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Degree of Doctor of Philosophy in Geophysics

Abstract

The limitations of asymptotic wave theory and its geometrical manifestations are
newly formalized and scrutinized in Chapter II. Necessary and sufficient conditions for
the existence of acoustic and seismic rays and beams in general inhomogeneous media
are expressed in terms of new physical parameters: the threshold frequency c

associated with the P/S decoupling condition, the cut-off frequency Wc associated with

the radiation-zone condition, the total curvature of the wavefront and the Fresnel-zone
radius. The analysis is facilitated with the introduction of a new ancillary functional -
the hypereikonal which is capable of representing ordinary as well as evanescent
waves. The hypereikonal is the natural extension of the eikonal theory. With the aid of
the above new parameters, simple conditions are obtained for the decoupled far field,
the decoupled near field, two point dynamic ray tracing, paraxial wave fields and
Gaussian beams.

Chapter III deals with a canonical problem. The Green's function, in a constant
gradient medium, is presented, for an explosive point source, in frequency and time
domains. The analytical dynamic ray tracing (DRT) solution is re-derived with conditions
stated in Chapter II. The Gaussian beam (GB) solution is investigated and new beam
parameters are defined. Comparisons between exact and approximate solutions are
made; for both methods, DRT and GB, conditions of validity are explicit and quantitative.
An accuracy criterion is defined in the time domain, and measures a global relative error.
The range of validity is expressed in the form of two inequalities for the dynamic ray
tracing method and of five inequalities for the Gaussian beam method. Results remain
accurate at ray turning points. For the type of medium considered, the breakdown of
the dynamic ray tracing method is smoother and better behaved than that of Gaussian
beams. As examples, a vertical seismic profiling configuration, and a shallow earthquake
are modeled, using Gaussian beams.

Chapter IV describes the paraxial ray method, and its uses in modeling seismic
waves. It is a flexible and fast method for computing asymptotic Green's functions. The

method is an extension of the standard ray method, and a degenerate case of Gaussian
beams. Accuracy is controllable, within ray and paraxial conditions. Comparison of
results with finite difference and discrete wavenumber are very satisfactory. Examples
for different heterogeneous media are shown.

A full-waveform inversion is then presented in Chapter V. A new approach, using
tensor algebra formalism, is presented. Combined data sets (eg. VSP and surface
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reflection data) with prior information are simultaneously handled. The forward model is
generated by the paraxial ray method. The inversion is performed in the frequency
domain, for interface and layer parameters. Sensitivity analysis is studied for each
parameter. Data generated by finite difference is inverted and obtained estimates are
accurate. VSP field data is inverted to estimate local geologic structure.

Thesis Advisor: M. Nafi Toksiz
Title: Professor of Geophysics
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I. GENERAL INTRODUCTION

Symbolism, language, scientific formulae here are all synonymous.

- J. Bronowski

The notion of waves is one of the unifying concepts of modern physics. Their

physical manifestation can be of very different nature (elastic, electromagnetic,

quantum mechanic, gravitational), but their behavior remains describable mathematically,

in common terms. The basic properties of waves is that they carry energy from point to

point in a medium, and like moving matter, they have velocity and momentum.

Seismology deals with the generation and propagation of elastic waves in the

earth. The data are seismograms, which is a measure of the disturbance caused by the

wave during its passage through observers (seismographs) placed in contact with the

earth. Typically these are records of particle displacement, or particle velocity, or

particle acceleration, or pressure (in a fluid medium), as a function of time. The

recorded seismic wavefield depends generally on three main mechanisms: (1) the wave

generation (the source of energy), (2) the propagation through the complex media

(scattering, diffraction, attenuation etc.), and (3) the seismograph measurement bias

(quality of the coupling with the earth, partial information if it has less than three spatial

components of recording, transfer function, etc.). These seismic records are very

valuable if information regarding any of these three mechanisms is sought. Most

importantly, they provide means of probing the earth interior. The advent of computers

revolutionized seismology; data acquisition has improved enormously and sophisticated

data processing is now possible. It is the second great tool, after analytical
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Chapter I

mathematics, for theoretical developments.

Modeling

Modeling is a very useful approach in understanding seismic wave propagation in

heterogeneous media and consequently helping the interpretation of data. For example,

assume we have a specific earth structure in which we place sources and receivers.

From the physical laws governing the behavior of seismic waves, one can determine,

analytically or numerically, "synthetic" seismograms of the earth model. Modeling

methods for complex media are numerous. There is no universal method that is

applicable to all media. Each method is best suited for a given model, depending on the

model's structure, source/receiver configuration, and the allocated computer time.

Further, each method has its own assumptions and validity conditions that must be fully

understood before its practical use.

Hermann and Wang (1985), compare synthetics seismograms of several methods

developed for plane-layered media, and list references of basic methods that deal with

this problem. These are generally full-wave methods, in the sense that the full effects

of the media are simulated and recorded. They are computationally expensive, and

cannot be simply extended to handle more complicated geometries. Another set of full-

wave methods, able to handle diffractions from sharp interfaces, concerns boundary

integral methods. The media is limited to homogeneous layers separated by arbitrarily

smooth interfaces, although extension for complex media can be made via asymptotic

wave methods (see below). The methods treat each interface separately and with the

continuity conditions at the interface, integral equations are set up for the wavefield.

References for these methods can be found in Kennett and Harding (1985). Methods

which consist in solving numerically the differential elastic wave equation in complex

media, are called direct numerical methods. They are full-wave methods, and are
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Chapter I

expensive computationally. Finite difference (Alford et al, 1974; Kelly et al, 1976;

Stephen, 1984) and finite elements (Marfurt, 1978) are the two main techniques.

The last set of methods is based on simple geometrical considerations. They are

variations of ray theory, and will be called more generally, asymptotic (high frequency)

wave methods. They are versatile, flexible and are generally used either directly in

modeling, or indirectly in other methods requiring approximate Green's functions in

heterogeneous media. These methods are not full-wave but are explicit, in the sense

that individual wave types can be propagated separately. This offers the possibility of

constructing progressively the full-wave character of the field. However if many wave

types are sought, variations of these methods (Keller and Perozzi, 1983) must be

considered.

Hybrid methods, combining advantages of compatible methods, are now under

progress. Modeling real earth structures which would handle (1) multiples, diffraction

and scattering effects, (2) critical region effects (caustics, shadow zones, etc.), and

(3) interface waves (surface, head, etc.) is not an impossible task. Asymptotic wave

methods are compatible with boundary integral methods, and can be an example of such

a hybrid method.

The aim of this thesis is to establish, in some quantitative manner, the range of

validity of asymptotic wave methods. Necessary conditions in obtaining Helmholtz wave

equations from the elastodymanic wave equation are explicit. A hypereikonal is

introduced that leads naturally to the ray solution for high frequencies. The focus is on

dynamic ray tracing, Gaussian beam methods and, particularly on an intermediate

method, called paraxial ray. We will not cover Maslov asymptotic theory (Chapman and

Drummond, 1982), which can be obtained as a degenerate case of Gaussian Beams

(Madariaga, 1984; Klimes, 1984). The paraxial ray method is shown to be a fast,

-12-



Chapter I

flexible and robust method. It is the method that we choose for modeling.

Inversion

The other fundamental task in seismology, is the extraction of medium or source

parameters from data. Given a data set, estimating the parameters, require some

assumptions on their prior values and constraints. Numerous approaches exist and, here

again, each method has its own limitations. The three basic sets of methods are direct

inversion, approximate direct inversion, and iterative inversion. They all yield, as end

product, an image of the subsurface, and are sometimes referred to in general as

inversion or imaging methods.

Direct inversion methods require the solution of an inverse operator such that

when applied to observed data, it reconstructs medium properties exactly. These

operators are difficult to obtain, particularly for more than one space dimension.

Approximations, such as the Born approximation, simplify the problem and enable a direct

solution to be found. A review of these methods with references can be found in

Esmersoy (1985). They generally assume the inhomogeneity to be included in a uniform

background medium for which the Green's function is known exactly. However,

extension to more complex background media can be done using asymptotic wave

methods that provides approximate Green's functions.

Iterative inversion requires, generally, a forward model that is repeatedly used to

generate synthetics. These synthetics are compared to data, and within a defined norm,

the task is to minimize the norm of the data-synthetic discrepancy vector for medium

parameters. Basic references on the subject are Beck and Arnold (1977), Luenberger

(1973) and Aki and Richards (1980). Travel-time inversion has been, so far, widely

used in seismology. But with the improvement in data acquisition systems, full-waveform
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Chapter I

inversion can now be attempted, since more information about the medium or source

parameters is added. Examples of full-wave inversion for three dimensional (3D) medium

parameters are found in Thomson (1983); for source parameters in Nabelek (1983); and

for 1D medium parameters with vertical seismic profiling (VSP) in Stewart (1983).

The last chapter of this thesis deals with full-wave iterative inversion of combined

VSP, surface reflection, multi-offset VSP or crosshole data. Forward model synthetics

are generated by the paraxial ray method. The norm considered is the L2 or "energy"

norm. The problem is presented within the framework of tensor algebra. The Gauss-

Newton method is re-derived in this context. The heterogeneous media contains

homogeneous layers separated by smooth interfaces. Sensitivity of the inversion to

medium parameters is studied. Inversion of field data is presented.
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NOMENCLATURE OF CHAPTERS Il-IV

Ao  amplitude function of local plane wave

B parameter governing initial half-width of Gaussian beam

C constant factor calibrating ray methods to an exact solution

c o  point source radiation pattern including source strength

c source strength, ratio c o to source radiation pattern

eA relative error of maximum amplitude of approximate signal

eph relative error of maximum amplitude time of approximate signal

e1 relative error of travel time of approximate signal

E relative power error of approximate signal on the entire trace

EW  E on wavelet time window

F0  c 1/pl/ 2 , strength of point source (dimensionless)

f general source radiation pattern including source strength

FFC far field amplitude condition

FRN1 Fresnel 1-condition

FRN2 Fresnel 2-condition

Ia P wave coupling vector

G(W f0o) scalar Green's function

Gr  radial Green's function in (r,z)

Gz vertical Green's function in (r,z)

HFC high frequency condition

h 7- 1 , vertical distance between a(O) and a=O

I unit dyadic (tensor)

J Jacobian of cartesian to ray coordinates
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Nomenclature

JS surficial Jacobian of cartesian to ray coordinates

jo ray parameter, takeoff angle, bi-spherical coordinate

j ray angle of incidence

K Gaussian wavefront curvature

KR R - 1 , local ray curvature

Kw acP/ Q=i 1 , total curvature of wavefront (or phase front)

SaP/ Q, local curvature of beam wavefront (complex)

k &/ cx, P wavenumber

0  al/ wo, medium's characteristic length

L local half-width of Gaussian beam

mO source seismic moment

M receiver / observer location

Mo  point source location

NHI non-horizontal incidence of ray condition

n cartesian coordinate perpendicular to the ray

p sinj/ a, ray horizontal slowness, ray parameter

-P4, unit vector tangent to the ray

P a - 1 dQ/ ds, functional in the eikonal

PRX paraxial ray condition

Q functional in the eikonal

r radial distance from vertical z axis

r t  (zo+h)cotjo, radial coordinate of turning point of ray

RCC regularity of ray-centered coordinate system condition

R local ray radius of curvature

Rw  local wavefront radius of curvature

s arclength along a specified ray
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Nomenclature

S hypereikonal

t time

T generalized travel time

Uparticle displacement vector in time or in frequency

ZU Green's function along t in (4,z)

us Green's function along z in (,z)

v P or S intrinsic velocity of medium

VF Fresnel volume

W P wave vertical displacement in (r,z) coordinate system

W11 W computed by the Gaussian beam method

Wr  W computed by the dynamic ray tracing method

z vertical axis

Zt  R-h, depth of turning point of ray

a compressional (P) wave velocity of the medium

o P wave velocity at the source location

B shear (S) wave velocity of the medium

Sa2/ p2

71,2 ray parameters

A source-receiver distance in a homogeneous medium

E cumulative error along the ray

Ea P wave coupling scalar

A wavelength

X First Lame elastic parameter

/, Second Lame elastic parameter, shear modulus

-7/ t o , bi-spherical coordinate, curvilinear coordinate along a ray

Sunit vector tangent to the ray
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Nomenclature

p density of the medium

Po density of the medium at the source location

Pi,2 principal radii of wavefront curvature

a point source time function

point source spectrum

7 source - receiver travel time

weight function for the Gaussian beam

pd P wave potential

P2 S wave potential

Helmholtz potential

aCpar Parabolic potential

W angular frequency

Wo medium's threshold frequency

Wc medium's cut-off frequency
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II. RANGE OF VALIDITY OF RAY AND BEAM METHODS

Nature is not a gigantic formalizable system. In order to formalize it,

'we have to make some assumptions which cut out some parts.

We then lose the total connectivity.

- J. Bronowski

1. INTRODUCTION

Asymptotic wave theory is subjected to a number of fundamental restrictions

which put severe limitations on its applicability, These restrictions involve three types

of physical parameters: frequency, distance and gradients of structural elements. The

conditions are formulated in the form of inequalities. If any of these inequalities is

violated, ray theory becomes (progressively or rapidly) invalid and we must resort to the

full-wave theory or other valid approximations. The limitations of ray theory fall into

several categories, each arising in connection with a different type of asymptotic

approximation. Each category renders its own conditions for the validity of seismic ray

theory.

There exist today a few basic ray-methods which are interrelated. The oldest

is the eikonal method (e.g., Born and Wolf, 1964; Luneburg, 1964) upon which the entire

field of geometrical optics is based. It became a very useful tool in studies of seismic

wave propagation (e.g., Singh and Ben-Menahem, 1969, Cerveny et al., 1977; Aki and

Richards, 1980; Cerveny and Hron, 1980) Next came the WKBJ and the saddle-point

approximations at high frequencies (e.g., Bremmer, 1951) with some new development

-19-



Chapter II

and variants (e.g., Kravtsov, 1968, and Kravtsov and Feizulin, 1969, Chapman, 1978).

In recent years, the advent of computers allowed seismologists to look for fast and

efficient algorithms to calculate collimated wave fields in inhomogeneous media. The

paraxial wave approximation, especially in a ray-centered coordinate system was found

to offer some advantages (e.g., Landers and Claerbout, 1972; Corones, 1975; McDaniel,

1975; Palmer, 1976, 1979; DeSanto, 1977; McCoy, 1977; Bastiaans, 1979; Cerveny

et al., 1982; and Haus, 1983)

In addition, certain efforts were made to harness the Kirchhoff-Helmholtz integral

(e.g., Baker and Copson, 1939) to the evaluation of seismic fields (e.g. Kravtsov and

Feizulin, 1969; Scott and Helmberger, 1983; and Carter and Frazer, 1984) There is now

a growing need, both in earthquake seismology and in seismic exploration, for

computational methods that can render sufficiently accurate solutions to wave

propagation problems in three dimensions. In this chapter we shall examine the validity

of the various approximations involved in the asymptotic wave theory.

2. DECOUPLING CONDITION FOR GENERAL INHOMOGENEOUS MEDIA

The elastodynamic vector equation for isotropic media, in the absence of body

forces, can be put in the compact form

p-0 = V[(X + 2)V 0] - Vx(LVx () + 2V/4*Vx(I x ), (2.1)
at2

where I is the unit dyadic, U denotes the particle displacement vector at point M(r')

and time t,p is the density, and X and A are the Lame elastic parameters of the medium.

I xU is the vector product of the unit dyadic and the displacement vector and

- 20 -



Chapter II

1 1Vx(I x ) -IxVx U -IV*U+ -(VU + UV).
2 2

Introducing the notation

pa 2 = X + 2/, pf 2 = A,

and applying the vector identities

V(~4) = 1P VP + cp V4',

V.(pA) = p V A + (Vp).A ,

Vx(qB) = q Vx B + (Vq) x -,

we may recast Eq (2.1) in the form

2 = 2 V ) - VX ( 2 VX ) + P (2 V. ) -

at 2 P
YJIx (# 2x U)

+ 2#12 Y + Vx ( x 0)

Taking the divergence of Eq. (2.4), applying to it the Fourier transform over t and

defining

N = a2 V ,

A = 2 Vx U,

Va 2

S-a2 , Jp = P

(2.5)

(2.6)

(2.7)ka = W/ aX.

it is possible to transform Eq. (2.4) into

V2N + Jp VN + k2N = ( 2 # + p). Vx A - t,

where

=NVV*. p -A *Vx p + V 2#2(g fp)l :Vx(I X ') + 2.p- * xAi

(2.8)

(2.9)

The advantage of writing Eq (2.1) in the form (2.8) is obvious: It separates the terms of

- 21 -
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Chapter II

the equation into three distinct groups according to the order of the derivatives of the

constitutive parameters p and P. At this point we discard the vector r which is

composed solely of second order terms in 9p and j# as compared with 9 * VN and

(2 p + *p) -Vx A. Further change of variable

b = p / 2 N, = 1/ 2 A,

followed by neglection of terms of the order (1p)2 , leads us to the scalar wave equation

V2 b + k b = (2p + p). Vx + O(E2&; 2); ), (2.10)

where

Ea = a C s =  ; p =  p"" (2.11)

Similarly, by taking the curl of Eq(2.4), we obtain to first order in Ja, g# and gp

V2A + (p - j). VA - x VxA + kA=

= 2 [2 x + +2 N &- x N+ , p ) (2.12)

v2A - vB gP +k =

= '2J[g + 2 -J]xVb + a' ;i p; (2.13)

Note that since (2.1) does not have an ezplicit dependence on VX, as it does on V/D the

gradient of the compressional velocity a does not enter explicitly into Eqs. (2.4) -

(2.12). It is, however, implicit via Eq.(2.5) and the gradients of N and b in Eqs. (2.8),

(2.10) and (2.12). For that reason we must require, as we indeed do in Eq. (2.14) and

(2.18), that ea << 1.

We shall adopt the following terminology:

- 22 -



Chapter II

1. Smooth inhomogeneous media: second order terms in the coupling vectors are

neglected but first terms are kept. The equations of motion are coupled [Eq. (2.10),

(2.13)].

2. Weak inhomogeneous media: first and second order terms in the coupling vectors

are dropped. The equations of motion are totally decoupled .

Eqs. (2.10) and (2.13) are the first order elastodynamic equations for the

coupled shear and compressional wave motion in general inhomogeneous isotropic media.

The entities jp, fa and '# are the P-SV coupling vectors. Landers and Claerbout

(1972) and Landers (1974) numerically integrated equations similar to our (2.10) and

(2.13) in two dimensions to recover the seismic wavefield. In the context of ray-

theory we assume a total decoupling of P-SV motion. A necessary condition is

Ea << 1 , &E <<1, Ep << 1 . (2.1 4)

In media that obey (2.14), the material properties change slowly over distances of order

of a wavelength. The corresponding equations of motion in such media will then simplify

to

V2b +k b = 0, V2  + k2B = 0. (2.15a)

Thus, for weak inhomogeneous media, the functions

b =pl/2a2 V.U and B =p 1 /2 2 Vx U, (2.15b)

obey the respective scalar and vector Helmholtz equations. In earthquake and

exploration seismology, there are many instances where this approximation is sufficient.

If first order coupling terms of P and SV waves are retained, then one must solve Eqs.

(2.10) and (2.12) simultaneously. In either case, the spectral displacement field

U(M,) is recovered by further integration and differentiation,
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Chapter II

4rU(9) = - f d + x Vx 0 ) d3, (2.16)
If -1I 1 - 11

where V is the del operating on the ? coordinates of the integrand. The decoupling

conditions (2.14) can also be written in the alternative form (A = wave

length, k 2 = wave number, and k = for P waves and k = for S waves)
A a

A << min Vp -~- or k a o10 >> 1 , (2.17)

or

<< << 1 << 1 (2.18)

where 10 is a characteristic length at a given location, and may vary from point to point

in the medium. Condition (2.18) refers to a local property of the elastic medium. It can

be shown in a vertically or radially varying medium that is radius of curvature at

the lowest point of the ray (turning point).

The mode decoupling condition that we shall use is

W >> wo, co max Il Va , VP ,a l  (2.19)

This condition defines a virtual threshold frequency which must be surpassed by the

wave frequency w. Note that the threshold frequency wo is tied to the characteristic

length l o via the relation lo1 o = a . We shall show later that (2.19) is physically more

meaningful than (2.18) in the sense that w0 exists even when exact decoupling renders

(2.18) meaningless.

Note that in homogeneous media with material discontinuities, l 0 assumes the

geometrical meaning of radius of curvature of the discontinuity. If, for example, we
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Chapter II

consider compressional wave propagation in a sphere of radius a, (2.17) will be

replaced by

kaa >> 1 , (2.20)

which means that the wavelength must be much smaller than the sphere's radius. Note

that this condition does not mean that, at the interface, P and S wave are not coupled

by boundary conditions, but that their propagation, away from the interface, remains

uncoupled (independent Helmholtz equations for P and S waves).

The inequalities (2.14), (2.17) and (2.18) are only necessary conditions for the

elastodynamic equations to yield approximate decoupling of P and SV waves. The

following note is appropriate in this connection: The smallness of sa, E# and ep does not

imply that Va V and cease to play a role in shaping the amplitudes of
I ' # P

seismic waves in the earth. On the contrary, these entities turn out to be essential in

the seismic theory of Gaussian beams and dynamic ray tracing. Indeed, if we solve the

Helmholtz equations (such as Eqs. (2.15a) in coordinate systems where the metric scale

factors depend on the velocities a and # (such as the ray-centered coordinate system

or the intrinsic coordinate system)), second-order derivatives of a and P reappear in the

Helmholtz equation.

In weakly inhomogeneous media we assume a decomposition of the displacement

field analogous to the decomposition in the case where the medium parameters depend

on a single coordinate (see for example Ben-Menahem and Singh, p.417, 1981)

= p- 1 /2 V 1 + p-1/2 ) +-1 2 Vx (2  3) , (2.21)

where & is a (unit) vector subjected to certain restrictions, and the potentials Oi obey

the respective Helmholtz equations (V2 + k?)P = 0 i = 1, 2. The condition under which
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(2.21) holds is that of Eq. (2.19) in vector separable coordinate systems. Substitution

of Eq. (2.21) into Eqs.(2.15) links the potential systems (b, A) and (P1, 1 2, s3). The

relations are b = -w 2 01 and B = - 2 VX(a312 ) + #VX VX (8P 3 ).

Vertically Inhonogeneous Media

In the special case where the inhomogeneity of the elastic medium depends on

one cartesian coordinate z, the analysis becomes simpler and mathematical tools are

available to solve the equations of motion. Three important results can then be derived:

1. Exact decoupling of the P and SV wave motions is possible only in special cases

where the constitutive parameters satisfy a pair of nonlinear ordinary differential

equations (Hook, 1961, 1962; Alverson et al., 1963; Lock, 1963). We shall deal with

an example of this category in chapter III.

2. Under less restrictive conditions (keeping first order terms in Ea , e, and p) the

field can still be represented by an expression similar to (2.21)

1 1
= V(f 1) - -VxVx (6f 4 2) (2.22)

Substituting this expression in Eqs. (2.8) and (2.13) and keeping terms up to first order

derivatives in X, p, and p, a straightforward, though lengthy, analysis yields two coupled

equations for the potentials 01 and CP2

V2p + k
1  1 1 12 V2 - 2 , (2.23)

p az 1 az 2

V2 2+ + k2 P2 = 21 1(2.24)

p az

Here,
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211 X + A 2__, (2.25)

are scalar coupling factors, and primes indicate derivatives with respect to z. A

perturbation scheme for the solution of (2.23) and (2.24) is presented in Appendix A.

Lock (1 963) derived an exact solution of the elastodynamic vector equation for

p(z) = /(O)ez; X(z) = X(0)eaz; p(z) = p(O)e . (2.26)

In this case a = - = 0, gp = aez = const. and Eq. (2.4) reduces exactly to our Eqs.

(2.23) to (2.24) with p'/p = a, 7712 = "7-1, 9 21 = a(2 - y), 7 = (X + 2pu)/ u. Since

the velocities have fixed values, the rays are straight lines and the coupling is effected

through the constant density gradient alone.

From this point on we shall assume a total P/S decoupling. Hence, we do not

have to deal any more with the elastodynamic vector equation itself, but rather focus

our attention on approximate solutions of the scalar Helmholtz equation.

3. HYPEREIKONAL

Let us now examine the Helmholtz equation for general inhomogeneous media. A

convenient mathematical vehicle is afforded by a general orthogonal coordinate system

where the only constraint is that one of its coordinates is the wave travel time -r. This

system will be denoted (7, ,Y72), with corresponding scale factors h. h 1 and h 2 . The

2
scalar Helmholtz equation V2 ip + = 0 in this system is

___+1 h-2 h- 2 +h + = 0 (3.1)
h r h 2 tT hr 1 h 1  d2 h2 202

We take to be of the form = A0( ,y1, 12 ;0) S(-r;w). and substitute into (3.1). After
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some intermediate steps, (3.1) reduces to

2  2S 2 2 2Ao v 2 S V2, + 2 * VT =0. (3.2)

h 2 Sd 2 +  Ao S dT A o

Assume that the terms involving first derivatives with respect to T are of

different order than the rest. This yields the two equations

v 2  12 S 2 V2 Ao
V2  2S + W2 + v 2 0, (3.3)

h2 Sd72 Ao

and

VAo
V2T + 2 VT = 0. (3.4)

Ao

Consider the class of inhomogeneous media such that

2

V2 A o + ~ o = 0 , (3.5)

where oc and v 2 /h 2 are either constants or a slowly varying functions of the

coordinates. In cases where both are constants, an exact solution of Eq. (3.3) is

h -
iwr T (1 - 2/ u2)1/2 (3.6)

S(-;w) = e V G

The S functional in (3.6) is defined as the hypereikonal. Equation (3.4) is the

transport equation with an exact solution

h 1/2
Ao(r,y1,, 2 ;) = f (7 1,7 2 ;w) hi (3.7)

where f(y,y 2;o) is a function independent of T. This solution assumes h 1 h 2  0. In

the case where 71 and Y2 are the two spherical angles, f can be interpreted as the

product of the radiation pattern of a source located at the origin of the spherical

coordinate system times the source strength. Thus, for example f(Y1,7 2 ;w) = CO
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(constant) the source is a point explosion. Let J be the Jacobian of the transformation

from cartesian to the general orthogonal coordinate system (7r,7,2).

J _ D(x,y,z) h-rkh2 (3.78)
D(,7Y1, 2 ) - h.(h.h 2 . (3.7a)

Define the surficial Jacobian as JS = J/h - hlh2 . Equation (3.7) then reads

Ao = f il/ 2  (3.7b)

JS is sometimes called the spreading function.

The solution of the Helmholtz equation can then be written in the compact form

h
h '1/ jw (1 - 2/ 2)1 /2

A0 S = f (7 1 ,72 ;) j e v (3.8)

For wc = O0, or w >> .c, this solution reduces to the ray solution (see section 4) or the

WKBJ solution of the wave equation (see section 6), respectively. In media where (3.8)

holds, there exist a cut-off frequency c; below which wave propagation is not

possible. The medium cut-off frequency, defined as, c = v(V 2 Ao/Ao) 1 / 2 , may be

complex. Media for which oc is complex will not be treated here and a special

investigation will follow in a sequel paper. The factor (1 -w2/ W2)1/2 in equation (3.8)

indicates the presence of a second order effect of dispersion which is usually

neglected for seismic body waves at high frequencies.

The hypereikonal formulation for the Helmholtz equation can be extended in a

straightforward way to the vector elastodynamic wave equation (2.1). In Appendix B,

we show how this can be achieved for the special case of vertically inhomogeneous

media.
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Vertically Inhomogeneous media

As an application we shall derive in closed form the results given above in the

case where the medium's properties are only allowed to vary along the z direction. A

convenient coordinate system is the intrinsic coordinate system (Yosiyama, 1940). In

a vertically inhomogeneous medium, we define a cartesian coordinate system centered

at 0 (figure 1). The cylindrical coordinates of a general point M are (r, a3, z). A seismic

source is placed on the z axis at M 0 (O,0,zo). We define new coordinates M(i-,j 0 ,d)

relative the origin Mo , where 1 is the azimuth angle of the cylindrical system. The

transformation-equations linking the coordinates (z,r) and (-,j 0 ) are given by the

implicit integral relations

Z z

r = (g 2 -p2)-1/2 pdz 7 = fg 2 (g 2 -p2)-1 /2dz , (3.9)
z0 z0

where

g v()' P = g(zo)sinjo (3.10)

These are the standard travel time equation, T, and horizontal slowness, p, in Herglotz-

Wiechert formulas (Aki and Richards, 1980); jo is the takeoff angle. It is understood

that p is held fixed (z independent) during the integrations. Thus, although jo is indeed

a coordinate, it acts as a fixed parameter during the intergration. v denotes either a or

p.

For any given velocity distribution v(z), Eq. (3.9) defines the relations

r = r(z,p) and 7 = r(z,p). For any given values of z and r, these two relations define

the pair (T,j 0 ) and vice versa. For a fixed value of p (i.e., jo), the r integral in (3.9)

defines a curve r = r(z) in the plane 1 = const, and the T integral defines the travel

time along this curve from zo to z.
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Mo (So)

jo

(T,j,e )0

err

Figure 1. The intrinsic coordinate system
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The angle j between the vertical and the tangent at any point on this curve is obtained

readily by differentiating r with respect to z for fixed p. This is the ray angle of

incidence.

bJ =p (g 2 -p 2 )-1/2 =tanj. (3.11)

Solving for p and comparing with (3.10) we find

S= sinj sinjo (3.12)
v(z) v o

where v o = v(zo). Eq. (3.10) is the ray equation and Eq. (3.12) is Snell's law. For a

fixed value of jo, the ray equation is given by a relation r = r(z;jo) . With these

definitions, one can verify in a straightforward manner the following statements:

A. The line element of the new system is

CI2 -h2dT 2 +hd d 2 .hdj (3.13)

where the explicit expressions for the scale factors are:

3

h, = v(z); h = r; hio p (g -P 2 ) 1/ 2 cOtj 0  
2 (g2 _p 2 ) 2 dz . (3.14)

g zo

Hence, the coordinate system (T,jo,) is orthogonal.

B. The wavefront equation is obtained by eliminating p between the relations

z z

T 0 =f 9 2 (g 2 _p 2 )-1/ 2 dz and r = fp(g 2 -p2)- 11/ 2 dz. At any given time - =To0
zO zO

the wavefront is a surface of revolution generated by the plane curve (figure 2)

z = z(r;z 0 ; ro) . (3.15)

- 32 -



Chapter II

r04

djo

zo o P
2

Figure 2. Cross-section of wavefront at 15 = const .

