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5.1 INTRODUCTION

Discrete facility location problems pose many challenging optimization

issues. In size alone, they can be difficult to solve: models of facility

location applications often require thousands of variables and thousands of

constraints. Moreover, the models are complicated: the basic yes-no

decisions of whether or not to select candidate sites for facilities endow the

models with a complex combinatorial structure. Even with as few as 30

candidate sites, there may be more than one billion potential combinations for

the facility locations.

In treating large-scale problems with these complications, mathematical

programming, like most disciplines, has relied heavily upon several key

concepts. Throughout the years, the closely related notions of bounding

techniques, duality, and decomposition have been central to many of the

advances in mathematical programming. The optimization problems encountered

in facility location have been no exception. Indeed, location problems have

served as a fertile testing ground for many ideas from mathematical

programming, and advances in location theory have stimulated more general

developments in optimization.

In particular, since discrete facility location problems contain two types

of inherently different decisions--where to locate facilities and how best to

allocate demands to the resulting facilities--the problem class is an

attractive candidate for decomposition. Once the discrete-choice facility

location decisions have been made, the (continuous) allocation problem

typically becomes much simpler to solve. Can we exploit this fact in

designing algorithms? If not, decomposition may still be attractive. Even if

location problems were not complicated by the discrete-choice site selection



-2-

decisions and were to be formulated as simpler linear programs (e.g., by

relaxing the integrality restrictions on the problem variables), they still

would be very large and difficult to solve. Fortunately, though, the problems

have a special structure that various decomposition techniques can exploit.

This chapter describes the use of decomposition as a solution procedure

for solving facility location problems. It begins by introducing two basic

decomposition strategies that are applicable to location problems. It then

presents a more formal discussion of decomposition and examines methods for

improving the performance of the decomposition algorithms, both in general and

in the context of facility location models. This discussion emphasizes recent

advances that have led to new insights about decomposition methods and that

appear promising for future developments. It also stresses the relationships

between bounding techniques, decomposition, and duality. Finally, the chapter

discusses the importance of problem formulation and its effect upon the

performance of decomposition methods. Most facility location problems can be

stated as mixed integer programs in a variety of ways; choosing a "good"

formulation from the available alternatives can have a pronounced effect upon

the performance of an algorithm.

Most of the chapter, and particularly Sections 5.1, 5.2, 5.6, and 5.7,

should be accessible to nonspecialists and requires only a general background

in linear and integer programming. Sections 5.3-5.5 discuss more advanced

material and contain some new results and interpretations that might be of

interest to specialists as well. A good knowledge of linear programming

duality is useful for following the proofs in Sections 5.4 and 5.5.
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Problem Formulations

Throughout our discussion, we assume that facilities are to be located at

the nodes of a given network G = (V, A) with node (vertex) set V and arc set

A. We let [i,j] denote the arc connecting nodes vi and vj.

We assume that if a facility is located at node vjcV, then the node

has a demand (output) capacity of Kj units. If no facility is assigned to

node vjEV, then the node cannot accommodate any demand.

For decision variables, we let

0 if a facility is not assigned to node vj

1 if a facility is assigned to node vj

and let

Yij = the flow on arc [i,j]cA.

Let x (xl, ...* xn) denote the vector of location variables and

y (Yij) denote the vector of flow variables. For notational

convenience, we will say that facility vj is open if xj-l and that it is

closed if xj 0. In general, the set {vl,v 2,...,v } of potential

facility locations might be a subset of the nodes V. We let A denote the

subset of arcs directed into the potential facility location vj.

We assume that the location problem has been formulated as the following

mixed integer program:

minimize cx + dy (5.1.1)

subject to Ny V w (5.1.2)

y > (5.1.3)

£i1 r J K jl,...,n (5.1.4)
[i,J]cAj
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xCX (5.1.5)

(x,y)ES. (5.1.6)

In this formulation, dij denotes the per unit cost of routing flow on arc

[i,Jl, cj denotes the cost for locating a facility at node v, N is a

node-arc incidence matrix for the network G, and wi denotes the net demand

(weight) at node vi. Therefore, equation (5.1.2) is the customary mass

balance equation from network flows.

The inequalities (5.1.4) state that the total output from node v

cannot exceed the node's capacity Kj if a facility is assigned to that node

(i.e., x ' 1), and that the node can have no output if a facility is not

assigned to it (i.e., xj = 0). The set X contains any restrictions imposed

upon the location decisions, including the binary restriction x W 0 or 1.

For example, the set might include multiple choice constraints of the form

x1 + 2 + 3 < 2 that state that at most two facilities can be

assigned to nodes vl, v2 and v3. It could also contain precedence constraints

of the form x < x2, stating that a facility can be assigned to node v1

(i.e., x1 = 1) only if a facility is assigned to node v2.

Finally, the set S contains any additional side restrictions imposed upon

the allocation variables, or imposed jointly upon the location and allocation

variables. For example, it may contain "bundle" constraints of the form

Yij + hk + yrs < u that limit the total flow on three separate arcs

[i,j], [h,k] and [r,s] or of the form Yi + Yhk + Yrs Ypq that

relate the flow on several arcs. The last equation can be used to model

multicommodity flow versions of the problem without the need for any additional

notational complexity. In this case, we could view the arcs [i,j], [h,k],

t The flow YiJ into node vj represents the amount of service that node
vi is receiving from node vj. Therefore, it seems natural to refer to
this flow as an output (of service) from node vj.
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[r,s] and [p,q] as having been extracted from four separate copies of the same

underlying network (i.e., N is block diagonal with four independent copies

of the same node-arc incident matrix). The first three of these networks

model different commodities and the fourth models total flow by all

commodities. Similar types of specifications for the side constraints or for

the topology of the underlying network would permit the formulation to model a

wide variety of other potential problem characteristics,

such as the distribution of goods through a multi-echelon system of warehouses.

The following special case of this general model has received a great deal

of attention in the facility location literature:

minimize cx + dy (5.1.7)

n
subject to YiJ 1 il, ...,m (5.1.8)

J-1

Yij < A x i )l,...,m; jl, ...,n (5.1.9)j-

n
E Ix - p (5.1.10)

YiJ>° .i = 1, m; = , n (5.1.11)

x 0 or 1 all j = l,...,n. (5.1.12)

In this model, Yij denotes the fraction of customer demand at node vi

that receive service from a facility at node vj. The "forcing" constraints

(5.1.9), which we could have written as i Yij < m x to conform with the

earlier formulation (5.1.4), restricts the flow to only those nodes v i that

have been chosen as facility sites (i.e., have xj = 1). Finally, constraint

(5.1.10) restricts the number of facilities to a prescribed number p. In this

formulation, the set of customer locations vi could be distinct from the set

of potential facility locations vj. Or, both sets of locations might
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correspond to the same node set V of an underlying graph G = (V, A). In the

model (5.1.7)-(5.1.12), which is usually referred to as the p-median problem,

dij denotes the cost of servicing demand from node vi by a facility at

node vj (see Chapter 2). Throughout our discussion, when referring to the

p-median problem, we will assume, as is customary, that each cj = 0. That

is, we do not consider the cost of establishing facilities, but merely limit

their number.

Although much of our discussion in this chapter applies to the general

formulation (5.1.1)-(5.1.6), or can be extended to apply to this model, for

ease of presentation, we usually consider the more specialized model

(5.1.7)-(5.1.12).

Chapter Summary

The remainder of the chapter is structured as follows. The next section

introduces two forms of decomposition for facility location problems--Benders'

(or resource directive) decomposition and Lagrangian relaxation (or price

directive decomposition). Section 5.3 describes these decomposition

approaches in more detail and casts them in a more general and unifying

framework of minimax optimization. The section also describes methods for

improving the performance of these algorithms. Section 5.4 specializes one of

these improvements to Benders' decomposition as applied to facility location

problems. Section 5.5 discusses the important role of model formulation in

applying decomposition to facility location problems. This section also

focuses on Benders' decomposition (see Chapters 2 and 3 for related

discussions of Lagrangian relaxation). Section 5.6 describes computational

experience in applying Benders' decomposition to facility location and related

transportation problems. Finally, Section 5.7 contains concluding remarks and

cites references to the literature.
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5.2. INTRODUCTION TO DECOMPOSITION

This section discusses two different decomposition strategies for

obtaining lower bounds on the optimal objective function value of location

problems. To introduce these concepts, we focus on the p-median location

problem introduced in Chapter 2 and reformulated in Section 5.1. The next

section derives these bounding techniques more generally for the entire class

of location problems (5.1.1)-(5.1.6).

Resource Directive (Benders') Decomposition

Consider the five-node, two-median example of Figure 5.1. In Figure

5.1(a), the arc labels indicate the cost of traversing a particular link;

assume that each node has a unit demand. The entries in the transportation

cost matrix in Figure 5.1(b) specify costs dij of servicing the demand at

node vi from a facility located at node vj. Suppose we have a current

5, 4 2 
IVt V2 V~~ V4 V5S [dij] =

(a)

0 5 9 11 12

5 0 4 6 7

9 4 0 2 3

11 6 2 0 1

12 7 3 1 0

(b)

Figure 5.1 A Two-Median Example:
(a) the underlying transportation network,

(b) the distance matrix
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configuration with facilities located at nodes v 2 and v 5 (i.e., x 2

5 1). The objective function cost for this configuration is 5 + 0 + 3 +

1 + 0 - 9.

Relative to the current solution, let us evaluate the reduction in the

objective function cost if facility 1 (i.e., the facility at node vl) is

opened and all other facilities retain their current, open vs. closed,

status. This new facility would reduce the cost of servicing the demands at

node v 1 from d 1 2 5 to dll - O. Therefore, the savings for opening

facility 1 is 5 units. Similarly, by opening facility 3 we would reduce

(relative to the current solution) node v 3 cost from d34 + d45 3 to 0

so the savings is 3 units. Opening facility 4 would reduce node v 3 cost

from 3 to 2 and node v 4 cost from 1 to 0, for a savings of 1 + 1 - 2. Since

facilities 2 and 5 are already open in the current solution, the savings for

opening any of them is zero.

Note that when these savings are combined, the individual assessments

might overestimate possible total savings since the computation might double

count the cost reductions for any particular node. For example, our previous

computations predict that opening both facilities 3 and 4 would reduce the

node v3 cost and give a total reduction of 3+1 4 units even though the

maximum possible reduction is clearly 3 units which is the cost of servicing

node v3 in the current solution.

With this savings information, we can bound the cost z of any feasible

configuration x from below by

z > B() 9 - 5x1 - 3x3 - 2x 4 (5.2.1)

Notice that specifying a different current configuration would change our

savings computations and permit us to obtain a different lower bound

__._ _�__�
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function. For example, the configuration x1 - x 3 - 1 would produce a

lower bound inequality

z > B2() 9 - 4x2 - 44 - 4 5 (5.2.2)

on the objective function value z of any feasible solution, and thus the

optimal solution of the problem.

Since each of these two bounding functions is always valid, by combining

them we obtain an improved lower bound for the optimal two-median cost.

Solving the following mixed integer program would determine the best location

of the facilities that uses the combined lower bounding information:

minimize z (5.2.3)

subject to z > B1(x) = 9 - 5x1 - 3x3 - 2x4

z > B2(x) = 9 - 4x2 - 4x4- 4x5

x1 + x2 + x3 + x4 + x5 = 2

xj - 0 or 1 j - 1, ..., 5

which yields a lower bound of z* X 5 obtained by setting xl = 2 = 1 and

x3 = x4= x5 = 0 (or by setting 1 = x4 1, or x1 - 5 - 1, or x3 x 1

and all other xj - 0 in each case).

This bounding procedure is the essential ingredient of Benders'

decomposition. In this context, (5.2.3) is referred to as a Benders' master

problem and (5.2.1) and (5.2.2) are called Benders' cuts or inequalities.

When applied to mixed integer programs with integer variables x and

continuous variables y, Benders' decomposition repeatedly solves a master

problem like (5.2.3) in the integer variables x; at each step, the algorithm

uses the simple savings computation to refine the lower bound information by

adding a new Benders' cut to the master problem. Each solution (z*, X*) to
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the master problem yields a new lower bound z* and a new configuration *.

