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We explore the phase diagram of Nambu—Jona-Lasinio-type models near the chiral critical point

allowing for phases with spatially inhomogeneous chiral condensates. In the chiral limit it turns out that

the region in the mean-field phase diagram where those phases are energetically preferred very generically

reaches out to the chiral critical point. The preferred inhomogeneous ground state in this vicinity possibly

resembles a lattice of domain wall solitons. This raises the question of their relevance for the phase

diagram of QCD.

DOI: 10.1103/PhysRevLett.103.072301 PACS numbers: 12.38.Mh, 21.65.Qr

Introduction.—The phase diagram of quantum chromo-
dynamics (QCD) as a function of temperature T and quark
chemical potential � is expected to exhibit a rich phase
structure [1]. In particular, the nature of the chiral phase
transition, the location of the chiral critical point, and the
properties in its vicinity have attracted a lot of interest.
Experimentally, this exploration is one of the main re-
search goals at the future FAIR facility in Darmstadt [2].
Theoretically, it is heavily investigated in phenomenologi-
cal models whereas ab initio calculations are still limited to
small values in �=T. Depending on the approach and/or
details of the model, a great range for the possible location
of the critical point has been found [3].

Generic, model-independent scenarios near the critical
point can, however, in principle be discussed via a
Ginzburg-Landau (GL) expansion. The idea is to expand
the effective action of the order parameter and to obtain an
expression for the thermodynamic potential as a functional
in the order parameter. For inhomogeneous phases, char-
acterized by a spatially varying order parameter, this can be
generalized by a combined gradient expansion. Treating
gradients and the magnitude of the order parameter to be of
the same order, a generic expression for the GL functional
in the vicinity of a second order phase transition for a
theory with real order parameter �ðxÞ invariant under
�ðxÞ ! ��ðxÞ takes the form
�GL½T;�;�ðxÞ� ¼ c2ðT;�Þ�ðxÞ2 þ c4;aðT;�Þ�ðxÞ4

þ c4;bðT;�Þ½r�ðxÞ�2
þ c6;aðT;�Þ�ðxÞ6
þ c6;bðT;�Þ½r�ðxÞ�2�ðxÞ2
þ c6;cðT;�Þ½��ðxÞ�2: (1)

Considering a periodic ground state with a Wigner-Seitz
cell V, the thermodynamic potential difference between
symmetric and spontaneously broken phase is then given
by �� ¼ 1

V

R
V �GL. Furthermore, we have to require

c6;i > 0 in order to have a bounded potential. For homoge-

neous phases with �ðxÞ ¼ �0 a second order phase tran-

sition is then occurring at c2 ¼ 0, c4;a > 0, which turns

into a weak first-order phase transition at the critical point
where c4;a changes sign. In addition, inhomogeneous

phases can become energetically favored when c4;b < 0
since small curvatures then lead to a gain in free energy.
The main idea of this work is to perform such an

expansion within an Nambu—Jona-Lasinio (NJL) -type
model on mean-field. For simplicity, we limit ourself to
the chiral limit and do not include UAð1Þ-breaking terms.
Furthermore, constraining ourself to condensates of the
form h �c iðxÞc jðxÞi / �ðxÞ�ij, where i, j label flavors and

chiralities, the residual global symmetry is Z2 and the GL
functional should take the form as stated in Eq. (1).
Assuming a sensible regularization procedure, we find
c4;a ¼ c4;b and related to that an inhomogeneous phase

starting at the critical point.
This finding is actually very similar as in the 1þ

1-dimensional Gross-Neveu (GN) model, which is renor-
malizable and where the mean-field problem can be solved
analytically [4,5]. In the mean-field phase diagram of the
GN model, a symmetric, a homogeneous dynamically
broken, and a inhomogeneous dynamically broken phase
exist and meet at the chiral critical point. A similar behav-
ior persists also for finite quark masses [6].
To conclude the introduction, we want to clarify that we

