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Abstract

We consider the analysis of linear programming relaxations of a large class of combinatorial

problems that can be formulated as problems of covering cuts, including the Steiner tree, the

traveling salesman, the vehicle routing, the matching, the T-join and the survivable network

design problem, to name a few. We prove that all of the problems in the class satisfy a deep

structural property, the parsimonious property, generalizing earlier work by Goemans and Bert-

simas [3]. We identify two set of conditions for the parsimonious property to hold and offer

two proof techniques based on combinatorial and algebraic arguments. We examine several con-

sequences of the parsimonious property in proving monotonicity properties of LP relaxations,

giving genuinely simple proofs of integrality of polyhedra in this class, offering a unifying under-

standing of results in disjoint path problems and in the approximability of problems in the class.

We also propose a new proof method that utilizes the parsimonious property for establishing

worst case bounds between the gap of the IP and LP values. Our analysis unifies and extends

a large set of results in combinatorial optimization.
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1 Introduction

We consider the following class of problems defined on a graph G = (V, E) and described by the

following integer programming formulation

IZf(D) = minimize EeE CeXe

subject to eE6(i) Xe = f(i), i E D C V

Eee6(S) Xe > f(S), S C V

Xe E Z+,

where f : 2v - Z+ is a given set function, 6(S) = {e = (i,j) E El i E S, j E V \ S}. By

selecting different set functions f(S) and different sets D we can model a large class of combinatorial

problems, including the Steiner tree, the traveling salesman, the vehicle routing, the matching, T-

join and survivable network design problem, to name a few.

Let IPf(D) be the underlying feasible space. We denote the LP relaxation as Pf(D), in which

we replace constraints Xe E Z+ with Xe > 0. We denote the value of the LP relaxation as Zf (D).

Goemans and Bertsimas [3] studied the survivable network design problem, in which the objective

is to design a network at minimal cost that satisfies connectivity requirements (for each pair (i. j)

of nodes in V, the solution should contain at least rij edge disjoint paths) and considered an integer

programming formulation of the type IPf(D) with f(S) = max(ij)E(s) rij, D = 0. They showed

the following property, which they call the parsimonious property, which in our notation can be

stated:

Theorem 1 [Goemans and Bertsimas [3]] If the costs Ce satisfy the triangle inequality (c,, <

cik + ckj for all i, j, k E V), then for the survivable network design problem (f (S) = maxee6(s) re)

Zf(D) = Z 1(0).

In other words, the degree constraints are unnecessary for the LP relaxation in the survivable net-

work design problem. They further examine several sometimes surprising structural and algorithmic

properties of the LP relaxation, and examine the worst case behavior of Iz_() for the survivable
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network design problem. Goemans and Williamson [4], Williamson et.al. [16] and Goemans et. al.

[5] show interesting worst case bounds on the ratio I.

Our goal in this paper is to understand the class of problems for which the parsimonious property

holds and examine several implications of the parsimonious property. In this way we shed new light

to a large collection of results in discrete optimization and graph theory, understand their common

origin and generalize them in interesting ways. In particular our contributions in this paper are:

1. We continue the program started in [3] by identifying a set of conditions on the set function

f(S), for which the parsimonious property holds. In this way we prove that a large collection

of classical combinatorial problems satisfy it including the matching problem, the T-join

problem, a relaxation of the vehicle routing problem, some disjoint path problems, some b-

matching problems, etc. In particular all problems considered in Goemans and Williamson

[4] satisfy it. We also find that if the set function f(S) does not satisfy this set of conditions,

the property does not hold. We offer two proofs of the property: a combinatorial proof based

on splitting techniques originated in LovAsz [81 and used in Goemans and Bertsimas [3] and

an algebraic proof based on linear programming duality. Goemans [6] has also independently

developed this generalization using the techniques in [3]. The duality proof reveals a further

generalization of the parsimonious property to integer programming programs as well (the

dual parsimonious property).

2. We use the parsimonious property to prove interesting monotonicity properties of the LP

relaxation for problems in this class.

3. We use the parsimonious property to give genuinely simple proofs of the integrality of some

polyhedra Pf(D): the T-join problem, special cases of the Steiner tree problem including the

shortest path problem and the shortest path tree problem.

4. We further extend the parsimonious property under more general conditions and examine its

implications in the disjoint path problem. We find that this extension is the source for several

results in this area and provides a unifying framework to understand these results.
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5. We offer a new proof technique that utilizes the parsimonious property to find bounds on

the ratio Z. Our proof technique leads to a new approximation algorithm for this class

of problems that compared with the algorithm proposed by Goemans and Williamson [4] is

simpler to implement as it does not use reverse deletions, but only shortest path computations.

6. We use the parsimonious property to prove new approximation bounds for Problem IPf (D)

with D 0.

The paper is structured as follows. In Section 2 we introduce the properties of the set function

f(S) that imply the parsimonious property and examine classical combinatorial problems that can

be modelled in this way. In Section 3 we prove the parsimonious property as well as the dual

integral parsimonious property. In Section 4 we derive interesting monotonicity properties of this

class of problems as consequences of the parsimonious property. In Section 5 we further extend the

parsimonious property and apply it to the analysis of the disjoint path problem. In Section 6 we

examine applications of the parsimonious property to the integrality of certain polyhedra Pf (D). In

Section 7 we introduce a new proof technique to bound the ratio IZf() . This proof technique gives

rise to a new approximation algorithm for the problems considered in Goemans and Williamson [4].

We further examine applications of the parsimonious property to the approximability of Problem

IPf(D).

