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Abstract

Variational inequalities have often been used as a mathematical programming tool in modeling

various equilibria in economics and transportation science. The behavior of such equilibrium

solutions as a result of the changes in problem data is always of concern. In this paper, we present an

approach for conducting sensitivity analysis of variational inequalities defined on polyhedral sets.

We introduce the notion of differentiability of a point-to-set mapping and derive continuity and

differentiability properties regarding the perturbed equilibrium solutions, even when the solution is

not unique. As illustrated by several examples, the assumptions made in this paper are in a certain

sense the weakest possible conditions under which the stated properties are valid. We also discuss

applications to some equilibrium problems, such as the traffic equilibrium problem.

Key words. Sensitivity Analysis, Variational Inequalities, Perturbed Solution, Complementarity.

1. Introduction

In this paper we consider a perturbed version of variational inequalities defined on polyhedral

sets. As is well-known, a number of equilibrium problems in economics and transportation science

can be cast as a variational inequality problem with an underlying polyhedral set. Examples include

spatial market equilibrium problems, Nash equilibrium games, oligopolistic equilibrium models and

traffic equilibrium problems. Common practical applications include energy planning, urban transit

system analysis and design, and prediction of intercity freight flows. The purpose of sensitivity

analysis for these problems is threefold. First, since estimating problem data often introduces
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measurement errors, sensitivity analysis helps in identifying sensitive parameters that should be

obtained with relatively high accuracy. Second, sensitivity analysis can sometimes help, to certain

degree, to predict the future changes of the equilibria as a result of the changes in the governing

system. Third, sensitivity analysis provides useful information for designing or planning various

equilibrium systems. In addition, from a theoretical point of view, sensitivity properties of a

mathematical programming problem can provide new insight concerning the problem being studied

and can sometimes stimulate new ideas for problem-solving.

A number of authors have addressed sensitivity and stability issues of variational inequalities

with special linear structures. The methodologies suggested so far vary with the problem settings

being studied. Assuming the differentiability of the perturbed solution, Irwin and Yang [ 1982 ]

provided an iterative method for computing the derivatives of the perturbed solution of a spatial price

equilibrium problem on a bipartite graph. Chao and Friesz [ 1984 , who considered the same problem

over a transshipment network that has an equivalent nonlinear programming formulation, applied

nonlinear programming sensitivity analysis results developed by Fiacco [ 1984 . Dafermos and

Nagurney [ 1984 derived a continuity property of the perturbed solution for the traffic equilibrium

problem as well as for the spatial market equilibrium problem.

In a recent paper, Kyparisis [ 1986 considered a general form of variational inequalities defined

on polyhedral sets. He extended Robinson's work [ 1985 on generalized equations and derived

sufficient conditions for differentiability of the perturbed solution.

All of these sensitivity analyses either assumed or finally showed that the perturbed solution is

locally unique. However, in this paper the conditions we impose do not imply the local uniqueness of

the perturbed solution. For this reason, we generalize the usual definition of differentiability to a

point-to-set mapping. We also show that these conditions are in a certain sense the weakest possible

ones needed to ensure the differentiability of the perturbed solutions.

Typically, the development of variational inequality sensitivity analysis for equilibrium problems

like those mentioned previously involves several technical difficulties. The traffic equilibrium

problem provides one illustration. Due to the problem's special structure, the variational inequality
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formulation of the problem ( see Section 4 ) usually includes path flow variables. However, the fact

that the path flow pattern is usually not unique at equilibrium prohibits the direct application of the

variational inequality sensitivity analysis to this problem. Since the methodology suggested in this

paper does not require uniqueness of the equilibrium solution, it can be used to derive sensitivity

properties for a number of equilibrium problems including this traffic equilibrium application.

A couple of authors have also considered the sensitivity analysis of variational inequalities defined

on nonpolyhedral sets. Assuming strict complementary slackness condition, Tobin [ 1986 applied the

nonlinear programming sensitivity analysis results of Fiacco [ 1983 to variational inequalities. In

the absence of strict complementary slackness, Kyparisis [ 1985 extended the continuity results of

Robinson [ 1980 ] on generalized equations to obtain sufficient conditions for differentiability of the

perturbed solution. In a subsequent paper, we will extend the results of this paper to variational

inequalities defined on nonpolyhedral sets.

The next section defines the problem being considered and gives the key assumptions we make

throughout the paper. It also introduces the notion of Lipschitz continuity and directional

differentiability of the perturbed solution set. Four instructive examples show the necessity of these

assumptions. In Section 3, we describe the suggested approach in detail. We first establish the

Lipschitz continuity property, and then the differentiability property of the perturbed solution set.

Section 4, which considers the application of the method to traffic equilibrium problems, introduces a

more general form of the underlying ground set to accommodate the special features of applications

like the traffic equilibrium problem. Finally in Section 5, we provide a numerical example to

illustrate the procedure for computing the directional derivative of traffic equilibria - the derivative

is determined as a unique solution to certain linear variational inequality over the network.

We believe that the approach adopted in this paper, via the development of the intermediate

Lipschitz continuity property, not only permits us to establish the current results, but has the

potential to be a general proof technique for establishing a variety of differentiability results.
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2. Formulation

In this and next section, we consider the perturbed variational inequality problem of the

following form:

VI (c): find x P satisfying F(x, ) T (y - x) > 0 for any y P

where F ( , ) is a point-to-point mapping from PXRm to R", e E Rm is a perturbation parameter,

and P is a polyhedron defined by P = { x R" I Ax 2 b }. Let S ( e ) denote the solution set of VI ( ),

and let x ( ) be any vector in S ( ). Also, suppose x* solves the problem VI ( c* ).

In our development, we do not assume that S ( ) n U is necessarily a singleton for any e in any

neighborhood U of x*, i.e., c -* S ( e ) n U is generally a point-to-set mapping. Therefore, apart from

the usual notion of continuity and semicontinuity of a point-to-set mapping, we define the Lipschitz

continuity and directional differentiability of point-to-set mapping S ( ) n U at ( x*, £* ) as follows.

Definition 2.1. The perturbed local solution set S ( ) n U is said to be Lipschitz continuous at

( x*, E* ) if for some neighborhood V of£* and some number L > 0, 1 x( ) - x* 11 < L IIt - e* 11 for any

x(e) E S() n u and E V.

Definition 2.2. The perturbed local solution set S ( ) n U is said to be directionally differentiable at

( x*, * ) in the direction co E Rm, if there is a vector d ( Eo ) E Rn satisfying the property that for any

x(E* + to) S (* + to) n U,

lim - (c* + t) - x* = d(%o).

t - O

The perturbed local solution set is said to be directionally differentiable at ( x*, e* ) if it is directionally

differentiable in every direction eo E Rm.

