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ABSTRACT

Previous investigations of the evolution of the 3:2 spin-
orbit resonance state of the planet Mercury have used simplified
mathematical models in which the rotation axis of the planet
has been assumed to remain perpendicular to the orbital plane.
This thesis investigates the evolution of both the spin rate and
the orientation of the rotation axis under tidal and permanent-
asymmetry torques applied by the Sun. It is found that as the
spin rate decreases, the inclination of the equatorial to the
orbital plane increases. For initial inclinations of less than
507, the maximum inclination is never greater than 60°, and is
attained when the spin rate is about three times the orbital
mean motion. The effect of such a substantial inclination upon
the resonance capture probability depends upon the tidal-friction
model. For a viscous friction model, the capture probability
is less at each resonance for non-zero inclination than for the
previously studied, zero inclination, case. However, for a
model in which the tidal torque undergoes a discrete change
with passage through the resonant rotation rate, the capture
probability is less for non-zero inclination for the odd-half-
integer resonances (3:2, 5:2, etc.), and larger for the even
resonances (2:1, 3:1, etc.). Also, the capture probabilities
for the discrete-change model are consistently larger (approxi-
mately one) than probabilities for the viscous model. If for
this reason, the step model should be preferred to the viscous
model, the questioni$raised::whywasnotMercurytrappedin
the 2:1 or 3:1 resonance state?
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CHAPTER I. Introduction to the problem

Until 1965, Mercury was thought to rotate once sidereally

per one 88 day orbit (Allen, 1964). Therefore, it would always

present nearly the same face to the sun. Pettengill and Dyce

(1965) showed from delay-Doppler radar data that the rotation

period was actually 595 days. Subsequently, Colombo (1965)

proposed that the rotation period was "locked" at exactly 2/3

of the orbital period, or about 59 days. Colombo and Shapiro

(1965) ,Goldreich and Peale (1966) and Counselman (1969) among

others have analyzed the processofcaptureintothislocked-in

rotation mode. For simplicity's sake, in all of these analyses

it was assumed that Mercury's spin axis has always been perpen-

dicular to its orbit plane. I now relax this assumption and

examine the consequences. Just prior to the presentation of

this thesis, Peale (1974) published many of the same results,

which he obtained independently. The main points of agreement

or disagreement between his and my results will be presented in

Appendix E.

The mathematics in what follows is complicated for three

reasons. First, three-dimensional vector equations necessarily

replace the one degree of freedom equations of the theoretical

papers mentioned above. Further, three separate sets of (moving)

coordinate axes are important: a set fixed in the planet, a set



fixed with respect to the planet's equatorial plane,

and one which is fixed with respect to the orbit plane. Second,

the functions for the torques are expanded into spherical har-

monic series in spatial variables and Fourier series in time.

Third, two different types of models for the tidal torque are

considered. As a guide through the algebraic formalism, a pre-

cis of the mathematics is given first; then a more complete

development, with the detailed calculations being shown in the

appendices. I will also present physical interpretations of

the mathematical results whenever I can.
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Review of the physics

Mercury travels in a moderately elliptical orbit very near

the Sun. Both factors contribute to the strength of the spin-

orbit resonance. Currently, the orbit eccentricity is about .20

but it is thought to vary between .12 and .24 over millions of

years due to planetary perturbations (Brouwer &amp; van Woerkom,

1950). Similarly, the orbit plane is regressing around an

inertial axis once in 400,000 years, with a variable inclination

to that axis of never more than 10°. Perihelion is advancing in

the orbit plane about one cycle in 200,000 years, while the

semi-major axis is essentially constant at 60 x 10° m. The

mean motion (orbital angular speed) n equals 271/(88 day); the

spin rate now is about 1l.5n. The spin axis currently is inclined

less than 10° from the orbit plane. The spin axis precession period

around the orbit normal is perhaps 10° years, a value I will

astimate below.

We do not know the original spin period of Mercury. The

planets Mars through Neptune have undergone little tidal braking,

and their periods currently range from 10 to 24 hours. Mercury's

may once have been about 20 hours. Similarly, we do not know

the original inclination of the spin axis, and the other planets

exhibit a wide range of inclinations.

The Sun raises tides in the solid body of Mercury.

These tides follow the sun around the planet, dissipating energy

through inelasticity. Therefore, the Sun exerts a torque

on Mercury through these tidal "bulges". If Mercury has not

always been in a resonance, then it must have been slowed



down by this tidal torque, over a time of the order of 10’ to

107 years. If unchecked by a countertorque, the slowdown would

not stop until a spin rate were attained for which the average

tidal torque exerted by the Sun on the planet in one orbit is

zero. For different tidal models, estimates of this equilibrium

rate range from n to nearly 1.5n. Yet Mercury revolves faster

than this, apparently at exactly l1l.5n, or three turns in two

orbits. What stabilized this higher rate?

The widely accepted answer is that Mercury, even without

tidal strain, is not axially symmetric, but has a difference

between its two equatorial principal moments of inertia. When

the spin rate is 1.5n, the longer equatorial axis of Mercury

points at the Sun exactly three times per orbit. The Sun's

torque on the permanent asymmetry (called the "asymmetry torque"

for short) may not average to zero over an orbit, depending on

the orientation of the long axis at perihelion passage. Indeed,

such an effect occurs when the spin rate is any nonzero integral

or half-integral multiple of n. However, only the low-numbered

resonances are strong enough possibly to stabilize the spin

against the deceleration of the tidal torque.

The following is a crude analogy to capture; the very

important matter of spin phase angle is not brought out clearly.

However, I have found this analogy helpful. Picture a ball

rolling down a mountain to a valley below. Its height corres-

ponds to the spin rate of Mercury. The slope of the mountain

represents the tidal torque, and the valley represénts the

19



equilibrium spin rate where the average tidal torque vanishes.

Periodically spaced ledges on the side of the mountain slow the

ball's descent, but all save the bottommost few ledges slope

downwards, so that except for the latter, no ledge can trap

the ball. The ledges represent the asymmetry torque, which averages

to zero, except at select values of the spin rate. Near the

bottom, a few ledges are broader and upward-sloping; if the

ball could somehow lose its accumulated kinetic energy, it

could fall back and be captured in the crook of a ledge. There-

fore capture at a resonance rate above equilibrium requires both

a strong asymmetry torque (upward sloping ledge) and a dissipa-

tion mechanism of a certain kind.

It will be shown that the likelihood of capture depends

upon the spin phase angle of Mercury, that is, the angle of the

rotating equatorial axes relative to an inertial frame. The

value of this phase angle at the times of possible captures is

completely unknown, of course. Since only certain ranges of

the phase angle will lead to capture, we can only compute pro-

babilities of capture.

In summary, the tidal torque decelerates the planet. As

the spin rate passes near a whole- or half-integral multiple

of the mean motion n, the strong asymmetry torque averages to

a non-zero value and attempts to brake the deceleration. The

effect of a non-zero inclination of the equatorial plane to the

orbit plane will be investigated here to determine how it may

affect capture probabilities.

11



Mathematical precis

A summary of the mathematical arguments will now be given.

The fundamental equation governing the rotation of Mercury

is that the change in the angular momentum of the planet is

aqual to the applied torque:

aH
gt=LI

The angular momentum H, as seen from an inertial coordinate

system, is the sum of the rotational and the orbital angular

momenta. However, the applied torque in this situation is far

too weak to affect the orbital angular momentum Significantly.

TO our degree of approximation, we shall consider the spin

angular momentum to be solely in the direction of Mercury's

principal axis of inertia. The time derivative of H breaks up,

therefore, into two major components. One is due to the decele-

ration of the spin; this component of H is in the direction of

the spin axis. The other is due to the precession and nutation of

the spin axis; this component is perpendicular to the spin axis.

The torque T of the Sun on Mercury

L=-Mp RxF
where Mg is the Sun's mass, R is the vector from Mercury to the

Sun, and F is the force per unit mass that Mercury exerts on

the Sun. If the origin of coordinates is at Mercury's center of

mass, and if Mercury is perfectly spherical, it can exert

no net torque on the Sun. Therefore we must calculate the devi-

 Rr p)



ations from sphericity of Mercury.

Mercury possesses permanent asphericities such as a

polar flattening, mountain ranges, etc., and temporary, ti-

Jally-caused ones. The order of magnitude of the permanent ones

may be estimated by comparison with the Moon: the tidal deviations may

be estimated by computing the tidal distortions of an elastic

body. The nature of the elasticity model makes a great differ-

ence in the final results; two representative models are used,

one which leads to a tidal torque varying continuously with

spin rate, and one which leads to step-like variations.

In any event, the torque can be expressed as a sum of

spherical harmonic functions Y, (0,2) where the angles
n

and é are the spherical coordinates of the Sun as seen

from a Mercurian coordinate system. The coefficients of the

spherical harmonics depend upon the asphericities.

Our single vector differential equation (Euler's equation)

can thus be split along the coordinate axes into three scalar,

simultaneous differential equations, of which a typical one is

2
2aAb = 7 An (02)

dy Riu

where is the phase angle of the planet's spin. This is the

equation representing the deceleration of Mercury under the

applied torque. Before we try to solve it and the other two

equations, we must note two points.

First, that the coefficients A depend upon the spin

angles of Mercury v and the angles defining the position

of the spin axis in space). Secondly, these angles (except Vv) are

changing only very slowly. We are not interested here in
- 13 -



their short term changes, i.e. the changes over time scales com-

parable to the period of Mercury's orbit, but in their secular

changes, over thousands of orbit periods. This secular change

may be isolated by averaging both sides of our equations over

many orbit periods. To facilitate this time averaging, we first

must further expand the right hand sides, principally the Yom

terms, into Fourier series with time as the independent variable.

The expansion into Fourier series of the torque exp ressions

makes manifest the dependence on the spin angles. Besides the

angle of spin phase, there are also the angles 0 ana ¥ which

are the spherical coordinates of the direction of the spin axis

with respect to an orbital coordinate system. After expansion,

but before averaging, the torque expressions on the right hand

side of our differential equations look like the following

typical sum:

2 Bow ( 0%, &lt;, x,¢,w) exp (14+ 1 mY)

The coefficient Bre depends on Pand ¥, on €, the orbit

eccentricity and on (J%,¢,w), the Euler angles defining the

orientation of the orbit with respect to inertial coordinates.

