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Abstract

The network restoration problem is a specialized capacitated network
design problem in which spare capacity must be installed in a network to
fully restore disrupted demands in the event of any link failure. We consider
the installation of spare capacity using a single type of capacitated facility.
The problem is to determine the number of facilities to be installed on the
edges of the network so that it is capable of routing point-to-point traffic
when any single edge fails. This paper develops a new family of facets for
an integer programming formulation for the problem and shows that these
facets completely characterize the convex hull of feasible integer solutions
for a special case, the parallel path network restoration problem, which arises
in larger networks if we aggregate nodes.

1. Introduction

Our motivation for studying the network restoration problem arose in the context

of the telecommunication industry. Because of their high bandwidth, new fiber

transmission systems can carry large amounts of data on a few strands of fiber. As

a result, the failure of a single transmission facility such as a link in the network
can create a severe service loss to the customers.

Many businesses with high at-risk revenues or critical communication needs,

such as financial institutions and airlines, seek to protect themselves from a ma-

jor network disaster by requesting increasingly reliable service or by acquiring



and managing their own networks. A few examples illustrate the practical im-
portance of providing uninterrupted service. AT&T's Intelligent Network, the
world's largest, handles more than 150 million calls daily. In the past several
years, AT&T's network has failed several times, affecting millions of customers
in the United States and abroad. The power outage on September 17, 1991
disabled AT&T's New York City switching station. The nine hour breakdown
created havoc for long-distance customers in many parts of the US. To prevent
this kind of catastrophe, AT&T has invested billions of dollars to develop the
Fast Automated Restoration (FASTAR) system. This system uses the Digital
Access and Cross-Connect System (DACS) and intelligent real time routing to
restore 67,200 voice circuits in minutes1 . Dynamic restoration schemes use pre-
assigned spare capacity in the network to accommodate the traffic when any
equipment or link fails. The United Services Automobile Association (USAA)
built its private network based on AT&T Garrison System architecture, which
automatically protects both link and node failures 2 . A disaster recovery system
is essential to banks which rely heavily on networks and communications. The
Office of the Comptroller of the Currency mandates that in case of a disaster,
banks must be able to reinitiate their business within a prescribed period of time.
To survive another disaster of the magnitude of the Mississippi Valley flood in
summer of 1993's, many banks adopted AT&T's dynamic reconfiguration solu-
tions. Recently, AT&T has developed a service that lets corporate networks build
in as much backup capacity as they want but pay only when disaster recovery is
needed3 .

To address this situation, both telecommunication carriers and companies that
maintain private networks would like to design cost effective networks that can
readily survive failures by rerouting traffic using pre-installed spare capacity. The
objective of the network restoration problem (also known as the spare capacity as-
signment problem) is to determine where and how much spare capacity to install
in a network at minimum cost. In many cases, planners have a choice of differ-
ent facilities offering different levels of capacity at costs that exhibit economies
of scale. The planners then need to determine the optimal combination of the
facilities to install on the edges of the network.

Researchers have studied various versions of the network restoration problem.
Balakrishnan, Magnanti, Sokol and Wang [1] describe much of the relevant lit-
erature. In particular, Sakauchi, Nishimura and Hasegawa [6], Grover, Billodeau
and Venables [3], and Balakrishnan et al. [1] study the network restoration prob-

1 "Network restoration," Telephone Engineer & Management, August, 1993
2 "Single-source Survivability," Telephone Engineer & Management, February, 1993
3 "Bargain Backup: Captures and Decodes," Data Communications, March, 1996
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lem using a line restoration scheme and a single facility type. We will describe
the line restoration (also known as the local rerouting scheme) briefly in the next
section. Sakauchi et al. [6] and Grover et al. [3] focus on various solution ap-
proaches to the problem. Balakrishnan et al. [1] present the first polyhedral
analysis and provide a better understanding of the problem by generating valid
inequalities and using them computationally. Veerasamy, Venkatesan and Shah
[8] describe various restoration schemes and present an approximation scheme for
solving the path restoration problem (as known as the global rerouting scheme).
Lisser, Sarkissian and Vial [4] study the dimensioning of the reserve network to
restore flows in the event of single node or edge failures using a global rerouting
scheme. Stoer and Dahl [7] examine an integrated problem of allocating both the
working and spare capacity so that the network can route all the point-to-point
traffic under single node or edge failures.

In this paper, assuming a line restoration scheme and a single facility type,
we develop a new family of facets for the network restoration problem. We also
completely characterize the convex hull of feasible solutions for a special case,
the parallel path network restoration problem. This special case arises when we
aggregate any larger network into a two-node network and consider the polyhedral
structure across a single cut.

Recently, in a parallel and independent investigation, Bienstock and Muratore
[2] have examined the polyhedral structure of network restoration problem subject
to node failures. They have discovered some results that are similar to those
presented in Balakrishnan et al. [1] and in this paper.

This paper is organized as follows. In Section 2, we describe the underlying
assumptions of the network restoration problem and present an integer program-
ming formulation of the problem. In Section 3, we derive a new family of valid
inequalities and show that they are facet defining under certain conditions. In
Section 4, we introduce the parallel path problem and examine properties of the
linear relaxation of its integer programming formulation. We also present poly-
nomial time algorithms for solving both the linear relaxation and the integer pro-
gramming formulation of the parallel path problem. In Section 5, we completely
characterize the convex hull of feasible solutions for the parallel path problem.
Section 6 summarizes our results.

2. Problem Description

2.1. Problem assumptions

The network restoration problem we examine in this paper is based upon several
assumptions:
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Figure 2.1: A network with working flow and spare capacity

(1) On each edge e, the network has a current flow of de which we refer to as
the working flow or demand on edge e. (In this paper, we use the working
flow and demand interchangeably.)

(2) Only one edge fails at a time;

(3) The network restores traffic using a line restoration scheme, that is, the
interrupted traffic creates a local demand between the end points of the
failed edge, and the system routes this demand from one end point to the
other using spare capacity in the network (not on the failed edge itself);

(4) Network contains no existing spare capacity on any edges;

(5) We use only one type of facility with fixed capacity C = 1;

(6) The restoration traffic can travel on unlimited number of alternate paths;

(7) Once the facilities are installed, the system incurs no additional routing
cost.