These definitions are natural extensions of the same notions for point-to-point mappings and

have clear geometrical meanings - when the mapping is single valued, these definitions are exactly

the usual ones for functions. By our definition, differentiability is a strong property that requires all

points in S ( x* + t ) n U converge to a common point along same direction and with same rate. For

example, S ( ) = ({ } is differentiable at ( 0, 0 ) while S ( ) = [ 0, e ] is not. In general, even when a

point-to-set mapping S ( ) is not differentiable along direction eo at ( x*, * ), we let D ( o ) = { d I d
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is the limit of some convergent sequence of the form [ x ( E* + tk o ) - X* ] / tk }. To be more precise,

we first let Sd (t, ) = {[ x (* + t )- x* / t any x ( * + t o) E S( * + t ) n U }for t > 0.

Then we define

D(co) = lim Sd(t )-{d13d(t )S(t )(d(t suchthatd(ttk ) , dastk0}.
t-+O0

Clearly, D ( o ) also contains first order information regarding the limiting behavior of S ( ) at

( x*, £* ). For example, S ( ) = { x ( R2 x1 2 + x2
2 = 2 } for E -> 0 is not differentiable at ( 0, 0 ), but

with co = 1, D ( 1 ) = { x R2 I x12 + x22 = 1 , which means the set S ( e ) converges to 0 along all

directions with the same rate ( that is, all limiting d have the same norm ). Note that D ( o ) is a

singleton if and only if S ( ) is differentiable in the direction o. When S ( c ) is Lipschitz continuous at

( x*, E* ) with Lipschitz constant L, D ( o ) C { x I 1 x II < L }.

We next summerize the key assumptions invoked in this paper, which all concern local properties

of the function F (, ). Let ( A 1 bl ) be the submatrix of ( A b ) that corresponds to the binding

constraints at x*. Also, let P' = {y E Rn F(x *, c *)T y = 0, Al y > O0 . Note that when F ( x*, *) 

0, x* + P' contains the part of the feasible region that lies on the supporting hyperplane defined by

F (x*, £* ).

Assumption 2.1. ( Continuity condition ) For some neighborhoods U of x* and V of *, F ( , · ) is

continuous over U X V.

Assumption 2.2. ( Convergence condition ) For some neighborhoods U of x* and V of E* and some

number L > 0, II F (x, c) - F ( x, * ) 11 L - * for any x E (x* + PI) U, E V.

Assumption 2.3. ( Differentiability condition ) F ( , ) is differentiable at ( x*, * ), i.e., for any

x0 E Rn and o E Rm,

lim - F (x* +tXo +O(t),*+t +o(t))-F (x*, *) =V F(x*,*)Xo + V F(x*, * ) 
t - O

Finally, we make an assumption on the limiting function F ( , * ),

Assumption 2.4. F ( -, * ) is differentiable at x* and Vx F ( x*, E* ) is positive definite on span ( pa ).

These assumptions are the weakest possible in the sense that if any one of them fails, then the

perturbed solutions need not satisfy the differentiability property. We use four simple, but instructive
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one-dimentional examples to illustrate this point. In each example, P = { x E R' I x > 0 }, 0 < < 1,

( x*, e* ) = ( 0, 0 ), and the function F violates only one of the assumptions.

Example 2.1. This example shows if the continuity condition is not satisfied, then the perturbed

solution set may be empty. Consider function F of the form ( See Figure 1. ):

- 2 0 X < 2
F(x , e) = {-

2

X E X < .

In this case, S ( O ) = ({ 0 } and S { e } = ( 0 } for 0 < e < 1. It is also easy to verify that this example

satisfies Assumptions 2.2, 2.3 and 2.4.

0

_ p2

F(-, )

! /

I , ' 
£i? x

Figure 2.1. Continuity is Violated

Example 2.2. The convergence condition is violated by this example ( let x = 2c1/2) while the rest of

the conditions are still satisfied. F is chosen as follows ( See Figure 2.2):

0 < X < 2

( X - 2 )/(1 - 32 ) e2 < < 1 2

F(x, £) = -x + 21i2 E12 X < 2 /2

3( x - 212) 2rE12 < x < 311/2
t X 3"1/2 X < °°x 3 '2 <- x o.

Clearly, S (0) = {0 }and S() = [0, 2 U { 2e 1/2 }for 0 < e < 1. Thus S() U is not differentiable

in any neighborhood U of 0.

Example 2.3. This example shows that the perturbed solution set need not satisfy the

differentiability property if F is not differentiable at ( x*, e* ). Here F is defined by ( See Figure 2.3. ):
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r I " - .

x

Figure 2.2. Convergence is Violated

0O O0<x<E

F(x,c) = 2(x - £) e C x < 2£
X 2c x < oo .

In this case, S ( c ) = [ 0, E ], which is not differentiable at ( 0, 0 ). Notice that F satisfies the other three

conditions.

x

Figure 2.3. Differentiability is Violated

Example 2.4. In this example, V, F ( 0, 0 ) does not satisfy the positive definiteness property. As a

result, the perturbed solution set is not differentiable at ( 0, 0 ). F is specified as follows ( See Figure

2.4. ):
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O O X < 
F(x, ) = ( 4e(x - ) < X < 2e

x2 2e < x < oo.

Notice that function F satisfies Assumptions 2.1, 2.2 and 2.3 and that S ( ) = [ 0, e ].

X

Figure 2.4. Positive Definiteness is Violated

Finally, in the example shown in Figure 2.5, F satisfies all the four assumptions and the perturbed

solution set is indeed differentiable.

x

Figure 2.5. All Assumptions are Satisfied

As we will see in the next section, Assumptions 2.1-2.4 are weaker than those suggested by

Kyparisis [ 1986 , who assumed that F is once continuously differentiable around ( x*, £* ) and that
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Vx F ( x*, E* ) is positive definite on the subspace spanned by P'. Under those conditions, Kyparisis

showed that the perturbed solution set S ( c ) is a singleton in a neighborhood of c* and is directionally

differentiable.

If we replace Assumption 2.4 with the following weaker condition,

Assumption 2.4.' V F ( x*, e* ) is positive definite on pl.

then the perturbed local solution set may not be directionally differentiable. This fact is illustrated by

the following three-dimentional example. Let P ={ x E R3 xl 0, x2 > 0, x3 = 0 }, 0 < e < 0, and

F ( x, e ) = ( xl + x2 - , x1 + x2 - , 1 ). Note that x* = ( 0, 0, 0 ) is the unique solution to VI ( 0 ) and

that Assumptions 2.1, 2.2, 2.3 and 2.4' are satisfied. In this example. the perturbed solution set is

given by S ( e) = {x R I xl + x2 = , x1 0, x2 > 0, x3 = 0 } for 0 < e < , which is not

differentiable at ( x*, £* ). However, for this example, we have D ( o ) = { x R3 I xl + x2 = co, x 2 0,

X2 > 0, X3 =O}.

In the next section, we establish the following results:

( i ) Assumptions 2.1, 2.2 and 2.4' imply that the perturbed local solution set is Lipschitz continuous.

( ii) Assumptions 2.1, 2.2,2.3 and 2.4' imply that D (co ) is bounded and contained in the solution set

of a certain linear variational inequality.

( iii ) Assumptions 2.1-2.4 imply that the perturbed local solution set is directionally differentiable for

any direction co and the derivative uniquely solves a certain linear variational inequality.

