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A. NETWORK SYNTHESIS FOR PRESCRIBED TRANSIENT RESPONSE

This section is a continuation of a discussion, similarly titled, contained in a previ-

ous report (1); our objective is to obtain a realizable network system function, h(s), such

that the corresponding impulse response approximates some arbitrarily specified time

function.

Let us recall the derivation given in the earlier report. Our starting point is the

desired network impulse response, f(t), which is shown in Fig. XVIII-1. The duration

of this function is denoted by T/2. A new function, ft(t), is constructed by repeating f(t)

periodically:

ft(t) = f(t) + f(t-T) + f(t+T) + f(t - 27) + f(t + 2T) + .

A Fourier series approximation may now be made to ft(t), and it is convenient to define

a function, f (t), which is equal to this Fourier series for positive t, and zero for nega-

tive t:

n

f (t) = ak ejkwt t> 0

k= -n
(1)

=0 tO 0

We next define the functions

n

fl(t) = ak e j k t t> 0

k=-n
k even

(2)
=0 t< 0

n

f 2 (t) = ak ejkwt t > 0

k= -n
k odd

(3)
=0 t< 0

Their corresponding Laplace transforms are

n

h 1 (s) = [fl(t)]= s - jkc
k=-n
k even
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0 r/2 0 r/2

Fig. XVIII-1 Fig. XVIII-2

The desired network impulse response. The actual and desired network
impulse responses.

n
h2(s) = [f2(t) = k

2 m, s - jkw
k=-n
k odd

The desired system function may now be written

S+ hlh 2  (4)

which is substantially the same as Eq. 11 of reference 1. Using a star to denote approxi-

mation, the impulse response corresponding to Eq. 4 is written f (t), and may be found

from

* -/4 hlh2
f (t)= i

h1 + h2)

This function, which is the objective of the synthesis procedure, is shown in

Fig. XVIII-2.

F (s) should be the desired network system function, but two difficulties arise. First,

this function as it stands may not be realizable; that is, it may contain right half plane

poles. Second, the initial value of f (t) may differ badly from that of f(t). In what follows,

we intend to show how these difficulties may be overcome by modifying F*(s).

With regard to the realizability of F (s), the first step is to expand this function in

partial fractions. Thereby, we place in evidence any terms involving right half plane

poles; these are the troublesome terms in F (s), and they are simply subtracted from

the partial fraction expansion and thrown away! What is left is, of course, realizable,

and is a function of lower degree. It is the desired system function.

One might inquire at this point about the justification for changing F (s) in this

seemingly arbitrary manner. Briefly, it follows from the expression

f*(t) Y- 1 (h hl h2 1 [F(s)1 ()

which is derived in reference 1. This relation implies that the residues in any right half
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plane poles of F *(s) are small. And, we infer that the right half plane poles may be

removed without materially affecting the time function, f*(t), in the approximating range,

which is from 0 to T/2.

The second difficulty mentioned, that of controlling f*(t) for small values of t, may

be handled by use of the initial value theorem of Laplace transforms. From this theo-

rem, it is not hard to derive

,* fl(0+) - f 2 (0+)
f (0+)= 4 f 1(0+) + f 2 (0+)

which relates the initial value of the approximating impulse response to the initial

values of fl(t) and f 2 (t). The latter functions derive from a trigonometric polynomial

approximation to ft(t). In our previous discussion, we have referred to the trigono-

metric polynomial as a Fourier series, but there is no reason why the Fourier coeffi-

cients must be used. Accordingly, the coefficients a k , in Eqs. 1, 2, and 3, may be

adjusted if this is desirable; in particular, they are modified to produce any specified

value of f (0+) whenever such a procedure is motivated by a large discrepancy between

f *(t) and f(t) at small values of t. In this regard, use is made of Eq. 6 in order to post-

pone actual computation of F (s) until after the ak have been fixed.

The method discussed here has been applied to several problems and seems to be

practically promising. Further discussion may be found in a forthcoming technical

report and in the references.
M. Strieby
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B. CRYSTAL FILTER DESIGN

A number of techniques have been evolved that greatly simplify the synthesis of band-

pass filters employing piezoelectric resonators. Analytical methods of specifying toler-

ances on crystal units and a device which permits the adjustment of crystal resonators

to close tolerances without elaborate equipment have also been developed. The synthesis

procedure is essentially based on two types of approximation. The first approximation

permits the attenuation, phase, and image impedance characteristics of a bandpass filter

to be normalized with respect to bandwidth and center frequency. A single set of
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normalized characteristics is sufficient to describe all possible bandpass crystal filters

with negligible practical error. The filter "approximation problem" is solved by the

addition of normalized characteristics, aided by a graphical method of located attenua-

tion minima. The analytical simplicity afforded by the normalization technique makes

possible calculation of all filter losses, including the effects of incidental dissipation,

with a minimum of effort. The second approximation is one which permits the element

values of the reactances employed in a crystal filter to be calculated in terms of the

spacings between the critical frequencies of the reactances. With the aid of this approxi-

mation and the normalization already described, the filter synthesis may be accom-

plished with only a slide rule and a number of simple plotted curves.