- 33 -

A

dzF %



Chapter II

Since on this surface d-r = 0, we have from Eq. (3.13) and from the geometry of a line

element on a general surface of revolution

d 2 h. 29 2 h 2  = r2d 2 + 11 dr2

Therefore, on the wave front, up to a sign

dz 1 dr 1 dz
= tanj; ho = COS - sinj do (3.16)

The geometric interpretation of Eq. (3.16) is evident from figure 2. An alternative

interpretation of hjo is obtained when we differentiate r in Eq. (3.9) with respect to jo

at fixed z and use Eq. (3.14)

h cosi[ I (3.17)

C. The Gaussian curvature of a surface of revolution is defined as K = (p 1P2)- 1

where p, and P2 are the wavefront principal radii of curvature (eg., Eisenhart,

1909). In our present case

dz 2
dr dsinj (3.18)

P d 2 z 2 dr

dr 2

_ (dz121/2
dr rPdz2 + sinj

dz d 2 z

K = dr dr 2  _ sin dsin = sinjcosj j (r) (3.19)
l dz2l r dr r dr
drJ
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D. The divergence coefficient (e.g., Ben-Menahem and Singh, 1981) is given by

SvoPo sinj o rio 11/2
the expressionX= rcos j ,where lul = Xe "  I uol , u being the

particle displacement. In terms of the scale factors and with the aid of Eqs. (3.7) and

(3.17), it is found that

x=Po 1/2 o Ao sino)1/2 [ h,2 1/2X = , Ao - c1 ( ) (3.19a)
p v c 1  vo hhjo

The point source constant introduced earlier, co, is here equal to c (sinjo/vo)1/ 2 ,

where c1 is the source strength. Using Eq. (3.12), we can'also write

X = (p2 hi )-1/2 (3.20)

If we substitute for sinj in (3.16) from Snell's law (3.12), and evaluate thed
dr

derivative at the wavefront, we obtain

cotj _ COtjo 1
o - + =-, (3.21)

where R = is the radius of curvature of the ray at the wavefront. In

homogeneous media p, = hjo. In weak inhomogeneous media we have approximately

tanj o
p i ta-- hj (3.22)

The Jacobian of the transformation from cartesian to intrinsic coordinates is

J = D(x,y,z)/ D(T,jo,3) = h ohjo (3.17a). If we consider a homogeneous unit focal

sphere around the source, Eq. (3.14) will render for this sphere

(h) 0 = v o , (hO)o = 1, (hjo) = sinjo. Denoting the Jacobian on the focal sphere,

Jo = vosinj 0 , we find from (3.1 9a)
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X Po Jo ; Ao = cv (3.23)x = oJ ;AO= l --

Note that in weak vertically inhomogeneous media, the total curvature (Eisenhart,

1909) of the wavefronts is

I 1/ 2 Ao

K. = (pP2)-1/ 2  tanj 0  (3.24)tanjo .C)

We thus see that Ao is a fundamental quantity that is linked to divergence coefficient,

the Jacobian and proportional to the total curvature of the wavefront. In cases where

(tanj / tanj 0 ) /2 is close to unity, Ao is close to the total wavefront curvature.

A class of media for which Eq. (3.2) holds is found in the following way: we put

r '1/2 rh
Ao = c i, D = j ' (3.25)

v D9 sinjo

where D is a certain distance. It then follows that Eq. (3.5) assumes the new form

v2 vD--2 -I 1 d2 v dv 2 (3.26)
Ao D 4dz 2 d 2  D zdz c

In a homogeneous medium D V2 0, v' =v" =0 and wc = 0 wo. In a medium

with a constant velocity gradient v = v(0)(1 + T7z), one proves that

v 2 DV2 1 v D dv 0. Eq. (3.26) then yields the exact result
D D Oz dz

_ 1 V l (0)  Wo • (3.27)
c 2 dz 2

In a medium with a linear gradient v = v(O) (1 + 7l z + 72 z 2)

v2 2A 1 2(0)[ - 472] + O . (3.28)
Ao 4
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So, at least in the far field, the cut-off frequency is at

V (O) (2 _ 42)1/2. (3.29)

However wo = (0) (71 + 2z7 2 ). This includes Eq. (3.27) as a special case wherever

772 = 0.

The threshold frequency, co, characterizes the heterogeneous medium. In order for

asymptotic wave methods to be applicable in such a medium, the wave angular

frequency ,co, must be greater than oo. This is the mode decoupling condition derived in

section 2, and expressed in (2.19). Another medium characteristic frequency is the

cutt-off frequency, c, introduced in (3.8). The wave frequency must be greater than

oc so that second order effect of dispersion can be neglected.

We thus see that in media where the velocity profile can be represented by a

polynomial of degree one, co = wc. In general, oc and wo depend upon the coordinates,

and their equality is not obvious. In the special case of the paraxial approximation (and

ray theory) their equality is postulated on the basis of dimensional analysis.

4. RAY-SERIES: EIKONAL AND TRANSPORT EQUATIONS

Geometrical optics is based on the first term of the asymptotic-series solution of

the Helmholtz equation

I(M,o) = eirr(M )  (4.1)
n =o

The substitution of

O(M,w) = Ao(M) ei c 'r (M), (4.2)

into the Helmholtz wave equation [sometimes known as the ansatz of Sornmerfeld and

zrunge (Cornbleet, 1973)] leads to
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+ + - + i 7 + 2 * V= 0. (4.3)

If Ao is a sufficiently slowly varying function of the coordinates over a wavelength

scale, we have

S>> c. (4.4)

This is defined as the high frequency condition. Then, equating real and imaginary

parts on both sides of Eq. (4.3) we obtain the well-known eikonal and transport

equations respectively

(V7 2 = ; (4.5)

VAo
V2 T + 2 V * VT = 0. (4.6)

Ao

The characteristic equations of the eikonal (4.5) yield rays 0. The solution of the

eikonal has the physical meaning of the travel time along a ray 0 connecting the source

Mo(s o ) to a receiver at M(s), where s is the arclength along the ray measured from a

given fiducial point. It is given explicitly by the equation

(s) = f v(s) - ds . (4.7)
so

The transport equation (4.6) involves the travel time i(s) and a function Ao(s) with the

physical meaning of an amplitude of a local plane wave along the ray coordinate s. It is

the same as that derived in the previous section (3.4). The surface 7(s) = const.

yields the wavefront (or phase front). The solution of the transport equation is given

explicitly in (3.7).

An equivalent approach in obtaining the eikonal is to equate to zero the coefficient of
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W2 in (4.3). The transport equation is of lower order in frequency, since it is obtained by

equating to zero the coefficient of w. For high frequencies the remaining term in (4.3) is

assumed of order one (high frequency approximation).

Having defined the concept of a ray, the coordinate system introduced and used

in the previous section remains valid for characterizing rays. The coordinate system

(,71',2) introduced in the beginning of section 3, will henceforth be called ray

coordinates. A special case is the intrinsic coordinate system (7,j 0o,,), which will be

used in the present context.

However, it is convenient to solve the eikonal equation in the ray-centered

coordinate system (s,ql,q 2 ). The process of solving the eikonal equation in this

orthogonal system is known as dynamic ray tracing. s measures the arclength along

the ray 0 from an arbitrary reference point to the receiver position M(s) and ql,q 2 are

the cartesian coordinates in the plane perpendicular to 0, with origin at 0. Details of

this system and its regularity are described in Cerveny (1983a). The scale factors of

this coordinate system with respect to the cartesian reference frame are

1 6v 1 h1
h = +q 1 + q2 -- ;L hLq 1 = hq2 -hv = +q l q 2

The partial derivatives are evaluated at q, =0.

Defining Kw as the local wavefront (or phase front) curvature matrix (in the

vicinity of 0), the eikonal equation in the ray centered coordinate system of 0 is written

in the form of an ordinary non-linear differential equation of the first order of the Ricatti

type for I~, which cannot be generally solved by analytical techniques. Letting

K(s) v(s) P(s) Q- 1 (s), the eikonal is expressed as a coupled first-order ordinary

linear differential system (Cerveny, 1 9 8 3Q)
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dQ(s) _ v(s) P(s), (4.8)
ds

dP(s) - -(s) - 2 V(s) Q(s),
ds

where v is the P or S wave velocity and V - = [ . Solving this system,

with specified initial conditions (point source or line source), for the 2 x 2 matrices

P(s) and Q(s) determines K(s). K.(s) is symmetrical, and in 2-D media, it reduces to

the scalar Kw (total wavefront curvature).

It is shown that in ray centered coordinates, for a given point s on 0, the

transport equations for the P wave principal component ,a (along the tangent vector to

0 ) and for S wave principal components IL0 (along 1 ) and 1iZ2 (along C2 ) are

independent. The ray centered coordinates "untwists" the ray of its torsion, at every

point s of 0, to its initial value at Mo . The unit vectors that constitute this coordinate

system are sometimes called the polarization vectors. In a weak heterogeneous

medium, the analytical solution of the transport equation for a receiver M(s) is given by

Ao (s) = co VS )  , (4.9)

where co is a constant characterizing an explosion source. For other sources embedded

in a homogeneous focal sphere, c o must be replaced by f ( 1 ,72;w), as defined in

equation (3.7). This is nothing else than (3.7b) expressed on the ray 0. For P waves,

Ao- I ,I1 and v(s) = a(s) , and for S waves A 0 =I ' , or Ao Ii#2 21, and

v(s) = f(s). JS is the surficial Jacobian of the transformation from cartesian to ray

coordinates (T,7 1,' 2 )- It is computed via JS(s) = det[Q(s)], and measures the cross

sectional area of an elementary ray tube surrounding Q . jS is related to J with the

identity given above (3.7b). Here h,=vhs . On the ray we have h, v. The Jacobian

JS, in the dynamic ray tracing method, results from the product of two Jacobians
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JS = h 1 D(z,y,z)i D(,7Y,7 2) h 1  D(z,y,z) D(7,ql,q2)
S D((7,ql,q 2 ) D(Tr,Y 1 , 2 )

or in terms of scale factors

JS - 71h72 =h lhq2 det[Q] = det[Q]. (4.9a)

Q can be viewed as the Jacobian matrix of the transformation from ray centered to ray

coordinates, and consequently det[Q] is the Jacobian of this transformation.

The displacement is recovered via (2.21). Recalling that Ao and 7 are only

functions of s, and that in the case of P waves the displacement is along the ray p, we

have

U = p-1/ 2 VP = c O P-1/2 [ Ao + JeiA] p. (4.10)

Since the ray solution is the far field contribution of U, (condition (5.9)) we have

for the ray solution

Or = CO (P V jS)-1/2 i Z' . (4.11)

Expressed in terms of a divergence coefficient (3.23) we have

Ip S 1/2
= C Povo

p v is
W eir p, (4.12)

where C-= / iw = cl/ (p -1/ 2 vo). Parameters with subscript 0 denote their value at

the homogeneous unit focal sphere surrounding the source. For a point source Jo=sinjo

(see 3.23).

Oumulative Error

So far we have not raised the question of the error produced by replacing the
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exact solution of the Helmholtz equation by the first term in the geometrical optics

approximation. Let then

S3= [ + E = o + j' (4.13)

where 0w2/w( 2)1/2
where - = Aoe as derived in equation (3.8), q = Ao e 'Gr , and a is the

correction term.

With the provision c >> wc we have from (4.13)

22w

Therefore, in order to have small relative error we must have

>> o 27. (4.15)

This condition is defined as the Fresnel 1-condition. It is re-derived, within the paraxial

approximation in section 7, for a homogeneous medium.

Note that

lim = 0. (4.16)

This means that in the radiation zone of inhomogeneous media (i.e. when eq. (4.4) is

satisfied), the error due to ray theory tends to decrease with the increase of the

frequency.

We can view (4.14) as a cumulative error along the ray and condition (4.15)

ensures that this error stays small. This can be shown by substituting (4.13) into the

Helmholtz equation and using the transport equation (4.4). We find that e obeys its own

Helmholtz equation with a forcing term
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2 V2 AO
V2,C+ - -o . (4.17)

v2 Ao

Direct integration of Eq. (4.17) renders

1 V2 Ao (418
7 f A-P o G( I o) o , (4.18)

where the Green's function G satisfies

2
v2 c + - G = -4rr( -fo) . (4.19)

In order to estimate the integral in (4.18) we apply the mean value theorem over a

finite volume element which is assumed to be the Fresnel volume. As we shall see in

section 7, this volume is a paraboloid of revolution. The source-receiver distance will be

taken to be U7. The volume is then

= T r2 U7, (4.20)

where U is the average velocity along the ray, ro =A v T is the first Fresnel zone

radius at the observer.

Eq (4.18) then becomes

1 V2 A0
S ---- o G VF. (4.21)

45r Ao aveTrage

with Fresnel volume, VF, given by (4.20).

However, the absolute value of G is approximately equal to the wavefront

curvature, RE1, which is of same order as (UT) - 1 , and V2 Ao/Ao = 10- 2. Substituting

these values into (4.21) we find that the relative error e/io is small, if (4.15) is

satisfied (within a factor -). The relative error can thus be seen as a cumulative error
2
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along the ray.

Even within the limits of the above restrictions, the ray-series will fail to

represent the solution of the Helmholtz equation at critical points where the Jacobian in

(4.9) vanishes. For a vertically heterogeneous medium, according to Eq. (3.20), this

failure can be avoided if (see figure 2)

h5- X 0 P2 r 0 (4.22)
o sinj
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5. NEAR AND FAR FIELDS

We shall first derive intuitive conditions for inhomogeneous media from

extrapolation of the homogeneous case. Then, we shall define formally the far field

condition directly from the eikonal and transport equations. In a homogeneous elastic

medium, the displacement field of seismic point source such as an explosion is given

explicitly by the expression (e.g. Ben-Menahem and Singh, 1981)

- vpa (5.1)
4rrp 2  ,

4-p 02  a A &

where mno is the source seismic moment, ka = w/ a is the compressional wavenumber, A

is the source-receiver distance and 6A is a unit vector along A.

If kaA >> 1 or A >> A, or T >> wave period, the expression

-* O-imok I kl (5.2)
47T(X + 2A) A I

represents the far-displacement field. Since kaA = WA/ a = 07 where T is the P-wave

travel-time along the ray, it is expected that the far field condition in inhomogeneous

media will read accordingly

S>> t o , (5.3)

where r given by (4.7) is the travel-time along the ray with intrinsic velocity v(s) (v

denotes either a shear velocity P or a compressional velocity a) and t o is some

threshold time which is characteristic of the particular inhomogeneous medium under

consideration. This threshold-time must be related to the threshold frequency of Eq.

(2.19) through the relation
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W0t 0  1 . (5.4)

For wave propagation in decoupled inhomogeneous media, both (2.19) and (5.3) must

hold simultaneously. Therefore, combination of both conditions yield

-7 >> 0t0 o 1 . (5.5)

Similarly, the near field of (5.1) can be defined as kaA << 1. The corresponding

analogy for an inhomogeneous medium, taking again into account the decoupling

condition, becomes

Co 7 < W to, (5.6)

or

WT << (5.7)

For a given velocity distribution v(s), Ao(s) and -(s) can be calculated by

solving the eikonal and transport equations. The solution in (4.7) is physically

meaningful only if both the unit slowness vector 6 = v V7(s) and the local plane wave

amplitude Ao(s) are slowly varying functions of the coordinates. These limitations can

be expressed in mathematical form as follows:

Let s be the local direction of propagation along a ray in a ray centered

coordinate system. Then if A is a wavelength, the local change of the wave amplitude

over a distance of one wavelength can be estimated from

dAo  [ dAo/ ds 1
Ao(s + A) = Ao(s) + A- + ... Ao(s) 1 + A Ao +. (5.8)

A slow variation of Ao(s) means that
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dA o

kA 0o >> I *VAo = (5.9)

This is defined as the far field condition. Similarly, a slow variation of A means that

A < I / VJ 1, or expressed along the ray

>> ,d (5.10)

where A' is the local unit slowness vector tangent to the ray (normal to the wavefront)

(figure 2). Since, up to here we have assumed that the decoupling condition (2.19) was

satisfied and I Vv dv / ds , we conclude that the condition (5.10) is always

included in (2.19).

In vertically inhomogeneous media, we have shown in (3.24) that Ao is equal

approximately to the total curvature of the wavefront. Denoting the wavefront radius of

curvature by Rw , we may write condition (5.9) in a new form

k R, >> I .a V | . (5.11)

In homogeneous media Ao=1/ A , where A is a coordinate along the ray. Then,

I AVAo I = 1 / A2 and we fall back on the familiar far field condition kA >> 1.

Thus, in addition to our former requirements, w >> wo, which secures the

decoupling of the vector elastodynamic equation (2.1), and small variations the

slowness vector, and w >> wc, which guaranties the high frequency approximation, Eq.

(5.9) secure small variations of the local plane wave amplitude.

The far field condition (5.9) can be re-derived extending the error analysis used

at the end of the previous section to vector waves. Restricting our analysis to

compressional waves only, we define the error p along the ray,

p - O*V -3*V'o0 , (5.12)
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where / is the unit vector tangent to the ray.

To estimate p we again postulate

11/2 (5.13)

o = Aoe  2 
= Aoe (

Carrying out the differentiation as indicated in (5.12) with the condition (4.4), and

recalling that ds = v d r, we obtain

1 dAo

EP A ik + E , (5.14)

where & is the error given in (4.14). In order for the error ez be small we must achieve

(4.4), (5.9) and (4.15). The Fresnel 1 -condition (4.15), when multiplied on both sides by

c, yields

W2 W-2 > 7. (5.15)

This relation has a simple physical interpretation. The far field region cannot be too

large, since it might interfere with the high frequency condition, introducing errors in

phase. Therefore, given a frequency, a receiver cannot be arbitrarily far away from the

source and is constrained by the Fresnel 1-condition (upper bound on source-receiver

distance).

6. WKBJ APPROXIMATIONS

We have examined so far the ray-series method through which the scalar

Helmholtz equation was approximated. A second approach which also leads to ray

theory is based on the following three steps: Assume first that the velocity depends

only on z.
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(1) Apply a double integral transform to the wave equation, leaving an ordinary

differential equation in the z coordinate.

(2) Obtain WKBJ solutions to the said equation.

(3) Approximate the inversion integral for the horizontal slowness, p, by saddle point

methods.

We shall provide here a case of sufficient generality such that the limitations of

the method become apparent while its interrelations to the other two methods can be

recognized.

We apply the Fourier-Bessel transform to the equation

2_ 6(r)
V2i + i = -2 cl 6(z -zo)

v2(z) r
(6.1)

where the transform is defined as

G (p,z;o) = f P(M,) Jo(upr) rdr,

where M(r,z) and Jo is the Bessel function of the first kind and of order zero.

Since G is an even function in p (axial symmetry with respect to the z axis) the

solution is obtained from the inverse Fourier-Bessel transform (Chapman, 1978), and has

the integral representation

G 

(p,, H(pr)p

(6.2)

where H61 ) is the Hankel function of the first kind and order zero.

G then obeys the ordinary differential equation
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d2G + c 2 q 2 G = -2 cl 6(z -zo), (6.3)
dz

2

where q 2 () = -2(z) _p 2 . p and q are the horizontal and vertical components of

slowness, respectively.

The solution of (6.3) is given in terms of the two independent solutions 1,2 (z) of

the homogeneous equation of (6.3),

c- (z<) 2 (>)
G(z I zo;p,w) = , 2 (6.4)

(1 (z0)2 (ZO) -2 (O) 1' (O)

where z< = min(z,z o ) , z> = max(z,zo). We approximate G by the WKBJ method

(Bender and Orszag, 1978) and obtain

G yW J ~ (q(z) q(zo)-1/2 Y(p) , (6.5)

with

z

r(p) = jq( ) de( (6.5a)
z0

The dependence of p in q is implicit, see (6.3).

Then, Ho(')(pr) is approximated by its asymptotic (i.e. far field) representation:

HSl)(c pr) - (2/(7Tpr)) 1/ 2 exp(icpr - irr/4) as Cpr -. o. Equation (6.2) takes

intermediate form

f(M,) A(z Izo;,) eiT(p) dp, (6.6)
-00

with

1/2

A(z I zo;p,) = i c1 ei7/ 4  P  I (6.7)
2 rrr q(z) q(z o )
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T(p) = -r(p) + pr . (6.8)

We then apply the stationary phase approximation to (6.6) and find that the final result

is

t (M,) B e i ', (6.9)

where

B = CI  P, 1/2
Sr gor I T P) I

with Pr = sinj/v = sinj o /v o, qr = cosj/v, and gor = cosjo/v 0o, where the angles j's

have been defined in section 3, and 7 is the ray travel time, equal to (3.9) or (4.7).

B is equal to Ao in (3.19a), since hjo =Pr cosj cotj 0 I T"(pr)l. Thus WKBJ

solution yields results identical to those obtained from geometrical ray theory via the

eikonal and transport equations (see section 4). Note that if we use a double Fourier-

transform instead of the Fourier-Bessel transform, the integral in (6.6) becomes a

double integral over p 1, and P2 where the wavefront equation is

z 1 2 1/2

T = p +P 2  + 2(z) 1 - dz. (6.10)
z0

Here (Pl,P2) are the components of the slowness vector in the (x,y) directions

respectively.

The stationary phase principle is equivalent to Fermat principle of stationary time

and the equation for the stationary-point is in fact Snell's Law in disguise. The value of

the integral at the stationary point yields the amplitude and the phase of the seismic

ray.

If the velocity v depends on all three cartesian coordinates, the present method
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fails. We may nevertheless obtain an approximate integral representation for weak

inhomogeneous media similar to (6.6) if we write

i/(M,W) ff A(ryl "Y2;) eiT y(1/, y 2 )dy 1 dY/2  (6.11)

where T = T(M,7,1,72). This representation may have a number of different

interpretations depending on the approximation used. The simplest way is to think of

the integrand as a superposition of eikonal solutions with ray parameters

(71,72) . 71'y172) is a weighting function.

The WKBJ approximation of (6.11) which yields the geometrical ray is (Titchmarsh,

1967),

2, ( °;) W ro°;o ei ) )  (6.12)

Here y(o), ) are roots of T O, T and-- 0 - = 0, and

He) - 72

Rw T T - 1 2  (6.13)
02 O7n 2 7i J J72 V

Caustics are given by the equation R = 0. The geornetrical ray connecting the

source to point M has a travel time given by T(M,7,y1),~ 0 )) -T.

The expression

62 T j 2  2 -1

1 V 1 12 (6.14)
v1 +V2 1 0)',2 =yp

is the Gaussian curvature of the surface T = T( 1 ,7y2 ) at yl =7°o),7 2 =7 0) (e.g.
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Eisenhart, 1909). Clearly, (6.14) is a generalization of (3.19) for a surface which is not

necessarily a surface of revolution.

7. PARAXIAL APPROXIMATIONS

In the ray series approximation we have replaced the Helmholtz wave equation

by the eikonal and transport equations which give a fair account of the field everywhere

at high frequencies. A different approximation is obtained if we restrict a priori the

wavenumber such that the wave is forced to be collimated in the direction of a given

axis (or a space curve). The simplest way to derive this approximation is by means of

the following artifice: we may formally uncouple the Helmholtz equation

(V2 + -) = 0 into two equations, governing energy flow in the positive and negative

directions respectively. Thus, waves propagating in the forward z direction satisfy

i + k2 2 &2 /2 0 , k = /v. (7.1)

This formal factorization can be justified rigorously and the radical can be given a

precise interpretation as a pseudo differential operator (Bastiaans, 1979; Corones,

1975). If we expand the radical in Taylor series assuming

62 622 - << k 2  
(7.2)

8z 2  dy 2

we shall have

+ -- k + + + higher terms.
x22 j2 a X z 2

Consequently (7.1) will yield the paraxial wave equation
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+ + 2ik a + 2k IP" = 0, (7.3)

where the potential ~par is a solution of (7.3), and not necessarily of the Helmholtz

wave equation.

Substituting in (7.3) the ansatz frarP = eikzu(x,y,z), one finds that u satisfies the

equation

62 2
+ + 2ik au = 0. (7.4)

This equation is sometimes called the parabolic (Schrddinger type) wave equation.

Consider first, the wave propagation in homogeneous media: an exact solution of

Eq. (7.3) is given by the Fresnel diffraction integral (Haus, 1984)

u(X,,z) = ffuo(xo,yo) h(x-xo,y-yo,z) dxo dyo, (7.5)

where uo(xo, o ) = u(xo,y o , 0) and h is the impulse response function

ik -=-(x 2 + y2)
h(z,y,z) = e2 (7.6)

In the limit z - 0 , h goes to 6(x) 6(y) and Eq. (7.5) reduces to an identity. Moreover,

as long as h (z,y,z) is close to a delta function we shall have

a7(x,y,z) ; eikz"o(x,y) which means that there will practically be little distortion of

the original signal.

In order for h(x,y,z) to behave like a delta function its phase must have a

strong variation over a scale-length, say l o , in both x and y directions. Taking for

simplicity, x 0 = Yo = 0 , the z extent of the region over which u 0o does not vary

appreciably ( probably z-independent ), is
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S 2 >>1, (7.7)
z

or

zA << 2n 12 , (7.8)

A being the wavelength.

The entity 2ir o / A defines a region (upper bound on distance z) in which the

cumulative distortion of the signal is small. Recalling that r o = (Az)1/2 is the radius of

the first Fresnel zone (e.g., Savarensky, 1975), the condition (7.7) can be recast in

the more physically-significant form

r 2 << 2 T1 2  (7.9)

This is defined as the Presnel condition .

Thus, in the paraxial approximation, a ray can be visualized as a central thread

surrounded by a volume (known as the Presnel volume ), made of the first Fresnel zone

at each point. If we enlarge the cross section of this volume at each point beyond

(2r)1/ 2 10 , the field associated with a given ray is distorted and the simple ray

concept will cease to apply. The condition for the first Fresnel zone is obtained (at any

point near the axis) from the requirement that the phase of a collimated signal relative

to its phase on the axis does not exceed Tr (no destructive interference).

Since the equi-phase surfaces of iPlr(x,y,z) are (Eq. (7.6) with zx = Yo = 0)

S=kz + k (z2 +y2) = const , (7.10)
2z

the above condition reads

/XyZ) .(OO (X 2 +y2) < I (7.11)
D( ,y,z) -(o,,z) = ( )2z

Denoting X2 2TO2, the inequality in (7.11) defines the FPresnel paraboloid
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kr 2
-= with a cross section r 0 = (Az) 11 2 . Inequality (7.9) thus states that ray

2z

methods are not applicable whenever the distance between the source and the

observer is beyond a certain threshold. We shall later extend this restriction to general

inhomogeneous media as well.

Note that the impulse response h(x,y,z) can be derived directly from the

Green's function solution ik1 i of the scalar wave equation V2 +k 2 p. -47T6(A)

if we restrict the motion to the vicinity of the z axis

(x -- l(0)2  ( 0)
2  (7.12)

A = (z 2 +(X- 0)2 + ( )2 ) 1/ 2 z+ 2z (7.12)

[ (z 2 X +(Y -yo)Z 2 1
3  i 8z'

and

ik i ei 1 (x -X 0 )2+(yy 0)2 2ni (7.1 3

A z 2  k

A sufficient condition for the accuracy of Eq. (7.13) requires that the maximum

phase change contribution by the next higher order term in the binomial expansion of kA

to be much less than one radian. This condition will be met if the distance z satisfies

z 3 >> -[(X--XO) 2 +(y-y0)2 ]2  (7.14)

This requirement is, however, not a necessary one. For the Fresnel

approximation to remain valid, it is only required that the higher order terms of the

expansion not change the value of the superposition integral (7.5), and for this to be

true the maximum value of the added phase factors need not be much less than one

k
radian. If the distance z is small enough to violate (7.14), the quantity - will be so

2z
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large that the primary contribution to the integral in Eq. (7.5) will arise from points near

x = zo Y = Yo such that (7.14) is automatically satisfied.

The Fresnel 1-condition was defined in (4.15). In a homogeneous medium

containing a body of scale length l o , condition (4.15) [with wc = a/ 0l, and z =aT as the

source-receiver distance], yields (7.9). The Fresnel 1-condition was derived by

imposing the hypereikonal to be approximately equal to the eikonal. However, when

paraxial rays are considered, simple investigation of (7.6) suggest that another Fresnel

condition must take into account the wavefront curvature effect on the travel time

extrapolation. The argument of the exponent is written in 2-D heterogeneous media

i/- n 2

2 Rs) (7.15)
2 R, (s)'

where n is the ray-receiver distance, and R.- KJ' is the wavefront radius of

curvature. By an approach similar to the homogeneous case we obtain the FPresnel 2-

condition

RJ A << 21r l2 (7.16)

which yields (7.8) in the homogeneous limit. Therefore, we can conclude that in weak

heterogeneous medium the generalization of the Fresnel condition in homogeneous media,

is

max( Ru, aT A << 2l , (7.117)

A new definition of the first Fresnel zone radius could be postulated (see 7.9) in

heterogeneous media; it is

02 =A max( R, ar) .

The solution of the parabolic wave equation in ray centered coordinate (Cerveny,
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1983a) is

( 1/2 [i-k i/ c 2 ]

)= o e (7.18)

where

Kw = vP/ , (7.19)

is the total wavefront curvature, s is the arc length parameter, v is the intrinsic wave

velocity on the ray and n is the normal distance off the ray. Functions P and Q are

those defined in (4.8). The paraxial condition (7.2) constrains the distance n. In

Appendix C we show that in a weak heterogeneous medium (7.2) can be expressed as

n w << 1, (7.20)

which will be called the parazial condition.

in media where (7.18) is valid, the inequalities in (7.16) will hold with Rw given by

(7.19) and variable v(s) . However, since ray-centered coordinates are subjected to

the restriction n << R ( regularity of the system ), R = K 1 being the ray local radius

of curvature, the additional condition imposed on the paraxial approximation is

n KR << 1. (7.21)

8. GAUSSIAN BEAMS

An important contribution to ray theory in weak inhomogeneous media was made

in recent years (Cerveny, 1982) by adapting the Gaussian beam concept to the

asymptotic solution of the elastodynamic wave equation in a ray-centered coordinate

system. Previously, Deschamps (1971) and Felsen (1976) have shown that a Gaussian

beam can be mathematically realized by allowing the source coordinates to be complex.
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The ensuing Green's function then leads naturally to the Gaussian beam concept.

Gaussian beams have been used to model fault zones (Cormier and Spudich, 1984), and

to model surface waves in smooth laterally varying media (Yomogida, 1984; Yomogida

and Aki, 1984). We shall give now a brief summary of this method and formulate its

validity conditions.

Gaussian beams represent high-frequency asymptotic solutions of the

elastodynamic equation (2.1). These solutions are concentrated close to rays of P and

S waves. The amplitude distribution of the principal component of the beam

displacement in a plane perpendicular to the central ray is bell-shaped (Gaussian) with

its maximum on the ray. The Gaussian beam solution can be viewed as an analytic

continuation of the ray solution described in section 4, by allowing the phase function to

be complex valued and the solution to be one way (in the direction of increasing s).

Equation (2.1) reduces to the parabolic equation (similar to eq. (7.4)) in the high

frequency approximation.

Rays lO and travel times 1-r serve as support for the beam computations,

except that rays are not required to hit the receiver. Ray centered coordinates are

used. For a given ray 0 , the trial form of solution for the principal component vector of

displacement, in the frequency domain, of an individual (elementary) Gaussian beam at a

receiver M(s,q ,q 2 ) is

4T Kb (s)q
1 (M,) 71 y2(S)i[r(s) + ] (8.1)

71 (M, ) = il "y(s) e 2v(s)

where T = (ql,q2 ) , .- is a 2 x 2 complex valued matrix, 71 and 72 are the ray

parameters of 0. Solution (8.1) is of high-frequency type (zero order term of an

asymptotic series in inverse square-root powers of frequency).

For a given ray 0 , the eikonal equation is of the same form as (4.8), but now P ,
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Q and JS are complex valued (n = v PQ-and JS = det Q) . Re njl-,u controls

the geometric properties of the Gaussian beam local wavefront curvature, whereas

Im!.uj governs the amplitude profile of the Gaussian beam in the plane perpendicular to

0 . In this fashion the Gaussian beam solution has no singularity since JS is complex

and never vanishes even at caustics. A useful quantity is the matrix of the half-width

of the Gaussian beam related to Im (K) in the following way

L = 2 lm K] , k=/v (8.2)

We specify two linearly independent sets of real initial conditions for P(s o ) and Q(s o ) .

Generally we choose a point source (or line source) and a plane wave as independent

initial conditions. We then solve separately the two real eikonal equations and

reconstruct the complex solution by superimposing the two real solutions with

appropriate complex-valued constant. In three dimensional heterogeneous medium, six

real-valued parameters completely specify the beam. In two dimensions the number of

parameters reduces to two.

The transport equation is of the same form as in the dynamic ray tracing

formulation, and its solution is similar to (4.9). In terms of a divergence coefficient and

for the displacement we get (see 4.12)

1/2
12(s) =( (71,02) p(s) v(s) JS(s)".

where #(1,72) is the complex weight factor of each elementary beam, and jS is the

unit tangent vector to the ray 0.

