calculate the upper
and lower bounds (fmaxik and fminik) on the flow on every arc <i,k> for each
homing pattern. Then, depending on the values of fmaxik and fminik relative to
the arc capacity Bik, we can impose one of the following three conditions whenever

the optimal solution selects the corresponding homing pattern:

(i) if Bik < fminik, (Arc <i,k> is IN)
Zik = 1, and
max(0,fminik-Bik) < Sik < min(Mik, fmaxik-Bik); and, (5.6a)

(ii) if Bik fmaxik, (Arc <i,k> is OUT)

Zik = Sik = 0; and, (5.6b)

(iii) if fminik < < fmaxik, (Arc <i,k> is FREE)

Zik = 0 or 1, and
Sik < min{Mik, fmaxik-Bik). (5.6c)

We could mathematically represent these additional conditions as a set of
valid inequalities relating the assignment decision variables xij, xrij, and xlij the

concentrator location variables Yk for all k E T(li) and T(ri), and the cable installation
and expansion variables Zip i and sipi . These constraints strengthen the original

problem formulation, thus potentially improving the Lagrangian (and LP) lower
bounds. We will not attempt to formulate and exhaustively list all the subtree-
splitting constraints since our dynamic programming approach does not require an
explicit mathematical representation of these cuts. Instead, as shown in Section 5.4,
we modify the algorithm so that it implicitly accounts for the inequalities in the
recursive calculations at each stage.
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We conclude this section with a final note about the subtree-splitting
inequalities. These constraints generalize the bottleneck-arc inequalities by
distinguishing homing patterns based upon whether each subtree in the next level
below node i (i.e., the left and right subtrees) contains at least one concentrator. We
can further refine this partition and obtain sharper valid inequalities by examining
the number of concentrators within subtrees that are two levels, three levels, and so
on below node i. However, incorporating these inequalities in the dynamic program
adds to the algorithmic complexity of the solution approach. Our implementation
incorporates only the first level subtree-splitting inequalities.

5.4 Modifying the Dynamic Programming Algorithm to Accomodate the
Valid Inequalities

Adding the three classes of inequalities-the assignment-forcing inequalities,
the bottleneck-arc installation and expansion constraints, and the subtree-splitting
cuts-to the original formulation introduces additional linkages between the
assignment, concentrator location, and cable addition variables. Consequently, when
we dualize the cable capacity constraints (2.5) using multipliers {gLij}, the resulting

Lagrangian subproblem, which we denote as [ULAN2(g)], combines the previous
uncapacitated network expansion problem [ULAN1 (g)] and the cable expansion
subproblem [CES(g)]. This section and Appendix 1 describe how we modify the UTL
dynamic programming approach [DP1] described in Section 3.2 to solve the new,
integrated Lagrangian subproblem.

To incorporate the new valid inequalities, we exploit the dynamic program's
capability to account for arc fixed costs. Recall, from Section 3, how we transformed
cable and concentrator fixed and variable costs into equivalent, adjusted homing
costs dij for every node pair i,j E N. In particular, we argued that, for the
uncapacitated problem, the optimal solution must install arc <ikj> if it asssigns
node i to a concentrator at node j. Consequently, we included the arc fixed cost biij

in the adjusted homing cost dij (see equation (3.9)). Observe that this transformation

automatically satisfies the assignment-forcing cable installation inequalities (5.1), i.e.,
the Lagrangian subproblem solution does not install arc <i,k> if node i does not
home via node k.

How do we select a value for the arc fixed cost bik? To address this issue, let
us first understand the common underlying strategy for the bottleneck-arc
inequalities and the subtree-splitting constraints. Observe that both these classes of
inequalities attempt to use the demand parameters to determine if arc <i,k> must
necessarily be included or excluded from the design, for various homing patterns.
Thus, for a given homing pattern, one of the three cases described in (5.6a), (5.6b) or
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(5.6c) must hold. Correspondingly, as equations (5.6) indicate, we say that arc <i,k> is
restricted to be either IN or OUT of the solution, or is FREE to be either in or out.
For each of these three cases we will define an appropriate arc fixed cost bik that
captures the Lagrangian objective function coefficients of both Zik and sik. With the

additional inequalities described in this section, the enhanced Lagrangian
subproblem [ULAN2(g)] has the following objective function coefficients:

* zik has Gik (the original cable installation cost) as objective function

coefficient; and,

* Sik has the coefficient - Rik in the Lagrangian objective function.

To account for these Lagrangian objective coefficients, we define the equivalent arc
fixed cost as follows:

(i) if arc <i,k> is forced to be IN,
IN A

bik - Gik + min { (eik-gik) [fminik-Bik], (eik-Rik) Mik }; (5.7a)

(ii) if arc <i,k> is OUT,
OUT

bik - 0; and (5.7b)

(iii) if arc <i,k> is FREE,

bFR i min (0, G + ik Mk (5.7c)b ik E min { 0, Gik + (eik - ik) Mik}. (5.7c)

In these expressions, Mik = min {Mik, fmaxik-Bik}. Essentially, to determine the arc
fixed cost bik we solve the cable expansion subproblem (defined in Section 3.1)

corresponding to arc <i,k> with one of the three additional constraints (5.6a), (5.6b),
or (5.6c), and set the fixed cost bik equal to the optimal value of this subproblem.
Note that, since fminik and fmaxik vary depending on the homing pattern, the arc
fixed cost could also vary for the different cases.