do not necessarily want to conjecture precisely this sce-
nario for the phase diagram of QCD. Rather, we would like
to suggest that inhomogeneous phases may play a more
important role than anticipated. It should be noted that the
NJL model shares the global symmetries with QCD and is
therefore a reasonable candidate to study the phase prop-
erties near the critical point even if the location of the
critical point may differ. So far, these chiral crystalline
phases have mainly been discussed at vanishing tempera-
tures [7–10]. Here, the discussed scenarios are qualitatively
different in that the modulations, i.e., the magnitude of the
gradients, are not small but typically of the order of the
Fermi momentum. The relevant dynamics of particle-hole
scattering for one plane wave is then concentrated on a
restricted vicinity of two antipodal points on the Fermi
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surface. An exception to this is the dual chiral-density
wave which is sufficiently simple to solve the mean-field
problem [11]. On a technical level, it has strong similarities
with the Fulde-Ferrell phase [12,13] discussed in the con-
text of (color-)superconductors. The latter is known to be
technically simple but disfavored compared to other inho-
mogeneous phases [14,15]. In particular, the obtained or-
der of phase transitions when going from homogeneous
dynamically broken to inhomogeneous to unbroken phase
might be misleading [16].

The generalized Ginzburg-Landau expansion.—We con-
sider NJL-type models of the form

L ¼ �c i��@�c þGð �c c Þ2 þ . . . ; (2)

where c is the 4NfNc-dimensional quark spinor for Nf

flavors and Nc colors, �� are Dirac matrices, and G is
called the scalar coupling. The dots indicate terms that
vanish in our mean-field approximation. Allowing a
mean-field value h �c ðxÞc ðxÞi ¼ � 1

2GMðxÞ for the chiral

condensate, the mean-field Lagrangian density takes the
form

LMF ¼ �c ½i��@� �MðxÞ�c �MðxÞ2
4G

: (3)

In the case of a periodic condensate with Wigner-Seitz cell
V and using the imaginary-time formalism (see, e.g.,
Refs. [1]), we therefore obtain for the mean-field thermo-
dynamic potential

�ðT;�Þ ¼ � T

V
ln
Z

D �cDc

� exp

�Z
x2½0;ð1=TÞ��V

ðLMF þ� �c�0c Þ
�

¼ � T

V
TrD;c;f;V logðS�1Þ þ 1

V

Z
V

MðxÞ2
4G

þ const;

(4)

with inverse propagator

S�1ðx; yÞ ¼ ½i��@� �MðxÞ��ð4Þðx� yÞ (5)

and the functional trace acting on the direct product of
Dirac, color, flavor, and coordinate space. Since the func-
tional logarithm can only be evaluated in special cases such
as the dual chiral-density wave [11], we now expand in
MðxÞ. Substracting the leading order corresponding to the
thermodynamic potential of the unbroken phase, we for-
mally arrive at

��ðT;�Þ ¼ � T

V

X
n>0

1

n
TrD;c;f;VðS0MÞn þ 1

V

Z
V

MðxÞ2
4G

:

(6)

Here, we have introduced the bare propagator S0 ¼
SjMðxÞ¼0 and a short hand notation for

TrD;c;f;VðS0MÞn ¼
Z
x

Z
x2

. . .
Z
xn

TrD;c;f½MðxÞS0ðx; x2Þ

�Mðx2Þ . . .MðxnÞS0ðxn; xÞ�: (7)

The domain of integration for x is ½0; 1T� � V and ½0; 1T� �
R3 for x2; . . . ; xn. In the chiral limit, the expressions for odd
values of n vanish. Furthermore, we can expand the con-
densate around x, using multi-index notation, as

MðxnÞ ¼
X
j�j>0

1

�!
D�MðxÞðxn � xÞ� (8)

and can extract the GL functional to any desired order in
gradients and order parameter. Neglecting possible issues
with the regularization for the moment, we can go to

momentum space using S0ðx; yÞ ¼ T
P

n
d3p
ð2�Þ3 ðp��

�Þ�1 �
exp½ipðx� yÞ�, where p0 ¼ !n ¼ ð2nþ 1Þ�T. It is then
a tedious but straightforward exercise to work out the
explicit expression stated in Eq. (1). All coefficients result
in the evaluation of similar integrals, only

c6;b ¼ �32NfNcG
4T

X
n

Z d3p

ð2�Þ3
�
5

3

1

½ð!n þ i�Þ2 þ p2�3

þ 11

18
rp � p

½ð!n þ i�Þ2 þ p2�3
�

(9)

takes a slightly more complicated form, in that the inte-
grand involves total derivatives. In addition, part of the
expressions are of course formally divergent.
Since our model is nonrenormalizable, the divergences