For p-median problems, with the facility locations fixed at xtx*, the

resulting allocation problem becomes a trivial linear program (assign all

demand at node vi to the closest open facility - i.e., minimize dij over

all with x = 1). The optimal solution y* to this linear program

generates a new feasible median solution (x*, y*). The cost dy* of this

solution is an upper bound on the optimal objective function value of the

p-median problem. As we will see in Section 5.4, the savings from any current

configuration x* can be viewed as dual variables for this linear program.

Therefore, in general, the solution of a linear program (and its dual) would

replace the simple savings computation.

The method terminates when the current lower bound z* equals the cost of

the best (least cost) configuration x found so far. This equality implies

that the best upper bound equals the best lower bound and so x must be an

optimal configuration.

Since Benders' decomposition generates a series of feasible solutions to

the original median problem, it may be viewed as a primal method that utilizes

dual information. We next discuss a dual method.

Price-Directive (Lagrangian) Decomposition

Lagrangian relaxation offers another type of decomposition technique that

produces lower bounds. Consider a mixed integer programming formulation of

the example of Figure 5.1:

5 5

minimize K E d i ij (5.2.4)
il j-1 

5
subject to Yij - 1 il,..., 5 (5.2.5)

J-1 ij1 .5 -52.)

y-1i=1,...,5; jl,...,5 (5.2.6)Yi <
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5
E -2 (5.2.7)

J'1

Yij > , xj 0 or 1 il,. 5; 1,...,5. (5.2.8)

Larger versions of problem (5.2.4)-(5.2.8) are too complicated to solve

directly, since with 100 instead of 5 nodes the problem would contain 10,000

variables Yij and 10,000 constraints of the form (5.2.6).

As an algorithmic strategy for simplifying the problem, suppose that we

remove the constraints (5.2.5), weighting them by Lagrange multipliers (dual

variables) Xi, and placing them in the objective function to obtain the

Lagrangian subproblem:

5 5 5 5
L(X) -= in I dij YiJ + i (1 - yiJ (5.2.9)

i-1 1 i-1 ju1

subject to (5.2.6)-(5.2.8).

5
Each "penalty" term i (1 - Yi ) will be positive if i has the appropriate

sign and the ith constraint of (5.2.5) is violated. Therefore, by adjusting

the penalty values Xi, we can "discourage" the subproblem (5.2.9) from having

an optimal solution that violates (5.2.5).

Note that since the penalty term is always zero for all X whenever y

satisfies (5.2.5), the optimal subproblem cost L(X) is always a valid

lower bound for the optimal p-median cost.

The primary motivation for adopting this algorithmic strategy is that

problem (5.2.9) is very easy to solve. Set ij 1 only when xj 1 and

the modified cost coefficient (dij - Xi) of ij is nonpositive. Thus,

summed over all nodes vi, the optimal benefit of setting xj 1 is

5

_ �______IIII__YYL_��_X-�llll�l�l -1�·I1-_III-I 11 I_·.
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and we can rewrite (5.2.9) as

5 5
L(X) - min rj x + E X (5.2.10)

J-i J J i-l i

subject to (5.2.7) and (5.2.8).

This problem is solved simply by finding the two smallest rj values and

setting the corresponding variables xj 1.

For example, let X - (3, 3, 3, 3, 3). Then (5.2.10) becomes

L() - min -3x1 - 3x2 - 43 - 6 4 - 5x5 + 15

subject to (5.2.7) and (5.2.8).

The corresponding optimal solution for (5.2.9) has a Lagrangian objective

value L(g) - 15 - 6 - 5 4; the solution has x4 = x5 1 1, y3 4
= y44

= y4 5

= Y54 Y 55 - 1, and all other variables set to zero. Notice that this

solution for the Lagrangian subproblem is not feasible for the p-median

problem since with i 1 or 2 it does not satisfy the demand constraint

(5.2.5).

For another dual variable vector A* - (5, 5, 3, 2, 3), (5.2.10) becomes

L(X*) min -5x - 5x2 - 4x3 - 5x4 - 4x 5 + 18

subject to (5.2.7) and (5.2.8).

Its optimal objective function value L(X*) 8 is a tight lower bound

since the optimal p-median cost is also 8.

This example illustrates the importance of using "good" values for the

dual variables Xi in order to obtain strong lower bounds from the

I - -
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Lagrangian subproblem. In fact, to find the sharpest possible Lagrangian

lower bound, we need to solve the optimization problem

max L().

This optimization problem in the variables has become known as a

Lagrangian dual problem to the original facility location model. (See Chapter

2 for further discussion of the use of the Lagrangian dual for the p-median

problem, and Chapter 3 for applications to the uncapacitated facility location

problem.)

��__�______1�___1_1_IPI_1LIILL___ ·- --· Y·C -- IC·-l·~ ld_ l · i. __ L--· ll ----- I-- I--- - - 1 -·
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5.3 DECOMPOSITION METHODS AND MINIMAX OPTIMIZATION

The previous section introduced two of the most widely used strategies for

solving large-scale optimization problems. Lagrangian relaxation, or price

directive decomposition, simplifies problems by relaxing a set of complicating

constraints. Resource directed decomposition, which includes Benders' method

as a special case, decomposes problems by projecting (temporarily holding

constant) a set of strategic resource variables.

We noted how the techniques can be applied directly to location problems.

In addition, they can be combined with other solution methods; for example,

Lagrangian relaxation, rather than a linear programming relaxation, can be

embedded within the framework of a branch-and-bound approach for solving

location and other discrete optimization problems.

In this section, we study these two basic decomposition techniques by

considering a broader, but somewhat more abstract, minimax setting that

captures the essence of both the resource directive and Lagrangian relaxation

approaches. That is, we consider the optimization problem

v - min max {f(s) + ug(s)) (5.3.1)
uCU sCS

where U and S are given subsets of Rn and Rr , f is a real-valued

function defined on S, and g(s) is an n-dimensional vector for any sS.

Note that we are restricting the objective function f(s) + ug(s) to be

linear-affine in the outer minimizing variable u for each choice of the

inner maximizing variable s.

To relate this minimax setting to Benders' decomposition applied to the

facility location problem (5.1.7)-(5.1.12), we cat argue as follows. Let

X - {: x - p and j - 0 or 1 for j'l,...,n}. An equivalent form of
j-1i
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formulation (5.1.7)-(5.1.12) is

minimize minimize {ex + dy:(5.1.8), (5.1.9) and (5.1.11) are satisfied).
xCX y > 0 (5.3.2)

For any fixed value of the configuration vector x, the inner minimization is

a simple network flow linear program. Assume the network flow problem is

feasible and has an optimal solution for all xEX ; then dualizing the

inner minimization problem over y gives the equivalent formulation

m n m
minimize maximize { i- ( ij ) + cx} (5.3.3)

xEX (X, ) sII i- l i-l J

where All - {(X,w):XCRm, WeRmn, Xi - wij < dij for all i,j and r > 0}.

Observe that this problem is a special case of (5.3.1) with (X,n) and

x identified with and u, respectively. This reformulation is typical

of the resource directive philosophy of solving the problem parametrically--in

terms of complicating variables like the configuration variables x.

Dualizing (5.1.8) in the location model (5.1.7)-(5.1.12) gives a maximin

form of the problem. The resulting Lagrangian dual problem is

m n
maximize minimize {cx + dy + I Xi (1 - E y )} (5.3.4)

X (x,y) EXY i-l j=l

or, equivalently,

m m n
maximize minimize {cx + + i i + i (d i j (5.3.5)

X (x,y) XY i-l ill jl j

where XY = {(x,y):xCX, y > 0 and (5.1.9)-(5.1.12) are satisfied}

and X and (x,y) correspond to u and a in (5.3.1).

Note that duality plays an important role in both the minimax formulation

(5.3.3) and Lagrangian maximin formulation (5.3.5). Benders' decomposition

uses duality to convert the inner minimization in (5.3.2) into a maximization

t These assumptions can be relaxed quite easily, but with added
complications that cloud our main development.

, ~I1 ~. , -__~~^X~- -1IXl-.· I IIIW -_lt i·~ I
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problem and (5.3.5) is just a slightly altered restatement of the Lagrangian

dual problem (5.3.4).

5.3.1 Solving Minimax Problems by Relaxation

For any ucU, let v(u) denote the value of the maximization problem

in (5.3.1); that is

v(u) max f(s) + ug(s)). (5.3.6)
seS

We refer to this problem, for a fixed value of u, as a subproblem. Note that

v' mmin v(u).
ucU

To introduce a "relaxation" strategy for solving this problem, let us rewrite

(5.3.1) as follows:

minimize z

subject to z > f(s) + ug(s) for all sS (5.3.7)

uCU, zCR.

Observe that this problem has a constraint for each point seS. Since S may

be very large, and possibly even infinite, the problem (5.3.7) often has too

many constraints to solve directly. Therefore, let us form the following

relaxation of this problem:

minimize z

subject to z > f(sk) + g(s) k =- 1,2,...,K (5.3.8)

uCU, zR

which is obtained by restricting the inequalities on z to a finite subset

{sl,8,..., K} of elements sk from the set S. The solution (uK zK ) of this

master problem (5.3.8) is optimal for (5.3.7) if it satisfies all of the

K K
constraints of that problem, that is, if v(u ) < z . If, on the other hand,

v(uK) > zK and sK+ 1 solvest the subproblem (5.3.6) when u - uK, then we add

t As before, to simplify our discussion we assume that this problem always
has at least one optimal solution.

- I --- --· - ------------ ·------------
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K+l K+l
z >f(s ) + g(s

as a new constraint or, as it is usually referred to, a new "cut" to the

master problem (5.3.8). The algorithm continues in this way, alternately

solving the master problem and subproblem.

In Section 5.3.2, we give a numerical example that illustrates both the

algorithm and the conversion of mixed integer programs into the minimax form

(5.3.7).

Maximin problems like the Lagrangian dual problem (5.3.5) can be treated

quite similarly. Restating the relaxation algorithm for these problems

requires only minor, and rather obvious, modifications.

When applied to problem (5.3.3) this relaxation algorithm is known as

Benders' decomposition and when applied to (5.3.5), it is known as generalized

programming or Dantzig-Wolfe decomposition. For Benders' decomposition, the

master problem is an integer program with one continuous variable z, and the

subproblem (5.3.6) is a linear program whose solution s* can be chosen as an

extreme point of S. Since S has a finite number of extreme points, Benders'

algorithm will terminate after a finite number of iterations. (In the worst

possible case, eventually { ,s ,...,s } equals all extreme points of S and

(5.3.8) becomes identical to (5.3.7)). For Dantzig-Wolfe decomposition

applied to (5.3.5), the master problem is a linear program and, consequently,

we can replace the set SXY by the set of its extreme points (since the inner

minimization problem always solves at an extreme point). Consequently, the

algorithm again will terminate in a finite number of iterations and the

K
sequence of solutions {X K>i (i.e., the u variable for problem 5.3.1) will

converge to an optimum for (5.3.5) (see Section 5.7 for comments on more

general convergence properties of the algorithm).
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5.3.2 Accelerating the Relaxation Algorithm

A major computational bottleneck in applying Benders' decomposition is

that the master problem, which must be solved repeatedly, is an integer

program. Even when the master problem is a linear program as in the

application of Dantzig-Wolfe decomposition, the relaxation algorithm has not

generally performed well due to its poor convergence properties. There are

several ways to improve the algorithm's performance:

(i) make a good selection of initial cuts (i.e., initial values of the

sk for the master problem);

(ii) modify the master problem to alter the choice of u at each

step, or to exploit the information available from master problems

solved in previous iterations;

(iii) reduce the number of master problems to be solved by using

alternative mechanisms to generate cuts (i.e., values of the

-8k) ,

(iv) formulate the problem "properly"; or

(v) select good cuts, if there are choices, to add to the master

problem at each step.

Let us briefly comment on each of these enhancements. Sections 5.5.6

and 5.5.7 cite computational studies that support many of the observations

in this discussion.

(i) Initial Cuts

Various computational studies have demonstrated that the initial

selection of cuts can have a profound effect upon the performance of

Benders' algorithms applied to facility location and other discrete

optimization problems. The initial cuts can be generated from institutional
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knowledge about the problem setting being studied or from heuristic methods

that provide "good" choices u for the integer variables. Solving the

subproblem (5.3.6) for these choices of u generates points a from S that

define the initial cuts. Unfortunately, little theory is available to guide

analysts in the choice of initial cuts.