The need for this rapid approximate synthesis results from the restrictions imposed

on crystal filter characteristics by the crystal itself. In the neighborhood of a mechani-

cal resonant frequency, a piezoelectric vibrator such as a bar or plate cut from a

piece of natural quartz, may be replaced by the equivalent circuit shown in Fig. XVIII-3.

The crystal "Q," defined as the ratio

2 rf L
Q a 1 (1)

H1

where

fa 1/2 = crystal resonant frequency (2)
2rr(L1C

1)

is generally in the order of 20, 000 and may be as high as 500, 000, so that R 1 may be

neglected for purposes of analysis. The range of electrical parameter values attainable

in a piezoelectric crystal is limited by such considerations as resonant frequency,

mechanical stability, temperature coefficient, and suppression of spurious modes of

vibration. Moreover, a fixed relationship between C o and C 1 exists in the unmounted

resonator by virtue of the electromechanical coupling in the crystal. These restrictions

appear in a crystal filter in the form of limitations upon filter bandwidth, image imped-

ance, and in some cases upon the form of attenuation characteristic.

Figure XVIII-4 illustrates the manner in which crystals, inductances, and capacitors

may be combined in symmetrical-lattice configurations to yield bandpass-filter char-

acteristics. Curves of series and shunt

arm reactances, filter attenuation, and
L, R, C, image impedance are sketched as functions

of frequency for each filter. Filters 1

c0 and 2 are narrow-band filters, limited by

Fig. XVIII-3 crystal zero-pole spacing (a function of the

Equivalent circuit of crystal resonator. ratio r = Co/C 1 ), to bandwidths of less
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Fig. XVIII-4

Bandpass crystal lattice filters.

than 0. 8 per cent of center frequency for quartz. In each of the remaining filters,

inductances (Lo, L') have been added in series or in parallel with the crystal elements

to widen the filter passband (1). With quartz, bandwidths as large as 13.5 per cent of

center frequency are theoretically possible with these combinations.

The simplest bandpass crystal filter (filter 1, Fig. XVIII-4) will be referred to as

the "basic" section. The attenuation characteristic of the basic section can have at most

one "infinite" peak, the position of which may be placed anywhere outside of the pass-

band by varying the capacitor C'. It can be shown (2) that the attenuation characteristic
o

of a filter having n infinite peaks and a bandwidth B is equal to the sum of the character-

istics of n basic sections, where each section has a bandwidth B and an attenuation peak

corresponding to one of the n peaks of the composite filter. Each filter in Fig. XVIII-4

may therefore be considered equivalent to a number of basic sections (the exact number

is one plus the number of passband "coincident" frequencies, designated by ® in

Fig. XVIII-4), and only the image impedance depends upon the filter configuration.

The attenuation of the basic section is described (3) by a quantity p given by

0+ A
p = tanh2 = m 2 2 (3)

B

where 0 = a + jp is the image propagation constant, a is the attenuation constant, 3 is the

phase constant, fA is the lower cutoff frequency, and fB is the upper cutoff frequency

and
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2 1/2

m 2 2 (4)

where f is the frequency of the infinite peak.

Equation 3 permits the calculation of all possible attenuation characteristics obtain-

able with the basic section. Since p is a function of bandwidth and m at any frequency,

a double infinity of curves would be necessary to cover all possible choices of fA' fB'
and f... It is possible, however, to find an approximation for p which is independent

of bandwidth and center frequency, yet introduces negligible error in practice. The
approximate or normalized value of p, denoted by p o , is given by

P = m x 1/ (5)

x \1/z

where

f-f
x B/2 (7)

f -f
=B/2 

(8)

and

fA fB
f = = center frequency (9)

B = fB - fA = bandwidth (10)

A complete discussion of the derivation of Eqs. 5 and 6 and the errors involved is

given in reference 4. A number of normalized basic section characteristics are shown
in Fig. XVIII-5. The greatest error in p occurs when the attenuation peak lies at

infinity (x, = cm), and when the relative bandwidth (Br = B/fo) of the filter is large. How-
ever, even this error can generally be neglected as the dotted line in Fig. XVIII-5,

which shows the exact characteristic for f0 = o and 10 per cent relative bandwidth,

indicates.