We now complete the specification of the modified DP algorithm by
describing how to distinguish between various possible homing patterns. Recall that
our DP algorithm recursively calculates a cost value HC(i,j) which is the total cost
(connection+concentrator+cable cost) to serve the demand for all nodes within
subtree T(i), assuming that node i homes on node j. We then obtained the value
TC(i), defined as the total cost of serving all nodes of T(i) using only concentrators
located within T(i), as the minimum value of HC(i,j) over all homing nodes j E T(i).
In the basic algorithm DP1, to compute HC(i,j) we did not further distinguish the
homing patterns for successors r i and li of node i. However, as we have just noted,

the additional valid inequalities introduce arc fixed costs that vary with the
assignment pattern for node i's successors. We, therefore, divide the computation of
the cost HC(i,j) into several subcases.
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Let us illustrate the revised procedure for computing the cost of covering all
nodes in subtree T(i), for some intermediate node i, assuming node i homes on a
node j outside T(i). Suppose arc <i,pi> is a bottleneck arc. First, to account for the
bottleneck-arc installation inequalities, we must distinguish between the two broad
cases: (i) all nodes of T(i) home outside the subtree (i.e., on node j), or (ii) T(i)
contains at least one concentrator. To make this distinction, we define the following
two costs EHC(i,j) and PHC(i,j) in place of the single cost HC(i,j) defined for DPI:

EHC(i,j) = Cost of serving all nodes in T(i), assuming all nodes of T(i)
home on an external node j e T(i); and

PHC(i,j) = Cost of serving all nodes in T(i), assuming i homes on node j,
and T(i) contains at least one concentrator, i.e., node j serves
T(i)'s demand only partially.

Observe that EHC(i,j) corresponds to the homing pattern denoted as Case 1.1 in Table
1, while PHC(i,j) includes all other cases.

To compute EHC(i,j), we note that if T(i) does not contain any concentrator,
then neither do the two subtrees T(r i) and T(li). Thus, the tree covering cost consists
of the adjusted homing cost dij (including the arc fixed cost bip i with fmaxjp i = Di),

and the cost of covering all nodes of T(r i) and T(li), with neither subtree containing
any concentrator, i.e.,

EHC(i,j) = dij + EHC(ri, j) + EHC(li,j). (5.8)

Computing PHC(i,j) is more complex since we must consider various
possibilities for the homing patterns and number of concentrators within subtrees
T(r i) and T(li). In particular, when the homing node j does not belong to subtree
T(i), we will compute the total cost of covering the demand for nodes in T(i) under
each of the subcases corresponding to Cases 1.2 through 1.5; we denote the cost
under, say, subcase 1.2.1 as PHC1.2.1(ij). The value of PHC(i,j) is then the minimum
cost over all the subcases, i.e.,

PHC(i,j) = min {PHC 1.2.1(i,j), PHC1 .2.2(i,j), PHC1.2.3(i,j), PHC1.3.1 (i,j),
PHC1.3.2 (i,j), PHC1.4.1(i,j),PHC1.4.2(i,j), PHC1.5(i,j) ). (5.9)

Likewise, we can compute PHC(i,j) when j belongs to T(r i) (using Cases 2.1.1, 2.1.2,
and 2.2) or T(li). Appendix 1 presents the modified DP algorithm in its entirety.

To summarize, this section has described several classes of valid inequalities
that strengthen the local access network planning problem formulation. We also

-31 -



discussed modifications to the basic Lagrangian solution procedure needed to
incorporate these cuts. The next section presents computational results comparing
the performance of the decomposition method, with and without the cuts and other
model enhancements, for three test networks.

6. Computational Results

Our research is best characterized as applications-driven algorithmic
development, with the objective of developing an effective solution method for a
practical problem. Consequently, computational testing was a central element
throughout the research project. Indeed, as the discussions in Sections 4 and 5
suggest, we followed an iterative process of computational testing and algorithmic
enhancement-testing the performance of the algorithm's current version, gaining
insights about its shortcomings, and devising techniques (preprocessing, coefficient
reduction, valid inequalities) to address these deficiencies. To perform these
computational tests, we used three test problems derived from actual networks.
Section 6.1 describes some broad characteristics of our test networks. We then
present computational results using: (i) the basic model as is, and (ii) the enhanced
model with reduced cable expansion bounds and valid inequalities. To obtain a
point of comparison for assessing the computational time of our algorithm and for
gauging the quality of the solutions it generates, we also attempted to solve the
mixed-integer formulation and the linear programming relaxation for all three
problems using a general purpose mathematical programming software package
(LINDO). Section 6.2 reports the IP and LP results, and our initial experience with
the basic [LAN1] model. Section 6.3 shows the dramatic improvement in
computational performance resulting from the modeling and algorithmic
enhancements. Section 6.4 reports on several computational tests with
parametrically-scaled demand and cost values for the three network configurations.

6.1 Test Problems

Our computational tests employed three test problems-a 27-node network
(Problem 1), a 25-node network (Problem 2), and a 41-node network (Problem 3).
Each of the three networks represents an existing local access configuration
connecting customer nodes to a switching center; the capacity Bij of each edge (i,j) in

the tree corresponds to the existing number of cables in the section connecting nodes
i and j. The configuration for Problem 2 contained two nodes with three successors
each, and Problem 3 had one node with three successors. We split each of these
three-successor nodes into two dummy nodes in order to reduce the number of
successors to two. The networks also contained several intermediate nodes with
only one successor each. Instead of adding dummy nodes to create two-successor
intermediate nodes (as we had assumed in Section 3), we adapted our
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implementation to handle both single-successor and two-successor intermediate
nodes.