2 Parsimonious set functions

In their study of the approximability of problems in the class IPf(0), Goemans and Williamson [4]

(for the case that f(S) takes values in {0, 1}) and Williamson et. al. in [16] (for the case that f(S)

takes values in Z+) introduce the following set of conditions for the set function f(S).

Conditions A (proper set functions):

1. f(0) = O.

2. Symmetry: f(S) = f(V \ S) for all S C V.

3. Propereness: If A n B = 0, then f(A U B) < max{f (A), f(B)}.
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We next introduce the following set of conditions:

Conditions B (parsimonious set functions):

1. f(0) = o.

2. Symmetry: f(S) = f(V \ S) for all S C V.

3. Node Subadditivity (NS): If A n {x} = 0, then f(A U zx}) < f(A) + f((x}).

4. Quasi-supermodularity (QS): For all S, T C V, S n T 0

Either

f(S) + f(T) < f(S u T) + f(S n T)

or

f(S) + f(T) f(S\T) + f(S\T).

We also introduce the general subadditivity condition:

Subadditivity: If A n B = 0, then f(A U B) < f(A) + f(B).

The QS property was also introduced in the recent paper of Goemans et. al. [5], who used t e

term weakly supermodular.

Finally we introduce a third set of conditions on the set function f:

Conditions C (weakly parsimonious set functions):

1. f(0) = 0.

2. Symmetry: f(S) = f(V \ S) for all S C V.

3. Weak Subadditivity (WS): If A n {zx} = 0, then f(A U {x}) < f(A). We will then say

that x is a weakly Steiner vertex.

4. 2-Quasi-supermodularity (2-QS): For every three mutually crossing sets (two sets A. 13

are crossing if A \ B, B \ A, AnB are nonempty) at least two of them satisfy the QS property.

Compared with Conditions B (parsimonious set functions), weak subadditivity is stronger than

node subadditivity, while the 2-QS property is a relaxation of the QS property. In other words.

there are set functions f satisfying one of conditions B or C but not the other.
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We next show that Conditions B are more general than Conditions A.

Proposition 1 [Goemans et. al. [5]] Let f be a symmetric, set function with f(0) = O. Then,

if f is proper, it is quasisupermodular and node subadditive.

Proof: If f is a proper function, then clearly f is node subadditive. Among the terms f(S n T),

f(S U T), f(S \ T), f(T \ S), say f(S n T) attains the minimum. By properness, f(S) 

max(f(S n T), f(S \ T)) = f(S \ T), and f(T) < max(f(S n T), f(T \ S)) = f(T \ S), and so

f(S) + f(T) < f(S \ T) + f(T \ S). The other cases follow similarly from symmetry of f. [

In Figure 1 (we consider symmetric set functions) we draw the relations of the various conditions

we considered. As we show in the next sections, the parsimonious property holds for set functions

f satisfying either conditions A, or B, or C.

Proper

weakly
parsimonious

(WS+2-QS)

parsimonious
(NS+QS)

Figure 1: Relations of parsimonious, weakly parsimonious and proper set functions.

Remarks:

1. The following simple observation is usually useful in checking whether a given function has

the QS property. We select any node v and check the QS property only for those sets S and

T containing v. By symmetry of f, we can extend the QS property to all S and T.
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2. Conditions B are strictly more general, i.e., there are set functions which are parsimonious

but not proper.

3. The symmetry conditions are without loss of generality. If the function f is not symmetric,

we can redefine the following symmetric set function: f (S) = f(V\ S) = max[f (S), f(V\ S)].

Notice that IZf(0) = IZf(0) and Z(0) = Zf(0), since the optimal solution of IPf(0) is

feasible in IP(0) and vice versa.

2.1 Examples of problems

In Table 1 below we review several classical combinatorial problems formulated using the cutset

formulation IPf(0) for f satisfying both Conditions A and B. In Section 5 we show how Conditions

C naturally arise in the study of the disjoint path problem.

Table 1: Problems formulated as IPf(0) satisfying Conditions A (and therefore B).

We next describe problems that are parsimonious but not proper.

The b-matching problem

Given numbers b(i) such that Eiev b(i) = 2r, the problem can be modeled in the form of IPf ())
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Problem f (S) Conditions

Spanning tree 1 for all S 0, V A, B

Steiner tree 1 if SnT 0, T A, B

Shortest path 1, IS n {s,t}l = 1 A, B

Generalized Steiner tree 1 if S n Ti 0, Ti, i = 1,..., k A, B

Nonbipartite matching 1 if ISI = 2k + 1 A, B

T-join 1 if IS n T = 2k + 1 A, B

Network survivability max(i,)E6(s) ri,j, re > 0 A, B

k-connected graph k for all S : 0, V A, B

Tree partitioning 1, if ISI < k, ISI n - k A, B

Point-to-point connection 1, if IS n CI # IS n DI A, B



with D = V and

f(S) = 1 ISI - 2, EiEs b(i) = 2k+l ,{ b(i) S = {i}, V \ {i}

Notice that the function f is not proper, because for A, B disjoint whose union is V \ {i} the

definition is violated. However, the function f(S) is QS. While f is not subadditive for general sets

A, B, it is node subadditive if b(i) E {a, a + 1}. While in general the b-matching problem does not

satisfy the parsimonious property, it does satisfy it if b(i) E {a, a + 1 }.

