
fk n g. ig_ pape 

:.:~ : .: .- -s i-. : .: -.. :~- : -: : . - -:: - : . ; .- M. .:: i - --

_, ~: .,- ,, 'o. ,, 

:S0 ;'D f X f000',S\000'd 0 ''t0t fS fd' : ^ f ,
*it',-: ,;: 0 X, -; I -- f 0 f ' a' ;V0 0 f1i0 00 f t

:--: :; : ' 00f00 0'f dD0000i: f: - t 

O -- TEC:NOLOGY T N-,.,1:a:t.:7X .4 s ;Xt.t-rsl T'T0HNO 0.00',000-f0-

* ; ; r . S r a S - U S - S -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4~ 

·) .-·: ·· ��-· ':.·i.-;.

i
.i.·;, i

--i:'. .·.. .'.-.
I· ;

ii i· : :

t- :· ··:- ::·.·--·'-··r.-.

L . ; ·

.·;

:·-
·,--·- -

: .·· .. -.· · ·-. ·: I

.I:
··:

·' i··: ·:



THE GEOMETRIC AND THE BRADFORD
DISTRIBUTIONS, A COMPARISON

by

Philip M. Morse

OR 049-76 February 1976

Supported in part by the U.S. Army Research Office (Durham)

under Contract No. DAHC04-73-C-0032.



The Geometric and the Bradford

Distributions, a Comparison.

by Philip M. Morse

Operations Research Center,

Mass. Inst. of Technology

Abstract

Both the geometric and the Bradford probability dist-

ributions are used to describe collections of items of interest

in information science. Each unit item has a productivity, an

integer n measuring the amount of use of the item. The cumu-

lative fraction Fn of items with productivity equal to n or

greates may be expressed as a function of n or else as a function

of the cumulative mean productivity Gn of items with productivity

equal to n or greater. If Fn is an exponential function of n,

the distribution is geometric; if it is an exponential function

of Gn, it is a Bradford distribution. The exact solution of Fn

as a function of n for the Bradford distribution is computed;

the results are tabulated. Graphs are given, comparing the two

distributions, and their relative usefulness is discussed.
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Definitions

Two probabilistic distribution functions are in common

use as models to describe library and informational data; the

geometric distribution and the Bradford distribution 2 '. Both

have their uses in compressing a large amount of data in terms

of a few numerical parameters, from which one can calculate a

number of general properties of the collection from which the

data were taken. As with any probabilistic situation, neither

of these models is expected to fit the data precisely, but both

of them have been found to fit a number of cases well enough to

make them useful tools for analysis and planning. This paper

compares the two distributions in detail, to see how they are

related and to point out where each is useful.

Both distributions can model a variety of collections;

a collection of books in a library; a collection of journals;

or a list of journal articles in a specified field, for example.

Each of the items in a given collection has a certain measureable

productivity n, an integer, that varies from item to item. A

book has circulated n times in the past Q years, for example,

or one of the journals has published n articles on some given

subject in the past N years, or a journal article in the list

has been referenced in n other articles during Q years after

its publication. In any of these examples, and in many otners,

one can find, by counting, the fraction fn,of all the items in

the collection,that have productivity n and, by further addition,

the fraction F n that have productivity equal to or greater than n.



For example, one can imagine arranging the items in

order of productivity, leaving out the completely non-productive

items; starting with the fraction fl of the productive items

that have unit productivity, then the fraction f 2 that have

productivity 2 and so on. If there are Np productive items in

all, then Npfl items have unit productivity and account for Npfl

production, Npf2 items have productivity 2 and account for 2Npf2

production and so on. Since the fn's are fractions of the total

number of productive items, the sum of the fn's over n, starting

with n= 1, is unity, so that the sum of all the productive items

is N, ZN
p· f p since Z fn = 1 (1)

The total production, the sum of Npfl plus 2Npf 2, etc., is then

I.nNpfn = nNp where n = .nfn (2)

nNp being the total production of all the productive items and n

being the average productivity per item.