3. Description of Method

This section consists of two parts. In the first part, imposing Assumptions 2.1, 2.2 and 2.4', we

derive the Lipschitz continuity property of the perturbed local solution set. We show for small

perturbations the perturbed local solution set is contained in x* + P'. The second part establishes the

directional differentiability property of the perturbed local solution set. Imposing Assumptions 2.1,

2.2, 2.3 and 2.4', we prove any vector in D ( co ) is a solution to a certain linear variational inequality.

Then we show that Assumption 2.4 implies this linear variational inequality has a unique solution.
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Therefore, Assumptions 2.1-2.4 implies that the perturbed local solution set is directionally

differentiable.

Throughout this section, we will use a simple reformulation of variational inequalities which we

summerize in the following lemma, whose proof is immediate from the definitions.

Lemma 3.1. x* is a solution to the variational inequality problem

F(x) T(y - x) > 0 for any y E P

if and only if x* solves the linear programming problem

min F(x* )T X Ix P}

or, equivalently when F ( x* ) t 0, if and only if H = { x F ( x* )T ( X - X* ) = 0 } is a supporting

hyperplane ofP at x* with P C { x I F ( x* )T ( x - x* ) 0 }.

This linear programming reformulation provides a natural approach ( see Tobin [ 1986 1 ) for

evaluating the directional derivatives of x ( e ) by using a common method for conducting sensitivity

analysis of nonlinear programs. Suppose we formulate this linear program as a set of inequalities

defined by primal feasibility, dual feasibility, and complementary slackness. Then assuming strict

complementary slackness would permit us to reformulate these conditions as a set of equations. And

finally, by making appropriate assumptions, we could invoke an implicit function theorem to

characterize ( and consequently provide a means to compute ) the derivatives of the perturbed

solution.

This approach has the disadvantage of imposing conditions on the derived primal-dual optimality

conditions rather than the problem data itself. Indeed, it is the lack of strict complementary slackness

that has led Kyparisis to adopt the generalized equation approach and considerably complicates the

analysis. In our approach, we first show that the linear programming primal solution and (an

appropriately chosen ) dual solution satisfy the Lipschitz condition. This fact permits us to show that

the primal and dual " derivatives " satisfy an auxiliary linear complementarity problem ( which can

be restated as an equivalent linear variational inequality ).
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3.1. Lipschitz continuity of the perturbed solutions

We will first consider a locally restricted variational inequality problem that has a Lipschitz

continuous solution set near ( x*, e* ). Then we show the solutions of this local problem are exactly the

local solutions of VI ( E ).

Let U and V be chosen to satisfy Assumption 2.1 and 2.2. Suppose U 1 C U is a neighborhood

(which we choose as an open n-cube ) of x*. Consider the following locally restricted variational

inequality problem:

VI'(e): Find x'EP n C1 ( U 1) satisfying F(x', ) T (y - x' ) 0 foranyy P n Cl (U1 ).

Let S' ( E ) denote the solution set of VI' ( ). Since for each E V, F ( , E ) is continuous over the

compact convex set P n C1 ( U1 ), S' ( 0 ) is nonempty for all E V. Also notice that S ( ) n U1 c S' ( ).

As an immediate result of the next lemma we will show that the set S' ( ) is contained in x* + pl for

all £ in a neighborhood of E*. Then we prove that S' ( ) satisfies certain Lipschitz continuity property

near e*. Finally, we point out that S' ( ) = S ( ) n U1 for near e*.

Lemma 3.1.1. Some neighborhoods U1 C U of x* and V1 C V of c* satisfy the following properties:

(a)For some L 1, L2 > 0, IIF (x, ) - F (x*, *) I < L11 x - x* ll + L2 ll - * II VxE U 1,£E V 1

(b) For some a > 0, [ F (x, *) - F (x*, * ) IT( X - x*) alix - x* 112 for any x E ( x* + p ) n U1

( c ) For any x0 E Cl ( U 1 ) and 0 V1, the solution set of the linear programming problem

min { F ( x0 , 0 ) T X I X f P n Cl ( U1 ) } is contained in x* + pl.

Proof. See Appendix A.

Note that property ( a ) which follows from the differentiability of F ( , ) at ( x*, £* ), is not

used until next subsection. In view of the fact stated in Lemma 3.1, any x' ( e ) S' ( ) solves the

linear programming problem min { F ( x' ( L ), )T x E x f P n C1 (U 1 ) }. Then by Lemma 3.1.1. ( c ),

S' ( ) C x* + p' for V1. ( Note: Suppose we replace Assumption 2.4' with the following stronger

assumption:

Assumption 3.1.1. For some neighborhoods U of x* and V of £, F ( , ) is strictly monotone over the

set(x* + P) U for any E V.
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Then S' ( ) is a singleton for all (E V1 ).

Lemma 3.1.2. S' ( F ) is Lipschitz continuous at ( x*, * ).

Proof. For any x' ( ) ( S' ( ) and E ( V1, since x' ( ) solves VI' ( ) and x* solves VI ( * ), we have

F( x' (), E )T (X * - x' ()) 0, and

F (x*, * )T ( x' () - x*) > 0.

Adding these two inequalities, we obtain F (x' ( ), e )T(x ( ) - x* ) < F ( x*, * )T (' ( - x* ).

Then by Lemma 3.1.1. (b) and Assumption 2.2,

allx'(c) - x*12

[F ( x' (), *) - F (x*, *) T ( ' () - X*)

< [F (x' (), E*) - F (x' (), ) IT ( x ( ) - X*)

< L | F( - * X' (£) - X* ||

Thus Ilx' () - x*[ (L/ a)-I -e*.

The next theorem establishes the Lipschitz continuity property at ( x*, £* ) for the perturbed local

solution set of VI ( ).

Theorem 3.1.1. S ( e ) n U1 is Lipschitz continuous at ( x*, £* ).

Proof. Since x* C U 1, by Lemma 3.1.2, some neighborhood V2 C V1 of c* has the property that for

any e ( V2 , S' ( ) C U1. Consequently, the supporting hyperplane { x I F ( x' ( e ), e )T ( x - X' ( ) ) = 0 }

of P n U1 at x' ( e ) is also a supporting hyperplane of P at x' ( e ). By Lemma 3.1, this result implies

x' (e) is also a solution to VI ( ). Thus, S' (e) = S(e) n U 1 fore E V2, and hence S( e ) n U is

Lipschitz continuous at ( x*, e* ).

FO

It is possible to show (by examples like those in Section 2 ) that Assumptions 2.1, 2.2 and 2.4' are

in a sense the weakest possible conditions under which the Lipschitz continuity property is valid.
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3.2. Directional differentiability of the perturbed solutions

In this subsection, we establish the directional differentiability properties of the perturbed local

solution set S ( c ) n U1. So far we have shown that II x ( ) - X* 1 / c - c* 11 is uniformly bounded by

L / a for any x ( c ) E S ( £ ) n U1 and c E V2. Let co be a nonzero vector in Rm. Then we have D ( o ) C

{ xl II x 11 < L / a . Now suppose xL is an arbitrary vector in D ( o ), i.e., xL is the limit of some

convergent sequence [ x ( * + tn co ) - x* / tn with tn -- 0, n E N. We will show XL is a solution of a

certain linear variational inequality.