For each network, telecommunication planners provided us with
information on the projected demand at every customer node. Figure 3 shows the
41 node network configuration for Problem 3, the projected demand at each node,
the number of existing cables in each section, and the cable sections with projected
exhaust (i.e., sections (i,j) with existing capacities Bij less than the total demand Di in

subtree T(i)). To obtain expansion cost estimates, we examined the actual, prevailing
costs for various transmission and concentration technologies. We then applied a
simple regression procedure to use this data to approximate the actual cost functions
for our model.

Cable expansion costs vary by (i) construction type (aerial, buried, or
underground), and (ii) cable gauge (22, 24 or 26). The expansion on each section
(edge) was limited to the type and gauge currently in use on that section. Using
information on the expansion cost ($ per unit distance) for various package sizes (i.e.,
different available cable capacities), we performed regression analyses (for each
construction type and gauge) to determine appropriate fixed and variable cable
expansion costs per unit distance. For all cable types, the correlation coefficient
between the actual and approximated cost was 0.98 or larger.

To determine the concentrator cost parameters, we examined prevailing cost
data for 8 different concentration options (multiplexers, concentrators, and remote
switches). Each option had its own fixed cost, variable cost per unit of capacity, and
upper bound on the possible throughput. We considered 8 different concentrator
options because the same physical technology (say, multiplexers) is available in
different size ranges (three for multiplexers) with varying fixed and variable costs.
We superimposed the 8 cost curves (as a function of throughput), and approximated
the lower envelope of these curves with a piecewise-linear, concave cost function
(similar to Figure 1) containing three segments. Effectively, these three segments (or
concentrator "types") corresponded to three different technologies, and provided a
reasonably close approximation to the actual cost envelope (the actual cost envelope
contained some minor discontinuities at the breakpoints due to capacity constraints).
For the test problems, we used the same concentrator cost structure at all nodes
(though our algorithm can handle differential costs) except the root node (we set the
concentrator costs at this node to 0). Our test problems did not contain any special
node-to-concentrator connection costs (i.e., Aij = 0 for all node pairs i and j).
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6.2 Initial Computational Results

6.2.1 Lagrangian results for the Basic Model [LAN1

We initially implemented the Lagrangian/dynamic programming algorithm
for the basic model [LAN1] in FORTRAN on an IBM 3083. The implementation
incorporated: (i) the problem preprocessing method described in Section 4.1, and (ii)
the local improvement heuristic described in Section 3.3. This initial approach did
not incorporate our coefficient reduction method (of Section 4.2), or any of the valid
inequalities described in Section 5. For all our tests, we initialized all Lagrange
multipliers to zero, used an initial step size multiplier value (see, for example, Held
et al. [1974]) of 2.0, and permitted a maximum of 100 subgradient iterations (the
procedure might terminate earlier if the percentage gap between the upper and lower
bounds reduces to a very small fraction).

Table 2 summarizes the computational results of this initial solution
approach for the three test problems. (The upper and lower bounds reported in this
table are scaled; for each test problem, we express the bounds as a % of the optimal LP
value for the basic model reported in Table 3.) We measured preprocessing
effectiveness by the proportion of assignment variables xij that the preprocessing
technique described in Section 4.1 was able to eliminate (by discovering that node i
cannot home on node j in any optimal solution). Note that the total number of
possible assignments indicated in Table 2 excludes root node assignments (the root
node always homes on itself), and assignments to dummy nodes (obtain by splitting
nodes with more than two successors). To evaluate the performance of the
Lagrangian algorithm, we used a % gap statistic, defined as the difference between
the best upper and lower bounds as a percentage of the lower bound. The CPU times
reported in Table 2 correspond to the total computational time (in seconds) on the
IBM 3083, including the time required for input and initialization, preprocessing,
subgradient optimization, and the local improvement heuristic.

The % gaps range from 64% to 124%, and the algorithm required
approximately 8 seconds for the smaller problems (Problems 1 and 2), and 22 seconds
for the 41-node problem (Problem 3). To evaluate the effectiveness of preprocessing,
we performed a separate set of computational experiments (not reported here)
without the provisions for variable elimination. We found that, for Problem 3, the
preprocessing procedure was quite effective in reducing the gap between the upper
and lower bounds. For this problem, the % gap without preprocessing was around
160%, and with preprocessing the gap was 124% gap; we achieved this reduction in
the % gap through improvements in both the upper and lower bounds. For
Problems 1 and 2, the improvement in the % gap due to preprocessing was only
marginal. For all three test problems, the preprocessing procedure did not require
more than 0.1 seconds of CPU time.

-34-



The large % gaps between the upper and lower bounds reported in Table 2
suggested that either: (i) we might be able to find much more effective solutions
(with costs reduced by as much as half), i.e., our Lagrangian-based heuristic solution
procedure was not very effective, or (ii) the heuristic solutions were close to optimal,
but the algorithm could not establish their near-optimality because of weak
Lagrangian lower bounds for the basic model. To determine the underlying cause of
these large gaps, we solved the test problems using a general-purpose linear and
integer programming package. Our results confirmed the latter conclusion, i.e.,
although the heuristic procedure generated good solutions, the basic lower bounds
were very weak and did not provide good performance guarantees.

6.2.2 Linear and Integer Programming Solutions for Basic Model

To generate a benchmark for the bounds and computation times, we
attempted to solve the integer programming formulations as well as the linear
programming relaxations for all three test problems. We used LINDO, a commercial
mathematical programming package, running on the IBM 3083 mainframe, to solve
the IP and LP relaxations.