Example 2.1. Figure 2.1 illustrates a small network with working flow and
spare capacity. For instance, edge {2, 6} has 8 units of working flow and 3 units
of spare capacity. When the edge fails, we must reroute the interrupted working
flow from node 2 to node 6, not on edge {2, 6} itself. The network contains a
path from node 2 to node 6 via node 1 with enough spare capacity to restore edge
{2, 6}. When edge {1, 2} fails, the network can reroute the 8 units of working
flow on the following two paths: 3 units from node 1 to node 2 via node 6, and 5
units via nodes 6, 5, 4, and 3. Note that the alternate paths are not necessarily
disjoint.
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2.2. Integer programming model

If we let Ye denote the amount of spare capacity loaded on edge e E E in our
given network G = (N, E), and let de denote the working flow (demand) on edge
e, then the following model is one natural formulation of the network restoration
problem.
Model (NRP)
Minimize

Z CeYe
eEE

subject to

E yj > de for all edges e E E and all cutsets K containing edge e. (2.1)
jEK\{e}

y, > 0 and integer for all edges e E E.

We refer to the inequalities (2.1) in this model as cutset capacity inequalities.
They state that if any edge fails, the total spare capacity on the remaining edges
in any cutset separating the end points of that edge must be at least as large as
the working flow on that edge.

An easy application of the max-flow min-cut theorem shows that if y is a
feasible solution to this model (whether integer or not), then a network with
capacity Ye installed on each edge e E E has sufficient capacity to restore each
edge in E (that is, route de units of flow between the end points of edge e without
flowing anything on this edge). Balakrishnan et al. [1] have examined a version
of this model with explicit flow variables.

3. A New Family of Valid Inequalities

In this section we describe a new set of valid inequalities for the convex hull of
the network restoration problem. By adding these inequalities, we can strengthen
the linear program formulation of Model (NRP).

Let K = {1, 2,..., k} be the edge set of any cutset in the network. For any
subset Q of K, let DQ = ZjEQdj and yQ = EjEQyj . Let Q = K\Q and

YQ = EjeQ Yj. We also let q = QI, and rQ = DQ mod(q - 1).
Key fact. By summing the cutset capacity inequalities corresponding to the
indices j E Q, we obtain the following valid aggregate inequality:

(q- )yQ + qyQ > DQ. (3.1)
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We can strengthen this inequality by adding the following Q-subset inequalities:

rQYQ + (rQ + 1)yQ > r [DQ/(q - 1)1 . (3.2)

In this expression, rQ = DQ mod(q - 1) and rQ = (q - 1) if DQ is a multiple of

(q- 1).
Example 2.1 continued. Consider the network shown in Figure 2.1. Let K be
the cutset defined by the edges incident to node 6 and let Q be defined by edges
{1,6}, {2,6}, {3,6} and {4,6}. Then DQ = 34, q = 4, rQ = 34mod3 = 1, and

[DQ/(q - 1)] = 12. The corresponding Q-subset inequality is given by

Y16 + Y26 + Y36 + Y46 + 2Y56 > 12.

For this example, the cutset capacity inequality for edge {5, 6} and cutset K and
the aggregate inequality (3.1) are given by

Y16 + Y26 + Y36 + Y46 5

and
4 (Y16 + Y26 + Y36 + Y46) + 5 Y56 > 34.

Note that when Y56 = 0, the Q-subset inequality is stronger than either of these
inequalities.

The following theorem establishes the validity of the Q-subset inequality and
provides a geometric interpretation of it.

Theorem 3.1. The Q-subset inequality (3.2) is valid for the network restoration
problem.

Proof. If rQ = (q - 1), (3.2) becomes (3.1) and is obviously true.

Assume rQ < (q - 1).

We plot (3.1) and (3.2) in the space of yQ and y for some subset Q of K. In
Figure (3.1), line 1 corresponds to (3.1) and line 2 corresponds to (3.2). When
yQ > rQ, line 2 lies to the left of line 1. That is, (3.1) dominates (3.2). When
yQ = rQ, line 1 and 2 intersect at an integral solution corresponding to Point A
with

{YQ = LDQ/(q- 1)J -rQ, y = rQ}.

Assume 0 < yQ < rQ. We want to show that the shaded area when 0 < yQ <
rQ in Figure (3.1) between line I and line 2 contains no integral solutions so no
feasible solution to Model (NRP). Since the distance between Point A and B on
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Figure 3.1: Plot in the yQ - yQ space

the yQ-axis is (rQ + 1) and the slope of line 2 is (-rQl), and since point B is
an integral point, we know that there are no integral points between A and B on
line 2. Consider the integral coordinates of yQ between point A and C. They are
of the form

YQ = LDQI(q - 1)J - rQ + h,

for some integer h satisfying the condition 1 < h < rQ. The corresponding value
of YQ on line 2 is of the form

y = rQ- Q h
= rQ ro + 1

= rQ - h
rQ +1

Since h < 1, we know that

The corresponding value of yQ on line 1 is of the form

1 q-1yQ = rQ- h
= r q

- rQ-h+-.
q

7
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Since h < q, we have

YQ > rQ - h = lyJ
Therefore, there are no integral points between Point A and C in the shaded area.
It is easy to see that no points between Point C and B (excluding B) have an
integral yQ coordinate. Therefore, we have shown that shaded area contains no
integral solutions. 

Remark 1. Balakrishnan et al. [1] define a cardinality-k cutset to be any cutset
in the network consisting of k edges and they study the cardinality-k cutset
inequality

YK DK 1

In this expression, YK and DK are total capacity and total demand on cutset K.
Note that when q = k and Q = 0, (3.2) becomes

rKYK > rK [k-1 

Since rK ~ O, we obtain the cardinality-k cutset inequality by dividing both sides
of this expression by rK. Therefore, the inequality (3.2) is a generalization of the
cardinality-k cutset inequality.