The capacitated tree problem

Given a graph G = (V U {O}, E), demands di, i E V, a depot 0, costs ce, e E E and we would

like to design a tree of minimum cost such that each subtree from the depot has demand at most

Q. The capacitated tree problem is a popular relaxation of the vehicle routing problem. A valid

cutset formulation of the capacitated tree problem is of the type IPf(0) with

f(S) 2 Es d ScV,
2IEiV\s E S

It is obvious that f(S) does not satisfy Conditions A,e it is not proper but it such thatisfies Conditions

B: It is clearly symmetric and subadditive as we show below: For S, T C V such that S n T = 0

f(S U T) = 2EiST = f(S) +f(T),
Q

f(( n O}) u T) = 2EiEv\(SU d < f(S n {0}) < f(S n {O}) + f(T).

It is also QS, since for S, T C V containing 0,

f(S u T) + f(S n T) = f(S) + f(T).

The traveling salesman and vehicle routing problem

The traveling salesman problem can be modeled as IPf(D) with D = V and f(S) = 2 for all

S C V. Interestingly, the vehicle routing problem can be modeled in our framework as follows.

Given a graph G = (V U {0}, E), demands d, i E V, a depot 0, costs ce, e E E and vehicles

of capacity Q we want to find tours of the vehicles from the depot of minimum cost, such that
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the demand in each tour does not exceed capacity. Notice that the capacitated tree problem is

a relaxation of the vehicle routing problem. We can strengthen the formulation if we write for

example f(S) = 2[f d ]. While this set function is subadditive, it is not QS.

3 The parsimonious property

The cut-set formulation introduced in the previous section captures many of the classical opti-

mization problems studied in the literature. It is thus interesting and indeed surprising that the

parsimonious property holds for the LP relaxations of these problems. In the remainder of this

section, we prove the parsimonious property in two ways:

1. The primal proof is an extension of edge splitting techniques introduced in Lovgsz [8] and used

in [3] to prove the parsimonious property for the survivable network design problem;

2. The dual proof uses linear programming duality and extends an observation of Frank [2] for the

matching problem to the general class of problems P (0).

3.1 A primal proof of the parsimonious property

Let x be a feasible solution in Pf(0) with x(v, u), x(v, w) > 0, where u, v and w are vertices in G.

We split v at {u, w} by some A > 0 in the following way:

x(v, u) - x(v, ) - A

x(v, w) - x(v, w) - A

x(u, w) - x(u, w) + A.

The splitting operation will preserve feasibility of x unless there exists a set S C V such that v E

S, u, w S and x(6(S)) = f(S). We call such a set S a tight set. We denote by S the complement

of S. We also use the notation x(5(A, B)) = e={i,j},iEA,jEB Xe and x(6(S)) = (6(S, S)).

We need a preliminary lemma regarding properties of tight sets.

Lemma 2 If S, T are tight sets, and f is QS, then

either (i) S\ T,T \ S are tight, x ( 6 (S n T, S U T)) = O

or (ii) S n T, S U T are tight, x(6(S \ T, T \ S)) = O.
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Proof : Since f is QS, we first consider the case f(T \ S) + f(S \ T) > f(S) + f(T). In this

instance,

f(T \ S) + f(S \ T) < x(b(T \ S)) + x(b(S \ T))

= x(6(S)) + (6(T)) + 2x(6(S n T,S u T))

= f(S) + f(T) + 2x(6(S n T,S U T).

Hence x(6(S \ T)) = f(S \ T), x(6(T \ S)) = f(T \ S) and x(6(S n T, S u T)) = O, i.e., condition (i)

holds. On the other hand, the case f(S U T) + f(S n T) > f(S) + f(T) gives rise to condition (ii),

using an identical argument. O

We can now prove the central result of this section.

Theorem 3 (Parsimonious Property) If the cost function c satisfies the triangle inequality,

and f is a parsimonious set function, then

Zf(D) = Zf(0), for all D.

Primal proof: Let x be an optimal solution in Pf(0), with ZeEE Xe minimal. Suppose there is

a v in D that has x(6(v)) > f(v); Let u be such that x(v, u) > 0. Let S be a minimal tight set

containing v but not u. (If such set does not exists, then we can decrease x(v, u) by some positiv(,

A, while maintaining feasibility. This contradicts the minimallity of x.) If T is another tight set

containing v but not u, then x(6(S n T,S U T)) > x(v, u) > O. Since f is QS, condition (ii) of

Lemma 2 holds and so S n T is a tight set. By the minimallity of S, S is contained in T. So there

is a unique minimal tight set containing v but not u.

In addition, there exists a w in S with x(v, w) > 0, else f(S) = x(6(S)) = x(6(v)) + x(5(S

{v})) > f(v) + f(S \ {v}), violating the node subadditivity of f. We can then split v at {u. wL t)bY

some positive A, where

A < - min{x(6(S)) - f(S): v E S, u, w 0 S, x((S)) - f(S) > 0}._<

Because of the triangle inequality, this operation yields another feasible optimal solution x' wit 

x'(6(v)) < x(6(v)) and x'(6(t)) = x(6(t)) if t v, t E V. This contradicts the minimallity of x. c

Remarks:
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1. In the splitting process, if x, f are both even and integral, we can choose A to be 1. This

corresponds to the classical edge-splitting notion and has played an important role in many

connectivity problems. We summarize this discussion in the following corollary.

Corollary 1 Let G be an Eulerian multigraph and xG be the incidence vector of G. Let f

be an even, parsimonious set function. If xG is a feasible integral solution to IPf(0) and

x(6(v)) > f((v}) for some v e V, then there exists u, w} and an edge splitting operation

of v at {u, w}, yielding a new graph G' and a corresponding incidence vector XGc that is a

feasible integral solution to IPf(0).