The dependence on ©, the inclination angle of the spin axis,

in defined by a Wigner coefficient, while the dependence on e

is in terms of a Hansen coefficient. Both are defined and

explained further in the appendices.

Taking the time average of this expansion for the torque

picks out those terms whose phase is stationary, i.e. those

terms for which the integers L and m are such that a linear
- 14 -



combination of the time t and the spin phase angle 1, is nearly

constant over many orbits. Currently Mercury turns on its axis

almost exactly 3/2 times per orbit, so that the terms with {=3,

m=-2 or with {=-3, m=2 remain after long-term averaging.

It is meaningful therefore in the current situation to

define the "stroboscopic phase angle " ¥ by

an. 3 outYiz4-35
where P is the period of Mercury's orbit. The differential

equation governing the angle Y, shown above in schematic form,

becomes after averaging

i = F(1,,0,9,¢,4)

The function f here turns out to act essentially like -A sin 29

so that this equation is essentially a pendulum equation. One

of the solutions to the pendulum equation is simple oscillation.

This is believed to be the current behavior of +. That is,

assuming that N oscillates around zero within a narrow ampli-

tude, the number of rotations per orbital period that Mercury

makes will similarly oscillate around 3/2,

Whenever the spin rate 1A of Mercury is very nearly an

integral or half-integral (since a Yom approximation through A=2

is bilaterally symmetric) multiple of the mean orbital motion

2W/P, it is meaningful to define a stroboscopic phase variable.

The differential equation will average into a pendulum-like

equation. The possibility exists therefore for the spin

rate to be trapped at any number of resonant values. As will



be shown, the probability of being trapped in high-numbered

resonances (such as the spin rate being three or more times

the mean orbital motion) is quite small.

When the spin rate is between half-integral or integral

values of the mean orbital motion, the differential equation

for the spin phase angle time-averages into the simpler form

The function f£ has a negative sign whenever the spin rate is

high. The spin rate is therefore decelerated so long as it is

above a threshold value. Depending on the model of elasticity

chosen for the planet Mercury, thespin rate below which the

function f changes to positive sign is generally between once

and one and a half times per orbit. If no trapping in resonances

occurs, then, the spin rate will come to rest at just this cross-

over rate, for which the solar torque exerted on Mercury averages

to zero in one orbit.
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Chapter II. The Mathematical Model

The Two Torques

The Sun's gravitational field will be assumed to obey a

perfect inverse square law.

However, Mercury is an extended body and so its limb

nearest the Sun experiences a higher gravitational field than

the farther limb. This difference, though minute, is sufficient

to distort the surface shape of the planet. To a first approxi-

mation, we may say that this tidal force raises tw¢ bulges in

the surface, one at the subsolar point and one antipodally

opposite. As Mercury rotates on its axis and moves ahead in

its orbit, the subsolar point moves. The bulges must therefore,

"subside" and reform at the new subsolar point. However, the

material comprising the planet is not perfectly elastic and the

position of the bulges will lag or precede the subsolar point

by a small angle. The Sun's gravitational field exerts a

torque on these bulges since they do not lie along the straight

line connecting the centers of Mercury and the Sun. This torque

acts to slow down or speed up the rotation of the planet.

For a circular orbit, this tidal torque is zero when the

planet spins exactly once per orbit. For a moderately ellipti-

cal orbit such as Mercury's, the equilibrium spin rate is about

1.3 times per orbit for one tidal model (Peale and Gold 1965),

and between 1.0 and 1.5 times per orbit for other models.

A second torque is that of the Sun's gravitational field

acting on the permanent asymmetries in the planet's shape. Mer-
17 -



cury can be modeled by a triaxial ellipsoid, spinning around its

shortest axis. For the Moon, the axes differ in length by about

1 part in 10%, Mercury, a comparably sized body, is probably

similar. An important difference from the tidal torque is that

the asymmetry torque depends not only on the spin rate, but on

the spin phase, as follows.

Define the solar spin phase angle as the spin phase angle

(referred sidereally) minus the true anomaly f (f is the angle

between the vector from Sun to perihelion and the vector from

Sun to planet). Define also the mean motion n=2n/ (orbital

period), the mean anomaly M=n « (time - initial time) and A=

sidereal spin rate. Then the solar spin phase is x - 5.

For a circular orbit and a spin rate Ar=n, that is, once per

orbit, the solar spin phase will be identically zero and the

Sun will appear fixed in position to an observer on the planet's

surface. It is interesting to compute the solar spin phase for

Mercury in its maximally eccentric orbit of e=.24 for two differ-

ent spin states, Y=n (one rotation per orbit) and $=3n/2

(one and a half rotations per orbit):

a3
L3 ,

L35¢

i

1.65n
1.58n
1.35n
1.07n

.72n

.63n

(a/r)
4

2.5
2.1
1.7
1.2

~

(a/r)°

6.0
4.4
2.8
1.4

.5
3

(S)M-£

3°

2ioa0°
gQe°

M-f

170LMa24°
ae

Table 1
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The point f=0° is perihelion. £f is the orbital speed, a

is the semi-major axis and r the distance from the Sun to

Mercury at anomaly f. Models for the tidal and asymmetry

torques (Counselman, 1969) predict they are proportional to

(a/r)°&gt; or (a/r)%; we see here how strong they are at perihelion.

The 3n resonance is well matched to the high orbital speeds

around perihelion -- the phase angle varies only *3° as far

away as 60° from perihelion. Therefore, in the 3n resonance

state, as Mercury is currently, only one face of the planet is

presented to the Sun for a considerable portion of the orbit

near perihelion.

The instantaneous asymmetry torque is proportional to the sine of

twice the solar spin angle. Over one orbit, the asymmetry

torque will therefore average to zero, unless the spin rate is

an integral or half integral multiple of the mean motion (or

very close to such a resonance). In those cases, the averaged

asymmetry torque will be non-zero and will depend on the sine of

2 xthe solar spin angle at perihelion; the latter angle is

called the stroboscopic spin phase.

19



The Long Slowdown

We do not know the rotation period of Mercury four billion

years ago. However, most of the planets now have periods in the

range 10 to 24 hours. Except for Venus and the Earth, whose

spins are affected by the Earth and the Moon, respectively, no

other planet is close enough to a body large enough to perturb

its rotation. (Recall how rapidly applied torque decreases

with distance--by at least the inverse cube.) The Sun can pro-

duce tidal effects large enough to alter Mercury's rotation.

However the Sun's torques will not secularly alter Mercury's

much larger orbital angular momentum. Planetary perturbations

will also not secularly alter Mercury's semi-major axis (Brouwer

and van Woerkom, 1950), and therefore, by Kepler's third law, not

its mean motion n either. Hence, we may guess that Mercury's

rotation period was originally about 20 hours, or 100n. As

almost all the planets do now, it probably rotated counterclock-

wise; it does so now. The original inclination of the spin axis

from the orbit normal is unknown. Today, like most of the other

planets, its inclination is small (&lt; 10°). We picture the tidal

torque as the primary agent in slowing the spin rate from perhaps

100n down to the current 1.5n. As discussed, however, the orbit

period has not changed, and n is a constant. It will be shown

below that the torque decelerates the spin rate by a factor of

1/2 in about 10° orbits. As the slowing spin rate passes

through a resonance rate of ($)n (for k = an integer), the

asymmetry torque could average to a non-zero value and attempt



resonances, the magnitude of the asymmetry torque is far less

than that of the tidal torque (to be shown). Only for spin

rates below about 10n for Mercury (the threshold depends on the

degree of asymmetry and on the eccentricity) is the asymmetry

torque stronger than the tidal torque. However, capture at

spin rate will be shown below to depend on the stroboscopic

phase angle at the time the spin rate passes exactly through the

resonance rate Xn. Since we have no knowledge at all of the

phase angle, we can only compute ranges within which the phase

angle must be for capture to occur; i.e. we may compute the pro-

bability of capture at each resonance rate

21



The Coordinate Systems

Three sets of coordinates are important to torque calcula-

tion--the orbit plane system and two planetary systems. Define

LVN to be the inertial coordinate system, righthanded (N= f.xM)

and orthonormal, as will be all systems that will be used. De-

fine YZ as the orbit plane system, Z the orbit normal and X

pointing to perihelion. Define ijk as a system fixed in the

planet, pointing along the principal axes of inertia (k is the

spin axis). We rotate inertial coordinate axes into orbital

coordinate axes by the usual Euler angles (SL, L, w ) and from

orbjcal to planetary axes by the Euler angles ( Y, e, Ah y (Fig. 2).

Since we will later average out the rapidly changing spin angle

+, we also define the planet-fixed, non-spinning coordinate

axes ak rotated from the X¥7 axes by the Euler angles

( ¢ e), © Hy.

The Torque Equation

For motion under torque as seen from an inertial coordinate

Sy scem d H T

where H is the total angular momentum of the planet, and T

is the Sun's torque on it.

The Angular Momentum

The angular momentum in an inertial coordinate system is

= dm (r+R)x (2% (42)He Jug 8 (Fe
where R is the vector from the center of the sun to the center

of mass of the planet, and r is the vector from the center of
29



mass to the mass particle dm. Since

dan r= 0
is easily shown that

x 0 AR

H= fe (0G +875)
the principal terms of which are

H = C Ak + Mug RF 2
M ph it is the mass of Mercury, £ is the orbital speed,

K the spin axis, and C is the principal moment of inertia.

Many more terms could be included here. On the one hand,

we ignore precession of the orbitplane because it is very small

( 6 &lt; 10 8/0rbit) and on the other hand, we ignore the Chandler

wobble of the spin axis, since it is damped rapidly compared to

the time scales which are considered below. Finally, differen-

Serine db LCA ch [97 +62 +b]ck
um
imi

ee A ¢ 0 cA

CH k £ cy¥Ppnldid - CHEV

(We have used a wellknown theorem about the derivative with time

of a vector defined by Euler angles (Goldstein, 1950) . The or-

bital angular momentum is assumed constant to our degree of

approximation and further neglected terms involve very small

cross—-terms, as @ 6 , etc. The second term is the familiar

precession Pp of the spin axis; it vanishes when G , the axis

inclination from the orbit normal, is zero. The third term con-

cerns the changing tilt, and the first is the deceleration of

the spin.