cannot be absorbed into a redefinition of the coupling.
Instead, usually a regularization, as part of the phenome-
nological model, is introduced. Because of this ad hoc
procedure, a generalization of the regularization to inho-
mogeneous phases is often not unique as has already been
discussed in the context of inhomogeneous color-
superconductors [16]. This applies, in particular, to the
widely used three-momentum cutoffs of form factors. We
could therefore take the pragmatic viewpoint that a gen-
eralization of any such ad hoc regularization procedure to
inhomogeneous phases is assumed to be such that the total
derivative terms vanish. An alternative approach is a regu-
larization scheme that does not rely on an homogeneous
ground state, e.g., a propertime regularization for the func-
tional logarithm in Eq. (4). In this case, it is possible to
show that the total derivative terms strictly vanish. For both
of these viewpoints, we can define the regularized expres-
sions

�n ¼ ð�1Þn=24NfNcT
X
m

Z
reg

d3p

ð2�Þ3

� 1

½ð!m þ i�Þ2 þ p2�n=2 þ
�2n

2G
(10)

and [not replacing MðxÞ by �ðxÞ for simplicity] finally
obtain
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�GL½T;�;MðxÞ� ¼ �2

2
MðxÞ2 þ �4

4
fMðxÞ4 þ ½rMðxÞ�2g

þ �6

6

�
MðxÞ6 þ 5½rMðxÞ�2MðxÞ2

þ 1

2
½�MðxÞ�2

�
: (11)

Interestingly, the ratios of the prefactors within each order
of the GL expansion turn out as those in the one-
dimensional analogue [4,5]. This is not the case in super-
conductors [17] where the underlying dynamics is differ-
ent, namely, coming from particle-particle and hole-hole
scattering near the Fermi surface instead of particle-hole
scattering in presented case.

It is now in principle straightforward to choose a regu-
larization scheme and adjust the model parameters to QCD
phenomenology. Since it is however known that differing
choices of regularizations and model parameters lead to a
spread in the location of the critical point (see, e.g., the
collection in Ref. [3]), we prefer to make a more qualitative
statement and keep the discussion on the level of the GL
coefficients �n. (For all conventional choices the presented
model has a critical point in the phase diagram where �2 ¼
�4 ¼ 0 and �6 > 0.) Although the model may not have the
same critical point as QCD, it should be in the same
universality class and therefore show a similar behavior
in the vicinity of the critical point.

Inhomogeneous ground states.—Given the GL func-
tional in Eq. (11) and some critical point where�2 ¼ �4 ¼
0 and �6 > 0, we can explore the phase structure in its
vicinity. Limiting ourself first to homogeneous phases with
MðxÞ ¼ M0, we have the following known behavior: �4 >
0: Second order phase transition at �2 ¼ 0, where M2

0 ’
� �2

�4
and �� ¼ � �2

2

4�4
for �2 < 0. �4 < 0: First order

phase transition at �4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16
3 �2�6

q
where the broken

solution has M2
0 ¼ � 3

4
�4

�6
. The dynamically broken solu-

tion continues to exist as a local minimum up to �4 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4�2�6

p
. Allowing for inhomogeneous phases, we may

expect a spatially varying order parameter for �4 < 0 since
here small curvatures can lead to a gain in free energy.
Even within the GL approximation, the determination of
the ground state is not straightforward as we need to
minimize a nonquadratic functional. Focusing on one-
dimensional inhomogeneities, i.e., MðxÞ ¼ MðzÞ, the so-
lutions to �

�M�� ¼ 0 are actually known from the inves-

tigation of one-dimensional models [17,18]. They are
expressed (up to an arbitrary shift) in terms of the elliptic
Jacobi sn function as

M1DðzÞ ¼
ffiffiffi
�

p
q snðqz; �Þ; (12)

where � 2 ½0; 1� and q being a scale related to the maxi-
mum ofM1DðzÞ and the extension of a soliton in the chosen
z direction (both scales are related in our case). For � ¼ 1,
we haveM1DðzÞ ¼ q tanhðqxÞ, i.e., a single soliton, and for