(ii) Modifying the Master Problem

In the context of Dantzig-Wolfe decomposition, several researchers have

investigated approaches for implementing the relaxation method more

efficiently by altering the master problem. Scaling the constraints of the

master problem to find the "geometrically centered" value of u at each

step can be beneficial. Another approach is to restrict the solution to the

master problem at each step to lie within a box centered about the previous

solution. This procedure prevents the solution from oscillating too wildly

between iterations. When there are choices, selecting judiciously among

multiple optima of the master problem can also result in better convergence.

We can also modify Benders' decomposition to exploit the inherent

nesting of constraints in the sequence of master problems and thus avoid

solving a complete integer program at each iteration. Let zk be the value

of the best solution from the points ul,u2,...,UK generated after K iterations,

i.e., zK min {v(uk):kl,2,...K}. Instead of solving the usual master

problem (5.3.8), consider the integer programming feasibility version of that

problem:

Find uU satisfying

(zK - E) > f(8
k) + ug(sk) for k 1,2,...,K (5.3.9)

where is a prespecified target reduction in objective value. If this system

has a feasible solution uK+l, then solve the subproblem (5.3.6) with u uK+l to
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generate a new point sK+ from S and add the associated cut to (5.3.9).

Notice that the (K+i)St system has a feasible region that is a proper subset

th -K+ -K t
of the K system (since z < z and the (K+1)t system has one more

constraint). This property allows us to solve a sequence of these systems by

incorporating information from previous iterations.

If z - v and u - u* is optimal for (5.3.7), then u* is feasible in

-K _K
(5.3.9) for any z > v + c. So if (5.3.9) is infeasible, then z < v + c

which implies that we have found a solution within C-units of the optimal

objective value. For this reason, this technique is referred to as the

C-optimal method for solving the Benders' master problem.

An implementation of the c-optimal method has been very effective in

solving facility location problems with a number of side constraints, that is,

when the set U has a very complicated structure (see Section 5.6).

(iii) Avoiding the Master Problem (Cross Decomposition)

An alternative to modifying the master problem is to reduce the number of

master problems that must be solved. Although our discussion applies to any

mixed integer program with continuous variables y and integer variables x,

for concreteness, consider the location model (5.1.7)-(5.1.12). Suppose we

apply the relaxation algorithm to the Lagrangian dual problem (5.3.5) and

obtain a master problem solution u - and a solution , y ) to the

Lagrangian subproblem (5.3.6). Instead of solving another master problem (in

this case a linear program) to generate XK+1, we could fix the network configur-

ation at x - xK and solve the inner maximization of the Benders' formulation

(5.3.3) to obtain (X , ). Solving the subproblem (5.3.6) with X X1

we obtain (x K+ yK+1), ·

_�
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These computations can be carried out very efficiently. The inner

maximization of (5.3.3) is the dual of a special transportation problem (i.e.,

the inner minimization problem in (5.3.2)) that can, as we saw in Section 5.2,

be solved by inspection. This special linear program is the subproblem that

arises when Benders' decomposition is applied to the location problem (5.1.7)

- (5.1.12). Since this technique combines the advantages of an easily solved

Lagrangian dual subproblem (5.3.6) and an easily solved Benders' subproblem,

it is sometimes referred to as cross decomposition.

By exploiting two special structures of the facility location problem,

cross decomposition can compute a new dual solution XK + l and a new cut

corresponding to (x , y ) much more quickly than the usual

Dantzig-Wolfe decomposition algorithm, which needs to solve a linear

programming master problem (5.3.8) to find a new dual solution uK+ -

X . Cross decomposition iteratively continues this process of solving

a Lagrangian subproblem and a Benders' subproblem. Periodically, the method

solves a linear programming master problem corresponding to the Lagrangian

dual (5.3.5) in order to guarantee convergence to a dual solution.

An implementation of cross decomposition has provided the most effective

method available for solving certain capacitated plant location problems (see

Section 5.6).

(iv) Improving Model Formulation

Current research in integer programming has emphasized the importance of

problem formulation for improving the performance of decomposition approaches

and other algorithms. Two different formulations of the same problem might

have identical feasible solutions, but might have different computational

characteristics. For example, they might have different linear programming or

Lagrangian relaxations, one being preferred to the other when used in
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conjunction with algorithms like branch-and-bound or Benders' decomposition.

Since the issue seems to be so essential for ensuring computational success,

in Section 5.5 we discuss in some detail the role of model formulation in the

context of Benders' decomposition applied to facility location problems.

(v) Choosing Good Cuts

In many instances, the selection of good cuts at each iteration can

significantly improve the performance of the relaxation algorithm as applied

to minimax problems. For facility location models, the Benders' subproblem

(5.3.6) often has multiple optimal solutions; equivalently, the dual problem

is a transportation linear program which is renowned for its degeneracy.

In the remainder of this section, we introduce general methods and

algorithms for choosing from the alternate optima to (5.3.6) at each

iteration, a solution that defines a cut that is in some sense "best".

Section 5.4 specializes this methodology to facility location models.

To illustrate the selection of good cuts to add to the master problem,

consider the following example of a simple mixed integer program:

z minimize y3 + u

subject to -y1+ y3 + 2u - 4

-Y2+ Y 3 + 5u 4

Yl - y >' Y >' Y3 

u > 0 and integer.

The equivalent formulation (5.3.7) written as the linear programming dual of

this problem for any fixed value of u is



- 23 -

minimize z

subject to z > u

z > 4-u (5.3.10)

z > 4-4u

u > 0 and integer.

The constraints correspond to the linear programming weak duality inequality

z > (4-2u)s1 + (4-5u)s2 + u written for the three extreme points 1 (0,0),

2 -(1,0) and a3 - (0,1) of the dual feasible region S.

Suppose that we initiate the relaxation algorithm with the single cut

1 1
z > u in the master problem. The optimal solution is z - u * 0. At

1 2 3
u u 0, both the extreme points and 3 (and every convex

combination of them) solves the subproblem

maximize (4-2u) s + (4-5u) s2 + u

subject to (s, s 2 ) S .

Stated in another way, both the second and third constraints of (5.3.10) are

most violated at z u 0. Thus, the corresponding extreme points s2 and

a must solve this subproblem.

2 2
Adding the second constraint gives the optimal solution z u ' 2 to

the original problem as the next solution to the master problem. Adding the

2 2
third constraint gives the nonoptimal solution z = u 1 and requires

another iteration that adds the remaining constraint of (5.3.10).

In this instance, the second constraint of (5.3.10) dominates the third in

the sense that

4-u > 4-4u

whenever u > 0 with strict inequality if u > 0. That is, the second

constraint provides a sharper lower bound on z.

To identify the dominant cut in this case, we check to see which of the

second or third constraints of (5.3.10) has the largest right-hand side value

�__�_�__l________ls_1�_11_1__1__1·�_11_1 11_1_.^ ___-_-.
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for any u° > 0. In terms of the subproblem, this criterion becomes: from

among the alternate optimal solutions to the subproblem at u - 0, choose a

solution that maximizes the subproblem's objective function when u u > 0.

Figure 5.2 illustrates this procedure and serves as motivation for our

subsequent analysis. In the figure, we have plotted the three constraints

from the dual version (5.3.10) of the subproblem. Note that as a function of

u, the minimum objective function value v(u) to the problem is the upper

envelope of the three lines in the figure. At u - 0, the lines z - 4-u and

z - 4-4u both pass through this lower envelope. Equivalently, the extreme

points 2 - (1,0) and 3 - (0,1) of the dual feasible region S both

solve the dual problem. Note, however, that as we increase u from u - 0, the

line z = 4-u lies above the line z - 4-4u. It, therefore, provides a better

approximation to the dual objective function v(u). To identify this preferred

line, we can conceptually pivot about the solution point (z,u) (4,0),

choosing the line through this point that lies most to the "northeast". Note

4 

0

OP / l .,// . V(U)

DualFeasible -
~ Region - -

3 ][st = (0,0)]

/\ U

z=4-u
z = 4-4u < [s2 = (1,0)]

[S3 -- (0,1)

I1

Figure 5.2 Subproblem (Dual) Feasible Region
_, _ 

I I
0 2 4
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that to discover this line, we need to find which of the two lines through the

pivot point (z,u) is higher for any value of u > 0.

Before extending this observation to arbitrary minimax problems, we formalize

some definitions.

We say that the cut (or constraint)

z > f(s) + ug(s1 )

in the minimax problem (5.3.7) dominates or is stronger than the cut

z > f(s) + g(s)

if

f( 1) + ug(sl) > f(s) + g(s)

for all uU with a strict inequality for at least one point uJU. We call

a cut pareto-optimal if no cut dominates it. Since a cut is determined by the

vector seS, we shall also say that s dominates (is stronger) than if the

associated cut is stronger, and we say that is pareto-optimal if the

corresponding cut is pareto-optimal.

In the previous example, we showed how to generate a pareto-optimal cut by

solving an auxiliary problem defined by any point u > 0. Note that any such

point is an interior point of the set {u: u > O}. This set,

in turn, is the convex hull of the set U {u: u > 0 and integer}.

The following theorem shows that this observation generalizes to any minimax

problem of the form (5.3.7). Again, we consider the convex hull of U, denoted U,

but now we will be more delicate and consider the relative interior (or core)t

of UC , denoted ri(UC), instead of its interior.

t The relative interior of a set is the interior relative to the smallest
affine space that contains it. For example, the relative interior of a disk
in 3-space (which has no interior) is the interior of the disk when viewed as
a circle in 2-space.
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The result will always be applicable since the relative interior of the convex

set U is always nonempty. For notation, let us call any point u

contained in the relative interior of U c, a core point of U.

Theorem 5.1: Let u be a core point of U, that is, u c ri(U ), and let S(u)

denote the set of optimal solutions to the optimization problem

maximize {f(s) + tg(s)}. (5.3.11)
sES

Also, let u be any point in U and suppose that a solves the problem-

maximize f(s) + uOg(s)}. (5.3.12)

soS(u)

Then s is pareto-optimal.

Proof: Suppose to the contrary that s° is not pareto-optimal; that is,

there is a s that dominates . We first note that the inequalities

f(i) + ug(i) > f(s°) + ug(s) for all ucU, (5.3.13)

imply that

f(i) + ug(i) > f(s°) + ug(8s) for all UCUc. (5.3.14)

To establish the last inequality, recall that any point cUC can be expressed

as a convex combination of a finite number of points in U, that is,

u - {AUU: uU} - 1
Uu

where > 0 for all uU, at most a finite number of the Xu are positive, and

I X - 1. Therefore, (5.3.14) with u - u can be obtained from (5.3.13) by
uCU

multiplying the u inequality by X and adding these weighted inequalities.
U

Also, note from the inequality (5.3.13) with u - u that must be an optimal

solution to the optimization problem (5.3.11) when utr, that is, i6E(u). But
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then, (5.3.12) and (5.3.13) imply that

f(s) + u g(s1 - f(so) + u g(O). (5.3.15)

OSince dominates 8 ,

f(B) + ug(B) > f(s°) + ug(s°) (5.3.16)

for at least one point uU. Also, since u ri(U ) for some scalar > 1

u 8 uO + (1 - ) 

belongs to U. Multiplying equation (5.3.15) by , multiplying inequality

(5.3.16) by (1 - ), which is negative and reverses the inequality, and

adding gives

f(i) + ug(1) < f(s°) + ug(s0 ).

But this inequality contradicts (5.3.14), showing that our supposition that

s0 is not pareto-optimal is untenable. 

We should note that varying the core point u might conceivably

generate different pareto-optimal cuts. Also, any implementation of Benders'

algorithm has the option of generating pareto-optimal cuts at every iteration,

or possibly, of generating these cuts only periodically. The tradeoff will

depend upon the computational burden of solving problem (5.3.12) as compared

to the number of iterations that it saves.

