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We present a search for a Higgs boson decaying to two W bosons in p �p collisions at
ffiffiffi
s

p ¼ 1:96 TeV

center-of-mass energy. The data sample corresponds to an integrated luminosity of 3:0 fb�1 collected with

the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and

200 GeV=c2, and determine upper limits on the production cross section. For the mass of 160 GeV=c2,

where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian

credibility level which is 1.7 (2.2) times the standard model cross section.

DOI: 10.1103/PhysRevLett.102.021802 PACS numbers: 14.80.Bn, 13.85.Rm

The Higgs boson in the standard model (SM) breaks the
electroweak SUð2ÞL �Uð1ÞY symmetry. While this sym-
metry is now well established, the mechanism of the
symmetry breaking has not yet been identified. Direct
searches at the LEP experiments have set a lower limit
on the Higgs boson massmH of 114:4 GeV=c2 at 95% C.L.
in the context of the SM [1]. Precision measurements
provide the indirect upper limit mH < 144 GeV=c2 at

95% C.L. through radiative corrections to the SM predic-
tions of the particle masses and couplings [2]. However,
these indirect limits assume no significant contributions
to the radiative corrections due to as yet unobserved
processes.

In this Letter, we report a search for the process gg !
H ! WWð�Þ in a 3:0 fb�1 integrated luminosity sample of
p �p collisions at

ffiffiffi
s

p ¼ 1:96 TeV produced by the Fermilab
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Tevatron and collected by the CDF II detector. For a SM
Higgs boson with a mass that is not directly excluded by
the LEP experiments, the dominant production mechanism
at the Tevatron is gluon-gluon fusion which proceeds via a
virtual top quark loop [3]. For mH > 135 GeV=c2, the SM
Higgs boson decays primarily to the WW� [3], where one
of the final state W bosons is virtual for mH below 2 times
the W mass.

The events are reconstructed in the ll�� final state,
whose branching fraction is 6.0% of the WW� decays,
where l is either an electron e or a muon �, including
those from � leptons produced in the W decays. The SM
Higgs boson branching fraction to WW� varies from 7.5%
at 115 GeV=c2 to 73.5% at 200 GeV=c2 with a maximum
of 96.5% at � 170 GeV=c2 [3]. Previous searches set
limits ranging from 10 to 40 times the predicted SM rate,
depending on the value of mH [4].

The CDF II detector is a multipurpose solenoidal spec-
trometer surrounded by calorimeters and muon detectors
[5]. The geometry is described using the azimuthal angle�
and the pseudorapidity � � � ln½tanð�=2Þ�, where � is the
polar angle with respect to the proton beam axis (positive z
axis). The transverse energy ET is E sin�, where E is the
energy associated with a calorimeter element or energy
cluster. Similarly, pT is the track momentum component
transverse to the beam line.

The events we consider must pass one of four online
selections, triggers, before being recorded. One electron
trigger requires an electromagnetic (EM) energy cluster in
the central (j�j< 1:1) calorimeter with ET > 18 GeV
matched to a track found in the drift chamber with pT >
8 GeV=c. A second electron trigger requires an EM energy
cluster with ET > 20 GeV in the forward (1:2< j�j< 2:0)
calorimeter and the missing transverse energy E6 T >

15 GeV. The variable ~E6 T , used to infer the presence of

neutrinos, is defined as
P

iET;in̂T;i and E6 T � j ~E6 Tj, where
n̂T;i is the transverse component of the unit vector pointing

from the interaction point to calorimeter element i. Muon
triggers are based on track segments in the muon chambers
matched to a drift-chamber track with pT > 18 GeV=c.
Trigger efficiencies are measured using leptonic W and Z
data samples [6].