The high frequency displacement at a point M is then reconstructed by super-

imposing Gaussian beam elementary solutions. For the the P wave displacement Ub we
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have, in the frequency domain,

M = ff U 7172(Mw) dyld 7 2 , (8.4)

the integration being done over all rays passing through some neighborhood of M .

If 6(c) is the speqtrum of a point source, the P wave displacement in time

b (M,t) is computed following

L'hfU(Mt) = e{- ) M ' i d  w (8.5)

Integrating first with respect to the ray parameters , then performing the

frequency integration corresponds to the so-called spectral approach. If the frequency

integration is done first the method is called the wave packet approach. Since ray

parameters , yi, are related to horizontal slowness, the wave packet method is

equivalent to the slownwess method (Chapman, 1978).

In the two dimensional case matrices P and Q are scalar complex functions as

well as Kb and L . The factor (l,Y72) of each beam is reduced to c(7y). Two real free

parameters are then at our disposal. The so-called initial beam parameter B , and the

distance d of the minimum of the half-width function L(s) from the initial point Mo. This

distance corresponds to the location at which the beam matches the wave field. We

define a complex parameter & - d - iB. This parameter weights the contribution of the

plane wave initial conditions with respect to the point source initial conditions. The

existence condition of the beam imposes B > 0.

Equation (8.4) may be visualized as a superposition of WKBJ solutions (6.11)

(Popov, 1982). It is shown by Madariaga (1984) and Klimes (1984) that, for the

limiting case B-oo, the Gaussian beam solution (8.4) tends to the WKBJ solution as given

by Chapman and Drummond (1983).
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The determination of the factor (yl) of each beam is done by matching the

asymptotic form of an exact known solution to the saddle point contribution of (8.4).

Gaussian beams are subjected to all the limitations imposed so far on ray theory

and three more:

(1) The coordinate system regularity condition (7.21)

n KR << 1 , (8.6)

(2) The paraxial condition (7.20)

n K, << 1, (8.7)

(3) The Fresnel condition for a beam (7.17)

max( I- , o I A < 2r 12 (8.8)

The modulus of Kqb is taken since we expect that the beam width L(s) must be

constrained by this condition. Written as it is, we can have L << 0o, which is an

appropriate condition since we are only interested in high frequency Gaussian beams (no

diffraction).

9. CONCLUSION

The limitations of asymptotic wave theory in weak inhomogeneous media were

formulated in a systematic way. New physical parameters characterizing medium

properties have been defined. Conditions of validity were derived explicitly. They can

be summarized as follows:

(1) Mode decoupling condition wco' >> 1, where wo is the medium

threshold frequency.
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(2) High frequency (radiation zone) condition c 4-1' > 1, where wc is

the medium cut-off frequency.

(3) Fresnel 1-condition 2 W-2 >> 0 7, T being the ray travel time.

(4) The far field condition k Ao >> I *VAo I, where Ao is the local plane

wave amplitude.

In the paraxial approximation, especially for Gaussian beams, the validity

conditions are (1-4) and:

(5) Regularity condition n KR << 1. where n is the ray receiver

distance, and KR is the ray curvature

(6) Paraxial condition n Kw << 1, where Kw is the total wavefront

curvature (real).

(7) Fresnel 2-condition AI I1 -1 << 2ir lo, where 4b is the total beam

wavefront curvature (complex), and 10 the medium characteristic length.

Although condition (1) and (2) were assumed to be one and the same in the

present paper, we have kept them as separate conditions mainly because each of them

have a different physical interpretation. Additional exact solutions for other realistic

inhomogeneous media should be sought in order to enhance our understanding of wave,

ray and beam propagation in the Earth. There is also an urgent need to develop new

methods for the approximate analytical quadrature of the superposition beam integral.
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10. APPENDIX A: Perturbation solution of (2.23) and (2.24)

A further change of variable i = Yj p-1/ 2 i = 1, 2, reduces Eqs. (2.23) and

(2.24) into the simpler form

V2 1 62Y1 [ 2 
S a1 -2 I 2 - 2 (z) = -7712 , (A.1)
v2 t2  z2

1 o2y2
V2 Y2 1 Y1 , 1(Z) = 7721 .  (A.2)

v2 at2

In the derivation of this equation we have again neglected a term

5
-p 2 [(p')2 - 2pp"] on the left hand side of each equation, in accord with our

previous scheme.

Eqs. (A.1) and (A.2) represent a coupled system of wave equations for the

unknown potentials Y1 and Y2. One may obtain a single equation of the fourth order for

Y2 by simply substituting Y1 from (A.2) into (A.1) and dropping terms of second order

in the derivatives of p, /u and v 2 . This approach, however, complicates the solution

unnecessarily. Let us assume that E1 and E2 are small everywhere and that a

perturbationL scheme of the first order is feasible such that

Y1 = Y1 + E1 Y1 ; Y2 = Y + 2 Y1  (A.3)

Eqs. (A.1) and (A.2) then yield

1a2~ S0, = 1, 2. (A.4)
_ at2

72 _ 1? 1 V2 a2  ; (A.5)
Sat2  ;2I Y

V2y1 0 2  = = , (A.6)
v22 at

2
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where the Yj are calculable to order ef.

The corresponding displacements are obtained via a combined use of Eqs. (2.22)

and (A.3) . For the compressional wave we have

(A.7)
1 +e2p + 21

and a similar equation for U2 . For E1 << 1 , U1 + U2 in (A.5) reduces to T in (2.21).

11. APPENDIX B: Hypereikonal of the elastodynamic equation

An exact solution of the vector elastodynamic equation for SH waves in general

vertically inhomogeneous media (Ben-Menahem and Singh, 1981) is ( = Vx (g ) where

E = 711/ 2 obeys the equation

and

(B.1)

(B.2)

2 012 ,
V2 2

' 2 p dz 2 4,p dz

The corresponding solution of Eq. (B.1) for this case is

Ssinj 1 / 2  
1 2/ W2 2/2)1/2

rh j 0

Similar solutions exist for P and SV wave motion in

inhomogeneous media in which decoupling is maintained. For P waves:

(8.3)

weak vertically

2 ~  + dg 1 d X + +2 d2 _ +2p, gg
W 2p dz 2 d g 1 p +dp dz P z 2p2 dz2 4P3 dz (B.4)
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1 X + 2A 1i _ 2 i
91 + t p dz + 2 dz''

For SV waves:

2 X + A dg 2  1 d 2 + - /.2 p
p dz p dz 2p2 d 2  4p3 d (B.5)

2 = X + dz p dZ j

12. APPENDIX C: Paraxial wave condition

We assume that the medium is locally homogeneous, and that its properties do

not differ between the central ray and the observer. In equation (7.18) the phase

factor can be viewed as a second order Taylor expansion of the travel time away from

the central ray

n 2 KW
-r(s,n) = -(s,O) + (C.1)

2 v

Figure 3 leads to a geometrical value of -(s,n)

7(s,n) = 7(s,O) + , (C.2)
V

where Rw 1'. Thus 6R. = n2 / /2. The expansion in (C.1) assumes

6R Kw << 1, which is satisfied if

n K << 1. (C.3)

In 2-D media, the paraxial condition (7.2) is written in the frequency-wavenumber space

as

k 2<< k2 - (C.4)
where k is the wavenumber component along the n direction (normal to the ray).

where kn is the wavenumber component along the n direction (normal to the ray).
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Define ks the wavenumber component along the s direction (tangent to the ray), then

k2 = k2 + k 2 . The angle X between the two vectors k and ks links the paraxial

condition (C.4) to the geometry of the wavefront (figure 3). We have

sinx = n (C.5)
k Rw + 6 Rw

The paraxial condition is then sinX << 1, and since we impose in the expansion (C.1)

that f? >> 6Rw, we fall back to (C.3). Therefore (C.3) justifies the travel time

expansion (C.1) and guarantees the paraxial condition (7.2).
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WAVEFRONT

CENTRAL RAY 0

GEOMETRICAL RA

Figure 3. Geometry of the Paraxial wave condition
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III. A CANONICAL PROBLEM

Science is an attempt to represent the known world as a closed system

with a perfect formalism.

- J. Bronowski

1. INTRODUCTION

Asymptotic wave methods (AWM) are able to give an approximate answer to

many problems of seismic body wave propagations in generally heterogeneous media

(Cerveny et at, 1977; Aki and Richards, 1980; Ben-Menahem and Singh, 1981). They

are fast, robust and, usually reduce to simple geometrical considerations. Their

accuracy is based on asymptotic conditions that have been derived and described in

chapter II. The results are considered reliable as long as the "asymptotic conditions are

satisfied". However, when a condition "starts" failing, it is difficult to know how bad or

how fast the breakdown occurs.

The most direct approach to test these conditions would be to compare AWM

with an exact solution (Green's function) in the type of media considered. For example,

the ray solution in a homogeneous medium can easily be derived from the Green's

function (chapter II). However, the homogeneous medium is a degenerate case because

it has no characteristic length, frequency etc. Closed form Green's functions are very

difficult to obtain for media other than the homogeneous case. And when they are found

(Hook, 1961, 1962; Lock, 1963), they represent an exact solution of the elastodynamic

wave equation requiring specific conditions on the medium that often are not physical.
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The next approach is to compare AWM with wave methods obtained by numerical

procedures (finite difference, finite elements, reflectivity method etc.). But here again,

numerical conditions (medium discretization, source periodicity etc.) must be fulfilled in

order to get accurate results. Further, the comparison can be undertaken economically

only for small-sized medium (near-field methods).

The present chapter deals with a comparison of AWM using the first approach. A

second canonical problem (other than the homogeneous case) is considered. The

inhomogeneous medium is that of a constant gradient model where exact mode-

decoupling exists. Hook (1962) treated several problems concerning the separability of

the elastodynamic wave equation, and showed that Green's functions, for an impulsive

point source, can be obtained in this medium. The aim is to define clearly the range of

validity of AWM in this medium. Two asymptotic wave methods are described. The

dynamic ray tracing (DRT) method developed by Cerveny (1981), and its generalization

the Gaussian beam (GB) method are set up in this medium. The DRT solution obtained

analytically from the ray formulation is re-derived from the Green's function with the ray

conditions developed in chapter II. Gaussian beam parameters are defined and

discussed. Beam conditions derived in chapter II are shown to be necessary and

sufficient. Comparisons between DRT and GB are shown. As an application of the beam

method, a vertical seismic profiling (VSP) section with offset from an explosive source

at the surface and a surface seismic section from a shallow earthquake are presented.

2. CONSTANT GRADIENT MODEL

Considering the propagation of elastic waves in isotropic media with physical

parameters that depend on the cylindrical coordinate z alone (oriented downwards) and
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with constant Poisson ratio, the elastodynamic wave equation reduces to (Hook, 1962)

p2- = V(LVs.o ) - V x ( V x 0) + 2p' [Y -9,v. + , x (Vx -)] + pi, (2.1)
Pt2

where 7 = (X+2/)/ p = a 2 / #2 is constant, e is the unit vector in the z direction,

and a prime denotes partial differentiation with respect to z. t is a body force

distribution per unit mass.

Looking for a particular solution of equation (2.1) let us assume that it has the

form

U= (f2 (P)- VX[f 4 VX(ez P2)] -V X(ez P3), (2.2)
f i f 3

and that the source is specified as an explosion at fo(r =O,z =zo), with strength Fo

(dimensionless quantity), where r denotes the radial distance of a point to the z axis.

We have

4T 2 F a
A(i;t) = V f 2 6( -) 6(t), (2.3a)

fi

or equivalently

r,z;t) 2Fo V f 2 6( 6(z-o) 6(t). (2.3b)

Here fi's are dimensionless functions of z, and pi's are potentials whose dependence

on the coordinates and on time are unrestricted. If the seismic moment is m o , then

mo = -41Po ao2 Fo xunit volume. Hook (1961) has shown that there exist a wide

class of elastic media for which the above representation is feasible. In these media the

potentials satisfy the coupled differential equations

- 71 -



Chapter III

1V26- 1 2_ _2 o
_V2p1+tr2 7_1-a2 2 -2F O 6( r)6(z-zo)6(t), (2.4)at 2 2 r

+ a2 1 12

I a2 0

at 2

(2.5a)

(2.5b)

where V2 denotes the Laplacian operator, the ti are functionals of the constitutive

medium parameters and their derivatives, and 61, E2 are coupling factors with similar

functional dependence. If f f 2 and f3-f4 , then 1 = p'/p, the prime denoting

partial differentiation with respect to z. The waves represented by 03 are called SH

waves, and are not excited by the source (2.3).

In the present chapter we shall be interested in a medium where the

compressional and shear wave velocities are linear functions of the coordinate z (figure

1). For a parameter r7 > 0 and a, z, z o > 0

= a(0) ( 1 + rz) ,

= (O) ( 1 + ??z),

= p(O) ( 1 + r7z) ,

= (0) ( 1 + 77z)" +2 ,

SX(0) ( 1 + rz)a +2

3+a
1+a/2 '

(2.6)

Po
and p(O) =

(1 +rz 0 )

ao
1+7Zo

I(0O), X(O), and f(0) values follow from relationships between the elastic constants.
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'h

a(z)

jo=const.

WAVEFRONT

z in =const.

Figure 1. Wavefront and rays in the canonical model
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The source is located at (r=0,z =z o ) where the P velocity is ao and the density is Po.

For convenience of notation we set h = 7- 1 . The surface z =0 is not a free surface.

The region z>0 is the restriction of a medium whose properties still obeys equations

(2.6) for -h < z <0 (figure 1). Therefore the solutions do not include waves other than

the direct wave (no surface waves, multiply reflected waves etc. ). Note that a(-h)=0.

In this medium t1 =p'//, and C2 = 3 = 1 = 02 -, and equation (2.4) reduces

to

+21  + 2+a -[a(0)(1 +77z)] - 2  ()( -)6() (27)
z +h dt2 r

The prime denoting partial differentiation with respect to z. Here waves represented by

r2 in equation (2.5a) are the SV waves and are not excited by the source function

(2.3). The P wave source generates only P waves (perfect decoupling), and since no

boundaries are present, only P waves will propagate. The displacement vector in (2.2)

reduces to

-* 1
U= V (f2 rp1), (2.8)

f 2 zo+h
where f  f 2  and f2 = z+h'

Define the Fourier transform of a time function p(t) as

o(s) = f o(t) eict dt,

and conversely, the inverse Fourier transform of a spectrum (w) as
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((t) = - ~(c) e- dw.
21T _

Transforming equation (2.7) into the frequency domain, the equation for the

Fourier-transformed potential -1 becomes

(2.9)V2 + 2+a , + 2Fo 6(r)6(z -zo) ,z +h r

with ic

The explicit solution of equation (2.9) is expressed in terms of the bi-spherical

coordinate 4 and the cylindrical coordinate z (Pekeris, 1946) and is found to be

o F +h a(+3)/2
1i(j ) = Fo z+h e

Rwu
(2.10)

where

to z +h = [?7 a(0)] - 1 = (20 ) - 1 ,

c = (0 +a) o0,

'w = (zo+h) sinht,

T = t t o .

Rays and wavefronts are exactly determined in terms of the bi-spherical

coordinate system (Q,jo). The third bi-spherical coordinate denoting the angle of

rotation about the z -axis is not present because of the axial symmetry of the problem.

The travel-time along the ray from the source to the receiver is - = t t o . The ray

- 75 -



Chapter III

curvature at the receiver is expressed as R-' = sinjo/(z 0 +h). Rays are curves with

jo = constant, since in a medium with constant velocity gradient the ray curvature is

constant. These are arcs of circles with centers at (rt = (zo+h) cotjo,z =-h) and radii

R. Consequently, the coordinate of the ray turning point is (rt,zt =R-h). Wavefronts

are surfaces with 4 = constant (constant travel time). These are spheres with centers

at (r=O,z =z c ) and radii Rw. The coordinate 4 can be viewed as a normalized arclength

(d t = ds / (z +h) ) or a normalized travel time (T/ t o ) along a specified ray with takeoff

angle jo.

Define

R1 = [r 2 +(- 0) 2 ] 1/ 2 , and R2 = [r2 + (z+Zo+2h) 2] 1 / 2

The relations between the two systems (Q,jo) and (r,z) are given by the equations

(z o +h)sinjo

r = cotht - cosjo '

z o +h
z+h = + h

sinh4(cotht - cosjo)

4 = 2 tanh - 1  ,
R2

Jo = sin-1 R, R2

R1 R2

= 2(z +h)'

R R2
R=

2r

The geometrical meaning of R 1 , R2 , and R is shown in figure 2.
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7h I

R2n/

Ray

Figure 2. Geometrical representation of quantities in the canonical model
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j '1 = Kw is defined in part I as the total curvature of the wavefront. Here,

since only this definition is used, we shall refer to it as the wavefront curvature. The

two medium's characteristic frequencies wo and wc are the same as those defined in

chapter II. The definition, in chapter II, of the threshold frequency is

Wo j-max lVaiViIPL = a(0) max(1,7-1/2,a).

Anticipating that the density variations are small (a:;1), we obtain wo = a(O) 77/ 2. The

cut-off frequency is defined, in chapter II equation (3.5), as a I V2Ao/ Ao 1/2

where Ao is the amplitude function of the local plane wave, appearing in the transport

equation. oc is shown to be equal in Chapter II equation (3.27), to wo in a constant

gradient medium where the density is constant (a=0) which is directly verified in this

context. The medium characteristic length o10 / wo, is equal to 2(z +h).

The inverse Fourier transform of equation (2.10) yields (Abramowitz and Stegun,

1972)

(t 0  o+h (+3)/2 go(t) (2.11)y(t) = Fo - - ,(2.11)
z +h

where

go(t) = 6(t--7) - (a+1) 2 T G() H(t --7) ,4

Gl( = Ji(() / (,

with +1 (t22)1/2
with - 2
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Here 6 and H are, respectively, the Dirac delta and Heaviside unit-step generalized

functions and J1 is the Bessel function of the first kind and of order one.

The second term in go(t) is attributed to the presence of dispersion in

inhomogeneous media. The dispersive properties of this medium are controlled by the

cut-off frequency ,c.

The displacement vector is obtained directly from equation (2.8) by applying the

gradient operator to p1 (t) or to , (j). Following Hook (1962), expressing this vector in

terms of the mixed, non-orthogonal, coordinate system, yields

(2.12)

where hq = z +h is the scale factor for the coordinate 4.

In the frequency domain

=() = t(w) + c(w), (2.13)

where

z+h (a +3)/2 iWto (1-02/)1/2-2, iy(1-2w2 22_1/z2
g() I e Cc(2.14)

01z+h J(zo+h)
and

zo h 
+ 3 ) / 2

(0w) = -Fo +h
1 ir (1 - 2/ 2)1 /2

R, (zo+h)

In the time domain

O(t)= (t)t + uz(t) 9,

(2.15)

(2.16)
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where

UJ = -EI zo+h+A (a +3)/ 2

(t)+h (a +3)/ 2

Uz (t) = -Fo z--;

gl(t) + z, go(t)/R,

R (zo+h)

a+5 go(t)

2 R (zo+h)

zc = (zo +h) cosht, (2.19)

g (t) to t'(t -) to ( 6(t -) - G2() H(t -) ,

G2( ) = G, -(e) + a J2

where 6'(t) denotes the derivative of 6(t), and J2 is the Bessel function of the first

kind and of order two.

Note the strong resemblance of (2.14) with the frequency domain solution of the

Green's function in a homogeneous medium (see 11.5.1).

The components of the vector particle displacement of the P wave in an

orthonormal coordinate system (r,z) is of interest. Therefore, if U is expressed in the

non-orthogonal coordinate system (Q,z), the vertical component in the orthonormal

coordinate system (r,z) is the covariant component of 0 along the z axis

Gz = 0- Z = Ugz C + uz, (2.20)

and the radial component is the covariant component of U along the r axis
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G, r = u gr(, (2.21)

where

1 az
= z +h '

and

1 ar
g = *r = zhrf z +h at

From the relations between z, r and I it follows that

cosht cosjo - sinht
gz= (cosht - sinht cosjo) (2.22)

r
grt = -- (2.23)

Note that if j cos - 1 ( - ) is the angle of incidence of the ray, cosj -gz and sinj -gre

At the ray turning point we have R=z +h, leading to gz =O, therefore the only vertical

contribution in (2.20) comes from u z.

If a(t) specifies the point source time function, then the P wave component of

the particle displacement W(M,t) at a point M(r,z) is given by

W(M,t) = Gz(M,t) * a(t), (2.24)

where * denotes a convolution operation. We have a similar equation for the radial

component replacing Gz by Gr .

We shall compute the synthetic seismogram resulting from (2.24), and compare it to that

calculated by asymptotic wave theory.
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3. THEORETICAL SEISMOGRAMS BY THE DYNAMIC RAY TRACING METHOD

In this section the eikonal and transport equation will be solved analytically for

the medium described in section 2. Then, we will show that, with the ray conditions

developed in chapter II, the Green's function derived in section 2 reduces to the ray

solution.

We shall refer to the in-plane as the plane spanned by the ray trajectory, and

the out-of-plane the plane perpendicular to it. The in-plane dynamic ray tracing system,

in the constant velocity gradient medium described in section 2, for P waves and for a

point source, can be written as (see 11.4.8)

dP(s)dP(s) 0, (3.1)
ds

dQ(s) = a(s) P(s) .
ds

The out-of-plane dynamic ray tracing system in this type of medium is exactly of

the same form as (3.1) replacing Q by -L and P by P-. The initial conditions of this

system for a point source are:

P(so) = P-(so) / sinjo =ao , (3.2)

Q(so) = QL(so) =0

Solving this system, yields:

P(s) = PL(s)/ sinjo = Oo' , (3.3)

Q(s) = Q(s)/sinjo = o' f a(s) ds

soThe functions Q and P have the dimensions of

The functions Q and P have the dimensions of length and timne-l, respectively.
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If this integral is evaluated, the P wave ray displacement in the frequency domain

is given by (11.4.12) I1/2
() = C Po 0oJ i ei  , (3.4)

C(c) pas

where C is a constant depending on source initial conditions, ( is the unit vector

tangent along the ray, and 7 the travel time. The source neighborhood is assumed to be

homogeneous at least up to the unit sphere surrounding the source. We have (11.3.23)

Jo -sinjo, and (JS/ JS)1/2=(Q Q/sinjo)1/2=Q. For the medium properties

described in section 2, (3.4) yields

h) - iw eWT
() =C [ zo+ )/2  e* (3.5)

z +h Q

Rewriting the equation for Q in terms of the angle of incidence of the ray, j, yields

Q(j) = a-1 a(s) dj (3.6)
Jo

ds/ dj is the radius of curvature of the ray. In vertically heterogeneous media the ray

parameter p = sinj / a is constant along a ray. Thus

da = cosj =L = dz di
p ds p

yielding

d_.= da
ds dz

Since a(z) = a(O)(1 +7z) we have
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ds zo+h

dj sinjo

which is constant. It is easily verified that ds / dj is indeed equal to R given in section

2. Snell's law reads sinjo/ ao = sinj/ a, and applying it to equation (3.6) renders

R r
Q(s,) - (cosj 0 - cosj) = . (3.7)

sinjo sinjo

It is equivalent to specify the function Q as a function of s or of 4, since both are

curvilinear coordinates along a specified ray. The radial distance r(Q) contains the only

dependence on t.

Since sinjo = (zo+h)/ R and Rr = (z +h)R,, equation (3.5) becomes

z (+ha +3)/i e
O(W) = C I7,wOUT (3.8)

zo+h 4(.

In the time domain,

. rzo+h 1(c a 3)/2 -T)

(t) = -C z j . (3.9)
z +h Rw

As the main focus is on the vertical component of the P wave, the orthogonal

projection of vector 0f on ' yields F*zr = UF cosj where cosj = j42 . From Snell's

law we get sinj = - leading to

r 1/2
cosy = 1 - (. )2 . (3.10)

It is easily verified that cosj - g f which is given in equation (2.22).

If the point source time function is a(t), and for an isotropic source radiation
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pattern, the P wave vertical displacement WT(M,t) at a point M(r,z) is computed via

W(M,t) = -C [z(t-+3)/2 cosj. (3.11)

The radial component of displacement is obtained simply by replacing cosj in (3.11) by

sinj.

The ray curvature is in general equal to

K 1 OCxKR a an'

where n is along the direction normal to the ray, oriented A =dt/ d . This direction is

identical to the jo direction introduced in section 2. Recalling that the scale factor for

the jo coordinate is hio = (zo+h)(cotht-cosjo)- ', it can be verified that KR = R - 1 .

Further note that, in general, the curvature of the wavefront -aP/ Q is here equal

to a(aoQ)- 1 and is indeed equal to Rj 1 .

The exact solution (Green's function) for the displacement field in the constant

gradient model described in section 2 ( equations (2.14) and (2.15)) reduces to (3.8)

using the ray conditions (see II). These are the following: (1) mode decoupling condition

w/ .o >> 1; (2) high frequency (radiation zone) condition / c >> 1; (3) Fresnel 1 -

condition 2 W-2 >> W0 ; (4) far field condition k Ao >> IdAo/ ds; where

Ao = c o (a/ jS)1/ 2 (see 11.4.9) or explicitly

1/2
Ao = c o

where co is an integration constant (see 11.4.9).
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In this special medium we have perfect P/S decoupling, and condition (1) is linked

to condition (2) by wc = (1 +a)o. Therefore violating (1) will not, in this case, yield

mode coupling but will violate (2), thus rendering non-oscillatory waves. Condition (2)

approximates (1 _-c2/ W2 ) 1/ 2 by 1. Taylor-expanding the argument in the exponent of

(2.14), with condition (2), we obtain (3). This is the Fresnel 1-condition that we have

derived in chapter II. It is necessary since condition (2) must also approximate

i or(1-o /W02 )1/ 2 by iw. Expressing condition (4) in the coordinate system (Q,Z), and

recalling that dAo/ ds = (z +h) - 1 dAo/ dt, yields

Z

to >> c , (3.12)

where t o = (z +h)/ oc .

This condition implies that we neglect the terms zc/ Rw in (2.14) (near field term) with

respect to ot0 (far field term). Equation (3.12) can be written in terms of co = (2t0)-1,

and since the right hand side of (3.12) is always greater or equal to 1, this condition

includes ray conditions (1) and (2) (provided a <<1). Therefore, failure of condition (2)

(or (1)) would necessarily fail condition (4). This can be explained by the fact that in

equation (2.14) and (2.15), as w gets closer to co, first the near field terms cannot be

neglected compared to the far field term. Consequently, the approximation of the phase

term by c'r in the exponent gradually breaks down. Therefore increasing the velocity

gradient (coo) leads to a far field breakdown followed by a phase distortion, due to

medium's dispersion properties. In the time domain, this phase distortion effect is

caused by the approximation of go(t) by 6(t -).

At a ray turning point cosj = 0. The vertical displacement (3.11) vanishes. But

the exact solution gives a non-zero contribution (in 2.20). This does not mean that the

ray result is inaccurate in this zone. It is easily shown that, if the far field and the high
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frequency conditions are satisfied, the magnitude and direction of the exact vector

displacement is correctly represented by DRT. We shall verify this statement

numerically, in section 7.

The decoupling condition (1) can be thought as requiring the ray radius of

curvature to be much greater than the wavelength, the high frequency condition (2) as

imposing the displacement field for P waves to be along the ray, and the far field

condition (4) can be seen as requiring the wavefront curvature change along the ray

times the wavelength to be much smaller that the wavefront curvature. The Fresnel 1-

condition requires that the far field region must not exceed a certain upper limit

governed by the high frequency condition (2). This imposes a limit on how far the

observer should be. In the present medium, conditions (1) and (2) are equivalent (since

Wc =(1 +a)wo). Whether or not the threshold frequency is of same order as the cut-off

frequency in a general medium, requiring therefore only one medium characteristic

frequency, is still unknown. However we have postulated in chapter II that these two

values are equal in the context of ray and paraxial ray (or beam) methods.

Comparison of the asymptotic solution of the Green's function with the ray

solution determines the value of the constant C introduced in (3.4)

to _ FoC = Fo -
z o +h - o

This relation links Fo to co and c1 defined in Chapter 11 (4.11-12): cl = F p1 /2

The Fresnel 2-condition Rw A << 21T 102, was not necessary in deriving the ray

solution from the Green's function. We shall test this condition in section 7.
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4. THEORETICAL SEISMOGRAMS BY THE GAUSSIAN BEAM METHOD

The Gaussian beam formulation will be set-up for the medium of section 2.

Various beam parameters and initial conditions are defined. Beam conditions of validity

are presented. The elementary Gaussian beam solution, for a point source in a two-

dimensional medium, can be written in the form (see 11.8.1 and 11.8.3)

'1/2

o 0  i ei r + n2P/2 Q] ' (4.1)

where jo is the ray parameter (takeoff angle) characterizing the central ray, 7 is the

travel time along the ray, jo is the unit vector tangent to the central ray, n is the

distance from the receiver to the central ray. JS = sinjo, and the complex Jacobian JS

is equal to Q and

P(s) = Z (P 2 (S) + & P 1(S)), (4.2)

Q(s) = Z (Q 2 (s) + & Q (S)),

P-(s) = P2-(s) ,

Q-(s)= 2)

where subscripts 1 and 2 in (4.2) denote two linearly independent sets of real initial

conditions and solutions of the complex eikonal, Z is a complex constant and

S= d -i B (both values are dimensionless). The two beam parameters d and B are

those introduced in chapter II, and will be specified later in this section. Note that B >0

(existence condition of beam). In this case

=C WQ(SO) 1/2 eir/4
21T% o
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is the weight factor for a point source, determined by matching the steepest descent

contribution of (4.13) to the Green's function of a point source in a homogeneous

medium.

P2, Q2 , 2PL and Q~ are the point source solutions of the dynamic ray tracing

system with same initial conditions and solutions as in section 3. P 1 and Q1 are the

plane wave solutions of the dynamic ray tracing with initial conditions:

Pl(so) = 0 , (4.3)

Ql(so) = zo +h,

referred to as the plane wave initial condition (constant spreading and zero wavefront

curvature). The solution of this system is

P,(s) = 0 , (4.4)

Q1(s) = zo +h .

Madariaga (1984) proposed a modified plane wave initial condition, satisfying

the WKBJ solution, which we correct for dimension

(zo0 +h) sinj o 1c sin2 jo
PZ(so) (4.5)

Q(s o) = Zo + h.

Here jo is the takeoff angle of the ray measured from the z-axis. The solution of this

system is

sin2j 

(4.6)p(s) = (4.6)
a cosjo0

QM(s) = zo+h - tanjo r
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The solution (4.6) can generaly be constructed by a linear superposition of the two

solutions (P 1 ,Q 1 ) and (P 2 ,Q2 ) . The plane wave caustic occurs at r = (zo0 +h) cotj 0

(QM=0). This is the radial distance of the ray turning point. Indeed, this distance is

identical to rt given in section 2. In the neighborhood of the ray turning point, Q;dZ Q2,

the beam propagation is mainly due to the point source contribution. But the initial

conditions (4.5) are set up for quasi-plane waves. These conditions are therefore

invalid at the ray turning point. Note that the solution (4.6) is singular at jo = r/ 2

(horizontal takeoff angle). Rays that are near-horizontal should not be taken into

account. This condition can be expressed, using Snell's law in the canonical model, as

sinjo = (zo+h)/ R << 1 or equivalently

z 0o +h << R, (4.7)

The (complex) wavefront curvature of the beam follows from the natural

generalization of the ray concept

P 2iP 2- AQ (4.8)= o +kL 2 '

with

S= Re(w) being the local wavefront curvature, and

L = [ 2k- 1 Im(K6) ]1/2 the beam half width.

Cerveny et al (1982), suggest the following beam parameter B, for a beam-

receiver pair [jo,M(s,n)],

q2 (s)
BM(O) - (S) + d (4.9)

In a homogeneous medium, this value yields a minimum value of the beam half-width L(s)
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at the receiver M(s,n), for ray jo. For the computations d = 0 is used, which means

that the distance at which the matching between the waves emanating from the source

and the superposition of Gaussian beams is done at the source location. If d s0 the

matching is done on a sphere of radius d x unit length, with center at the source.