� ! 0, the shape becomes more and more sinusoidal albeit
the amplitude also goes to zero. From previous investiga-
tions [4], it is known that when increasing�2 from zero, we
reach a second order phase transition into an inhomoge-
neous phase with q ¼ M0 and � ¼ 1. At this point, the
free-energy of a single soliton becomes negative leading to
its formation. By using M0 known from above and check-
ing where d

d���jMðxÞ¼M1DðzÞ changes sign at � ¼ 0, we

obtain �4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36
5 �2�6

q
for this point. We arrive at the

onset of infinitely far separated solitons. Further increasing
�2 decreases � until it reaches zero. Since q stays finite, the
overall magnitude of M1DðzÞ given by

ffiffiffi
�

p
q then vanishes

and we find a second order phase transition to the unbroken
phase.
In case of a second order phase transition from the

inhomogeneous phase to the unbroken phase, the value
of �4 in terms of �2�6 is actually universal also for higher
dimensional modulations of the order parameter. Since in
this case MðxÞ is parametrically small, we can neglect
nonquadratic terms in the GL functional. Consequently,
the variation d

dM�� leads to a linear partial differential.

We can then optimize the value of �4 by varying the
momentum q of the Fourier components of MðxÞ and

find �4 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
3�2�6

q
for the transition line where jqj ¼ffiffiffiffiffiffiffiffiffiffiffi

� 3�4

2�6

q
.

We do not want to address the general question whether
an inhomogeneous phase with a higher dimensional modu-
lation could become favored in the vicinity of the critical
points, but it may very well be that the one-dimensional
modulations are generally preferred there as numerically
confirmed in Ref. [19] for the analogous case of inhomo-
geneous phases in paramagnetic superconductors.
We summarize our findings in Fig. 1 by illustrating the

ground states in the GL coefficients’ phase diagram.
Obviously, the inhomogeneous phases modify the region
where a first-order transition is expected when restricting
to homogeneous ground states only and replaces this tran-
sition by two second-order phase transitions.
Discussion.—Starting with generic NJL-type models in

mean-field approximation, we have preformed a general-
ized GL analysis in the vicinity of the chiral critical point.
Since the order parameter and the gradients of the modu-
lation are parametrically small, the expansion is arbitrary
close to the mean-field description. Requiring a sensible
regularization scheme, the results are astonishingly similar
to results in the one-dimensional GNmodel. Consequently,
we find two second-order phase transitions from homoge-
neous to inhomogeneous dynamically broken to unbroken
phase, instead of a first-order transition from broken to
unbroken phase.
Various questions can still be addressed: It would be

interesting to actually compute the GL coefficients in a
regularization scheme with parameters adapted to QCD
phenomenology and to estimate the extension of inhomo-
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geneous phases in the phase diagram of NJL-type models.
This should be combined by a complete mean-field study
when at least allowing for a one-dimensional inhomoge-
neity in order to check the range for the applicability of the
GL expansion. It should also give a different phase diagram
than obtained for the analogous one-dimensional models,
where the inhomogeneous phases reach out to infinitely
high chemical potentials. Another interesting question here
is whether the order of the phase transitions change when
going away from the critical point as recently found at
vanishing temperatures for (color-) superconductors [16].
Also, the competition with color-superconducting phases
would be interesting as the latter, at least in such model
studies, should not reach out to the critical point.

There are also various ways the GL analysis can be
improved: It would be interesting to include finite and
mutually differing current quark masses and to check
how the presented scenario is affected. This would in
addition require the use of more complex order parameters
h �c ic ji, where the indices i, j should include flavor and

chirality. Also, more complicated interactions or models
could be considered, such as vector interactions, the
t’Hooft interaction when, in particular, including the
strange quark or the Polyakov-loop NJL model.
Incorporating time derivatives, one may try to explore

dynamical properties of fluctuations and discuss possible
consequences for heavy ion collisions.
More complicated but very interesting problems would

be whether those phases could be explored beyond mean-
field approximation, how the relation between the GL
coefficients change when including higher fluctuations,
and whether the phase diagram of QCD may include those
or similar phases, in particular, in the region close to the
chiral critical point.
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FIG. 1 (color online). Pictorial presentation of the phase dia-
gram in terms of the GL coefficients: The gray domain corre-
sponds to the homogeneous dynamically broken ground state,
the shaded gray to the solitonic ground state (at least when
restricting to one-dimensional modulations in the order parame-
ter), whereas in the transparent domain, the unbroken phase is
preferred. � is an arbitrary scale. Also stated are various lines
discussed in the text.
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