To improve the signal acceptance while maintaining
acceptable background rejection for the W þ jets and
W� processes where a jet or � is misidentified as a lepton,
we use a modified version of the lepton identification
strategy developed for the WZ observation analysis [7].
Candidate leptons are separated into six mutually exclusive
categories: two for electrons; three for muons; and one for
tracks that extrapolate outward to detector regions with
insufficient calorimeter coverage for energy measurement.
The electron categories are central (j�j< 1:1) using a
drift-chamber-based tracking algorithm and forward
(1:2< j�j< 2:0) using a silicon-detector-based tracking
algorithm. One of the muon categories uses the muon

chambers and the other two use tracks matched with en-
ergy deposits consistent with minimum ionization in the
central or forward calorimeters.
All lepton candidates are required to be isolated such

that the sum of the ET for the calorimeter elements in a

cone of�R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p
< 0:4 around the lepton is

less than 10% of the ET (for electrons) or pT (for muons
and track lepton candidates). For lepton types in the central
region where the track finding efficiency is sufficient, we
also apply a track-based isolation criterion which requires
there is no more than 10% of the electron ET or muon pT in
other tracks within a cone of �R< 0:4 around the lepton
track.
The Higgs boson candidates are selected from events

with exactly two lepton candidates. At least one lepton is
required to match a trigger lepton candidate and haveET >
20 GeV (pT > 20 GeV=c) for electrons (muons). We
loosen this requirement to 10 GeV (GeV=c) for the other
lepton to increase the kinematic acceptance, particularly
for lower mH where one W is off shell below the W boson
mass and produces a lower pT lepton. We also require a
dilepton invariant massm‘‘ > 16 GeV=c2 to suppress mis-
identified multijet events.

Aside fromH ! WWð�Þ production, other SM processes
that can lead to two high-pT leptons include Drell-Yan
(DY), t�t, WW, WZ, and ZZ production, and W production
in association with a photon (W�) or a jet (W þ jets)
misidentified as a lepton. The t�t contribution is suppressed
by requiring fewer than two reconstructed jets with ET >
15 GeV and j�j< 2:5 in the event. The DY background is
suppressed by requiring sufficiently large E6 T in the event to
remove contributions from mismeasured leptons or jets.
This is achieved by requiring E6 T;rel > 25 GeV, where E6 T;rel

is E6 T sin��E6 T ;ð‘;jetÞ if ��E6 T ;ð‘;jetÞ <
�
2 and E6 T otherwise,

and ��E6 T ;ð‘;jetÞ is the angle between the ~E6 T direction and

the nearest lepton or jet. The observed E6 T is corrected for
muons and track-only lepton candidates, because they do
not deposit all of their energy in the calorimeter. Except for
W þ jets, acceptances are determined using data simulated

with the MC@NLO program for WW [8], PYTHIA for H !
WWð�Þ, DY, WZ, ZZ, and t�t [9], and the generator de-
scribed in Ref. [10] for W�.
The response of the CDF II detector is then estimated

with a GEANT-4-based simulation [11] to which an effi-
ciency correction of up to 10% per lepton is applied based
on measurements of the lepton reconstruction and identi-
fication efficiencies using observed Z ! ‘þ‘� events. An
additional correction is applied to the W� background
estimate based on a measurement in data of the photon-
conversion veto efficiency. The W þ jets contribution is
estimated from data by extrapolating from a sample of
events that contain an identified lepton and a jet jl con-
taining a track or EM energy cluster similar to those
required in the lepton identification. The contribution of
each event to the total yield is scaled by the probability that
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the jl is identified as a lepton. This probability pðpT ; jlÞ is
determined for each lepton type as a function of the jl pT

using multijet events collected with jet-based triggers. A
correction to pðpT ; jlÞ is applied for the small real lepton
contribution using Monte Carlo simulation of singleW and
Z boson production.

Based on the procedure above, we expect 768� 91
background events and observe 779 in the selected region.
The expected composition of the background is 356� 49
WW, 24:9� 3:9 WZ, 21:8� 3:5 ZZ, 25:5� 5:0 t�t, 138�
31DY, 90:5� 24:1W�, and 111� 27W þ jets, where the
indicated uncertainties include the systematic uncertainties
described below. As a cross-check of the background
model, we measure the fraction of q �q ! WW events in
the sample with a similar method to the signal extraction
described below and find it to be consistent with the
expectation. Table I shows the dependence of expected

yield on mH. Since the level of non-WWð�Þ background
depends on the lepton identification categories, this infor-
mation is used to divide the sample into high and low
signal-to-background (S=B) classes. The low S=B category
largely consists of candidates with a forward lepton.