This corollary generalizes the following result of Lovsz [8] and a refinement due to Goemans

and Bertsimas [3].

Corollary 2 Let G be an Eulerian multigraph, r(i,j) be the maximum number of edge

disjoint paths from i to j and v be a vertex of G. Then there exists {u, w} and an edge

splitting operation of v at {u, w} (obtaining a new graph G') such that

* r,(i,j) = rG(i,j) if i,j # v.

* rG(v, j) = min(rG(i,j), degG(v) - 2) for j /: v.

Proof: Set f(S) = maxrG(i,j) : e = (i,j) E 6(S)}. Note that f is a parsimonious

function. The incidence vector XG of graph G is a feasible integral solution in IPf(0), with

x(6(v)) = degc(v) > f(v). Since G is Eulerian, f(S) and x(6(S)) are even for each S c V.

Thus there exists an edge splitting operation of v. The graph G' obtained in this way is a

feasible solution with xcG(6(S)) > f(S). By the max-flow-min-cut theorem, the graph G' has

the required connectivity. o

2. Notice that for the parsimonious property to hold f needs to be QS and node subadditive.

The full subadditivity is not needed. The b-matching problem, for example with b(v) = k

or k + 1 is both QS and node subadditive, while if b(v) E k, k + 1, k + 2} it is not node

subadditive.
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Although the condition that the cost function c satisfies the triangle inequality seems restrictive,

we next show that for problems of the form IPf(0), Pf(0), i.e., with no degree constraints, we can

ensure that this condition is met by the following transformation. Let c'(u, v) denote the shortest

path between u and v with c as the length function. Clearly c' satisfies the triangle inequality. Let

IZf(0) and Z'(0) denote the respective solution value with c' as the objective function.

Theorem 4

f(0) = Zf(0); IZf(0) = IZf(0).

Proof: Let x be an optimal solution to Pf(0) (or IPf(0)). Consider an edge e = (u, v) such that

c'(e) < c(e). Let P be a shortest path (with respect to c) linking u and v. Then P {e}, and

c'(g) = c(g) for each edge g on P. If x(e) > 0, we can reroute the flow through the path P, resulting

in another optimal solution (since c'(e) = c'(P)). Repeating this procedure, we have x(e) > 0 only

when c'(e) = c(e), thus proving the theorem. o

3.2 A dual proof of the parsimonious property

The dual of Pf(D) is as follows:

DZf(D) = maximize Escv y(S)f(S)

subject to S:eE6(S) y(S) < c(e), e E E

y(S) > O, S C V, S D.

Let DPf(D) be the dual polyhedron and DZ(D) denote the optimal objective value. To prove the

parsimonious property using a dual argument, we only need to show that among all dual optimal

solutions to DPf(D), we can always choose one with y(v) > 0 for all v E D. This solution is then

feasible to DPf(0). Let T be a collection of sets (subsets of V). We call this family of sets laminar

if for all A, B E T either A n B = 0, or A c B, or B A.

Theorem 5 If the cost function c satisfies the triangle inequality, and f is a parsimonious set

function, then

Zf(D) = Zf(0), for all D.
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Dual proof: Let y be a dual optimal solution in DPf(D). By the QS property, we may assume

that the set F := {S: y(S) > 0} is laminar, since we can always replace two intersecting sets S

and T by S \ T, T \ S or S n T, S U T. Suppose there exists a v E D such that y(v) < 0. For all

A E F containing v, we replace A by V \ A, i.e., we set

y(A) - 0, y(V \ A) - y(V \ A) + y(A).

In this way we obtain another dual optimal solution with no member of F containing v. Note that

F is still laminar.

Let p(e) = Zs:eE6(s) y(S). By dual feasibility, p(e) < c(e). We may assume that there is a

u E V such that p(u, v) = c(u, v), since we can increase y(v) otherwise. Let A be a maximal

member of F containing u. Let A = min(-y(v), y(A)). We modify the dual solution as follows:

y(v) - y(v) + A

y(A U {v}) - y(A u {v}) + A

y(A) y(A) - A.

To check for feasibility of this modified solution, we only need to consider edges of the form (v, w)

where w is not in A. Note that by the construction of F, p(u, w) = p(v, w) + p(u, v) - 2y(v). Hence

c(v, w) > c(u, w) - c(u, v) = c(u, w) - p(u, v) > p(u, w) - p(u, v) = p(v, w) - 2y(v) > p(v, w) + 2A.

Thus the modified solution is dual feasible. By repeating this procedure, we can construct a dual

optimal solution with y(v) > 0 for all v in D. O

Notice that if y in the above proof takes only integral values, then A can be chosen to be integral.

This yields an integral analogue of the parsimonious property in a dual sense:

Let DIZf(D) denote the optimal objective value over DPf(D) with integrality constraints on y(S).

Theorem 6 (Dual Integral Parsimonious Property) If f is parsimonious, and c satisfies the

triangle inequality, then DIZf(0) = DIZ(D).

3.3 On the minimallity of conditions for the parsimonious property

We remark in this subsection that the parsimonious property does not hold if we relax either the

QS or the node subadditivity property.

13
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Consider the set function f on 3 nodes as follows: f(vl) = f({v2, v 3}) = 1, f(S) = 0 otherwise.

Then clearly f is QS, but it is not node subadditive. In this case the parsimonious property does

not hold, as the polyhedron Pf(V) is empty.