Since Balakrishnan et al. [1] have proved that the cardinality-k cutset inequal-
ity is facet defining in the space of y variables under certain conditions, in the
following theorem, we show that (3.2) is facet defining under certain conditions
when Q is the proper subset of K, that is, Q $ 0.

We say a network is restorable if for any failed edge, the network contains
a path from one end of the edge to the other. If we wished, we could install
sufficient spare capacity on this path to restore flow on the failed edge.

In the next result and throughout rest of this paper, for a given cutset K
of cardinality k, we let A = DK/(k - 1) denote a modified average of the total
demand on the edges of K.

Theorem 3.2. When Q is a proper subset of the cutset K, the inequality (3.2)
defines a facet for the network restoration problem in the space of the capacity
variables if

(i) The two subnetworks separated by the cutset K are restorable;

(ii) r < (q- 1);
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(iii) de < LDQ/(q - 1)J for all edges e E K; and

(iv) A < LDQ/(q- 1)J.

Proof. Assume Q = {1,2,...,q}) and = {q + 1,..., k}.
We use the interchange argument in this proof. That is, we let ZeEE OeYe = Y

(*) represent an arbitrary equation that is satisfied by every feasible solution y
that satisfies (3.2) as an equality. We want to show that the coefficients a in (*)
are a multiple of those in (3.2). We first construct feasible solutions satisfying (3.2)
as an equality. By substituting the solutions in (*), and comparing the resulting
expressions, we then derive a relationship between the coefficients appearing in

(*).
In this discussion, we let Y = eEK Ye denote the total spare capacity installed

in the cutset K. Note that if we subtract this defining equation from the cutset
capacity inequalities (2.1), they become

ye Y- de for all e CE K. (3.3)

These inequalities and the defining condition Y = eCK Ye are equivalent to the
cutset capacity inequalities. The inequalities (3.3) state the obvious condition
that in order to restore edge e, we must install at least de units of the total
installed spare capacity on other edges in the cutset K. We say that the edge e
is saturated if Ye = Y - de, or equivalently, the cutset capacity constraint defined
by K\{e} is binding. Since Ye > 0, feasibility requires that Y - de > 0, or
equivalently, Y > de for all e E K.

Since the two subnetworks separated by the cutset K are restorable, we can
install a sufficiently large amount of spare capacity on all the edges in the two
subnetworks to restore the edges in the subnetworks. To restore the edges in
the cutset K, we construct two feasible integral solutions satisfying (3.2) as an
equality as follows.

Solution (1) Let y 1 = LDQ/(q - 1)J. We saturate all edges in the set Q by
setting yj = Y 1 _ dj for j = 1,...,q. By summing these expressions, we
obtain

YQ = q [DQ/(q - 1)J - DQ = LDQ/(q - 1) - rQ.

Thus we must install the remaining rQ units of capacity on the set Q, that
is set yQ = rQ. We saturate edges in Q one at a time in any order until we
have allocated all of rQ. It is easy to show at least one of the edges in Q
is not saturated. For suppose that the (k - q) edges in Q are all saturated.
Since the edges in Q are all saturated, we have yj = yl _ dj for j = 1,..., k.
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Adding the equalities shows that yl = A, and we reach the contradiction
yl = A < LDQ/(q - 1)J = y. Note that this solution satisfies (3.2) as an
equality.

Solution (2) Let y 2 = [DQ/(q - 1)1. We saturate the edges in Q one at a time
starting from edge 1 until we have allocated all of y 2 . It is easy to show
that the q edges in Q are not all saturated. For suppose they are. Then
yj = yl _- dj for j = l,...,q and yQ = 0. Adding the equalities shows
that y 2 = DQ/(q - 1), and we reach the contradiction y 2 = DQ/(q - 1) <
FDQ/(q - 1)] = y 2 since rQ < (q - 1). Therefore, yQ = FDQ/(q - 1)] and
yQ = 0. Note that this solution satisfies (3.2) as an equality.

By construction, the solution (1) is feasible since by assumption (iii), y l > de
for all e c K. Similarly, the solution (2) is feasible since y 2 > de for all e E K.

1. Claim: aj = 0 for all j ~ K. Given any feasible solution y satisfying (3.2) as
an equality, we can always increase yj by 1 while keeping all other variables
unchanged. The new solution y' is feasible and satisfies (3.2) as an equality.
Substituting the y and y' values into (*) and subtracting shows that aj = 0.
Thus, the coefficients of every edge not in K are zero in equation (*).

2. Claim: ai = aj if i, j E Q. Consider solution (1) and assume that edge k is
not saturated. We can increase Yk by 1 and decrease yj by 1 for any q + 1 <
j < k. Thus ai = aj if i,j E Q.

3. Claim: ai = aj for all i, j E Q. Consider solution (2) and assume that edge
q is not saturated. We can increase yq by 1 and decrease yj by 1 for any
j < q. Thus ai = aj for all i,j E Q.

4. Claim (rQ + 1)ai = rQacj, if i E Q, j E Q.

If we decrease yQ by rQ to 0 and increase yQ by rQ + 1 in the solution (1),
we obtain the solution (2). Since all the coefficients in Q are the same, and
all the coefficients in Q are the same, we then have (rQ + 1)ai = rQaj,
whenever i E Q, j E Q. 

Example 2.1 continued. Consider again the example shown in Figure 2.1. Let
K be the cutset defined by the edges incident to node 6 and let Q be defined
by edges {1, 6}, {2,6}, {3,6} and {4,6}. Since rQ = 1, DQ/(q - 1)] = 11 and
A = DK/(k - 1) = 39/4, the data satisfies conditions (ii), (iii) and (iv) in The-
orem 3.2. After we remove the cutset K, one subnetwork contains a single node
6 and no edges, and thus is restorable. The other subnetwork contains nodes 1,
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2, 3, 4 and 5. It is also restorable because the edges form a cycle. Therefore, the
corresponding Q-subset inequality y16 + Y26 + Y36 + Y46 + 2 Y56 > 12 is a facet.