The fraction fn' as function of n, is the distribution

function. The cumulative distribution

Fn .fm ; F 1 1 ; F - 0 (3)

is the fraction of items with productivity equal to n or greater.

The average productivity of this fraction is
60

Pn = Gn/Fn where Gn = m fm
VVI 91VI (4)
i=nGn 0G G n G ----} O

The quantity xn = G/i is thus the fraction of the total pro-

duction carried by those items with productivity equal to or

greater than n.
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The Geometric Distribution.

In a number of casesl, the data approximately

correspond to a geometrical (or exponential) dependence of Fn

F = 1 y exp[(n-l)lny-l or lnF = (n-l) ln 

fn F-F n+l = (l-(1 y)n-1 ; Gn ()mmY m- 1 (5)

1- ; n = 1, 2, 3, ...

Since the logarithm of Fn depends linearly on n, the

successive values of Fn, plotted on semi-logarithmic paper, lie

on a straight line, as shown in Fig. 1. Actual data is not as

regular as this, particularly for large values of n, but in a

great number of cases the values of F n larger than about 0.1 do

come close to lying on traight line1, on a semilog plot, the

values for higher n's are often too small to count. The plot

of Fn against Gn/ is not linear. However Fig. 2 shows that

for Fn greater than about 0.2, the points lie approximately on

a straight semilog line, indicating that they lie roughly on9 5

the line
1nF n (X n-l ) or Fn = exp[~n (xn-l )] (6)

where xn = Gn/n and where on is approximately .

The Bradford Distribution.

The Bradford distribution assumes an exponential

dependence of Fn on Gn, rather than on n. If the total pro-

duction Np is divided into equal fractions or "zones", with

the "core" fraction the production of the most productive items,
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the next zone that of the next most productive items and so on

then, in many cases, it turns out that the number of items in

the successive zones are related geometrically. To put it

another way, if the unit range of x = Gn/ n is divided into M

equal parts, with items in the core from x= 0 to x= x l l /M,

being the most productive, those in the second zone, from

x x1 to x=x 2 w2/M, the next most productive and so on, then

the IractLon of items F(xr ) -F(x r l ) in the r'th zone bear a

ratio a to those in the (r-1)'st zone, where is independent

of r, This is the same as saying that

F(xr ) = a r - M or lnF(xr) = (r-M) in o or

F(xr) = exp[p(xr - 1)| M-r A a where
(7)

x r G(xr)/ = r/M and A = e- o -M

F(x,) F (1) 1 then F(xl) a- M = exp[( -l)n]

-~ Factor A comes in Eq.(8); aL is the Bradford ratio between zones.
Thus the Bradford distribution assumes that Eq.(6)

holds exactly. Since Fig. 2 shows that the geometric distri-

bution satisfies Eq. (6) only approximately over the upper o.8

of the range of P and not over the lower 0.2 (the range for

large values of n), we must now work out the exact solution

of Eqs. 6, to see to what extent and over what range it will

approximate the geometrical distribution -- and, indeed, to

see ust how Fn must depend on n, as well as on Gn.

Leimkuhler 3has worked out the case where the

effective range of n is very large (many items with n larger

than 100) so that xr can be considered to be a continuous

variable. In quite a few cases, however, the great majority
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of items have productivity less than about 20. In these cases

we cannot neglect the fact that the productivity n is an

integer, not a continuous variable, and we must work out the

distribution in productivity n required by Eqs. (7). We note

one important general property, apparent from Leimkuhler's anal-

ysis; the distribution cannot extend indefinitely out to higher

and higher productivities n. Since, in the limit of large n,

fn turns out 3 to be proportional to (1/n 2), the cumulative

production function G of Eqs. (4) cannot extend to infinity,

because the sum of (l/n) to n-,oo diverges.