On the other hand, subadditivity alone does not guarantee the parsimonious property. Define f

on 4 nodes as follows: f(S) = 1 if SI = 1 or 3, f(S) = 2 otherwise. Then f is clearly subadditive

and symmetric. In this instance, Pf(V) is again empty, since if x(vi, vj) > 0 and x(vi) = x(vj) = 1.

then x(6({v i ,vj )) < 2.

4 Monotonicity properties

Let f be a parsimonious set function defined on V, and let W be a set disjoint from V. Let

fw(S) = f(S n V) for S C V U W. We call fw an extension of f to V U W. It is easy to check

that fw is again a parsimonious set function. Note that fw(S) = 0 if S c W. For this reason, we

call W the set of Steiner vertices.

For instance, when f(S) = 1 for all S C V, the extension fw corresponds to the Steiner tree

problem, with W the set of Steiner vertices. When f(S) = 1 for all odd S in V, fw is the V-join

function. Goemans and Bertsimas [3] for the survivable network design problem and independently

Shmoys and Williamson [15] for the Held and Karp bound proved the following monotonicity result.

We extend this result to the class of parsimonious functions.

Theorem 7 Let f, g be parsimonious functions defined on V and VUW respectively and fw defined

as above. Suppose fw(S) < g(S) for all S c V u W. If the cost function c (defined on V u W)

satisfies the triangle inequality, then

Zf(V) Zg(V U W).

Proof:

Zf(V) = Zfw(V U W)

- Zfw(0) (parsimonious property)

< Z 9 (0) (g dominates fw)

- Zg(V U W) (parsimonious property).
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Notice that the monotonicity result does not hold for IZf(D) in general. This is due in part to

the fact that the parsimonious property does not hold for integral solutions. On the other hand.

since the parsimonious property holds for dual integral solutions, we show next that the following

monotonicity result.

Theorem 8 Let f, fw, g be defined as above and fw < g. If c (defined on V U W) satisfies the

triangle inequality, then

DIZ(0) = DIZfw (0) < DIZg(0).

Proof: Clearly DIZfW(0) < DIZg(O), since fw < g. We show next that DIZf(0) = DIZfw (0).

Let y(S) : S c V} be an optimal solution to DIPf(0). Let M be a large positive number. We

construct a feasible solution to DIPfw(W) as follows:

y'(S) = y(S) if S c V,

y'(v) = -MifvEW,

y'(S) = 0 otherwise.

Since fw(v) = 0 for v in W, Escvuw (S)fw(S) = Escv y(S)f(S). Therefore, DIZfw(W) 

DIZf (0). From the dual parsimonious property, DIZfw(0) = DIZfw(W) > DIZf(0).

On the other hand, if {y(S) : S C V U W} is optimal for DIZfw(0), then by constructing

Y'(S) := ET:TnV=S y(T), we obtain a feasible solution to DIPf (0), with the same objective solution.

Hence DIZf(0) > DIZfw(0). We conclude that DIZf(0) = DIZfw(0). c

5 Weakly parsimonious functions and the disjoint path problem

A natural question is whether node subadditivity and quasisupermodularity (QS) are the most

general conditions on the set function f for the parsimonious property to hold. In this section we

show that the parsimonious property still holds for weakly parsimonious set functions (Conditions C

introduced in Section 2) and observe that these relaxed conditions provide a unifying understanding

of several results on the the disjoint path problem.

We next prove that the parsimonious property holds for weakly parsimonious functions.
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Theorem 9 Let D be the set of weakly Steiner vertices. If c satisfies the triangle inequality, and

f is weakly parsimonious, then

Zf(D) = Zf (0)

Proof: The proof is similar to the proof of Theorem 3. Let v E D, u E V, and suppose x(6(v)) >

f(v),x(v, u) > 0, where x is an optimal solution in Pf(0). Consider the minimal tight sets that

contains v but not u. By the 2-QS property, there exist at most 2 such minimal sets, say S1 and

S2. Then all tight sets containing v but not u must contain one of these two sets.

We show next that there is a w in S1 n S2 with x(v, w) > O. Assuming the contrary, then

f(Si) = x(6(S)) = x(6(Si \ {(v)) + x(((v}, Si)) - (6({(v, s,)) >

f(Si \ {v}) + x(6({v}, Si)) - x(({v}, Si)).

From weak subadditive, f(Si \ {v}) > f(Si); hence,

x(6(v}, Si)) < x(6({v}, S)).

Since we have assumed that xs(({v}, S n S2 )) = O, we rewrite the inequality for i = 1,2 and obtain

x(6({v}, S2 \ Si)) + x(6({v}, S1 U S2)) < x(6((}, S \ S 2)),

and

X(6({V}, S1 \ S2)) + (6({v}, S1 US 2 )) < X(6({v}, S2 \ S)).

Hence x(6({v}, S1 U S2)) < 0 which is a contradiction since x(v, u) > 0 and u E S1 U S2. Therefore,

there exists a w in S fn S2 with x(v, w) > O. By splitting at v using u, w, we obtain another feasible

optimal (because of the triangle inequality) solution. By repeating this procedure, we obtain an

optimal solution in Pf(D), thus proving the theorem. E

Similar to Corollary 1 the above proof actually yields the following:

Corollary 3 Let G be an Eulerian multigraph and xc be the incidence vector of G. Let f be an

even, 2-QS set function. If xG is a feasible integral solution to IPf(0) and x(6(v)) > f({v}) for

some weakly Steiner vertex v E V, then there exists u, w) and an edge splitting operation of at

{u, w}, yielding a new Eulerian graph G' and a corresponding incidence vector xc, that is a feasible

integral solution to IPf (0).
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As we show next, this corollary provides a unifying way to understand several seemingly unrelated

results for the edge-disjoint-path (EDP) problem.