In many instances, it is easy to specify a core point u for

implementing the pareto-optimal cut algorithm. If, for example,

U {ueRk:u > 0 and integer}

then any point u > 0 will suffice; if

U = {ueRk: uj - 0 or 1 for j 1,2,...,k}

then any vector u with 0 > u > 1 for j - 1,2,...,k suffices; and if

k
U - {uRk : z uj p, u > and integer}

J'1l

as in the inequality version of the p-median problem (here X - U), then any u °
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with u° > 0 and u < p suffices. In particular, if p > n/2 then
-'1

u ° - (1/2, 1/2,..., 1/2) is a core point.

When Benders' decomposition is applied to the location model (5.1.7) -

(5.1.12), problem (5.3.11) is a specially structured linear program that can

be solved efficiently. The next section specifies details of this solution

procedure.
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5.4 ACCELERATING BENDERS METHOD FOR FACILITY LOCATION

5.4.1 Introduction

Section 5.3 described both Benders' decomposition and Dantzig-Wolfe

decomposition within a unifying framework of minimax optimization. This

section, which is problem-specific and somewhat more detailed, considers

Benders' decomposition as applied to facility location problems. The

discussion will serve two purposes. First, it shows how decomposition can be

streamlined to exploit the special structure of facility location problems.

Second, it introduces several different types of Benders' cuts for facility

location models that can be used to design new algorithms. In particular,

they can be used as bounding procedures within branch-and-bound algorithms or

can be used to design heuristic algorithms. For example, when interpreted

properly, a number of successful heuristics for several classes of integer

programming problems can be viewed as applying a (heuristic) version of

Benders' decomposition that retains only the most recently generated Benders'

cut(s) in the master problem. Therefore, the cuts themselves are of interest,

independent of their use within decomposition.

Although solving the linear program (5.3.12) generates pareto-optimal cuts

for Benders' method applied to general mixed integer programs, the special

structure of facility location problems makes it possible to generate strong

cuts more efficiently with specialized network algorithms. In this section,

we discuss several different cut-generating procedures, ranging from those

that produce cuts that dominate the standard Benders' cuts, to more elaborate

algorithms that actually produce pareto-optimal cuts. In this discussion, we

return to the notation used in Sections 5.1 and 5.2.



- 30 -

Suppose we fix x - cEX; then (5.1.7) - (5.1.12), and more generally

(5.1.1)-(5.1.6), reduce to a pure linear programming subproblem in the

variables YiJ which we will call the associated linear program:

v(x) - min

subject to

m n n
I d JYijy + Cj ij

i-l j-L j-1

1ul Yij 1 iil,.. ,m

YiJ < xj

yi > 

For future reference, let us adopt the following notation:

O = {Ij - 1), the index set of open facilities, and

C = {jllj = 0}, the index set of closed facilities

corresponding to the configuration xe.

The dual of the associated linear program is

n n
v(i) max

il

subject to

[ X-Z i Sij + cj
J=l i i jul 

i i- ij dij

Tij >-

Note that Zcjj in the objective function is a constant since the xj

are fixed. Any solution Xi,Tij to this problem determines a cut of the form

m n n
z > Z (Xi- Z Tijxj) + cx

-- i Jl Juljj

(5.4.1)

(5.4.2)

(5.4.3)

i-l'...'M; J-I,..,,n.

J-1,...,n

i-l'...,M; J=1,..,n.



- 31 -

Let us define

dij(i) - in {diq: qcO}.

Therefore, facility vj(i) is a closest opened facility to node vi.

Then, with x = i for j l,...,n, the associated linear program (5.4.1) has

the following optimal solution:

(1 if j- (i)

0 otherwise Y l,...,n

Also, the dual program (5.4.2) has the following "natural" solution:

For each il, 2,...,m,

Xi dij(i)

Tij - o if je0, j-1,...,n (5.4.4)

œij =ma ( d ) if jcC, j=l,...,n.
"ij = max (0, i- dij)

The optimal dual variables have a convenient interpretation: Xi is the

cost of servicing node vi when - ; niJ is the reduction in the cost of

servicing node v i when facility vj is opened and xi =xi for all ij. So

from the dual subproblem solution, we can construct the following cut

n n
z > - £ x + Z cxj (5.4.5)

j-1 J- 

whose coefficients w and pj are defined by

m m
w X i and TliJ

_ _

Note that w is the total servicing costs when x = x and that pj is the total

reduction in servicing costs if facility vj is opened and all other

facilities retain their current, open vs. closed, status.



- 32 -

For reference purposes, we shall refer to the cut in (5.4.5) as a usual

cut. We discussed this cut in our introduction to decomposition in Section

5.2.

For x = i, the associated linear program can be viewed as a

transportation problem with demand constraints (5.1.8) for each destination

vi and a set of unconstrained origins vj (i.e., each has an unlimited

supply). Typically, transportation problems have a degenerate optimal basis

which implies that the dual problem (5.4.2) has multiple optimal solutions.

Because of this property, it is usually possible to derive more than one

Benders' cut. We next describe procedures for generating alternative cuts

that will usually be superior to the usual cut (5.4.5).

An Improved Cut

In deriving the Benders' cut (5.4.5), we considered only the savings from

opening a new facility, i.e., increasing some xj from 0 to 1. We did not,

however, consider the added servicing costs produced by closing a facility.

If facility v(i) is closed, then node vi must be serviced from a

different facility and the service cost for node vi must be at least the

cost dik(i) of servicing node vi from the best alternative node Vk(i); that is,

dik(i) m in {diq : 1 < q < n and q ' j(i)}.

Note that since v(i) must be an open facility and vk(i) need not be open,

dik(i) might be less than dij(i).

Let

oi = max {dik(i) - dij(i)O}.

Whenever o i > 0, node vi suffers an increase in service cost of at least ot

if facility v(i) is closed, i.e., if xj(i) is decreased from 1 to 0. Therefore,

vj - Z{oi: 1 < i < n and - i)} (5.4.6)
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is the minimum total service cost incurred from all customers by closing

facility vj. So we can write a new cut, which we will refer to as a closing

facility cut, as follows:

m
z > + Z (l-x)j- E pjx + cj . (5.4.7)

JEO jCC J-

Notice that whenever some vj ' 0 and j 7 0 for some xcX, the closing

facility cut will dominate the usual cut.

Example 5.4.1

To illustrate the concepts introduced in this subsection, we consider once

again the two-median problem given in Figure 5.1. Let the current

configuration i - (1,0,1,0,0). Then from (5.4.4) we have the "natural" dual

solution

X1 0, X2 4, X3 o, x4 2, X--3

and Iij = max (0, Xi- dij) i-1,2,3,4,5; j=1,2,3,4,5.

Substituting into (5.4.5), we obtain the usual cut

z > 9 - 4x2 - 4x4 - 4x5 (5.4.8)

which we specified earlier as (5.2.2).

To compute the closing facility cut for the current configuration i, note

that dik(i) = 0 for i2,4,5, dlk(l) - 5, and d3k(3) 2. So,

1 ol ' 5

V3 a 2+ 3+ 4+ 5 = 0 + 2 + 0 + 0 2

and substituting into (5.4.7) yields the closing facility cut

z > 9 + 5(1-x 1) - 4x2 + 2(1-x3) - 4x4 - 4x5 (5.4.9)

Notice that in this example, since every node is a candidate for a

facility, it is possible to open a facility at each closed node and
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consequently dik(i) - 0 for each closed node vieC. In general, these

costs could be positive.

5.4.2 Pareto-Optimal Cuts

In this section, we derive an efficient special purpose algorithm for

solving the linear program for generating pareto-optimal cuts for the facility

location model. The algorithm uses a parametric solution technique to solve

each of the subproblems.

First, we note that for any choice of xEX, the linear programs (5.4.2)

decompose into separate subproblems, one for each index i-1, 2,...,m. Also,

the "natural solution" (5.4.4) to the linear programming dual problem (5.4.2) has

the property that the optimal value of the ith subproblem is vi(x) = Xi

n
and (Xi - Z j ij ) < vi(s) for any (X,r) that is feasible for (5.4.2).

j3l

Consequently,

m n m n
Z (Xi - ) v() - Z vi(x) - Cj

i=i J 1 i iJ x1Jil i1j

n
if and only if (Xi - £ spij) - vi(). This observation implies that we can

also decompose (5.3.11) into a series of subproblems. For each i, solving the

subproblem

n
maximize x i

jl 

n
subject to Xi xj = i i (5.4.10)

Ai- "iJ < dij

i> J > 1, . ... ,m
"i >0 
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provides a pareto-optimal vector with components Xi and ij for iil,...,m

and J-l,...,n. In this formulation, as before, denotes the current value of

the integer variables and belongs to the core of X (which was S in Section

5.3); that is, xcri(Xc).

Our first objective is to show that, for each i, the optimal value of the

subproblem (5.4.10) is piecewise linear as a function of i. Since the

equality constraint of this problem reads

e ij = alij(i)JEO

and since - <d andi > 0 for all , we have i j 0

for all J j(i), J 0 and i(i) Xi di(i) X- i Also,

if we substitute for X1 in the objective function of (5.4.10) from the equality

constraint, the objective becomes

n

maximize i + (j - x ) birj

For any index j C, j 0 and the coefficient j ( - x ) of rij

is nonpositive. Thus, an optimal choice of ij in (5.4.10) is ij -

max (0, Xi - dij).

Collecting these results, we see that the optimal value of problem (5.4.10)

as a function of the variable is

x + cJ(i(X - Xi) Z C j max (0, Xi - dij). (5.4.11)
JCC

To aid us in optimizing (5.4.10), we note upper and lower bounds Xi < Xi < Li

on Xi where, by definition, L i = ain dij : J e 0 and j f j(i)}. The lower

bound is a simple consequence of the equality constraint of problem (5.4.10),

because each i > 0 and each iJ > 0. The upper bound follows from our
- -ij



- 36 -

previous observation that riJ ' 0 whenever j (i) and j 0, and,

therefore, for these j the constraint Xi - nij < dij becomes

Xi < dij.

Now, since the function (5.4.11) is piecewise linear and concave in

Xi, we can minimize it by considering its linear segments in the interval

Xi < i < Li in order from left to right until the slope of any segment

becomes nonpositive. More formally, for a current configuration · and a

0
core point x , we have the following procedure:

Pareto-Optimal Cut Generation Algorithm

(0) For all i-l,...,m and J-l,...,n, compute

c j (, - x0)

dij(i) = min {dij: JcO}

Li ' min {dij: jEO and j j(i)}.

For every il,2,...,m perform the following steps:

(1) Start with Xi Xi'.

(2) Let T - {j C C : dij < Xi} and let s = cj(i) + Zj :j C T}.

s is the slope of the function (5.4.11) to the right of Xi.

(3) If s < 0, then stop; ki is optimal. If s > 0 and T C, then stop,

Xi = Li is optimal.

(4) Let dik = min {dij : j C and j T}. If dik > Li, set Xi = Li and

stop. Otherwise, increase Xi to dik

Repeat steps (2) - (4).

Once the optimal value of Xi for each i is found using this algorithm,

the remaining variables rij can be set using the rule ij max (0, Xi - dij)'

Then, the cut obtained by substituting these values in (5.4.3) is pareto-

optimal.

-- --- --
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This algorithm should be very efficient. For each node vi, at most n

(the number of possible facilities) steps must be executed, so the total

number of steps required by this procedure is bounded by (number of demand

nodes)(number of possible facilities).

We might emphasize that this algorithm determines a pareto-optimal cut for

any given point x' in the core of X. Also, the algorithm applies to any of

the possible modeling variations that we might capture in X, such as the

contingency and configuration constraints mentioned in Section 5.1.

Example 5.4.2

Once again, consider the two-median example depicted in Figure 5.1. To

apply the pareto-optimal cut generation algorithm, we must first choose a core

point C ri (X ) of the set

5
X = {x: i xi = 2 and 0 < xi < 1 for 1 < i < 5}.

i-l

0One possible value for the core point is x = (1/2,1/4,1/2,1/4,1/2).

The conditions of a core point are satisfied since

x = 1 1 1+ 1 =2
l i 4 2 4 2

and 0 < x < 1 for 1 < i < 5.
i

As in Section 5.2, assume that the current configuration is (1,0,1,0,0).

From computations in example 5.4.1, we know X (0,4,0,2,3).

Now we apply the steps of the pareto-optimal cut generation algorithm.