By Lemma 3.1, any x ( c ) E S ( ) solves the linear program

minimize F(x( ), )T X (3.2.1)

subject to Ax 2 b.

Writing x = xl - x2 , xl > 0, x2 2 0, we have the following equivalent linear programming

formulation of( 3.2.1 ) which has the same optimal dual solutions as ( 3.2.1 ):

minimize F ( x(E), E )T xl - F( x( c), )Tx2 ( 3.2.2)

subject to A xl - A x2 > b

x1 2 0, x2 > 0.

The optimal dual solution of( 3.2.2 ) may not be unique. However, we now show that some sequence of

dual solutions n ( c* + tk Co ), k E K C N of ( 3.2.2 ) has the Lipschitz continuity property at n ( c* )

( where n ( c* ) is also appropriately chosen ). Let S ( x ( c ), c ) be the polyhedral solution set of the

linear program ( 3.2.2 ). As is well known, S ( x ( c ), c ) contains at least one basic solution and

S (-, ) is upper semicontinuous. Therefore, some neighborhood V3 C V2 of e* has the property that

for any c E V3 and x ( E) E S ( c) n U1, there is a basic solution ( xl, x2 ) E S ( x ( £), ) S ( x*,'* ).

Since there are only a finite number of basic solutions, for some fixed basic solution ( xl , x2 ) and

subsequence K E N, (xl, x2 ) E S ( x ( c* + tk £0 ), £* + tk £0 ) C S ( x*, £* ) for k E K. Let B denote the

-13-



basis corresponding to the basic solution ( xl, x2 ), and let CB ( x ( ), ) be the corresponding subvector

of the objective function of the linear program ( 3.2.2 ). We then choose the corresponding simplex

multipliers as our optimal dual variables. Thus,

n ( * )T = CB ( X*, c* ) B 1, and

n(c* + tkc0 )T = CB( X (* + tk E0), * + tk CO) B-' fork K.

Now by Lemma 3.1.1. ( a) and Theorem 3.1.1,

|I F (x ( $ + tk Co), C* + tk Co) - F (x*, £* ) 

< Ll1 Ix(e* + tk to) - x* l + L2 II1 - * 11

< ( L1 L/ a + L2) o I1 tk for k K.

Notice that CB ( x ( ), ) is a subvector of(F ( F ( x ( ), )T, - F (x ( ), )T ), hence for some M > 0,

Iln(e* + tk ) - n(C*)l - M tk fork E K.

So the sequence of dual solutions we choose has the desired property. Now obviously, some

subsequence K' C K C N and vectors nL satisfy

[ n (* + tk 0) -- n (* ) / tk -- nL as k , k E K'.

The following lemma gives the set of constraints that the two vectors xL and nL must satisfy

simultaneously. We need the following notation to state the lemma. Let

n

K , ={klIk( *)> Z akixi(*)--bk =}
i=l I

n

K2 {knk(*)='0, akixi(E)-bk =0}
i=l

n

K 3 = {k nk(*) = O akixi(e*)-bk > }.
i= 1

Lemma 3.2.1. The two vectors xL and nL satisfy the following linear complementarity constraints:

x C

n
L L

aki xI. =O fork K1, k ( K2and n k > (3.2.3)
t~~~~~~~1 2 1
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n
L L

E afkix. O fork E K 2andn k = O
i=1

L L L
nk UIS fork K1, rL k> 0ork K2 n =0 fork fork K 3.

Proof. See Appendix B.

Now any vector in D ( co ) satisfies system ( 3.2.3 ), which involves the auxiliary variable nL . The

following theorem gives a partial characterization of the set D ( o ) in terms of the original data. We

prove that D ( * ) is contained in the solution set of a certain linear variational inequality.

Theorem 3.2.1. Suppose x* solves VI ( e* ) and Assumptions 2.1, 2.2, 2.3 and 2.4' are satisfied. Then

any xL E D ( co ) solves the following linear variational inequality problem:

VI': find x p' satisfying [ Vx F (x*, * ) x + V, F ( x*, * ) o T (y - X) 0 for any y P'.

Proof. Notice that system ( 3.2.3 ) is the complementary slackness conditions of the following linear

program:

minimize [V F( x*,* ) x + V F (x*,* ) co ] x

n

subject to E ak i xi 0 fork K 1

akixi 2 0 fork E K 2.
i=1

Therefore, by Lemma 3.1.1, xL satisfies the following variational inequality:

find x Po satisfying [ Vx F (x*, c*) x + Vc F(x*,* ) o T ( y - x) 2 0 for any y Po

n n

whereP0 = {x ak =OorkEK , and akixi - O fork K, and K 2 }.

i=l i=l

Now in order to show that xL satisfies the variational inequality VI', it suffices to show that Po = pl

{ x I F (x*, £* ) x = 0, A1 x > 0 }. Notice that the binding constraints at x* are those in K 1 U K2.

p C pl: Suppose x E P. Then we have A 1 x > 0, and F ( x*, * )T = [ n ( * )T A x = .Thus, x pl.

P' C P: Suppose x ( P'. Then
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n

akix i 2 0 fork E K 1UK 2, and
i=1

0 = F(x*,*)Tx = [n(e*)TA x = n(e*)TAx

Ifk E K1, then nk ( * ) > 0, which implies

n

A akixi = O.

Thus, x E Po.

Actually, we conjecture that the set D ( o ) is equal to the solution set of the linear variational

inequality problem VII assuming the hypotheses of Theorem 3.2.1. In a subsequent paper, we will

show that this is true for the case where the problem VII satisfies the strict complementary slackness

condition.

Corollary 3.2.1. Suppose x* solves VI ( * ) and Assumptions 2.1-2.4 are satisfied. Then for some

neighborhood U of x*, S ( ) n U is directionally differentiable at ( x*, * ) for any direction Eo.

Furthermore, the derivative d (o ) uniquely solves the variational inequality VI'.

Proof. Let x' and x" be any two vectors in D ( o ). Then we have

[VxF(x*,s* )x' + VF(x *,*)eo]T(x" - x') 0, and

[ Vx F (x*, * ) X" + Ve F (x*, e* ) o T ( X - X") 0.

Adding these two inequalities, we obtain

( x' - x" )T Vx F ( x*, c* ) (x' - x") - 0.

Since Vx F ( x*, E* ) is positive definite on span ( pl ), the previous inequality implies x' = x".

Therefore, D ( eo ) is a singleton, or in another words, for some neighborhood U of x*, S ( E ) n U is

directional differentiable at ( x*, e* ).

Remarks.

( i ) In view of its linear structure, the variational inequality problem VI', as in the case of linear

complementarity problems, can be solved by certain pivoting algorithms. On the other hand, with the
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use of a diagnalization method to solve VI', in each step the subproblem is a quadratic optimization

problem that is relatively easy to solve.

( ii ) Note that for an underlying set of the form P = ( x Rn I A x > b, C x = d } }, the results obtained

so far remain valid if we just change pl to be P = x E R I Al x 2 0, C x = 0 }.