5.1 2-QS functions and the disjoint path problem

Given an undirected graph G = (V, E), a collection of source-sink pairs {sl, tl }, ... , {k, tk}, the

EDP problem asks whether there exists a collection of edge disjoint paths in G, each joining a source

to its corresponding sink. Let H denote the demand graph, with edge set (sl, tl),.. , (sk, tk)}.

Let xG(e) = 1 if e E G and let xH(e) = if e E H.

Clearly, a necessary condition for the existence of these paths is the cut-criterion:

XG(6(S)) > XH(6(S)) for all S C V.

There has been an extensive literature (see for example Frank [2] and Schrijver [13]) that finds

conditions on G and H, so that the cut-criterion is both necessary and sufficient for the existence

of a solution to the EDP problem. Let K, C, denote respectively the complete graph and the

cycle on n nodes. We also denote the disjoint union of m copies of K, by mK,. The following

results are known:

Theorem 10 If G + H is Eulerian, and H is either a double star or a K 4 or a C5 , then the

cut-criterion is necessary and sufficient for the solvability of the EDP problem.

The case in which H is a 2K 2 was proved by Rothschild and Whinston [12]. The double star

case follows easily from their result. The K 4 case was proved by Seymour [14] and Lomonosov [9]

independently. The C5 case is due to Lomonosov [9]. See [2] and [13] for nice proofs and exposition

of these results.

At first sight these results appear to be unrelated without a unifying characteristic. We could

use the theory developed in this section to identify the unifying characteristic of all the above results

contained in Theorem 10. The central reason is that the set function xH(6 (S)) in these cases has

the 2-QS property. In particular it is easy to prove the following proposition:
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Proposition 2 The set function xH(6(S)) has the 2-QS property if and only if H does not contain

a 3K2 or disjoint copies of K 3 and K 2. This in turn holds if and only if H is a double star or a

K 4 or a C5 .

In order to see how Proposition 2 can be used to prove Theorem 10, let us rewrite the cut

condition as follows:

XG+H(W(S)) > f(S) = 2XH( 6 (S))-

Under the assumptions of Theorem 10 and using Proposition 2, XG+H corresponds to a Eulerian

graph (by assumption), while f is an even, 2-QS set function. Let D = V\ {s, tl,.. ., Sk, tk} be the

nodes in G that do not belong to a source-sink pair. In our context D is the set of weakly Steiner

vertices. Applying Corollary 3 we can then perform edge-splitting operations on the edges of G to

obtain a new graph G' that satisfies the cut criterion, but with edges incident only to the sources

or sinks. The rest of the proof involves showing that G' has the set of edge-disjoint-paths joining

each source-sink pair. This follows from a tedious case by case analysis which we omit here, as it

is unrelated to the theme of the paper. By reversing the edge-splitting operations, we obtain a set

of edge-disjoint-paths in G that meets the cut criterion, thus proving Theorem 10.

6 Applications in proofs of integrality of polyhedra

An important direction of research in integer programming is the development of techniques to

show integrality of the associated polyhedra for integer programming problems. Perhaps the most

common proof technique is algorithmic. Researchers develop an optimal algorithm for a combina-

torial optimization problem, which at the same time shows integrality of a proposed formulation

for the problem. In this section we show that the parsimonious property leads to non-algorithmic.

genuinely simple proofs of integrality of some polyhedra Pf(D), yielding new simple proofs of some

classical results as well as some new results.

A milestone in combinatorial optimization is the proof of integrality (Edmonds [1]) of the perfect

matching polyhedron. This result follows directly from the integrality of the T-join polyhedron,

as the perfect matching polyhedron is a face on the T-join polyhedron. Surprisingly, we can
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derive the integrality of T-join polyhedron from that of the perfect matching polyhedron, using the

parsimonious property.

Theorem 11 Let f(S) = I if S nTI is odd, 0 otherwise. Then

Conv(IPf (0)) = Pf(0).

Proof: Let fT be the restriction of f to T, defined on S C T. Note that IPfT (T) is just the perfect

matching polyhedron on T. We show next that IZf(0) = Zf(0) for all integral cost functions c.

By Theorem 4, we may assume c satisfies the triangle inequality. The following inequalities are

immediate:

IZf (0) i(o) IZfT (T).

From the integrality of the perfect matching problem IZfT (T) = ZfT(T). From the parsimonious

property ZfT(T) = ZfT(0) = Zf(0), yielding that

IZf(0) < Z (0).

The reverse inequality holds trivially and so IZf(0) = Zf(0), which shows integrality of the T-join

polyhedron. a

In the next section we briefly review another (and in our opinion quite powerful) proof technique

that proves the integrality of the perfect matching polyhedron directly.

The shortest path polyhedron can be treated as a Steiner-l-connectivity polyhedron on two

terminal nodes. Integrality of the polyhedron also follows easily from the parsimonious property.

We generalize this result, using the parsimonious property, and show that the cut set formulation

for the Steiner-2-Connected polyhedron with at most 5 terminal vertices is integral.

Theorem 12 For the Steiner-2-Connected problem on at most 5 terminal nodes,

Conv(IPf (0)) = Pf(0).