The precession of the spin axis is due principally to the
 -_ 23=



asymmetry torque. The change of inclination is due principally

to the tidal torque. For a spherical planet in a circular orbit,

it is very easy to show (see Qualitative Estimates, below)

that the rate of change of inclination depends upon a factor

&gt; Nh cos#-n. Thus, for spin rates “¥ of more than 2/cos?

turns per orbit, the inclination will increase. For spin rates

less than this, which includes all rates &lt; 2n, the inclination

will decrease.

The Torque

The force of the Sun on Mercury is the negative of Mercury's

force on the Sun. We compute it therefore by

where R is the vector from planet to Sun and F is the force per

unit mass.

We now define three important vectors; all are given by
AAA

their spherical coordinates in the ijk axes fixed in the planet,

with origin at the planetary center of mass:

R=(R,@, ¢ ) to the Sun.

r" =( c" eg @H ) to an observation point in space

r' _( rt g!, @! ) to a mass element dm' inside the

planet

The planet's shape is distorted tidally by the Sun's

presence besides the permanent asymmetry. The potential per

unit mass felt at r" due to the planet is

J



UR)= =f 3) plasit;wl

se eps

(+
_&amp;

ic? -x!|

Then the torque on the planet is, from the definition of torque

above:
le

where d
V= —

or

{ -

EASES UCITON]J

Re-expressing in terms of the well known operator

L= -4 xy

T = Mo [1 LU, RD] er
Now expand the potential U in terms of the spherical har-

monics Yom , since they are eigenfunctions of L (see Jackson,

1962) :

4, u8) ")&gt; I. (R) Ton (&gt; “ug0)=-3 5.  y - 22UlR

where the inertia coefficients

Ry = tO | IX ¥ pl gp!+) 2441 Dom i ij Yo (8%)agg am

(planet shape depends on R)

and ZR (hm)
Dem = V Fr Tew) 2  Sy



Inserting this expression into the torque formula and

applying operator L to the sphericalharmonics according to well-

known formulae (Jackson):

0 +1

T=35¢ GHo i: |u 2Z z 2 Pa Lo. (R)=1)°A Sg explis¥) Yo mes (®,8) /Dyis

where:
A “1

z — PT M1 ow) [AY
Noa ~imikl, + (AD), + Cree) (LZ) 6,

given in terms of the equatorial, but non-rotating, coordinate
A

axes JAvk; the Kronecker delta symbol is defined by

_ ), s=t
0, = i S#t

This formula for the torque is unsatisfactory for further

calculation until high-frequency terms in it are averaged out.

Specifically, the factor exp (1s) depends upon the quickly

changing spin phase angle "; and both the inertia coefficients

and the spherical harmonics depend upon R, the position vector

of the Sun in its orbit.
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The Inertia Coefficients

First, we give the inertia coefficients in an explicit

form. Following App. D, we split the integral for I, (R) into

two parts: that over the permanent shape of the planet and

that over the tidal distortions. This correspondingly splits

up the torque into the two kinds discussed in the introductory

chapter. Thus:

_ (s 1T, (R= L +L.) (R)
and correspondingly,

T - (1) 0 + T™

Superscript 1 refers to permenent asymmetry, 2 to tidal effects.

The permanent part of the inertia coefficients is, from (D.6)

€ C o

r" = M abit Ot Ono +t 0, L-7¢C Ono E Ow, + 5pC Sur

where the flattening

A
 &gt;»

and the deviation from equatorial circularity

. B-A
f= ==

A, B, and C being the principal moments of inertia. Therefore,

the asymmetry torque (1) depends only on A, B, and C; in fact,

it can be shown to be just

” = Me 1 L V hectlbugt
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where U . 1s MacCullagh's potential for an ellipsoidal planet
MoeCuliagi

(Danby, 1962 and (D.10) below).
+]

Terms past A= 2 are not taken because the factor Ign /R”

in the torque is proportional approximately to the XK'th power

of the ratio of the planetary radius to the distance from the

Sun, which is, of course, quite small. p and Y for the Moon,

a body comparable in size and spin rate to Mercury, are about

10

The computation of the inertia due to the tidal distortions

follows Counselman (1967), who in turn, follows Love's develop-

ment. The Sun is taken to be spherical and its potential expanded

in spherical harmonics around Mercury's center of mass. Following

Love's treatment, the Aen term gives rise to a similar term in

the expansion of the planet's potential, identical except for a

dimensionless multiplicative factor ko , the Love number, a

divisor g, the planet's surface gravity, and a small "lag" angle

of the tidal "bulge" relative to the subsolar point. From eq.

(D.12), the tidal-induced inertia is:

¢ (fw) © oh (¥

I,”(R) = Ca 3, Ti j R 'Y.©,2)/ Bali 00qing

where a is the semimajor axis of

~/ = k, n_
mr

the orbit and

where n is the mean motion = 27/ period of orbit, and «, is the

mean motion of a "rooftop satellite" around the planet, i.e. one

which skims the surface. The ratio n/w, &lt; 1073 for Mercury.

J =



Chapter III. Time Averaging and Elasticity Models

Magnitude of terms. Since the torque equation is

impossible to solve analytically, we shall make several

approximations. It is important therefore to know the

magnitude of our variables.

Variables observed astronomically:

n, the mean motion, is 27/88 day1

e, the eccentricity, is currently .2 and varies from
.12 to .24.

+, the spin rate, is 1l.5n,i.e. 1.5 times per orbit,
or a period of 59 days.

2, the inclination, is probably less than 10° now.

L, the inclination of the orbit, is not relevant here:
it is 7° from the earth's ecliptic.

is 1.2 x 1078n,i.e. a period of 20 million years.

is 2.5 x 1070p,i.e. a period of 100,000 years.

fis -1.3 x 10-6n,i.e. a period of 180,000 years.

&amp;), is 2®/90 min~l, the same as for the Earth.

;

The above values are taken from Allen (1964) or Brouwer

and Van Woerkom (1950).

rl is ky(n/w)2 = 5 x 10"’k, and k, = .3 for the Earth;
so pf = 10—8 for Mercury.

a is 10-4 for the Moon, which is the same diameter
as Mercury, since the density of Mercury is almost
twice that of the Moon, this might be a rough upper
limit. The capture probabilities (for one elasticity
model, at least) depend strongly on £-

~~ for Mercury in hydrostasis, would be approximately
the square of the ratio of the rotation velocity
over the escape velocity.

2



Mercury and Earth have a similar density, the Earth's
flattening is 1/297 and Mercury's spinn+is1/60the
Earth's; 5° Mercury's 7 &gt; 10-6, More likely it is
about 107%, comparable to the axial asymmetry £.

These values are taken from Counselman (1967 and

private communication).

I'ime Averaging

Two important difficulties are now solved by averaging

over a period of many orbits. First, both torques depend

instantaneously upon short term orbital and spin motion.

Secondly, there is no way to try different models for tidal lag

in the tidal inertia coefficients until they are explicitly

made functions of time, rather than implicitly through the

Sun vector R.

Hence we should convert the Sun vector R from dependence

upon spherical coordinates to dependence upon the Keplerian

orbit parameters -- principally a, the semimajor orbit axis,

€, the orbit eccentricity, #, the inclination of the orbit

plane from the equatorial plane, and M, the mean anomaly =

n(t - ty), where t = tg is the time from some starting point.

Along with the conversion of R, the spherical harmonics

must also be changed.

This formidable piece of algebra is accomplished

in Appendices A, B and C. The Hansen functions of the

eccentricity Gypg (©) and the inclination polynomials of the

tilt Emp (8) are defined and derived therein. Combining

Egs. (B. 5) and (C.10): 10



Lo .

oyol = D5 Fuupl® agg (Pi Vopr)
&gt; You (€2)/Ds, a” 1 2 2 of %

where the overall phase angle:

Vem = (L-2p+g) M =m — (R-2F)®

depends on the spin phase angle A and the spin axis precession

angle @.

For order of magnitude estimates, the Fomp (0) are of
order: g Hef for small B and of order 1 for @ near 7/2,

while the G epg €) are of order eldl, since even for Mercury,

the eccentricity e is never more than 0.24, the terms of the

above series decline quite rapidly away from gq = 0.

Next, the lag angles are introduced by writing

[RY (6.8) /0a,] agn = aA 5 Fy (06s fe) exp ( Vn Gage)£3
Many different physical models for tidal inelasticity

may be modeled by altering the lag angles R mpg * However,

one consistency relationship must be satisfied for all models.

Since the tidal bulges lag the subsolar point when the spin

rate Mis less than the orbital rate M = n, and precede it for

the reverse case, the €omp must have the same sign as theAlPgq

compound frequency Vempqg- Inserting our conversion formula

into its equations for torque and for inertia coefficients,

we time average over one orbit:
” i ar

&lt;Th=5f dM T.
In particular, it is necessary to define a new variable,

the stroboscopic spin phase angle £1, for those times when the

spin rate is very nearly a half integer multiple of n. For
Rl -



when it is, then:  exp (—imn=1(12)t), mp = (R-2+§)N

Coo (Nap) &gt;" | 0 otherwise

a is defined as the phase angle Y seen at perihelion, exactly

as discussed above. The rate of change of the stroboscopic

spin angle, wb will be shown below to be quite slow for

large spin aie J ness resonance, so slow that the precession

angle ? will change rapidly compared to ¥ and may therefore

be averaged out. At low spin-rates, such as below 4n for

Mercury, bs will be seen to be comparable to or larger than

so that Pwill be effectively constant during a resonance

passage. The capture probability turns out in fact to be

higher for ¥= 90° than = 0°; that is, capture is more

@
¥

likely when the spin axis has a vector component pointing

90° away from perihelion and from the orbit normal.