( iii ) Notice that since the ( linear ) mapping of the variational inequality VIi satisfies Assumptions

2.1-2.4, the directional derivative d ( co ) is Lipschitz continuous and directionally differentiable with

respect to the perturbation direction co. In particular, if we let Amin denote the minimum eigenvalue

of the symmetric matrix [ Vx F ( x*, £* ) + Vx F ( x*, * )T ] / 2 projected on to the subspace span ( pl ),

then it is possible to show that

1 d ( o' ) - d ( Eo ) <- [1 Vc F ( x*, c* )I / Xmin iII cO' - £0" II.

Corollary 3.2.2. Suppose x* solves VI ( * ) and Assumptions 2.1-2.4 and 3.1.1 are satisfied. Then for

some neighborhood U of x*, S ( E ) n U is a singleton for c near e*. Let S ( E ) n U = x ( ) . Then the

directional derivative of function x ( ) exists for any direction co and uniquely solves the variational

inequality VI'.

In the following lemma, we give a condition that implies Assumption 3.1.1.

Lemma 3.2.2. Suppose x* solves VI ( c* ). Assume F ( -, ) is differentiable for each e near * and

Vx F ( x, e ) is continuous near ( x*, e* ). Then Vx F ( x*, e* ) being positive definite on span ( P ) implies

Assumption 3.1.1.

Proof Suppose Assumption 3.1.1 is not satisfied. Then some sequences { xn }, { yn } and { en } satisfy

xn, yn E x* + pl, xn : yn, and xn, yn -+ x*, en --. *, and

[ F ( xn, en) -F ( yn, n ) ]T ( xn - yn ) < 11 xn - yn 112 / n. Therefore by the mean value theorem, we

have

(xn _ yn)T V F(z n n)(xn- y n) 1
K-

| x _ n 2 n

where zn E [ xn, yn , the line segment joining xn and yn. Notice that ( xn - yn ) / I xn - yn II is a vector

of unit length. Let z be a limit vector of ( xn - yn ) / Xn - yn { ). Then z E span ( pL ), 11 z 11 = 1, and
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zT V F (x*, c* ) z 0. This conclusion contradicts the positive definiteness of V, F ( x*, E* ) on

span ( P).

One immediate implication of Corollary 3.2.2 and Lemma 3.2.2 is the result by Kyparisis [ 1986 ]

( his Theorem 2.1 ), which we paraphrase in the following theorem.

Theorem 3.2.2. Suppose x* solves VI ( c* ). Assume F ( -, · ) is once continuously differentiable

around ( x*, c* ) and V, F ( x*, c* ) is positive definite on span ( P'). Then for some neighborhood V of

c*, the variational inequality VI ( c ) has a unique solution x ( e ). Furthermore, the directional

derivative of x ( c ) at E* exists for any direction co and uniquely solves the variational inequality

problem VI'.

4. Perturbed solutions of traffic equilibrium problems

In this section, we investigate the behavior of the perturbed solutions of traffic equilibrium

problems and other problems in which the mapping F depends upon only a subset of the variables

defining the polyhedron P. The VI sensitivity analysis results obtained in the previous section do not

apply directly to these problems since the formulations and the assumptions for this model no longer

fit the standard format we considered previously. However, it is possible to conduct the same type of

analysis using the approach suggested in the previous section. In Subsection 4.1, we consider a

perturbed version of the traffic equilibrium model with fixed demands. We suggest and analyze a

version of the perturbed variational inequality with a more general form of the underlying set P that

includes traffic equilibrium problems as special cases. Then in Subsection 4.2, we analyse the

perturbation problem for a general traffic equilibrium model with elastic demands.

4.1. Cost perturbation for a traffic equilibrium problem with fixed demands

Consider the following traffic equilibrium model. Let G = ( N, A ) represent a transportation

network with N as the set of nodes and A the set of directed links. To describe the problem, we also

introduce the following notation:
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W = the set of origin-destination pairs in the network

Pw = the set of paths connecting O-D pair w

dw = the demand associated with O-D pair w

A = the link-path incidence matrix

r = the O-D pair-path incidence matrix

fa = the amount of flow on link a

hp = the amount of flow on path p

Ca ( f) = the travel cost function of each user on link a

fQ(d) = flf = Ah, r h = d,h -- 0}, the set of feasible link flows.

With this notation, the traffic equilibrium problem can be stated as follows: find f E Q ( d ) satisfying

' ap Ca(f)min 8aps Ca (f)lp'E P ifhp >0 foranyp Pw, w W.
aEA aEA

That is, in equilibrium, every path p carrying positive flow ( i.e., with hp > 0 ) must be a shortest path

with respect to the link costs ca ( f ). Writing this problem as a variational inequality ( see Smith

[ 1979 or Dafermos [ 1980 ] ) in terms of the vector C ( f) = ( Ca ( f), a E A ), we obtain

find f E ( d) satisfying C (f)T (f' - f) > 0 for any f' E Q ( d ).

Practically, the underlying polyhedron Q ( d ) cannot be written in the standard form we considered

previously ( as a polyhedron defined solely in terms of the variables f). Fourier elimination would do

so, but possibly by requiring an exponential number of inequalities to specify the projected ( on to f )

polyhedron. By eliminating the link flow variables from the formulation, we obtain the following

variational inequality in terms of path flows

findhE{hirh=d, h 0}satisfy (A T C(Ah)) T (h'- h) 0 foranyh'E ({h I h = d, h 20}.

Now the underlying set can be written in the standard form but the path cost function generally does

not satisfy our assumptions. Moreover, the equilibrium path flow pattern is usually not unique since

the problem assumptions are usually imposed on the link cost function rather than the path cost

function (and several path flow solutions might correspond to the same ( unique ) link flow ).
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In the following discussion, we first consider a class of more general variational inequalities. Then

we interpret the results in terms of traffic equilibrium problems. Consider the perturbed variational

inequality of the form:

VI(e): F(x, )T (y - x) 0 for any y P

where P = { x I A x + B z 2 b }, A is a X n matrix and B is a X m matrix. This problem has special

feature: the variable z does not appear as an argument of the function F and we are interested only in

the changes in x as a function of e. In the context of traffic equilibrium problem, variable z becomes

the path flows h and x becomes the link flows f. Now suppose x* solves VI ( * ), and z* satisfies the

constraints A x* + B z 2 b. Let Ai denote the ith row of the matrix A and Bi the ith row of the matrix

B. Let I = {i I Ai x* + Bi z* = bi}and P' = { x I F ( x*, * )TX = , Ai x + Bi z 0 for i I}. We now

make the same assumptions on the function F as in Section 2 - the only difference is that P' has

changed. Notice that the development in Section 3.1 did not use the explicit form of P or P to

establish the Lipschitz continuity property of the perturbed local solution set. Therefore, using the

same approach we can derive the Lipschitz continuity property for the current problem. We

summerize this result in the following lemma.