If N receivers are present (M,i=1,N), we define three values of the beam

parameter in addition to Bfi(jo)

Bm ,= =  fo B() (4.10)

Bo = x B(jo) , (4.11)

B = max B(jo), (4.12)

where fjoj is the set of rays satisfying (4.18) for the receiver 4M.

The first value for B is constant throughout the computations (constant for all rays and

receivers), the second value is constant for each ray but changes from ray to ray and

the third is constant on each receiver but varies from receiver to receiver. Some

justification will be brought in section 7 on the choice of these values. Use of the initial

conditions (4.5) imposes a large value of the parameter B (quasi-plane waves) in order

for the solution to be a complex perturbation of the WKBJ method (Madariaga, 1984).

The initial beam parameter must usually be much larger than that obtained using Bm

(4.10).

Thus, the P wave vertical displacement is

(M,) = o(M,a) cosj djo. (4.13)
D
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The integration is being done over all rays passing through some neighborhood D of M.

This neighborhood is determined by conditions of validity of the beam (4.18) and (4.19).

If (w) is the spectrum of a point source time function a(t), the P wave vertical

displacement in time W (M,t) is computed following

Wb(M,t) = 1Re fo I (c) W(Mc) e--t dc . (4.14)

We shall be using the wave-packet approach in computing (4.14). We shall

therefore first evaluate the Fourier transform (4.14), then integrate with respect to

takeoff angles, jo (4.13). The numerical integration of (4.13) is done by the rectangle

formula

Wb(M,t) M C Uk(M,t)Ajo, (4.15)
k

where Uz = LjO cosj.

The results with initial conditions (4.3) will be compared to that using (4.5).

Sensitivity on the results due to ray sampling Ajo and summation limits will be

investigated. For comparison purposes, we shall numerically integrate (4.13) by the

trapezoidal formula

W(M,t) C [ -1 (M,t) + U(M,t) ] -- , (4.16)
k

and by Simpson's rule

W(M,t) ; E[U -2(M,t)+4Uk -1(M,t)+Uzk(M,t)] S(k) 3 (4.17)
k

where S(k) 1 +(-l)k]/2 .
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As in section 3, the radial component of displacement is obtained by replacing the term

cosj by sinj. The Gaussian beam conditions of validity described in chapter II are:

(1) Ray conditions used in section 3, since Gaussian beams are high-frequency

asymptotic solutions of the elastodynamic wave equation and that ray serve as support

for the beams.

(2) Regularity of the ray centered coordinate system

n KR << 1. (4.18)

(3) The paraxial condition (rays considered not far from geometric ray)

n << 1. (4.19)

(4) The Fresnel 2-condition (beams within the first Fresnel's zone radius)

1-1 2 2 )2-1/2

A W = A K +( )2 << 2rr1 2 , (4.20)

where A is the wavelength, 10 is the characteristic length of the medium, L(s) the half-

width of the beam, Kw(s) the wavefront curvature, and n the ray-receiver distance.

Since no analytic, closed form, expression of the GB solution exist at the present

time, we can only check these conditions numerically. The validity of GB at the ray

turning point will also be investigated.

5. ACCURACY CRITERIA

We will compare synthetic seismograms computed using asymptotic wave theory

(equations (3.11) and (4.14)) with the exact synthetics from the canonical problem

(equation (2.24)). Four numerical parameters are defined to test the differences
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between the two traces.

Let W(M,t) be the compressional vertical displacement computed from

asymptotic wave theory (W = WI or Wb). A tilde denotes the value computed using

the approximate method. For a given receiver M define E as

100 W(M,t) - (M,t)] 2 dt (5.1)
E(M) = 100 (5.1)f W2(M,t) dt

E is the power ratio (in percent) of the signals' difference to the exact signal. It is an

L 2 norm of good-fit. The value E is independent of the source signal considered, and

measures a relative global error. The time interval in the integration includes the whole

waveform. Practically, we will put an upper limit on E, say EMaz, above which we will

consider the results of the approximate method to be invalid.

Let

e(M) = 100 7(M) - (M) ], (5.2)
e() = 10 0 (!)

eA(M) = 100 A(M) - A(M) (5.3)
A(M)

e (M) = 00 T(M) - T(M) (5.4)

where 7, A, and T are respectively the wave travel time, the signal maximum amplitude

and the time of the maximum signal amplitude at the receiver M. These three good-fit

parameters are local time error measurements and are complementary. They are useful

when the error E becomes large and additional information is required to determine

locally the lack of accuracy. e, measures the relative error in travel time. eA is

sensitive to amplitude errors whereas eph represents, in some sense, the relative error
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in phase of the signal.

6. MODEL PARAMETERS AND NUMERICAL DETAILS

The source function used is the Gabor wavelet

a(t) = e -[ (t-,)/'r]2 cos[W (t- + , (

where 09 is the center angular frequency of the signal (wg = 21T fg), ti is the initial

time shift realizing the causality of the signal, P controls the half-width of the signal's

envelope in time, and i4 is the initial phase.

The Fourier transform in equation (4.14) is computed using an IMSL discrete Fourier

transform routine. Equation (2.24) is computed using a standard convolution in time

program.

The reference model (Model 0) is the following:

a = 0

h = 10 km

zo = O km

a(O0) = 3 km/ sec

Po = 3 g / cm 3

fg = 10 Hz

F = 5

/ = 0 radians

t : 0.2 sec

The reference model assumes the density to be constant throughout the model
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( a =0). The models that will be considered in this study are :

FAR FIELD BREAKDOWN for DYNAMIC RAY TRACING
Model 1 Model 0 with receivers at the surface z =0, and

r 1 =0.1 km to r 4 =0.4 km (Ar=0.1 kim)
T 4 =0.4 km to r 15=2.6 km (Ar =0.2 knm)

HIGH FREQUENCY BREAKDOWN for DYNAMIC RAY TRACING
Model 2 Model 0 with one receiver at (r =100 km,z =0)

with a(0)=10-170 km/sec (ba=40 km/sec)
with a(0)=1 70-1450 km/ sec (Aa=1 60 km/ sec)

PARAXIAL / FAR FIELD BREAKDOWN for GAUSSIAN BEAMS
Model 3 Model 0 with receivers at the surface z =0, and

r 1 =0.4 km to rg =3.6 km (Ar =0.4 kinm)

FRESNEL / HIGH FREQUENCY BREAKDOWN for GAUSSIAN BEAMS
Model 4 Model 0 with one receiver at (r =100 km,z =0), a(0)=50 knm/sec

with fg =10, 40, 100 Hz

VERTICAL SEISMIC PROFILING SIMULATION with GAUSSIAN BEAMS
Model 5 Model 0 with a frequency of 40 Hz , and t i =0. 0 5 sec,

receivers at r=2 km, and z 1 =0.1 km to z1 5 =1.5 km (Az =0.1 km)

TURNING POINT INVESTIGATION
Model 6 Model 5 with receivers at z1 =0.15 km to z1 0 =0.24 km (Az =0.01 km)

EARTHQUAKE SIMULATION with GAUSSIAN BEAMS
Model 7 Model 0 with a frequency of 5 Hz , and tz =0.4 sec

source at z0 =7 km and receivers at z =0,
r1 =10 km to r 1 1 =20 km (spacing 1 km)

The ray tracing program RAY81, written by I. Psencik (1983), was modified to

compute Gaussian beam synthetics in two dimensional heterogeneous media. In the

calculation we are not required to have boundaries close to the receiver line, since the

medium properties are known even above z =0. This precaution is taken to avoid any

additional approximation. The interpolation of the ray contribution to the receiver, not

inherent in the method, would possibly deteriorate results. The approximate analytic

Fourier transform of the Gabor wavelet (Cerveny, 1983 b ) is not used for similar reasons.
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7. RESULTS AND DISCUSSION

Each asymptotic condition will be written in the form of a breakdown parameter

that must be much greater than one. The upper limit on the global error EMa z is chosen

to be at about 20%. This subjective value has been chosen by estimating in numerous

synthetics the error above which the approximate results become unsatisfactory. Below

5%, the results are considered very accurate. The frequency used in the breakdown

parameters is f =fg or w=wg this is because the spectra of the signal is well centered

around this frequency. It has been verified that the global error E depends slowly on

the source time function considered. A Kelly source (Kelly et al, 1976) was used and

yielded same error trend and about the same errors (within 10%) as with the Gabor

wavelet. The seismograms plotted are the vertical component of displacement in the

(r,z) coordinate system. The radial component will be introduced when necessary.

Dynamic Ray Tracing

We shall first study the range of validity of DRT. The first condition to be tested

is the far field condition (3.12) k Ao>>I dA 0 / ds 1, which is expressed as

FFC - o >> 1 . (7.1)
2 z c

Figure 3 shows the synthetics calculated with the exact analytical solution (left) and

the synthetics computed with the DRT solution (right) from Model 1 parameters. The

error analysis is presented in Table 1. For FFC > 8, the DRT results are reliable. Below

this value, the near field term not taken into account in the DRT becomes predominant.
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Figure 3. (left) exact synthetics of Model 1 (far field breakdown), and (right) DRT syn-
thetics of Model 1.
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TABLE 1 - FAR FIELD BREAKDOWN
Model 1 - DYNAMIC RAY TRACING - HFC = 419

r (km) 7(sec) e%) eM(%) eA (%) E(%) FFC

0.1 0.03 0 -6 57 78 2

0.2 0.07 0 -2 33 47 4
0.3 0.10 0 -2 22 28 6
0.4 0.13 0 -2 15 18 8
0.6 0.20 0 0 7 9 13
0.8 0.27 0 0 5 5 17
1.0 0.33 0 0 3 3 21
1.2 0.40 0 0 3 2 25
1.4 0.47 0 0 2 2 29
1.6 0.53 0 0 1 1 33
1.8 0.60 0 0 1 1 37
2.0 0.67 0 0 0 1 41
2.2 0.73 0 0 0 1 45
2.4 0.80 0 0 1 1 49
2.6 0.86 0 0 1 0 53

TABLE 2 - HIGH FREQUENCY BREAKDOWN
Model 2 - DYNAMIC RAY TRACING - (r,z) = (100 km 0O)

%o(km/ sec) i(sec) e,(%) e h(%) eA(%) E(%) HFC

10 4.625 0 0 1 0 126
50 0.925 0 4 3 1 25
90 0.514 0 5 6 5 14

130 0.356 0 -1 9 9 10
170 0.272 0 7 12 14 7
330 0.140 0 -3 28 39 4
490 0.094 0 -3 41 58 3
650 0.071 0 11 51 71 2
810 0.057 0 11 58 79 1.6
970 0.048 0 12 64 85 1.3

1130 0.041 0 10 69 88 1.1
1290 0.036 0 10 72 91 1.0
1450 0.0 3 2 0 11 75 92 0.9,

Table 1. Far field breakdown of Model 1 with DRT; Table 2. High frequency breakdown
of Model 1 with DRT.
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The global error is due first, to an error in amplitude (eA), and second to an error in

phase (eph). Note that the travel time calculation is accurate everywhere. The

breakdown is seen clearly in the synthetics and is represented quantitatively in Table 1.

The following condition is the high frequency condition

HFC - "1 >> 1 . (7.2)

Model 2 synthetics are displayed in figure 4 for three values of HFC(7,3 and 0.9), and

the error analysis in Table 2. The minimum value of the key parameter HFC is about 7.

For HFC< 7, the high frequency breakdown occurs in a similar fashion as the far field

breakdown, as expected and discussed in section 3. We have chosen a receiver

position such that P 4.6, thus zc /R/ 1. Then (7.1) yields FFC r 0.5 W0- 1 . But

expressing here (7.2) in terms of wo0=c , yields HFC ; 2 FFC. For an HFC of about

FFC, the errors are of same order as the far field breakdown errors. The velocity

gradient values are quite unrealistic but this is because we have chosen to keep the

frequency constant and vary the cut-off frequency cr. Keeping the velocity gradient in

a realistic range and varying the frequency would yield identical results, the important

parameter here being HFC. Therefore, we can conclude that the high frequency

breakdown in this type of medium is similar to the far field breakdown. The phase

distorsion effect due to the dispersive characteristics of the medium is not predominant

here.
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The Fresnel 1-condition will be defined as

FRN1 = HFC2 (w0'- > 1

We have chosen a model 0 with h=lkm, a(O)=5km/sec, and receivers up to

4000km. The minimum FRN1 calculated was about 3.5. This condition is difficult to

test independently of the others, and because of numerical limits, we have not been

able presently to get below FRN1 3.5. The error at this point was still negligible. In

Table 2, values of FRN1 are shown. The breakdown is due to the high frequency

condition violation. Therefore the Fresnel 1-condition is not independently tested in

Model 2, and cannot serve as a criteria. The Fresnel 2-condition (see chapter I) is not a

necessary condition. In the limit of numerical calculations this condition was violated by

3 orders of magnitude without introducing noticeable error.
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Figure 4. Three pairs of synthetics of Model 2 (high frequency breakdown). In a pair:
top trace is exact and bottom trace is from DRT.
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Gaussian Beams

In the beam error analysis it is important to define another global error EW. The

definition is similar to (5.1) but the integration is done on a time window containing the

wavelet alone. The reason being that with the superposition of beams, error due to

truncation of (4.13) or of the sampling interval will increase E without necessarily

increasing EW. Further, it is possible to determine how much of the global error is due

this "noise". The local error e, on the travel time cannot be computed since we

superpose different signals that contribute to the final signal without direct calculation

of the GB travel time. We shall impose the ray-centered coordinate system regularity

condition (4.18)

RCC =-(n KR ) - >> 1, (7.3)

and the paraxial condition (4.19)

PRX (n ) - 1 >> 1. (7.4)

The lower limit of RCC (not attained) has be chosen to be 5, and that of PRX, 4. These

two values numerically constrain the conditions appropriately. The beam parameter

d = Re(s) will be set equal to 0 throughout the computations.

The first group of tests are on beam parameter definitions, the numerical

integration of (4.10), and the initial conditions of the complex dynamic ray tracing

system. These tests will be done in a far field breakdown context. Models 3 and 4 will

be implemented here. The beam parameters that are considered for presentation are

given by eqns. (4.9-11). Other beam parameters have been tested (constant value,

average value, minimum value, etc. instead of maximum value of eqns. (4.10-11)) but

were unreliable. Either they were not automatic (for example constant) and therefore
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needed to be redefined if the medium or receivers were modified or else yielded to high

an error. The exact seismograms of Model 3 are shown in figure 5a (top left). The ray

diagram used in the beam computations is displayed in figure 5a (bottom). Initial

conditions (4.3) are used. The fan of equidistant ray takeoff angles is [-450,50],

oriented top right to bottom left. 20 rays are sufficient to yield satisfactory results

with the beam parameter Bi (4.12). Figure 5a (top right) shows the synthetics of Model

* 3 for the Bi parameter and Table 3 the error analysis. Other beam width parameters are

investigated in Appendix D. Results show that the most stable parameter is the one

used here. The global error is due to the far field breakdown . A detailed examination of

the breakdown between r =0.4 km and r =0.8 km showed that the critical (lower

bound) FFC is at about 13. Thus, the far field condition requires FFC>1 3. Details on

superposition of beams, ray density, summation limits and results with initial conditions

(4.3) are presented in Appendix E.

The last test is on the Fresnel condition (4.20)

2 f W2 12 ,1/2

FRN2 - 2 2  ( )2 +( )2  > 1, (7.5)
a if L2

and the high frequency condition (7.2). Model 4 is implemented where four frequencies

are being considered 10;40;100 and 200 Hz. The fan of rays is [770,810]. 20 total

rays are used with conditions (4.3). The error analysis is in Table 4 . Note that the

minimum critical FRN2 is at about three. Therefore for FRN2 > 3, we are guaranteed

that the Fresnel condition is satisfied.
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Figure 5a. (top left) exact synthetics of Model 3 (far field breakdown), (top right) GB
synthetics of Model 3, and (bottom) ray diagram for GB of Model 3.
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The minimum FRN2 in Model 3 is 402 and that of Model 3x, 226. In beam methods, the

Fresnel condition might alter the results even if the high frequency condition is

satisfied. For this reason the high frequency condition in the beam method is not

sufficient. Note that we are still in the far field region since FFC ; 0.5HFC for this

receiver. We have seen from the DRT range of validity that the high frequency

breakdown is similar to the far field breakdown. Since both methods are asymptotic, we

shall assume this result to be true for GB too, as long as the Fresnel condition is

satisfied. Thus the condition for the high frequency condition is HFCr 1 3.

The standard ray method (DRT) has the advantage of breaking down more

smoothly than the Gaussian beam method. Further, it requires less conditions for its

applicability. Figure 5b clearly shows this difference for the far field condition and the

high frequency condition breakdowns. The Gaussian beam computations here require an

extension of the actual medium necessary for the extrapolation (distance ray-receiver,

Q and P corrections , etc.) of the wave field. Approximate techniques are possible when

the medium cannot be extrapolated naturally (Cerveny, 19 8 3a). The possible

advantage of GB in the present case is mainly computational. If the DRT solution were

to be computed by solving numerically the DRT system (as the GB solution), the

computer time would be greater than with GB, due to iterations for finding the source-

receiver ray.
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TABLE 3 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS

B - 20 rays

r(km) 7(sec) eh(%) eA(%) E(%) E'(%) FFC

0.4 0.13 10 -15 39 39 8

0.8 0.27 10 -16 9 9 17
1.2 0.40 0 -6 1 1 25
1.6 0.53 0 -4 2 2 33
2.0 0.67 0 -4 1 1 41
2.4 0.80 0 -1 1 1 49
2.8 0.93 0 -2 1 1 57
3.2 1.06 0 -2 1 1 65

3.6 1.19 0 -2 1 1 72

TABLE 4 - FRESNEL / HIGH FREQUENCY BREAKDOWN
Model 4 - GAUSSIAN BEAMS

(r,z)=(100 km,O) - Bi - 20 rays

f Hz eph(%) eA(%) E(%) Ef(%) HFC FRN2

10 3 53 42 42 25 0.5
40 1 20 16 16 101 2

100 0 3 6 6 251 5

200 0 6 2 2 503 11

Table 3. Far field breakdown of Model 3 with GB; Table 4. Fresnel / High frequency
breakdown of Model 4 with GB.
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Figure 5b. (top) far field condition breakdown for DRT and GB, and (bottom) high fre-
quency condition breakdown for DRT and GB.
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Two ezarples

We shall simulate a typical vertical seismic profile with an offset source at the

surface. The receivers are positioned in a vertical borehole. The Gaussian beam method

is used with 20 rays and a fan [-100,500]. Model 5 represents this case, Table 5

shows the error analysis , figure 6 (top left) the exact analytical synthetics and figure

6 (top right) the Gaussian beam synthetics. Since for the choice of beam (4.14) there is

no difference between E and EW, we shall omit the latter in the following tables. The

ray diagram is shown in figure 6 (bottom). The receiver array crosses a ray turning point

location (around receiver 2) where the vertical component vanishes in the approximate

methods. DRT error is about 90 % at this point, whereas GB is about 307 %. The results

are reliable and very accurate outside this zone. The synthetics plotted are not scaled

in depth. The scale is conserved between a given approximate trace and the

corresponding exact trace.

We wish to determine precisely if the ray turning point is a singular region for

DRT or GB. It is important at this point to consider the radial component of displacement,

since the vertical component vanishes for the approximate methods. If the radial

displacement is accurate and much greater than the exact vertical displacement at the

ray turning point, we can conclude that the ray method under consideration is accurate

around and at the ray turning point. Model 6 is implemented. For GB, the same rays as in

Model 5 are used. Errors for DRT are shown in Table 6, and those of GB in Table 7. The

maximum vertical amplitude, in a normalized scale, of the exact solution is shown under

Ex.Max.Vert. The maximum vertical amplitude of the approximate solution can be derived

from that of the exact solution via (5.3). They are roughly of same order.
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TABLE 5 - VERTICAL SEISMIC PROFILING
Model 5 - GAUSSIAN BEAMS

BR - 20 rays

z (km) -(msec) eh (%) eA (%) E(%)

0.1 663 2 -5 1
0.2 662 0 27 307
0.3 663 -2 6 1
0.4 666 -2 3 0
0.5 669 0 1 0
0.6 675 -2 2 0
0.7 682 0 1 0
0.8 690 -1 1 0
0.9 699 0 1 0
1.0 709 0 0 0
1.1 721 -1 1 0
1.2 733 0 1 0
1.3 746 0 -1 0
1.4 761 0 -2 0
1.5 775 0 -3 0

TABLE 6 - TURNING POINT in VSP
Model 6 - DYNAMIC RAY TRACING

z(km) eh(%) eA(%) E(%) Rad E(%) Ex.Max.Vert Max.Rad

0.15 0 3 1 0 3 114
0.16 0 4 2 0 2 114
0.17 0 5 4 0 2 114
0.18 0 10 9 0 1 114
0.19 1 25 34 0 0.6 114
0.20 1 71 90 0 0.4 113
0.21 -1 16 20 0 0.8 113
0.22 -1 8 7 0 1 113
0.23 -1 5 3 0 2 113
0.24 -1 4 2 0 2 113

Table 5. Vertical seismic profiling of Model 5 with GB; Table 6. Turning point in Model 6
with DRT.

-110-



Chapter III

Z(KM)

EXACT

0.65 0.9 SEC

- A--

0,65 0,9
VVrJ~- I0165 019

3LU--
0 5 K.

Figure 6. (top left) exact synthetics of Model 5 (vertical seismic profiling), (top right)
GB synthetics of Model 5, and (bottom) ray diagram for GB of Model 5.
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Maximum radial amplitude of approximate solutions, normalized to the same scale, is

under the column Max.Rad. The error on the radial component is represented by Rad E.

The results are close to perfect for the radial component of displacement for both, DRT

and GB. Further, the maximum amplitude in the radial direction is at least fifty times the

maximum amplitude in the vertical direction, around the ray turning point. Therefore DRT

and GB are accurate at ray turning points since the magnitude and direction of the

displacement are the same, within our criteria, as those given by the exact solution.

The last example simulates an earthquake, where the source is at a depth of 7

kn. Model 7 represent this configuration. 20 rays are used in the Gaussian beam

method, with a fan of [-90,200]. Figure 7 (top) displays the Gaussian beam

synthetics, figure 7 (bottom) the ray diagram, and Table 8 the error analysis. Results

are close to perfect everywhere.

As a summary, we have the following conditions that have to be met in order for

the ray and beam methods to be reliable and accurate (i.e. E < 20%):

Dynamic Ray Tracing:

dA0 !-1

FFC - kAo  > 8,
dsI

HFC - w w > 7.

Gaussian Beams with conditions (4.3) and B:

FFC - 13,

HFC > 13,
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RCC (n KR ) -
1 > 5,

PRX (n K,) - 1 > 4,

FRN2 2 Irl A- 1  3.

The decoupling condition in the canonical model (wwo- 1 >> 1) is automatically

satisfied with the high frequency condition, since the two characteristic frequencies

are related. In the case of structures which are more complex than a medium with

constant velocity gradient, the above conditions remain valid and applicable as long as

wo and wc exist and are real. The Fresnel 1-condition must further be investigated; so

far for FRN1 HFC2 (w T)
- 1 - 3.5, we have not detected any error. The sensitivity

of GB to the parameter d is presently studied. More complicated types of media where

an exact solution can be found are being investigated. Exact solutions (Cagniard's

problem) in media with an interface should be compared quantitatively to check the

accuracy of head waves obtained using GB with large B (Nowack and Aki, 1984). A

more representative source function might be considered such as that used by

Madariaga and Papadimitriou (1984), close to being a numerical delta function.
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TABLE 7 - TURNING POINT in VSP
Model 6 - GAUSSIAN BEAMS

Bi - 20 rays

z (km) e h(%) eA(%) E(%) Rad E(%) Ex.Max.Vert Max.Rad

0.15 1 -8 4 0 3 114
0.16 1 -10 7 0 2 114

0.17 1 -12 13 0 2 114

0.18 1 -27 42 0 1 114

0.19 1 -27 121 0 0.6 114

0.20 0 26 307 0 0.4 113

0.21 -1 46 61 0 0.8 113
0.22 -1 2 8  21 0 1 113
0.23 -1 19 10 0 2 113

0.24 -1 15 6 0 2 113

TABLE 8 - EARTHQUAKE SIMULATION
Model 7 - GAUSSIAN BEAMS

Bi - 20 rays

r (km) (sec) e (%) eA(%) (%) E (%)

10 3.02 0 1 0 0
11 3.21 2 -2 0 0
12 3.40 2 -1 0 0
13 3.60 2 2 0 0
14 3.79 0 1 0 0
15 3.99 0 -2 O 0

16 4.18 0 -1 0 0
17 4.38 O 0 0 0
18 4.57 0 -2 1 1
19 4.76 0 0 0 0
20 i 4.95 2 -1 0 0

Table 7. Turning point in Model 6 with GB; Table 8. Earthquake simulation in Model 7 with
GB.
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Figure 7. (top) GB synthetics of Model 7 (earthquake simulation), and (bottom) ray di-
agram for GB of Model 7.
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8. CONCLUSION

Range of validity of two asymptotic wave methods, the dynamic ray tracing

method and the Gaussian beam method, have been established. The medium considered

is that of a constant gradient model where the Green's function is known analytically in

time and frequency domains.

Two conditions must be met in the dynamic ray tracing method: (1) far field, and

(2) high frequency conditions. The Gaussian beam method requires three additional

conditions: (3) regularity of the ray centered coordinate system, (4) paraxial rays, and

(5) rays within the first Fresnel radius conditions. Quantitative values are shown for

each condition, and examples exhibit clear breakdowns. The two methods are accurate

at ray turning points.

Two examples show the application of the Gaussian beam method to different

types of seismic problems. For the canonical medium considered, the Gaussian beam

method is less accurate than dynamic ray tracing, particularly when a breakdown

occurs. The validity conditions are applicable for complex structures as long as the two

medium's characteristic frequencies co and c exist and are real.
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9. APPENDIX D: Details on beam width parameters

Other beam width parameters are investigated with Model 3 (far field

breakdown). Error analysis with the beam parameter Bm (4.10) is shown in Table D1.

The calculated constant value equals Bm = 4. Results with parameters BM (4.9) and

B.o (4.11) are shown in Table D2 and D3, respectively. Although all four beam

parameters (4.9-11) yield about the same results at r>1.2 km, the most smooth

breakdown (compared to DRT) is achieved with the beam parameter Bi (4.12). Our basic

assumption being that the beam method should not behave that differently from DRT in

regions where DRT is regular. A possible explanation is that, for this choice, the beams

are adapted to the receiver location keeping the maximum allowable (constant) value of

the beam parameter on each receiver, and are renormalized from receiver to receiver.

Note that for this choice we can have a very wide spread of receivers. The beam

parameter (4.12) B is the beam of choice.
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TABLE D1 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS - Bm - 20 rays

r(km) 7r(sec) e, (%) eA(%) E(%) E (%) FFC
0.4 0.13 10 -352 988 988 8
0.8 0.27 10 3 58 57 17
1.2 0.40 0 0 2 2 25
1.6 0.53 0 -4 1 1 33
2.0 0.67 0 -3 0 0 41

2.4 0.80 0 -2 0 0 49
2.8 0.93 0 -2 1 1 57
3.2 1.06 0 -2 1 1 65
3.6 1.19 0 -2 1 _ 1 72

TABLE D2 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS - By - 20 rays

r(km) -(sec) e (%) eA(%) E(%) Ew(%) FFC

0.4 0.13 10 -8 42 42 8
0.8 0.27 9 14 30 30 17
1.2 0.40 6 -4 10 10 25
1.6 0.53 5 -13 12 12 33
2.0 0.67 4 -14 6 6 41
2.4 0.80 4 -11 3 3 49
2.8 0.93 3 -9 2 2 57
3.2 1.06 3 -7 2  2 65
3.6 1.19 0 -10 2 2 72

TABLE D3 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS - Bo - 20 rays

r(km) r(sec) (%) eA(%) E(%) E(%) FFC
0.4 0.13 08 -842 1153 1153 8
0.8 0.27 10 -34 53 52 17
1.2 0.40 0 -14 3 3 25
1.6 0.53 0 -14 3 3 33
2.0 0.67 5 -11 2 2 41
2.4 0.80 4 -9 1 1 49
2.8 0.93 3 -8 2 2 57
3.2 1.06 0 -7 2 2 65
3.6 1.19 0 -10 2 2 72

Table D1, Table D2 and Table D3: Testing of other beam parameters in GB.
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10. APPENDIX E: Beam integration and initial conditions analysis

The method of integrating (4.13) yields different results depending on the

method. The following Model 3x is considered: Model 0 with receivers at the surface

z =0, and r 1 =1 0 km to r 5 =14 km (spacing 1 kinm). This model has no breakdowns and

yield very good results with 20 rays and a fan of [10,650 ], where the exact synthetics

are shown in figure 8 (top left), and the ray diagram in figure 8 (bottom). The error

analysis is shown in Table El. The synthetics are very accurate and are identical to

those in figure 8 (top left) (E=O). In order to test the method of integration we decided

to shoot only eight rays with the same fan. There is no distinguishable differences

between the rectangular, (4.15) Table E2, and trapezoidal rule, (4.16) yielding same

errors as the rectangular rule. However, results become less accurate with Simpson's

rule, (4.17) Table E3. As a consequence, there is no need presently to use more

advanced methods of integration (other than the rectangular rule 4.15) to get reliable

and accurate results. The fan of rays is required to cover conditions (7.3) and (7.4) so

that they become active. This can be easily implemented by checking how many of the

rays contribute to the final seismogram. At each receiver, the number of rays

contributing to the seismogram should be less than the total number of rays. Increasing

the number of rays (i.e. ray density) improves the accuracy. Of the 20 rays, about 15

contribute to an individual seismogram, yielding a very good accuracy. Even with 8 total

rays, (about 6 rays per receiver) the results remain satisfactory (i.e. E < E hz). The

number of rays that will contribute exactly for each seismogram is not known a priori.

That is why the total number of rays is not required to be even when Simpson's

integration rule is used.
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Figure 8. (top left) exact synthetics of Model 3x, (top right) GB synthetics of Model 3x
with conditions (4.5), and (bottom) ray diagram for GB of Model 3x.

- 120 -

Chapter III

EXACTr (Km)

10

12

- -----------

.AA - - ---VV-- -

+ A P--



Chapter III

If the initial conditions (4.5) are used instead of (4.3), there are additional

conditions for the applicability of GB. The Non horizontal incidence condition (4.7) is

written in the form

NHI R (zo+h) - >> 1

Since results become singular as the takeoff angle reaches the horizontal (see

4.6), the corresponding rays distort the seismograms considerably. Receivers close to

the source, but still within the far field limit, cannot be considered. Further, a higher ray

density is required to obtain an accuracy similar to that with initial conditions (4.3). We

shall use the constant value of the beam parameter of B = 44100, with 100 rays.