Averaged Asymmetry Torque
To make our variables dimensionless, we adopt the

convention that
i. ax _ X

X iM n

and divide the torques by n2c. Then, the asymmetry torque

averaged over one orbit becomes

(1) _ L . A oA ]

oe CT = 5 Fap(®) Gy p26 [ja con (20 + 2 pun (20 20|

S (e) ) NSNz, 3 §,2(p'ep) {Fp (b Pun [29 ~2(p-DF] k +

Fao(8)(Acos m2 + 2 om 2 20554]) |

nl
ey

AY



At high spin rates, when ? also can be averaged out, only

the term for p = 1 survives the second averaging:

i 0 _ CTOs," VRAOG0F - Lg, 10] Fy Damrtl +E, Ofdarh
+ aah]

For reference,

Fos [6) =-Z Aun Zl
F,, (8) = 2 ab

 aia
Coo (e)= (l-eY

1270 :
and G s(e) is of the order &amp; . The 7 term is the2,1,2¢

well-known solar precession torque. The B term vanishes
. . / .

if the spin rate 2 1s not very close to a half integer,

or if B= 0 (the equatorial profile is circular) or if the

eccentricity e of the orbit vanishes. These agree with our

intuitive feel for the asymmetry torque from above. Also,

as noted above, the asymmetry torque depends upon the strobo-

scopic phase angle %. Again note the extreme smallness of the

Izv]
P term for high spin rate, as it is of order €

Averaged Tidal Torque

Similarly, the tidal torque averaged over time is:

ALTO Ss 3 TEX pFE.0G
nee &lt; - Zh : Zz x PP=° go (2m)! 2,Mfs, f mp 2p (€) *

" G, pa (¢ expli €2mpg +12 (f-P) 1] Ams
where Q = gq + 2D - 2p. Further, averaging over ¢ and

rearranging,

22



ne &lt; T? - (1-w)! i 1
WC © Pug ol z. (24m)! Foesg 0) Fag B) [¢, PY (0)] ¥

) A [3,~ (rw) 3w0-3,,)E eos Coup, + [am$, k + ( 5, (tw) (5m) (=D. 1) | As¢, ri

The principal term which affects the spin rate yp! is the R

component. The A component affecting precession is negligible

compared to the ?Y term above, since o&lt;&lt;¢7¥Y . The P component

is the principal term affecting the inclination. We will

ignore the asymmetry v component since passage through

resonance does not permanently affect 8 (as if, for example,

f were captured into a resonance).

Qualitative Changes in Time

Hence, writing explicitly the equations of motion for

variable spin rate Vv, precession angle ¢ and inclination 8:

= (em): I ( ()] 2m pag € —~ PF Cl) An2Y 2, z 3 (zw)! | Fong )Copy, ups, A %

the

©! = 24 2%
Es +(1-€) 1

t od) 2 |

B= z 3 od [Cog] TF, po 18) + (2 3W)0-5)Fy,(61]BorEppe
meq,

OF

From these equations we can get a feel for the behavior

A
w, @ and 6 in time. Since € has the sign of

2mpg

= (LPF) N = mA ~ (2-1 :Via= (T2010) (2-20)¢ &lt; ©
 iHfor large ind Ywill be negative; thus, between resonance values,

/

when the B term averages to zero, v decreases monotonically.
2/
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Since € mp is small, we let sin€ = €. Then ¥' is of the
 in

order w«€é€ which is &lt; 0. The sign of v: changes to positive

for the equilibrium spin rate between 1.0n and 1l.5n as

expected for an elliptical orbit.

As mentioned above, 0 is positive for spin rates

higher than about 3n, and negative below this. In the long

deceleration from an assumed primeval spin rate of perhaps

100n (i.e. a rotation period of 20 hours), the inclination

increased; numerical integration will show that it can

increase to a maximum near 60° at 3n, for almost any small

initial inclination. As the spin rate drops below 3n, the

inclination rapidly decreases again. However, since the

inclination may well have been large for the spin rate in

the critical region of 3n to 1l.5n, we must examine the incli-

nation's effect on capture probabilities.

© is always positive and varies mainly with the spin

rate. The precession of the spin axis around the orbit

normal is therefore fairly steady.

Models for Phase Lag

The quality factor Q (not to be confused with subscript

J above) for a sinusoidally stressed elastic system is defined:

A - zu Emax
AF

where E ax is the peak stored elastic energy and AE is the

energy dissipated per cycle of the strain oscillation. The

larger the quality factor, the more elastic the system is.
RR



In linear systems, the response to a sinusoidal driving

force is sinusoidal with a phase lag angle independent of the

driving amplitude but dependent, in general, upon the driving

frequency. This phase lag angle € is related to the Q of

{the system by Ga c - 3

In general, Q is a function of frequency for a linear

system. For a nearly-elastic, high Q system with slight viscous

velocity damping, Q is inversely proportional to frequency,

so that € is proportional to frequency. This behavior of ¢

vs. frequency corresponds to constant time lag of the response

with respect to the driving force. Such a model is

the viscous model:

1)

SE
tau Sqmpg, Tg i Vang, = 2 { Lrg —mp = (42p)¢]

Another linear phase-lag model that should be considered

is one for which Q and € are independent of frequency.

Q has been measured for many terrestrial rocks over

a wide range of driving frequencies (Knopoff &amp; MacDonald,

1960). From about 10-2Hz to over 108uz for most rocks, Q

is more or less constant, with about a logarithmic decrease

for increasing frequency. Although this is suggestive, for

the extremely low frequencies encountered in celestial torques

(L0~®%Hz for Mercury), we must resort to theoretical justifica-

tion based on models of inelastic mechanisms (Knopoff &amp;

MacDonald, 1960; Lomnitz, 1957). They suggest that the

constant Q approximation is true even at these low frequencies.

2
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Following Lomnitz, we define a model in which Q, and

hence ¢&amp;, depends only on the sign of the driving frequency*;

such a model is 2) the step model:

Loa RPTon Gg © 7 = oA Vougy) = A [ R-2ptq mm! (12) €]

More important than the general shape of Q vs. frequency

is how the phase lag changes direction when the sign of the

driving frequency changes. For in the equations above on p, 33

for the tidal torque, the driving frequency is v' pg mpa’ whose

magnitude is largely determined by the subscript g. Since g

is the multiplier for the overtone of the basic orbital

frequency, it can grow indefinitely large. However, the factor

[G gp (©) 1° in the tidal torque formula decreases rapidly for

lq large. Furthermore, we saw that the phenomenon of capture

depends strongly on the component of the tidal torque that

changes sign with Ny, that is, the term in the series for which

the compound driving frequency Vp PY is 0 at the particular

resonance.

From Goldreich &amp; Soter (1966), Q for Mercury is no more

than 190 and is probably not much smaller. Hence the phase

lag is small and we may approximate the tang and sin€ by €.

*Strictly speaking, Q is unsigned and is what we call here Q_-
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Chapter IV. Resonance Capture

As the spin rate passes from just above a half-integral

multiple of n to just below, the P asymmetry torque term
“

in P averages to a non-zero value and begins to affect the

spin rate. Since it is proportional to the sine of the

stroboscopic spin angle +, and so is typically much larger

(FZ) in magnitude than the A tidal torque term, the equation

for + becomes just the equation of motion of a two headed

pendulum with frictional pivot.

To make this clear, take a series of stroboscopic

"photographs" of the planet as it passes through perihelion on

successive orbits. We assume the tilt is zero, that we are

over the north pole, and that the Sun is at the bottom of

figure 2.

The rotation is counterclockwise and the spin rate is

just above the resonance rate; i.e.

A&gt; En

so the stroboscopic rate

Nn 5 np -Ln zo
nn

It is clear that in figures 2a and 2e, the Sun is exerting

a counterclockwise asymmetry torque to speed up the rotation;

in figure 2c it is slowing the rotation and in fiqures

and 2d, there is no torque.

2b

However, the tidal torque, though much weaker, is

always opposing the rotation. More precisely, overall it has

the sign of 2Q



- kw) in - mY\ = (2 -pty- 2V imps,
which is the sum of two subtorques, the first with constant

negative sign, and the second with sign opposite to ».,

the speed of the stroboscopic phase angle.

The planet as seen stroboscopically will turn around

and around for perhaps hundreds or thousands of orbits until

the stroboscopic spin rate is just barely positive. The

planet will then make one last turn and the asymmetry torque,

acting like a friction pivot will bring the planet to a halt

as in figure 2c or 2d. Now Ya turns negative and the planet

will follow either figure 3 or 4.

As shown in figure 3, the end of the planet "rolls

back down the hill" and over the top on the left side and

escapes. Now hr can only speed up in the negative direction,

with the tidal torque acting mainly as a negative force.

However, as mentioned above, the tidal torque for $ &lt;o

has a smaller magnitude than for Ah SD. By conservation of

energy alone, the planet would "roll" from figure 4a to only

figure 4c, symmetrically opposite the Sun-center line.

The tidal torque, acting clockwise pushes the planet to 4d,

which however is not over the "lip of the hill". The planet

then rolls back as in figures 4d-g and repeats figure 4

endlessly (or rather with gradually decreasing amplitude, like

a pendulum coming to rest). This is called resonance capture

and figure 4 exhibits libration. 30



The difference between resonance capture and escape is

thus seen to be the value of Ay at the exact instant that

Y. = 0. In figure 3a, 4 is seen to be high enough on the

right so that the roll back is to an equally high point on

the left. The tidal torque then can push the planet over

the edge.

Hence, the probability of capture is related to

that range of “f, on either side of #4 = 0 within which the

planet may stop when 04 = 0 and be captured.

Capture Probability
While turning through an angle of 7 on the last forward

roll, the planet loses a certain amount of its rotational

kinetic energy to the tidal dissipation. There is a maximum

energy E__. that can be dissipated in a roll from B= -T72

to M/2. Thus, the planet can have no more than Ej, energy

at the beginning of the last roll or else it will roll further

than “ = T/2 and this will not be the last roll after all.

If on entering the last roll, the planet has § energy

where 3 is much smaller than —— the maximum roll forward

will be to only a little farther than 4=0 and capture will

occur, as in figure 4a. There is a maximum value ¥ that

the planet can enter the last roll with and still be captured.

Since the actual energy 5 the planet will have is

random, though it must be less than E___. and since only if

if is less than YY will capture occur, it is reasonable to

AD



define the capture probability as (Counselman, 1967)

Paitin, = Snax
Ewag u :In the equation for AN, replace the tidal torque term

OY

Al T+ Th]
/

where Tj(+) has the same sign as Y . Then

. 4 u :nk = w - x [T.tT, (+))] ~ P Faux (8) CS (€) Aun 1,

Integrating,
I - gs

Lp't ZBpo(0), old catty = [a [To+T, (4]] 4%
that is, the kinetic plus the potential energy equals a constant

which decreases slowly as W increases.

On the last roll, the right-hand side is virtually £

and a good approximation to the motion is:

{ . ily

Yo = [BF (6) Goppwl@] con¥s
We see that the magnitude of the right-hand side, which

is the speed of the stroboscopic phase when the spin rate

is near a resonance, is large for small spin rates and small

for large rates.