After selection, the dominant background is the q �q !
WW process which differs from the signal process only by
spin, production mechanism, and resonant structure.
Because of the two neutrinos in the final state, a simple

mass peak cannot be used to isolate the resonant gg !
H ! WWð�Þ process from the backgrounds. Instead, we
combine two different multivariate techniques to differ-
entiate signal and background. One is a matrix element
(ME) technique, which uses an event-by-event calculation
of the probability density for each contributing process to
produce the observed event. If all details of the collision
properties and the detector response are modeled in the ME
calculation, this method provides the optimal sensitivity to
the signal. However, there are several approximations used
in the calculations: theoretical differential cross sections
are only implemented to leading order, a simple parame-
terization of the detector response is used, and for some
small (WZ and t�t) or difficult to model (DY) backgrounds,
we do not calculate a probability density. In order to
improve these approximations, we extend the ME calcu-
lation with a neural network (NN) which exploits the more
complete model implemented in the simulated data and
W þ jets model.

The event probability density for the ME method is

Pð ~xobsÞ ¼ 1

h	i
Z d	LOð ~yÞ

d~y

ð ~yÞGð ~xobs; ~yÞd~y;

where the elements of ~y ( ~xobs) are the true (observed)
values of the lepton momenta and E6 T , d	LO=d~y is the
parton level differential cross section [12], 
ð ~yÞ is a pa-
rameterization of detector acceptance and efficiency func-
tion, and Gð ~xobs; ~yÞ is the transfer function representing the
detector resolution and a PYTHIA-based estimate of trans-
verse momentum of the ‘‘E6 T system due to the initial state
radiation. The constant h	i normalizes the total event
probability to unity. This calculation integrates the theo-
retical differential cross section over the missing informa-
tion due to two unobserved neutrinos in the final state. We
form a likelihood ratio discriminant which is the signal
probability divided by the sum of signal and background

probabilities LRH!WWð�Þ ð ~xobsÞ � PHð ~xobsÞ
PHð ~xobsÞþ

P
i
kiPið ~xobsÞ where

ki are the expected background fractions of WW, ZZ,
W�, and W þ jets. The LR distributions are shown in
Fig. 1(a). Additional ME likelihood ratios LRWW , LRZZ,
LRW�, and LRWþjets are defined analogously to

LRH!WWð�Þ .

For the final results, a NN discriminant is used to extend
the ME calculation using as input the ME likelihood ratios
in addition to various kinematic variables. For each of the
Higgs boson masses investigated, a NN is trained on signal
events and an appropriately weighted composition of back-
ground events. The NN classifies events as signal or back-
ground based on the inputs LRH!WWð�Þ , LRWW , LRZZ,

LRW�, LRWþjets, ��‘‘, �R‘‘, m‘‘, E6 T , ��E6 T ;ð‘;jetÞ, and
E6 T;rel, where ��‘‘ and �R‘‘ are the separation between

the two leptons in � and �R, respectively. We find that the
most discriminating input variables are LRH!WWð�Þ , �R‘‘,

and E6 T;rel. An example of the NN output is shown in

Fig. 1(b). The presented results use the NEUROBAYES [13]
program. Comparable results are also obtained using the
TMVA-MLP [14] program, demonstrating the robustness of

the technique.
For the signal and backgrounds modeled byMonte Carlo

simulation, the same procedures as Ref. [7] are used to
assess the systematic uncertainties on the lepton selection
efficiency, trigger efficiency, parton-distribution function,
and luminosity to be 1.4% to 2.0%, 2.1% to 7.1%, 1.9%–
4.1%, and 6%, respectively, depending on mode. The cross
section uncertainties are 10% for WW [12], WZ [12], ZZ
[12], and W� [15], and 15% for t�t [16]. Based on a
comparison of simulated WW events generated with
MC@NLO and PYTHIA, we assign a systematic uncertainty

on the acceptance due to higher order QCD effects of 5.5%
for WW events and 10% for the other modes which are
only simulated at leading order.