These two initial conditions are compared for Model 3, with same fan of rays, and the

error analysis displayed in Table E4. This table should be compared to Table 3. With

Model 3x, the synthetics with conditions (4.5) are shown in figure 8 (top right) and the

error analysis is displayed in Table E5 and are to be compared to that of Table El. The

results with the new conditions are "noisier" due to the contributions of near-horizontal

rays . This is seen in the synthetics and quantified by the differences between E and

EW in the tables. For the furthest receiver in Model 3 the parameter NHI is equal to

1.016, and in Model 3x, NHI = 1.2. Therefore for NHI greater than say 1.2, use of the

initial conditions (4.5) in GB would yield reliable results provided the ray density is high

enough.
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TABLE El
Model 3x - GAUSSIAN BEAMS - B - 20 rays

r(km) 7(sec) e (%) eA(%) E(%) EW(%) FFC

10 3.21 0 0 0 0 156

11 3.50 0 0 0 0 164
12 3.79 0 0 0 0 170

13 4.07 0 3 0 0 1 7 6

14 4.35 0 3 0 0 181

TABLE E2
Model 3x - GAUSSIAN BEAMS - B4- 8 rays

r(km) -r(sec) __(%) e4 (%) E(%) E (%) FFC

10 3.21 0 -10 1 1 156
11 3.50 -1 10 6 6 164
12 3.79 0 8 3 3 170

13 4.07 1 -23 10 10 176
14 4.35 0 -14 13 13 181

Table El. Model 3x with GB and . with 20 rays; Table E2. Model 3x with GB and B
with 8 rays.
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TABLE E3 - Model 3x - GAUSSIAN BEAMS
B - 8 rays - Simpson's rule

r(km) -(sec) a (%) e(%) E(%) EW(%) FFC

10 3.21 0 -22 8 8 156
11 3.50 -1 -20 16 16 164
12 3.79 1 -24 12 12 170
13 4.07 1 -34 14 14 176
14 4.35 0 -6 25 25 181

TABLE E4 - FAR FIELD BREAKDOWN
Model 3 - GAUSSIAN BEAMS

B=441 00 - 100 rays - In.Cond. (4.5)

r(km) -r(sec) e (%) eA((%) E%) E'(%) FFC

0.4 0.13 13 -1274 **x* . " 8
0.8 0.27 3 -257 1029 1028 17
1.2 0.40 1 -87 352 345 25
1.6 0.53 2 -56 245 230 33
2.0 0.67 1 -38 117 87 41
2.4 0.80 1 -28 92 54 49
2.8 0.93 1 -30 79 48 57
3.2 1.06 1 -31 79 51 65
3.6 1.19 -2 -29 71 53 72

TABLE E5 - Model 3x - GAUSSIAN BEAMS
B=44100 - 100 rays - In.Cond. (4.5)

r(km) 7(sec) eh(%) eA(%) E(%) E (%) FFC

10 3.21 0 3 4 3 156
11 3.50 0 3 3 2 164
12 3.79 0 2 2 0 170
13 4.07 0 1 3 0 1 76
14 4.35 0 2 2 0 181

Table E3. Model 3x with Simpson's integration rule in GB; Table E4. Far field breakdown
of Model 3 with GB and initial conditions (4.5); Table E5. Model 3x with GB and initial
conditions (4.5) with large initial beam width parameter.
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IV. MODELING WITH THE PARAXIAL RAY METHOD

There is no permanence to scientific concepts because they are only

our interpretations of natural phenomena.

- J. Bronowski

1. INTRODUCTION

Central rays introduced in the preceding chapters individually sample the medium.

All extrapolations and computations of the high frequency wavefield are performed in

this local frame, that is, in the ray centered coordinate system. One may express these

operations in a global reference frame in order to represent all the operations in the

same coordinate system (Cerveny, 1983), but this procedure does not introduce

additional information about the medium.

The displacement field calculated in standard ray method (two-point ray tracing)

corresponds to a boundary value problem, where the central ray connects the source to

the receiver (see 11.4.12). Such a ray is called geometric. An iterative shooting scheme

is implemented to solve this problem. Examples of this method are shown for surface

seismics in Cerveny, Moloktov and Psencik (1977), and in vertical seismic profiling in

Mellen (1984).

The Gaussian beam method generally requires more than eight beams in order to

reconstruct the high frequency wavefield (see 11.8.4). The beam support is a central

ray and the beams superposed are required to sample the medium in the vicinity of the

receiver. It is viewed as an initial value problem, where rays do not necessarily cross
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receiver locations.

Original formulation of the parabolic-paraxial wave theory was done in 1946 by

Leontovich and Fock. A brief historical survey of the method with numerous references

and applications to many areas in physics can be found in Tappert (1977). A formal

derivation and extension of the theory for scalar Helmholtz equation is presented in

Fishman and McCoy (1984). Several authors considered the application of the theory

to elastic waves (Landers and Claerbout, 1972; McCoy, 1977; Hudson,1980; Corones

et al., 1982). Wales and McCoy (1983), compared the results of some of these

different approaches, in a weak-scattering context.

Within our context, the paraxial-parabolic ray method is an intermediate method

situated between the standard ray method and the Gaussian beam method. It is

described briefly in section 11.7. It assumes that the central ray(s) is (are) within the

neighborhood of the receiver. Considering a virtual ray passing through the receiver

(geometric ray) with wavenumber vector k, and for a central ray in the vicinity of the

receiver with wavenumber vector ks, the central ray is paraxial if the angle between k

and ks, X, is sufficiently small so that sinX P X (i.e. X << 1). If this is satisfied then

k IkI.

The parabolic approximation assumes a privileged direction of propagation, which in

our case is the ray direction (along s). This approximation neglects the 2/ s 2 term in

the Helmholtz wave equation. The dispersion relation of the Helmholtz wave equation in a

homogeneous medium which is represented by a circle, is now approximated by a

parabola (Claerbout, 1976). The vertex of the parabola is the unique point of contact

with the circle, and is tangent to it. Its axis is parallel to Is. This approximation leads

to I kj k | I (see Appendix II.C).
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A ray that is paraxial satisfies therefore the parabolic approximation and vice-

versa. The denominations paraxial and parabolic describe the same type of

approximations but in different spaces; the former determines the receiver

neighborhood in the spatial domain (nK << 1), and the latter imposes an upper bound of

the wavenumber vector orthogonal to ks ( kn I << I k I) in the frequency-wavenumber

space (see II.C.4). We shall, henceforth, choose the term parazial ray approximation

to describe the restriction of the energy flux to ks directions that fall within a narrow

angle of the k axis.

The paraxial ray method can be derived by extension of the standard ray method,

or as a limiting case of Gaussian beams. The Taylor expansion of the travel time away

from the central ray, followed by a scaling and rotating (similarity operation) of the ray

vector amplitude yield the paraxial ray. In the Gaussian beam formulation, setting the

complex parameter & (111.4.2) equal to zero, the superposition integral (11.8.4 or 111.4.10)

reduces to an average of paraxial rays. This limit requires that the weight factor 4 be

equal to 1/ N, where N is the total number of rays contributing in the integral.

The advantage of the paraxial ray method over the standard ray method is mainly

computational. The method does not require two point ray tracing. The method is robust

and flexible in the sense that receivers can be placed anywhere in the medium. Results

can be as accurate as required, with computation time as tradeoff. One paraxial ray can

be used to extrapolate the field at many receivers, reducing then the total number of

rays. This number is, generally, less than the total number of receivers. The advantage

over the Gaussian beam method is that only one ray is sufficient to extrapolate the high

frequency wavefield to the observer, whereas Gaussian beams require a minimum

number (on the order of eight), requiring then a greater medium coverage around the

receiver. Even though Gaussian beams are restricted to the paraxial region and
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therefore uses the paraxial approximation, the two concepts are of different nature.

The disadvantage over Gaussian beams is that it is less robust and cannot handle

caustics, shadow zones, head waves or other interface waves. We shall present in the

following section the development of the paraxial ray method in a straightforward and

systematic manner.

2. THEORY

The theoretical steps that are performed in the paraxial ray method are presented.

We will mainly be concerned with two dimensional medium heterogeneities. Derivations

will implicitly assume that medium properties do not change in one space direction, say in

the y direction. Equations for three dimensional heterogeneous media can be found in

Cerveny (1983) and Cerveny, Klimes and Psencik (1984).

In "forward" modeling, it is natural to assume that we are given a subsurface model.

A global reference frame (9, 9) is defined and shown in figure 1. The following inputs

are specified: (0) The model domain of definition, in which we define (1) velocities

a(x,z) and fl(x,z), (2) densities p(x,z), (3) quality factors Q(x,z) (for near-elastic

media i.e. Q>>1, Aki and Richards (1980); Toksoz and Johnston (1981); Ben Menahem

and Singh (1981); White (1983)), and (4) interfaces z; = zi(x), i=l,I separating I-1

layers each having a minimum thickness of hi, j=1, 1-1. Layer parameters and

interfaces are at least of class C2 , that is twice continuously differentiable.

The source location Mo(xo,z o ) and its radiation pattern f (y1,72;) are given (see

11.3.7). For simplicity we shall consider only one receiver located at M(xr,zr). Multiple

source/receiver configurations follow by simple extension of this presentation.
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Figure 1. Global reference frame definition in model.
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Applicability conditions of ray theory derived in chapter II are assumed to be

satisfied. In the case of layers and interfaces, the characteristic length l o (11.2.17)

must include the interface radius of curvature and layer minimum thickness. The

curvature of interface zi at point x is given by (Eisenhart, 1909; Vygodski, 1975)

dz -3/2 g2
I4x = + (i 2  (2.1)

and the interface radius of curvature is equal to 1/,I. The definition of the threshold

frequency introduced in (11.2.19) can be extended accordingly. The mode decoupling

condition now reads

>>1 o - = I Va, ,V9, a ,c , . (2.2)> o, Wo 2 =1,=1-1 ' p

Firstly, we specify a type of wave (or of ray) that we wish to propagate in the

model. For example, a P wave source propagating direct P waves up to the z i interface,

then, a reflected S wave from that interface, remaining a transmitted S wave all the

way through the model. Such a characterization of a ray 0 is called the ray code of 0.

Rays are traced in the medium by solving the characteristics of the eikonal equation

(11.4.5). Defining 1 = Vr and & = OM '(z,z), these characteristics take the form

_ = - V (in v), (2.3)

d,7

where v is either cx or fl. This system is called the ray tracing system. The system is

solved by specifying initial conditions of 0 (initial-value problem) consisting of 7=70,

S= io - 0 ~ o and A = 0 satisfying the eikonal J 2 =v- 2 ( 0 ). Defining the arclength

s as the distance along 0 from Mo to M', we have
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s =Ids , (2.4)

with ds = (dx 2 + dZ 2 ) 1 / 2 . The travel time at M' is readily obtained recalling that

ds = v d7, and is given by (11.4.7). The arclength at the source is set equal to so

(generally equal to zero): We can therefore write Mo(so), and M'(s). Across an

interface zi, the ray tracing is stopped. Local phase matching conditions are applied,

requiring new initial conditions for the reflected/transmitted ray, depending on the ray

code, before resuming computations. Explicit equations are presented in Cerveny,

Molotkov and Psencik (1977). The phase manifestation of the travel time is given by

S(7) = exp(i-7-).

Secondly, we solve the eikonal equation in the ray centered coordinate system of

0 (11.4.8) known as the dynamic ray tracing system. The two parameters that are

derived from it are the local wavefront curvature K. along 0 and the surficial Jacobian

jS (11.4.9a). Here again, in the presence of interfaces, K1 and jS must be correctly

transformed (Cerveny, 1983). The transport equation (11.3.7) yields then at M'(s) the

complex amplitude of the displacement (see 11.4.11) in the frequency domain. For a

near-elastic medium, and for an explosive point source, it is given by

Ui c o  exp Q(ds
Uo(s) = (p(s) v() JS(s))1/ 2  2 so Q(s)v(s)

1/2SR(D) p(s+) v(s3) JS(s ) (2.5)

p(sf ) v(s ) AJ(sy )

where the R, is the appropriate reflection/transmission coefficient at interface zi at

the point D. s5 denotes the arclength at the point D on the side of the incident wave,

and s + on the side of the reflected/transmitted wave.D I IC3U IL1 clrru llull~u ruu
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In acoustic media, expression (2.5) is slightly modified since it is pressure that is

observable (or the potential of U see 11.4.9)

v(s) ds

1/2

I (D) ,D Ds (2.6)
=1 v(s ) JS(s)

with v =cx, and the appropriate acoustic reflection/transmission coefficient R. Here,

v 2 = (p c)- 1, where i is the medium adiabatic compressibility (Morse and Ingard, 1968).

Considering a line source that will be used in chapter V, the source radiation pattern f,

is derived equating (2.6) with the asymptotic expression of the Green's function for an

acoustic line source in a homogeneous medium (i.e. H ')(AI/v0 )). We have
4

f = -(8 T1 cj) - 1/ 2 e i r/ 4  (2.7)

Denoting P the unit vector along (tangent to) the ray 0, and i~ the perpendicular to Pf,

the displacement vector at M'(s) for P waves is

(M',) = Uo (M',c) eir(M ) p , (2.8)

for S waves, 6 is replaced by i. In acoustic media the equivalent representation is

given by (11.4.2).

Thirdly, the distance from ray 0 to receiver M must be computed. This is

achieved by searching for the point M'(s) on the ray such that the product of the ray

slope at M'(s) times the slope of the straight line joining the receiver to the ray at

M'(s), is equal to -1. If at this point M'(s) on ray 0 the components are (x', z'), then

the distance ray-receiver is
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n = (z r  x') 2 + (z r - z  (2.9)

The receiver at M can be located in terms of the ray centered coordinate system of 0,

i.e. M(s,n), as long as this system remains regular, that is n KR << 1 (11.7.21). The

assumption of smoothly varying medium is now necessary, since the wavefront is

supposed to be about the same at M than at M'. The paraxial angle is then computed

following (see figure 2.)

X = tan- 1 (n K) . (2.10)

The next condition for the applicability of the paraxial ray method is the paraxial

condition (11.7.20), requiring IXI << 1. An additional condition, that is implicit in the

method, which is the paraxial version of condition (11.8.9) is that

n << l o . (2.11)

This is a necessary condition. If receiver M is in the the region of medium where the

characteristic length is lo, the paraxial ray that will be used in determining the field at

M, must carry the information about o1. At this point we have rejected rays that do not

satisfy the applicability conditions of ray and paraxial ray methods. Let us assume that

ray 0 satisfies all the conditions for the extrapolation of the field from 0 at M' to

receiver M.

Foburthly, we perform the paraxial corrections. The kinematic (or acoustic)

paraxial correction for the travel time at M (see fig. 2 and Appendix I I.C)

6R
T(M) = 7(M') + , (2.12)

or in terms of the ray centered coordinates

(s,n) = r(s,0) + n2 (2.13)
2
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Figure 2. Paraxial ray geometry.
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Then, the dynamic paraxial correction is performed for the amplitude at M.

6RW
5 i - (2.12)

U(M,) = q P .U(M',)e " ,

where q = (1 + 6Rw./(JS)1/ 2 )-l for a point source, and q = (1 + 6R/ jS)-1/ 2 for

a line source. The P operation is a rotation of (oriented) angle X, of center T, from M'

to M (figure 2). Denoting [P] the matrix of P, we have

[P] = cosX sinx (2.13)] -sin cosx X

The amplitude transformation in (2.12) is recognized to be a similarity of scale q , angle

of rotation X and center T. The high frequency Green's function at M is then, for P

waves,

(M,c) = q Uo(M',w) exp{ i T(M) + P I .p, (2.14)

for S waves, is replaced by fi. The angle X is very small compared to one, since the

paraxial condition is assumed satisfied. Further, in the far field and for a paraxial ray,

we may approximate the scale factor q by one (i.e. 6R, << (JS)1/ 2 for a point source,

and 6R << JS for a line source). Within this approximation the following values are then

considered in (2.14)

1 ] . (2.15)

Lastly, if the source spectrum is equal to (w0), the seismogram at receiver M,

it(M,t), is obtained by multiplying the high-frequency Green's function by the source

spectrum, and by inverse Fourier transforming the response,

iI(M,t) = FT-1 (M). () , (2.16)

where the convention of Fourier transform is the same as that defined in Chapter III,
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section 2.

3. EXAMPLES

Source time function is the Gabor wavelet described in Chapter III equation (6.1).

Source parameters are fo = 60 Hz, F = 4 and tj = 0.03 sec. The paraxial ray

computation of (2.14) and (2.16) is done using a modified version of the Gaussian beam

code (see Chapter III, section 6). The data generator and testing of the method is

performed using a finite difference program written by Esmersoy (1985). It is a

constant density acoustic code with absorbing boundaries, where synthetics are

computed for a line source. The formulation is heterogeneous with an explicit scheme.

We always satisfy the grid dispersion relation, Ad = amin/ (5fmax), and the stability

condition, At !< Ad/(21/ 2 amax), where Ad is the grid spacing; At the time sampling

interval; fmax the highest frequency present in the source; and where min and amax are

the minimum and maximum velocities in the medium, respectively.

Model 1:

The model is a VSP in a two layer acoustic medium (Q-,oo), with a tilted interface

(figure 3). There are no free surface effects, and the 2D line source is at an offset

distance of 0.75 km. The borehole is S-shaped with 20 receivers. The interface tilt is

about 4 F 220 (see Appendix G.1). The upper medium velocity is a = 3.5 km/ sec and

the lower medium velocity is a 2 = 4.5 km/sec. Pressure synthetics using the paraxial

ray method are shown in figure 4. A maximum of ten rays per ray code is enough to

construct the wavefield. The corresponding finite-difference synthetics are shown in

figure 5. figure 6 displays the difference (residuals) Paraxial - Finite Difference.
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Figure 3. Geometry of Model 1.

- 136 -



Chapter IV
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Figure 4. Pressure synthetics of Model 1 (paraxial rays).
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Figure 5. Pressure synthetics of Model 1 with the finite difference method.
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Figure 6. Residual (Paraxial - Finite difference) synthetics of Model 1.
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The small differences are attributed to (1) grid dispersion, due to the finite spatial

sampling of the medium; this is due, particularly to the propagation in the low-velocity

layer; and (2) a small instability resulting from the finite time sampling which is affected

by the high velocity layer. This example shows that paraxial ray amplitudes and travel

times correctly reproduce the wavefield.

Model 2:

This model is the elastic version of Model 1, with same geometry (figure 3). The

source is now an explosion. The factor iw in (2.5) is not included because no

comparison with an exact method is done. The upper layer parameters are:

a, = 3.5 km/sec, P, = 2 km/sec, and p, = 2.7 g/ cm 3 . The lower layer parameters

are: a 2 = 4.5 km/ sec, f2 = 2.6 km/ sec, and p2 = 3.0 g / cm 3 . Here too, a maximum

of ten rays per ray code is enough to construct the wavefield. Four ray codes are

considered: (1) The direct P, (2) P to S converted transmitted, (3) P to P primary

reflected, and (4) P to S primary converted reflected. Arrivals in the figures are labeled

according to this numbering. figure 7 shows the vertical displacement synthetics, and

figure 8, the horizontal displacement synthetics. The reflected wavefield comes from

the other side of the borehole, with respect to the source, and is correctly taken into

account by the method. A two-point ray tracing program would require at least six times

more rays, considering that each receiver is found after 3 rays.
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Figure 7. Vertical component of displacement of Model 2 (paraxial rays).
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Model 2
PARAXIAL RAY METHOO - ELASTIC
VSP - HORIZONTAL COMPONENT

0.00
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TIME (SEC)

Figure 8. Horizontal component of displacement of Model 2 (paraxial rays).
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Model 3:

We compare the paraxial ray method with the discrete wavenumber method

(Bouchon and Aki, 1977). The model represents a simplified section of a borehole in

Michigan, referred to as model 3. The 11 layer elastic media is subjected to a vertical

point force located on the surface, with a source offset of 0.075 km (figure 9). There

are 11 receivers. The discrete wavenumber synthetics are computed by Prange

(1985). We have used 8 ray codes, with direct P, and primary P reflected rays from

interfaces 5 through 11. The source parameters are fo = 50 Hz, P = 4, and ti = O0. The

medium threshold frequency, wo, (2.2) is on the order of 120 Hz x radians, whereas the

angular frequency is about 314 Hz x radians. The mean wavelength, X, is on the order

of 100 meters. Within a constant amplitude factor, there is a fairly good agreement

between the paraxial synthetics (figure 10) the discrete wavenumber synthetics

(figure 11). Here again, even in the presence of thin layers (h 8 k 20 meters),

asymptotic results are still representative of the the wavefield.

Model 4:

This last example is a four layer elastic model, containing a reef (figure 12). We

combine VSP and surface reflection data. The explosion point source is located on the

surface at 525 meters offset, with same source parameters as in Model 1. There is a

total of 60 receivers: 40 receivers are placed in the VSP geometry, with initial receiver

at depth 150 meters and last receiver at 930 meters (spacing 20 meters). The

remaining receivers are on the surface, with 50 meters spacing. Receiver 21 is on

interface 4 (the reef), whereas receivers 13 and 14 are separated by interface 3

(dipping interface).
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Figure 9. Geometry of Model 3.
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Figure 10. Vertical component of displacement of Model 3 (paraxial rays).
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Figure 11. Vertical component of displacement of Model 3 with the discrete wavenumber
method.
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Layer parameters are the following: densities in g / cm 3,

(Pl = 2.5, P2 = 2.6, p3 = 2 .7 , p4 = 2.8),

velocities in km/ sec,

(a, = 3.3, a2 = 3.5, a3 = 4, a 4 = 4.5).

Shear velocities are fi = ; / 31/2. 10 ray codes were used, with a maximum of 30

rays per ray code. Figure 13 shows the vertical component of displacement, and figure

14, the horizontal component of displacement. The numbering in the figures corresponds

to the following arrivals: (1) direct P wave, (2) P to S conversion at interface 2, (3) P

to S conversion at interface 3, (4) P to S conversion at interface 4, (5) P to P primary

reflection at interface 2, (6) P to S primay converted reflection at interface 2, (7) P to

P primary reflection at interface 3, (8) P to S primary converted reflection at interface

3, (9) P to P primary reflection at interface 4, and finally, (10) P to S primary converted

reflection at interface 4.

On surface receivers, arrivals (1), (5) and (6) interfere with each other. The

receiver array is not large enough to allow separation of these waves. Arrival (8) is

very poorly distinguished on surface data, and is better seen on the VSP. The reef

distorts arrival (1) in layer 4 which should have been straight if there were no reef. The

ray tracing of arrivals (1) and (9) are displayed in figures 15 and 16, respectively.

Note on figure 15, the direct rays that were stopped because of post-critical angle of

incidence. The wavefront right below interface 2, is extrapolated to neighboring

receivers without difficulty with the paraxial ray method. Whereas, in two point ray

tracing, near critical rays, many iterations are required to achieve the same goal.
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SURFACE-side 2
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Figure 12. Geometry of Model 4.
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Chapter IV
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Figure 13. Vertical component of displacement of Model 4 (paraxial rays).
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Figure 14. Horizontal component of displacement of Model 4 (paraxial rays).
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Figure 15. Ray diagram of direct P arrival, for Model 4.
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Figure 16. Ray diagram of P to P reflection at interface 4, for Model 4.
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4. CONCLUSION

The paraxial ray method is an economical way of computing fast asymptotic

Green's function in heterogeneous media. The paraxial corrections are (1) kinematic:

approximation of the phase at the receiver, given the phase at the central ray, (2)

dynamic: similarity transformation with scale close to unity and angle of rotation equal to

X.

Comparison with acoustic finite difference and elastic discrete wavenumber

methods, is very satisfactory. Examples show the flexibility and robustness of the

method.

In problems such as imaging and inversion of heterogeneous media, where large

numbers of Green's function computations are required, the paraxial ray method offers

an attractive way of achieving this task.
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V. FULL WAVEFORM INVERSION

Chaque science, chaque etude, a son jargon inintelligible,

qui sernble n 'etre invente que pour en defendre les approches.

- Voltaire

1. INTRODUCTION

The present chapter deals with a full wave inversion for interface and layer

parameters. The goal is to use combined sets of VSP and surface reflection data, multi

offset VSP's, or cross borehole data, to estimate subsurface parameters. The paraxial

ray method presented in Chapter IV generates the forward model. Amplitude information

constrains the inversion uniquely by (1) post critical reflection phase effects, (2)

density information, (3) medium density and attenuation factor and (4) the effect of the

displacement component.

The inversion is done in the frequency domain since the paraxial results are

computed in this space. Further, the data dimension is reduced. necessary, compared

to time domain full - wave inversion, while maintaining all signal information. Finally, the

assumption of uncorrelated samples is justified in this domain.

The heterogeneous media contain homogeneous layers separated by smooth

interfaces. Interfaces are parametrized by simple functions. Prior information includes

initial layer parameter estimates, along with their errors in measurement, the type of

interfaces that are present (dipping interface, reef type, anticline, fault etc.), and a

fixed point on each interface, given for example by a VSP experiment, or any other

borehole logging information. This is a realistic consideration, since layer parameters
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and interface locations are well determined in the borehole. Other types of prior

information can be included such as data from other geophysical sets, or empirical

relations between layer parameters.

The non-linear least-norm formulation is presented in the context of tensor algebra.

A simple analogy exists between the data covariance operator and the metrical tensor

of the basis under which the data is expressed. The inversion is finally reduced to a

minimization of a a residual energy, which is the sum of squares of nonlinear functions

for parameter estimates. This is then solved using a special case of the Gauss-Newton

method known as Levenberg-Marquardt.

We first examine the sensitivity of the residual energy to parameters. Examples of

inversion with finite difference data are presented. Finally, an example with field VSP

data collected in Michigan, is inverted for velocities and interface dip angles.

2. GENERAL DERIVATION OF THE NON-LINEAR LEAST-NORM FORMULATION

The observables of a given geophysical system (measurements, data, synthetics

etc. ) can be represented by real vector functions, elements of a vector space which

should be specified precisely. It is a real Euclidian space. Its properties are that (1) it is

a discrete real linear vector space, (2) N-dimensional and, (3) in which a scalar product

has been defined resulting in a Euclidian (L 2 ) norm. Following the same notations as Aki

and Richards (1980), we shall call this space the N-dimensional data space and denote

it by U. We shall assume that U is a subspace of E, where E Is the discrete linear space

described in Appendix F.

Given a set of measurements described by a data vector d in U, the non-linear

least-norm inverse problem, consists in the following three steps:
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(1) Determine precisely the parameters we wish to extract from the data d. These

parameters are in the form of a vector A , defined as the parameter vector. Denote V

the space spanned by the r's with dimension M. This is the parameter space, a

subspace of E. However a necessary assumption is that V is a convex set. This means

that for any two vectors rn 1 , 7A 2 in V, and for a scalar X within [0,1], the vector

Arh 1 + (1 -X)TL 2 is an element of V. Generally, the two spaces U and V are different in

nature since in the first case the vectors are formed by data points (eg. amplitude,

phase at given time or frequency etc.) and in the second case the vectors contain

parameters (eg. velocities, attenuations, interface parameters etc.). However, in some

instances (section 3), the data space may contain elements that are present in V

space.

(2) Formulate a model in the form of algebraic, differential or integral equations

(generally non-linear) with its associated initial and boundary conditions. Let this model

be represented by a functional f that operates on a vector r of V space and

transforms it into a vector f(_+A) of U space. This vector is defined as the synthetics.

It is the model prediction of a data set. At this point, we should identify the parameters

that are best suited for the model. There are some models for which it is not possible to

uniquely estimate all the parameters from measurements. However, certain functions of

the parameters can be estimated. Beck and Arnold (1977) derive a parameter

identifiability criterion. A posteriori parameter resolution and variances (section 4)

contain information on how good and reliable the parameters are estimated, given the

data set and the model.

The discrepancy vector I between the data and the synthetics is a functional

defined for any i in V,
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b(v9) d f(7A). (2.1)

This vector is sometimes called the additive error in measurements or the residual

vector; in other terms it represents what is not modeled by f(TA).

Given a basis in U, with its corresponding metrical tensor W, the total energy of the

discrepancy t is defined as half the Euclidian norm s(t,t) (see Appendix F.1 7)

E( 1 to ., (2.2)
2

or in matrix form

2

It is sometimes referred to as the residual energy of the data-synthetics system. The

real and symmetric metrical tensor P acts as a weighting factor for each component

~. The data is expressed in the basis of W. The physical meaning of W will be

introduced later in this section. A sufficient condition that will be required later is that

the functional E be of class C2 , that is twice continuously differentiable.

(3) Finally, assuming that E(n&) is a convex function and that an Pt* exists in V,

such that

E(?A*) = min E(M) , (2.4)

the last step is to find an estimate of ?A*, say 71, so that a n *. The function E

represents the equation of a hypersurface in VR space (R denotes the set of real

numbers). The convexity of E requires that the set of points in V>R above the surface

described by E is convex.
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If (2.4) is achieved we then have, for any nA in V, E(A) ; E(A). The model /

with parameter vector A is said to "best fit" the data d within the vector error e(A' ) or

with an energy discrepancy of E(A). This optimization can be interpreted geometrically

as searching the deepest or lowest point on the hypersurface of E in V>4 space. E(M)

is the non-linear least-norm (in L 2 sense) of (A).

For our purposes, the minimization (2.4) can be interpreted as maximizing a

Gaussian probability density function for the data vectors (Van Trees, 1968; Tarantola

and Valette, 1982), which is a special case of the maximum likelihood method. This

assumes that vectors in U have a likelihood function of the form

L(d A) = C exp - f[ - (A)]T V- 1 [d -f (A)] , (2.5)

with observations dc, expected value f( A), and covariance matrix V. c is a random

sample of size N, and C is a normalization constant factor. This is the probability that

event 4 be realized, given A, thus f(A) and V. The maximum likelihood method

searches for an 7A* that maximizes L(d I A*). The minimization seeks to estimate the

parameters A present in the expected value f. Taking the absolute value of the

natural logarithm of L(cI A) converts the maximization of L(c1 A) into the minimization

of -i -' (A)]T V- 1 [ - ()]. Identifying this representation of the problem
2

with the present formulation (2.1-4) leads to the equality between the matrix [ r]-1

and the prior covariance matrix V. The covariance matrix determines the type of basis

under which the data is expressed. The minimization handles the prior information as

weighting factors for individual data components. More accurate observations are

weighted more heavily. Equation (2.5) is then written as L(I jA) = Cexp(-E(A)),

where d is an implicit variable in E.
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If the covariance matrix is diagonal (uncorrelated events), the base vectors are

orthogonal. The matrix [ ] is diagonal with components reduced to scale factors. Each

data component is totally unrelated to, or independent of, another component since the

residual energy remains unchanged when cross-term components are added. The

energy for each component & is weighted according to the scale factor Wi. If the

covariance matrix is equal to a scalar constant w times the identity matrix (white noise

if the problem is set in the frequency domain), the base vectors are orthonormal. There

is equal prior information about the data variance and consequently there is no

privileged weighting (W, = u). In terms of tensor algebra, curiously enough, there is

loss of variance: covariant and contravariant components are reduced to usual

cartesian components. The minimization is considered as unconstrained by a priori

information. The next section will cover in more in detail how a priori information and

constraints are handled.

The introduction of the metric tensor W enables the minimization problem to handle

more general exponential families than the normal distribution (2.5). The metric tensor

(and the corresponding data covariance matrix) is required to be constant and diagonal.

Equation (2.2) with (2.1) can be written explicitly as

1 -* 1 -

E(f) = + - **f + 2 d* (2.6)

Requiring that the distribution has an expected value equal to f, and setting

(f) = f ', L()= fW*f, and g(d) = 2 ed enables the likelihood function

(2.5) to be written in the more general form

L( dl) = C exp -(f) - -f -(d), (2.7)

The expected value of the distribution is then calculated via the scalar result of

Charnes, Frome and Yu, (1976), which we generalize for the vector case,
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<d> (VI) - 1 a V , the differentiation being with respect to f, and <> denotes

the expected value. We have used identities (F.19-20). Similarly, the diagonal metric

tensor is defined formally as

P= P, (2.8)

the differentiation being with respect to f. This is the vector expression of eq.2.3 in

Charnes, Frome and Yu, (1976). The theorem is:

If d is a random sample of size N satisfying (2.7) with <d'> = f, then a maximum

likelihood estimate of 9A, say Mi, will satisfy the equation VE(?.) = 0, provided

ft belongs to V space.

For a likelihood function of general exponential family of type (2.7), and its

appropriate metric tensor (2.8) and expected value f, the linearized stochastic

inverse, to be presented in section 4 of this chapter, would yield estimates that are

identical to those obtained using the maximum likelihood principle.