To determine the number of basic sections that must be combined to meet a given

set of filter specifications, use is made of a series of curves of the function

2 1/2(x~ - 1)
G(x) x - x (11)x xo
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Fig. XVIII-5

Normalized basic section attenuation characteristics.

for various values of x ,. These curves are used to determine the frequencies

of attenuation minima which result when a number of basic sections are com-

bined (4).

From the graphical addition of the required normalized sections, the number and

location of infinite attenuation peaks are determined. The latter information permits

the location of the "coincident" frequencies in the filter passband (3, 4). The coincident

frequencies, together with the cutoff frequencies completely specify the pole-zero con-

figurations of the lattice series and shunt arm reactances. Finally, the values of the

elements making up the lattice reactances are determined, within a multiplying constant

(which determines the filter impedance level), from the critical frequencies. On the

approximate basis, the required element values are determined in terms of the

spacings between the corresponding critical frequencies. For example, consider the

combination of an inductance in series with a crystal, which has the zero-pole con-

figuration shown in Fig. XVIII-6. The element values are determined (in terms of Co)

by the crystal resonant frequency fa' the crystal ratio of capacitances Co/C 1 , and

a frequency fa given by

1 - (12)f ZTr(LoCo)1/2 (1)

A comparison of the exact and approximate values of fa' Co/C 1 , and fa is given below

(see App. II of ref. 4).
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Quantity Exact Approximate

2 2 1 / 2
fa f 2 2 + (S2 - S1

fl f3 2SIS

a f 2 f2
a 2

f 2  2

fa f
C /C a 2

o 1 2 2 4S S 2
2 a

When the reactances are combined in a lattice configuration, the specification of
element values by the approximation method is further simplified by determining ratios

between corresponding elements in the series and shunt arms of the lattice. These
ratios, and the crystal ratios of capacitances (Co/C1) , which may be calculated by slide
rule, are important in determining whether or not the filter is physically realizable in
terms of the electrical parameter values obtainable in a crystal resonator.

With the same methods employed in deriving Eqs. 5 and 6, the filter image imped-

ance and phase characteristics may be normalized. From this data, reflection and
interaction losses are easily calculated. Still another application of approximation

techniques makes possible the analytical determination of tolerances on crystal units,

in terms of the corresponding effects upon filter attenuation (4).

A significant problem in the realization of crystal filters has been the procurement

of crystal units with characteristics that are held to the close tolerances required for
lattice filters. The average crystal grinder does not have the elaborate equipment

necessary for making the required measurements (5). However, a device has been

developed and tested (see Chap. VI of ref. 4) which permits the adjustment of crystal

resonators to very close tolerances with standard laboratory equipment. This device,
which is similar in configuration to filter 2 in Fig. XVIII-4, makes use of the high

sensitivity of a bridge network to element variations.

The techniques and equipment discussed above have been employed in the design and

construction of a number of filters. Because of the low dissipation and high stability of

the crystal element, a very close agreement may be expected between the calculated and

measured characteristics of a crystal filter. To illustrate this agreement, the insertion

loss of a wide-band lattice filter is shown in Fig. XVIII-7. The filter is of the type

designated as filter 3 in Fig. XVIII-4, with the series inductances equal (L = Lo).0 o
The significant portions of this research will be published in a technical report.

The high selectivity obtainable in filters employing quartz resonators makes such

filters very desirable for use in spectrum analysis equipment, carrier communication
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Fig. XVIII-7

Insertion loss characteristic of wideband filter.

systems, single-sideband transmission, and many other applications. As a result of the

techniques developed in the course of this research, the availability of economical

crystal filters to industry and research laboratories may be substantially increased.

D. I. Kosowsky
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C. INTERMEDIATE-FREQUENCY AMPLIFIERS

1. Intermediate-Frequency Amplifiers with Linear Phase Characteristics

The most commonly used transfer characteristics of i-f amplifiers are Butterworth

(maximally flat amplitude response), Chebyshev (equi-ripple amplitude response), and

synchronously-tuned characteristics. To these three categories there is added here a
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Ideal passband.

fourth, termed linear-phase characteristics. All four categories are approximations

to the so-called ideal passband. The ideal passband has a rectangular amplitude

response of finite width and height and a linear-phase response as shown in Fig. XVIII-8.