In the case of the geometric distribution the "tail"

of the productivity curve of nfn diminishes rapidly enough, for

high n, so we can neglect the cumulative effect of this tail

without appreciably affecting the result. But with the Bradford

distribution, the tail of the productivity curve never becomes

negligible, and it is necessary to say that the equation

specifying the fraction fn of items of productivity n can hold

only from n = 1 out to some upper limit n= N, the outer limit

of the "core", and that the distribution of the high productivity

items in the core is sufficiently scattered so that all we can

do is to give the fraction of items, FN, in the core and its

net production function GN, without attempting further detail there.

Thus the Bradford distribution begins with an upper

limit n= N, beyond which in the core) we can specify only the
fraction F and the production function Gn, but below which we can
specify thS fraction fn of items with productivity n and the

cumulative distribution F and production function G of Eqs.
Ior ch and ever 

(3) and (4)C e effect of the core items, those with n E-etr
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greater than N, is given only by specifying the cumulative

quantities FN and GN. In the lower range, however, we see,

from qs.(6) and (7) that
N-!

Fn ' fm + FN Ae Gn where Ga 2 :fmGN or

Y n OFn =Y + YN IAeZ ; Zn = Gn 2 Zm + ZN (8)

where Yn = fn and zn = nyn = Pnfn

Iterative solution of this set of equations can be started from

n= 1 outward by noting that, since Zn+1 = Zn- zn,

Yn = Y-Yn+l = 3A(eZn - eZn+l) = AeZn(l- e-Z n) or

nyn ,Zn = nYn(1 - e z n) ; Yn+l Yn (Zn/n) (9)

We start with an assumed value of Y1, compute z1 and

thus Y 1 by finding the value of z tat satisfies the first of Eqs.(9)

with the assumed value of Y 1, then computing Y 2 from the second

of Eqs.(9) and so on. For all but one unique value of Y 1 the

computed sequence of zn's begins to oscillate and soon negative

values appear. But for the value of Y 1 approximately equal to

1.495483 the sequences of zn and n diminish smoothly to zero

as n increases. In accord with Leimkuhler's continuous solution,

the formulas for zn and Yn' for n large are expressible in terms

of inverse powers of n. The approximate formulas

Z 1 0.0048? 0.19424 /Z (10)
-n - n3 n = Zn/n

holds to better than one percent accuracy for n greater than 6.

Since F1 must equal unity, must equal Y 1 and the

values of the distribution functions can be found by dividing

by . They are tabulated in Table I and plotted against n in



Fig.3. It obviously is not an exponential distribution in n.

The approximate formulas for fn and for the cumulative distri-

butions Fn and Qn, for n large, are

f ,, 0.668680 0.00256 0.12884 (for n > 6)
· ' n 2 . . . .( - for n> 6)

FL 0.668213 9 e25 (for n 20) (11)

G 1 - G a Qn 0.269302 + 0.668620 ln n- 1 + (n 5)
1- n n n

Generatin a Bradford Distribution.
To generate a Bradford distribution we pick a value

of n to be the maximum value N, and use the value of FN to be

the fraction of items in the core. We then arbitrarily pick a

corresponding value of GN, which must be equal to or slightly

larger than NFN -- otherwise the mean productivity of the core,

GN/FN, will be less than the productivity N of the most productive

items in the next zone, contrary to our assumptions. Values of

Gn are then found by adding values of nfn successively, or else

by subtracting the quantities n in Table I from GN + QN n ,

Gn = GN mfm GN+ QN Qn (12)
1rl n

where n - QN must be no smaller than NFN.

We can, of course choose the distribution to corres-

pond to a specified value of average productivity n, though the

choice is limited by the requirement that n should not be less

than N + NFN' In either case

F = e- Q n AePGn ; A = exp [-(G N +
)] - e- d

B = 1.495485 ; rc exp(y/M)

as is required by Eqs.(8).



If we desire a "standard" BradIord distribution,

where the total production is divided into M equal parts,

we start by choosing a value of mean productivity n ; G 1;

then A e-I to be used in qs.(13) for F. The values of

FN and GN for the core collection are then

FN ' F(xl) - exp(-n+ GN) ; GN G(xl) ; x r = r/M
(14)

and F(xr)= exp-0n(l- xr)l ; G(xr) = xr

As with the limit mentioned following qs.(12), there is an

upper limit on the choice of M for a given choice of n, as

explained shortly.