We might note that condition (i) in Theorem 3.2 is sufficient, but not neces-
sary. In Section 5, we show that inequalities (3.2) are facet defining for parallel
path problems that satisfy conditions (ii), (iii) and (iv), even when the two sub-
networks after the removal of any cutset need not be restorable.

As a special case when rQ = 1, inequality (3.2) becomes

yQ + 2yQ > DQ/(q- 1)1 . (3.4)

It is easy to provide an alternative derivation of this inequality as follows. We
know that

(q - )yQ + qyQ > DQ,

that is,

YQ + YQ >DQq-l - q-1

Since q-l < 2, we have

yQ + 2yQ > DQ/(q - 1).

Since the lefthand side of this expression is integer, we can round up the righthand
side and obtain (3.4). We then conclude that (3.4) is always valid for any subset
Q of the cutset K in the network restoration problem.

The next theorem proves that the cutset capacity inequality is facet defining
under certain conditions.

Theorem 3.3. Given a cutset K containing edge e, the cutset capacity inequality

E yj >de (3.5)
jEK\{e}

is facet defining in the space of the y variables if the two subnetworks separated
by the cutset K are restorable.

Proof. We first construct feasible solutions satisfying (3.5) as an equality and
then use the interchange argument as in the proof of Theorem 3.2 to prove the
result.

We assign a spare capacity equal the largest demand in the network to all
edges in the two subnetworks as well as to edge e. We select an arbitrary edge i
from set K\{e} and assign de units of spare capacity to it. The resulting network

11



contains sufficient spare capacity to restore all edges. Moreover, the solution
satisfies (3.5) as an equality.

Since we can always obtain a new solution by increasing yj by 1 for j B K\{e}
while keeping other variables unchanged, the interchange arguments show that the
coefficients of every edge not in K\{e} are zero. Since we select edge i E K\{e}
arbitrarily, the interchange argument shows that the coefficients of edges in K\{e}
are the same. 

4. Polyhedral Properties of a Special Case

4.1. Parallel path network restoration problem

Figure 4.1: Parallel path network

In this section, we describe a special network, the parallel path network, as shown
in Figure 4.1, with k parallel paths joining two distinguished nodes. This problem
is of interest not only because this kind of network might occur in practice, but
also because it provides insight into the polyhedral structure of a generic cut in
the network. That is, suppose we separate the nodes into two groups S and T
and consider the problem of determining how much restoration capacity we need
on the cut they define (that is, the edges between these nodes sets) to restore
the edge flows on the cut. This situation would, for example, arise if we simply
were not concerned about the restoration capacity of edges within the node sets
S and T. It also arises as a subset of the general restoration problem. If we
aggregate the node sets S and T into two nodes, then the problem would be
one with two nodes and parallel edges connecting those nodes. A number of
studies of capacitated network design problems in other contexts have shown
that valid inequalities based upon such cuts can be very effective in improving
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linear programming formulations.
Consider any path Pj for the situation of parallel paths shown in Figure 4.1,

and suppose that the demand on edge ej is as large as the demand of any edge
on the path Pj. Note that

(i) the restoration for any edge e on the path Pj must flow though all the other
edges on that path; and

(ii) if in restoring any edge e Pj, we send flow through edge ej, that flow
must pass through every other edge of Pj.

These observations imply that for any edge e ~ ej of Pj, Ye > max{yej, dej }.
We say that an edge e ej of Pj is tight if Ye = max{ye , de,j }. In any extreme
point solution y to the problem, all edges must be tight. Since if some edge e is not
tight, then we can either add or subtract an amount of capacity from ye and the
two resulting solutions yl and y2 will be feasible; but since y = (1/2)y1 + (1/2)y 2,
y cannot be an extreme point. Therefore, Ye = max{yej, dej } for any edge e ej
of Pj.

Since we are assuming that dj is an integer, this result shows that in any
extreme point solution Ye is fractional if and only if yej is fractional. This same
conclusion applies to each path and shows that we can determine the restoration
capacity for each edge by knowing the restoration capacity on the largest demand
edge for each path.

This observation suggests that we contract all but one edge (an edge with
the largest demand) on each parallel path and so consider a situation with two
nodes and k parallel edges as shown in Figure 4.2. In the following sections, we
investigate this two node parallel edge network in detail. We then indicate how
to extend results for this special case to the parallel path problem.

el

Figure 4.2: Two-node parallel edge network
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4.2. Optimal solutions to the underlying linear and integer programs

For the two node parallel edge network in Figure 4.2, we enumerate the cutset
capacity constraints for each edge across the single cut and obtain the following
integer programming formulation in the space of y variables. For instance, the
cutset capacity constraint for edge 1 states that the total spare capacity on edges
2 to k must be at least the demand d on edge 1 so that the spare capacity
network can reroute d1 units of flow from one node to the other if edge 1 fails.

Y2 +Y3 + + Yk-1 + Yk > dl
Y1 +Y3 +' + Yk-1 +Yk > d2

(4.1)

Y1 +Y2 +Y3 + +Yk-1 > dk
Yi 0 and yi integer for all i = 1,..., k.

We start by studying the linear relaxation of system (4.1). Therefore, we
relax the integrality constraints on the variable yi. As before, we define Y =
Y1 + Y2 +... + Yk as the total allocated spare capacity of any given solution y and
subtract this defining equation from the cutset capacity inequalities in system
(4.1), obtaining the following alternate linear relaxation formulation.

Y1 +Y2 + -... + Yk = Y
0 < yj < Y - dj for all 1 j k. (4.2)

Since (4.2) contains the constraint yj < Y - dj for all 1 < j k, feasibility
also requires that Y > d* = maxlj<k dj. Note that by adding the inequalities
yj < Y - dj we obtain the feasibility condition Y < kY - Dk or Y > A-
Dk/(k - 1). Therefore, any feasible solution to the problem must satisfy the
condition Y > max{A,d*}. In particular, if Y = A, then yj = A - dj for all j
and so each inequality is tight. Moreover, the solution allocates capacity on each
edge if A > d*.

