
VIII. AIR NAVIGATION*

Prof. L. J. Chu Prof. R. B. Adler

Prof. S. J. Mason S. J. Fricker

The major work of setting up the punched cards for the case of aircraft flying without

enroute control has been accomplished. The formulation of this problem was described

in the Quarterly Progress Report, April 15, 1950 as Case (1). A few of the results which

are currently available will be presented here to illustrate the general form of the com-

puted data, and to indicate some of the preliminary conclusions.

The histograms shown in Figs. 1, 2 and 3 represent sample enroute deviation statis-
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probability of any particular enroute deviation.

0.14_ Those labelled "From Tables" summarize the

o 0.12 - frequency distributions actually obtained in a

o0 sample of 1000 numbers from tables constructed
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_ 00o6 for each case. The deviations are quantized and
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004 normalized in units of the minimum time separa-

0.02 - tion (to) between consecutive landings. All other

0 I 2 3 4 5 6 results are therefore also quantized and normal-
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Fig. VIII-1 Frequency distribution of aTo render all numbers positive, the "on time
enroute deviations (box car, S = 6).

position of a plane has been set at the left end of

the distribution during the computation. In all

places where it affects the results, this origin

has been shifted back to the center subsequently,

as shown by the designations "early" and "late"

on each figure. The parameter S represents the

normalized spread of these enroute deviation

statistics. The maximum amount by which a

plane can be early or late is therefore S/2 units.

There appears to be a slight tendency toward

lateness in the samples for S = 6. This is shown

on the figures by the fact that all the curves are

skewed to the right of center. The average value,
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Fig. VIII-2 Frequency distribution of in Fig. 1, 6 percent above in Fig. 2, and 2 per-

enroute deviations (triangular, S = 6). cent above in Fig. 3.

*The work reported in this section is supported in part by the Air Navigation Develop-
ment Board of the Department of Commerce.
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The normalized stack delay (T/t ) is com-

puted in sequence for 1000 planes scheduled to

arrive at integer multiples of to but delayed en-

route according to the deviation statistics. For

values of traffic parameter E less than unity,

blanks are left in the schedule at random to ob-

tain the proper ratio of average arrival rate to

acceptance rate. Figures 4, 5 and 6 show the

average stack delay as a function of E for all the

runs which have been completed to date. The

figures refer respectively to the box car, trian-

gular and "gauss" enroute deviation statistics,
ENROUTE DEVIATION (r/to)

with S = 6, 12, 18, 24 and E = 1.0, 0.95, 0.9,
Fig. VIII-3 Frequency distributionof enroute deviation (gausdistribution , 6) 0. 8, 0. 5. The values of E given above, and
of enroute deviation (' gauss, S = 6)

quoted later, are nominal. Because the method

used to write the time-tables involves the use of a random number table to drop out a

certain fraction of planes, the actual values of E obtained in each case were 1. 000, 0. 958,

0. 907, 0. 810, 0. 505. These correspond to the calculated points shown on Figs. 4, 5 and

6. For comparison purposes the curve of average delay vs. E for a Poisson distribution

of arriving planes is also given (1). It is clear that even for quite large values of S the

average delay lies considerably below that given by the Poisson assumption. The funda-

mental reason for this may be understood from the fact that no stack greater than S + 1

planes can ever occur under the assumption of a finite spread S. The probability that

any particular number of planes will arrive in a unit time interval therefore depends

heavily upon the height of the stack at the beginning of the interval. Whenever the arrival

probabilities are assumed to be independent of stack conditions, it can be shown (1, 2)

that in statistical equilibrium infinite average delays and average stack heights will re-

sult when E = 1. 0. The Poisson arrival distribution is merely illustrative in this respect.

When planes have an enroute deviation statistic with finite spread S, the results of

any calculation of stack delays for a sample of 1000 planes will depend to some extent

upon the condition of the stack when the first plane arrives. It has been shown that for

S,< 0. 9 this dependence is, at worst, not very important. The calculations for E = 0. 5,

0. 8 and 0. 9 have therefore been carried out starting from a zero stack when the first

plane arrives. The cases E = 0. 95 and 1.00 have, on the other hand, been calculated

under the most pessimistic assumption, namely that the stack already has S planes in it

when the first scheduled plane arrives. In the particular case E = 1. 00 it can be shown

theoretically that under these starting conditions any symmetric deviation statistics must

lead to an average stack delay of S/2 (for an infinite sample). The curves of Figs. 4, 5

and 6 corroborate this conclusion. In addition they show that for a given value of the
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Fig. VIII-4 Average stack-delay vs.
for box car enroute errors.
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traffic parameter Fig. VIII-5 Average stack-delay vs.
for triangular enroute errors.
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Fig. VIII-6 Average stack-delay vs.
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Fig. VIII-7 Frequency distribution
of stack-delay (S = 6, E = 1. 00).
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Fig. VIII-8 Frequency distribution
of stack-delay (S = 6, E = 0. 95).
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Fig. VIII-9 Frequency distribution
of stack-delay (S = 6, E = 0. 90).
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spread S, the average delay is not very much affected by the detailed shape of the devia-

tion distribution. There is, nevertheless, a slight tendency toward reduction of the

average delay as the deviation statistics become more peaked. When F < 0.8, the

average delay also becomes quite independent of S, provided S exceeds about 12.

The average stack delay is not the only property of the traffic which deserves con-

sideration. In Figs. 7, 8 and 9 are shown examples of the relative frequencies with

which the values of (T/t ) occur in sample runs of 1000 planes each. The minimum stack

delay is of course zero, and the maximum is always S (corresponding to a maximum

stack of S + 1 planes). Only the case S = 6 is shown.

Figure 7 corresponds to E = 1. 00. It can be shown that the distributions should all

be symmetric about S/2 (the average value), and hence that the average and the most

probable delays should be identical. The slight skewing toward delays less than S/2 in

these particular cases corresponds to the tendency for late arrivals illustrated by Figs.

1, 2 and 3. Figure 8 applies to E = 0. 95. Already the most probable delay is reduced

from 3 to 1.

In Fig. 9, the value of E has been reduced to 0. 9, but the most probable delay is still

unity.

From the three figures referred to above, it appears that:

a. The shape of the enroute deviation statistics is of relatively minor importance

with respect to the delay distribution, although there is a general tendency to reduce the

frequency of high delays when the deviation statistic becomes more peaked.

b. Reduction of E rapidly reduces the most probable delay and decreases the fre-

quency of larger ones. The frequency of small delays (zero, for example) increases

quite rapidly as E is reduced. Because the total delay spectrum must have unit area, the

frequency of the most probable delay remains fairly constant until that delay becomes

zero. Eventually, of course, the probability of zero delay must approach unity as E - 0.

Additional delay distributions for other values of S and E are available on the punched

cards, but have not yet been analyzed. Detailed machine programs have been written for

a further extension of all of these results. These extensions will be needed in connection

with the enroute control problems outlined under Case (3) in the previous report. Gen-

eral programs have also been formulated for the Case (3) enroute control procedure it-

self, using one and two intermediate control points. They will shortly be reduced to de-

tailed machine programs. Along with these computations, some theoretical work has

been carried on continuously in order to check the results wherever possible. The for-

mulation of Case (4) - discrete control with rescheduling - will begin in the near future.
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