Of course the successive values of F(xr) do not come

oulxactly equal to any one of the values of F n in Table I,

which means that some of the collection of items of a given

productivity n will have to be divided between two zones. For

example, for n 3 and = 4, the fraction of items in the core

collection is F(1/4) = 0.03457, which is just less than the

value of Fn in Table I for n= 19. The value of G(1/4) for the

core collection is , from Eqs.(14), 3/4, so the mean produc-

tivity for the core is G(1/4)/F(1/4)J = 21.7, which is greater

than the productivity n 19 of the first items in the second

zone, r 2. On the other hand, if we try to divide the a 3

distribution into M= 5 parts, G(1/5)= 0.6, F(1/5) = 0.02762,

which is just less than the value of Fn for n 25. But the

net productivity of the core, IG(1/5)/F(1/5)1 - 21.8. This is

less than the productivity of the first items in the second

zone, 25, which violates our assumption that the core items

have the largest productivity.
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Bradford2 discussed a case for M 3, for which he

estimated to be about 5. For this case, according to Eq.

(13), n = (M/P)ln a - 3.23. Taking M 3 and = 3.23, Eq.(14)

shows that FN F(1/3) 0.03994, practically equal to F 17 of

Table I. Thus N 17, i.e., the core contains all items of

productivity greater than 17. The mean productivity of the

core, [G(1/3)/F(1/3)] =[n/3F(1/3)] - 26.9. In other words the

productivity of the core is considerably greater than N 17;
individual

evidently there are items in the core with productivities

from 18 up to well above 27.

Actually, for M 3, n can be as small as 2.2433, in which

case F(1/3) 0.10683. Since the next largest value of F n in

Table I is F 6 = 0.12092, N is 6, with the mean productivity of

the core being /3F(1/3) =- 6.9997 c 7. In this case the core

consists entirely of items of productivity 7; the other two zones

divide the items of productivity 1 to 6 between them in a manner

shortly to be taken up.
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An illustration of these matters is shown in Fig.4,

for the case of ns 2.5 and M. 4. The fraction of items in the

core collection, F(1/4), is 0.061, a little larger than F for

nll. The value of G(1/4) for this case is 2.5/4 0.625, so

the net productivity of the core, G(1/4)/F(1/4), is also about
nearly

11. Thus this example is a the smallest valueAn for which

a division into 4 zones is possible. The abscissa of the

figure is x- G(x)/-. The large steps show the values of F(x)

for each of the 4 zones, ending with F. 1 for the last step.

The small steps give the values of Fn, from Table I, against

Gn. These values also fall on the same dashed, straight line,

on the semi-log plot, as do the large steps, demonstrating the

geometric dependence of F on G, as required by the Bradford

distribution equations (6) and (7).

Note that, if one were fitting actual data, for which

the mean productivity n was 2.5, into 4 zones, the items for

n 11 would have to be divided between the core and the second

zone, the items for n 5 would have to be divided between the

second and the third zone and the items for n 2 would have to

be divided between the third and the fourth zone. Note also

that the division of the items in each of these subzones will

have to be allocated harmonically, not linearly. For example,

if G(xr) comes midway between Gn+1 andi Gn then the fraction

F-+ 1 - Fn+1 of fn = Fn - Fn+1 is allocated to the lower

zone and the fraction Fn - Fn+1 is allocated to the upper

zone. In the more general case, when



G(xr) - Gn+1
G. -G n+l , where G(xr ) - n(r/M) lies between
n n+1

G n and Gn+l and were all the Np(F- Fn+l) items

-e- have productivity n, then N(FF - F(15)
p n n+l n+l

of these items are allocated to the r'th zone and

Np(F - FF 1- ) are allocated to the (r+l)'st zone
p n nn+l

Comparison of the Distributions

Actual data, of course, fits neither of these two

distributions exactly and, since there is not much difference

between the two in mid-range, it may be difficult to distinguish

which fits the data best. Plotting the values of the cumulative

distribution F n against n will help; if the plot, for the first

5 or 6 values of n, is nearly a straight line on semi-log paper,
the

the geometric distribution is t better fit; if the plot is

concave upward, like that of Fig.3, the Bradford distribution

is better (if the plot is markedly concave downward then neither

distribution fits well). One can, of course, plot F against G

on a semilog plot, as in Figs.2 and 4, though this plot does not
distinguish as clearly between the distributions. If the vertices of the
steps tend to form a straight line, the Bradford distribution