We recall that the edge j is saturated if yj = Y - dj, or equivalently, the
jth cutset capacity constraint Rj is binding. The following lemma indicates that
we must saturate edges in increasing order of edge costs in the optimal linear
programming solutions.

Lemma 4.1. In the optimal linear programming solution y of system (4.1), sup-
pose that Q = {1 < i < q: yi > 0} and that ci < cj for some i,j E Q. Then edge
i is saturated, or equivalently, the cutset constraint Ri for the ith edge is binding.

14



Proof. Suppose Ri is not binding. We can increase Yi by e and decrease yj by

6. The new solution is feasible and cheaper. 

Properties of the value function v(Y)

As a function of the total allocated spare capacity Y, the linear relaxation of
(4.2) is easy to analyze. Let v(Y) equal the optimal value of the linear program-
ming problem (4.2), or equivalently, (4.1), as a function of Y.

For any given value of Y and nonnegative cost vector c, to solve the linear

relaxation of system (4.2) and determine the value of v(Y), we order the edges
so that cl < c2 < ... < Ck. For 1 < j < k, let Dj = d +d 2 +... +dj. Let Do = 0.
Then for some q, we allocate the installed capacity Y on the edges 1,2, ..., q + 1,
saturating the edges j = 1, 2, ..., q (that is, set yj = Y - dj) and then allocate
the remaining positive capacity (which is no more than Y - dq+l) on edge q + 1.
Therefore,

yq+ 1= Y - (Y1 + Y2 + - + Yq) = Y - qY + Dq = Dq - (q - 1)Y.

(Note that Yq+l = Y - dq+l is a possibility.)

As we have just seen in the chosen linear programming solution corresponding
to the total allocation Y,

yj = Y-dj for j = 1,2,...,q
0 < Yq+l1 Y - dq+l.

Suppose 0 < yq+l < Y - dq+l. If we alter Y by an amount , then in the chosen
optimal linear programming solution (there might be alternative solutions), we
alter the allocated capacity on edges 1 to q by an amount e and alter the allocated
capacity on edge q by -(q - 1)e. Therefore, in the interval 0 < yq+1 < Y - dq+l,
the value function v is differentiable with a derivative v(Y) given by

v'(Y) = l + C2 + ... + Cq - (q - 1)Cq+l.

Observe that since Yq+l = Dq - (q - 1)Y, we can restate the condition 0 < Yq+l <
Y - dq+l as

<qY< Dq (4.3)
q - q-1

Moreover, note that since Yq+l = Dq-(q-1)Y, within the interval [Dq+l/q, Dq/l(q-
1)), as Y increases, Yq+l decreases and yj increases for all 1 j q. At
Y = Dq+ll/q, we have Yq+l = Y - dq+l and all the (q + 1) edges are saturated.
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v(Y)

cq-(q-l) dq+

Yq+2

Yj, i

Max{ A, d} yLP =Dq+l/q Dq/l(q-1)

Figure 4.3: Solving the linear programming

Note further that since

Dq+1 Dq ±dq+l -(Dq) (-1) + d_ ). (4.4)
q q q-1 q } q}'

Dq+llq is a convex combination, with weights (q - )/q and /q, of Dq/l(q - 1)
and dq+l. Therefore, if dq+l < Dql(q - 1), then Dq+llq < Dql(q - 1) and so the
interval [Dq+l/q, Dq/(q- 1)) is nonempty. Consequently, if for j = 1, 2, ..., q, d* <
Dj/(j - 1), then dj+l < Dj/(j - 1) and each of the intervals [Dj+1/j, Dj/(j - 1))
is nonempty.

Figure 4.3 illustrates the nature of the function v(Y). The Y axis begins
at Y = max{A, D*} so that the values of Y to the right of the axis all satisfy
the feasibility condition. If we consider the function v(Y) from right to left, as
we decrease the value of Y, we are increasing the number of positive variables
Yl,Y2, .. , Yk in turn. To solve the problem, we increase q + 1 from value 2 as
long as the derivative v'(Y) = cl + c2 + ... + Cq - (q - 1)Cq+l is positive. When
the derivative v'(Y) = cl + c2 + ... + Cq+1 - qcq+2 becomes nonnegative, we

have solved the problem. We obtain alternative optimal linear programming
solutions for Y when the derivative v'(Y) = C1 + c2 + ... + Cq+l - qcq+2 = 0. At
each break point, we include the next edge into the positive solution set and all
the edges in the positive solution set are saturated. For example, at the lowest
point in Figure 4.3, edges 1, 2,..., q + 1 belong to the positive solution set and
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yi = Y - di for all i = 1, 2, ... , q + 1, or equivalently Y = Dq+l/q. The quantity
cl + C2 +... Cq- (q- 1)Cq+l is the right derivative v+(Y) of v at the lowest point
Y = Dq+ll/q, and c1 + c2 + ... + Cq+1 - qCq+2 is the left derivative v-(Y) of v at
the lowest point.

As we have seen, in the open interval (Dq+l/q, Dq/(q - 1)),

v'(Y) > 0 if and only if Cq+l (cl + c2 + ... + Cq)/(q -1)

and
v'(Y) > 0 if and only if Cq+l < (cl + c2 + ... + cq)/(q - 1).

If Cq+l (cl + C2 + ... + Cq)/(q - 1) and d* < Dq/(q - 1), then we will say
that variable Yq+l, or index q + 1, is admissible. Otherwise, we say that it is
inadmissible. If Cq+l < (C1 + c2 + ... + cq)/(q - 1) and d* < Dq/(q - 1), then we
will say that variable Yq+l, or index q + 1, is strictly admissible.