Parseval-Plancherel theorem (Bass, 1977; Roddier, 1978) states that the energy

of a system is conserved when transformed into the Fourier space. Therefore, for any

two conjugate variables (t,w) with c being the dual variable of t, and for a Np-point

(Np-N) Discrete Fourier Transform (DFT) (Oppenheim and Schafer, 1975),

NP Np

=1(A

where the bar denotes the Fourier transform of the function considered. For example, if

the data vectors depend on time, we can therefore study the minimization process (2.4)

in the time or equivalently in the frequency domain, whichever is suitable.
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This property is a particular case of the more general property that all unitary

operators, such as the DFT, are isometric (i.e. conserve the norm). An operator A is

unitary if AT = A - 1 , where the superscript T denotes the transposed of A, and the

complex conjugate transposed if A is complex. Thus if A operates on a vector I (i.e.

A*) the norm is

s(AE' , A*e) = s(9,) . (2.10)

This property, in signal processing, is sometimes referred to as information

preserving. Such a transformation has a beneficial effect when observations (signals)

are considered as random processes, for which noise is characterized by the covariance

matrix, generally non-diagonal. The time for which the autocorrelation function begins to

decrease significantly is an approximate measure of the time interval, At, for which two

events are uncorrelated. In terms of power spectral density (Fourier transform of the

autocorrelation function), if the highest signal frequency is fmax, the required time

interval, At, in order to achieve decorrelation, must be greater than f max . However,

time samples of properly sampled signals (i.e. At <(2f max ) - 1 ) are correlated.

Performing a unitary transformation to the signal redistributes the variance associated

with the transformed signal samples, into almost uncorrelated samples (Yechiam and

Pearl, 1979), thus performing a quasi-diagonalization of the covariance matrix. Other

than being simpler in computation, since cross terms of the covariance matrix are

neglected compared to the diagonal terms, this enables the transformed coefficients of

the signal to be processed.

3. A PRIORI INFORMATION - CONSTRAINTS

The previous section introduced how prior information on the errors in the data are

handled. If some prior information is known about the parameters, such as for instance a
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measurement set, their maximum error, upper or lower bounds etc., or results from other

types of measurements (gravity data etc.), the present formulation handles these

additional information as submodels jq and subdata dq belonging to subspace

Uq, q =1, K. These subspaces are supplementary in U. Since each subspace is

characterized by its metrical tensor whose matrix is the inverse of the prior covariance

matrix of the a priori data, the statistical inference of this assumption is that that

uncertainties in Uq are uncorrelated with uncertainties in Up, for p tq. This is generally

a plausible assumption (Aki and Richards, 1980; Tarantola and Valette, 1982). The

method could handle the case where the spaces are not disjoint. Introduction of

tensors whose components are tensors, would achieve this goal, but this problem is out

of the scope of this study.

The presence of prior information adds more robustness and help reduce the

variance of the parameters. In probability theory, the way of including prior information

utilizes the maximum a posteriori method (Beck and Arnold, 1977). It is a special case

of Bayesian estimation (Jackson and Matsu'ura, 1985). The method is based on

Bayes's theorem, and estimated value of the parameters are called Bayesian estimates.

The residual energy will take into account separately each type of prior information

or constraints. For example, this energy will be required to increase wherever a type of

constraint is violated, forcing the optimization to search for the minima in a domain where

the constraints produce the least residual energy. It is therefore imperative that this

information be specified precisely since it is able to force the optimization to seek an

induced minima that could be far from the unconstrained minimum.

Given a parameter vector T in V space, the model f generates synthetics f(MAi)

in U space. In order to incorporate in the optimization process the possibility that some

or all the parameters are constrained in some manner by a priori information it is
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sufficient to vector decompose uniquely f(9A) into K different subspaces of U, K being

the total number of different types of information and constraints. The model j can be

viewed as a linear superposition of K submodels iq. The data d is decomposed the

same way as f (A3). The partial residual vector is then 9q = dq- fq. The subspaces

Up , q =1, K, are supplementary i.e. their direct sum forms U. This can be written as

K
IK(n ) = q(=l q(7-), (3.1)

where 'qi(A) belongs to Uq, and

K
U = q-1 Uq, (3.2)

where E is the direct sum of linear spaces. Each subspace Uq is specified by its

metrical tensor Pq, whose matrix is the inverse of the a priori covariance matrix V- 1 .

The corresponding total covariance matrix is then composed of K block-diagonal

submatrices. From the supplementarity and linearity of each subspace Uq, the total

residual energy will then be the sum of the partial residual energy, that is

E(r) = EqAi) , (3.3)
q=1

where Eq -2 "Wq q*

As an illustration, we shall be considering two types of parameter constraints

(K=3): (1) A prior information on the parameters requiring an observation vector (prior

mean) and a covariance matrix of the parameters with the assumption of independent

parameters and normal probability density for the parameter errors. This type of

constraint induces minimum weight in the residual energy when the parameters are at

their observation value (point wise constraint), and a norm type of increase away from
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it. (2) A penalty constraint requiring physical or mathematical bounds on the

parameters. This constraint attributes zero weight in the residual energy for all the

parameters that are within the finite domain of definition (finite domain constraint) and

an increasing weight as they get further away from that region. Other types of point

wise or finite domain constraints could be added such as in barrier methods (see

Luenberger, 1973). The model f1 generating fl (A) will be the unconstrained model

producing synthetic seismograms (amplitude and phase at time or frequency samples).

The models f2 and 13 generate the a priori parameter synthetics /2(A) and the

penalty synthetics f 3 (Ah), respectively. Considering a parameter A' in V space, the

submodels fq, the synthetics fq (AL) and the data dq can now be explicitly defined.

Seismogram model (Model 1)

Given seismogram data d1, fl corresponds to the forward model that generates

the synthetic seismograms f 1 () that is compared to d 1. The forward model here is

implemented using the paraxial ray method. The subspace in which the seismograms

belong is U1 , with dimension N1 . The matrix of the metric tensor 1 is equal to the

inverse of the covariance matrix V -1 , which is an input.

Parameter prior information model (Model 2)

The data d2 for this model is set equal to the given a priori parameter observation

(d2 0 ). The matrix of the metric tensor W2 is equal to the inverse of the covariance

matrix V -1, which is an input. The synthetics are the parameter themselves, i.e.

f2 = rA. The subspace involved is U2 with dimension N2 =M.

Penalty model (Model 3)
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The data d 3 for this model is equal to zero ( 3 0). Consider a number of

functional constraints on the parameters defining a finite domain C in V space. The

function f3 is such that

f 3(7A) =0

#0

for all A, in C, (3.4)

for all i not in C.

In the case where C is defined by a number of inequality constraints:

C = A in V : c(n) <- 0, i=1, N3 J , (3.6)

a useful penalty function is

a

) (max[O;c(7.)]) (3.6)i=1, N3 ,

where a an even positive integer (with typical values of 2 or 4). The subspace spanned

by f3 is U3 with dimension N3 . The matrix of the metric tensor P3 is taken to be

diagonal.

The total residual energy (2.2) with (3.3) can be written as

E = *1*1 +1 2 (3.7)

or, in terms of components

1 N 1

E(rA) 2 (Wj[Vj 1di f ' WO)
i.j=1

+ F c (W2 [ - m'tm6

with N1 + N2 + N 3 = N.
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This equation shows the effects of constraints in the optimization. The residual

energy is weighted according to "how far" the estimated parameters are from their a

priori values, in addition to the variance weighting. The different contributions in the

residual energy at the right hand side of (3.8) are explicit. The first term corresponds

to the seismogram model, the second term to the parameter prior information model and

the third to the penalty model. Geometrically, the constraints increase the convexity of

the hypersurface of E in VxR space by raising the energy wherever the constraints are

active (i.e. violated). This forces the search for the minimum residual energy within the

domain defined by the a-priori information.

If other measurements or a priori information were to be implemented in the

minimization, they would be associated with models generating synthetics. Their partial

residual energy would then be added to (3.7), with the corresponding weights

expressed by their metrical tensor.

4. THE LINEARIZED STOCHASTIC INVERSE

The non-linear problem (2.4) described in the preceding section is generally solved

by iteration. A typical method of attacking the problem, known as Newton's method (or

variations of it), reduces the non-linear system to a sequence of linear least-squares

problems. For the sake of simplicity and clarity we shall first review the method in 1 -

Dimensional V space (v is a scalar), then generalize the results for vector

representation in M-Dimensional V space. Two equivalent approaches are possible:

Either we linearize the total energy E, then decompose the result into individual

contributions, or else decompose the energy via (3.3), then linearize each contribution

separately. We shall follow the first derivation, comparing the final result with that in

Tarantola and Valette (1982).
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One-dimensional problem

Figure 1 shows a typical example of a convex function E(m). There exists a point

m* such that E(m*) is minimum or equivalently such that

E'(m*) = 0 , (4.1)

where the prime denotes the derivative with respect to m.

Following Dennis and More (1977), Newton's method can be derived by assuming

that a given mnk is an approximation to m*, and that in a neighborhood of mk, say at

point mk+1, the linearization of E'(mk+1) is a good approximation to E'(mk+1 ). We can

write

Ek+1' Ek/ + Ek" (mk+1 -mk), (4.2)

where Ek E(mk). This reduces the non-linear problem (4.1) by solving iteratively for

k the linear system Ek+1' = 0, or equivalently

-Ek = Ek Amk, (4.3)

with Amk =- nk+1 - mk.

Assume E" $ 0 and that for more generality its inverse is computed approximately.

Given an initial a-priori guess mo to m*, Newton's method updates the approximation

following

Atki = -(Ek )-1 Ek', (4.4)

where Amhk k= +1 - mk, k being an integer representing the iteration number. The

hat represents an approximate estimation of the real value since (E") -' is computed

approximately, i.e Armk i Anmk.
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E

E(m*).............

' 
a

0 m, -0
mi  m2 m* mm

slope = E"(m 0) =E'(m)

(mo-m I)

Smlt i  m0  m

Figure 1. Geometrical representation of a nonlinear 1D minimization.
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The algorithm is as follows:

a) enter J, model f and m o , and exit conditions EXC

b) compute Ek, Ek ' and Ek I

c) compute Am following (4.4): mnk+1 = m k + Am'

d) test EXC, if true STOP: k iterations, ?A = m k +1

e) update k .k +1 go to step b

where M is an estimate of m*. The exit conditions are on m k and/or Ek and are for

example an upper bound on the relative difference between two consecutive iterates of

m, and/or of E. Another convergence criterion could the minimum number of digits for

which two consecutive iterates of m agree.

Multi- dimensional problem

The vector generalization of (4.4) is straightforward. The scalar mk is replaced by

the M-Dimensional vector 7Ak. Ek' and Ek" are replaced by the vector VE and the

dyadic VVE, respectively. We shall omit, except when needed, the subscript k denoting

the iteration number, since, by analogy to the 1-D case, the updating occurs only when

all the operations at fixed k are terminated (part e of the algorithm). Recalling that the

base vectors are independent of 7A and are fixed for a given a priori covariance matrix

(fixed '), all derivatives with respect to ?A will therefore not affect the basis and its

metrical tensor F. If 9 is dependent on A, then each iteration would update the a

priori covariance matrix, which is a generalization of the present method. This would lead

to the computation of Christoffel symbols (last term in F.18), which is straightforward

but out of the scope of this study. The data vector d is assumed independent of rA

too. Since W is symmetric we will use the relation WT = (F.9).
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Define the two dyadics

T - V = V and H = VVE, (4.5)

where the superscript T denotes the transposed dyadic, the differentials being

evaluated at A7k . The components of the T dyadic are (see F.1 8),

( GT) = Vi f =i f (4.6)

Therefore, G = V fi

1
Since E = - *. (2.2), use of (F.19) yields

2

-VE = aT, , (4.7)

and

H = - V( ) = T - VGT e. (4.8)

The components of the triadic VGT are

(VG G (4.9)

Set F - VG , the vectorized equation of Newton's algorithm follows from (4.4)

defining A Ak +1 -5 k, k being the iteration number, and assuming that H is

invertible

= .. + F-T *G .. , (4.10)

where F, 6 and e are evaluated at ?r k .

The NxM matrix [G] is defined as the sensitivity matrix. It is the matrix of partial

first-derivatives of the error components with respect to the parameters. It is

sometimes called the Jacobian matrix. The MxM matrix [H] is defined as the Hessian
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The MxMxN matrix [F] involves second partial derivatives of residuals with respect to

parameters. The algorithm is identical to that developed for the 1-Dimensional case.

The convergence and rate of convergence of the method have been studied

extensively (Acton, 1970; Karmanov, 1977; Dennis and More, 1977).

The Gauss-Newton methods use the approximation H ; G W * G. Convergence

conditions are given in Nazareth (1980). The approximation is justified asymptotically if

for example the residual energy is small or if its surface is close to a paraboloid (i.e.

quasi-linear residual vector). In Appendix H, we give a one-dimensional example of this

approximation, which introduces the concept. Using the Gauss-Newton assumption,

equation (4.10) reduces to

A& = (CT. p. 6)-1 .* CT. 4  , (4.11)

which is the familiar weighted least-squares solution of the linear problem

-= A , (4.12)

with a priori information contained in W. The energy minimization of E weighted by W,

yields then, Av5.

The linearized stochastic inverse operator, at step k, is defined as

S= (GT -~1 - , (4.13)

which is represented by a MxN matrix [L]. It transforms the vector e in U space into a

vector Ai in V space.

As an example, we shall calculate explicitly (4.11) when different models are

involved. The two models considered are (1) the seismogram model, Model 1, and (2)

the parameter prior information model, Model 2, described in the previous section. The

residual vector is then (3.1) 1 = 91 S e2. We therefore have from (4.5) G = G+1 @ G2 .
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Similarly, we may write symbolically W = ,1 S W2 . From the supplementarity of the two

spaces U1 and U2 (see 3.2), the dot product of these quantities (ei , Gi , Wi) will only

pick quantities who have same subscript. Equation (4.11) then reads

Ai". = ( "* 1*1 + 2T4* 2,2)-1 (T +* 2T' 2",2). (4.14)

"T "T
Since E1 = dl -fl, 22 -0 - rt., we have from (4.7) G = Vf and G2 = G2 = I  W1

is the inverse of the data covariance matrix, and [ W2] is the inverse of the parameter

covariance matrix. Equation (4.13) takes then the final form

L57F " = ( +V* f*, + 2 1 J, ) 92t - ) , (4.15)
A m=( 1eWi= 1 -+ W2 ) -,G, WI*(dl -fl ) + W2 o(r7, 0 -79L)J, (4.15)

for which the matrix representation is identical to equation (25) in Tarantola and

Valette (1982).

Henceforth, we shall include prior information before the linearization, as shown in

(3.8). In general we would minimize the sum of N2 + N2 + 2N 3 - N nonlinear functions

(least norm) in M variables (or parameters) by a a special case of the maximum

likelihood method, referred to as the Levenberg-Marquardt method. If all the a priori

covariance matrices are diagonal, the functions are squared (least squares) and their

total number reduce to N. The Levenberg-Marquardt method introduces an additional

term in the inverse operator (4.13) of the form /2 D, where D is a (0,2) diagonal dyadic

whose components are equal to

Dii = (T W'OG) , (4.16)

and Dij = 0 for i j. 72 a positive scalar called the Levenberg-Marquardt parameter,

that is updated at every iteration. This particular choice of D has the effect of making

each iteration invariant under scale changes in the parameters. A good review of this

method is found in Beck and Arnold (1977), Aki and Richards (1980), and in Lines and
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Treitel (1984).

The inverse operator in (4.13) is then recast as

L ("T. *,. + y2 )-1.~T *. (4.17)

The search direction and iteration are therefore computed from

hM = L.. (4.18)

The method is bounded by the Gauss-Newton method (for y=0), and by the

Steepest-descent method (for y->> 1). This addition results in reducing the size and

changing the direction of the step at each iteration. The use of implicitly scaled

variables limits the step size I A M I in (4.18), in any direction where the residual energy

changes rapidly. Depending on the strategy, iterations may start alike the steepest

descent method with final iterations close to the Gauss-Newton method. In this case,

the parameter -2 is chosen adaptively and decreases as the well-behaved minimum is

approached. If the neighborhood of the minimum is poorly-conditioned, this parameter

remains finite. Among its advantages, it maintains nonsingularity of the inverse operator

and improves the search for the minimum (Beck and Arnold, 1977; Nazareth, 1980; Lines

and Treitel, 1984). It also tends to reduce oscillations or instabilities.

At the end of iterations, we can estimate how good the linearized inversion

performed, given its assumptions. The a priori covariance of the data [ F1] - 1 in U1

induces noise in the parameter space V, i.e. In the resulting vector A in V, that is

characterized by the final covariance matrix of the parameter noise Vm. The a priori

parameter covariance matrix being [ 2] - 1 , we have (Sandell and Shapiro, 1976)

vm =Ei W[G11] + [ 2] + 2[D , (4.19)

in which we have added the Levenberg-Marquardt term. Investigation of (4.14) allows
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an extension of (4.19) in the case where K multi-models are considered,

Vm = tITI II]I + -? ] . (4.1 9a)

The generalization of (4.19a) follows from (F.24), where we express the metric

tensor in V space, Wn, from that in U space, W. From (F.24), (4.5) and the

supplementarity of the Uq spaces, we have

m = T.. + 72 = q .l + D, (4.20)

with [- = Vm in (4.19a).

In fact, adding prior information to the parameters (model 2), renders the inverse

operator non-singular since the matrix [ W2 ] is positive definite. Prior information effects

are similar to the addition of the Levenberg-Marquardt term. Thus, in this case, the

Levenberg-Marquardt term can be eliminated from the operator; its presence being

unnecessary because the inverse operator is regular.

Additional effects due to presence of noise in the non-linear problem such as bias

in the stochastic inverse ( "noisy" operator ) are assumed to be small compared with the

parameter noise (Box, 1971).

The MxM parameter resolution matrix and the NxN data resolution matrix are

defined by

R -[a G 1 ] and S - [GI L] . (4.21)

These two matrices are derived following (4.12) and (4.18) (Hohmann, 1979)

[Am ] = R [AAi] , (4.22)

[^] = S [] , (4.23)
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where' -G -* '.

We shall require a measure of the resolution which is the trace of the matrix (Aki

and Richards, 1980), i.e.

tr (R) = i (4.24)
i=1

For example if I is the MxM identity matrix then tr(l) = M.

The closer the parameter resolution matrix is to the MxM identity matrix, the

smaller the Vo space, i.e. the source of non-uniqueness in determining the parameters

from the data (G4Vo = 0). We can measure this similarity using (4.24), that is compare

tr(R) to M. However, if the nonlinear inversion converged in k iterations, the parameter

resolution matrix contains information on how good the parameters improved from the

k -1 iteration. In some instances, we may have a near-singular inverse operator in the

neighborhood of the minimum, which would require a 12 # 0. It is shown (Aki and

Richards, 1980) that the effect of 72 reduces the parameter noise but sacrifices the

parameter resolution.

The data resolution matrix shows how good, at the end of the iterations, the data

is reproduced by the model. Since, in the linearization, the difference data-synthetics

(residuals) is performed at each iteration, the data resolution contains global information

on the nonlinear inversion. The more the data resolution matrix resembles the NxN

identity matrix, the smaller the Uo space, i.e. the source of discrepancy between data

and synthetics. This can be estimated comparing tr(S) to N. A scalar criteria is the

residual energy reduction (RER) at each iteration, considering the initial residual energy

as reference. Specifically, if E = (rtLo ) - P (rio) /2 is the initial residual energy,

then the residual energy reduction, at a given iteration, is expressed in percent and is

equal to RER = 100 (1 - E/ Eo). This is commonly called the data variance reduction.
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Figure 2 shows the flow chart inverse procedure in its complete form. It is a simple

extension of that derived for the 1-Dimensional case.

5. DATA, PARAMETER AND MODEL DESCRIPTION

The original data consist of a set of NS seismograms denoted

Ss(n) ; n = 1, Np; I = 1, NS J, where Np is the total number of time samples in a

seismogram. If NR K-component geophones are simultaneously implemented in the

inversion then N = KxNR (K=2 or 3 generally). Assume the medium to be constituted

of near-elastic homogeneous structures separated by smooth interfaces. We will invert

for medium parameters, that is, layer velocities, densities and quality factors, and

interface parameters. The seismogram model is computed via the paraxial ray method,

generating synthetics that will be compared to the data.

The minimization (2.4) is invariant under a Fourier transform (see 2.9). The

inversion is done in the frequency domain, and for NF discrete frequencies situated in

the neighborhood of the central frequency of the source wavelet. The justification for

treating the problem in the frequency domain rather than in the time domain is due to (1)

the modeling results are already in the frequency domain; (2) the full-wave character of

the inversion that would require in the time domain Np points, whereas in the frequency

domain the total number is NF << Np, which reduces significantly the computation time.

This procedure filters automatically noise with spectrum outside the source's spectrum;

(3) Fourier transform of random time samples yields frequency samples that are

practically uncorrelated to each other, which goes in favor of the assumption of diagonal

covariance matrix for the data samples (end of section 2).
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start- Input

exit conditions EXC
k=O

stop - output

M k+l

computation of V (4.20)

R and S (4.21)

Figure 2. Flow chart of the multidimensional iterative least square inversion.
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Define the DFT of s (n) as 1(j), j=1, Np

such that

() = sL(n) exp i ( )nrj , (5.1)

and for Inverse DFT

s (n) = 1 (j) exp -i (r)nJ . (5.2)

For a time sampling of At, if the time interval of interest lies within [tmin; tmax], we

have Np = Int(tmax -tmin)/AtI + 1, and sample n in sL(n) corresponds to time

tmin + (n -1)At; The function Int(x) is the integer value of z. The frequency sampling

is then Af = 1/(Np At), the frequency interval [0; (Np - 1)Af ], and sample j in s(j)

corresponds to frequency (j -1)Af . If the source highest frequency is fmax, it is

assumed that we have achieved 2 At fmax < 1 (Nyquist condition).

If the source frequency spectrum is centered around fo, the NF frequency

samples are chosen so that they sample adequately the source spectrum and the

interval [f ; f 2] covers appropriately the spectrum support. This corresponds to a

decimation in frequency of the spectrum. Reversing time and frequency domains, if the

source time pulse width is to, the equivalent Nyquist condition imposes an upper bound

on df , and is equal to 2 df to < 1. The frequency sampling interval df , must satisfy

this condition. Given f 1 and f2 from the source spectrum, we set j = Int(f 1/ Af )+1,

j2 = Int(f 2 / Af )+1, and dj = Int(df / Af )+1. The samples are

jk = j1 + (k-1)dj , k=1, NF , with NF = Intt(j2 -j + 1)/djj+1. The last frequency

sample is jNF = 2 + 1, or at frequency j2 Af , which is at least f2 and at most

f2 +Af.
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We now have reduced the original data set is(n);n= 1,Np; 1=1,NI, to

( 1 +(j-1)dj); j= 1, NF; 1= 1, Ns, with NF < Np. Decomposing 1s(j) into a real and

imaginary part yields

-(j) =a + i b?, (5.3)

where al = Rel§(j)j and bi = Impl(j) . The data vector d 1 introduced previously can

now be explicitly defined in terms of its components. Recall that d = dcl 9 2 E 3,

with d 2 = o ' being an input and d 3 = 0. Consider the two basis, the first in U1 space,

with dimension N1 = 2xNFxNS, and the second in U2 space, with dimension N2 = M. U3

space is of dimension N3 .
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1 M +i
We have d = E d i 0. +  d 72'

i=I i=,
where the di's are ordered the following

way:

a
1

jl+ 1
- ald

2

NF j, +(N- )j
a1

- jl
S 2

j + iNF-1 )dj
aN3s

- bJ1

- Jl+(NF-1)dj

= b

NS

1

= mo

= 0

= 0
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We now proceed to the description of the parameters that are to be extracted

from the data. Let us define a general cartesian reference frame (z,y,z) for the

medium as having the z axis oriented downwards and (ez , , e) forming a right handed

system. Figure 1 of chapter IV describes this frame. The reference z =0 is at the earth

surface. Let the medium have I interfaces zi(x), i=1, If, where each interface, i, is

described analytically with I parameters (p, j =1, 1), by the equation

z = z(ZXy, p, , P ) An interface parameter pJ corresponds to the j-th

parameter of interface i. Interfaces must be defined for all (z,y) in the medium, and

two interfaces are not allowed to cross each other. The functions z i must be of class

C2 (Cerveny and Hron, 1980). Each function zi will be approximated in the program by

a cubic spline interpolation scheme which is of class C2 (De Boor, 1980). Depending on

the variations of zi, a sufficient number of points will be required in the interpolation to

reproduce reliably zi. Two types of interface are described in Appendix G. A one-

parameter tilted flat interface (figure 3a), and a five-parameter reef-type interface

(figure 3b). The total number of interface parameters is then MT = I. Rules for

interfaces and layers are the same as those presented for 2D media in Psencik (1983).

There are I-1 homogeneous layers. Each layer i is characterized by (1) the

compressional velocity c, (2) the shear velocity pi, (3) the density pi, and (4) the

quality factor Qi (for near-elastic solids, i.e. Q >> 1). The total number of layer

parameters is ML = 4(1-1). The parameter vector 7A introduced previously is explicitly

defined in terms of its components.
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Figure 3a. Geometry and parameter of an analytical flat tilted interface.
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X axis
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interface I

Figure 3b. Geometry and parameters of an analytical reef type interface.
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Considering a basis in V space, (((

7L = Mi j, with
i=1

+1

MTnMT
TnQ1

MT

mMT+ 2

mMT+
3

M T+4

MT+ML- 3
m

MMT+ML-1

MT+ML

with dimension M = MT+ML, we have

1
=p

2
Pi

Pi

= P2

QB

= al

=

= Q1

= ML

= PML= L

L

The scaling under which the parameters is represented is of primary importance in

the inversion. For example, one may express velocities,v, in terms of slownesses, v -,
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or angles 4, in terms of their tangent tanD, or also taking a logarithmic type of

parametrization (Madden and Aki, 1980). The appropriate re-scaling (linear or non-

linear) would reduce the number of iterations, and increase the efficiency of the

algorithm. The sensitivity analysis would indicate if this the parameter re-scaling is a

requirement. The covariance matrix (4.19a) would indicate if the parameters are

independent of each other, for the model considered.

Model 1 implements the paraxial ray method producing synthetics. For a given

parameter vector nA, this model generates fl(nA, w) that is in the exact same form as

dl (w = 27f ). The paraxial results are already in the frequency domain (Chapter IV).

The asymptotic Green's function (IV.2.14), O(M,w), derived previously is multiplied in

the frequency domain by the source spectrum &(w). The source spectrum must be the

same as the one in the data dl. The displacement vector is then decomposed into

components, that must be of same type as to that in the original data. For example, if

the data is pressure measurements, the model will generate pressure synthetics.

Returning to the same notation as in (5.3), where receiver at M is represented by

1, 1=1, NS, and the frequency w replaced by j=j + (k -1)dj,k=1, NF, we write

) -6 + i , (5.4)

where 61 = Re! U(l,j) -Q(j) and G1 = Im U(l,j) a(j)j, with U(l,j) being the component

of ((M,w). The vector f/ is then constructed similarly to cl, replacing the a's and b 's

in l, by a's and b's, respectively. The components of d1 are those of d from the 1-

st component to the 2xNFxNs-th.

Model 2 implements the parameter prior information model that simply reproduces

the parameter values (12 = ?A). The storage of f2 is identical to that in a. The
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parameter component m i , i=1, M, is stored at f N 1  = i

Model 3 implements the penalty model with synthetics (3.6). The storage of f3 is

below that of f2. Element f , i=1, N3 is stored at f +M+

The vector f is then constructed in a similar way as d, so that corresponding

components are of same type.

Before the inversion, we assume that the a priori covariance matrix of Model 1 is

equal to a constant times the unit matrix, and that the a priori covariance matrix of

Model 2 is diagonal (independent parameters), i.e.

=W1 =1 , (5.5)

and

(Y2)ij =0 for ij

Model 3, also, has a diagonal a priori covariance matrix. We then use as input a

normalized residual energy from (3.8)

N
EN("A) = E(7A) 1 1 1

Wi 2 i =f

M ( W2 )ii + N3 ( W3 ) 62+ 0m - m1 (A) (5.6)
=2w1  M 2w 1

This converts the minimization of E into a minimization of a normalized EN, which is the

residual energy, E, "per unit" a priori variance (of Model 1). Set a2 = w-1 to be the

variance of Model 1.

At the end of the iterations we have an estimated parameter vector Mi. a2 is

estimated from from the residual sum of squares, assuming that the errors are additive,
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uncorrelated, and normal and have zero mean and constant variance. This yields (Beck

and Arnold, 1977)

82 E () 7)
a (N-M) (5.7)

(N-M) '

where '& is an estimate of a, and (N-M)>O is the degrees of freedom associated to the

sum of squares.

The a posteriori parameter covariance matrix follows then from (4.19-20)

Vm 2 [ C .T G+ N , (5.8)

N N
- 2

where Wand v are the normalized W and D, i.e. each divided by w = -2. Denoting

7A* the optimal parameter vector (not known generally), and M" the estimated parameter

vector, the expression for the estimated standard deviation (or errors) in the

parameters, at the end of the inversion, is

m* M u v ± vm)i 1/2 .(5.9)

Cross terms in Vm measure the correlation between different parameters. The

correlation coefficient between two distinct parameters, mi and mi, is calculated via

the equation

r(i, (V)ii (V)jj/2 (5.10)

Due to the large dimensions of the data resolution matrix (4.21) (more than 600 x 600),

we prefer to plot the computed seismograms from the estimated parameters, and

compare that to the original data set.

Noise can be added to test the robustness of the inversion. We have a uniform

(-a,a) random distribution noise e(n), characterized by its maximum amplitude a. The
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noise is controlled by choosing a reference trace sSp(n), n=1, Np, and computing the

integrated power signal to noise ratio. This is achieved by taking the DFT of both

ssp(n) and e (n) yielding Sp(j) and e(j) ,j =1 ,Np. We then compute

N

I Sp(j + (j -1)dj) 
2

SR = (5.11)
F

which is the power signal to noise ratio. The value 10 log1 0o (S'VR) is the power signal to

noise ratio expressed in decibels (dB). We apply a bandpass filter to the noise, with

low cut-off frequency sample j 1 , and high cut-off frequency sample j 2 . This noise is

added to traces sL(n), 1=1, N.
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V.6. EXAMPLES

The source time function is the Gabor wavelet described in Chapter III, equation

(6.1). Computation of (4.18) is done using the program LMDIF, which is a MINPACK-1

(1980) Fortran subroutine that minimizes the sum of the squares of N nonlinear

functions in M variables. The Jacobian matrix, [i], is calculated by a forward-

difference approximation. LMDIF is a version of the Levenberg-Marquardt algorithm

where the Gauss-Newton method is used as long as the inverse operator (4.13) is non-

singular. When this is not the case it computes a Levenberg-Marquardt parameter 2

and uses (4.17) as inverse operator.

Model A:

The model consists of two acoustic layers and a dipping interface. Source

parameters are: fo = 60 Hz, F = 4, ti = 0.03 sec. Figure 4a displays the time signal,

and figure 4b its amplitude spectrum. The line source and the receivers are shown in

figure 5. There is a total of NS = 38 receivers, and NF = 9 frequency samples from 10

Hz to 110 Hz. The number of residuals is N = 689 (where N2 = 3 residuals are due to

Model 2, and N3 = 2 to Model 3). Three parameters are defined and constitute the

parameter vector with components ["A]T = (4, a 1 , a 2 ). 4 is interface 2 dip angle (see

G.1) with units in radians , a1 is the upper medium velocity, and a 2 is the lower medium

velocity, with units in km/sec. The optimal parameter vector is chosen to be to:

[nA*] T = (0.197 , 3.5, 4.5). The optimal interface dip angle is about 110. The fixed

point on the interface has coordinates (f = 0.05 km, zf = 0.51 km).