Butterworth characteristics optimize the flatness of the passband, Chebyshev char-

acteristics optimize the steepness of the cutoff. Synchronous tuning does not optimize

any aspect of the passband, but completely eliminates overshoots in the step-function

response. Linear-phase characteristics optimize, in the limited sense defined below,

the phase response of the approximation to the ideal passband. Such characteristics

are particularly desirable in phase measurement systems and in phase- and frequency-

modulation systems.

Since delay (also called group delay or envelope delay) is the derivative of phase

with respect to frequency, optimally linear-phase response is equivalent to optimally

flat delay. Although there is no unique optimum, it seems sensible to exclude oscilla-

tory approximations to the ideal and consider only single-peaked delay characteristics.

The optimum delay characteristic, then, has a maximum number of vanishing derivatives

at the peak (band center).

The details of the phase and amplitude response of an i-f amplifier are most easily

studied with the help of lowpass prototypes. To obtain a specific bandpass character-

istic, the corresponding lowpass prototype characteristic is first designed and then

translated to the desired part of the spectrum by a lowpass-bandpass transformation.

The transfer functions of lowpass networks with optimally flat delay have been given
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by Thomson (1) and Storch (2). Another derivation is given in reference 3. Such net-

works are referred to as linear-phase prototypes here. Designating the transfer func-
th

tion of the n order linear-phase prototype by H n( ) , one has
a

Hn( )  (1)

where 0 (k) is the nt h order Bessel polynomial given by

n

en(X) = (n+r) r .nr (2)
r=O (n-r)1 r! 2

where k = p + jv is a complex frequency variable normalized on the reciprocal of the

zero-frequency delay, vo = 1/T . If the actual complex frequency is called A, one has

K A/vo; "a" is an arbitrary constant. To normalize the magnitude of Hn(K) so that

Hn(0) = 1, the constant must be taken as a = (2n - 1)!! =1 - 3 - 5 ... (2n - 1).

The properties of linear-phase prototypes of interest in the design of i-f amplifiers

are summarized in the following paragraphs. More details will be found in Section 2-C

of reference 3.

Table XVIII-1 lists the first few Bessel polynomials and a recurrence formula from

which higher-order polynomials can easily be constructed. Table XVIII-2 lists the roots

Table XVIII-1

The Bessel Polynomials

n

0n(X) = (n+r)! r . kn-r
r=O (n-r)! r! 2

n en(X)

1 K + 1

2 2 + 3K + 3

3 K3 + 6k2 + 15K + 15

4 K4 + 10k 3 + 45k 2 + 105K + 105

5 K5 + 15k 4 + 105k 3 + 420k 2 + 945k + 945

Recurrence Formula

n+1 (X) = (2n + 1) n(X) + x enl()
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Comparison of pole positions.
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Fig. XVIII-10

Phase deviation from linearity of nth order linear-
phase prototype at 3-db cutoff frequency.

of the first nine Bessel polynomials, that is, the poles of the linear-phase prototypes

of orders 1-9. There is, in general, no easy geometrical way of obtaining these poles,

such as exists for Butterworth and Chebyshev transfer functions. The only exception is

the linear-phase pair whose poles lie on radii vectores forming 300 angles with the nega-

tive real axis (p-axis). The poles of the flat-staggered (Butterworth) pair, by contrast,

lie on 450 radii vectores. This is illustrated in Fig. XVIII-9.

Table XVIII-3 lists the deviation from perfect linearity of the phase response at the

3-db cutoff frequency, v , of the linear-phase prototypes, and Fig. XVIII-10 illustrates

its use.

A summary of the most frequently used properties of and formulas for linear-phase

prototypes follows.

NORMALIZED TRANSFER FUNCTION

Hn(X)
(2n - 1)!!