is better; if they are concave downward,as in Fig.2, the

geometric distribution may be a better fit.

However, in many cases the planning factors to be

obtained by the use of one or the other distribution need not

be very precise in order to guide a policy decision. If so

then the choice of the distribution to use depends on the nature

of the conclusions to be drawn. The advantage of the Bradford

.. ; . ,i. . ,, .

- I -
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distribution -- and the Bradford way of organizing the data --

is perhaps the ease of counting the items. However the dist-

ribution is less flexible; the value of is fixed; both n

and M must be specified and there is an upper limit to the

choice of M. The conclusions that can be drawn from the

distribution are somewhat limited and if one wishes to go

beyond concluding that the fraction (r/M) of the total pro-

duction of the collection comes from the fraction F(r/M) of

the items, the further conclusions must be worked out numer-

ically, using the numbers in Table I.

On the other hand, the geometric distribution can be

manipulated analytically, once the value of the single parameter

y - l- (1/A) is computed for the collection. Because the

distribution of Eqs.(5) can be expressed in symbols, rather

than having to be given in numerical form, the related properties,

such as variances, characteristics of different parts of the

collection and so on, can be expressed as explicit functions

of y, rather than having to be evaluated numerically for each

value of n and M, as is necessary for the Bradford distribution.

Furthermore, if one wishes to combine it with other distributions,

as one does when calculating predicted changes with time, at

least part of the calculation can be made symbolically with

the geometric distribution, rather than having to work it out

numerically for each value of the parameters.

Nevertheless both distributions have their value in

describing the properties of a collection of items such as

books or periodicals or other informational units.



TABLE I

Bradford Distribution.

n F n

1 1.00000

2 .42014

3 .26110
4 .18861

5 .14742

6 .12092

7 .10248

8 .08890

9 .07849

10 .07026

11

12

13
14

15

16

17

18

19

20

.06358

.05807

.05343

.04948

.04608

.04311

.04050

.03819

.03613

.03427

Oa

In n

Qn

0.00000

.57986

.89793

1.11542

1.28015

1.41265

1.52332

1.61840

1.70168

1.77576

1.84247

1.90313

1.95876
2.01012

2.05782

2.10234

2. 14409

2.18339

2.22050

2.25567

n- $4n = m f Mmz 

The

fn

0.57986

.15903

.07250

.04118

.02650

.01844

.01358

.01041

.00823

.00667

.00516

.00464

.00395

.00341

.00297

.00261

.00231

.00206

.00185

.00167

nfn

. 57986

.31806

.21750

.16473

.13250

.11067

.09508

.08328

.07408

.06671

.06067

.o5563

.05136

.04770

.04453

.04175

.03950

.03712

.03517

.03341

I_·_
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Figure Captions.

Fig.l. Examples of the geometric distribution. Cumulative

fractions of items Fn versus productivity n,

Fig.2. The geometric distribution F versus cumulative

production factor Gn.

Fig.3. The Bradford distribution. Cumulative fraction of

items Fn versus productivity n.

Fig.4. The Bradford distribution for mean productivity n=2.5.

Small steps show Fn divided into integral productivity steps;

Large steps show F(x r) in equal steps of production factor G.
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Fig.3. The Bradford distribution. Cumulative fraction of

items Fn versus productivity n.
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Fig.4. The Bradford distribution for mean productivity 7 = 2.5.

Small steps show F n divided into integral productivity steps;

Large steps show F(xr) in equal steps of production factor G.
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