The formulation that we used in these tests was a slight variation of the basic
model [LAN1]. Recall that each of our test problems considers three possible
concentrator types at every node, corresponding to the three segments of the concave
concentrator cost function. Correspondingly, our formulation uses disaggregated
node-to-concentrator assignment variables xijm with m=1, 2, or 3; the variable xijm
equals 1 if node i homes on a type m concentrator at node j, and is 0 otherwise. To
reduce the number of variables, we used xjjm in place of separate concentrator
installation variables jm; consequently, our formulation did not contain the
concentrator location constraints (2.3).

Since we were considering the basic model without the valid inequalities
described in Section 5, our formulation used undirected cable installation and
expansion variables zij and sij; the directed version of these variables strengthens the
LP relaxation only when we incorporate the additional assignment-forcing cable
installation inequalities. Consequently, the formulation contains only "undirected"
cable forcing constraints (2.6), and does not require the arc orientation constraints
(2.7). Also, our problem formulation did not contain the reduced cable expansion
bounds Mij obtained using the coefficient reduction method described in Section 4.2.
However, we used the results of preprocessing to reduce the formulation size.
Preprocessing eliminated some assignment variables, some cable installation and
expansion variables (e.g., if preprocessing reduced the maximum possible flow on an
arc below its current capacity), and some contiguity, cable capacity, and cable forcing
constraints (for example, we omitted contiguity constraints (2.4) corresponding to i-
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to-j assignments that preprocessing eliminated.) Also, our formulation did not
contain assignment variables corresponding to the root node (since the root node
must always home on itself).

We solved two versions of the basic model-our original formulation with
backfeed, and a restricted version without backfeed. Prohibiting backfeed reduces the
number of assignment variables (and constraints) since a node i can now home only
on nodes j lying on the path Pi0 connecting node i to the root node; this restriction
also has the potential of eliminating some cable expansion variables (and
constraints) since the maximum possible flow could exceed existing capacity on
fewer edges. Consequently, the "without backfeed" problem formulation contained
fewer variables and constraints than the original, unrestricted version. Since
prohibiting backfeed restricts the space of feasible solutions, we expect the LP lower
bound to be better (i.e., larger) without backfeed; furthermore, the best integer
solution with backfeed might be cheaper than the optimal without-backfeed
solution.

Table 3 contains statistics on the reduced problem dimensions (number of
integer and continuous variables, and number of constraints) after preprocessing,
with and without backfeed, for each test network. The formulation sizes varied
from 364 variables and 320 constraints to 2908 variables and 2830 constraints. For
each network, Table 3 reports the LP and IP values for both versions of the
formulation. (The optimal LP value of the unrestricted formulation serves as the
reference point for scaling all of the lower bounds and solution values for a given
network.)

We were able to optimally solve all 6 linear programming relaxations, and 5
out of the 6 integer programs. For Problem 3 with backfeed, the branch-and-bound
procedure did not reach optimality even after an overnight run exceeding 10 hours
of (elapsed) computer time. As expected, the LP values without backfeed exceed the
with-backfeed values-by 12%, 3.6%, and 8%, respectively, for the three problems.
However, the optimal integer solutions were the same, i.e., the without-backfeed
solutions were also optimal for the with-backfeed formulations. Also, for Problems
1 and 2, the optimal integer solutions were the same as the best Lagrangian-based
heuristic solutions (see Table 2); and, for Problem 3, the Lagrangian-based solution
was only 2.3% more expensive than the best IP value. Finally, the Lagrangian lower
bounds were close to the LP lower bounds (with backfeed). For the three problems,
the LP lower bounds exceeded the Lagrangian lower bounds by only 0.75%, 3.85%,
and 5.09% (as a % of the LP lower bounds). (Recall that, for our relaxation scheme of
the basic model, the Lagrangian lower bound can never exceed the LP lower bound.)
However, the computation time to solve even the LP relaxation was, on average,
three times the CPU time required for the entire Lagrangian procedure. Solving the
IP by branch and bound required thirty five and one hundred times the CPU time
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required by the Lagrangian method to generate near-optimal solutions to two
problems; and, after at least three hundred times the CPU time on the third problem,
the branch and bound method did not reach optimality.

The LP and IP results confirm that (i) the Lagrangian-based heuristic generates
near-optimal solutions, and (ii) the LP (and, hence, the Lagrangian) lower bounds for
the basic model are weak, i.e., these bounds do not provide a reliable measure of the
quality of the heuristic solutions. This observation led to our study of various
modeling and algorithmic enhancements described in Sections 4.2 and 5 to
strengthen the relaxation and generate better lower bounds.

6.3 Improved Computational Results

We implemented the enhanced version of our algorithm in the C
programming language on a Macintosh II computer (with a Math co-processor).
This final implementation incorporated the following features:

(i) initial heuristic solution, using local improvement on the "centralized"
and "completely distributed" starting solutions;

(ii) problem preprocessing to eliminate variables;
(iii) the Lagrangian-based heuristic with local improvement;
(iv) coefficient reduction to reduce the magnitude of the cable expansion

bounds;
(v) assignment-forcing arc installation and expansion inequalities;
(vi) bottleneck-arc installation and expansion inequalities; and,
(vii) subtree-splitting arc installation and expansion inequalities.