Note that when q = k - 1, by definition of A, the first inequality in the
expression (4.3) becomes simply A < Y.

v(Y) is a piecewise linear and convex function, since the slopes are constant
in each interval, and the slopes are nondecreasing from left to right. To see that
the slopes are nondecreasing, we compare the quantity c1 + c2 + ... + Cq+l - qcq+2
with Cl + c2 + ... + Cq - (q - 1)cq+l. Since Cq+2 > Cq+l, the first slope is less than
or equal to the second. Therefore, to solve the linear programming problem min
{v(Y):Y > d*}, we determine an optimal value yLP of Y by finding the smallest
feasible point Y for which the righthand derivative v + (Y) of v(Y) is nonnegative.

Recall that feasibility requires that Y > d*. Our observations to this point
show that it is always optimal to set Y = d* or Y = Dq+l/q for some value of
q > 1.

Algorithm LP: for Solving the Linear Relaxation of System (4.1)

1. Sort the edges so that cl < c2 < ... < Ck. If cl < 0, then terminate: the
objective function is unbounded from below over the feasible region.

2. Find the largest value of the index q satisfying the property that all indices
j = 1, 2, ... , q + 1 are strictly admissible, that is, satisfy the condition cj+ <
(c1 + 2 + ...--- + cj)/(j - 1). Set yLP = max{Dq+l/q, d*}.

3. If yLP = Dq+l/q, saturate edge j for j = 1, 2,...,q,q + 1, that is, set
yj = yLP - dj. Set yj = 0 for j q + 2. If yLP = d*, saturate edges
one at a time, say up to p edges, and allocate the remaining capacity on
edge p + 1. All other variables remain zero. We can show that p < q since
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d* > Dq+llq, it lies to the right of Dq+llq in Figure 4.3. Thus this solution
needs less than q + 1 positive variables.

Examples

To illustrate the algorithm, we consider two examples. Example 4.1 in Table
4.1 has four strictly admissable edges Q = {1, 2,3, 4} with DQ/3 = 22 > d*. Thus
we set yLP = 2. Example 4.2 in Table 4.2 has three strictly admissable edges
Q = {1, 2,3} with DQ/3 = 22 < d*. Thus we set yLP = d* = 12.

edge 1 2 3 4 5 6 yLP total cost
cost 1 1 1 1 2 100- --
demand 5 5 6 6 6 7 - -
admissable Y Y Y Y N N - -
solution . 0 0 

Table 4.1: Linear programming solution for Example 4.1

edge 1 2 3 4 5 6 yLP total cost
cost 11 1 2 2 2 - -
demand 8 12 2 10 10 3 - -
admissable Y Y Y N N N - -
solution 4 0 8 0 0 0 12 12

Table 4.2: Linear programming solution for Example 4.2

Note that the fractional solution we obtained for the example in Table 4.1 vio-
lates the Q-subset inequalities we discussed in Section 3. If we let Q = {1, 2, 3, 4},
DQ = 22 and rQ = 1, we can cut away this fractional solution by adding the fol-
lowing inequality

Y1 + Y2 + Y3 + Y4 + 2Y5 + 2y6 > 8.

It is worthwhile to make several observations at this point based upon the
solution to the linear program.
Observation 1.

Since, by assumption, each demand dj is integer, whenever Y is in-
teger, the procedure LP will also provide an integer solution to the
problem.
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This observation implies the following result.

Proposition 4.2. The linear programming problem (4.2) has an integer optimal
solution y if and only if in some optimal solution Y is integer.

Proof. Clearly, if the problem has an integer solution y, then since each compo-
nent of y is integer, Y is integer. If Y is integer in some optimal solution with
an associated vector y, then with Y fixed at this value, the vector yLP in the
linear programming solution determined by the method we have just described is
integer. Since cyLP = cy, the integer vector (yLP, Y) solves the linear program
(4.2). 

Observation 2.

Given any q + 1 variables for the problem, which by renumbering, we
assume are variables 1, 2, ... , q+ 1, if we set cj = 1 for j = 1, 2, ... , q + 1
and cj = 3 for j > q + 2. The variables 1, 2, ..., q + 1 will be strictly
admissible and the variable q + 2 will be inadmissible. Therefore, if
Dq+l/q > d*, the solution to the linear program found by the algo-
rithm LP with yLP = Dq+ll/q will be the unique optimal solution
to the problem. Therefore, this solution is an extreme point of the
polyhedron defined by the constraints. Since a feasible point to any
polyhedron is an extreme point if and only if it is the unique optimal
solution for some choice of the objective function, we have established
the following result.

Proposition 4.3. Each break point in Figure 4.3 with Y = Dq+l/q for some
subset of q + 1 variables corresponds to an extreme point of the linear program
(4.2).

Observation 3.

Expression (4.4) provides us with an easy O(k) procedure for com-
puting the quantities Dq+ll/q. Similarly, the expression

C1 + C2 + - Cq+I =C + C2 +-'''Cq/ - )+( Cq+l

q q-1 q q

provides us with an easy O(k) procedure for computing the quantities
required to determine which variables are admissible. Therefore, the
algorithm LP requires O(k) computations.
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Observation 4.

Since the value function v(Y) is convex, whenever the solution yLP

provided by the algorithm LP is fractional, to determine an optimal
integer value of Y, we simply need to round up and down and choose
the lower cost solution. Observations 2 and 3 show that we will have
solved the integer programming problem in O(k) computations as well.

Algorithm IP: for Solving the Integer Programming Version of System
(4.1)

1. Let yLP be the optimal solution to the linear programming version of the
problem determined by the algorithm LP.

2. Choose yIP as the argmin{v(Y): Y = LyLPJ or Y = [yLP]}.

3. Saturate edges one at a time, set yj = yIP - dj, say up to p edges, and
allocate the remaining capacity on edge p + 1. All other variables remain
zero.

Example 4.1 continued. Consider the fractional linear programming solution
we obtained for the example in Table 4.1. If we set Y = [22J = 7, the solution is

y = 2, 2,1,1, 1, 0 with a total cost of 8. If we set Y = [2] = 8, the solution is
y = 3, 3, 2, 0,0, 0 with a total cost of 8. In this case, we have multiple optimal
integer solutions.