Lemma 4.1.1. For some neighborhoods U1 of x* and V1 of *, the perturbed local solution set

S ( ) n U 1 is contained in x* + P' for e E V1 and is Lipschitz continuous at ( x*, e* ), i.e.,

Ilx(e) - x* II < (L/a)ll - *S I for anyx(e) S (e) n U 1 and E V1

( a is defined in Lemma 3.1.1 ).

We notice that the soluton to the linear system B z - b - A x ( e ) might not be unique for each

x ( ) S ( e ) n U1 and e E VI. For the purpose of our analysis, we define z ( e ) to be the unique

solution of the following convex programming problem:

minimize 1lz - z* 112

subject to Bz b-A x(e).

The next lemma shows that z ( e ) is Lipschitz continuous at z*.

Lemma 4.1.2. For some number L 1 > 0, 1 z ( ) - z* II - L1 E for any x ( e ) S ( e ) n Ul ande E V1.
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Proof. Let D be a closed n-cube centered at x* that satisfies the condition S ( ) n U1 C D for c ( V1.

Then D n P is a bounded polyhedron. Let xl, , xr be an enumeration of its extreme points. Now

consider the following quadratic problem:

minimize 11z -z* 112

subject to z Z( x)

where Z ( x ) = { z I B z 2 b - A x }. Let zo ( x ) denote the unique solution of this problem as a function

of x over D n P. According to our definition, z ( ) = z0 ( x ( e ) ). First notice that 11 zO ( x ) - z* 11 2 is

uniformly bounded over D n P. To see this result, suppose x is any vector in D n P. Then x is a convex

combination of the extreme points of D n P, i.e.,

r r

x = a.ix forsome a. O, a= 1.

i=l i=l

r

Since z= _ aiz(x)(Z(x),

r

Iz(x)- Z* 112 Z Z* 112 aillZO(x (X) - Z*112 maxi {llZo ( x i ) -Z* 11}
i= 1

Since D n P is a polyhedron, some number p > 0 has the property that for any x E D n P, x is a convex

combination of x* and some x' E D n P n {x I x - x* 11 > p }. Now let

M= sup 2() xED nPn {xi° ix - x*11 p }<+
IIx - x* I12

For any x(e E )S() nU 1 and V E lV, x( ) x*, we have x() = ax + (1 - a) x* for some x, E D

n P n{x II x - x* II p} and some 0 < a < 1. Let z, = a zo(xc) + ( 1 - a) z*. Then

IIx (E)- x* 2 = a11i x - x* 12 , and

I z - z* 112 = a2 11 z ( X )- * 11

Note that z (E Z (x ( ) ). So

II z ( ) - z* ii 2 I< - z _* 11 = a2 II zo ( X ) - Z* II ' = X ( E ) - X* 112 ZO ( x ) - z* II2 /II x - x* II

< M2 11x() - X* 112

Therefore, II z ( e ) - z* II - M x () - x* II< ( M L /a) II - *'.
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We now establish the directional differentiability property of the perturbed solution. Again let eo be a

perturbation direction. Notice that x ( ) and z ( c ) solve the following linear program:

minimize F (x(c), c)T x (4.1.1)

subject to Ax + B z-b.

Let u ( ) > 0 denote any optimal dual solution of ( 4.1.1 ). Now we consider any convergent sequence

[ x ( e* + tn co) - x* ] / tn with tn -O 0, n E N. Using the same argument as in Section 3.2, we can show

that some subsequence K c N and some sequence of optimal dual solutions { u ( c* + tk Co ) }k E K

satisfy [ x( C* + tk cO) - X* / tk-- XL ,

[z ( c* + tk CO) - z* i / tk -- zL, and

[ u( C* + tk Cg) - U* / tk ' UL.

Now in order to show the perturbed local solution set is directional differentiable, it suffices to show

that xL is uniquely determined independent of the choice of the convergent sequence. Let

1 = {i ui* > O, Ai x* + Bi z* = bi}

I2 = {i i ui* = 0, Ai x* + Bi z* = bi}

13 = {i ui* = 0, Ai x* + Bi z* > bi}.

Then following the proof of Lemma 3.2.1, we obtain the next result.

Lemma 4.1.3. The three vectors xL, zL and uL satisfy the following constraints:

AT uL - Vx F (x*, C* ) XL - V F (x*, * ) co = 0

BT uL = 0

Ai XL + BizL = 0 for i 11, andiE I2 anduiL > 0 (4.1.2)

AiXL + BizL 0 for i E 12 anduiL = O

UiL UIS for i E I, uiL 2 for i I2, UiL = O for i I13.

Theorem 4.1.1. Suppose ( x*, z* ) solves VI ( c* ) and Assumption 2.1-2.4 are satisfied. Then for some

neighborhood U of x*, S ( c ) n U is directionally differentiable at x* for any direction co. Furthermore,

the derivative d ( cg ) uniquely solves the variational inequality:

VI±: find x E P' satisfying [VxF(x*, *)x + V F( x*, *)o ]T(y - x) 0 for anv y ( P.
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Proof. Notice that system ( 4.1.2 ) is the complementary slackness conditions of the following linear

program:

minimize [ Vx F(x*, E*) ) L + V F ( x*, *)o T X

subject to Aix + Biz = 0 for i I

Ai x + Bi z 2 0 for i E I2

with uL as the optimal dual variable. Therefore, xL solves the linear variational inequality

[ Vx F(x*, *) x + V, F (x*, *) eo ]T(y - x) > O0 for any y P°

where Po = {x I Ai x + Bi z = 0 for i I1 , Ai x + Bi z 2 O0 for i E I2 }.To show xL solves VI', we need to

show only that p0 = pl. Notice that I = I1 U 12.

po C pl: Suppose x P. Then Ai x + Bi z O0 for i I, and

F (x*, £* )TX = U ( * )T Ax = u (* )T (A x + B z) = 0.

Thus, x Pl.

P' C P: Suppose x P'. Then Ai x + Bi z O0 for i I1 U 12 , and

0 = F ( x*, * )T X = U ( * )T Ax = u ( * )T (Ax + B z)

Ifi I1, then u (* ) > 0. Therefore Ai x + Bi z = 0. Thus, x Po.

Now by Assumption 2.4, Vx F ( x*, e* ) is positive definite on span ( pl ). Therefore, VI' has a unique

solution for the x variable, which completes the proof.

Now let's reconsider the traffic equilibrium problem. Writing it in our general form, we have the

following correspondence:( x, z ) = ( f, h )

F (x, E) = C (f, )

A=[I -I O O O] T

B = [ -A TAT - T f I T

b=[00 -d d O]

P = Q(d)
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where I is an identity matrix and O is a matrix with all zero entries. Suppose f* is an equilibrium link

flow pattern for E = e*. Let h* be any corresponding feasible path flow pattern and let J = p I hp* =

0 } be the index set of paths that carry no flow at equilibrium. It is not hard to see that in this case

Qi = {fIC(x*,*) T f = 0, f= Ah,Fh = 0, hp 0 forp E J}.

Imposing Assumptions 2.1-2.4 with respect to the function C ( -, - ) and the set Q', we have the

following properties regarding the perturbed equilibrium traffic flow patterns,

( i ) For any small perturbation around £*, in a neighborhood of f*, the perturbed equilibrium link

flow pattern f ( ) exists and satisfies the property that f ( e) - f* II - M1 11 - * 1[ for some M1 > 0.