We used the same subgradient settings described in Section 6.2. Table 4 contains
summary statistics on the the initial upper bound (i.e., the lower of the two cost
values corresponding to the improved solutions derived from the "centralized" and
"distributed" starting solutions), the (final) best upper and lower bounds, the % gap,
and the total computation time (elapsed time on Mac II, including time for
input/output, initialization, heuristic, and subgradient iterations) for the three test
problems. Again, we have scaled all the bounds for each problem with respect to the
optimal LP value.

Comparing the results of Table 2 and Table 4 highlights the dramatic
reduction in the % gaps resulting from our enhancements-from 64%, 81%, and
124% to 1.2%, 3.2%, and 7.0%, respectively, for Problems 1, 2 and 3. As we mentioned
previously, even our basic algorithm heuristically generated the true optimal
solution for Problems 1 and 2. The enhanced algorithm also finds these same
solutions. For Problem 3, however, the enhancements to the Lagrangian lower
bounding procedure have also led to a modest improvement (1.6%) in the best upper
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bound; and, this improved Lagrangian-based heuristic solution is only 0.66% more
expensive than the best solution found using LINDO.

The order-of-magnitude reduction in the % gaps is mainly due to the vastly
improved lower bounds. The new Lagrangian lower bounds are 60.85%, 68.52%, and
95.36% larger than the optimal LP values for the basic [LAN1] model corresponding
to the three test problems. These results suggest that, even though the local access
network planning formulation has numerous other valid inequalities, the
cumulative effect of the few classes of cuts that we selected and implemented far
exceeds the potential effectiveness of the remaining, more complex inequalities.

Although the computation times reported in Tables 3 and 4 are not
commensurate, we estimate that classical branch and bound methods for solving the
integer programs optimally might require several orders of magnitude more
computation time than the composite Lagrangian relaxation algorithm. We make
two final observations regarding the heuristic procedures:

(i) For Problem 1, our initial heuristic improvement method identified the
optimal solution. For Problems 2 and 3, however, the Lagrangian-based
heuristic improved upon the initial upper bound significantly (by 19.7% and
15.82%), indicating that, even with weak lower bounds, the Lagrangian
relaxation procedure can serve as a valuable heuristic method since it
generates useful starting solutions for local improvement.

(ii) Neither the "centralized" nor the "distributed" concentrator location strategy
consistently provides better starting points for initial local improvement. For
Problems 1 and 3, the centralized strategy produced a better locally improved
initial heuristic solution; the distributed strategy provided a better starting
point for Problem 2.

6.4 Computational Results with Demand and Cost Variations

Having established the effectiveness of the enhanced Lagrangian-based
algorithm in finding good upper and lower bounds for the three test problems, we
wished to explore the method's robustness as the demand and cost parameters
changed. For this purpose, we applied the algorithm to problem variations created
by scaling the input data, holding the topology of the three networks fixed. In
particular, we tested the following scaled versions of each network:

(i) Demand variation: We considered scenarios with uniformly lower or
higher demand values obtained by multiplying the original demand at
each node by a common scale factor. We tested three demand scale
factors: 0.5, 2.0, and 5.0;
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(ii) Cable expansion cost variation: To test robustness with respect to cable
expansion costs, we uniformly increased or decreased the variable cable
expansion cost by a common scale factor for all edges. We tested two
values of the variable cost scale factor: 0.5 (lower variable cost), and 2.0
(higher variable cost); and,

(iii) Concentrator cost variation: To test robustness with respect to
concentrator costs, we increased or decreased the fixed concentrator cost
(for every concentrator type) by a fixed amount at all locations. For our
tests, we considered a concentrator fixed cost increase (or decrease) equal
to approximately 50% of a type 2 concentrator's fixed cost.

Table 5 contains the computational results-% problem reduction, % gap, and
computation time-for the 6 variations corresponding to Problem 1, 2, and 3. For
ease of comparison, we also report the computational statistics for the base case (i.e.,
the original problem); in terms of our scaling parameters, this case corresponds to a
demand scale factor of 1.0, cable expansion variable cost scale factor of 1.0, and no
concentrator fixed cost addition or reduction.

The results shown in Table 5 are encouraging; for 19 out of the 21 problem
instances, the % gap between the upper and lower bounds is less than 8%. The
trends in the best expansion strategies are consistent with our expectations. For
instance, as the demand increases, the number of concentrators increases. Because of
economies of scale, concentrators are more cost effective at larger throughput values;
indeed, at extremely high demand values (relative to the existing cable capacities),
we expect a completely "decentralized" strategy with a concentrator at each node.
Similarly, as the variable cable cost increases (relative to the fixed cable costs, and to
the concentrator costs), the expansion plans tend to replace cable expansions with
additional concentrators. The opposite effect occurs as the fixed concentrator costs
increase.

Table 5 also illustrates that, as the demand scale factor increases, the % gap
initially increases and then declines. Two factors contribute to this behavior: First,
at very low demand values, the system requires no expansion (cables or
concentrators); therefore, the upper and lower bounds are both zero, resulting in a
zero gap. At the other extreme, with very high demands, the existing cable capacities
are negligible compared to the nodal demands. Consequently, the total cost of a
"new" network, ignoring existing cable capacities, should not differ appreciably from
the true optimal cost of the capacitated problem. Thus, the intermediate demand
values are the most challenging problems for the Lagrangian relaxation procedure.
The second reason for performance improvements at higher demand values is the
improved effectiveness of the preprocessing (problem reduction) method. As the
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nodal demands increase, because of the economies of scale in concentrator costs,
remote homing (i.e., homing i on another node j) becomes less cost-effective, and so
the problem reduction procedure becomes more effective. Consequently, the
formulation becomes tighter (and smaller)-with fewer cable installation and
expansion variables (zij can be fixed to either 0 or 1 a priori), and lower values of the
cable expansion bound Mij-resulting in better algorithmic performance.