TABLE I. Expected Higgs boson events as a function of mH.

mH (GeV=c2) 110 120 130 140 150 160 170 180 190 200

Expected yield 0.5 1.9 4.3 7.0 9.3 11.6 11.0 9.0 6.4 5.1
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The systematic uncertainty on the W þ jets background
is estimated to be 24% from differences in the observed
probability that a jet is identified as a lepton for jets
collected using different jet ET trigger thresholds. These
variations correspond to changing the parton composition
of the jets and the relative amount of contamination from
real leptons. Because only the E6 T;rel requirement sup-

presses the DY background, there is an uncertainty due
to the E6 T resolution modeling, which is estimated to be

20% based on comparisons of the data and Monte Carlo
simulation in a sample of dilepton events. For the W�
background contribution, there is an additional uncertainty
of 20% from the detector material description and photon-
conversion veto efficiency.
A Bayesian credibility level (C.L.) is calculated for each

mH hypothesis based on the combined binned likelihood of
the discriminant distributions for the high and low S=B
samples. A posterior density is obtained by multiplying
this likelihood by Gaussian prior densities for the back-
ground normalizations and systematic uncertainties leav-

ing 	ðgg ! HÞ �BðH ! WWð�ÞÞ with a uniform prior
density. A 95% C.L. limit is then determined such that
95% of the posterior density for 	�B falls below the
limit. Limits as a fraction of the SM cross section
	SMðgg ! HÞ are calculated by including 	SMðgg ! HÞ
as a parameter whose prior density is determined by the
10% theoretical uncertainty of its next-to-next-to-leading-
log prediction [17]. The resulting cross section limits for
both discriminants are shown in Table II and Fig. 2.
Because the NN uses the ME calculation as input, it is
the full result; the ME results are given only for compara-
tive purposes.
In conclusion, we have presented limits on the produc-

tion of a Higgs boson through gluon fusion followed by its
decay to a pair of W bosons. A combination of matrix ele-
ment and neural network techniques is used to discriminate
signal from background. Studies using the two techniques
independently achieve consistent results with a sensitivity
approximately 0:1	SM worse than the combination at
mH ¼ 160 GeV=c2. The consistency of results obtained
with different algorithms provides evidence of the robust-
ness of the multivariate techniques. At the most sensitive
value of mH ¼ 160 GeV=c2, the observed limit is 1.7
times the SM prediction where the median expected limit
is 2.2, corresponding to a downward fluctuation slightly
larger than 1 standard deviation. Compared to an optimized
selection and a likelihood based on the ��‘‘ variable, the
multivariate discriminators gain a factor of 1.7 to 2.5 in
effective integrated luminosity depending on mH. This
measurement also constrains alternative models in which

TABLE II. Expected and observed upper limits on 	ðgg ! HÞ �BðH ! WWð�ÞÞ and ð	�BÞ=ð	�BÞSM for various mH .

mH (GeV=c2) 110 120 130 140 150 160 170 180 190 200

Using Matrix Element Only

Expected (pb) 3.6 2.6 2.2 1.9 1.5 0.9 0.9 1.1 1.2 1.3

Observed (pb) 2.8 1.5 1.1 0.9 0.8 0.7 0.6 0.7 1.0 1.5

Expected/SM 63.7 19.6 9.4 6.0 4.3 2.4 2.6 3.8 6.0 8.2

Observed/SM 50.3 10.9 4.7 3.0 2.3 1.7 1.8 2.6 5.0 10.3

Using Neural Net Discriminator

Expected (pb) 3.0 2.3 1.9 1.7 1.4 0.9 0.8 1.0 1.1 1.2

Observed (pb) 2.5 1.7 1.2 1.1 0.9 0.7 0.7 0.7 1.0 1.6

Expected/SM 54.0 17.1 8.4 5.4 3.9 2.2 2.4 3.5 5.6 7.7

Observed/SM 44.6 13.2 5.3 3.5 2.6 1.7 2.2 2.7 5.5 10.6

Matrix Element Likelihood Ratio
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FIG. 1 (color online). The likelihood ratio distribution from
(a) the ME discriminate alone and (b) the full NN score for
mH ¼ 160 GeV=c2. The Higgs boson distribution is normalized
to the SM expectation. The distributions are shown only for the
high S=B class, which provides the majority of the sensitivity.
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the gg ! H coupling is enhanced by additional particles in
the virtual loops of the production amplitude [18].
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