For i1, we have X1 0 < X < L1 9. Step 1 initializes X1 - 0. Step 2

computes T 0 and 1 1 - 2 12 Since s > 0, step 4 increases X to

d12 = 5. Next we return to step 2 and find T (2) and 8 - 1 + 2 (1- 2) +12 5. Next we return to step 2 and find T 2 {2} and s = 1 + c 2 (1-~) +

-l___ll·Y ___ __ _·-C _· 4--
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1 1
(0 - ) - . Since s > 0, step 4 increases X1 to d13 ' 9. But since

X1 L1" 9, we can stop with the optimal value A1 1 9.

Similar computations show that 2 = 5, X3 3, X4 2, and X5 = 3.

Using the values for X permits us to compute the corresponding values for

the ~iJ from the relation

riJ max (0, X - dij).

Substituting these values of the Xi and rij into (5.4.3) produces

the following pareto-optimal Benders' cut for the two-median problem:

z > 22 - 9x1 - 9x2 - 4x3 -5x4 - 4x5. (5.4.12)

5.4.2 Neighborhood Interpretation and a New Cut

As we noted in Section 5.4.1, the standard Benders' cut considers savings

in servicing costs obtained by opening new facilities. The improved closing

facility cut introduces additional servicing costs that must be incurred

whenever an open facility is closed. In this section, we show that any

Benders' cut generated from an optimal solution to the dual problem (5.4.2)

has a similar interpretation. We also present a new type of cut for the

p-median problem and discuss its interpretation.

An Interpretation

First, we introduce some new notation. The 6-neighborhood, denoted

Ni(6), of demand node v i with respect to the dual variable Xi - + 6, with

value Xi defined in (5.4.4), is the set of facility locations vj

satisfying dij < Xi + 6. We define the interior of the -neighborhood as

0i -(6) v: dij < Xi+ 6.
i ~ is i i

1111 1
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Recall from the last section that X > i in any optimal solution to the

dual of subproblem (5.4.1); therefore, Xi =Xi + 6i for some 6i > 0 and varying

(i (and hence the size of the &-neighborhood) is equivalent to varying

X i. The operation in the pareto-optimal cut generation algorithm of

increasing Xi until s < 0 has the following interpretation: increase the

6 -neighborhood about node vi until Z{c : vjENi( 6i)} < 0.

Figure 5.3 gives a small example of a 6-neighborhood for the p-median

example shown in Figure 5.1. Assume distances in the figure are drawn to

scale (they aren't) and that the neighborhood is constructed around demand

node v5 with the current configuration i (1,0,0,1,0). As indicated in the

figure, the current 6-neighborhood contains nodes v5, v4, v3, and v2. If C5 +

C4
+

3 + 2 s > 0, then the pareto-optimal cut algorithm would expand the

neighborhood to the next nearest facility, which is node v 1.

The cut determined by the neighborhood pictured in Figure 5.3 has the

O

Figure 5.3. Neighborhood about a demand node Vi = V 5



- 40 -

following interpretation. As we noted in deriving (5.4.11) from (5.4.10),

every optimal solution to (5.4.2) can be written as

Xi i + 6i for some 6i > 0

Xi dij(i) i- in {dij:jcO }

Xi - Ai ' 61if j- j(i)

iJ X - d if JeC nNi(6i)

0 otherwise.

For notational convenience, let us assume at this point that node v5 is

the only demand node. Substituting the dual variable values corresponding to

Figure 5.3 into (5.4.3) yields (after some rearrangement) the cut

z > X 5 + 65(1-x4) - (X5+ 65 - d 5 3 )x 3 - (X + 65 - d55 )x5

or
z > 1 + 6(1- x4) - 4x3 - 7x5.

If we set x4 0 to close facility 4, then node v must be serviced from

outside the neighborhood (or on its boundary) at a cost z of at least

X5 + 65 7 unless a facility at node v3 or node v5 is opened. If

facility 5 is opened, then the service cost for node v5 becomes d55 - 0.

The coefficient of x5 compensates for this reduction in service cost when x5

= 1. The coefficient for x 3 has a similar interpretation.

The general situation is much the same. Given any neighborhoods for the

m 

nodes, let w £ Xi be the current allocation cost, let
il

n

v = Z{6i: l<i<n and J=J(i)} - {ij: l<ij and jj(i)}, and let pj = i

Substituting these values in the form of the cut expressed in (5.4.3) gives

n
z > w + Z v(l-x) - Z pj+ z c . (5.4.13)

JO i jc l i
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The coefficient vj accounts for the fact that the open facility vj might

lie interior to several neighborhoods. Closing this facility increases

allocation costs to the boundary of each of these neighborhoods.unless some

closed facility within any neighborhood is opened. The coefficient j

for JEC records the savings for opening facility vj considering all the

neighborhoods that contain it.

Suppose, as before, that dik(i ) denotes the cost to the closest alternate

facility k(i) 0 (i) to node vi. Setting Xi = Xi, and

6i max {O,dik(i) - di(i)}, reduces expression (5.4.13) to the closing

facility cut introduced in Section 5.4.1.

Note that the cut (5.4.13) is only an alternative way of describing the

Benders' cut (5.4.3) using the neighborhood interpretation. This alternative

description not only provides a new interpretation, but will permit us to

introduce a new type of Benders' cut that is easily described using the

alternative cut (5.4.13). We first use an example to illustrate the

equivalence of the two cut descriptions (5.4.3) and (5.4.13).

Example 5.4.3

We continue example 5.4.2 and discuss the two-median problem given in

Figure 5.1 with x - (1,0,1,0,0). Recall from the example that a = (0,4,0,2,3)

and the final computed value for X was (9,5,3,2,3). We will translate

this solution to our neighborhood interpretation and use it to show the

equivalence of the two cut descriptions (5.4.3) and (5.4.13).

Using X and the final value for permits us to compute 61 = 1- 1 9,

6=5-4-1, 633-0-3, 6472-20, and 6 3-3o0.



- 42 -

We can now determine the corresponding neighborhoods. For example,

N() vvv N9) {l 3}; Nv 2 3 }; N2(1) - {v,v2}; and N(1) - {v2}.

W Xi °0+4+0+2+3 9.

Also, since xl and x 3 are 1, we compute

V 1 - 6 1' 9

V3 62 + 63 + 64 + 65 1 + 3 + 0 + 0 - 4.

In this case, (i) - 1 for il1, and (i) - 3 for i-2,3,4,5. Now 2, x4, and x5

are zero, so we compute

P2 1 12 + T2 2
+

32
+ 42 + 52 4 + 5 + 0 + 0 + 0 - 9

P4 1 T14 + T24 + 34 + 44 + 54 0 + 0 + 1 + 2 + 2 - 5

5 T15 + 25 + 35 + 45 + 55 0 + 0 + 0 + 1 + 3 - 4.

Substituting these values into (5.4.13), we obtain the cut

z > 9 + 9(1-x1 ) + 4(1-x3) - 9x2 - 5x4 - 4x5

which is the same as (5.4.12), the cut computed from (5.4.3) in example 5.4.2.

A New Cut for the p-Median Problem:

When specialized, the cut-generating technique described in the last

section provides a new type of Benders' cut for the p-median problem, one that

dominates the closing facility cut. To simplify our development, we

temporarily assume that all servicing costs dij are nonnegative and that

dii = 0 for all i.

As we have seen, the closing facility cut introduces penalties for

customers forced to travel to nodes other than the ones to which they are

currently assigned. For the p-median problem, these penalties separate into

two groups:

_�_
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(a) a demand node and a facility are located at the same node vi. Then

the servicing cost for that demand node is dii 0 and the penalty

in servicing cost for this node is

dik(i) - in (dij: joi}

if the facility at node vi is closed.

(b) a demand node, but no facility, is located at node vi. Then the

closing of any open facility need not incur any servicing penalty,

since the demand node might conceivably be serviced by a facility at

node vi at cost dii 0.

Stated in terms of the neighborhood interpretation, these observations

imply that the 6-neighborhood about demand node vi is of minimal size,

di = 0, if x i
= 0 in the current solution x; if xi 1, then

dij(i) rin dij: J} and 6i = dij(l) is the size of the

neighborhood.

Since closing a facility at node vj contributes only to the penalty in

the closing facility cut of the demand at that node, the term vj

Z{6i: l<i<n and j=J(i)} equals dk(j)' the distance to node v 's second

nearest neighbor and the closing facility cut is written in the form of

expression (5.4.13) as

z > + djk(j) (1-x) - x (5.4.14)
JO-c0 k() JEc

whose terms and pj are defined as before in (5.4.5).

The algorithm presented in Section 5.4.1 shows how to expand the neighbor-

hoods about every demand node from the values associated with the usual cut in

order to obtain pareto-optimality. Although the new cut must be pareto-

optimal, there is no guarantee that it dominates the usual cut or the closing

facility cut.
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To develop a cut that dominates the closing facility cut, we proceed as

follows. We maintain the neighborhood about nodes whose facilities are closed

at their minimal size 6 = 0, and we increase the neighborhoods about the

other nodes all by the same amount . That is, we set 6 = djk(j) + 

for every node vj with j 1. This procedure avoids the formal slope

checking mechanism of the algorithm for generating pareto-optimal cuts.

Although other options are certainly possible, choosing to expand every

neighborhood equally leads to a very simple implementation.

The choice of ~ for 6 is governed by two restrictions. First, the

resulting value of 6 cannot be too large, since otherwise Xi
= (i + 6i) =

Ai + dik(i) + 6 for i 0 will violate

Xi < Li min (dij: Jec and j#j(i)}.

Recall that we identified this bound in Section 5.4.1 by considering the

subproblem (5.4.10).

This bound on the Xi is equivalent to the restriction that if

j J(i) and EO, then Xi (Xi + di) < dij or cannot be in the interior of

the neighborhood about node vi. Since node vj(i) is in the interior of

the neighborhood about node vi whenever 6i > 0, this bound on Xi

is equivalent to the restriction that the interior of every neighborhood may

contain at most one open facility. The second restriction is that every

closed facility lie interior to at most one neighborhood about an open

facility. Although this restriction is not imposed by the linear programs

(5.4.10), later we will show by an example that the new cut need not dominate

the closing facility cut if this condition is not fulfilled. Our choice of

6 is made as large as possible, consonant with these two restrictions.

----
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We will call the result of this procedure

v > + Z (djk(j) + 6)(1-xj) - z )x (5.4.15)

an expanding neighborhood cut. Note that the coefficient of the closed

facilities vj must be altered from the values pj in the closing facility

cut (5.4.14). Since our restrictions on 6 ensure that every closed facility vj

lies interior to only one neighborhood Nq(6), if any, about an open facility, as

m
we increase 6 only the term qj in the saving expression Vpj = Zij changes.

Each compensation factor Aj to the savings expression equals the difference between

œqj max (q- dqj 0) = ax (dqk(q)+ dqj'0), at 60 and at 6 (see

Section 5.4.1). Note that this observation implies that a < for all JeC.

In comparing cuts, we noted that the closing facility cut dominates the

usual cut whenever at least one vj 0O. The following result summarizes

the relationship between closing facility and expanding neighborhood cuts.

Proposition 5.1: For a given iteration of Benders' decomposition applied to

the p-median problem, an expanding neighborhood cut will either dominate or be

equivalent to a closing facility cut.

Proof. Let x = be any values for the configuration variables satisfying the

p-median constraint x1 + x2 + .... + n p. Let R(x) and R x)
n =LE C

denote the right-hand sides of the expanding neighborhood cut (5.4.15) and the

closing facility cut (5.4.14). Then

RE(x)- R(x) - 6(1-x )- £ x
jcO jec

�I_ Il·II_1_III1Lll__a___1111_111_·11_-�·1_ ^-�I-�. .---



- 46 -

By the p-median constraint, if K of the facilities vj for jeC are opened,

then K of the facilities vj for j0O must be closed. As we have noted just

prior to the proposition, though, A < 6 for all JcC. These two facts imply

that RE(x) - Rc(x) > 0, so the expanding neighborhood cut is always

at least as strong as the closing facility cut. O

Reviewing-the definition of the expanding neighborhood cut and the proof

of this proposition shows that our assumptions that service costs are

nonnegative and that dii 0 for all i are dispensable. These assumptions

merely lead to more attractive interpretations and motivation.