In general, Table 5 shows that, as the cable and concentrator costs increase, the
% gap decreases. Again, the increasing effectiveness of preprocessing, and the
decreasing relative importance of ignoring existing cable capacities explains this
behavior.

7. Concluding Remarks

This paper has attempted to integrate three essential ingredients of
contemporary applied integer programming research:

(1) an important practical application: Many changes in the
telecommunications industry-technological advances, explosive growth,
capital intensive facilities, and increasing competition-have raised
renewed opportunities for the use of sophisticated, optimization-based
decision support techniques for telecommunication network planning;

(2) decomposition methodology: Since its first successful application for
solving large-scale traveling salesman problems (Held and Karp
[1970],[19711), Lagrangian relaxation has become a pervasive technique for
exploiting special structure and solving difficult, large-scale discrete
optimization models; and

(3) model improvements based on polyhedral combinatorics: Motivated by
their marked success for solving large-scale traveling salesman and many
other problems, polyhedral techniques have become an essential building
block for designing state-of-the-art algorithms for solving several classical
integer programming problems.

Our challenge was to develop an effective methodology for solving the important,
practical problem of planning for local access network expansion. Decomposition
and polyhedral techniques were natural choices for developing this methodolgy.

In this paper, we have demonstrated how to exploit the problem's special tree
structure, and how to integrate formulation enhancements (i.e., valid inequalities to
strengthen the problem formulation) with Lagrangian relaxation. Our
computational results establish the effectiveness of this combined approach for
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solving practical problem instances. This project also serves to highlight model-
building issues such as the tradeoff between model accuracy and solution
effectiveness. For instance, telecommunication planners might not explicitly reveal
assumptions such as the contiguity property of expansion plans. However, they
readily endorsed this assumption once we identified its crucial impact on our
algorithmic development. Similarly, analysts and practitioners must evaluate the
modeling approximation for concentrator costs (as continuous, piecewise-linear
concave functions of throughput) in terms of its potential impact on both the
solution quality and the computational burden imposed by a more accurate model.

While we believe that telecommunication planners will find direct
application for our model and solution methodology, we also recognize some of its
shortcomings. In particular, we have considered a static or single-period model that
determines the optimal overall expansion strategy to meet the telecommunication
demands at the terminal year of the planning horizon. Our model does not address
the issue of how to sequence the expansions, i.e., what facilities to install during each
period of the planning horizon. To identify the optimal network "evolution" plan,
we must consider a multi-period model with separate facility expansion variables for
each period of the planning horizon. This model would use demand and cost
information for each period, and make tradeoffs between (i) installing facilities in
anticipation of future demands to exploit economies of scale, and (ii) expanding
capacities just-in-time to take advantage of decreasing (discounted) costs for future
investments. In spite of this shortcoming, we believe that the single period model is
practically useful. First, because of its larger dimensionality and temporal linkages,
the multi-period model is much more difficult to solve than its single-period
counterpart. Furthermore, the single-period model might serve as the first step in a
hierarchical planning procedure in which the planner first decides the target
network configuration at the end of the planning horizon, and then determines the
optimal evolution plan that reaches this eventual target while meeting the demand
in each intermediate period. Alternatively, analysts could use the single-period
model, possibly in some modified form, to plan progressive facility expansions; for
instance, we could apply it sequentially or iteratively to successive time periods of
the planning horizon. Finally, we might consider a decomposition approach for the
multi-period model, say, a Lagrangian relaxation procedure that dualizes the
constraints linking concentrator and cable capacities across successive time periods.
In this scheme, the subproblems reduce to single period expansion planning
problems that could be solved using the model described in this paper. A
comparative evaluation of these and other multi-period planning strategies will be
the focus of a future paper.

Modeling multiple services is another potentially fruitful area for
investigation, especially in view of the projected increase in the telecommunication
industry's diversity of services. Our single service model applies to multi-service
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contexts whenever we can express the demands for different services (such as voice,
data, and video) in commensurate units, and different services do not impose
unique processing requirements or require different transmission media. However,
our model cannot accomodate situations when different services have varying
transmission and processing requirements. Since practitioners have not yet
implemented fiber-optic transmission, video services, and other advanced features
(e.g., intelligent routing, local database query, directory assistance) except in a few
experimental networks, analysts still face a great deal of uncertainty concerning how
a multiple services model might possibly differ from the basic single (aggregate)
service model. Finally, with the projected transition from copper to fiber optic-based
transmission in the local network, issues of reliability and connectivity might
become more dominant than, or at least stand on equal footing with, capacity and
cost considerations. In particular, because of the extremely high bandwith and
vulnerability of fiber-optic networks, the focus of modeling efforts for the next
generation of local access networks might move away from minimizing fixed plus
variable expansion cost for a tree network to configuring a reliable network at
minimum total fixed cost. Some recent research (e.g., Groetschel and Monma [1988])
has shed some light on these issues.