The motion of the planet in the last roll may be

seen in figure 5, a phase space diagram of wn versus the

"kinetic energy" 2,
 qs ya A

The periodic variations 1n tare caused by

P F.,(8) Go zpil)cali:
while the slope, greatly exaggerated, is the loss to the

tidal torque

x [T+ Th)] 41



The decrease in energy on the last roll, from 4 = -772

to W/2, is just the E discussed above:

Th - . /

Fon = 4 [Tt TOHR)] 4,
The maximum energy o that the planet can have

is the energy dissipated on the forward part of the last roll

less the energy gained on the reverse roll:

re Fle
N — . / -— . 2! MyFee™ Emap ~ JyALTATW] at = 20 Tn]

Performing the integrations using the approximation for

¥,' given on p.41, we find the probability coefficients for

the two models are:

Fits”

Veaptin

2 zmBos,
 TF le-p)i-9) +9)Z bug[" #0 3

heir

3 Boge pn [1-0)= 4+ Mm JB FG |
mPa

24 mig2pB., "8.2 2,

for the viscous
model

for the step
model

where the resonance is at WY =k, and the abbreviations
“2,

- (2-w)! . 2

Bmp, m (72+w)! L Famg (0) 6, 79]

- 42



JPFG = JPR (06 10
(BFro (8621, pl®) # not averaged out

—— —_

The probability capture formula may be written in the

following form:

p = ~25

capture T,.
 nN

where S is the sum of all the terms in the k component of the tidal

torque which change sign at this resonance, and T. is the total

value of the tidal torque at a spin rate just higher than the

resonance value. This formula is very useful for the qualitative

estimates that we make in the next section,

For reference, we give a short table of the Fomp functions

needed in the probability formulas (cf. table B.1):

: - ?

Fl (8) 5 (14028) 2.0
Faro (0) = 3 (1+ wef)

Fo (8) = 2 pt

Note that the probability of capture is directly proportional

to VB for the viscous model; that is, for this model, larger equa-

torial asymmetry means higher likelihood of capture.

4



Chapter V Discussion of Results

Qualitative Estimates

Before examining the computer-produced graphs of spin

evolution and resonance capture probabilities, let us make

"back of the envelope" qualitative estimates of the torques.

The tidal torque may be modelled as the torque exerted

by the tidal bulges on the Sun. The bulges are approximately

at the subsolar and antipodal points on the planet. For

simplicity, let the planet be spherical and the orbit be

circular.

7\

Let r(t) be the unit vector from the Sun to the center

N\

of the planet and R(t) the unit vector from the Sun to the

center of the planet to the subsolar bulge. At time tor let

there be no bulges. Then R (ty) = -T(tg) The tidal bulges

then appear instantaneously. A very short time later, at t,

tg +-t', the bulges have been carried with the planet in two

directions: along the orbital plane an angular distance Yen,

and along the equatorial plane an angular distance A(t").

214) = Tidal + DxP()eind

R(t) = R (0) wer + ExR)AmA + £.R(t)k (1- coo)

The gravitational attraction of the sunward bulge for the

sun is proportional to
A

c v(t)+R(D)
y

while that of the antipodal bulge is

1,



F fs -Rt)
(r+ 2R)”

Hence the torque of the bulges on the Sun is given

proportionally bv

t f do | { ) i

Averaging over one orbit to eliminate t, and IE

ls ) 14 gga 2 pad (met)ty = — Kk [ pw (20) (122) + com ‘a

2 inn 4 pumas pred = e009 (1=C0) 2|—

D pn6ponscroBE=pa§(22)]
The viscous model above predicts that A(t'):++ and Stn)=nt,

where t' is the displacement in time of the lagging bulges.
The k component gives the spin deceleration

’ - r {y~ t

Nw (pen) (11) n {rwsb)

 NA
while the ¥ component gives the tilt rate

0 « —punl [Apt —n]

The asymmetry torque must be modelled on a non-spherical

planet in an elliptical orbit. By averaging the torque

pictorially, the main characteristics are brought out. Fig.

2 showstheplanetinseveralcharacteristicorientations.

In Fig. 2b and 2d, the instantaneous torque is positive, since

it will cause a counterclockwise motion. In Fig. 2c, the

instantaneous torque is negative.

In Fig. 6, the planet is turning through one complete

orbit at a rate of exactly 3n. At perihelion, the stroboscopic

AL



phase angle is set to zero. The orbit is divided into

sectors of positive and negative instantaneous torque, as

indicated by the arrow marking one end of the ellipsoidal

planet. The spin axis is perpendicular to the orbital plane.

It is clearly seen that the averaged asymmetry torque over

one orbit is zero when the stroboscopic phase angle at peri-

helion is zero.

In Fig. 7, the stroboscopic phase at perihelion is set

slightly negative (using the angle convention of Fig. 2).

The narrow sector of positive torque at perihelion is sufficient

to make the orbit-averaged torque also positive, since the

torque is so strong at perihelion (Table 1).

To determine the effects of axis tilt, we project the

arrow representing the planet's longest axis onto the orbital

plane. When the tilt is zero, this arrow turns at a constant

rate, as in Fig. 6 and 7. When the spin axis is tilted, the

head of the arrow no longer traces a circle in the orbital

plane, but an ellipse. Fig. 8a shows the path when the spin

axis is perpendicular to the paper, Fig.8b when it is tilted

downward.

The projected phase angle is
. —- I

4 pgatf = @P co [1-put0cath]
where (J is the tilt. Then the derivatives

Vougdd 64 0 [1-002 cet]= [ 21, moaT
[&lt;i Az Tn 3z

-
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Thus if the spin axis is tilted toward the Sun in

Fig. 7, the projected phase angle moves more quickly than for no

inclination, the sector of positive torque is narrowed and

the averaged torque decreases. The averaged torque increases

if the spin axis points perpendicularly to the Sun-perihelion

vector. Compare with the equations on p.32-3 where ¢ is the

precession angle just discussed

Evolution by numerical integration.

Since the equations of motion of our model (p.34) are

impossible to solve analytically, even with the simplifications

we have made, we shall integrate them numerically. We shall

gain a physical feel for our results if we first present plots

of the averaged tidal torque, as a function of axis inclination

6 ana spin rate VY.

Fig. 9 presents the 9 and % .components of the averaged

tidal torque for the*viscous elasticity model. The components

are called T, and Ty» respectively; the first causes change in

b, and the second causes change in the spin rate +. We do not

show the m component of the tidal torque, because it is much

smaller than the corresponding component of the permanent asym-

metry torque. The i component causes change in ¢; since the

asymmetry torque a component dominates its differential equation,

the result is a steady increase in ¢, i.e., a steady precession

of the spin axis around the orbit normal axis. Although the

rate of precession varies somewhat with the inclination angle

3 7



and spin rate, it is of minor importance to the spin-orbit

resonance. We shall not discuss it further,

The component Ty (Fig, 9b) crosses through zero at the

spin rate t= 1.00n for 0 = 0°, and at 1,29n for the other values

of @. This is the spin rate below which the tidal torque cannot

drive ¥, If the asymmetry torque did not capture the spin rate

into a resonance, the spin rate would settle at the rate where

the averaged k component of tidal torque is zero. Ty is large

for large spin rate; since it is also negative, we should expect

a very rapid decrease in spin rate with time using the viscous

model. This is equivalent to the equation for Pon p.45.

The component T, also crosses the zero axis (Fig. 9a). This

will cause a change in the sign of 6. For example, a inclination

of 30° will increase if the spin rate is more than 2.9n, and dec-

rease if the spin rate is less than 2.9n. This is in accord

with the qualitative estimate of the differential equation for

p on p.45. Further, since the asymmetry torque is an odd function

of the inclination (i.,e., it changes sign with 8; see p.33),

§ = 0° is an equilibrium point.

Fig, 10 displays the T, and T, components for the averaged

tidal torque, step model, The Ty component crosses the axis

at a spin rate of 1.0n for all inclinations and tends to a

maximal negative value for large spin rates. This is clear from

the equation for averaged tidal torque on p.34; essentially, Ty

is a sum of terms each of which is proportional to Sin €pnng’

i.e., to oy — But these phase shifts are all of equal magnitude
£1{



in the step model, and the coefficients of the series, Gopg (er

decrease rapidly with increasing spin rate, i.e., increasing q.

Thus, the sum of terms comprising T, at large spin rates tends to

a maximal negative value, As a result, the spin rate will

decrease only slowly when it is large, but rapidly when it is

small, as Ty is still substantially negative there.

In Fig. 11, spin rate is integrated numerically through

time from various initial conditions, It is plotted against

time (the dots are regularly spaced through time) and against

the inclination angle, which was also numerically integrated,

The equations on p, 34 were used. As predicted for the viscous

model, spin rate decreases rapidly, exponentially in fact.

However, the spin rate decreases only slowly when it is small

(less than about 3n). Passage through resonance has been ignored

in drawing these curves, for if capture does not occur, the

asymmetry torque will cause no other secular change in either

spin rate or inclination.

Fig. 12 shows the numerical integration of spin rate and

inclination versus time for the step model. Again, predictions

are borne out, for the spin rate drops slowly when it is large

and rapidly when it is small.

For both elasticity models and for a wide range of initial

conditions (of which those plotted are typical), it is seen that

the inclination angle increases to a maximum of about 40° to 70°

when the spin rate decreases to about 3n.
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Resonance Capture Probabilities

Fig. 13 presents the capture probabilities at the four

lowest resonances above equilibrium, The viscous model is

used; the asymmetry parameter p = 1074, All the probabilities

are low, none greater than 0,12, However, on p, 42, the

probability of capture for the viscous model is seen to depend

on the square root of . Hence, the more asymmetric Mercury is,

the higher the probabilities of capture. At these low-numbered

resonances, the stroboscopic spin rate Vis much larger than

the precession rate  , so that passage through the resonance

zone takes place at a fixed value of ?, ¥ = 90° probabilities

(spin axis is perpendicular to:the Sun-perihelion vector) are

higher than ¢ = 0° probabilities (spin axis has a component

pointing to perihelion), but never by more than 0.30, Also,

the effect of increasing inclination on probability is always

to decrease it.