Proof: It is well known ([111) that the TSP polyhedron on at most 5 nodes is integral. From the

parsimonious property the result follows easily. [
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We next consider the multi-commodity flow problem with a single source s, multiple sinks {tl, t2, ... tk}

and with no capacity constraints. Let D = {s, tl, t2,..., tk}. Algorithmically, the problem reduces

to the computation of the corresponding shortest paths between the source and the sinks. Note

that if D = V the problem is the shortest path tree problem. We show that the cut-set formulation

for the problem with f(S) = t,es 1 if s 0 S and f(S) = f(S) is integral. This result also follows

from Johnson [7].

Theorem 13 For the uncapacitated multi-commodity flow problem with a single source and mul-

tiple sinks,

Conv(IPf(0)) = Pf(0).

Proof: We only need to show that IZf(D) = Z(D) when c satisfies the triangle inequality. Since

Pf(V) has only a single integral solution with x(s, ti) = 1 for each i = 1, 2,..., k, the result follows

immediately. :

7 Applications in worst case analysis

In recent years there has been a lot of interest in the approximability of combinatorial optimization

problems. Typically researchers propose a heuristic algorithm for an integer programming problem

(a minimization problem) and compare the value of the heuristic to the value of the LP relaxation

(or to the value of a dual feasible solution of the LP relaxation). A very nice and very general

example of this approach is the 2(1 - ) approximation algorithm (T = {v E V : f(v) = 1 })

proposed in Goemans and Williamson [4] for the problem IPf (0) with f being proper (Conditions

A) and taking values in {0, 1}. A corollary of their result is the bound ) < 2(1 - I). A

distinct characteristic of their method is a reverse deletion step, in which edges that were added

in the solution are deleted. Moreover, for the matching problem the bound is exact (the matching

polyhedron P (V) is integral).

In this section we propose a new proof method that shows that _ < 2(1- l ) for proper

functions. The proof method gives rise to a new (and in our opinion more natural) algorithm that

does not use reverse deletions and therefore it is easier to implement. Moreover, we remark that
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the proof method is quite powerful as it can prove integrality of the matching polyhedron. It can

also be used to prove the integrality of the multicut formulation for the minimum spanning tree

problem and the branching polyhedron. Finally we use the parsimonious property to bound I (V)

if c satisfies the triangle inequality.

7.1 A proof technique to bound the ratio lZ(0)
Zf(0)

We consider problem IPf(0) with f being a 0 - 1 proper function. Let T = {v E V: f(v) = 1}.

Our proof technique uses the crucial observation that a minimal solution to the problem must be

a forest, and thus has at most TI - 1 edges.

Theorem 14 (Goemans and Williamson [4]) If f is a 0 - 1 proper function

IZf(0) < 2(1 - T )Zf (0)

Proof: For the purpose of contradiction we assume the contrary. Therefore, there exists a counter-

example on the least number of nodes, with f proper and c integral. We may further assume that

EeEE c(e) is minimal.

Suppose there is a v with f(v) = 0. Let f' denote the restriction of f on V \ {v}. It can easily

be checked that f' is still proper. By the minimallity of the counter-example,

IZ,(0) < 2(1 - I)Zf'(0)

Since the optimal solution in IPf,(0) is also feasible in IPf(0), IZf(0) < IZf,(0). From Theorem

4, by using the shortest path distances Zf(0) = Zf(0) and Zf,(0) = Z, (0). But, Z, (0)= Z ({v}).

By the parsimonious property Zf(0) = Z'({v}) = Z ,(0). Therefore,

IZf(0) < 2(1 - )Zf(0),

which is a contradiction. So we may assume f(v) = 1 for all v.

If there is an edge e = (u, v) E E with c, = 0, then by contracting this edge, and treating {u, v}

as a supernode, we restrict the problem to one of strictly smaller size. By the minimallity of the

counter-example, there exists a solution that satisfies the theorem. By introducing the edge (u, v).
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with no extra cost since ce = 0, if necessary, we obtain a solution feasible to the original problem

and the theorem holds. Therefore, we may assume Ce > 0 for all e.

Now let y(v) = for all v and consider the cost function c' where c' = ce-1 (c' > 0 from the pre-

vious paragraph). By the minimallity of c, there exist x, y' such that x E IPf(0), s:eE(S) Y'(S) <

c' and

c'exe < 2(1- ) E Y'(S)f(S).
e ITI S

Since f is 0 - 1, Xe corresponds to a forest and therefore,

xE e < TI - = 2(1- -I) E y(v) = 2(1- ) f(v)y(v).

The last equality holds, since we have shown that we can assume f(v) = 1.

Let y* = y' + y. Note that

y*(S )= y(S) + + < + 1 = ce
S:eEb(S) S:eE6(S)

and so y* is dual feasible. Therefore,

Z cex c = + E xe < 2(1 T) y*(S)f(S)
e e e

This is again a contradiction and the theorem follows.

Remarks:

1. The dual variables y constructed in the proof are half-integral. We call a cut 6(S) an f-cut

if f(S) > O. We can refine the previous theorem as follows. We have shown that IZf(0)

is bounded above by 2(1 -l ) times the maximum half-integral c-packing of f-cuts. This

observation has an interesting implication for the TSP. It is well-known that, if the cost

function c satisfies the triangle inequality, the Christofides heuristic constructs a solution

with objective value (denoted Zc) not more than 3/2 times of the optimum. This result

has been strengthen further by Wolsey [17] and Shmoys and Williamson [15] who showed

that Zc < ( - )Zf(0), where f corresponds to the TSP function. We can strengthen the

inequality by replacing Z (0) with the value of the maximum half-integral c-packing (denoted

by DZf(1/2)). Note that all cuts are f-cuts in this instance and 2 DZf(1/2) < DZf(0) =
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Zf(0). From the above discussion, the solution to the minimum spanning tree is bounded

above by 2(1 - I 1)DZf(1/2). A well known result on matching (see [10]) says that the

minimum matching on the set of odd nodes is bounded above by DZf(1/2). Hence

Zc < (3 - )DZ(1/2).