Acknowledgments: We wish to thank Marcia Helme, Jeffrey Musser, and Alexander
Shulman for their valuable insights and modeling contributions, and for providing
the linkage with network planners in the field. Much of Richard Wong's work was
completed at Purdue University, West Lafayette, Indiana.
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Appendix 1

Enhanced Dynamic Program [DP2]
for the Uncapacitated Local Access Network Subproblem

with Valid Inequalities

Notation

Problem parameters

d i = demand at node i
Bij = existing capacity of edge (i,j)
Gij = cable fixed cost on edge (i,j)
eieij = cable variable cost on edge (i,j)
Fj = concentrator fixed cost at node j

Cj = concentrator variable cost at node j
Aij = connection cost for assigning node i to a concentrator at node j
Mij = cable expansion bound for arc <i,j>

RWij = Lagrange multiplier for edge (i,j)'s cable capacity constraint

Network descriptors

T = given tree network
i = node index, i = 1,2,..n, in increasing order of node level;

i = 0 is the root node
P.Pij = path from node i to node j
kij = node i's neighbor on the path Pij
Lev(i) = level of node i, i.e., number of arcs on the path Pi0
Pi = predecessor of node i; Pi < i
ri = right successor of node i; ri > i
Ii = left successor of node i; li > i
T(i) = subtree rooted at node i after edge (i,pi) is deleted from T

DP parameters

1j1 = total demand of all nodes in T(i)
dmin i = smallest demand among all leaf nodes of T(i)
fminij = min. flow on arc <i,j>
fmaxij = max. flow on arc <i,j>
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Aij(g) = assignment cost for assigning node i to node j in ULAN1 (g)

= Aij + di( k )+d d i c j (1)
(k,l) Pij

Aik = min {Mik, fmaxik-Bik}

bik = equivalent fixed cost for arc <i,k>

A Gik + min (eik-ik) [fminik-Bik], (eik-Iik) ik if fminik>Bik
0 if fmaxik < Bik; and,

Min (0, Gik + (eik-Rik) ik otherwise. (2)

dij = Adjusted homing cost for assigning node i to node j

= Aij(g) + bi,kij if i j, and

Aij() + Fj ii N + F if i = j. (3)

DP recursive values

EHC(i,j) = total (cable + concentrator) cost of serving all nodes in T(i)
when all nodes in T(i) home on j o T(i)

PHC(i,j) = total cost of serving all nodes in T(i) when node i homes on
node j, and T(i) contains at least one concentrator

TC(i) = minimum total cost of serving all nodes in T(i) using only
internal concentrators, i.e., node i homes within T(i)
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The Enhanced Dynamic Program [DP2]

For i = n,n-l,...,O
if i is a leaf node,

for all j E N,
ifj i,

set EHC(i,i) e- o0;
if j i,

fminipi = fmaxip i = Di;

calculate bipi and dij using eqn. (2) & (3);

set EHC(i,j) - dij;

PHC(i,i) - dii

TC(i) - PHC(i,i)

else
for k = n, n-1,...,i+1, with k e T(i),

for j = n, n-1,...,i, with j E T(i) and i E Pkj,

fminkpk = fmaxkpk = Dk;

calculate bkpk and dkj using eqn. (2) & (3);

set EHC(k,j) - dkj + EHC(rk,j) + EHC(Ik,j).

next j;

for j = n, n-l,...,i, with j E T(i) and i e Pkj(Case 1),

calculate PHC(k,j):
for cases 1.2.1, 1.2.2, 1.2.3, 1.3.1, 1.3.2, 1.4.1, 1.4.2, 1.5
(i.e., possible homing patterns for rk and Ik ),

compute fminkpk and fmaxkpk using Table 1;

calculate bkpk and dkj using eqn. (2) & (3);

Case 1.2: rk and Ik home on j;

PHC 1.2.1(k,j) - dkj + PHC(rk,j) + PHC(lk,j);

PHC1.2.2(k,j) dkj + EHC(rk,j) + PHC(lk,j);

PHC1.2.3(k,j) - dkj + PHC(rk,j) + EHC(Ik,j);

Case 1.3: rk homes on j; Ik homes within T(li);

PHC1.3.1 (k,j) - dkj + EHC(rk,j) + TC(Ik);

PHC1.3.2 (k,j) +- dkj + PHC(rk,j) + TC(lk);
Case 1.4: rk homes within T(rk); k homes on j;

PHC1.4. 1(k,j) - dkj + TC(rk) + EHC(lk,j);

PHC1.4.2(k,j) - dkj + TC(rk) + PHC(lk,j);

Case 1.5: rk and Ik home within T(rk) and T(lk);
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PHC1 .5(k,j) - dkj + TC(rk) + TC(lk);

PHC(k,j) - Min {PHC 1.2.1(k,j), PHC1.2.2(k,j), .......

PHC1 4.2(k,j),PHC 1
.
5(k,j)).

next j;

i,

for j = n, n-l, ...., i+l, with j E T(r i) (Case 2),
calculate PHC(i,j):

for cases 2.1.1, 2.1.2, 2.2
(i.e., possible homing patterns for Ii )
compute fminiri and fmaxir i using Table 1;

calculate bri and dij using eqn. (2) & (3);

Case 2.1: Ii homes on j;

PHC2.1.1(i,j) dij + PHC(ri,j) + EHC(i,j )

PHC2.1.2 (i,j) dij + PHC(ri,j) + PHC(li,j)
Case 2.2: Ii homes within T(li);

PHC2.2 (i,j) - dij + PHC(ri j ) + TC(li);

PHC(i,j) - Min {PHC2 .l.1(i,j),PHC 2.1.2(i,j),PHC 2 .2(i,j)}.
next j;

for j = n, n-l, ...., i+l, with j E T(Ii) (Case 3),
calculate PHC(i,j):

for cases 3.1.1, 3.1.2, 3.2
(i.e., possible homing patterns for ri),
compute fminii and fmaxili using Table 1;

calculate bli and dij using eqn. (2) & (3);