The sensitivity analysis consists in studying the variations of the residual energy

around an a priori optimal point. Given the model f and a parameter vector, rA*, we set

S - f(iL*), and plot E given in (2.2), varying ?A. The sensitivity of the model for
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specific parameters can then be investigated. A 3D plot of E = (at ; 02 ) is shown in

figure 6a, constructed with 21x21 points. The sampling interval in each direction is

Aa = 0.05km/sec. The tilt angle 4 is optimal. A contour plot of the same section is

displayed in figure 6b. The trough in the upper layer velocity direction shows that this

velocity is much better constrained than that in the lower medium. The global minima is

clearly seen in the contour plot. The presence of local minima will be discussed later in

this section.

A 3D plot of E = ( ; (2), with 21x21 points and Ac - 0.30, Aa 2 = O.05km/sec,

is shown if figure 7a. Figure 7b is its contour plot. The upper layer velocity a 1 is

optimal. The sought resolution on dip angle is a few degrees, and on velocities on the

order of 100 m/sec. On this basis, we can compare the sensitivity of the residual

energy for these different parameters. The lower medium velocity is better constrained

than the interface dip angle. A nice minimum can be seen.
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(a)

Il
0

0 time (sec) 0.1

(b)

0 400
frequency (Hz)

Figure 4. Source signal used in Model A: (a) in time; (b) amplitude spectrum.
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Figure 5. Geometry of Model A.
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(a)

a (b) isocontour = 500

4

4.5(km/sec)

3 3.5(km/sec) 4

Figure 6. Model A sensitivity as a function of layer velocities: E = (al ; a2 ), (a) 3D
plot, (b) contour plot.
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(b) isocontour = 100

32

8.40

11.30

14.20

Figure 7. Model A sensitivity as a function of interface slope and lower layer velocity:
E = ( ; a2 ), (a) 3D plot, (b) contour plot.

- 194 -



Chapter V

Figure 8a is the 3D plot of E = (4 ; a 1), with 21x21 points, and A4 Pd 0.30,

Aai = 0.5Okm/ sec. The lower layer velocity a2 is optimal. The contour plot is

displayed in figure 8b. The angle is poorly constrained, compared to the upper medium

velocity. The large trough has a global minimum, but the two parameters have such

contrasted effects on E that the minimum is poorly resolved in the angle direction.

Figure 9a is the 1D plot of E = (4) and figure 9b the plot of E = (a,). The first figure

corresponds to the line passing in the trough of figure 8a, and the second figure is the

line perpendicular to the trough. Both clearly shows the minimum along these two

directions. Note the relative difference in residual energy between both curves.

Prior information about the parameters would constrain the minimization, and would

remove some non-uniqueness in parameter determination. Setting the prior information

to (IP = 0.21 (about 120) with error (W 2 )1-1/2 = 0.0175, and a1 = 3.4 with error

( W2)22/2, with weight in (5.6) w, =0.1, yield a 3D sensitivity plot of E = (4 ; al), which

is plotted in figure 10a. The sampling is the same as in figure 7a, and the lower layer

velocity a2 is optimal. Figure 1 Ob shows the contour plot. Compared to figures 8a and

8b, there is a clear improvement in the determination of a global minimum. The residual

energy has increased significantly away from the parameters a priori values. The global

minimum is in between the prior values and the optimal values. Since the angle variance

is small, the minimum in this direction is closer to 120 than the optimal value at 11.30 .

Thus prior values must be specified precisely and weighted accordingly, since they

force the optimization to search for the minimum in regions that are close to the a priori

values.

- 195 -



Chapter V

(a)

(b) isocontour = 250

14.20

11.3 °

8.40

Figure 8. Model A sensitivity as a function of interface slope and upper layer velocity:
E = (i ; a,), (a) 3D plot, (b) contour plot.
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Figure 9. Model A sensitivity as a function of interface slope: (a) E = (4), and as a
function of upper layer velocity (b) E = (al).
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(a)

(b) isocontour = 800

3 5 m/sec)
14.2o

11.30

8.4
°

Figure 10. Prior information in Model A parameters; sensitivity as a function of interface
slope and upper layer velocity: E = (4 ; a,), (a) 3D plot, (b) contour plot.
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Model A'

The model is the same as above, with a greater receiver density. Sensitivity

analysis with 62 receivers is studied, with 1116 residuals. The 3D plot of E = () ; 0)

is sampled as figure 8a, and is shown in figure 11 a, with its contour plot in figure 11 b.

Compared to figure 8a and 8b, the residual energy increased, without removing local

minimas. The wavelength in the upper layer is about 60 meters. In model A, the VSP

sampling was 50 meters and the surface sampling, 100 meters. Presently, the VSP

sampling is 35 meters and the surface sampling, 50 meters. Increasing the receiver

density has the beneficial effect of enhancing the global minimum , but this does not

improve the uniqueness of the global minimum. Figures 12 are the equivalent display of

figures 9, for Model A'. The energy curvature is increased reducing therefore the

parameter variance.

Model A "

The model is the same as Model A, except that a wider band source is used.

Source parameters are fo = 120 Hz, F = 3 and ti = 0.01 sec. Figure 13a shows the

time signal, and 1 3b its amplitude spectrum. There are 12 frequency samples going from

50 to 300 Hz. Plots of E = (P ; al) with same sampling as figures 8, are shown in

figures 14. The lower layer velocity a2 is optimal. To compare the sensitivity of Model

A to that of Model A ", we have corrected the source energy of the latter model so that

both models have same source energy. The source energy is dependent on the

frequency samples used in the inversion. It is what the inversion "sees" as source,

through the source spectrum sampling, that is of primary importance. Figures 15 are 10

plots of E = (4), and E = (a,), respectively. They should be compared to figures 9.
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(a)

(b)

3.5 (km/sec)

isocontour = 250

4

14.20

11. 30

8.4o
a I

Figure 11. Model A' sensitivity as a function of interface slope and upper layer velocity:
E = ( ; 1), (a) 3D plot, (b) contour plot.
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Figure 12. Model A' sensitivity as a function of interface slope: (a) E = (4), and as a
function of upper layer velocity (b) E = (ct ).
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(a)

0

o time (sec) 0.1

0 400
frequency (Hz)

Figure 13. Wide band source signal used in Model A": (a) in time; (b) amplitude spec-
trum.

- 202 -



Chapter V

(b) isocontour = 250

3 3.5 (km/sec) 4
14.2

°

11.30

8.40
01

Figure 14. Model A" sensitivity as a function of interface slope and upper layer velocity:

E = (R ; ), (a) 3D plot, (b) contour plot.
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Figure 15. Model A" sensitivity as a function of interface slope: (a) E = (4), and as a
function of upper layer velocity (b) E = (a 1).
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The parameter variance has diminished, but on the velocity axis, the region of

global minimum has decreased. These effects are mainly due to the source structure and

to the full waveform character of the inversion. Specifically, the presence in the source

of "sinusoidal" shapes, is the reason of multiple local minima/maxima in residual energy.

The velocity sensitivity quantifies changes in E for velocity variations away the optimal

value. The primary effect of such a perturbation is a time shift of the wavelet. At a

given receiver, a velocity increase is accompanied by a decrease in travel time that

shifts the wavelet, with respect to the optimal wavelet, toward earlier times. Due to the

fact that the source has zero crossings, the residual energy (of the two traces) is not

monotonically increasing as we depart from the optimal trace. Rather, it has a shape that

is very similar to that shown in figures 9b, 12b and 15b. The more the sinusoidal-like

source is "compressed" (e.g. higher frequency content) the more the sensitivity curve

has its local minima/maxima concentrated near the global minimum. This would require

good initial estimates for velocities. However, the non-uniqueness could be reduced by

transforming the data set, before inversion, to signals that are non-sinusoidal like. An

example could be to replace data traces by amplitudes of the analytic signal of the

traces (trace envelope). This would reduce the non-uniqueness, but would increase,

unfortunately, the parameter variance. Ideally, we would start the inversion with the

processed traces, for a given initial parameter guess. Then, we re-invert this time the

original traces, with as initial parameters the results of the first inversion. Hopefully, we

would get closer to the minimum with the first inversion, without requiring very good

initial guesses. Then, improve the estimates with the second inversion, and reduce the

parameter variance.
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Inversion of Model A

The data d results from the finite difference synthetics of Model A (figure 16a).

The initial parameter vector is chosen to be [" 0o]T = (0, 3.3, 4.1), with no constraints

on the priori values (i.e. (W2)ji = 0 in (5.6)). Paraxial synthetics for the a priori values,

generated by the forward model, are displayed in figure 16b. Results from the inversion

are displayed in Table 1. Parameter updates along with their corresponding residual

energy reduction (RER) is presented at each iteration. The Levenberg-Marquardt

parameter introduced in (4.17) is referred to as GAMMAX*2. At the end of the inversion

the following results are directly available: (1) estimated parameters along with their

estimated standard deviation (5.9); (2) the parameter covariance matrix (5.8), and the

corresponding correlation coefficients (5.10).

We shall refer to observed error, the error on the estimated parameter relative to

the optimal parameter that is, here, given (i.e. 1 - i/ m*i ). Estimated parameters are

very close to optimal, E[ ]T = (0.192 , 3.51 , 4.52). The least resolved parameter is the

interface dip angle, estimated within observed errors of 3%. Values of estimated

parameter standard deviations (see Table 1) must be interpreted as representing

parameters errors relative to others. Absolute values between observed and estimated

errors can be off by one order of magnitude. But, relatively, they follow same trend. The

only noise present is numerical, since the data generated by finite difference method is

inverted with the paraxial ray method. The covariance matrix has a fair diagonal trend,

that is quantified by the correlation coefficients. Estimated parameters are so close to

optimal that there is no distinguishable difference between synthetics in figure 16a

and those generated by the model, with estimated parameters.

Adding noise to the finite difference data, with a SNR = 5 dB, results in synthetics

that are shown in figure 17. The reference data trace is sSp(n) - sl(n). Inversion of
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this set yields results that are listed in Table 2. Estimated parameters are still very

good, [l] T = (0.194, 3.51 , 4.52). Note that the estimated data variance ,2, is about

52 times that of the previous inversion (Table 1). Absolute values between observed

and estimated errors are closer than when no noise is added.
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MODEL H
FINITE

GAIN -2.00
VSCALEAO. 1565E0

- VSP & SURFACE OATA
DIFFERENCE - ACOUSTIC

TIME (SEC)

TIME (SEC)

Figure 16a. Model A synthetic data, generated by the finite difference method.
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MOOEL R IN
PARAXIAL

T

ITIRL STNTHETICS
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VSCALE O. 1SSSE0

TIME (SEC)

Figure 16b. Model A synthetic data, generated by the paraxial ray method.
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INITIAL PARAMETER VECTOR: mB(1 -> M)

a. 3.30BB 4.18808

GAMMA**2 a E * 26.59917 RER (X)*

---- ) ITERATION * 1, (CALL* 5):
5.10895 3.32728 4.08391
GAMMA**2 * 0. E -

---- ) ITERATION 5 2, (CALL* 9):
0.11343 3.37085 4.51638
GAMMA**2 = 5. E

---- > ITERATION 5 3, (CALL* 13):
0.02534 3.43668 3.89636
GAMMA**2 * 5. E -

---- > ITERATION 0 4, (CALL* 17):
0.03884 3.49967 3.79257
GAMMA**2 a 1. E "

---- ) ITERATION i 5, (CALL* 21):
0.04887 3.51334 3.78540
GAMMA**2 * 0. E -

---- > ITERATION 0 6, (CALL* 25):
0.97753 3.51676 3.80297
GAMMA**2 * 5. E -

----) ITERATION 5 7, (CALL* 29):
0.09257 3.51622 3.83497

GAMMA**2 * 9. E a
---- > ITERATION 8, (CALL* 33)s

0.10515 3.51654 3.86752
GAMMA**2 * 0. E "

---- ) ITERATION 0 9, (CALL# 37):
0.11617 3.51734 3.98449
GAMMA**2 * 1. E u

---- > ITERATION 5 10, (CALL* 41)s
0.12812 3.51711 3.95587
GAMMAN*2 - . E *

---- > ITERATION * 11, (CALL# 45):
0.13500 3.51636 4.01935
GAMMA**2 - 0. E -

---- > ITERATION • 12, (CALL# 49):
0.14657 3.51576 4.10988
GAMMA'*2 * 8. E "

---- > ITERATION • 13, (CALL* 53):
0.15731 3.51458 4.23575
GAMMA**2 = . E -

---- ) ITERATION * 14, (CALL* 57):
0.16418 3.51208 4.37266
GAMMA**2 a 0. E "

---- > ITERATION 5 15, (CALL* 61):
0.170187 3.51013 4.44828
GAMMA**2 = a. E -

---- > ITERATION 5 16, (CALL# 65)s
0.17909 3.58917 4.47747
GAMMA**2 a B. E -

---- > ITERATION • 17, (CALL# 69):
0.18828 3.50847 4.50384
GAMMA**2 * . E •

---- > ITERATION • 18, (CALL* 73)s
0.19235 3.50835 4.51752
GAMMA**2 * a. E -

---- ) ITERATION * 19. (CALL* 77):
0.19262 3.50840 4.51808
GAMMA**2 * 0. E •

UPDATED PARAM. VECTOR: m*( -> M)

25.83487 RER (X)- 2.88
UPDATED PARAM. VECTORs m(I -> M)

21.94456 RER (X)- 17.55
UPDATED PARAM. VECTOR: m(1 -> M)

11.85363 RER (X)* 55.44
UPDATED PARAM. VECTORs m(1 -> M)

5.61612 RER (X)* 78.89
UPDATED PARAM. VECTORs m(l -) M)

5.504Z6 RER (X)- 79.31
UPDATED PARAM. VECTORs (1l -> M)

5.45341 RER (X)* 79.55
UPDATED PARAM. VECTOR: m(I -> M)

5.39389
UPDATED

5.32958
UPDATED

5.24571
UPDATED

5.15466
UPDATED

4.65999
UPDATED

3.79964
UPDATED

2.29887
UPDATED

1.01945
UPDATED

0.67068
UPDATED

0.39147
UPDATED

0.18897
UPDATED

5.57864
UPDATED

0.78068

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER
PARAM.

RER

(X)-
VECTORs

X)-
VECTOR:

(X).
VECTORs

VECTOR

(X)
VECTOR t

(X).
VECTOR:

(X)-
VECTOR

(X)i
VECTOR:

(X)"
VECTORs

(X)-
VECTOR

(X)-
VECTOR:

(X)-
VECTOR:

(X).

79.72
(l1 ->

79.96
m(l ->

88.28
m(I ->

81.8
m(l ->

82.48
m(1 ->

85.72
m(1 ->

91.36
m(l ->

96.17
m(1 ->

97.48
m(1 ->

98.53
m(l ->

99.59
m(l ->

99.73
m(l ->

99.73

Table 1. Information on inversion of Model A: Initial and updated parameters.
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TOTAL NUMBER OF PARAMETERS: M a
TOTAL NUMBER OF RESIDUALS: N -
LMDIF INVERSION EXIT CONDITION: INFO =
TOTAL NUMBER OF FORWARD MODELS CALLS *
TOTAL NUMBER OF ITERATIONS: k *
FINAL LEVENBERG-MAROUARDT P: GAMMA**2 -
FINAL RESIDUAL ENERGY: E "
ESTIMATED DATA VARIANCE: SIGMA**2 a

FINAL RESID. ENERGY REDUCTION& RER(X) -

MODEL 1 SCALAR WEIGHTs wI -

3
689

2
79
20
B. *+S9
0.87864
8.19298e-83

99.73
4.8008

ESTIMATED PARAMETER VECTOR: m(I -> M)

0.19235 3.50835 4.51752

PARAMETER STD.DEV. VECTOR: sqrtlVm(1 -> M)]

B.88023 0.8825 0.0179

PARAM. COVARIANCE:Vm

1 0.510798e-87 0.169078e-87 0.674127*-07

2 0.169078e-07 0.621151*-07 -. 184516e-06

3 0.674127e-07 -0.184516*-06 0.322192e-05

PARAMETER CORRELATION COEFFICIENTS

r( 1, 2)w 0.30 r( 1, 3)- 0.166 r( 2, 3)=-8.412

Table 1. Information on inversion of Model A: Final parameters, error information.
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Figure 17. Figure 16a, (Model A) with added noise, SNR=5 dB.
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INITIAL PARAMETER VECTOR: m(1l -> M)

f. 3.30015 4.10108

GAMMA**2 a

---- > ITERATION * 1, (CALL* 5)s
0.51034 3.32850 4.09175
GAMMA**2 * 8. E -

---- > ITERATION * 2, (CALL* 9):
0.52124 3.37325 4.03989
GAMMA**2 * B. E *

---- ) ITERATION * 3, (CALL* 13):
8.B2995 3.44155 3.92214
GAMMA**2 * . E *

---- ) ITERATION 5 4, (CALL* 17):
6.05164 3.58266 3.83479
GAMMA**2 - 1. E a

---- > ITERATION 5 5, (CALLS 21)s
8.17743 3.51476 3.84955
GAMMA**2 * H. E *

---- > ITERATION 5 6, (CALL* 25)t
0.09849 3.51592 3.88429
GAMMA**2 a 0. E *

---- > ITERATION 5 7, (CALL* 29):
0.11528 3.51741 3.92627

GAMMA'*2 * 0. E *
---- > ITERATION 5 8, (CALL# 33)2

8.12288 3.51724 3.97401
GAMMA**2 * . E *

---- ) ITERATION 5 9, (CALL* 37)s
0.13502 3.51658 4.04132
GAMMA'*2 a 8. E "

---- > ITERATION 5 1i, (CALL* 41):
0.15176 3.51648 4.13633
GAMMA**2 - 1. E -

---- ) ITERATION 5 11. (CALLS 45):
0.15667 3.51457 4.25633
GAMMA**2 = 0. E *

---- > ITERATION * 12, (CALL* 49)t
0.16345 3.51281 4.37882
GAMMA'*2 * 0. E •

---- > ITERATION 5 13, (CALL* 53):
1.17059 3.51126 4.44588
GAMMA**2 * 1. E a

--- )> ITERATION 5 14. (CALL* 57):
0.18101 3.51999 4.47926
GAMMA**2 * 8. E *

>---- ITERATION 5 15, (CALL* 61):
0.19138 3.50886 4.51268
GAMMA**2 * 8. E "

---- > ITERATION 5 16, (CALL* 65):
5.19347 3.5886 4.52124
GAMMA**2 * B. E -

---- > ITERATION 5 17, (CALL* 69):
0.19411 3.58988 4.52209
GAMMA'*2 - 8. E *

---- > ITERATION 5 18., (CALL* 73):
9.19384 3.58906 4.52136
GAMMA**2 * 8. E a

>---- ITERATION 5 19, (CALL* 77):
0.19370 3.58901 4.52088
GAMMA**2 = B. E -

E * 38.96476 RER (X)*

UPDATED PARAM. VECTORs

29.97311 RER (X)=
UPDATED PARAM. VECTORs

25.59878 RER (Z)*
UPDATED PARAM. VECTOR:

14.78338 RER (X)a
UPDATED PARAM. VECTOR,

8.98285 RER (X)a
UPDATED PARAM. VECTOR:

8.81271 RER (X)a
UPDATED PARAN. VECTOR:

8.64515 RER (X)a
UPDATED PARAM. VECTORs

8.54188 RER (1X)
UPDATED PARAM. VECTORt

8.35738 RER (X)a
UPDATED PARAM. VECTORt

7.91324 RER (X)t
UPDATED PARAM. VECTOR:

7.04318 RER (X)-
UPDATED PARAM. VECTOR:

5.74775 RER (X)-
UPDATED PARAN. VECTOR:

4.75150 RER (X)a
UPDATED PARAM. VECTORt

4.41426 RER (X)a
UPDATED PARAM. VECTORs

3.96186 RER (X)=
UPDATED PARAM. VECTORs

3.67103 RER (X)m

UPDATED PARAM. VECTOR:

3.66126 RER (X)m

UPDATED PARAM. VECTOR:

3.65789 RER (X)-
UPDATED PARAM. VECTORs

3.65653 RER (X)=
UPDATED PARAM. VECTORs

3.65738 RER (X),=

Table 2. Information on inversion of Model A with 5 dB SNR: Initial and updated parame-
ters.
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m(I -> M)

3.21
Mn( -> M)

17.36
m(I -> M)

52.26
m( I -> M)

71.99
m( I -> M)

71.54
m(1 -> n)

72.18
m( -> M)

72.41
m(1 -> M)

73.1
mtI -> M)

74.44
m(I -> M)

77.25
m(cI -> o)

81.44
m(1 -> N)

84.66
m(1 -) N)

85.74
m( I -) M)

87.21
m(1 -> M)

88.14
m( I -> M)

88.18
m I -> M)

88.19
m( -> N)

88.19
m( I -) M)

88.19
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TOTAL NUMBER OF PARAMETERS: M
TOTAL NUMBER OF RESIDUALSs N
LMDIF INVERSION EXIT CONDITIONt INFO
TOTAL NUMBER OF FORWARD MODELS CALLS
TOTAL NUMBER OF ITERATIONS: k
FINAL LEVENBERG-MARQUALDT P: GAMMA**2
FINAL RESIDUAL ENERGY: E
ESTIMATED DATA VARIANCE: SIGMA**2
FINAL RESID. ENERGY REDUCTION# RER(X)
MODEL 1 SCALAR WEIGHT: w1

3
689

2
77
25
5. *+B
3.65653
0.533#2e-82
88.19
4.95555

ESTIMATED PARAMETER VECTOR: m(1 -> M)

8.19384 3.58906 4.52136

PARAMETER STD.DEV. VECTOR: sqrttVm(l -> M)]

0.00162 0.00179 .801294

PARAM. COVARIANCE:Vm

1 0.262732e-05 0.863323e-06 5.345IS9e-IS

2 0.863323*-06 0.318958*-I5 -B.958286e-5S

3 0.340159e-05 -8.958286e-05 B.1674B5e-3

PARAMETER CORRELATION COEFFICIENTS

r( 1, 2)- 5.298 r( 1, 3)u 0.162 r( 2, 3)--f.415

Table 2. Information on inversion of Model A with 5 dB SNR: Final parameters, error infor-
mation.
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Inversion of Model B

This is the acoustic version of Model 4 in chapter IV, figure 12. There is a total of

NS = 60 receivers, and source and frequency samples are same as Model A. The first

interface gives rise to head waves that are not modeled by the paraxial method.

Arrivals that are in this range are muted out for surface receivers. First arrivals and

primary reflected waves from the second interface are removed, along with head waves.

The finite difference data is shown in figure 18. In the inversion, we will assume that

parameters of the first layer along with the second interface are known quite

accurately. Nine parameters are defined and constitute the parameter vector, with

components

[TA]T = ( , S, B , b , L ,h , a2 , as, a 4).

4 is interface 3 dip angle (see G.1) with units in radians , (S,B,b,L,h) are the reef

parameters of interface 4 (see G.2), with units in km. a2, a 3 and a4 are velocities of

layers 2, 3 and 4, respectively, with units in km/ sec.

The optimal parameter vector is chosen to be:

[7A*]T = (-0.122 , 0.05,0.7, 0.2 ,0.35,0.1 , 3.5 , 4 , 4.5).

The optimal interface dip angle is about -70. The fixed point on the interface has

coordinates (xf = 0.05 km, zf = 0.4 km). Initial parameter vector is

[-o]T = (-0.2 , 0.04, 0.77 , 0.22 , 0.32 , 0.11 , 3.4 , 4.2 , 4.3),

with corresponding generated synthetics displayed in figure 19. Only 3 ray codes are

taken in the forward model, with a maximum of 30 rays per ray code: (1) the direct

wave, (2) the primary reflected wave from interface 3 and (3) the primary reflected

wave from interface 4.

The inversion yields the following estimates

[7n]T = (-0.13 ,0.04, 0.77, 0.07 , 0.34, 0.09 , 3.5, 4.0, 4.49).
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Velocities have been very well estimated. The experiment does not constrain

sufficiently the size of the reef, in particular its large base, B, and its small base b,

which is why their estimate are poor. This is seen in the ray diagram in figure 16 of

chapter IV. One could possibly constrain these parameters by a priori information. The

wavelength being on the order of 70 meters, we are requiring a resolution on S and h

that is a fraction of the wavelength. Inversion details are presented in Table 3 and

synthetics of estimated parameters are shown in figure 20.
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MODEL B - VSP & SURFACE DATA
FINITE DIFF. - ACOUSTIC/MUTED

TIME (SEC)
0 1~

0.00
GAIN .3.00
VSCALE*0.788E-1
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Figure 18. Model B synthetic data, generated by finite difference.
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MODEL B
PARAX IAL

TI

INITIRL SYNTHETICS
- RCOUSTIC

An .-3.00 117 C L. :)r
SCALE-O0.78see -

Figure 19. Paraxial synthetics with initial parameters of Model B.
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INITIAL PARAMETER VECTOR: ml(1 -> M)

-8.25BBB 0.04088 0.7700
3.4BBB 4,?8005 4.30000

GAMMA**2 a

0.2200B 0.3280 0.11B5

E a 50.04435

---- > ITERATION * 1, (CALL# 11):
-5.18997 5.04537 0.76995
3.42949 4.19056 4.37177
GAMMA**2 a B. E I

---- > ITERATION * 2, (CALL* 21):
-8.19598 8.03835 5.76872
3.45847 4.12335 4.42958
GAMMA**2 a a. E -

>---- ITERATION • 3, (CALL* 31):
-8.17289 0.03761 0.76698
3.45705 4.11089 4.44552

GAMMA**2 a H. E -
---- > ITERATION • 4, (CALL# 41):

-5.17644 0.03794 0.76955
3.46617 4.05701 4.46057
GAMMA**2 * 0. E -

---- > ITERATION 5 5, (CALL# 51):
-8.16744 0.03846 0.76984
3.48518 4.03480 4.46185
GAMMA"*2 * 0. E *

---- > ITERATION 5 6, (CALL# 61):
-5.16544 0.03865 0.77108
3.49271 4.00706 4.46815
GAMMA**2 - 8. E "

---- > ITERATION • 7, (CALL* 71):
-0.15737 0.03890 0.77435
3.49657 4.0552 4.47128
GAMMA**2 w 0. E *

---- ) ITERATION • 8, (CALL* 81):
-8.15452 .03894 0.77441
3.49660 3.99490 4.47664
GAMMA**2 - 8. E -

---- > ITERATION • 9, (CALL# 91):
-8.14587 0.03810 0.77445
3.49547 3.99395 4.48241
GAMMA**2 a H. E -

---- > ITERATION • 10, (CALL*101):
-8.14313 8.53897 8.77437
3.49826 3.98878 4.48675
GAMMA**2 a 8. E -

---- > ITERATION # 11, (CALL#111):
-0.13644 0.03937 0.77298
3.49608 3.99688 4.48493
GAMMA**2 a 0. E -

---- > ITERATION 5 12, (CALL#121):
-0.13432 5.03925 B.77074
3.49639 3.99828 4.48526
GAMMA**2 - 0. E -

---- > ITERATION 5 13, (CALL#131):
-5.13877 0.53852 8.77017
3.49629 4.80337 4.48779
GAMMA**2 - U. E -

---- > ITERATION # 14, (CALL#141):
-0.13079 0.03823 5.77018
3.49647 3.99979 4.48867
GAMMA**2 * 0. E -

RER (X)w

UPDATED PARAM. VECTOR: m(l -) M)
0.57257 0.31528 0.89365

29.29837 RER (%X) 41.46
UPDATED PARAM. VECTOR: m(l -> M)

0.01352 0.37168 8.88872

17.90876 RER (X)s 64.21
UPDATED PARAM. VECTOR: m(l -> M)

0.51846 0.35851 0.09197

14.81712 RER (X)- 78.39
UPDATED PARAM. VECTOR: m(l -> M)

8.01271 8.35417 0.89261

10.99367 RER (X)- 78.03
UPDATED PARAM. VECTOR: m(1 -> M)

0.02495 0.35208 .89230

8.05435 RER (X)- 83.91
UPDATED PARAM. VECTOR: m(i -> M)

8.03308 0.34868 0.89370

7.53879 RER (X)- 84.95
UPDATED PARAM. VECTOR: m(l -> M)

0.04018 0.35010 0.09366

6.51910 RER (X)- .86.97
UPDATED PARAM. VECTOR: m(1 -> M)

0.55896 0.34316 8.89275

2.46324 RER (X)- 95.08
UPDATED PARAM. VECTOR: m(l -> M)

8.04844 0.34355 0.09300

2.07989 RER (X%) 95.84
UPDATED PARAM. VECTOR: m(l -> M)

0.85075 0.33860 0.59095

1.88017 RER (X)- 96.23
UPDATED PARAM. VECTOR: m(l -> M)

0.05801 0.33525 0.09099

1.78092 RER (X)= 96.44
UPDATED PARAM. VECTOR: m(1 -> M)

0.06855 8.33592 0.09210

1.56761 RER (X)- 96.87
UPDATED PARAM. VECTOR: m(i -> M)

0.86739 0.33962 0.09161

1.42116 RER (X)- 97.16
UPDATED PARAM. VECTOR: m(1 -> M)

0.57321 0.33648 8.89899

1.45488 RER (X)- 97.09

Table 3. Information on inversion of Model B: Initial and updated parameters.
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TOTAL NUMBER OF PARAMETERS: M =
TOTAL NUMBER. OF RESIDUALS: N =
LMDIF INVERSION EXIT CONDITION: INFO *
TOTAL NUMBER OF FORWARD MODELS CALLS =
TOTAL NUMBER OF ITERATIONS: k a
FINAL LEVENBERG-MAROUARDT P: GAMMA**2 a
DATA ENERGY: E(DATA) -
FINAL RESIDUAL ENERGY: E a
ESTIMATrD DATA VARIANCE: SIGMA**2
FINAL RESID. ENERGY REDUCTION: RER(X) -
MODEL I SCALAR WEIGHT: wi =

ESTIMATED PARAMETER VECTOR: m(1 -> M)

-0.13877 0.03852 0.77817 0.06739
3.49629 4.08337 4.48779

PARAMETER ST0.OEV. VECTOR. sqrtCVe(l -> M)

9.99884 9.999 1.9114 9.99945 9.9994 9.11113
1.9§999 I .99911 9.98148

PARAM. COVAR IANCE I V.

9. 12968S.-88
9. 111704e-9

8.6SSIII*-13
-9.616762-*1l

-9.671131e-11

-9.9S63641-11
-8. 122254e-1

-9.66653.-12
8. 147193e-f

8.216593.-11
-9. 113551e-69

.15I666.-lI
-8. 116262e-8

8.751214.-11
-6 726129.-89

9.111784o-89
8.233793e-06

9.685881o-13

6.428955-*1

-1.732763*-12

-9.419282*-12Z

8.347293e-12

8.498195*-12

-5.376887.-12

.1646630-12

-8 616762-11I

-9.678939e-I

-9.732763*-12

a 19774*-S5

-@.193667e-8I

-U 197292*-10

-S.239159*-18

a 3'5515-18

-8 177475*-1+

-8 881868*-1

-9.956364.-11

-9.4929892-12

-9. 183667e-8

9.294411e-96

-8 578758*-11

-9.928398*-11

8.241896e-1i

-9.753736e-i L

-9. 12224O-IS

-9.666893*-12

1.347293*-12

-9. 1872920-16

-9.578759S-11

9. 1587865*-9

-8.551 9-11

9.75572.-11

9.582813e*-1

1.147193e0-9

9
1096

2
146
15
0.53075*+81

52.98539
1.42116
8.1374e-82

97.16
2.18000

0.33962 5.89161

9.2165930-l1

S.49195se-12

-8.238159G-16

-8.92z35e-11

-. 5S18891e-11

8 7795451-91

-9.238353e-11

-e 64925s-12

-9.113551e-89

U.15#6660-18

-9.3768*7*-12

9.37551e1- 19

9.2418960-I

0.75S172*-1l

-1.23353-11

U.77633Se-91

-9.897225*-1I

-. 116262e-S8

PARAMETER CORRELATION COEFFICIENTS

ri l. Z)* 1.819 r( 1. 3)--t 6 1 re( I.
r( 1. 8)= 0.002 r( 1. 9) .a16 rt Z.
rt 2. 7).-.91 r( 2. 8)" 9 999 ( 2.
r( 3. 7) 9.99 3 i.- r( 9 r( 3.
r( 4. 8)-U.911 r( 4. 9)=-S 988 rt 5.
r( 6. 7)- S.18 1 r( 6. 8)-4 8991 r( 6.