From the formula P = 28/T,. on p. 43, we readily may under-

stand the reason for the small probability values, The component

Ty that affects spin rate changes continuously with spin rate

through the resonance. Therefore, we should expect the numerator S

of the probability fraction above to be quite small, In fact, it

is nonzero only because the stroboscopic spin rate di is not

zero during resonance passage. Further, from the simple, quali-

tative equation for a on p. 45, we see that the tidal torque

component Ty decreases with increasing inclination 6 , and hence

so does the capture probability.
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The picture presented by Fig, 14, the step model probabilities,

is quite different. The probabilities are much larger, though

they are also independent of p- ¢ = 90° can increase the proba-

bility of capture by as much as 0,60 over the @= 0° proba-

bilities. Finally, with only one exception, increased inclination

decreases probabilities in odd-numbered (half-integer) resonances,

but increases them in even-numbered resonances; the

probabilities increase to a maximum for the inclination near 60°

Again, the formula P = 25/T makes this clear. For, the

step model torque changes discontinuously when the spin rate

passes through a resonance value. Hence the numerator S will

be large, especially at low-numbered resonances, where the

coefficients Cypg of the torque terms are large. To determine

the effect of inclination upon capture probability, we must look

for the dominant term among the several that change sign at

the resonance value, Clearly, it is the term with the largest

elal, where e is the eccentricity of Mercury's orbit, From

(C.15), this is the term with Gypg &amp;) for the smallest g. Since,

for small inclination 0 (less than about 60°), the inclination

polynomials Fomp (7) are of the order of | 2-2p-ml (Table B.l).

Finally, the time averaging has elided all terms except those

for which (4p-4-2g)/m is an integer, the number of the resonance.

The conclusion is that for odd-numbered resonances, the term

F220%20q dominates; this term decreases with inclination, For

even-numbered resonances, Fy10%20q dominates; this term increases

with inclination, reaching a maximum at about 60°
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This phenomenon raises the interesting question of why

Mercury's spin rate was not trapped at 3n or 2n, since Fig. 12

shows that an inclination of 50° or so is not unlikely at these

spin rates, Fig, 14 shows a cumulative probability of perhaps

0.70 into a spin rate higher than the 3n spin rate, Since this

did not occur, this is an argument against the likelihood of the

step elasticity model.

Finally, we note the anomalous increase of probability with

inclination for ¢ = 90° at spin rate 1.5n, However, the pro-

babilities of capture are so large at 1,.5n that capture here

is virtually certain anyway.
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Appendix A. The Wigner Rotation Coefficients

Define the Wigner rotation coef ficienc FLYio -ions by

Wigner, 1959)

A. 3 :

D°, (a, B,y] = eTHOFIVY I&lt; Se r/A TOE 2 PRY (y (8), "AT )

where we define the reduced Wigner function by an infinite

series

-
1)

(8) = {sin(B8/2)}""{cos(g/2)YHx

T (vik) 1{-sin® (8/2) 1
 LORTR)TET

(AL J

For our purposes of definition, we shall define the angle

triplet (oBy) to be the three Euler angles that rotate a right-

handed coordinate system into another right-handed coordinate system.

The Euler angle convention will be that used in celestial mechanics;

although Wigner used a left-handed coordinate system and the

quantum mechanical convention for Euler angles, we have converted

his function to be consistent with our convention. Specifically,

rotate by a around the z axis, by 8 around the new x axis, and by

y around the new z axis. When this rotation is followed by a second

Euler rotation (deg), the composition of two rotations is equivalent

to a single rotation, defined as (n6i). The Wigner functions faith-

fully reflect this composition property; as will be proved below:

A Yoo ov A, Tod rs |

Ds (n,0,1) Lo Dc (0rBrvID (8 r€,C) '~
(A3)



The Wigner functions are said to form a "representation of the

rotation group".

l.Definition (A2) for PV (8) is non-infinite for A+v&gt;0; we

shall assume that this and A+u&gt;0 are true. Here is a short table.

The abbreviations c = cos (8/2) and s = sin(B/2) are used.

00 _ ..
PI = 1;

1/2,1/2 _ -1/2,1/2 _ _,
P12 = Cc, P12 = gS:

p00 = CcosR, p01 = sinR, pll = l1+cosRB;
1 1 1

1/2,1/2 _ 3_ 1/2,3/2 _ 2 3/2,3/2 _ 3.
P35 = 6c -4c, P39 = 6sc , P32 = 6C;

p90 = (3cos?8-1)/2, PJ! = 3sinBeos8, PZ = 3sin’s,

pl = 3(2cos’B+cosp-1), PL° = 6sing (l+cosB), p2% = 6(1+cosB)”.
2.Rewriting (A2) in terms of the hypergeometric function,

SRY) __V=u _v+yu (A+V)! _ _ 2
r, (B) = s c T= T=T F(V=A,Vv+A+l,v=-u+l,s7). (Ada)

This hypergeometric series by itself is called a Jacobi polynomial in

cosB (Erdélyi et al., 1953). As it is one of the classical ortho-

gonal polynomials, it possesses the usual second order differential

equation, three term recursion relations, etc., all of which the

Wigner functions inherit.

3.From (A2) we have immediately P

PRY (-8) = (-1)VTFRYV(8),
pV (2148) = (-1)2VhV (8).
For 2v an integer.

(0) = S Ny (A+) 1/(A=v) !,

(A+v+k)1/(A=v=k)!=(A+v+k)(A+v+k-1)...(A-v-k+1)

and changes by (-1)2V when A &gt; -A-1; we have from (A2)

HV _ f_1y2V HV
PTy_1(B) = (-1)""P" 7" (B).

(A4Db)

(Adc)

(A434)

(Bde)
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When u-v is an integer, we may set k &gt; k+p-v in (A2)and get

PAV) = (FYE (8).
Otherwise, the two functions are linearly independent, from the

theory of the hypergeometric function. See also (A9). However,

F(a,b,c,z) = (1-2) "27Pp (c-a,c-b,c, 2)

{Erdélyi, 1953), so for all A,u,v, from (Al) and (Al),

p* (0,8,0) = 0,8,0).
fob AS ye for j an integer,

(A5)

(AG)

(a/a(s2)13(stWV)”
u=v ) |] PUY (8) } sum) 3mm CDR)i, ny (A7)

pH IV (pg)

5.For t a dummy parameter, we may sum over (A2) ; interchanging {%

and k summations and using the binomial theorem:

© 2.0v _ v 5 (k+2v)!, 2. .k,,_.y"2v-2k-1

Lo tp, (8B) = (sc) Lo Ter Tkrs BTA t)

se the duplication formula (2z)! = 22%z1(z-1/2)1/(-1/2)!

1953) and sum again binomially

(Erdélyi ’

= (2sing) Vkv-1/2)1/(1/2)1][1+t*-2tcosB]
By (A25) then, this is a Gegenbauer function:

POY (8) = (2sin8)” Kv-1/2)1/(-1/2)11cf”?(cosh).
Combining (A8), (A25), (A26), (Ab) and (A7), we have

 3 eer = oH 0080) - (2) Crntnan VASE. a0

-v=-1/2

Cy

6. Further properties are more easily obtained from a generating

function. From now on, we assume that A+u is a nonnegative integer.

summing (A2) binomially with dummy parameter u (&lt;min (|s/c|,|c/s|) for

~ohvergence ) r
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I PV ann = (stew) MV (cms)MTV(oo)
H==A

7.5et v &gt;» =v and B +» m+B in (Al0); we have (cf. (A9) for general X ,u)

PV (reg) = (~1)MVL(-v)17(ev)1TREY(8).
Hence 0 \ J

BU (r+g) = (DBR).

8.Set v=0 and B=7m/2 in (Al0); expanding by the binomial theorem,
Ka=X . — : .

PHO (1/2) _ {¢ 1)72 (2k) 1/ [kt (A=k) I], if A+pu=2k, an even integer; a,
0, otherwise.

More generally, PY (n/2) is called a Cauchy number (Plummer,

9.Rewriting (Al0),
z A+
I Pent amr =

===
(1+cosg-using) *"V/ (A-v) !

This is of the form f(x-h) for x = cosB and h = usinf. Expanding by

Taylor's theorem and equating coefficients of oR, we have a

Rodrigues' formula:

(1-cosg) ~V (a/dcos8)“THI(1-cosp)MV
(1+cosB) *~V1/ (A=v) ! (A13)

For v=0, this is the associated Legendre function (Erdélyi,1953)

uo - Pi
Py” (B) = P, (cosB)

and the spherical harmonic

A _ 1/2

Dg (arBrY) = [47/ (2A+1) ] Yy, (Bra).

Inserting (Al3) and integrating by parts repeatedly, we have

the orthogonality relation (* means complex conjugate) (AL5a)Alba
2 +1 21 A AT 2

J§Tdaft1acoss gay DI (aBY)D]%,(aBy)=[8T°/(2A+1)18,,,618,
10. To prove the fundamental property (A3) we introduce the Cayley-

Klein matrix (Goldstein, 1950)
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cos (B/2)expli(a+y)/2] isin(B/2)expli(y-a)/2]
Q(aBy) =

” isin(B/2)expli(a-v)/2] cos(B/2)expli(~a-Y)/2]

Then for the Euler rotation xyz + x'y'z', the transformation of

coordinates is specified by

\ x'-iy'x'+1 -rivr a = 0 . x-iyx+iy -2 or

where Qt is the conjugate transpose of Q. For the composition of

rotations mentioned above (A3) ,therefore, the corresponding matrices obey

Q(né1) = Q(8eg)Q(aBy).
From (Al0), letting u = an C = cos(86/2), S = sin (6/2),

y PEV (8) HHI (a4) | _ [sel (1-M)/2 + cet (MH1)/272+y
u==2 cel (-n-1)/2 _ gel (N=1)/290=v 3 yi

Substitute for (ni) from (Al6). Use the abbreviations u = el, Vv = ot

c = cos(B/2), s = sin(B/2), u' = eld, v'! = elt, c' = cos (e/2)

and s' = sin (e/2). Substituting and rearranging slightly,

tava) “MV (e-su) 2M ste tut (etcal / (oan) 1 HT

[c'-s'u'v(s+cu) / (c-su) 1 7V/ (A=) !

which by (Al0)
Tv” evAs VI =A ;Lo (AK)! Pyle) uv Vo (s+cu)MT(cmsw)Aor

Expanding the bracketed expression by (Al0)

7 (A-k)! (u'v) Kv Y PY(6) Cut pMK (go)
« w=—y FE) AOE EMT Ta

, M=

In the limit of small angles, n+a. Hence, we may identify coefficients

of corresponding powers of e!M and e'® = u. We obtain (A3).