( ii ) For each perturbed equilibrium link flow pattern f ( ), there exists a equilibrium path flow

pattern h ( c ) satisfying 11 h ( ) - h* It < M2 1[ c - * 1[ for some M2 > 0.

( iii ) The perturbed local equilibrium link flow pattern f ( ) is directionally differentiable.

Furthermore, the derivative in the direction eo solves the following variational inequality:

VII: find fE Q' satisfying [VfC(f*,E*)f+ V C(f*,C*)o ]T (f'- f) >0 for any f' E Q.

Now we show that variational inequality VI' can also be interpreted as a network equilibrium

problem. Let u ( ) = ( ul ( ), u2 ( c ), u3 ( ), u4 ( £ ), u ( ) ) be the corresponding dual solution. In

this case, the complementary slackness conditions of the linear program ( 4.1.1 ) are

u1 - u2 - C(f, ) = 0

_ AT U1 + AT U2 - rT U3 + rT U4 + u5 = 0

(u5)Th = 0

f= Ah

Fh = d

h - 0,u 20

or, equivalently,

AT C (f, ) - T v > 0

[ AT C (f,E) - Fr V ]T h = 0

f= Ah

rh = d
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h 0

where v = u4 - u3. Notice v is the minimum travel time vector between the O-D pairs. Let J1 denote

the index set of paths that carry a positive amount of flow at equilibrium, i.e.,

J1 = 0p l h ,* > 0 c (fe*) ,p ,wW}.J, 1p ap a £ ) 'P P W
Similarly, define a E A

J2= p I h E, apCaP e*)= uw* p EPww W},and

J3={plh*=O, 8 c (f CE*)>vW* Pw WW .J3 h ap a w w

Under any small perturbation, the paths in J 1 will continue to have a positive amount of flow and the

paths in J 3 will remain at zero flow level. The paths in J 2, however, may change their status for any

small perturbation. As indicated in the proof of Theorem 4.1.1, Q' can also be written as

Q~'= f f = A h,rh = O,hpUIS forpEJ 1, hp O for p J 2, hp = 0 for p J3}.

Therefore, the variational inequality VI' may be viewed as a network equilibrium problem with the

cost function Vf C ( f*, E* ) f + V, C ( f*, c* ) co, with zero demands for all O-D pairs, and with lower and

upper bounds imposed on the path flows ( in particular some path flows must be zero ). In Section 5 we

provide an example to show how to construct an auxiliary network to compute the directional

derivatives.

4.2. Perturbed traffic equilibria with elastic demands

In the previous subsection, we have considered a traffic equilibrium model with a fixed demand

pattern. Now we allow the demand of each O-D pair to be a function of the minimum travel time

between all O-D pairs. As we will see, the resulting equilibrium model can also be described as a

variational inequality of the general form we suggested in Subsection 4.1. But unfortunately,

Assumption 2.4 is now too restrictive in this case. Therefore, we need to modify some of our proofs in

Section 3.1 in order to obtain the Lipschitz continuity property.

Let D ( , ): RIw l X Rm - RWI be a perturbed demand function. Then the equilibrium

conditions can be described as follows:
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{ -VW if hp > forp P w W
ap ,,a uv ifh =0

aEA w p

f-= Ah

rh = D(v,E)

h O.

As indicated by Dafermos and Nagurney [ 1984 , these equilibrium conditions can also be written as

a variational inequality with x = (f, v, d ), F ( x, E ) = ( C ( f, ), d - D ( v, ), - vT ), and P =

{(f,v,d ) I f = A h, d = F h, h > 0 }. ( Notice that in this section d refers to demand and not to a

derivative as in the earlier sections ). In terms of the general form,

I O 0- A 0

-I 0 O +a 0

A= 0 I , B= - , b=O

0 O -I +r 0

0 0 +1 0

Now suppose ( f*, v*, d* ) is an equilibrium solution for c = *. Let h* be any corresponding

equilibrium path flow pattern and J = { p I hp* = 0 }. Let

P' = {(f,v,d) I C(f*,*) T f = 0, f = A h,d = h, hp > O for p J }.

Now assume C ( , ) and -D ( , ) both satisfy Assumptions 2.1-2.4. Note that F ( , ) might

not satisfy Assumption 2.4 in this case (since [ F ( f, v, d' ) - F ( f, v, d" ) IT [ ( f, v, d' ) - ( f, v, d" ) I = 0

for all d' and d" ). As a result, Lemma 3.1.2. ( b ) may not be valid. However, we can still show that

S' ( e ), the solution set to VI' ( e ), is Lipschitz continuous at ( f*, v*, d* ). We will prove this fact in

Appendix C. So this general model still satisfies properties ( i ), (ii ), and( iii ) except the variational

inequality VII is now of the following form:

find ( f, v, d ) P satisfying [ VfC (f*,* ) f + VE C ( f*, e* ) ]T ( f - f) + [ d - Vv D (v*, * ) v

- V D( v*, * )eg 
T (V'

- V) - vT(d ' - d) 0 for any ( f', v, d') p

It is not hard to see that this linear variatonal inequality problem has a unique solution. In fact,

suppose ( fl, vl, dl ) and ( f2, v2, d2 ) are two solutions to VIi . Then

VfC (*, *) (fi - f2) - Vv D(v*, *)(v - v2 ) 0.
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Since Vf C ( f*, E* ) and -V v D ( v*, e* ) are positive definite by our assumption, f = f2 and vl = v2.

Finally, notice that d = Vv D ( v*, c* ) v + V D ( v*, e* ) to for any solution of VI'. So dl = d2. Again,

pl can be written as

P = {(f,v,d)lf=h,d = rh, hp UIS forpE J 1, hp 2 for p J 2 , hp= 0 for p J 3}

Therefore, VI I can be interpreted as a network equilibrium problem with linear cost and demand

functions and path flows restricted between upper and lower bounds.

5. Example

Consider the network of Figure 5.1 with the perturbed cost function of each link given next to that

link. There are two O-D pairs wl = ( 1, 3 ) and w2 = ( 2, 4), with demands d = 2 and d2 = 1. The

possible paths connecting these two O-D pairs are Pw, = { 1-3, 1-2-3, 1-4-3, 1-2-4-3 } and PW2 = { 2-4 }.

f4a2 + 21 c2

f2 3 + 1 f2 f14
2 + 1 f14

Figure 5.1. Traffic Equilibrium Example

We let h = ( hl, h2 , h3, h4 , h5 ) denote the corresponding path flow vector. It is possible to show that

the equilibrium flow pattern at c* = ( 2, 0 ) is given by

h* = ( hi*, h2*, h3*, h4 *, h5 *) = (0, 1, 1, 0, 1), and

f* = ( f1 2 *, f1 3 *, f14 *, f23 *, f24 *, f43 * ) = ( 1, 0, 1, 1, 1, 1 ).