2. The proof only works for proper and not the more general parsimonious functions, because

we want the parsimonious property to hold even if we create supernodes. Therefore, node

subadditivity is not sufficient. Therefore, we need f to satisfy the full subadditivity and the

QS property, which for the case of 0 - 1 functions is exactly the class of proper functions.

3. The above proof technique can be used to prove the integrality of the matching polyhedron,

the multicut formulation for the minimum spanning tree problem and the branching polyhe-

dron. For the matching polyhedron the difficult step is the case with ce = 0, which can be

handled using techniques from [10]. The final step is easy, since he xe = T = , y(v).

As an example of a different application of the proof method let us consider the multicut

formulation of the MST. Let II = S1,. .. SinI } be a partition of V.

IZmcut = minimize EeEE CeXe

subject to EeE6(si,Sj); l<i<j<lnlr Xe > II - 1, V H = {Sl, ... Slnl}

Xe E {0,1},

Let Z,,t be the LP relaxation and consider the dual problem.

Z,,t = maximize Zn(Inl- 1)y(n)

subject to n: e6(s,,si) y() < Ce, Ve E E

y(n) > o,

We need to show that IZmcut = Znut.

existence of a minimal counter-example.

variables as follows. Let II = ({1}, {2}),..

E(0In - 1)y(I).

We use an identical proof method, assuming the

The only difference is that we update the dual

., {n}} and y(II) = 1. Note that Eee = n - 1 =
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Although the proof method in Theorem 7.1 is non-algorithmic, it also leads to an algorithmic

method to construct an approximate solution. It differs from the Goemans and Williamson's

algorithm in that it needs a pre-processing step to compute pairwise shortest paths. With this in

hand, we can discard all vertices with f(v) = 0. We call these vertices the Steiner vertices. This

approach avoids the critical reverse deletion step in the Goemans and Williamson's algorithm, at

the expense of computing pairwise shortest paths. Our algorithm is as follows:

Approximation Algorithm for 0- 1 proper functions

1. Compute the pairwise shortest path distances for all pairs of non-Steiner nodes.

2. Discard the set of Steiner nodes. Select an edge with the least cost. Merge the two end nodes

into a supernode, delete all edges joining these two nodes and update the costs of joining the

supernodes.

3. Repeat step 2 until two supernodes merge to form a set S with f(S) = 0. Let e' be the

last edge selected. If there are no more non-Steiner nodes, go to step 4. Else for all edges

remaining, reduce the cost to c(e') and return to step 1.

4. Replace the edges selected in Step 2 and 3 by its corresponding shortest path in the original

graph G.

For the Steiner tree problem, our algorithm emulates the MST heuristic on non-Steiner nodes

with the pairwise shortest distance metric. In this respect Theorem 7.1 generalizes the well known

fact that the MST heuristic gives a 2(1 - ) approximate solution to the minimum Steiner tree

problem.

For arbitrary proper functions f, as Goemans and Williamson [4] observe, we can construct

a feasible solution by utilizing Theorem 7.1. Let pi < P2 < ... < pn be the distinct values of

f, and for each i, fpi(S) = 1 if f(S) > Pi and 0 otherwise. Note that fp, is proper 0 - 1. By

appending pi - Pi-1 (po = 0) copies of the approximate solution to fp, for each i = 1, 2,..., n, we

obtain a feasible solution which is within 2?(pl, 2,... ,pn) times of the optimal solution, where

/(p, p2,... ,p,) =-= l P .i-pi- Similarly for arbitrary QS functions we can use the results of [5]

24



to find

IZf (0) < 2(pl P2,..., pn) Zf (0)

7.2 On the approximability of IPf(V)

We next study the approximability of IPf(V). The recent research activity on approximation

algorithms has so far concentrated on problem IPf(0), partly because it is difficult to construct a

feasible integer solution to IPf(V). In fact, checking feasibility is usually NP-hard, as indicated for

the case of the Hamiltonian-Cycle problem. Using our understanding of edge-splitting techniques

and the parsimonious property, we can extend many of the approximation results to IZf (V), when

f is an even parsimonious function, and c satisfies the triangle inequality.

Theorem 15 If f is an even parsimonious function, and c satisfies triangle inequality, then

IZf (V) 2(pl, p2, .. ., pn)Zf (V ).

Proof: Let f' be f/2. Then f' is again a parsimonious function. From [5] We first construct an

approximate solution to IPf,(0), with x', y denoting the primal and dual solution respectively. Let

x = 2x'. Then the graph corresponding to x is Eulerian, since each vertex has even degree. Note

that

(Pl , P) = jH(pl,. . . ,pn), and

E ede = 2 E cex' < 4H(2 ,..., 2) E y(S)f'(S) = S2(pl,. .. , n) E y(S)f(S)
e e S S

Since f is even and the graph corresponding to x is Eulerian, applying Corollary 1, we can use

edge-splitting operations to construct a feasible solution to IZf(V). By the triangle inequality, the

cost of the constructed solution has not increased and therefore,

IZf(V) < 2(pl, p, .. , pn)Zf (0) .

From the parsimonious property Zf(0) = Zf(V) and the theorem follows. °

Remark: For the case of the TSP, the previous theorem corresponds to the well-known fact that

doubling the edges of the MST solution yields a 2-approximate solution to the TSP.
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