5. The Integer Programming Convex Hull

We have shown that the parallel path network restoration problem is polynomially
solvable. This result suggests that we might be able to completely characterize its
convex hull by identifying all of its facets. In this section, we confirm this conjec-
ture by completely characterizing the convex hull of the feasible solutions to the
two-node parallel edge network problem assuming nonnegative integer demands.
We then extend the convex hull results for the parallel path network. This result
suggests that the cutset capacity inequalities and Q-subset inequalities might be
valuable (are "strong" inequalities) for solving the general restoration problem.

We first state a version of Theorem 3.2 which shows that we can eliminate the
condition (i) for the parallel path problem. Indeed, for the parallel path problem,
the subnetworks are trees and so are not restorable.
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Corollary 5.1. Let K be the cutset consisting of the edges with the largest
demand on each parallel path and suppose Q is a proper subset of the cutset K.
The Q-subset inequality (3.2) defines a facet for the parallel path problem in the
space of the capacity variables, if

(i) rQ < (q - 1);

(ii) de < LDQ/(q - 1)J for all edges e E K; and

(iii) A < LDQ/(q- 1)J.

Proof. Suppose we contract all of the edges except the edges with the largest
demand on each parallel path and obtain a two-node parallel edge network. To
construct feasible solutions satisfying (3.2) as an equality, we use the same method
described in the proof of Theorem 3.2 to install capacity on the edges in K. Given
any feasible solution to the two-node problem, it is easy to verify that the solution
obtained by adding sufficiently large capacity (for example, the largest demand
in the network) on the contracted edges is feasible in the original parallel path
network. The interchange arguments are exactly the same as in the proof of
Theorem 3.2. ·

Theorem 5.2. In the two-node parallel edge network restoration problem with
k parallel edges K = 1, 2, ... , k}, the following constraints completely describe
the convex hull of feasible integer solutions.

(i) The cutset capacity constraints ZjeK\{(e Yj > de for all edges e E K;

(ii) The Q-subset inequalities for all subsets Q of K (including K); and

(iii) The nonnegativity constraints.

Before we prove the theorem, we establish two lemmas.

Lemma 5.3. Suppose y is the leftmost lowest point in Figure 4.3 (y could be
the unique lowest point), yi > 0 for all 1 < i < q, yj = 0 for all j > q + 1, and
c1 < C2 < ... < ck by reindexing if necessary. Then cq+l > Cq.

Proof. Since we saturate the edges in the order of increasing costs, it is obvious
that cq+l > cq. Now suppose cq+1 = Cq.

Since edge q is admissable, we know that

Cq < C1 + - + Cq-1
q -2
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Therefore,
C1 + ... + Cq-_l

Cq+l =Cq q2q-2

(q - 2 )cq < cl + ... + cq-_

(q - 1)Cq < Cl + ... + Cq- + Cq

Cq 
cl

+ C" ... +c
-
q

Cqel< q-1
Therefore, edge q + 1 is admissable. If it is strictly admissable, then the current
point Y = Dq/(q - 1) is not the lowest point. If the data satisfies the last
inequality as an equality, then Y = Dq+ll/q is an alternate solution lies to the
left of the current point. This result contradicts the assumption that the current
point is the leftmost lowest point. ·

Lemma 5.4. In the optimal integer programming solution y of system (4.1),
suppose that Q = 1 i < q: yi > 0) and that ci < cj for some i,j E Q. Then
edge i is saturated, or equivalently, the cutset constraint Ri for the ith edge is
binding.

Proof. Suppose Ri is not binding. We can increase yi by 1 and decrease yj by
1. The new solution is feasible and cheaper. ·

Proof of Theorem 5.2.
To prove the convex hull result, we use the optimal inequality argument from

the field of polyhedral combinatorics (see, for example, Magnanti and Wolsey
[5]). Let w be any n-vector of weight coefficients and consider the optimization
problem max{wx : x E X} defined over a finite set X. Let Q = ajx bj
for j = 1,2,..., m} be any bounded polyhedron that contains X. An optimal
inequality is an inequality ajx < bj of the polyhedron Q satisfying the condition
that all optimal solutions to the problem max{wx x E X} lie on it for a given
choice of w. If the polyhedron Q contains an optimal inequality for every choice
of w 0, then the polyhedron is the convex hull of X.

Let y be the optimal solution to the linear programming. We first sort the
edges in increasing order of edge costs. We discuss different types of cost vectors
as follows.
Case 1. The linear programming has an integer optimal solution.

If the linear programming has a unique optimal, then this point also is the
unique optimal solution to the integer programming. Since this solution is an
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v(Y)

-(q-1) dq+l

Max A, d} lyLP YL rYLP 1 Y
=Dq/(q-l)

Figure 5.1: v(Y) function with a unique lowest point

extreme point of the linear programming polyhedron, it lies on one of the in-
equalities in the linear programming system.

If the linear programming has multiple optimal solutions, then the cost vector
c must be parallel to some face of the linear programming polyhedron. A face is
a hyperplane defined by one or more constraints. Since some integer solution has
the same cost, then all optimal integer points lie on the same face.

Case 2. The linear programming has no integer optimal solutions.
Subcase 2.1. For a given cost vector c, the function v(Y) has a unique lowest
point as in Figure 5.1.

Given a unique optimal linear programming solution y with yLP = Dq/(q-1).
Let Q = {1 < j < q : yj > O}. To obtain an integer solution, we either set
yIP = LyLPJ or yIP = [yLP1 .

(1) Assume that yIP = LYLPj and we saturate the first q edges, that is
yj = LYLPJ - dj for all 1 < j < q. The total capacity installed on these edges is

yQ q [yLP] - Dq = q LDq(q- 1)J - Dq = LDq(q- 1)J - rQ.