- 27 -
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We now compute the derivative of the perturbed link flow pattern f ( ) at c* = ( 2, 0 ) along direction

co = ( 2, 1 ). As we mentioned in the previous section, the variational inequality VI' can be solved

over a network. In this example, J1 = { 2, 3, 5 }, J2 = { 4 } and J3 = { 1 }. We construct an auxiliary

network ( See Figure 5.2 ) with the cost function as Vf C ( f*, * ) f + V C ( f, c* ) o and with zero

demands for both O-D pair wl and w2. Furthermore, we have the following restrictions on the path

flows: - < hp < + for p E J 1, 0 < hp < + for p E J 2 , and hp = 0 for p J 3.

9.f, 

4f23 + f14 + 2

-,12 T 

Figure 5.2. Derived Network for Computing Directional Derivative

Solving this linear variational inequality VI', we obtain h = ( 0, 2/15, -8/15, 6/15, 0 ), and hence

f = A h = ( 8/15, 0, -8/15, 2/15, 6/15, -2/15 ). Thus in this case, the directional derivative of the

perturbed equilibrium link flow pattern is d ( co ) = ( 8/15, 0, - 8/15, 2/15, 6/15, - 2/15 ).

6. Conclusions

This study considers the perturbation problem for variational inequalities defined on polyhedral

sets. The approach suggested in this paper consists of two major steps - first establishing a Lipschitz

continuity property, and then a directional differentiability property of the perturbed local solution

set. This particular feature of the method allows application to a number of equilibrium problems

including the traffic equilibrium problem and the spatial market equilibrium problem. The analysis
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of this paper was carried out in a fairly general context - we considered the variation of the local

solution set, rather than a unique solution, with respect to small perturbations. Thus we have

introduced the notion of differentiability for a point-to-set mapping about a certain point. Even when

the local solution set is not directionally differentiable, we attempted to characterize the first-order

behavior of the local solution set. In a subsequent paper, we will extend the work of this paper to

variational inequalities defined on nonpolyhedral sets.

Appendix A: Proof of Lemma 3.1.1.

Proof. ( a ) Property ( a ) follows immediately from the differentiability of F ( -,- ) at ( x*, £* ).

( b ) Suppose property (b ) does not hold. Then there exists a sequence { xn }, xn E x* + P' and xn - x*

satisfying [ F ( xn, *) - F ( x*, * ) ]T ( xn - x* ) C II x - x* 11 2 / n. Let z be a limit point of the

sequence {( xn - x* )/II xn - x* I }. Then we have z E P', II z = 1, and zT Vx F (x*, * ) z O, which

contradicts the assumption that Vx F ( x*, £* ) is positive definite on p'.

( c ) If F ( x*, * ) = 0, then clearly P C x* + P'. Property ( c ) becomes trivial. If F (x*, £* ) O0,

consider a neighborhood U1 of x* of the form U 1 ( ) = { x xi* - 8 < x < xi* + , i = 1,--, n },

where > 0 is to be determined. Note that H = { x ILF ( x*, c* )T ( x - x* ) = 0 is a supporting

hyperplane of P n C1 ( U 1 ( 6 ) ) at x*, and that the solution set of linear program

min { F (x*, * )T x x P n Cl (U 1 (5))}

is contained in H n P ( see Figure 3.1.1 ). In view of the polyhedral structure of P n Cl ( U1 ( 5 ) ) and

the continuity of the function F at ( x*, * ), we know ( by the upper semicontinuity property of the

solution set of linear programs ) that there exist a neighborhood V1 C V of e* and 8 small enough so

that for any xO E Cl ( U ( ) ) and e0 ( V1, the solution set of linear program

min{F (xO, E )Tx x P n Cl (U 1 (8) }

is contained in H n P. Finally, note that H n P C x* + P', which completes the proof.

E]
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H

4%
X*±PIL 4%-

Figure.3. 1.1. Local Approximation About x*

Appendix B: Proof of Lemma 3.2.1.

Proof. x ( e) and n ( e) satisfy the following complementary slackness conditions:

AT n() -F(x(),) = 0

n

ak i Xi ()-bk - 0 ifk (E) = O
i=1

n

akixi(E)- bk=O ifnk(E)>O

n(E) > 0.

Let x'(tn) = [x(E* + tn0) - X(*)1/tn -- XL

n' (t) = [n(e* + tn 0) - n (* )]/tn -n L.

Then for n large enough, we have by subtracting the equations or inequalities in the previous

complementarity system for values e* and * + tn o, and by using the complementary slackness

condition,

ATn'(t )- [F(x(e* + t eo),e* + tno)- F(x*,£*)]/t = 0
n n O
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n

iXi(t 0 fork Ki,k K2 and L > 

n
Lak,.xi(tn)Ž0 forkEK andn 0akii =n 2 k

nk (tn )-0 fork(K2, nk' (tn )0 fork K 3.

Letting n -, o, we observe that xL and nL satisfy system ( 3.2.3 ).

LI

Appendix C: S' ( ) is Lipschitz continuous at ( f*, v*, d* ) in the context of general traffic

equilibrium problem.

Proof. For any x'( c) E S' ( ), since x'( c) solves VI' ( ) and x* solves VI' (* ), we have

-F( x*, * )T(x( )- X -- x*) -F(x'(), )T(x'() - X* ).

By Assumption 2.4, there are a > 0, and 03 > 0 satisfying

a ll f' () - f* 112 + 1f V ( ) - V* 11

< [C (f' ( ), *) - C (f*, * ) ( f' () - f*) + [D ( v' ( E ),* )- D ( v*, * )T ( v' () - v*)

= [F(x' ( ), F* )- F(x*, *) T( (x ) )- X* )

< [F(x' (c), *)- F ( x ( ), ) T ( x' ( ) - X* )

= [C(f' (e), C*) - C(f' (s), )] T (f'(c) - f*) + [D(v'(c),* ) - D( v'(E), )T (v'()- V*)

' C( f' ( E), * ) - C( f'( ), ) I f' ( ) - f* II + I D ( v'( ), E* ) - D ( ( ), ) I v' ( V ) - V* .
Notice that a x2 + p y2" a x + b y implies a x2 + y2 c a2 / a + b/ {3. So

a ll f' ( ) - f* 112 + illv' ( ) - V* |2

< IC (f' (e), e* ) -C (f ( ), ) / a + D ( ),* ) - D ( v ), ) 12/

< [ L1
2 /a + L2

2/ 1 il - * 112

In the last expression L1 and L2 are the convergence constants ( see Assumption 2.2 ) corresponding to

C ( f, ) and D ( v, ). We notice that d' (c ) - D ( v' ( ), ) = 0 is always valid for near £* ( since

v' ( ) is continuous at * and hence the corresponding component v in x = ( f, v, d ) can be viewed

-31 -



relatively as a free variable for near e* ). Thus by the differentiability assumption, there are

constants M1, M2 > 0 satisfying

Ild' (e) - d* [ = IID (v'(e), e) - D (v*, e*)

< M1 |v' (E) - V* II + M2 II - * II

s [ (L 1
2/ap + L2

2/ P3 )"2 M1 + M2 II c - * II.

Thus S' ( e ). is Lipschitz continuous at ( f*, v*, d* ).
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