Case 3.1: ri homes on j;

PHC3.1.1(i,j) dij + EHC(ri,j) + PHC(li,j);

PHC3.1. 2(i,j) - dij + PHC(ri j) + PHC(li,j);
Case 3.2: r i homes within T(ri);

PHC3 .2(i,j) - dij + TC(ri) + PHC(Iij);

PHC(i,j) - Min {PHC 3 .1.1 ,PHC3.1.2,PHC 3.2}
next j;

for j = i (Case 4),
calculate PHC(i,i):

Case 4.1: ri and Ii home on i; T(r i) and T(li) each
contain either 0 or > 1 conc.
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PHC4.1.1(i,i) dii + EHC(ri,i) + EHC(li,i);

PHC4 .1.2(i,i) - dii + EHC(ri,i) + PHC(li,i);

PHC4.1.3(i,i) dii + PHC(ri,i) + EHC(li,i);

PHC4.1. 4(i,i) - dii + PHC(ri,i) + PHC(li,i);

Case 4.2: ri homes on i; li homes within T(li); T(r i)

contains 0 or > 1 conc.

PHC4.2.1(i,i) - dii + EHC(ri,i) + TC(li);

PHC4.2.2 (i,i) - dii + PHC(rii) + TC(li);

Case 4.3: ri homes within T(ri); li homes on i;
T(li) contains 0 or > 1 conc.

PHC4.3.1(i,i) dii + TC(ri ) + EHC(li,i);

PHC4.3.2(i,i) * dii + TC(ri) + PHC(lii);

Case 4.4: r i and li home within T(r i) & T(li)

PHC4. 4(i,i) - dii + TC(r i) + TC(li);

PHC(i,i) - Min (PHC4 .1.1 (i,i),PHC4 .1.2 (ii), ..... , PHC4 .4 (i,i)}.

TC(i) *- Minimum PHC(i,j)
je T(i)

next i;
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Table 2

Computational Results for the
Basic Lagrangian Relaxation Scheme

(with Preprocessing and the Local Improvement Heuristic)

Statistic Problem 1 Problem 2 Problem 3

Number of nodes 27 25 41

No. of possible assignments* 676 441 1521
% reduction in assignment variables 25% 24% 30%

Best Upper Bound using Lagrangian- 162.72 173.91 212.40
based heuristic

Best Lagrangian Lower Boundt 99.25 96.15 94.91

% gap** 64% 81% 124%

CPU time (seconds on IBM 3083) § 8.4 secs 6.8 secs 22.2 secs

Total number of possible assignments of nodes to concentrator locations, excludes assignments
to dummy nodes and from root node.

t All bounds for each problem are scaled with respect to the optimal value of the LP
relaxation (Table 3).

% gap = (Best Upper Bound - Best Lower Bound) /(Best Lower Bound)

§ CPU time includes time for input and initialization, subgradient iterations, and the local
improvement heuristic.



Table 3
Linear and Integer Programming Results using LINDO

for the Basic Model [LAN1]

§ The number of variables and constraints shown in the table correspond to the compact
formulation described in Section 6.2.2, after preprocessing eliminated some assignments.

Objective function values for each problem are scaled with respect to the optimal value of
the LP relaxation with backfeed.

t We terminated the integer program for Problem 3, without reaching optimality, after 10
hours of elapsed time on the IBM 3083. The table represents the value of the best incumbent
at termination as the optimal value of the integer program.

Problem 1 Problem 2 Problem 3
# Nodes 27 25 41

# Variables§: Integer/Continuous 814/17 911/18 2870/38
# Constraints § 781 889 2830

Optimal Value*
* LP Relaxation 100.00 100.00 100.00
* Integer Program 162.72 173.91 207.70t

CPU secs (on IBM 3083)
* LP Relaxation 14.2 24.3 72.9
* Integer Program 307.8 691.8 t

No. of Iterations
* LP Relaxation (# pivots) 384 1058 1295
* Integer Prog. (# pivots/branches) 47/15898 89/56239

Without Backfeed

# Variables§: Integer/Continuous 421/5 352/12 765/24
# Constraints§ 376 320 711

Optimal Value*
* LP Relaxation 111.98 103.63 108.02
* Integer Program 162.72 173.91 207.70

CPU secs (on IBM 3083) for 2.8/36.1 4.2/72.4 6.2/2862.6
LP Relaxation/Integer Program



Table 4

Computational Results for the
Enhanced Lagrangian Relaxation Scheme

% reduction = No. of assignments eliminated + total no. of possible assignments (excluding
assignments to dummy nodes and from root node).

t All bounds for each problem are scaled with respect to the optimal value of the LP relaxation
with backfeed (Table 6).

% gap = (Best Upper Bound - Best Lower Bound) /(Best Lower Bound)

§ Computation (elapsed) time includes time for input and initialization, heuristic, and
subgradient iterations.

Statistic Problem 1 Problem 2 Problem 3

Number of nodes 27 25 41

% reduction in assignment variables* 25% 24% 30%

Intial Upper Bound t 162.72 208.19 242.16

Best Upper Bound using Lagrangian- 162.72 173.91 209.08
based heuristics

Best Lagrangian Lower Boundt 160.85 168.52 195.36

% gap** 1.2% 3.2% 7.0%

Computation (elapsed) time on 285 secs 223 secs 879 secs
Mac II §
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Figure 1
Piecewise Linear, Concave Cost Function
for Cable Expansion and Concentrators
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Figure 2
Reducing the Maximum Cable Expansion Parameter
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