Thus we must install the additional rQ units of capacity on edges in the set
Q = {q + 1,q + 2,..., k}. In Figure 5.1, we move from the lowest point to its
left, thus increases the number of positive variables. There might be alternate
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ways to allocate the rQ units of capacity in Q if we incur ties in the edge costs
while sorting the edges, in which case we might have multiple solutions. We know
from Lemma 5.3 that Cq+l > ci for all i E Q. Thus by Lemma 5.4, R/ is binding
for all i < q. Therefore, our assumption that the first q edges are saturated is
valid. Furthermore, yQ = Dq(q - 1)J - rQ and yQ = rQ, so this type of solution
satisfies the Q-subset inequality as an equality:

rQyQ + (rQ + )y = rQ( [q -Ql -rQ) + (rQ + 1)rQ = rQ [ql 1 .

(2) Assume that yIP = [yLP]. In Figure 5.1, we move from the lowest point
to its right, thus the number of positive variables does not increase. So we can
allocate all the capacity on the edges in Q. There might be alternate ways to
allocate the yIP = [YLP] units of capacity in Q if we incur ties in the edge
costs while sorting the edges, in which case we might have multiple solutions.
Furthermore, yQ = Dq(q - 1)] and yQ = 0, so this type of solutions satisfy the
Q-subset inequality as an equality:

rQyQ + (rQ + 1)YQ = rQ ql+(rQ r+ 1)0 = [Q q 1

It is possible that either [yLPJ or [yLP1 is the optimal integer programming
solution or both are optimal. In both cases, the optimal solutions satisfy the
inequality rQyQ + (rQ + 1)yQ > rQ DQ/(q - 1)] as an equality.

Subcase 2.2. For a given cost vector c, the function v(Y) has multiple lowest
points as in Figure 5.2.

By assumption, there are no integral Y values between the leftmost and right-
most lowest points of v(Y). Suppose the leftmost point is yLP = Dq/(q - 1).
Let Q = {1 < j q : yj > 0}. To obtain an integer solution, we either set
yIP = [yLP so that the integer solutions lie to the left of the leftmost point,
or yIP = [YLP] SO that the integer solutions lie to the right of the rightmost
point. If we round up or down any other lowest point on v(Y), we will reach
the same two points. The rest of the arguments are exactly the same as in
Subcase 2.1. Therefore, all the optimal integer solutions satisfy the inequality
rQyQ + (rQ + 1)yQ > rQ DQ/(q - 1)] as an equality, which concludes the proof
of Theorem 5.2. ·

The next theorem presents a special result for the two-node parallel edge
network problem with unit costs on each edge.

Theorem 5.5. For a two-node parallel edge network with unit costs on each
edge, the linear relaxation of the model (4.1) plus the cardinality-k cutset in-
equality has integer optimal solutions.
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Figure 5.2: v(Y) function with multiple lowest points

Proof. The cardinality-k cutset inequality states that Y > [A]. Define an
augmented system composed of (4.1) plus the inequality Y > [Al. For situations
with unit costs, we wish to minimize Y. Thus, the optimal solution to the linear
program (4.1) always sets yLP = max{A, d*}. If yLP is integer, then yLP > Al].
By Proposition 4.2, the procedure LP provides an integer solution which is also
optimal for the augmented system. Suppose yLP is fractional, then yLP = A <
[Al violates the inequality Y > A]. Since we are minimizing Y, a solution to the
augmented system is optimal when Y = A . We obtain a solution by saturating
edges one at a time until we allocate all Al units of capacity. Since each demand
dj is integer, the optimal solution is integer. ·

We now extend the convex hull result in Theorem 5.2 to the parallel path
network problem.

Theorem 5.6. In the parallel path network restoration problem with k parallel
paths P1 , P2,...,Pk, let ej denote any edge on the jth path with the largest demand
dej and let K = {ej, j = 1, ..., k}. For this problem, the following constraints
completely describe the convex hull of feasible integer solutions.

(i) The cutset capacity constraints EuCK\{ej} Y > d for all edges ej G K;

(ii) The Q-subset inequalities for all subsets Q of K (including K);

25



(iii) The inequalities Ye > Yej and Ye > dej for j = 1,2, ..., k and every edge e
ej E Pj; and

(iv) The nonnegativity constraints.

Proof. From the discussion in Section 4, we know that the system of constraints
(i), (ii), (iii) and (iv) is a valid linear programming formulation for the parallel
path network problem. From Theorem 5.2, we know that the constraints (i),
(ii) and (iv) define a polyhedron with integral extreme points in the subspace of
Ye,,..., Yek We have shown that in any extreme point solution y for the parallel
path problem, Ye = max{yej dej } for any edge e $ ej of Pj. Since we are assuming
that dej is an integer, Ye is integral if and only if yej is integral. Therefore, the
extreme points of the polyhedron defined by constraints (i), (ii), (iii) and (iv) are
integral. ·

6. Conclusion

In this paper, we have developed a set of valid inequalities and facets for the
general network restoration problem, and studied a special parallel path case of
the problem. We completely characterized the convex hull of the set of feasible
solutions of the parallel path problem. Several generalizations of the results are
possible. For example, suppose we eliminate assumptions (4) and (5) in Section
2.1, that is, we permit existing spare capacity /3e on edge e and let C > 1. The
cutset capacity constraints for edge e K becomes

c E yj + E 3j > de
jEK\{e} jeK\{e}

Inequality (3.1) becomes

C(q - 1)yQ + CqyQ + (q - 1)/3Q + q/3Q > DQ.

By rearranging the terms, we obtain the valid inequality

C(q - 1)yQ + CqyQ > DQ - (q - 1)/3Q - qQ.

By dividing both sides by C and rounding up the righthand side, we obtain

(q- 1)yQ + qy > [(DQ - (q - 1)3 Q -q30)/C ] .

Let D = [(DQ-(q -1)/ 3 Q - q3)/C and r = D mod(q- 1). We then
obtain the following modified Q-subset inequalities

rQyQ + (rK + l)yQ > r [q-1
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Another generalized version of the Q-subset inequalities applies to situations
when two facility types of capacities 1 and C are available. Wang [9] provides
more details concerning this generalization. We have incorporated these facets
in a cutting plane procedure for solving the network restoration problem. The
computational results have been encouraging in the multiple facility case.
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