4,-8 91 t 1. 5)1--@ 9
3 -- 8 USe r( 2. 4)-9 if#
9)-9 092 r( 3. 4)1- 8183
9,.-N 5eS r( 4. 5--S8 899
6*-95 re 5, 7)1 0 992
9 8--I 59 r( 7. 8,--s.889

e( 1. 6)- 9.992
He 2. 5)* 9.91
r( 3. 5)--89.g9r( 3. 5)*-8.81
r( 4. 6)-9.81
r( 5. 89) 9.991
vt 7. 9=-8.927

r( 2. 7) 6.993
#( 2. 6)e 0.893
r( 3. 6)*-E.1I
e( 4. 7). 9.991
r( 5. 9). 8.997
r( a. 9)--6.514

Table 3. Information on inversion of Model B: Final parameters, error information.
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9.751214*-.l

U. 164663e-12

-9.17747S*-l1

-9.753736e-11

9.52813e-11l

-9.649ZS25-12

-9.997225e-lU

9. 119259e-87

-1.726129e-19
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MODEL B - FINAL SYNTHETICS
PARAXIAL - ACOUSTIC
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Figure 20. Paraxial synthetics after inversion, with figure 18 data.
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Inversion of Field data

We shall present here a simple application of the described inversion for field data.

An experimental group shoot for reservoir delineation was conducted by the Compagnie

Gdnerale de Gdophysique, with the scientific assistance of the Massachusetts Institute

of Technology, during the fall of 1983. The site is in Manistee Co., Michigan. The

experiment objective was to image a Niagaran reef, with data from vertical seismic

profiling collected in St. Burch well, surface reflection, and logging tools. Site geology,

field operations and results of the experiment are presented elsewhere. Dynamic ray

tracing modeling was very helpful in planning and designing the experiment (Mellen,

1984). The set of experiments included several P and S wave offset VSP's with

vibrators, a full waveform sonic recorded with Elf-Aquitaine's EVA system, a whole set of

well logs, and 3D-CMP surface reflection survey.

An interpreted cross section of the region, prior to the experiment, is shown if

figure 21. Part of the VSP data collected with a P wave source offset of 358 feet

(109 meters), is shown in figure 22. Traces have been calibrated in amplitude with

monitor phones situated close to the source.

Our aim, here, is to invert data within the reef area, for interface dip angles, and P

velocities. This would estimate how far from the borehole the reef is, and possibly,

determine how good the fit of a local part of the reef with flat interfaces is. Velocities

will be constrained by a priori information resulting from full-waveform sonic estimates,

and from a 1D-VSP full-waveform inversion (Stewart, 1983) done by Blackway (1985).

The VSP inversions yield estimates of quality factors that are on the order of 60-100

for P waves, and separates up and down going waves. Interface locations on the

borehole are precisely determined from combined sets of well logs.

- 222 -



Chapter V
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Figure 21. Interpreted cross section of St. Burch region, prior to the experiment (cour-

ttesy of West Bay Exploration Co.).-,--I , 4
I

-- i)

tesy of West Bay Exploration Co.).
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IgOE-s 5 time. (se)

Figure 22. Portion of the VSP St. Burch field data, vertical component.
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The depth interval that is of interest lies between 4410 feet (1344 meters) and

4890 feet (1490 meters). The receiver depth interval is 30 feet (9.144 meters). The

time sampling interval is of 2 msec, and the time window is from 0.3 sec to 0.45 sec.

The box in figure 22 corresponds to the set of data that will be inverted, which is

expanded in figure 23. The sixth trace is somewhat "ringy"; we shall therefore not take

it into account. The total number of traces is 16. The downgoing wave at depth 1490

meters, is given by the 1D-VSP inversion. This is the source wavelet with time function

displayed in figure 24a, and its corresponding spectrum in figure 24b. The chosen

frequency range is from 10 to 100 Hz, with 5 Hz sampling interval.

The elastic model considered has 4 layers, with 3 flat interfaces (omitting

boundary interfaces). Starting from the top, fixed depths of each interface, on the

borehole wall, are 4570 feet (1393 m) for the first, 4700 feet (1433 m) for the

second, and 4755 feet (1449 m) for the third. Within the range of observation, with a

quality factor for P waves on the order of 80, for a 50 Hz signal and a velocity on the

order of 6 kim/ sec, there is a maximum of 5% error between the elastic amplitude and

the near-elastic amplitude. The upper layer parameters are that of the layer at the first

receiver. The model calibration to the data is achieved by matching both, travel time

and maximum amplitude of the down going wave (Fig. 24) on the first trace. This

approximation is justified by the fact that we are far away from the source (about

1350 meters), and that the observation range is small (less that 150 meters). Ten ray

codes are considered to reconstruct the full waveform; direct P, primary P reflections,

primary P to S reflected converted waves, and direct P to S conversion at each

interface.

- 225 -



Chapter V

ST. BURCH FIELD OATA
VERTICAL COMPONENT

- MICHIGAN
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Figure 23. Enlarged section of the field data boxed in figure 22.
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Figure 24. Source signal used in the inversion: (a) in time; (b) amplitude spectrum.
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The parameters are the following, [2A] T = (42 3) 44 32 3 , a3). Initial

values on velocities and densities are determined via full-wave sonic logging, 1D-VSP

inversion, and the gravimetry survey (figures 25a and 25b). Values are shown in Table

4. In the inversion, at each iteration, S wave velocities will vary such that the P to S

velocity ratio remains constant (i.e. constant Poisson ratio at each layer).

The standard deviation on velocities is taken to be about 10% of their values. This

imposes constraints on velocity determination. Densities will remain constant. Initial

values for interface dip angles are given by the full-wave sonic interpretation of the

section (Paternoster, 1985). The initial angles will all be at -150 .

Results of the inversion are shown in Table 4, with final seismograms in figure 26.

The synthetics are satisfactory, considering the assumptions we have made, and the

fact that we are fitting a flat interface to a local region of the reef that might not be

flat. Some differences arise in the middle part of the section, which is thought to be

due to local interface or medium changes, that are not handled by the model. The final

local reconstruction of the model is presented in figure 27. Estimated parameters are

the following,

[f]T = (_60 , -15 , _90 , 6.822 , 4.696 , 7.1505),

and all final parameters are presented in Table 4, along with estimated variances. The

middle interface, is not well constrained by the data. Inversion with different initial

values, yielded differences of 43 that are on the order of 5 to 10 degrees. The

seismograms for the same final model but with horizontal interfaces is shown in figure

28. These can be overlaid to figures 23 and 26. The slight differences indicate the

need for the model to have non-zero dip interfaces.

- 228 -



Chapter V

o depth (feet)°0 8I " "W

Co

-4

Figure 25a. Iso spacing section of Eva data of a portion of St. Burch well.
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WELL. LOGS

Figure 25b. Bulk density, caliper and sonic logs of a portion of St. Burch well.
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The VSP inversion gives an apparent dip of a 3D interface, in the 2D plane spanned by

the source and receivers. It is always smaller or equal than the true dip. These

interface dip angles are consistent in absolute value with estimated values from full-

wave sonic which predicts a 14 1 on the order of 150 with a resolution of ± 100. A

similar approach done by Larrere (1985), estimates 1 41 to be positive but less than

100. Each of these methods give dip information of a fitted flat interface, for which the

extent away from the borehole is very different. The full-waveform depth of

investigation is on the order of a few meters, and the VSP range of investigation is on

the order of 100 meters. This last value was determined geometrically, from the ray

diagram. Considering these differences, the fit is satisfactory. However, a larger source

offset would constrain better the problem, and should improve results.
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aMTIAL PARAMmETS FR INVEISION OFI MD DATA

IAYERI a(km/sec) b(km/sc) p(g/cm

t 4.600 2.540 2.=

2 6.553 3.587 2.79

3 4542 2.6851 2.29

4 • 7.041 3.810 2.86

INITIAL PARAMETER VECTOR: mW(1 -) M)

-0.26185 -9.26188 -0.261

GAMMA**2 9 8.

---- > ITERATION * 1, (CALL*
-8.12932 -5.26769 -8.134
GAMMA**2 8.

---- > ITERATION • 2. (CALL# 1

-8.17803 -0.31981 -6.151
GAMMA**2 - 8.

---- ) ITERATION • 3. (CALL*
-8.11944 -6.27471 -6.131
GAMMA**2 - 1.04721

---- > ITERATION • 4. (CALL* "
-8.195S2 -1.27492 -8.141
GAMMA**2 1.71183

---- ) ITERATION • 5, (CALL* S
-8.11555 -8.27228 -8.151
GAMMA**2 * 4.54538

---- > ITERATION 5 6, (CALL* S
-8.18425 -9.27879 -9.151
GAMMA**2 * 14.92362

---- ) ITERATION • 7. iCALL* !
-9.18326 -0.27058 -8.151
GAMMA**2 - 47.66368

---- > ITERATION • 8, (CALL I1
-8.10391 -8.27848 -8.14!
GAMMA**2 = 26.44896

---- > ITERATION • 9, ((ALL* I
-8.18339 -8.27,81 -9.141
GAMMA**2 * 29.43iz8

88 6.55395 4.542088 7.84155

E = 43.14316 RER (X) 8.

UPDATED
6.74642

35.59785
UPDATED

6.82438
36.38793
UPDATED

6.88247
35.53677
UPDATED

6.81238
35.41612
UPDATED

6.81837
35.41I1
UPDATED

6.82997
35.48881
UPDATED

6.82975
35.38346
UPDATED

6.82173
35.37545
UPDATED

6.82353
35.39267

PARAM. VECTORs all -) M)
4.68212 7.15716

RER (X)- 17.49
PARAM. VECTORt m(I -> M)

4.66789 7.16184
RER (X)- 15.84

PARAM. VECTOR: m(il -> M)
4.69089 7.14857

RER (%)* 17.63
PARAM. VECTOR: m(1 -) M)
4.69834 7.14246

RER (X)= 17.91
PARAM. VECTOR: m(I -) M)
4.69811 7.14930

RER (%)a 17.92
PARAM. VECTORs m(I -> M)
4.69688 7.15028

RER (X)- 17.95
PARAM. VECTOR: m(l -> M)
4.69645 7.15548

RER (x)a 17.99
PARAM. VECTORs m(1 -> M)
4.69638 7.15996

RER (X%) 18.BB
PARAM. VECTOR: m(I -> M)
4.69542 7.15216

RER (%)- 17.96

Table 4. Information on inversion of St. Burch well field data: Initial and updated parame-
ters.
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TOTAL NUMBER OF PARAMETERS: M
TOTAL NUMBER OF RESIDUALS: N
LMDIF INVERSION EXIT CONDITION: INFO
TOTAL NUMBER OF FORWARD MODELS CALLS
TOTAL NUMBER OF ITERATIONS: k
FINAL LEVENBERG-MAROUARDT P: GAMMA**2
DATA ENERGY: E'DATA)
FINAL RESIDUAL ENERGY: E
ESTIMATED DATA VARIANCE: SIGMA**2
FINAL RESID. ENERGY REDUCTION: RER(X)
MODEL I SCALAR WEIGHT: wl

ESTIMATED PARAMETER VECTOR: m(1 -> M)

-0.10387 -0.27038 -0.14948 6.82185

6
426

78
10
0.30675*+03

200.04994
35.37372
0.84223e-01
18.01
0.100f00

4.69631 7.15165

PARAMETER STD.DEV. VECTOR: sqrt[Vm(I -> M)]

0.0g064 0.00074 0.00066 0.00257 0.00296 0.0457

PARAM. COVARIANCE:Vm
1 Z

1 8.415497e-96 -U.383U36*-89

2 -1.38336.-99

3 -1.35897e-89

4 8.153528e-89

5 8.2866185e-9

6 -8.481484*-10

8.545895*-S6

-8.941858.-18

8.837188e-89

U.482249e-09

-8.466358e-1t

3

-5.358897*-Z9

-8.9418586-18

. 432242e-86

-8.111669e-88

-5.932598e-89

-8. 19775e-89

8.153528-9

8.937180e-89

-6.111669e-08

8.6684889e-S

-9.683269e-66

-8.3912380-88

S

U.28661.-*9

8.4822490-89

-8.932598e-89

-. 683259ge-84

U.874881e-S

-U.13887*-#S

6

-9.481484e-15

-U.46635Be-IS

-8.159775.-99

-8.391238e-61

-U.13517e-U8

8.291910-64

PARAMETER CORRELATION COEFFICIENTS

r( 1. 2)-8.8001 r( 1. 3)-8.801 r( 1. 4)o 8.888 r( 1. 5) 58.81
r( 2, 4)-. 9.08 r( 2. S)- 3.889 r( 2. 6)n--6.58 r( 3. 4)--8.81
r( 4. 5)--U.881 r( 4. 6)--f.98s r( 5. 6)*--.aff

r( 1. 6)8-9.889 F( 2. 3)0-8.86
r( 3, 5)o--.UIU r( 3. 6)-.fUS

Table 4. Information on inversion of St. Burch well field data: Error information.
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FINAL PARAMETERS ATFER INVERSION

LAYER a(km/ sec) p(km/ sec) p(g / cm 3 )

1 4.602 2.540 2.22

2 6.822 3.734 2.79

3 4.696 2.741 2.29

4 7.151 3.870 2.864 71

Table 4. Information on inversion of St. Burch well field data: Final parameters.

- 234 -



Chapter V

FINAL SYNTHETICS
PARAXIAL - VERTI

- ST. BURCH
CAL COMPONENT

0 V
n
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UDUD

0.00 0.03 0.06 0.09 0.12
GAIN, -1.2S T I ME (SEC)
VSCAL- !.110921 0

Figure 26. Paraxial synthetics after inversion, compare to figure 23.U'
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VSCALE. I .1109220a

Figure 26. Paraxial synthetics after inversion, compare to figure 23.
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NW
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Figure 27. Local reconstruction of reef model in region boxed in figure 21.

- 236 -



Chapter V

HORIZONTAL I
PARAXIAL -

NTERFACES
VERTICAL

- ST. BURCH
COMPONENT

GAIN .1.25
VSCALE-. O4092EO

Figure 28. Paraxial
and 26.

0.06 0.09
TIME (SEC)

synthetics of figure 27, with horizontal layers; compare to figures 23
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V.7. CONCLUSION

The non-linear least squares problem is presented in the context of tensor algebra.

The residual energy is defined as one half the norm of the residual vector. The basis

under which the data vectors are represented has its metrical tensor matrix equal to

the inverse of the data covariance matrix. Linear operations on the residual energy (eg.

high order derivatives) are straightforward. The Gauss-Newton method is rederived in

this context.

Given a set of seismic data, resulting from combined seismic experiments with

different types of prior information, the required estimates are layer and interface

parameters. Full - wave inversion in the frequency domain is developed. The forward

model uses the paraxial ray method.

Sensitivity analysis is investigated. Results show that velocity is a parameter with

small variance but high non-uniqueness in its determination, whereas interface

parameters, such as dipping angle, is more unique but has a large variance. The source

shape has an important effect on residuals. Wavelet processing might be necessary if

prior information is poor.

Finite difference data sets are inverted for interface parameters and layer

velocities. For a given set of initial parameter estimates and prior information, examples

show that parameters are estimated accurately for simple models. In complex media,

the strategy could consists in inverting the data and use the velocity estimates, that

are determined quite accurately, as initial velocity values for a second inversion. Initial

interface parameters are the same as those in the first inversion. A simple example of

field data inversion for structure and velocity information is presented. Results are

compatible with that determined by full-wave sonic logging.
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V.8. APPENDIX F: Definition and Review of Tensor analysis

A brief review on tensor analysis is presented. The scope is limited to an

introduction of tensor formalism used in sections V.2, V.3 and V.4. Definitions are from

Bass (1977), and Chambadal (1969). Basic properties and transformation laws can be

found in Simmonds (1982), Morse and Feshbach (1953), Weyl (1952) and Ben-

Menahem and Singh (1981).

Let E be a J dimensional discrete linear space on a commutative field K (commonly

the set of real numbers R), and E* the dual of E, that is, the linear space of linear forms

in K over E. E* is of dimension J and (E*)* = E. If p and q are two natural integers, the

tensor of type (p,q) and order (p +q) is an element of the linear space

TP 'q (E) = TP(E) 9 Tq(E*), (F.1)

where T(E) denotes the tensor algebra of E over K, and @ is the tensor product of the

two spaces TP(E) and T q(E*). The tensor is a (p +q) linear form over E P x E* q, and

is p times contravariant and q times covariant. If p, q, r and s are four natural

integers, the tensor product (or direct product) X of two tensors Z, in TPq(E), and W,

in T r'T(E), is defined as the function

(Z,X) -- X = ZO W, (F.2)

which is a bilinear form of TP.q(E) xTr (E) in TPq,(E) ®TrTS(E). The resulting tensor

X is of type (p +r, q +s) and order (p +q +r +s).

In the system of tensors, vectors are tensors of order 1, and scalars are tensors

of order 0. Contravariant vectors (in E) are denoted with subscripts i.e. i11, 1i2 , 1 ,

whose components are denoted with superscripts, i.e. x', X2 , .. , z . Covariant vectors
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(in E*) are denoted with superscripts, i.e. v , v2, , whose components are denoted

with subscripts y 1, Y2, , YJ-

Let (d' , d2, ., dJ) be a basis of E*. If 2 is a second order covariant tensor, it can

be represented by

2 Z d'dJ (F.3)

In other words, the Zj are the components of Z in the basis digd l j. A tensor can be

identified as a linear operator, operating on vectors. In this sense, a second order

tensor is called a dyadic, a third order tensor a triadic, etc. Elements of a dyadic such

as Z in (F.3) are called dyads and are equal to Zij di(dJ. The components Z of 2

can be represented by a matrix denoted [2], linking, therefore, tensor algebra with

linear operator algebra and matrix algebra. Sometimes, when no confusion arises, the

matrix [2] of a dyadic is simply denoted Z.

Henceforth, we define in E a scalar product (bilinear form) resulting in a Euclidian

norm (quadratic form). If ('1, L2, ..., IJ) is a basis of E, the metrical structure underlying

Euclidian space assign to every two vectors of E

= i (F.4)

a number independent of the basis considered (an invariant) and which is their scalar

product

The Euclidian (L 2 ) norm is defined (F.5)

The Euclidian L2 ) norm is defined by
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S Q = 0 Wij' (F.6)
tj= 1

For two natural integers p and q different from zero, the contraction of a tensor Z

of type (p,q) and order (p +q) in TPq(E) is a function C ,q over TP -1,q - (E) such that

if

Z = ( gq1 ..., q ,

then

X = Cj,q(Z) = s(w, iY' ® ( (F.7)

The contracted tensor X is of type (p -1, q -1) and order (p +q -2). In terms of tensor

components, this operation can be represented by

X 1 .2 .q =. J 1 32 . q-1, k (F.8)
31'"2 .. 'p i1'2 "'"P - 1 'k

Some of the properties of tensors are presented. The generalization to more

complex tensors is similar to that developed.

1) A dyadic Q is said to be symmetric if T = , where T is the transposed tensor of

Q. For a (0,2) type dyadic, the matrix representation is ["]T = [Q], and the component

relation

Qji = Qi. (F.9)

2) The direct product of two contravariant vectors given by (F.4), is a (2,0) dyadic Z

constructed following

Z = 4®9 9- (F.9a)

The matrix representation is [Z] = [a] [(]T, and the component relation Z'i = S4(J.

3) Two tensors Z and Q are said to be inverse if
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Z.Q = Q.Z = I, (F.10)

where I is the unit tensor. We will use the notation Z - 1 to denote the inverse of Z. In

terms of components, if for example Z is of type (2,0), and Q of type (0,2) the

component relation is

J

Zk Qk , (F.11)
k=1

where 6g is the Kronecker delta: 6n = 1 if i=m and 6%"' = 0 if i m. In particular, the

basis e e in E, has its the reciprocal basis i j in E*, such that ei " = 6V . The scalar

product (F.5) can be simply written if

= i ; = l (F.12)

Then,

J
s( , ) = i( , (F.13)

since W;= 6 1.

4) The following relation holds (9 T ~) i = @ ® ( o ).

For example a dyadic Z of type (1,1) can be right-multiplied (dot product) with a vector

2 in E to form a vector t in E by contraction

ii *l =all Z (F.14)

The matrix representation is [t] = [2][]t], and the component relation is

A dyadic of type (0,2) when left-multiplied by yields a vector in E*

A dyadic Z of type (0,2) when left-multiplied by yields a vector 4 in E*
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J

The matrix representation is [j]T = [ ][2], and the component relation is

A dyadic Z of type (1,1) when right-multiplied by a dyadic Q of type (1,1) yields a

dyadic I of same type

X = 'Q= 1 Qk (F.16)

The matrix representation is [ = ] = [Z][ Q], and the component relation

The dyadic Q Z is not equal to X.

The scalar product product (F.5) is, then, a scalar contraction of the tensor of type

(2,2) with components Wik m . The second order tensor P with components W4 is

called the fundamental (covariant) metrical tensor. W and its inverse 0-1 are real and

symmetric. A vector 21 expressed in E with W, has its associated vector 11

expressed in E* with ~ 1 ,via the relation 21 = W* 2, and conversely q11 = W-1 . 1

Given W, use of Wk = 6 and relation (F.1 5) enables the scalar product (F.5) to be

written in an equivalent form

s ( , ) = * * , (F.1 7)

for which the Euclidian norm s(Q, ) is used in equation (V.2.2). The matrix

representation is s = [ T [W] [f], and the component relation is given by (F.5). Note

that since P is symmetric *. * = J * * .
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5) The gradient of a vector f in E with respect to a vector n7, in E is a dyadic of type

(1,1)

J J 86
Vf f ®j + ,f' (F.18)

The gradient operator can be viewed as V = V i, with Vi = B/ m .

We shall use the following tensor indentities derived from the preceding relations.

A, P are dyadics and and are vectors.

V( A *) =VA C + (V. , AT + V? T* A T ,  (F.19)

V( *; .*) = V~ A * + (VA * + V1.). . (F.20)

In general, for a vector 4, and two arbitrary tensors A and B, the operation A * * B is

ambiguous since

(A ),B ? A (qB). (F.21)

Therefore, if such an operation arises, we shall always put between parenthesis which

dot product is computed first (see F.19 and F.20).

Since tensor elements are ordered (eg. F.3), we shall code this order following the

alphabetical order of the tensor indices. For example a tensor with component G~ has

its corresponding dyad GJ 0 ® j, whereas the tensor with component Gm has its

corresponding dyad equal to Gm em &

6) A change of coordinates from a f -system of dimension M to a mk -system of same

dimension, is defined by a transformation of the form

fj = f (k) ; k=1,M. (F.22)

Suppose that the components of a second order (0,2) tensor 0 are known in the f -
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system, then the corresponding components in the mk - system, are (Simmonds, 1982)

= _ . Wk (F.23)
am i ckat'

or in tensor form,

= (Vf) , W (Vf) T , (F.24)

where the tilde denotes the tensor in the mk-system, the differentiation being with

respect to r-i.

We shall assume that equation (F.24) remains valid when going from a subspace U in E

with a fi-system of dimension N to a subspace V in E with a mk -system of dimension

M, the transformation being of same form as (F.22).

V.9. APPENDIX G: Two examples of analytical interfaces

Each interface is approximated by a cubic spline interpolation scheme. The

approximation is tested by super-imposing the exact interface with the approximate.

The number of points required in the interpolation is chosen so that the fit is good and

reliable. This requires the exact interface to be at least of class CO: The interpolation is

well behaved, provided the number of points is large enough, for elementary functions

that are continuous. Two interface types are considered.

1) The simplest parametrization of an interface is a flat tilted interface. For

interface i, the form of the function is

zz = (Z - xf) tan(f) + zf . (G.1)

Inputs are a fixed point on the interface (f, z f), determined by a priori information (eg.

from a zero offset VSP). Other inputs could be a minimum and a maximum allowable
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depths, zmin and zmax . These depths can be used to construct for example "smooth"

pinchouts, wedges or faults. If zz > zmax , then we set zi = (1 -e)zmax . Similarly, if

zi !< zmin, we would have zi = (1 +)zmin. Typical values of E are on the order of 0.001.

The parameter, 4', is the angle of the interface with respect to the x axis. The

origin of angles is the x-axis (i.e. 4=0 corresponds to a horizontal flat interface). An

angle is positive if the rotation of the interface with respect to the y axis is toward the

z axis (clockwise rotation). Figure 3a shows an example of such an interface.

2) The second type of interface models a reef. It is a continuous function

constructed by matching five functions at their end points. Inputs are again a fixed

point (x z f) at the interface, but off the reef. Five parameters describe the

interface:

(1) S = x translation with respect to xf of the reef base

(2) B = x length of large base of the reef

(3) b = x length of small base of the reef

(4) L = x length of reef transition region close to xf

(5) h = reef elevation with respect to zf.

Set

S =Bz - zf

B = Z4 -Z 1

b = X3 - 2
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L = 2 - z

Then, for interface i, the function z i is constructed following (Figure 3b)

S 1  Zi = Zf

x 1 <X < z2 i  f - 1 -cos[r L-

X2  zX < 3  zi = Zf - h (G.2)

x >< <4 z = zf .

X X4 Zi Zf1 .

Mathematical constraints are that I I > I L I + Ib I and L 0O, and in addition, if S < 0,

then I BI > -S. These constraints are imposed under the penalty model described in

section V.3, with equations similar to (3.5-6).

Combination of two reef interfaces leads to more complicated geometry. For

example, two reef interfaces with same parameters an inputs but opposite elevation, h,

could model an inclusion. Or setting b larger than the model size would simulate a normal

fault.

More realistic or complex analytical functions can be defined if necessary. For

example combination of these two interfaces would yield a tilted reef, or a reef with

different slopes on each side etc. A library of typical interface types should be

available in order to adapt the inversion to general interfaces.

Coordinates of the fixed point on the interface could be introduced as constrained

parameters. This would allow more flexibility and generality of the inversion, increasing

however computation time.
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V.10. APPENDIX H: Simple example on the Gauss-Newton approximation

We shall consider here the case where E is a scalar function of a scalar parameter

m. The same notation than the multi-dimensional problem will be taken, to conserve

symbolically the more general case.

3
Assume that d - o ann, is a good approximation of the function E(m), in the

tO

range of interest, that is, not too far from the minimum, at m*. The an are real

coefficients. We could extend the summation to higher orders if this approximation is

not sufficient without invalidating what follows. Therefore,

3
S= d - n m n . (H.1)

n=O

From (2.2) we have E = E s/ 2, with W=1. Then from (4.5)

3
G = GT = -_E = n an m

n - 1  (H.2)
n=1

Thus, (4.7) yields

E' =VE = - GT E, (H.3)

and from (4.8) and (4.9)

3
VGT = (n-1)n an m

n -2 , (H.4)

H = E" =VVE = GT G - VG . (H.5)

The Gauss-Newton approximation assumes E a G, or, equivalently that

I GT GI >> IVGT I . (H.6)

In terms of series this condition yields

n an m
n - 1  (n-1)n an 

n -2 d - an m
n  (H.7)

t1 =2 n=

with explicit left hand term
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a2l + 4n4, 2m + (4a2 +6zla 3 )m 2 + 12a2a3m3  + r32m4 , (H.8)

and right hand term

1(2a 2 + 6a 3m)(d -a + a,1 + a2M,2 + a 3m 
3 ) (H.9)

In order for (H.6) to be verified one the two following must hold:

(1) the residual must be small, that is (d - an, n) -*0; or

(2) the residual e is close to a linear function of the parameter m; that is aod, and a2

and a3 are much smaller than a ,; this would imply that the function describing the

residual energy E is close to a parabola.

Since E" is the slope of E', this approximation could either underestimate or

overestimate the slope of E', depending on the sign of the last term in (H.5), which

would slow up the convergence for the zero finding of E' (see Figure 1). Typically,

within some regularity conditions, the rate of convergence of Newton's method is

quadratic (i.e. I mk +1 -m* I proportional to I k --M* 12), whereas the Gauss-Newton

method has linear convergence (i.e. I 7 k +1 -n* I proportional to I mk -m* I).
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.. no proposition that we put, no axiomatic system, no formal language,

is ever final.

- J. Bronowski

1. SUMMARY OF RESULTS

Physical parameters characterizing heterogeneous media have been defined.

Conditions of validity of three asymptotic wave methods, (1) dynamic ray tracing, (2)

Gaussian beams, and (3) paraxial ray method, were explicitly introduced and derived.

Dynamic ray tracing must satisfy four conditions, and Gaussian beams three additional

ones. The paraxial ray method is a hybrid method situated between standard ray and

Gaussian beams. Amplitudes and phases of these methods are reliable, and can be used

with confidence in regions where the validity conditions are satisfied. Green's function

for an explosive point source in a medium with constant velocity gradient is then

investigated. Validity conditions are tested numerically in this medium. Rate of

breakdowns have been established. Dynamic ray tracing is more accurate than

Gaussian beams. Both methods remain valid at ray turning points. The paraxial ray is a

fast method for computing asymptotic Green's functions. Modeling examples show the

robustness and flexibility of the method.

A full waveform nonlinear least squares inversion is then introduced. The forward

model is generated by the paraxial ray method. The inversion is set up in the frequency

domain, and handles prior information and constraints on parameters. Estimated

parameters are layer and interface parameters (delineation). Combined VSP and surface
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reflection data, multi-offset VSP or multi-component data, etc., can be simultaneously

taken into account. Examples of inversion of VSP and surface reflection data,

generated by finite difference method are presented. As an example of application,

inversion of VSP field data from Michigan is performed, and medium estimates agree with

other independent measures.

2. SUGGESTIONS FOR FURTHER RESEARCH

Numerical (wave and asymptotic wave) methods of solving wave propagation

problems in heterogeneous media are being developed at a fast rate. Analytical solution

for Green's functions in simple heterogeneous media are very scarce. Green's function

in a medium with negative velocity gradient, or a layer over velocity gradient (presence

of caustics), or a velocity gradient over layer (shadow zone), is within our reach, and

should be investigated. This would allow a more extensive testing procedure of

asymptotic wave methods in critical regions. Numerical wave methods would also benefit

from these solutions. Green's function for a point force in medium containing a spherical

inclusion would extend the testing range. This solution enables one to have direct

control on interface curvature, and its interaction with waves. Quantitative estimation

of the Gaussian beam generated head waves should be attempted with either exact

solutions (Cagniard-de Hoop methods) or a calibrated and tested numerical wave method

(for example the finite difference method used in this study). If head waves are

correctly taken into account, one could consider hybrid method, where paraxial

synthetics are super-imposed to GB-head-waves synthetics. Shear waves is the next

step in the analysis, after acoustic (or SH) problems are solved. In more complicated

media, validity conditions of asymptotic wave methods can be tested with numerical

wave methods. Paraxial ray method can be used in imaging methods with variable
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medium background, where a large number of approximate Green's function computations

is required.

On the inversion with the paraxial ray method, it is possible to obtain analytic

Jacobian matrix for homogeneous layers with smooth interfaces. Density and quality

factors estimation is the next step in generalizing the inversion. More analytical

interfaces must be available (anticline, overthrust). Addition of coherent noise in time

would test further the inversion. Eventually, if the number of parameters is to high, we

can attempt to solve sequentially, or by parts the general problem. The development of

this inversion would help in the design of a seismic experiment. Given a localized region

and its prior information, one would investigate some optimal ways of illuminating this

region with waves, and of recording the information. This would improve the resolution

and characterization of the region under consideration.
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