Proofs of (A3) or equivalent identities are numerous. Schwinger

(1952) uses generating functions, as we do. Wigner (1959) and

Herglotz (Erdélyi, 1953) use the theory of the rotation group;

Jeffreys (1965) and Timoshkova (1973) abbreviate such arguments.
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Satd (1950), Kaula (1961), Brumberg (1967) and Challe &amp; Laclaverie

(1969) utilize elementary algebra, but only Brumberg finds as

simple a form for pL as (22). Finally, Morse &amp; Feshbach (1953)

and Landau &amp; Lifshitz (1958) derive pb as the solution to certain

differential equations, but do not give (A3). Kaula's inclination

polynomials, as redefined in Gooding (1971) are

Pomp (8) = 17274 22070 Ory) ETEGg)
ll.Let r = (sinbcos¢,sinbsin¢,cos6). (0,-6,-¢-m/2) rotates r

into the z axis. Similarly, (¢'+n/2,6',0) rotates the z axis into r'.

Alternately, r can be rotated directly into r' by some (aBY)

where B is the angle between r and r'. Let u=v=0 in (A3)in this case

and we have proved the well known Legendre addition theorem for

spherical harmonics (Erdélyi, 1953):
2

== * 1 1P, (cosB) [4w/ (22+1)] Lo Yi, (8,0)Y,, (0 rd).

Similarly, rotate coordinates xyz -+ x'y'z' by (aBy). The z

axis may be rotated into a vector r by (¢+1/2,6,0); analogously,

rotate the z' axis into the same r by some (¢'+n/2,6',0). By (A3)and

(Al15), the transformation of a spherical harmonic as seen from a

rotated coordinate system is (Wigner, 1959)
A

_ LK=U A ' '

Yy, (8/9) Lo i" "py (aBy) Y, (8',07).
Thisclose connection of transformation coefficients and transformable

Functions is the cornerstone of Wigner's elegant theory of special

functions.

12.A simple convolution identity is obtained by multiplying

‘A10) by (Al0) with A-»L-)A and v»N-v. The result is again of the

form (Al0); identifying coefficients of u:

al



L-N MN A
(EN pMNp) = L+M=v © = 1 i BeLo, Ghd Rte pr HV (g).

More elaborate identities involve the vector coupling (Clebsch-Gordan)

coefficients (Schwinger, 1952 and Edmonds, 1957).

13.Recurrence relations are most easily derived from a more

compact generating function. Summing (Al0) binomially with parameters

t and v,
A

y HV 2A A+u_A+v

A= 20 2D NE PRY)£2 THAT L(tvy1]=7, (ALT)
where

w = t[c(l+uv)+s(v-u)l].

We thus restrict A+u and A+v to be integers, although many of the

recurrence relations will be true more generally.

By definition of w,

id (9/93V) eV = (cu+s) eV; (Al18)

insert (Al7) into (Al8), perform the differentiation, and equate

coefficients of t,u,v on each side:

pit 2s vtl/2 = c(r+u+1)p + spHtlev.
Interchange yp and v, use (A5) and subtract from (Al9)

c(u=v)P}" + s (pr Vt + phtle, = 0.

Let v+-v, use (All) and eliminate common terms with

result is a recursion in v alone:

pls VF + [2(u-vcosB)/singlP}" + (A+v) (A-v+1) pH VTL = 0.

From (A2), pi* = AHA 20) 1 (=) and pHrAtl = (0 start the recursion.

and get

Insert (Al7) into

eZ (a/0u) [t(5/3t)-v(3/3v)] &amp;" = [v - s/t - s(3/03t)]
W

e

a9



(A=v+1) RET rY " (A+v+1) PR TLAY - (21+2) sph 1/2/02,
Eliminate the common term with (Al9) to get

(A-v+1) PETTY - [v+(A+1)cosg]ptTtrY + (A+1) (A+u+l)singPi” = 0. (A22)

Finally, let A &gt; -A-1, use (Ade), eliminate the pb term using (A22)

and set pup »&gt;u-1 to get a recursion in A alone:

A(A-u+1) (A-v+1) PLY) + (2041) [uv-A (A+1) cosp] Ph”

+ (+1) (+) (+) PRY = 0.

This is Gooding's recursion (1971, eq. 18) since his function

Am (8) = [(2-n)1/(2+n)!] cr” mon Py (8) (CDRH my 1 (amy 1 mem

Allan's two recursions (in Gooding's paper) are just the

-i 0

Jae

reduplication of (Al19) and the same with Vv +» =v.

14.Finally, we derive a differential equation for our functions

by inserting (A7) into (A2l1): (224)

[(a2/ag?) + cotB(d/aB) + A(A+1) + (2uvcosg-u®-v?)/sin®g1PtY(8)=0.

15. For completeness, here are two useful expansions. The

Gegenbauer polynomials are defined by

[1+x°-2x cose] 2 = J x*c{/2) (cose),
2=0

convergent for |x|&lt;l; while a particular expansion for n=2 is

[1+x%-2x cose] t= J x% sin(&amp;+1)9
2=0 sinb

2asily proved by noting that both sides are equal

1
Imag{ {1x exp (10) 1x stool

(A25)

(AZ6)
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Appendix B. Spherical Harmonics Xy. ” and Inclination Polynomials Fy op

The spherical harmonic Y (0,9) is defined by

81) You (6,4) = D,., explim®) B (6)

(ALD) aa

where the normalization factor is

= [2&amp;0 few)
82) Dem = VET Gry

In our formulas for the torque of the Sun on Mercury, we

have the spherical harmonic Yon (©:2), where the angles are the

spherical coordinates of the planet-Sun vector as seen from the

A

$k, planet fixed coordinate system. We wish to express these

spherical harmonic functions in terms of Yyn!@  £), where the

angles are the spherical coordinates of the planet-Sun vector as

seen from the %¥Z, orbit fixed coordinate system. Since the

planet-Sun vector lies in the xy plane at all times, this being

the orbit plane, at an angle of f£ (the true anomaly) from the

X axis, it is clear that the spherical coordinates of the planet-

Sun vector in the X52 system are (3/£)

The %yZ coordinate system is rotated into the {5k system

by the Euler angles (een; therefore, the £3% system is rotated

into the vz system by the inverse rotation, Euler angles (-7

-0,-¢). We now insert these angles into formula (Al6a), which

expresses the spherical harmonic functions at a point seen from

one coordinate system in terms of the spherical harmonics as

seen from another system:

AA



x - fim n’ (-+,-6-9) Yor (%, £)vo 7° i(B3) om (@,2) = z

Pivide both sides of (B3) by the normalizing factor D, from

(B2) and substitute the definition of the Wigner rotation coef-

ficient D. from (Al) and the definition of Yok from (Bl):

(B4) Y ( }2a @, £)/D = 1 kw (2-1)! mic koHo 2 ai Fe (-6)P,(XE)expL ik(F-0)- tw]
Equation (Al2) says that By? (7/2) is zero unless {+k is even.

Define a new index of summation p by setting k = {-2p. Substitute

into (B4) with equations (24b) and (Al2) to simplify it. We

obtain

R
(B5) ® = yim :

Yom (®,2)/D,., z 1 Fog (8) expli(t-2p)c4-p)-mw]

where we have defined the inclination polynomial Fo mp

(2p)! m R-2p
B6) = — P,° (6(86)  F,,.( Foie )

by

For reference, here is a table of all these functions, computed

from the definitions.

2 mp Dy mo Yom (9:9) Doro Fomp (8)

0 0 0 y=

0 0%
1 0 ]

1 0 [2gm

1 RE 1

2 0 0 JZ
J 0 1

aa E

iy
aml 2

! (3620-1)

 LL

i pmb
—- 1=Amb

+ (1+web)

£ (1-6)
z Ath
+ (3628-1)

ar



Rm p Dy Yom ® A@L/Dy Fp 01

2 Q 2 AwB

% amb (14 ab)
"2 An © cos ©

2 pmb (wat)

3 (Head)

3pi

3 (1- 28)"

Table Bl
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Appendix C. Hansen Functions 8 poate

Definition. The Hansen function Ln (e) is defined as

a Fourier coefficient:

m - mn .
r . —(C.1) (£) expl int) -— 2 Xi. (e) exp(1kM)

Ke ~6o
for r the radius, a the semi-major axis, e the eccentricity,

f the true anomaly, and M the mean anomaly in the orbit.

Hence -
mn [ ~M «Lc

c.2)y X, (€)= &amp; am (5) exp(4nf=ket)
For E the eccentric anomaly, we use identities from

Danby (1962) (6.3.12, 1.3.8, 6.3.17, 6.3.18):

(C.3) M = E -emnkE

Lo l-eadE = (-2)(1-ne) / (4W)

exp(38) = [cob-+ 1 Jd pmEl/L1-&lt;wE] = hz (I=4)/(1-he)

where we define

c.qy T= exp (3F)

+ \VI-¢e*

(If we let e = sine, then h = tan(¥2)) Substituting,

(C.5) mn | -2)(1-h3) 7 (1-1 hz)”Xe) = ge Trae SE (G0.
“[ z" (1-2)" -k .ostap—— T €rP (1 ke Aw E)

If not for the very complicated branch cut at z = 0

due to exp (ikesinE) = exp (ke(z-1/z)/2), this would be a contour

integral around lz] = 1 and a closed form could be found for

the Hansen function. A 7



1+m—-n
Instead, expand (1-h/z)1t™ and (1-hz) by the

binomial theorem «M is the binomial coefficient m!/n! (m-n)!):
mn 2p Nw FP [$m | 7 | pmmn stb

(c.6) X, (e) = + AC (447) Ss ( =) )(-") v
s;t=0

t-s4n-k .
7 exp( ihe Ai, EF)

Now, exchange summation and integration, and use

z = exp (iE) and the Bessel function

N = 1 ELI . . orJu (X) | AE exp 1x Am E inE)
giving

(C.7)

Xe) = 0 2 (IN),en(6

Now define 2p-R- ,4-

(C.8) Gapqle) = Xorg (e)
(C.9)

20 a - -2(2-F) ZW) | ( (4-2p+4)e) :ay 2 8 (TI) Sooty
$=d 4 =p

where as usual

a) Lala. Cas) Lf (45) | 5x0
 Ss TT 4

From (C.l) and (C.8) we have

(C.10)

(5) exp (a(4pt) = 5Z Gr (7 exp (1(L-2p ¢£ M)

Symmetry. From (C.2), since both f and M are odd

around the same origin,

Mm,-n mn
(C.11) X_, le) = X,_ (e)

AR

Fy DT re



(e) = Gyp l€(c.12) Gy, R-P,74, 2P% [ )
Hence only g 2 0 need be considered.

and is real.