Example 5.4.4

We continue discussing the two-median example of Figure 5.1 with the

current configuration x (1,0,1,0,0). Recall from the example 5.4.1 that

= (0,4,0,2,3), d l( ) = 5 and d3k(3)
= 2. Also, 2=4' 4 4, and P5 4.

Using the 6-neighborhood concept, we find that 6 equals 2 (for 6 > 2, node v2

lies in the interior of the neighborhoods about node v1 and node v3 ), and we

obtain the following expanding neighborhood cut

z > 9 + (5+2)(1-x1) - (4+2)x2 + (2+2)(1-x3)

- (4+2)x4 - (4+1)x 5. (5.4.16)

Note that the expanding neighborhood cut dominates the usual cut (5.4.8) and

the closing facility cut (5.4.9).

If we ignored the restriction prohibiting node v2 from being in the

interior of the neighborhoods about both nodes v1 and v3, we could expand

the neighborhoods until 6 - 4 and the cut would become
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z > 9 + 9(1-x1) - 10x2 + 6(1-x3) - 8x4 - 7x5.

Observe that this cut does not dominate the closing facility cut (5.4.9)

take xl = x 22 1, x 3 =4 x 5 = ). The difficulty is that A2 = 6 exceeds

o- 4.

Finally, notice the expanding neighborhood cut (5.4.16) does not dominate

the pareto-optimal cut (5.4.12) (take 4 -x 5 - 1, xl X x2 - x3 = O) nor does

the pareto-optimal cut dominate it (take xl = x2 - 1, x3 = x4 x5 0).

__1_41_1_1_1_11_11__l__l---__·
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5.5. A MODEL SELECTION CRITERION FOR BENDERS' DECOMPOSITION

Selecting the "proper" model formulation is another important factor that

affects the computational performance of Benders' decomposition applied to

facility location and other mixed integer programming models. This section

discusses a criterion for distinguishing between different, but "equivalent",

formulations of the same mixed integer programming problem to identify which

formulation is preferred in the context of Benders' decomposition.

Many network optimization problems have "natural" mixed integer programming

formulations. For example, as we noted in Section 5.1, different variations

of the facility location problem can be stated in several possible ways as

mixed integer programs. In this section, we demonstrate why some formulations

lead to such pronounced improvements over others in the performance of

Benders' decomposition.

To illustrate the role of model selection, we consider an example of

Benders' decomposition applied to the p-median facility location problem. In

Section 5.1, (5.1.7) - (5.1.10) gives a formulation, say P, of the p-median

problem when

n
X - {X: x p}.

j'1

Replacing (5.1.9), i.e., Yij < xj, with

m
Ey ij X Zjl,...,n (5.5.1)

gives an equivalent formulation, say Q. Note that (5.5.1) represents an

aggregation of (5.1.9). Consequently, although P and Q are equivalent

mathematical descriptions, if we relax the integrality constraints on the

xi, the feasible region for P is a proper subset of the feasible region for Q.

I ,
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Let us examine the p-median problem represented in Figure 5.4:

1I

Figure 5.4 Example of a p-median problem with n 4 and p 2

In this

The

example, n4, p2, and all dij are 100 except for dii ' 0.

application of Benders' decomposition to this example with formulation

Q yields the following set of Benders' cuts:

z > 200 - 400x1 -

z > 200 - 400x1 +

z > 200 - 400x1 -

z > 200 + 0x 1 -

z > 200 + Ox -

z > 200 + Ox1 +-- ~~1

400x 2 + Ox +

Ox2 - 400x 3 +

Ox2 + Ox -

400x 2 - 400x3 +

400x2 + Ox3 -

Ox2 - 400x3 -

It turns out (see exercise 5.8) that every single one of these cuts must be

generated in order for Benders' algorithm to converge.

Recall from Section 5.4 that applying Benders' decomposition to our

example with formulation P yields several different sets of cuts. The first

set, consisting of the usual cuts, is identical to the previous set except

Ox4

Ox4

400x44

Ox4

400x4

400x4.4.
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that all coefficients of value -400 become -100. So all six cuts are again

necessary for convergence. In contrast, generating a set of closing facility

cuts requires the single cut

z > 400 - 100x1 - 100x2 - 100x3 - 100x4

for convergence.

We can generalize this example in the following way: let p - n/2 and let

dij - 100 for all ij and dii = 0 for all i. For this class of examples,

the Q formulation requires an exponential number (n/2) of cuts for Benders'

algorithm to converge. For these same problems, the P formulation in every

case requires only one Benders' cut for convergence' This example

dramatically illustrates the importance of intelligent model formulation for

Benders' decomposition.

Now we present a formal framework for comparing model formulations for

Benders' decomposition. Our results apply not only to facility location

problems (5.1.1) - (5.1.6), but also to general mixed integer programming

problems. Since it will facilitate our notation, we cast our development in

its most general form. Later in this section, we discuss the application of

this theory to specific facility location models.

Suppose we have two mixed integer programs P and Q that are represented as:

(P) Minimize [vP(x)] where [vP(x)] - minimum {cx+dy:Hx+Gy - h} (5.5.2)
xeX yO

and

(Q) Minimize [vQ(x)] where [vQ(x)] = minimum {cx+ty:Rx+Ty - r}. (5.5.3)
xcX >LO

x and y are column vectors of problem variables; h and r are column

vectors; c,d, and t are row vectors; H,G,R, and T are matrices with

appropriate dimensions. The set X is a set of integer-valued vectors and

captures the integer constraints of the problem. We assume that the set X is

finite.
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We will say that P and Q are equivalent mixed integer programming

representations of the same problem if v P(x) - vQ(x) for all xcX.

That is, the two models have the same integer variables, but may have

different constraints and continuous variables; nevertheless, they always give

the same objective function value for any feasible assignment of the integer

variables. We will say that the two formulations are identical if vP(x) -

vQ(x) for all x belonging to the convex hull of X.

Note that in the context of Benders' decomposition, vP(x) and vQ(x)

represent the linear programming subproblems when Benders' decomposition is

applied to P and Q. Consequently, the two models are equivalent if their

respective Benders' subproblems always have the same optimal value.

We evaluate the two models (5.5.2) and (5.5.3) by comparing the cuts

generated from the application of Benders' decomposition. Following the

derivation of Benders' decomposition given in Section 5.3, we can rewrite P

and Q, respectively, as:*

(P) minimize {z:z > r(h-Hx) + cx for all Tne)
xCX, zR

where n is the set of points in the polyhedron IC < d; and

(Q) minimize {z:z > y(r-Rx) + cx for all ycr}
xCX,zcR

where r is the set of points in the polyhedron T < t.

The inequalities z > (h-Hx) + cx and z > y(r-Rx) + cx will be

referred to as the Benders' cuts for P and Q, respectively. We remark that

our definition of Benders' cuts, in which a cut can be generated from any

point in the subproblem dual feasible region, produces a larger set of

* As in earlier sections, we assume that the linear programming subproblems
vP(x) and vQ(x) are feasible and have optimal solutions for all
xeX. These restrictions can be relaxed, but with added complications
that do not enrich the development in an essential way.
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possible cuts than the usual definition which restricts the cuts to those

corresponding to the extreme points of the subproblem dual feasible region.

The results of this section are not always valid for the usual definition of

Benders' cuts (see exercise 5.10). To compare equivalent model formulations,

we adapt the concept of a pareto-optimal cut introduced in Section 5.3 by

saying that a Benders' cut (or constraint) z > (h-Hx) + x for P dominates

a Benders' cut z > y(r-Rx) + cx for Q if (h-Hx) + cx > Y(r-Rx) + cx

for all xX with a strict inequality for at least one point xcX.

A cut z > (r-Rx) + cx for Q will be called unmatched with respect to the

formulation P if no cut for P is equal to it (in the sense that two cuts are

equal if their righthand sides are equal for all xX) or dominates it.

A formulation Q is "cut richer" than P if they are equivalent formulations

and the set of Benders' cuts for P is a "proper subset" of the Benders' cuts

for Q (i.e., some cut in Q equals or dominates each cut in P and Q has a cut

that is unmatched in P).

With these definitions, we can now prove several properties concerning

model formulation and the strength of Benders' cuts.

Leima 5.1 Let P and Q be equivalent formulations of a mixed integer

programming problem. Q has a Benders' cut that is unmatched with respect to P

if, and only if, there is an x° belonging to the convex hull X of X that

satisfies vQ(x') > vP(x°).

Proof: To establish the necessity of the inequality condition, let

z > y*(r-Rx) + cx be a Benders' cut that is unmatched with respect to P. That

is, for every cut z > (h-Hx) + cx in P, there is an xcX with (h-Hx)

+ cx < y*(r-Rx) + cx. Since we are assuming that the set X is finite, this

inequality implies that
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max [min (h-Hx) + cx - y*(r-Rx) - cx] < O.
IG<d xcX

Now observe that this inequality still holds if we replace the set X by Xc.

Using linear programming duality theory, we can reverse the order of the max

and min operations to obtain

min [max (h-Hx) + cx - y*(r-Rx) - cx] < 0.
XXC rG<d

Linear programming duality theory, when applied to the inner maximization,

allows us to rewrite this expression as

min {cx+dy - [y*(r-Rx) + cx] : Hx + Gy h} < 0.

xcEX, y>0

Now let X°cXc be an optimal value for x in this problem. Then

min {ex + dy : Gy - b-Hx °} - vP(x°) < y*(r-Rx°) + cx°

Y>0

Another application of linear programming duality theory, in this case to

Q, gives

vP(xO) < y*(r-Rx0) + cx < Min { ex + ty : Ty = r-Rx }

y>O
or

v P(x ) < vQ (x).

The sufficiency of this inequality condition has essentially the same

proof with all the steps reversed. Explicit details are left as an exercise

(see exercise 5.9). 0

This lemma leads to the following theorem concerning preferred

formulations:

Theorem 5.2: Let P and Q be equivalent formulations of a mixed integer

programming problem. Q is cut richer than P if, and only if, vQ(x) >

v Px) for all xX C with a strict inequality for at least one eXXC.
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Proof: If vQ(x) > v (x) for all EXc , Lemma 5.1 says that P

does not have any Benders' cuts that are unmatched with respect to Q. But

because there is a x°eXc satisfying vQ(x ) > vP(x ), Lemma 5.1 implies that Q

has a cut that is unmatched in P. So Q satisfies the definition of being cut

richer than P.

If Q is cut richer than P, then P, by definition of cut richer, does not

have any cuts that are unmatched with respect to Q. Lemma 5.1 then tells us

that vQ(x) > v x) for all xeXc. The definition of cut richer also states that

Q has a cut that is unmatched with respect to P and using Lemma 5.1 we know that

some x0 X satisfies vQ(x) > P(°O). o

The implications of Theorem 5.2 may become more apparent when interpreted

in another way. Let the relaxed primal problem for any formulation of a mixed

integer program be defined by replacing X by its convex hull X. Theorem

5.2 states that the preferred formulation of a mixed integer program for

generating strong Benders' cuts is the one with the smallest possible feasible

region (or the "tightest" possible constraint set) for its relaxed primal

problem. For any formulation P, a smaller feasible region for its relaxed

primal problem will result in larger values of the function v P(x); this

property is desirable because of Lemma 5.1 and Theorem 5.2.

As an example, consider the p-median problem of Figure 5.4. Formulations

P and Q differ only in that P has constraints of the form ij < j for

all (i,j), whereas Q has constraints of the form

4
£Yyij < 4xj for all J.

iml

Since the latter set of constraints is an aggregation of the former set of

constraints, the feasible region for the relaxed primal problem of P is no

larger than that for Q. So vP(x) > v x) for all xXc. A
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straightforward computation shows that v(C ) - 200 > vQ(x°) = 0

0for x - (1/2,1/2,1/2,1/2). So the formulation P is cut richer than Q for

this example. The comparison of the cuts given at the beginning of this

section dramatically illustrates the superiority of the Benders' cuts for

formulation P.

As a general consequence of Theorem 5.2, for any mixed integer programming

formulation, the convex hull of its feasible region will be a model formulation

that is "optimal" for generating Benders' cuts since it has a relaxed primal

problem whose feasible region is the smallest. In order to formalize this

observation, for any formulation P of a mixed integer program as in (5.5.2),

let C(P) denote the mixed integer program whose feasible region is the convex

hull of the feasible region for P.