(n+r)! n-r

r=0 (n-r)! r! 2 r

1

n 2k() k

k(

lim Hn(k) - e
n-.oo
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Table XVIII-2

Poles of Linear-Phase Prototypes H (X)

Roots of Bessel Polynomials 0n(X)

n=l n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9

-1.0000 - 2.3222 - 3.6467 - 4.9718 - 6.2970

- 1.5000 - 1.8389 - 2.8962 - 3.3520 - 4.2484 - 4.7583 - 5. 5879 - 6. 1294

±j0.8660 ±jl.7544 +j0.8672 ±jl.7427 +j0.8675 ±jl.7393 ±j0.8676 ±jl.737
8

- 2. 1038 -- 2.3247 - 3.7357 - 4.0701 - 5.2048 - 5. 6044

+j2.6574 +j3.5710 +j2.6263 ±j3.517
2  ±j2.6162 ±j3.4982

- 2.5159 - 2.6857 - 4.3683 - 4. 6384

+j4.4927 +j5.4207 +j4.4150 +j5.3173

- 2.8390 - 2.9793

±j6.3539 ±j7.2915

*To normalize pole constellation on 3-db cutoff frequency, divide all values by ve  [(2n - 1) In 2]1/2

Table XVIII-3

Deviation from Linearity of nth order Linear-Phase

Prototype at 3-db Cutoff Frequency

Phase Deviation
from Linearity

n 6n(v )

Degrees

1 12.30

2 4. 1 °

3 1. 6

4 0.40

5 0.080

6 0. 010

7

8
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NORMALIZED AMPLITUDE RESPONSE

(2n - 1)!
IH (jv) = (5)

+1' [(n/Zv) J n-1/ 2 (v) + (r/2v) Jn+1/2 ]/

(2n - 1)!!(
n+l (6)

v Dn(V)

exp 2n - 1 (7)

S[1 v2 I

Hn( )I - exp - ( ln 2 (independent of n) (8)

The spherical Bessel functions [(/2x)] 1/2 J+(, + 1/2) (x) are extensively tabulated in
reference 4, and the magnitude of the spherical Hankel functions, D (x), is less exten-

sively tabulated in reference 5. The gaussian approximation is very close over the pass-

band and good enough about 50 per cent beyond cutoff for n > 2, but is not valid outside

this range.

PHASE RESPONSE OF Hn(jv)

-1 n+/2(v)
4n(jv) = v - tan- (9)

J_-n- 1/2

= v - 5n(v) (10)

The phase angle of the spherical Hankel functions, 6 (x), is tabulated (in degrees) in

reference 5.

3-DECIBEL CUTOFF FREQUENCY

vc  [(Zn - 1) In 2]1/2 (11)

RELATIVE GAIN-BANDWIDTH FACTOR AND RELATIVE GAIN/RISE

TIME RATIO

(G B) [(2n- 1) In 2] 1 / 2

(G x B) 1)n - ] / n  
(12)

[(Zn - 1)!!] /
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lim (G x B)- 0
n -oo

(G x B).
linear pnase

lim -

n-)oo (G x B) synchronous tuning z1/2
1.91

RISE TIME

T X v 2w X 0. 34
r c

(independent of n)

For the bandpass analog, since here the bandwidth B equals twice the cutoff frequency,

we have

(15a)7 X B 2w X 0. 68
r

STEP-FUNCTION RESPONSE

h 1-1o t [ (x) - 4(2n - 3) ]-4(2n - 3) "x (16)

where

= (n - 1)1/2 - 1

x

(x) i e() d

i()=(21/2 exp
2 7rr)

("standardized" variable)

(normal or gaussian function)2)

d3
'" ( ) = 3

dx3

1 2

Overshoot (per cent) 0 0.44 0.77 0.85

For large n the overshoot vanishes. The maximum overshoot is less than 2 per cent

and occurs in the vicinity of n = 6.

2. Lowpass-Bandpass Transformation

Attention is drawn to the work of Trautman (6). It is shown there that a lowpass

prototype with no zeros in the finite X-plane can be translated into an infinite variety of
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Fig. XVIII-11

Examples of simple-reactance coupled
multiple-tuned interstages.

bandpass structures by the conformal transformation

exp (ir)] = ss + ), where (17)

X is the lowpass complex frequency variable, suitably normalized; s is the bandpass

complex frequency variable, suitably normalized; and m is a rational number such

that -1 < m < 1. The transformed transfer function can be realized as an i-f amplifier

with simple-reactance coupled multiple-tuned interstages (see Fig. XVIII-11). The index

m depends on the interstage used. For single-tuned interstages m = 0, for double-

tuned inductively coupled interstages m = +1/2, and for double-tuned capacitively coupled

interstages m = -1/2. Note that with m = 0 the general transformation, Eq. 17, reduces

to the well-known transformation

1

= s + (17a)

It is to be noted that the prototypes for Butterworth, Chebyshev, synchronously

tuned, and linear-phase characteristics all fall into the class that has no zeros in the

finite X-plane. Thus they can all be realized as i-f amplifiers with various types of

interstages. For a critical analysis and details of the design procedure see Chapter III

of reference 3.
J. Elkan
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