Table. From (C .9)

c r
20q (¢) = yt(1+) 2 (t t

Gang (©) ET elClo mE se LEY
. (+n) = {352 $ 7

ne 7 &gt; ‘pi Db aes (18 2)e)
r=—6e [=] + Ir [2] h |“ "A ln (%¢)

'C. 13)

where we have let r = s - t and performed a summation analyti-

cally. Note that

(C.14) ¢ podG 222 ) 0
=3/27) yy = ((-€Gop (€) {

Limits. For small x, J, (x) is of the order of

x (ni /|nj!. Since h ¥ e/2, the dominant term for small

is the h® term, so for g320,
%

~ a _ (3¢)
(C.15) Gq (€) - Cope = Core (6) = Of =)

e

A529



Appendix D. Generalized Inertia Coefficients Tim

Definition.

Ton (R) = 25 Do [oha’ '2Y (57)(D.1)

where the integral is taken over the plaacs

a function of R.

~arvy volume,

The distribution in mass due to a perturbing body such

as the Sun changes with R, the Sun's position. It is approx-

imated by a tidal bulge lagging slightly behind (or ahead of)

the subsolar point.

Assuming the Sun to be a spherical mass M.at R, the

potential per unit mass felt at r' inside the planet is

I(D.2) V(,R) = GMo
Ie! -RI

GM ot /
2 © RL 2 Y,, (6.¢) Y, (0,8)

For an incompressible planet, the change in surface

radius is proportionate to the above potential, with the

L'th term multiplied by a dimensionless Love number Kis divided

by g, the surface gravity, and lagging in phase behind the

Sun's true position (Counselman, 1967, p 67-70), i.e. let

r, = unstressed surface radius = © (8%)

PD 8 = 2 gH ot Hv, (00) [RY ren)

Letting dR' be the element of solid angle and P(r') be the

density, ita



eo / * AL ¥ fi! 41 Dog

(D.4) I, (R) = [IE ae ptr) S22] fr Yo oly") | A+)

-

o 7 pa .

[der pir)s” fd! +f, 4% 01 pEIIn |»

[2 yr (6 ¢)] dre
Lt]

= IT,+IY(R)
i.e., the integral over the whole planet splits into the

integral over the unstressed planet plus a surface integral over

the bulge.

Fhe

»

/ Pa

= 2 the first integral is defined in terms

usual inertia coefficients (Danby, 1962, p 87):

of

A -F -G

-F B -H

-G -H C

3) - [du! (er (Tt motny) - r'c!

AN

taken around 15k. Substituting for v, (8,9) from table (B.1 ),

we find

© = ase planilTop = Mot

T™ = 0
In

©) A B-A
TL="=7% =

a) _ 4K _ ©
I. = 2

Mm = AtIo, =
If ijk are the principal axes of inertia for the planet

F = G =H = 0. We define

(D.7) B= BAFa

¥ =] w=
a+8
2 C

&gt; 0

!
-



Then

x, = BE

Io ©
Tv = —~C

For a check, substitute these Iz, into the expansion

of the gravitational potential on p. 25; we obtain

(D.9) U(r") = —-G (wats of plewit) _&amp; 12 om&gt;0" [(B-A eazy’ +
ré 2e"P LT

1 ZHAN]+bau ca 8 (Go @'+ Fmt?)

Fart’) (ALT + oe)

Cf. MacCullagh's formula (Danby, 1962, p 98):

o. nooo Glmegplad) 6 pa. +D.10) Uc) » — — £ [A+B+C-3T] + o( =v)

where I is the moment of inertia around r

The bulge integrals 4
l Zz k. GM r fr

(D.11) T (Rr) = YarDew [d= Je) 2 9 © 7 aus
Hag Vem 2 24] LM

p-

“1 )] ~| “t Y p (®, ® ay (0052 (6) [RY (oss

By orthonormality (A15) and (Al5a)
(a2) Y_ 180%) Yoo (819)= 0,5 On.:

using the expansions into Fourier series from jo 31 I
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- 24 gor ) - &lt;A) ® og

(D.12) T,. (£)= 1% Pl) Cen) en 60 [R™7Y,, 6,8) Za)
= 0

NRNTANRLE"il" “Aes - PO) [or beya 2 €XP (“1 ¥oup™ Grus)’
I-m ; -

F (8) Gog (©)

where Compo is the phase lag.

Symmetry. From (D.1),

-
_— $(D.13) Tim - tr Dew [du 2 Y 4 (80)

| xftw) Com T Lm
(2-w)

Inserting this into (D.12), we see

= = CrugD-14) €o cm, 1p, ~4

which 1s the same symmetry as Ve mpg”
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Appendix E. Comparison with Peale's paper

Peale (1974) investigates z similar problem to that in this

thesis. He uses the same technique (expansion into Fourier

series), and finds similar results (capture probabilities and

evolution of obliquity). The major differences are that he

neglects to compute capture probabilities for other than the

3:2 resonance (which I found to be anomalous) and devotes much

space to Cassini state evolution and stability. Since Mercury

is apparently in a Cassini stable state with obliquity near 0°

(an assumption made in this thesis anyway) this Cassini analysis

is interesting but not necessarily applicable to Mercury

Peale's Approach via Hamiltonian Formulation

Peale assumes principal axis rotation, as I do, so that the

only variables of interest are the three defining the spin axis.

He then writes down the Hamiltonian in terms of these three angles

and the differential equations for them. In order to explicitly

differentiate the tidal and asymmetry potentials in the Hamil-

tonian, he expands them in terms of the orbit and spin axis var-

iables (a,e,i, etc.) by the Fourier series, using Hansen coeffic-

ients and Kaula's inclination functions. These expansions are

essentially identical to the ones I use. To model the tidal

dissipation, he introduces a lag variable in each term of the

Fourier series. Peale's two models for the phase lags (which

are just the values of Z) are z proportional to frequency (i.e.,
ag { 'L



MacDonald's, or viscous, model) and 5 = constant (Darwin's, or

step, model). Again, the technique is virtually the same as mine.

Cassini State Analysis

Peale finds which positions of the spin axis are stable

when the orbit is precessing (Cassini states) simply by finding

the consequences of inserting the equations "spin rate=constant”,

and "spin axis position=constant" into his Hamiltonian equations.

He finds easily that the longest axis of Mercury points to the

Sun at perihelion, etc. Also, it is plain that the restoring

torque becomes weaker as obliquity grows larger. Hence, as he

found for Venus, a 180° obliquity is unstable in the absence of

other torques. More important, large obliquities in general

(about 90° or greater) are probably unstable. He then computes

capture probability for the step model torque into the 3:2 resonance

and finds a sharp decrease for obliquity larger than 90°. This

curve agrees with my curve for that resonance (and tidal model)in

both shape and amplitude. However, Peale does not, though he could

have, computed capture probability for 2:1 resonance; I found that

for Darwin torque, though not for MacDonald, the probability in-

creases with obliquity in this resonance, and peaks at about 60°

Evolution of Obliquity

Peale now numerically integrates the simultaneous change of

spin rate and obliquity through time. His general result is the

same as mine: That obliquity increases as spin rate decreases,

~

-



until the spin rate falls below about 3n. For spin rate less than

this, we both find a decreasing obliquity.

Peale explores three further aspects of the model. He invest-

igates the three Cassini states other than Mercury's current one

(i.e. the states: Obliquity near 90°, near 180°, and near 270°).

Secondly, he averages the differential equations over a spin axis

precession period (which is far less than the time of tidal decay).

Thirdly, he varies the value of the flattening coefficient of Mer-

cury's shape (1 - (53) from less than 10™° (i.e., hydrostatic

equilibrium flattening) to 107% (i.e., the Moon's flattening),

since he knows from his Cassini analysis that not all four Cassini

states are possible at every value of the flattening. Lastly, he

briefly considers the effect of changing the orbit parameters

(primarily the inclination). The major result of this portion of

his paper is that the Moon and Mercury are probably in different

Cassini states
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FIGURE CAPTIONS

Fig. 1. The three coordinate systems used in this thesis,

and the Euler angle rotations connecting them.

Fig. 2. Stroboscopic "photographs" of Mercury taken at every

perihelion passage. The stroboscopic spin rate Y, is positive.

Fig. 3. Escape of Mercury from a spin-orbit resonance state,

as seen stroboscopically at each perihelion passage. or has

just turned negative, as this is the last "roll forward".

Fig. 4. Libration of Mercury in a spin-orbit resonance state.

Fig. 5. Phase space diagram of the kinetic energy of Mercury

vs. the stroboscopic spin rate, showing evolution through time.

Fig. 6. Division of the orbit of Mercury into sectors of

positive and negative torque. The arrows indicate the direction

of the long end of Mercury's equatorial silhouette. Note that

the long end points to the Sun at perihelion.

Fig. 7. Same diagram as Fig. 6, except that the long

not quite point at the Sun at perihelion.

Fig. 8. Projection of the path of the long end on the orbital plane.

(a) Zero inclination. (b) Non-zero inclination.

Fig. 9. Averaged tidal torque components versus spin rate, viscous

elasticity model. (a) Component Ty, affecting the inclination.

(b) Component Tyr affecting the spin rate. e=.20, &amp;/Q = 5x10" 11

Fig. 10. Same as Fig. 9, step elasticity model.

Fig. 11. Numerical integration of the spin vate 7 and inclination

8 through time. e = .20, «= 1078, Q = 200. Dots are placed on

—



the integration every 1010/2 orbits of Mercury, beginning at

the high spin rate end. Viscous elasticity model.

Fig. 12. Same as Fig. 11, except for the step elasticity model.

Dots are placed every 51010 /2¢ orbits.

Fig. 13. Capture probabilities into various resonance states

for the viscous elasticity model. e, @, B, are as shown.

Bp = 1074. The probabilities are proportional to the square root

of PB.

Fig. 14. Same as Fig. 13 for the step elasticity model.

probabilities are independent of B

The
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