Theorem 5.3: Given any formulation P of a mixed integer program,

v C(P ) > vQ(x) for all xCX and for all equivalent formulations Q of this

problem.

Proof: Let x*cXc be arbitrary and let y* be an optimal solution to C(P) when

x = x*; that is, vC(P)(*) - cx* + dy*. By the definition of convex hull, (y*,x*)

is a convex combination with weights Xi of a finite number of points (yi,xi)

that are feasible in P. Linearity of the objective function cx + dy implies that

cx* + dy* Z Xi(cxi + dyi). Since (yi,xi) is feasible in P, vP (i ) < cxi

i C(P) P i
+ dy . Therefore, v (x*) > v (i). But since P and Q are equivalent

formulations, v C(P) (x*) > yivQ(xi) and by convexity of vQ(x) the right-hand

side of this last expression is no smaller than vQ(x*). Consequently, vC(P)(x*)

> vQ(x*) for all x*cXC. °
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Combining this theorem with Theorem 5.2 establishes the following result.

Corollary 5.1: Given any two equivalent formulations P and Q of a mixed

integer program, the convex hull formulation C(P) of P is either cut richer

than or identical to Q.

Another distinguishing feature of the convex hull formulation of a problem

is that when Benders' algorithm is applied to it, only one cut is necessary

for it to converge. More formally, let us suppose that the constraints of the

following problem define the convex hull of the mixed integer program P:

vC(P) . in {cx + dy : Hl + Gly hl}.
x , y>O

Then we have the following result.

Theorem 5.4: For any formulation of the mixed integer program (5.5.2), the

convex hull formulation requires only one Benders' cut for convergence.

P roof:
C(P)

- min min {cx + dy :Hl + Gy hl}.
xcX y0o

Since C(P) is the convex hull formulation,

without affecting the optimal solution value.

programming duality theory (and again assuming

for all xcX), we have

v C(P) - in max u(ht-H x) + x.
xeXc uG < d

we can substitute XC for X

Then, applying linear

that v (P)(x) is feasible
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Another application of linear programming duality theory yields

vC() - min u*(h -H x) + cx
xeXc

for some u* satisfying u*Gl < d. Since the last objective function is a

linear function of x, we can substitute X for its convex hull and write

C(P) min {z:z > u* (h1- H1x) + x}.
xEX, zR

Let x* be a solution of this problem. Then vC(P) vC(P)(x*). So the

single Benders' cut generated by u* is sufficient to solve the convex hull

formulation C(P). O

For facility location problems, our results show that a formulation with a

reduced feasible region for the relaxed primal problem is desirable. However,

there are other issues that must be considered in selecting a model for use

with Benders' decomposition.

First, constructing alternative models for mixed integer programming

problems can be a difficult task. Although, in principle, the convex hull

formulation of a problem requires only a single Benders' cut for convergence,

in general, it will be very difficult to determine this cut by the constraints

representing the convex hull of a set of points.

Recently, researchers have been successful in partially characterizing

such constraints for the plant location problem (see Chapter 3). Section 5.7

cites a number of related studies.



- 59 -

computational experiments verified the utility of tight model formulations

discussed earlier in Section 5.5. For several problems, usiag an aggregated

(looser) formulation increased the number of Benders' iterations required by a

factor of more than 10.

Benders' decomposition has also been used successfully in two other

transportation applications: (i) constructing airline routes for long-haul

passenger markets, and (ii) in railway planning, selecting the mix of engine

types and scheduling the available engines to trains. The model for the first

application chooses, for each given origin-destination city pair, a route plan

consisting of intermediate stops and the number of passengers transported

between pairs of cities on the route. The objective is to maximize revenue

while honoring operational constraints such as the capacity of the aircraft.

The mixed integer programming model for this problem contains a number of

integer side constraints (i.e., constraints imposed upon the integer

variables). The implementation of Benders' decomposition for this problem

used the -optimal method for solving the master problem and an initial

selection of cuts to accelerate convergence (see Section 5.3.2). For test

problems with 40 to 160 0-1 variables (corresponding to routing problems over

a 12 to 17-city network), the solution procedure required from 10 to 16

Benders' iterations and about 80 seconds per problem on a DEC-10 system.

Comparative tests indicate that the initial selection of cuts substantially

reduced the number of Benders' iterations.

In the railway planning application, the integer variables represent

engine assignments and determine bounds on train movements that are modeled by

a minimum cost flow subproblem. The model also contains a number of integer

side constraints that represent engine requirements for each particular

train. For a problem with 432 0-1 variables, 986 continuous flow variables
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and 1972 integer side constraints, Benders' decomposition required 9

iterations and 1500 seconds on a CYBER 74 computer to determine upper and

lower bounds that differed by about 6.6%. For another version (with different

costs) of the same model, the decomposition procedure was able to find upper

and lower bounds only within 19.3% after 20 iterations and 3168 seconds of

computation time. This study concluded that the procedure was suitable for

solving moderate-sized, but not large-scale problems.

In the context of facility location, computational experiments performed

with p-median problems have tested the effectiveness of the usual, closing

facility, and expanding neighborhood cuts that we discussed in Section 5.4.3.

When applied to 10 and 33 node problems, the expanding neighborhood cut

performed slightly better than the closing facility cut and both cuts clearly

outperformed the usual cut technique. Both cut implementations required at

least two or three times fewer cuts than the usual cut implementation to

achieve comparable levels of accuracy. These results indicate the relative

utility of the improved Benders' cuts. However, the performance of all three

cut types indicates that Benders' decomposition is not competitive for solving

large-scale p-median problems (see Chapter 2). For example, a four-median

problem on a 33-node network required ten Benders' iterations to compute

bounds that were within 9% of each other. Also, for larger problems, all

three cut types exhibited pronounced tailing effects, that is, the convergence

of the bounds slowed considerably as the number of iterations increased.

The improved Benders' cut methodology has also been tested on a close

relative of discrete location problems, namely, the uncapacitated fixed charge

network design problem. (Splitting of nodes permits facility location

problems to be converted into network design problems, and adding nodes to

arcs permits network design problems to be converted to faclity location
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models.) In the network design setting, multiple commodities must be routed

over a network with linear flow costs and with fixed charge costs on the

arcs. The solution procedure compared three types of Benders' cuts including

a usual cut, a "strong" cut that dominates the usual cut, and a pareto-optimal

cut computed with the methodology described in Section 5.3. For ten

moderate-sized test problems with 35 to 45 0-1 variables and 1800 to 3600

continuous variables, the pareto-optimal cuts required from 8 to 30 Benders'

iterations to solve a problem to optimality. The computation time on a VAX

11/780 ranged from 7 to 700 seconds. The strong cuts performed almost as

well, but the usual cuts were much less effective and exhibited severe tailing

effects. On the average, the usual cut implementation required fifty times

more computation time and four times as many iterations as the pareto-optimal

implementation to solve a problem to optimality. For most of the test

problems, the pareto-optimal implementation required fewer cuts than the strong

implementation, though at the expense of larger computation time for generating

each cut. Generating a pareto-optimal cut required solving the auxiliary

problem (5.3.11) which, for the network design application, reduces to a series

of minimum cost-flow problems. The strong cut required additional work

equivalent to solving only a shortest-path problem. The overall computational

results seemed to justify the additional complexity of using the pareto-

optimal cuts.

These computational experiments also used a second set of 24 larger

problems with 90 0-1 variables and from 10,000 to 15,000 continuous variables.

For these problems, with all three cut types, Benders' decomposition

encountered severe convergence problems and required excessive numbers of

iterations and computation times. However, a preprocessing technique based

upon a dual ascent procedure (see Chapter 2) was able to significantly improve

the computational performance for these problems. This procedure used dual
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information to eliminate variables and to provide an initial feasible solution

and an initial Benders' cut. For seven of the test problems, the preprocessing

routine was usually able to eliminate 75 to 90% of the 0-1 variables. For

these seventeen problems, the pareto-optimal and strong cuts both performed

significantly better than the usual cuts. The strong cuts were generally more

effective than the pareto-optimal cuts except that neither implementation

converged after 7000 seconds for five difficult problems. For these problems,

the pareto-optimal implementation produced slightly stronger lower bounds. In

general, the pareto-optimal cuts strategy required more time to generate a cut

than the strong-cut strategy. On the other hand, the pareto-optimal cuts seem

to generate somewhat better cuts and this improvement seems to be more

pronounced for the more difficult problems.

Finally, an implementation of cross decomposition (see Section 5.3.2) has

been very successful in solving capacitated plant location problems. In one

recent study, the procedure performed only one full cross-decomposition

iteration and did not solve any Benders' master problems. It alternated

between solving Benders' subproblems and Lagrangian subproblems while

occasionally solving the master problem resulting from applying the relaxation

algorithm to the Lagrangian dual problem (5.3.5). The method generated

'strong" Benders' cuts that dominate the usual cuts derived from the

transportation subproblems. Computational results indicate that the procedure

is about ten times faster than other proposed techniques for the capacitated

plant location. The cross-decomposition implementation has solved (computed

upper and lower bounds within 0.12Z of each other) a series of problems with

100 potential plant sites and 200 demand nodes in 6 to 400 seconds on an

MV8000 computer.
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The computation results discussed in this section indicate that Benders'

decomposition and related techniques can be successful in solving location

problems and other combinatorial optimization models. The acceleration

techniques discussed in this chapter appear to be quite effective. The cut

selection techniques (for strong and pareto-optimal cuts) can improve the

performance of Benders' decomposition. Also, the selection of an appropriate

mixed integer programming model is vital to the success of Benders' method.

Other techniques such as the -optimal method for solving the master problem

and making a good selection of initial cuts have also been quite useful in

various applications.

However, these methods should be used with caution. For the multicommodity

(Hunt-Wesson) location, airline route construction, and railway planning

applications for which Benders' decomposition was fairly successful, the

models were complicated by a large number of integer side constraints. The

Benders' master problems inherited these side constraints and so in each

application a specialized technique was used to exploit the unique structure

of the master problem. We suspect that these tailored master problem

algorithms contributed significantly to the successful use of Benders'

decomposition. For the p-median problem, network design problem, and other

optimization problems that are basically combinatorial, however, and do not

have many complicating integer side constraints, Benders' decomposition by

itself has been much less successful. The p-median problem, for example, has

been solved more effectively with other decomposition techniques, most notably

Lagrangian decomposition and dual ascent. Other problems have required that

Benders' decomposition be combined with problem preprocessing or with

Lagrangian decomposition and other decomposition schemes.
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In summary, computational results support the effectiveness of Benders'

decomposition and related techniques in solving discrete location problems.

The techniques presented in this chapter can definitely enhance the

performance of decomposition methods. However, for many problems it is also

useful to exploit the problem structure of integer side constraints or combine

Benders' decomposition with other solution methods.
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5.7. NOTES AND REFERENCES

Section 5.2

Over twenty years ago, Benders (1962) first introduced his resource

directive decomposition scheme which he cast in a setting of general mixed

integer programming. Later, Geoffrion (1972) generalized the approach to

solve nonlinear programming problems. Balinski and Wolfe (1963), Balinski

(1965), Geoffrion and Graves (1974), and Magnanti and Wong (1981) discuss the

application of Benders' decomposition to facility location problems. In

particular, Geoffrion and Graves have been able to solve complicated

large-scale location problems that arise in distribution system design.

Lagrangian relaxation techniques have a long and illustrious history and

have, over the last two hundred years, become a staple of nonlinear

programming. The use of this solution strategy for discrete optimization is

much more recent, though, and dates to the seminal work of Held and Karp

(1970, 1971) on the travelling salesman problem. Subsequently, the method has

been applied to a vast range of combinatorial optimization problems (see

Geoffrion, 1974; Shapiro, 1979; and Fisher, 1981).

Numerous researchers have used Lagrangian techniques to analyze location

models including Cornuejols, Fisher, and Nemhauser (1977) for uncapacitated

facility location; Geoffrion and McBride (1978), Nauss (1978), and

Christofides and Beasley (1983) for capacitated facility location; Narula,

Ogbu, and Samuelson (1977), Christofides and Beasley (1982), Weaver and Church

(1983), and Mirchandani, Oudjit and Wong (1985) for the p-median problem and

its variants; and Karkazis and Boffey (1981) for a multi-commodity location

problem.
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Guinard and Spielberg (1979) and Van Roy and Erlenkotter (1982) proposed

other dual-based methods. Bitran, Chandra, Sempolinski and Shapiro (1981)

proposed an inverse optimization approach using both Lagrangian and group

theoretic techniques.

In an annotated bibliography, Wong (1985) discusses a number of other

references in the facility location location literature. See also the survey

by Tansel, Francis and Lowe (1983) and books by Francis and White (1984) and

Handler and Mirchandani (1979).

Section 5.3

The minimax view of decomposition that we have adopted in this section is

drawn from Magnanti (1976) and Magnanti and Wong (1981).

Because the general minimax problem (3.1) is typically nondifferentiable,

a number of authors including Dem'yanov and Malozemov (1974), Lemarechal

(1975), Mifflin (1977), and Wolfe (1975) have modified and extended

differentiable optimization algorithms to solve these problems.

Dantzig (1963) and Magnanti, Shapiro and Wagner (1976) discuss the

convergence properties of Dantzig-Wolfe decomposition. The second of these

references stresses the relationship between Dantzig-Wolfe decomposition and

Lagrangian duality in the context of general mathematical programs (including

discrete optimization problems).

Mervert (1979), and Richardson (1976) have studied the effect of the

initial selection of cuts on the performance of Benders' algorithm.

Nemhauser and Widhelm (1971), O'Neill and Widhelm (1972), Marsten, Hogan

and Blankenship (1975), Marsten (1975), and Holloway (1973) have proposed

alternatives for modifying the Dantzig-Wolfe decomposition master problem.

_--·-·II�---·------·11�.�..�-1
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Van Roy (1983) introduced the cross-decomposition method. He has

successfully applied the technique to solve large-scale capacitated plant

location problems (see Van Roy, 1981 and 1986).

Geoffrion and Graves (1974) introduced the c-optimality method when

applying Benders' decomposition to distribution system facility location.

Historically, the study of equivalent formulations for a discrete

optimization model seems to have originated with the location problems (see

Davis and Ray, 1969). Beale and Tomlin (1972), Williams (1974), Jeroslow and

Lowe (1984, 1985, Eppen and Martin (1985), and Martin and Schrage (1985) have

studied equivalent formulations for various discrete optimization models.

Cornuejols, Fisher and Nemhauser (1977) studied equivalent formulations for an

uncapacitated location model.

Section 2 of Magna'nti and Wong (1981) discusses Theorem 5.1 and related

material. Rockefeller (1970) discusses the relative interior of convex sets

in great detail.

Section 5.4

The pareto-optimal cut generation algorithm is taken from Section 3 of

Magnanti and Wong (1981). The algorithm is similar to dual ascent procedures

for the plant location problem proposed by Bilde and Krarup (1977) and

Erlenkotter (1978). Balinski (1965) originally introduced the idea of the

closing facility cut. In an unpublished report, Magnanti and Wong (1977)

proposed the expanding neighborhood cut and gave computational results

comparing the usual, closing, and expanding neighborhood cuts. Magnanti,

Mireault and Wong (1986) discuss some computational results with the

pareto-optimal Benders' cuts applied to a class of network design problems.

Magnanti and Wong (1984) show that, when interpreted properly, several

__�1�1�
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branch-and-bound and heuristic algorithms for network design problems use

Benders' cuts for bounding the optimal objective function value. The cuts

described in this section could be used in similar ways.

Section 5.5

Our discussion of the Benders' decomposition model selection criteria is

taken from Section 4 of Magnanti and Wong (1981).

In recent years, the mathematical programming research community has

intensively studied facets of the convex hull of discrete optimization

problems (see Pulleyblank, 1983). Although facet inequalities have been used

chiefly as cutting planes (see, for example, Groeschel and Padberg, 1971a and

1979b; Crowder and Padberg, 1980; Crowder Padberg and Johnson, 1983; Barany,

Van Roy and Wolsey, 1984a and 1984b; Johnson, Kostreva and Suhl, 1985; and

Groetschel, Junger and Reinalt, 1984 and 1985), they could also be used to

derive alternative models for mixed integer programming problems. Several

authors including Cornuejols, Fisher and Nemhauser (1977), Guignard (1980),

Cornuejols and Thizy (1982a), Cho, Johnson, Padberg and Rao (1983), Cho,

Padberg and Rao (1983), Van Roy and Wolsey (1985), Leung (1985) and Leung and

Magnanti (1986) have studied valid inequalities and facets for plant location

problems. Lemke (1986) and Lemke and Wong (1985) have studied facets for the

p-median problem.

Section 5.6

The studies of the Hunt-Wesson Foods distribution system, the airline

route selection problem, and the railway engine scheduling application by

Benders' decomposition were conducted, respectively, by Geoffrion and Graves

(1974), Richardson (1976), and Florian, Guerin and Bushel (1976).

___I__YIII_1U__J·__U___Y1__ �-IPI1-�YIIYY-�Y�I.
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Magnanti and Wong (1977) performed the computational results on using

several types of cuts for the p-median problem. Magnanti, Mireault and Wong

(1986) discuss the acceleration of Benders' decomposition for fixed charge

network design problems. Van Roy (1986) used cross-decomposition to solve

capacitated plant location problems.
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EXERCISES

Exercise 5.1

Consider the following capacitated facility location problem:

minimize ex + dy

n

subject to E Yij wi,
j-1

m

il iJ < K x

Y jj> °0 il,...,m;.....,n

j = 0 or 1 jl,...,n.

(a) Suppose that we apply Lagrangian relaxation to this problem by

associating Lagrange multipliers aj > 0 with the constraints

m
Yij < Kjxj for J=l,...,n. Let L(a) denote the optimal value of the

Lagrangian subproblem as a function of the Lagrange multipliers a -

(al,1 .. ,a) and let d max L(a). Show that d equals the value vLp of the
a>O

linear programming relaxation of the original problem (obtained by

replacing xj = 0 or 1 by 0 <xj 1 for all ).

(b) Suppose that we define another Lagrangian relaxation by associating

m
Lagrange multipliers Xi with the constraints i - w for il,...,m.

Let L() denote the optimal value of the Lagrangian subproblem as a

function of X - ( 1 ..., ). Also let d max L(X) and let d be defined
a m

as in part a. Show that d > d.

., --__--�C--·L1-^I�---··IPlqP-····I ·II�--·�·CIYll�llm-·LIlII(LII�IIIY-- --1
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(c) Specify a numerical example to show that d > d is possible.

This exercise shows that some Lagrangian relaxations for solving locations

problems might provide sharper lower bounds than other Lagrangian relaxations.

Exercise 5.2

Suppose that we add the valid inequalities

Yij . min{wi, Rig} xj i-l,...,m; J-l,...,nYij < minwi' Kj} xj

to the formulation in Exercise 5.1 and define the two Lagrangian relaxations

specified in parts a and b of that exercise.

(a) How do the Lagrangian relaxations defined after the addition of the

new valid inequalities compare with those defined before the addition

of those inequalities?

(b) Show how to solve the new Lagrangian relaxations.

Exercise 5.3

Outline the steps required to apply Benders' decomposition to the

capacitated facility location problem formulated in Exercise 5.1. Show how to

generate pareto-optimal cuts for this problem.

Exercise 5.4

Suppose that we compare the formulation given in Exercise 5.1 with the

formulation that adds the constraints specified in Exercise 5.2 Is one

formulation necessarily cut richer than the other?
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Exercise 5.5

Figure 5.5 Three-Median Example

Consider a three-median problem defined on the network in Figure 5.5. The

arc labels indicate the cost of traversing a particular link and the demands

are assumed to be unity. The current configuration f - (0,1,0,0,1,1).

a) Compute the usual cut for the current configuration.

b) Compute the closing cut for the current configuration.

c) Compute a pareta-optimal cut for the current configuration using (1/8,

5/8, 1/8, 4/8, 6/8, 7/8) as the core point.

d) Compute the expanding neighborhood cut for the current configuration.

e) For every cut generated, determine which of the other cuts dominates it.

Exercise 5.6

Re-do Exercise 5.1 assuming that the problem is an uncapacitated facility

location model. Let the current configuration be defined by -= (1,0,1,0,0,0)

and assume that c1c2 c3 =5 and c4=c5 c6-3.

I_ _
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Exercise 5.7

Recall the two-median example described in Figure 5.1. Assume the current

configuration is defined by - (1,0,1,0,0).

a) Formulate the linear subproblem that results from (5.1.7)-(5.1.12) when

we fix x - . Formulate the dual subproblem (the dual of the linear

subproblem).

b) Compute the dual subproblem solution associated with the usual cut (5.4

c) Compute the dual subproblem solution associated with the closing facilil

cut (5.4.7).

d) Compute the dual subproblem solution associated with the pareto-optimal

cut generated by the core point (1/2, 1/4, 1/2, 1/4, 1/4).

e) Show that the dual solutions computed in parts b, c, and d are all optii

solutions for the dual subproblem.

f) Formulate the optimization problem (5.3.12) specialized to the two-medi

example of Figure 5.1. Use x ' (1/2, 1/4, 1/2, 1/4, 1/2).

g) Show that the dual solutions computed in parts b, c, and d are all

feasible solutions for the optimization problem of part f. Compute the

objective function values for the three solutions.

.5).

al

an

Notice that the objective function value of the dual solution of part d is

the largest of the three objective function values. This result is expected

since the dual solution of part d is an optimal solution for the optimization

problem of part e.

_ __ __ �
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Exercise 5.8

Show that each of the cuts given in Section 5.5 are required for Benders'

decomposition to converge for the two-median problem shown in Figure 5.4.

Exercise 5.9

Prove the reverse implication of Lemma 5.1. That is, show that if there

is an x belonging to the convex hull Xc of X that satisfies v(x °) > vP(x°),

then Q has a Benders' cut that is unmatched with respect to P.

Exercise 5.10

Consider the following pair of mixed integer programming formulations.

(P) minimize vP(x)

xEX {0,1,2}

where v (x) min y

subject to y > 0 + x

y > 2+x

y>o

and

(Q) minimize vQ(x)

xeR

where vQ(x) - min Y1 +

subject to -yl

Y2

Y2

Yl -1 o, Y2 >

1
+ y 3 - x

3
- y3 - x- 

0, Y3 > 0 .

__ __11_1 t
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a) Show that the two-integer programming formulations P and Q are equivalent.

b) Show that the two-integer programming formulations are not identical.

c) Assume that any point in the subproblem dual feasible region generates a

Benders' cut. Show that Q cannot have a Benders' cut that is unmatched

with respect to P. Also show that the formulation P is cut richer than

the formulation Q.

d) Now assume that only the extreme points of the subproblem dual feasible

region can generate a Benders' cut. Show that Q has a Benders' cut that

is unmatched. Also, show that P is not cut richer than Q. (This exercise

demonstrates that without the extended definition of a Benders' cut, given

in part c, some of the results in Secton 5.5 might not be valid.)

Exercise 5.11

Figure 5.6 Two-Median Example

The network in Figure 5.6 describes a two-median problem: the arc labels

indicate the cost of traversing a particular link and the demands are assumed

to be unity. Let the current configuration be defined by i - (1,0,1,0,0).

a) Compute the expanding neighborhood cut (5.4.15) for the current

configuration.

- - --------------- ·- -----·
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b) Show that the cut generated in part a is pareto-optimal. (Hint: compute

the optimal dual objective function value zl(x) associated with

expanding neighborhood cut. Let

5
X {x: xi 2, 0 < xi< , 1 < i < 5}.

Prove that for any cut corresponding to another optimal dual solution with

objective function value z2(x), there is a EX satisfying Zl(X) > z2 (x).)

c) Prove that the expanding neighborhood cut generated in part a cannot be

generated as a solution to the optimization exercise 5.3.11. That is,

show that for any core point x C ri(X ), the dual solution

corresponding to the expanding neighborhood cut is not a solution for

(5.3.11).

(This exercise demonstrates that some pareto-optimal cuts cannot be

generated by solving (5.3.12). So although we are guaranteed that the

solution to (5.3.12) generates a pareto-optimal cut, we cannot necessarily

generate all pareto-optimal cuts with this technique.)
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